xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 54525552)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30 
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33 
34 
35 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE		2
37 
38 struct scsi_host_sg_pool {
39 	size_t		size;
40 	char		*name;
41 	struct kmem_cache	*slab;
42 	mempool_t	*pool;
43 };
44 
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 	SP(8),
51 	SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 	SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 	SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 	SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 	SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67 
68 struct kmem_cache *scsi_sdb_cache;
69 
70 /*
71  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
72  * not change behaviour from the previous unplug mechanism, experimentation
73  * may prove this needs changing.
74  */
75 #define SCSI_QUEUE_DELAY	3
76 
77 /*
78  * Function:	scsi_unprep_request()
79  *
80  * Purpose:	Remove all preparation done for a request, including its
81  *		associated scsi_cmnd, so that it can be requeued.
82  *
83  * Arguments:	req	- request to unprepare
84  *
85  * Lock status:	Assumed that no locks are held upon entry.
86  *
87  * Returns:	Nothing.
88  */
89 static void scsi_unprep_request(struct request *req)
90 {
91 	struct scsi_cmnd *cmd = req->special;
92 
93 	blk_unprep_request(req);
94 	req->special = NULL;
95 
96 	scsi_put_command(cmd);
97 }
98 
99 /**
100  * __scsi_queue_insert - private queue insertion
101  * @cmd: The SCSI command being requeued
102  * @reason:  The reason for the requeue
103  * @unbusy: Whether the queue should be unbusied
104  *
105  * This is a private queue insertion.  The public interface
106  * scsi_queue_insert() always assumes the queue should be unbusied
107  * because it's always called before the completion.  This function is
108  * for a requeue after completion, which should only occur in this
109  * file.
110  */
111 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
112 {
113 	struct Scsi_Host *host = cmd->device->host;
114 	struct scsi_device *device = cmd->device;
115 	struct scsi_target *starget = scsi_target(device);
116 	struct request_queue *q = device->request_queue;
117 	unsigned long flags;
118 
119 	SCSI_LOG_MLQUEUE(1,
120 		 printk("Inserting command %p into mlqueue\n", cmd));
121 
122 	/*
123 	 * Set the appropriate busy bit for the device/host.
124 	 *
125 	 * If the host/device isn't busy, assume that something actually
126 	 * completed, and that we should be able to queue a command now.
127 	 *
128 	 * Note that the prior mid-layer assumption that any host could
129 	 * always queue at least one command is now broken.  The mid-layer
130 	 * will implement a user specifiable stall (see
131 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
132 	 * if a command is requeued with no other commands outstanding
133 	 * either for the device or for the host.
134 	 */
135 	switch (reason) {
136 	case SCSI_MLQUEUE_HOST_BUSY:
137 		host->host_blocked = host->max_host_blocked;
138 		break;
139 	case SCSI_MLQUEUE_DEVICE_BUSY:
140 		device->device_blocked = device->max_device_blocked;
141 		break;
142 	case SCSI_MLQUEUE_TARGET_BUSY:
143 		starget->target_blocked = starget->max_target_blocked;
144 		break;
145 	}
146 
147 	/*
148 	 * Decrement the counters, since these commands are no longer
149 	 * active on the host/device.
150 	 */
151 	if (unbusy)
152 		scsi_device_unbusy(device);
153 
154 	/*
155 	 * Requeue this command.  It will go before all other commands
156 	 * that are already in the queue.
157 	 */
158 	spin_lock_irqsave(q->queue_lock, flags);
159 	blk_requeue_request(q, cmd->request);
160 	spin_unlock_irqrestore(q->queue_lock, flags);
161 
162 	kblockd_schedule_work(q, &device->requeue_work);
163 
164 	return 0;
165 }
166 
167 /*
168  * Function:    scsi_queue_insert()
169  *
170  * Purpose:     Insert a command in the midlevel queue.
171  *
172  * Arguments:   cmd    - command that we are adding to queue.
173  *              reason - why we are inserting command to queue.
174  *
175  * Lock status: Assumed that lock is not held upon entry.
176  *
177  * Returns:     Nothing.
178  *
179  * Notes:       We do this for one of two cases.  Either the host is busy
180  *              and it cannot accept any more commands for the time being,
181  *              or the device returned QUEUE_FULL and can accept no more
182  *              commands.
183  * Notes:       This could be called either from an interrupt context or a
184  *              normal process context.
185  */
186 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
187 {
188 	return __scsi_queue_insert(cmd, reason, 1);
189 }
190 /**
191  * scsi_execute - insert request and wait for the result
192  * @sdev:	scsi device
193  * @cmd:	scsi command
194  * @data_direction: data direction
195  * @buffer:	data buffer
196  * @bufflen:	len of buffer
197  * @sense:	optional sense buffer
198  * @timeout:	request timeout in seconds
199  * @retries:	number of times to retry request
200  * @flags:	or into request flags;
201  * @resid:	optional residual length
202  *
203  * returns the req->errors value which is the scsi_cmnd result
204  * field.
205  */
206 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
207 		 int data_direction, void *buffer, unsigned bufflen,
208 		 unsigned char *sense, int timeout, int retries, int flags,
209 		 int *resid)
210 {
211 	struct request *req;
212 	int write = (data_direction == DMA_TO_DEVICE);
213 	int ret = DRIVER_ERROR << 24;
214 
215 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
216 
217 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
218 					buffer, bufflen, __GFP_WAIT))
219 		goto out;
220 
221 	req->cmd_len = COMMAND_SIZE(cmd[0]);
222 	memcpy(req->cmd, cmd, req->cmd_len);
223 	req->sense = sense;
224 	req->sense_len = 0;
225 	req->retries = retries;
226 	req->timeout = timeout;
227 	req->cmd_type = REQ_TYPE_BLOCK_PC;
228 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
229 
230 	/*
231 	 * head injection *required* here otherwise quiesce won't work
232 	 */
233 	blk_execute_rq(req->q, NULL, req, 1);
234 
235 	/*
236 	 * Some devices (USB mass-storage in particular) may transfer
237 	 * garbage data together with a residue indicating that the data
238 	 * is invalid.  Prevent the garbage from being misinterpreted
239 	 * and prevent security leaks by zeroing out the excess data.
240 	 */
241 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
242 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
243 
244 	if (resid)
245 		*resid = req->resid_len;
246 	ret = req->errors;
247  out:
248 	blk_put_request(req);
249 
250 	return ret;
251 }
252 EXPORT_SYMBOL(scsi_execute);
253 
254 
255 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
256 		     int data_direction, void *buffer, unsigned bufflen,
257 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
258 		     int *resid)
259 {
260 	char *sense = NULL;
261 	int result;
262 
263 	if (sshdr) {
264 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
265 		if (!sense)
266 			return DRIVER_ERROR << 24;
267 	}
268 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
269 			      sense, timeout, retries, 0, resid);
270 	if (sshdr)
271 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
272 
273 	kfree(sense);
274 	return result;
275 }
276 EXPORT_SYMBOL(scsi_execute_req);
277 
278 /*
279  * Function:    scsi_init_cmd_errh()
280  *
281  * Purpose:     Initialize cmd fields related to error handling.
282  *
283  * Arguments:   cmd	- command that is ready to be queued.
284  *
285  * Notes:       This function has the job of initializing a number of
286  *              fields related to error handling.   Typically this will
287  *              be called once for each command, as required.
288  */
289 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
290 {
291 	cmd->serial_number = 0;
292 	scsi_set_resid(cmd, 0);
293 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
294 	if (cmd->cmd_len == 0)
295 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
296 }
297 
298 void scsi_device_unbusy(struct scsi_device *sdev)
299 {
300 	struct Scsi_Host *shost = sdev->host;
301 	struct scsi_target *starget = scsi_target(sdev);
302 	unsigned long flags;
303 
304 	spin_lock_irqsave(shost->host_lock, flags);
305 	shost->host_busy--;
306 	starget->target_busy--;
307 	if (unlikely(scsi_host_in_recovery(shost) &&
308 		     (shost->host_failed || shost->host_eh_scheduled)))
309 		scsi_eh_wakeup(shost);
310 	spin_unlock(shost->host_lock);
311 	spin_lock(sdev->request_queue->queue_lock);
312 	sdev->device_busy--;
313 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
314 }
315 
316 /*
317  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
318  * and call blk_run_queue for all the scsi_devices on the target -
319  * including current_sdev first.
320  *
321  * Called with *no* scsi locks held.
322  */
323 static void scsi_single_lun_run(struct scsi_device *current_sdev)
324 {
325 	struct Scsi_Host *shost = current_sdev->host;
326 	struct scsi_device *sdev, *tmp;
327 	struct scsi_target *starget = scsi_target(current_sdev);
328 	unsigned long flags;
329 
330 	spin_lock_irqsave(shost->host_lock, flags);
331 	starget->starget_sdev_user = NULL;
332 	spin_unlock_irqrestore(shost->host_lock, flags);
333 
334 	/*
335 	 * Call blk_run_queue for all LUNs on the target, starting with
336 	 * current_sdev. We race with others (to set starget_sdev_user),
337 	 * but in most cases, we will be first. Ideally, each LU on the
338 	 * target would get some limited time or requests on the target.
339 	 */
340 	blk_run_queue(current_sdev->request_queue);
341 
342 	spin_lock_irqsave(shost->host_lock, flags);
343 	if (starget->starget_sdev_user)
344 		goto out;
345 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
346 			same_target_siblings) {
347 		if (sdev == current_sdev)
348 			continue;
349 		if (scsi_device_get(sdev))
350 			continue;
351 
352 		spin_unlock_irqrestore(shost->host_lock, flags);
353 		blk_run_queue(sdev->request_queue);
354 		spin_lock_irqsave(shost->host_lock, flags);
355 
356 		scsi_device_put(sdev);
357 	}
358  out:
359 	spin_unlock_irqrestore(shost->host_lock, flags);
360 }
361 
362 static inline int scsi_device_is_busy(struct scsi_device *sdev)
363 {
364 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
365 		return 1;
366 
367 	return 0;
368 }
369 
370 static inline int scsi_target_is_busy(struct scsi_target *starget)
371 {
372 	return ((starget->can_queue > 0 &&
373 		 starget->target_busy >= starget->can_queue) ||
374 		 starget->target_blocked);
375 }
376 
377 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
378 {
379 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
380 	    shost->host_blocked || shost->host_self_blocked)
381 		return 1;
382 
383 	return 0;
384 }
385 
386 /*
387  * Function:	scsi_run_queue()
388  *
389  * Purpose:	Select a proper request queue to serve next
390  *
391  * Arguments:	q	- last request's queue
392  *
393  * Returns:     Nothing
394  *
395  * Notes:	The previous command was completely finished, start
396  *		a new one if possible.
397  */
398 static void scsi_run_queue(struct request_queue *q)
399 {
400 	struct scsi_device *sdev = q->queuedata;
401 	struct Scsi_Host *shost;
402 	LIST_HEAD(starved_list);
403 	unsigned long flags;
404 
405 	/* if the device is dead, sdev will be NULL, so no queue to run */
406 	if (!sdev)
407 		return;
408 
409 	shost = sdev->host;
410 	if (scsi_target(sdev)->single_lun)
411 		scsi_single_lun_run(sdev);
412 
413 	spin_lock_irqsave(shost->host_lock, flags);
414 	list_splice_init(&shost->starved_list, &starved_list);
415 
416 	while (!list_empty(&starved_list)) {
417 		/*
418 		 * As long as shost is accepting commands and we have
419 		 * starved queues, call blk_run_queue. scsi_request_fn
420 		 * drops the queue_lock and can add us back to the
421 		 * starved_list.
422 		 *
423 		 * host_lock protects the starved_list and starved_entry.
424 		 * scsi_request_fn must get the host_lock before checking
425 		 * or modifying starved_list or starved_entry.
426 		 */
427 		if (scsi_host_is_busy(shost))
428 			break;
429 
430 		sdev = list_entry(starved_list.next,
431 				  struct scsi_device, starved_entry);
432 		list_del_init(&sdev->starved_entry);
433 		if (scsi_target_is_busy(scsi_target(sdev))) {
434 			list_move_tail(&sdev->starved_entry,
435 				       &shost->starved_list);
436 			continue;
437 		}
438 
439 		spin_unlock(shost->host_lock);
440 		spin_lock(sdev->request_queue->queue_lock);
441 		__blk_run_queue(sdev->request_queue);
442 		spin_unlock(sdev->request_queue->queue_lock);
443 		spin_lock(shost->host_lock);
444 	}
445 	/* put any unprocessed entries back */
446 	list_splice(&starved_list, &shost->starved_list);
447 	spin_unlock_irqrestore(shost->host_lock, flags);
448 
449 	blk_run_queue(q);
450 }
451 
452 void scsi_requeue_run_queue(struct work_struct *work)
453 {
454 	struct scsi_device *sdev;
455 	struct request_queue *q;
456 
457 	sdev = container_of(work, struct scsi_device, requeue_work);
458 	q = sdev->request_queue;
459 	scsi_run_queue(q);
460 }
461 
462 /*
463  * Function:	scsi_requeue_command()
464  *
465  * Purpose:	Handle post-processing of completed commands.
466  *
467  * Arguments:	q	- queue to operate on
468  *		cmd	- command that may need to be requeued.
469  *
470  * Returns:	Nothing
471  *
472  * Notes:	After command completion, there may be blocks left
473  *		over which weren't finished by the previous command
474  *		this can be for a number of reasons - the main one is
475  *		I/O errors in the middle of the request, in which case
476  *		we need to request the blocks that come after the bad
477  *		sector.
478  * Notes:	Upon return, cmd is a stale pointer.
479  */
480 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
481 {
482 	struct request *req = cmd->request;
483 	unsigned long flags;
484 
485 	spin_lock_irqsave(q->queue_lock, flags);
486 	scsi_unprep_request(req);
487 	blk_requeue_request(q, req);
488 	spin_unlock_irqrestore(q->queue_lock, flags);
489 
490 	scsi_run_queue(q);
491 }
492 
493 void scsi_next_command(struct scsi_cmnd *cmd)
494 {
495 	struct scsi_device *sdev = cmd->device;
496 	struct request_queue *q = sdev->request_queue;
497 
498 	/* need to hold a reference on the device before we let go of the cmd */
499 	get_device(&sdev->sdev_gendev);
500 
501 	scsi_put_command(cmd);
502 	scsi_run_queue(q);
503 
504 	/* ok to remove device now */
505 	put_device(&sdev->sdev_gendev);
506 }
507 
508 void scsi_run_host_queues(struct Scsi_Host *shost)
509 {
510 	struct scsi_device *sdev;
511 
512 	shost_for_each_device(sdev, shost)
513 		scsi_run_queue(sdev->request_queue);
514 }
515 
516 static void __scsi_release_buffers(struct scsi_cmnd *, int);
517 
518 /*
519  * Function:    scsi_end_request()
520  *
521  * Purpose:     Post-processing of completed commands (usually invoked at end
522  *		of upper level post-processing and scsi_io_completion).
523  *
524  * Arguments:   cmd	 - command that is complete.
525  *              error    - 0 if I/O indicates success, < 0 for I/O error.
526  *              bytes    - number of bytes of completed I/O
527  *		requeue  - indicates whether we should requeue leftovers.
528  *
529  * Lock status: Assumed that lock is not held upon entry.
530  *
531  * Returns:     cmd if requeue required, NULL otherwise.
532  *
533  * Notes:       This is called for block device requests in order to
534  *              mark some number of sectors as complete.
535  *
536  *		We are guaranteeing that the request queue will be goosed
537  *		at some point during this call.
538  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
539  */
540 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
541 					  int bytes, int requeue)
542 {
543 	struct request_queue *q = cmd->device->request_queue;
544 	struct request *req = cmd->request;
545 
546 	/*
547 	 * If there are blocks left over at the end, set up the command
548 	 * to queue the remainder of them.
549 	 */
550 	if (blk_end_request(req, error, bytes)) {
551 		/* kill remainder if no retrys */
552 		if (error && scsi_noretry_cmd(cmd))
553 			blk_end_request_all(req, error);
554 		else {
555 			if (requeue) {
556 				/*
557 				 * Bleah.  Leftovers again.  Stick the
558 				 * leftovers in the front of the
559 				 * queue, and goose the queue again.
560 				 */
561 				scsi_release_buffers(cmd);
562 				scsi_requeue_command(q, cmd);
563 				cmd = NULL;
564 			}
565 			return cmd;
566 		}
567 	}
568 
569 	/*
570 	 * This will goose the queue request function at the end, so we don't
571 	 * need to worry about launching another command.
572 	 */
573 	__scsi_release_buffers(cmd, 0);
574 	scsi_next_command(cmd);
575 	return NULL;
576 }
577 
578 static inline unsigned int scsi_sgtable_index(unsigned short nents)
579 {
580 	unsigned int index;
581 
582 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
583 
584 	if (nents <= 8)
585 		index = 0;
586 	else
587 		index = get_count_order(nents) - 3;
588 
589 	return index;
590 }
591 
592 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
593 {
594 	struct scsi_host_sg_pool *sgp;
595 
596 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
597 	mempool_free(sgl, sgp->pool);
598 }
599 
600 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
601 {
602 	struct scsi_host_sg_pool *sgp;
603 
604 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
605 	return mempool_alloc(sgp->pool, gfp_mask);
606 }
607 
608 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
609 			      gfp_t gfp_mask)
610 {
611 	int ret;
612 
613 	BUG_ON(!nents);
614 
615 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
616 			       gfp_mask, scsi_sg_alloc);
617 	if (unlikely(ret))
618 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
619 				scsi_sg_free);
620 
621 	return ret;
622 }
623 
624 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
625 {
626 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
627 }
628 
629 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
630 {
631 
632 	if (cmd->sdb.table.nents)
633 		scsi_free_sgtable(&cmd->sdb);
634 
635 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
636 
637 	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
638 		struct scsi_data_buffer *bidi_sdb =
639 			cmd->request->next_rq->special;
640 		scsi_free_sgtable(bidi_sdb);
641 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
642 		cmd->request->next_rq->special = NULL;
643 	}
644 
645 	if (scsi_prot_sg_count(cmd))
646 		scsi_free_sgtable(cmd->prot_sdb);
647 }
648 
649 /*
650  * Function:    scsi_release_buffers()
651  *
652  * Purpose:     Completion processing for block device I/O requests.
653  *
654  * Arguments:   cmd	- command that we are bailing.
655  *
656  * Lock status: Assumed that no lock is held upon entry.
657  *
658  * Returns:     Nothing
659  *
660  * Notes:       In the event that an upper level driver rejects a
661  *		command, we must release resources allocated during
662  *		the __init_io() function.  Primarily this would involve
663  *		the scatter-gather table, and potentially any bounce
664  *		buffers.
665  */
666 void scsi_release_buffers(struct scsi_cmnd *cmd)
667 {
668 	__scsi_release_buffers(cmd, 1);
669 }
670 EXPORT_SYMBOL(scsi_release_buffers);
671 
672 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
673 {
674 	int error = 0;
675 
676 	switch(host_byte(result)) {
677 	case DID_TRANSPORT_FAILFAST:
678 		error = -ENOLINK;
679 		break;
680 	case DID_TARGET_FAILURE:
681 		cmd->result |= (DID_OK << 16);
682 		error = -EREMOTEIO;
683 		break;
684 	case DID_NEXUS_FAILURE:
685 		cmd->result |= (DID_OK << 16);
686 		error = -EBADE;
687 		break;
688 	default:
689 		error = -EIO;
690 		break;
691 	}
692 
693 	return error;
694 }
695 
696 /*
697  * Function:    scsi_io_completion()
698  *
699  * Purpose:     Completion processing for block device I/O requests.
700  *
701  * Arguments:   cmd   - command that is finished.
702  *
703  * Lock status: Assumed that no lock is held upon entry.
704  *
705  * Returns:     Nothing
706  *
707  * Notes:       This function is matched in terms of capabilities to
708  *              the function that created the scatter-gather list.
709  *              In other words, if there are no bounce buffers
710  *              (the normal case for most drivers), we don't need
711  *              the logic to deal with cleaning up afterwards.
712  *
713  *		We must call scsi_end_request().  This will finish off
714  *		the specified number of sectors.  If we are done, the
715  *		command block will be released and the queue function
716  *		will be goosed.  If we are not done then we have to
717  *		figure out what to do next:
718  *
719  *		a) We can call scsi_requeue_command().  The request
720  *		   will be unprepared and put back on the queue.  Then
721  *		   a new command will be created for it.  This should
722  *		   be used if we made forward progress, or if we want
723  *		   to switch from READ(10) to READ(6) for example.
724  *
725  *		b) We can call scsi_queue_insert().  The request will
726  *		   be put back on the queue and retried using the same
727  *		   command as before, possibly after a delay.
728  *
729  *		c) We can call blk_end_request() with -EIO to fail
730  *		   the remainder of the request.
731  */
732 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
733 {
734 	int result = cmd->result;
735 	struct request_queue *q = cmd->device->request_queue;
736 	struct request *req = cmd->request;
737 	int error = 0;
738 	struct scsi_sense_hdr sshdr;
739 	int sense_valid = 0;
740 	int sense_deferred = 0;
741 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
742 	      ACTION_DELAYED_RETRY} action;
743 	char *description = NULL;
744 
745 	if (result) {
746 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
747 		if (sense_valid)
748 			sense_deferred = scsi_sense_is_deferred(&sshdr);
749 	}
750 
751 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
752 		req->errors = result;
753 		if (result) {
754 			if (sense_valid && req->sense) {
755 				/*
756 				 * SG_IO wants current and deferred errors
757 				 */
758 				int len = 8 + cmd->sense_buffer[7];
759 
760 				if (len > SCSI_SENSE_BUFFERSIZE)
761 					len = SCSI_SENSE_BUFFERSIZE;
762 				memcpy(req->sense, cmd->sense_buffer,  len);
763 				req->sense_len = len;
764 			}
765 			if (!sense_deferred)
766 				error = __scsi_error_from_host_byte(cmd, result);
767 		}
768 
769 		req->resid_len = scsi_get_resid(cmd);
770 
771 		if (scsi_bidi_cmnd(cmd)) {
772 			/*
773 			 * Bidi commands Must be complete as a whole,
774 			 * both sides at once.
775 			 */
776 			req->next_rq->resid_len = scsi_in(cmd)->resid;
777 
778 			scsi_release_buffers(cmd);
779 			blk_end_request_all(req, 0);
780 
781 			scsi_next_command(cmd);
782 			return;
783 		}
784 	}
785 
786 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
787 	BUG_ON(blk_bidi_rq(req));
788 
789 	/*
790 	 * Next deal with any sectors which we were able to correctly
791 	 * handle.
792 	 */
793 	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
794 				      "%d bytes done.\n",
795 				      blk_rq_sectors(req), good_bytes));
796 
797 	/*
798 	 * Recovered errors need reporting, but they're always treated
799 	 * as success, so fiddle the result code here.  For BLOCK_PC
800 	 * we already took a copy of the original into rq->errors which
801 	 * is what gets returned to the user
802 	 */
803 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
804 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
805 		 * print since caller wants ATA registers. Only occurs on
806 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
807 		 */
808 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
809 			;
810 		else if (!(req->cmd_flags & REQ_QUIET))
811 			scsi_print_sense("", cmd);
812 		result = 0;
813 		/* BLOCK_PC may have set error */
814 		error = 0;
815 	}
816 
817 	/*
818 	 * A number of bytes were successfully read.  If there
819 	 * are leftovers and there is some kind of error
820 	 * (result != 0), retry the rest.
821 	 */
822 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
823 		return;
824 
825 	error = __scsi_error_from_host_byte(cmd, result);
826 
827 	if (host_byte(result) == DID_RESET) {
828 		/* Third party bus reset or reset for error recovery
829 		 * reasons.  Just retry the command and see what
830 		 * happens.
831 		 */
832 		action = ACTION_RETRY;
833 	} else if (sense_valid && !sense_deferred) {
834 		switch (sshdr.sense_key) {
835 		case UNIT_ATTENTION:
836 			if (cmd->device->removable) {
837 				/* Detected disc change.  Set a bit
838 				 * and quietly refuse further access.
839 				 */
840 				cmd->device->changed = 1;
841 				description = "Media Changed";
842 				action = ACTION_FAIL;
843 			} else {
844 				/* Must have been a power glitch, or a
845 				 * bus reset.  Could not have been a
846 				 * media change, so we just retry the
847 				 * command and see what happens.
848 				 */
849 				action = ACTION_RETRY;
850 			}
851 			break;
852 		case ILLEGAL_REQUEST:
853 			/* If we had an ILLEGAL REQUEST returned, then
854 			 * we may have performed an unsupported
855 			 * command.  The only thing this should be
856 			 * would be a ten byte read where only a six
857 			 * byte read was supported.  Also, on a system
858 			 * where READ CAPACITY failed, we may have
859 			 * read past the end of the disk.
860 			 */
861 			if ((cmd->device->use_10_for_rw &&
862 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
863 			    (cmd->cmnd[0] == READ_10 ||
864 			     cmd->cmnd[0] == WRITE_10)) {
865 				/* This will issue a new 6-byte command. */
866 				cmd->device->use_10_for_rw = 0;
867 				action = ACTION_REPREP;
868 			} else if (sshdr.asc == 0x10) /* DIX */ {
869 				description = "Host Data Integrity Failure";
870 				action = ACTION_FAIL;
871 				error = -EILSEQ;
872 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
873 			} else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
874 				   (cmd->cmnd[0] == UNMAP ||
875 				    cmd->cmnd[0] == WRITE_SAME_16 ||
876 				    cmd->cmnd[0] == WRITE_SAME)) {
877 				description = "Discard failure";
878 				action = ACTION_FAIL;
879 			} else
880 				action = ACTION_FAIL;
881 			break;
882 		case ABORTED_COMMAND:
883 			action = ACTION_FAIL;
884 			if (sshdr.asc == 0x10) { /* DIF */
885 				description = "Target Data Integrity Failure";
886 				error = -EILSEQ;
887 			}
888 			break;
889 		case NOT_READY:
890 			/* If the device is in the process of becoming
891 			 * ready, or has a temporary blockage, retry.
892 			 */
893 			if (sshdr.asc == 0x04) {
894 				switch (sshdr.ascq) {
895 				case 0x01: /* becoming ready */
896 				case 0x04: /* format in progress */
897 				case 0x05: /* rebuild in progress */
898 				case 0x06: /* recalculation in progress */
899 				case 0x07: /* operation in progress */
900 				case 0x08: /* Long write in progress */
901 				case 0x09: /* self test in progress */
902 				case 0x14: /* space allocation in progress */
903 					action = ACTION_DELAYED_RETRY;
904 					break;
905 				default:
906 					description = "Device not ready";
907 					action = ACTION_FAIL;
908 					break;
909 				}
910 			} else {
911 				description = "Device not ready";
912 				action = ACTION_FAIL;
913 			}
914 			break;
915 		case VOLUME_OVERFLOW:
916 			/* See SSC3rXX or current. */
917 			action = ACTION_FAIL;
918 			break;
919 		default:
920 			description = "Unhandled sense code";
921 			action = ACTION_FAIL;
922 			break;
923 		}
924 	} else {
925 		description = "Unhandled error code";
926 		action = ACTION_FAIL;
927 	}
928 
929 	switch (action) {
930 	case ACTION_FAIL:
931 		/* Give up and fail the remainder of the request */
932 		scsi_release_buffers(cmd);
933 		if (!(req->cmd_flags & REQ_QUIET)) {
934 			if (description)
935 				scmd_printk(KERN_INFO, cmd, "%s\n",
936 					    description);
937 			scsi_print_result(cmd);
938 			if (driver_byte(result) & DRIVER_SENSE)
939 				scsi_print_sense("", cmd);
940 			scsi_print_command(cmd);
941 		}
942 		if (blk_end_request_err(req, error))
943 			scsi_requeue_command(q, cmd);
944 		else
945 			scsi_next_command(cmd);
946 		break;
947 	case ACTION_REPREP:
948 		/* Unprep the request and put it back at the head of the queue.
949 		 * A new command will be prepared and issued.
950 		 */
951 		scsi_release_buffers(cmd);
952 		scsi_requeue_command(q, cmd);
953 		break;
954 	case ACTION_RETRY:
955 		/* Retry the same command immediately */
956 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
957 		break;
958 	case ACTION_DELAYED_RETRY:
959 		/* Retry the same command after a delay */
960 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
961 		break;
962 	}
963 }
964 
965 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
966 			     gfp_t gfp_mask)
967 {
968 	int count;
969 
970 	/*
971 	 * If sg table allocation fails, requeue request later.
972 	 */
973 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
974 					gfp_mask))) {
975 		return BLKPREP_DEFER;
976 	}
977 
978 	req->buffer = NULL;
979 
980 	/*
981 	 * Next, walk the list, and fill in the addresses and sizes of
982 	 * each segment.
983 	 */
984 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
985 	BUG_ON(count > sdb->table.nents);
986 	sdb->table.nents = count;
987 	sdb->length = blk_rq_bytes(req);
988 	return BLKPREP_OK;
989 }
990 
991 /*
992  * Function:    scsi_init_io()
993  *
994  * Purpose:     SCSI I/O initialize function.
995  *
996  * Arguments:   cmd   - Command descriptor we wish to initialize
997  *
998  * Returns:     0 on success
999  *		BLKPREP_DEFER if the failure is retryable
1000  *		BLKPREP_KILL if the failure is fatal
1001  */
1002 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1003 {
1004 	struct request *rq = cmd->request;
1005 
1006 	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1007 	if (error)
1008 		goto err_exit;
1009 
1010 	if (blk_bidi_rq(rq)) {
1011 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1012 			scsi_sdb_cache, GFP_ATOMIC);
1013 		if (!bidi_sdb) {
1014 			error = BLKPREP_DEFER;
1015 			goto err_exit;
1016 		}
1017 
1018 		rq->next_rq->special = bidi_sdb;
1019 		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1020 		if (error)
1021 			goto err_exit;
1022 	}
1023 
1024 	if (blk_integrity_rq(rq)) {
1025 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1026 		int ivecs, count;
1027 
1028 		BUG_ON(prot_sdb == NULL);
1029 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1030 
1031 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1032 			error = BLKPREP_DEFER;
1033 			goto err_exit;
1034 		}
1035 
1036 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1037 						prot_sdb->table.sgl);
1038 		BUG_ON(unlikely(count > ivecs));
1039 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1040 
1041 		cmd->prot_sdb = prot_sdb;
1042 		cmd->prot_sdb->table.nents = count;
1043 	}
1044 
1045 	return BLKPREP_OK ;
1046 
1047 err_exit:
1048 	scsi_release_buffers(cmd);
1049 	cmd->request->special = NULL;
1050 	scsi_put_command(cmd);
1051 	return error;
1052 }
1053 EXPORT_SYMBOL(scsi_init_io);
1054 
1055 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1056 		struct request *req)
1057 {
1058 	struct scsi_cmnd *cmd;
1059 
1060 	if (!req->special) {
1061 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1062 		if (unlikely(!cmd))
1063 			return NULL;
1064 		req->special = cmd;
1065 	} else {
1066 		cmd = req->special;
1067 	}
1068 
1069 	/* pull a tag out of the request if we have one */
1070 	cmd->tag = req->tag;
1071 	cmd->request = req;
1072 
1073 	cmd->cmnd = req->cmd;
1074 	cmd->prot_op = SCSI_PROT_NORMAL;
1075 
1076 	return cmd;
1077 }
1078 
1079 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1080 {
1081 	struct scsi_cmnd *cmd;
1082 	int ret = scsi_prep_state_check(sdev, req);
1083 
1084 	if (ret != BLKPREP_OK)
1085 		return ret;
1086 
1087 	cmd = scsi_get_cmd_from_req(sdev, req);
1088 	if (unlikely(!cmd))
1089 		return BLKPREP_DEFER;
1090 
1091 	/*
1092 	 * BLOCK_PC requests may transfer data, in which case they must
1093 	 * a bio attached to them.  Or they might contain a SCSI command
1094 	 * that does not transfer data, in which case they may optionally
1095 	 * submit a request without an attached bio.
1096 	 */
1097 	if (req->bio) {
1098 		int ret;
1099 
1100 		BUG_ON(!req->nr_phys_segments);
1101 
1102 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1103 		if (unlikely(ret))
1104 			return ret;
1105 	} else {
1106 		BUG_ON(blk_rq_bytes(req));
1107 
1108 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1109 		req->buffer = NULL;
1110 	}
1111 
1112 	cmd->cmd_len = req->cmd_len;
1113 	if (!blk_rq_bytes(req))
1114 		cmd->sc_data_direction = DMA_NONE;
1115 	else if (rq_data_dir(req) == WRITE)
1116 		cmd->sc_data_direction = DMA_TO_DEVICE;
1117 	else
1118 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1119 
1120 	cmd->transfersize = blk_rq_bytes(req);
1121 	cmd->allowed = req->retries;
1122 	return BLKPREP_OK;
1123 }
1124 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1125 
1126 /*
1127  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1128  * from filesystems that still need to be translated to SCSI CDBs from
1129  * the ULD.
1130  */
1131 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1132 {
1133 	struct scsi_cmnd *cmd;
1134 	int ret = scsi_prep_state_check(sdev, req);
1135 
1136 	if (ret != BLKPREP_OK)
1137 		return ret;
1138 
1139 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1140 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1141 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1142 		if (ret != BLKPREP_OK)
1143 			return ret;
1144 	}
1145 
1146 	/*
1147 	 * Filesystem requests must transfer data.
1148 	 */
1149 	BUG_ON(!req->nr_phys_segments);
1150 
1151 	cmd = scsi_get_cmd_from_req(sdev, req);
1152 	if (unlikely(!cmd))
1153 		return BLKPREP_DEFER;
1154 
1155 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1156 	return scsi_init_io(cmd, GFP_ATOMIC);
1157 }
1158 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1159 
1160 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1161 {
1162 	int ret = BLKPREP_OK;
1163 
1164 	/*
1165 	 * If the device is not in running state we will reject some
1166 	 * or all commands.
1167 	 */
1168 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1169 		switch (sdev->sdev_state) {
1170 		case SDEV_OFFLINE:
1171 			/*
1172 			 * If the device is offline we refuse to process any
1173 			 * commands.  The device must be brought online
1174 			 * before trying any recovery commands.
1175 			 */
1176 			sdev_printk(KERN_ERR, sdev,
1177 				    "rejecting I/O to offline device\n");
1178 			ret = BLKPREP_KILL;
1179 			break;
1180 		case SDEV_DEL:
1181 			/*
1182 			 * If the device is fully deleted, we refuse to
1183 			 * process any commands as well.
1184 			 */
1185 			sdev_printk(KERN_ERR, sdev,
1186 				    "rejecting I/O to dead device\n");
1187 			ret = BLKPREP_KILL;
1188 			break;
1189 		case SDEV_QUIESCE:
1190 		case SDEV_BLOCK:
1191 		case SDEV_CREATED_BLOCK:
1192 			/*
1193 			 * If the devices is blocked we defer normal commands.
1194 			 */
1195 			if (!(req->cmd_flags & REQ_PREEMPT))
1196 				ret = BLKPREP_DEFER;
1197 			break;
1198 		default:
1199 			/*
1200 			 * For any other not fully online state we only allow
1201 			 * special commands.  In particular any user initiated
1202 			 * command is not allowed.
1203 			 */
1204 			if (!(req->cmd_flags & REQ_PREEMPT))
1205 				ret = BLKPREP_KILL;
1206 			break;
1207 		}
1208 	}
1209 	return ret;
1210 }
1211 EXPORT_SYMBOL(scsi_prep_state_check);
1212 
1213 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1214 {
1215 	struct scsi_device *sdev = q->queuedata;
1216 
1217 	switch (ret) {
1218 	case BLKPREP_KILL:
1219 		req->errors = DID_NO_CONNECT << 16;
1220 		/* release the command and kill it */
1221 		if (req->special) {
1222 			struct scsi_cmnd *cmd = req->special;
1223 			scsi_release_buffers(cmd);
1224 			scsi_put_command(cmd);
1225 			req->special = NULL;
1226 		}
1227 		break;
1228 	case BLKPREP_DEFER:
1229 		/*
1230 		 * If we defer, the blk_peek_request() returns NULL, but the
1231 		 * queue must be restarted, so we schedule a callback to happen
1232 		 * shortly.
1233 		 */
1234 		if (sdev->device_busy == 0)
1235 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1236 		break;
1237 	default:
1238 		req->cmd_flags |= REQ_DONTPREP;
1239 	}
1240 
1241 	return ret;
1242 }
1243 EXPORT_SYMBOL(scsi_prep_return);
1244 
1245 int scsi_prep_fn(struct request_queue *q, struct request *req)
1246 {
1247 	struct scsi_device *sdev = q->queuedata;
1248 	int ret = BLKPREP_KILL;
1249 
1250 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1251 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1252 	return scsi_prep_return(q, req, ret);
1253 }
1254 EXPORT_SYMBOL(scsi_prep_fn);
1255 
1256 /*
1257  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1258  * return 0.
1259  *
1260  * Called with the queue_lock held.
1261  */
1262 static inline int scsi_dev_queue_ready(struct request_queue *q,
1263 				  struct scsi_device *sdev)
1264 {
1265 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1266 		/*
1267 		 * unblock after device_blocked iterates to zero
1268 		 */
1269 		if (--sdev->device_blocked == 0) {
1270 			SCSI_LOG_MLQUEUE(3,
1271 				   sdev_printk(KERN_INFO, sdev,
1272 				   "unblocking device at zero depth\n"));
1273 		} else {
1274 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1275 			return 0;
1276 		}
1277 	}
1278 	if (scsi_device_is_busy(sdev))
1279 		return 0;
1280 
1281 	return 1;
1282 }
1283 
1284 
1285 /*
1286  * scsi_target_queue_ready: checks if there we can send commands to target
1287  * @sdev: scsi device on starget to check.
1288  *
1289  * Called with the host lock held.
1290  */
1291 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1292 					   struct scsi_device *sdev)
1293 {
1294 	struct scsi_target *starget = scsi_target(sdev);
1295 
1296 	if (starget->single_lun) {
1297 		if (starget->starget_sdev_user &&
1298 		    starget->starget_sdev_user != sdev)
1299 			return 0;
1300 		starget->starget_sdev_user = sdev;
1301 	}
1302 
1303 	if (starget->target_busy == 0 && starget->target_blocked) {
1304 		/*
1305 		 * unblock after target_blocked iterates to zero
1306 		 */
1307 		if (--starget->target_blocked == 0) {
1308 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1309 					 "unblocking target at zero depth\n"));
1310 		} else
1311 			return 0;
1312 	}
1313 
1314 	if (scsi_target_is_busy(starget)) {
1315 		if (list_empty(&sdev->starved_entry))
1316 			list_add_tail(&sdev->starved_entry,
1317 				      &shost->starved_list);
1318 		return 0;
1319 	}
1320 
1321 	/* We're OK to process the command, so we can't be starved */
1322 	if (!list_empty(&sdev->starved_entry))
1323 		list_del_init(&sdev->starved_entry);
1324 	return 1;
1325 }
1326 
1327 /*
1328  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1329  * return 0. We must end up running the queue again whenever 0 is
1330  * returned, else IO can hang.
1331  *
1332  * Called with host_lock held.
1333  */
1334 static inline int scsi_host_queue_ready(struct request_queue *q,
1335 				   struct Scsi_Host *shost,
1336 				   struct scsi_device *sdev)
1337 {
1338 	if (scsi_host_in_recovery(shost))
1339 		return 0;
1340 	if (shost->host_busy == 0 && shost->host_blocked) {
1341 		/*
1342 		 * unblock after host_blocked iterates to zero
1343 		 */
1344 		if (--shost->host_blocked == 0) {
1345 			SCSI_LOG_MLQUEUE(3,
1346 				printk("scsi%d unblocking host at zero depth\n",
1347 					shost->host_no));
1348 		} else {
1349 			return 0;
1350 		}
1351 	}
1352 	if (scsi_host_is_busy(shost)) {
1353 		if (list_empty(&sdev->starved_entry))
1354 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1355 		return 0;
1356 	}
1357 
1358 	/* We're OK to process the command, so we can't be starved */
1359 	if (!list_empty(&sdev->starved_entry))
1360 		list_del_init(&sdev->starved_entry);
1361 
1362 	return 1;
1363 }
1364 
1365 /*
1366  * Busy state exporting function for request stacking drivers.
1367  *
1368  * For efficiency, no lock is taken to check the busy state of
1369  * shost/starget/sdev, since the returned value is not guaranteed and
1370  * may be changed after request stacking drivers call the function,
1371  * regardless of taking lock or not.
1372  *
1373  * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1374  * (e.g. !sdev), scsi needs to return 'not busy'.
1375  * Otherwise, request stacking drivers may hold requests forever.
1376  */
1377 static int scsi_lld_busy(struct request_queue *q)
1378 {
1379 	struct scsi_device *sdev = q->queuedata;
1380 	struct Scsi_Host *shost;
1381 	struct scsi_target *starget;
1382 
1383 	if (!sdev)
1384 		return 0;
1385 
1386 	shost = sdev->host;
1387 	starget = scsi_target(sdev);
1388 
1389 	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1390 	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1391 		return 1;
1392 
1393 	return 0;
1394 }
1395 
1396 /*
1397  * Kill a request for a dead device
1398  */
1399 static void scsi_kill_request(struct request *req, struct request_queue *q)
1400 {
1401 	struct scsi_cmnd *cmd = req->special;
1402 	struct scsi_device *sdev;
1403 	struct scsi_target *starget;
1404 	struct Scsi_Host *shost;
1405 
1406 	blk_start_request(req);
1407 
1408 	sdev = cmd->device;
1409 	starget = scsi_target(sdev);
1410 	shost = sdev->host;
1411 	scsi_init_cmd_errh(cmd);
1412 	cmd->result = DID_NO_CONNECT << 16;
1413 	atomic_inc(&cmd->device->iorequest_cnt);
1414 
1415 	/*
1416 	 * SCSI request completion path will do scsi_device_unbusy(),
1417 	 * bump busy counts.  To bump the counters, we need to dance
1418 	 * with the locks as normal issue path does.
1419 	 */
1420 	sdev->device_busy++;
1421 	spin_unlock(sdev->request_queue->queue_lock);
1422 	spin_lock(shost->host_lock);
1423 	shost->host_busy++;
1424 	starget->target_busy++;
1425 	spin_unlock(shost->host_lock);
1426 	spin_lock(sdev->request_queue->queue_lock);
1427 
1428 	blk_complete_request(req);
1429 }
1430 
1431 static void scsi_softirq_done(struct request *rq)
1432 {
1433 	struct scsi_cmnd *cmd = rq->special;
1434 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1435 	int disposition;
1436 
1437 	INIT_LIST_HEAD(&cmd->eh_entry);
1438 
1439 	atomic_inc(&cmd->device->iodone_cnt);
1440 	if (cmd->result)
1441 		atomic_inc(&cmd->device->ioerr_cnt);
1442 
1443 	disposition = scsi_decide_disposition(cmd);
1444 	if (disposition != SUCCESS &&
1445 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1446 		sdev_printk(KERN_ERR, cmd->device,
1447 			    "timing out command, waited %lus\n",
1448 			    wait_for/HZ);
1449 		disposition = SUCCESS;
1450 	}
1451 
1452 	scsi_log_completion(cmd, disposition);
1453 
1454 	switch (disposition) {
1455 		case SUCCESS:
1456 			scsi_finish_command(cmd);
1457 			break;
1458 		case NEEDS_RETRY:
1459 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1460 			break;
1461 		case ADD_TO_MLQUEUE:
1462 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1463 			break;
1464 		default:
1465 			if (!scsi_eh_scmd_add(cmd, 0))
1466 				scsi_finish_command(cmd);
1467 	}
1468 }
1469 
1470 /*
1471  * Function:    scsi_request_fn()
1472  *
1473  * Purpose:     Main strategy routine for SCSI.
1474  *
1475  * Arguments:   q       - Pointer to actual queue.
1476  *
1477  * Returns:     Nothing
1478  *
1479  * Lock status: IO request lock assumed to be held when called.
1480  */
1481 static void scsi_request_fn(struct request_queue *q)
1482 {
1483 	struct scsi_device *sdev = q->queuedata;
1484 	struct Scsi_Host *shost;
1485 	struct scsi_cmnd *cmd;
1486 	struct request *req;
1487 
1488 	if (!sdev) {
1489 		printk("scsi: killing requests for dead queue\n");
1490 		while ((req = blk_peek_request(q)) != NULL)
1491 			scsi_kill_request(req, q);
1492 		return;
1493 	}
1494 
1495 	if(!get_device(&sdev->sdev_gendev))
1496 		/* We must be tearing the block queue down already */
1497 		return;
1498 
1499 	/*
1500 	 * To start with, we keep looping until the queue is empty, or until
1501 	 * the host is no longer able to accept any more requests.
1502 	 */
1503 	shost = sdev->host;
1504 	for (;;) {
1505 		int rtn;
1506 		/*
1507 		 * get next queueable request.  We do this early to make sure
1508 		 * that the request is fully prepared even if we cannot
1509 		 * accept it.
1510 		 */
1511 		req = blk_peek_request(q);
1512 		if (!req || !scsi_dev_queue_ready(q, sdev))
1513 			break;
1514 
1515 		if (unlikely(!scsi_device_online(sdev))) {
1516 			sdev_printk(KERN_ERR, sdev,
1517 				    "rejecting I/O to offline device\n");
1518 			scsi_kill_request(req, q);
1519 			continue;
1520 		}
1521 
1522 
1523 		/*
1524 		 * Remove the request from the request list.
1525 		 */
1526 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1527 			blk_start_request(req);
1528 		sdev->device_busy++;
1529 
1530 		spin_unlock(q->queue_lock);
1531 		cmd = req->special;
1532 		if (unlikely(cmd == NULL)) {
1533 			printk(KERN_CRIT "impossible request in %s.\n"
1534 					 "please mail a stack trace to "
1535 					 "linux-scsi@vger.kernel.org\n",
1536 					 __func__);
1537 			blk_dump_rq_flags(req, "foo");
1538 			BUG();
1539 		}
1540 		spin_lock(shost->host_lock);
1541 
1542 		/*
1543 		 * We hit this when the driver is using a host wide
1544 		 * tag map. For device level tag maps the queue_depth check
1545 		 * in the device ready fn would prevent us from trying
1546 		 * to allocate a tag. Since the map is a shared host resource
1547 		 * we add the dev to the starved list so it eventually gets
1548 		 * a run when a tag is freed.
1549 		 */
1550 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1551 			if (list_empty(&sdev->starved_entry))
1552 				list_add_tail(&sdev->starved_entry,
1553 					      &shost->starved_list);
1554 			goto not_ready;
1555 		}
1556 
1557 		if (!scsi_target_queue_ready(shost, sdev))
1558 			goto not_ready;
1559 
1560 		if (!scsi_host_queue_ready(q, shost, sdev))
1561 			goto not_ready;
1562 
1563 		scsi_target(sdev)->target_busy++;
1564 		shost->host_busy++;
1565 
1566 		/*
1567 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1568 		 *		take the lock again.
1569 		 */
1570 		spin_unlock_irq(shost->host_lock);
1571 
1572 		/*
1573 		 * Finally, initialize any error handling parameters, and set up
1574 		 * the timers for timeouts.
1575 		 */
1576 		scsi_init_cmd_errh(cmd);
1577 
1578 		/*
1579 		 * Dispatch the command to the low-level driver.
1580 		 */
1581 		rtn = scsi_dispatch_cmd(cmd);
1582 		spin_lock_irq(q->queue_lock);
1583 		if (rtn)
1584 			goto out_delay;
1585 	}
1586 
1587 	goto out;
1588 
1589  not_ready:
1590 	spin_unlock_irq(shost->host_lock);
1591 
1592 	/*
1593 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1594 	 * must return with queue_lock held.
1595 	 *
1596 	 * Decrementing device_busy without checking it is OK, as all such
1597 	 * cases (host limits or settings) should run the queue at some
1598 	 * later time.
1599 	 */
1600 	spin_lock_irq(q->queue_lock);
1601 	blk_requeue_request(q, req);
1602 	sdev->device_busy--;
1603 out_delay:
1604 	if (sdev->device_busy == 0)
1605 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1606 out:
1607 	/* must be careful here...if we trigger the ->remove() function
1608 	 * we cannot be holding the q lock */
1609 	spin_unlock_irq(q->queue_lock);
1610 	put_device(&sdev->sdev_gendev);
1611 	spin_lock_irq(q->queue_lock);
1612 }
1613 
1614 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1615 {
1616 	struct device *host_dev;
1617 	u64 bounce_limit = 0xffffffff;
1618 
1619 	if (shost->unchecked_isa_dma)
1620 		return BLK_BOUNCE_ISA;
1621 	/*
1622 	 * Platforms with virtual-DMA translation
1623 	 * hardware have no practical limit.
1624 	 */
1625 	if (!PCI_DMA_BUS_IS_PHYS)
1626 		return BLK_BOUNCE_ANY;
1627 
1628 	host_dev = scsi_get_device(shost);
1629 	if (host_dev && host_dev->dma_mask)
1630 		bounce_limit = *host_dev->dma_mask;
1631 
1632 	return bounce_limit;
1633 }
1634 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1635 
1636 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1637 					 request_fn_proc *request_fn)
1638 {
1639 	struct request_queue *q;
1640 	struct device *dev = shost->shost_gendev.parent;
1641 
1642 	q = blk_init_queue(request_fn, NULL);
1643 	if (!q)
1644 		return NULL;
1645 
1646 	/*
1647 	 * this limit is imposed by hardware restrictions
1648 	 */
1649 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1650 					SCSI_MAX_SG_CHAIN_SEGMENTS));
1651 
1652 	if (scsi_host_prot_dma(shost)) {
1653 		shost->sg_prot_tablesize =
1654 			min_not_zero(shost->sg_prot_tablesize,
1655 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1656 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1657 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1658 	}
1659 
1660 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1661 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1662 	blk_queue_segment_boundary(q, shost->dma_boundary);
1663 	dma_set_seg_boundary(dev, shost->dma_boundary);
1664 
1665 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1666 
1667 	if (!shost->use_clustering)
1668 		q->limits.cluster = 0;
1669 
1670 	/*
1671 	 * set a reasonable default alignment on word boundaries: the
1672 	 * host and device may alter it using
1673 	 * blk_queue_update_dma_alignment() later.
1674 	 */
1675 	blk_queue_dma_alignment(q, 0x03);
1676 
1677 	return q;
1678 }
1679 EXPORT_SYMBOL(__scsi_alloc_queue);
1680 
1681 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1682 {
1683 	struct request_queue *q;
1684 
1685 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1686 	if (!q)
1687 		return NULL;
1688 
1689 	blk_queue_prep_rq(q, scsi_prep_fn);
1690 	blk_queue_softirq_done(q, scsi_softirq_done);
1691 	blk_queue_rq_timed_out(q, scsi_times_out);
1692 	blk_queue_lld_busy(q, scsi_lld_busy);
1693 	return q;
1694 }
1695 
1696 void scsi_free_queue(struct request_queue *q)
1697 {
1698 	blk_cleanup_queue(q);
1699 }
1700 
1701 /*
1702  * Function:    scsi_block_requests()
1703  *
1704  * Purpose:     Utility function used by low-level drivers to prevent further
1705  *		commands from being queued to the device.
1706  *
1707  * Arguments:   shost       - Host in question
1708  *
1709  * Returns:     Nothing
1710  *
1711  * Lock status: No locks are assumed held.
1712  *
1713  * Notes:       There is no timer nor any other means by which the requests
1714  *		get unblocked other than the low-level driver calling
1715  *		scsi_unblock_requests().
1716  */
1717 void scsi_block_requests(struct Scsi_Host *shost)
1718 {
1719 	shost->host_self_blocked = 1;
1720 }
1721 EXPORT_SYMBOL(scsi_block_requests);
1722 
1723 /*
1724  * Function:    scsi_unblock_requests()
1725  *
1726  * Purpose:     Utility function used by low-level drivers to allow further
1727  *		commands from being queued to the device.
1728  *
1729  * Arguments:   shost       - Host in question
1730  *
1731  * Returns:     Nothing
1732  *
1733  * Lock status: No locks are assumed held.
1734  *
1735  * Notes:       There is no timer nor any other means by which the requests
1736  *		get unblocked other than the low-level driver calling
1737  *		scsi_unblock_requests().
1738  *
1739  *		This is done as an API function so that changes to the
1740  *		internals of the scsi mid-layer won't require wholesale
1741  *		changes to drivers that use this feature.
1742  */
1743 void scsi_unblock_requests(struct Scsi_Host *shost)
1744 {
1745 	shost->host_self_blocked = 0;
1746 	scsi_run_host_queues(shost);
1747 }
1748 EXPORT_SYMBOL(scsi_unblock_requests);
1749 
1750 int __init scsi_init_queue(void)
1751 {
1752 	int i;
1753 
1754 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1755 					   sizeof(struct scsi_data_buffer),
1756 					   0, 0, NULL);
1757 	if (!scsi_sdb_cache) {
1758 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1759 		return -ENOMEM;
1760 	}
1761 
1762 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1763 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1764 		int size = sgp->size * sizeof(struct scatterlist);
1765 
1766 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1767 				SLAB_HWCACHE_ALIGN, NULL);
1768 		if (!sgp->slab) {
1769 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1770 					sgp->name);
1771 			goto cleanup_sdb;
1772 		}
1773 
1774 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1775 						     sgp->slab);
1776 		if (!sgp->pool) {
1777 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1778 					sgp->name);
1779 			goto cleanup_sdb;
1780 		}
1781 	}
1782 
1783 	return 0;
1784 
1785 cleanup_sdb:
1786 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1787 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1788 		if (sgp->pool)
1789 			mempool_destroy(sgp->pool);
1790 		if (sgp->slab)
1791 			kmem_cache_destroy(sgp->slab);
1792 	}
1793 	kmem_cache_destroy(scsi_sdb_cache);
1794 
1795 	return -ENOMEM;
1796 }
1797 
1798 void scsi_exit_queue(void)
1799 {
1800 	int i;
1801 
1802 	kmem_cache_destroy(scsi_sdb_cache);
1803 
1804 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1805 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1806 		mempool_destroy(sgp->pool);
1807 		kmem_cache_destroy(sgp->slab);
1808 	}
1809 }
1810 
1811 /**
1812  *	scsi_mode_select - issue a mode select
1813  *	@sdev:	SCSI device to be queried
1814  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1815  *	@sp:	Save page bit (0 == don't save, 1 == save)
1816  *	@modepage: mode page being requested
1817  *	@buffer: request buffer (may not be smaller than eight bytes)
1818  *	@len:	length of request buffer.
1819  *	@timeout: command timeout
1820  *	@retries: number of retries before failing
1821  *	@data: returns a structure abstracting the mode header data
1822  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1823  *		must be SCSI_SENSE_BUFFERSIZE big.
1824  *
1825  *	Returns zero if successful; negative error number or scsi
1826  *	status on error
1827  *
1828  */
1829 int
1830 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1831 		 unsigned char *buffer, int len, int timeout, int retries,
1832 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1833 {
1834 	unsigned char cmd[10];
1835 	unsigned char *real_buffer;
1836 	int ret;
1837 
1838 	memset(cmd, 0, sizeof(cmd));
1839 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1840 
1841 	if (sdev->use_10_for_ms) {
1842 		if (len > 65535)
1843 			return -EINVAL;
1844 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1845 		if (!real_buffer)
1846 			return -ENOMEM;
1847 		memcpy(real_buffer + 8, buffer, len);
1848 		len += 8;
1849 		real_buffer[0] = 0;
1850 		real_buffer[1] = 0;
1851 		real_buffer[2] = data->medium_type;
1852 		real_buffer[3] = data->device_specific;
1853 		real_buffer[4] = data->longlba ? 0x01 : 0;
1854 		real_buffer[5] = 0;
1855 		real_buffer[6] = data->block_descriptor_length >> 8;
1856 		real_buffer[7] = data->block_descriptor_length;
1857 
1858 		cmd[0] = MODE_SELECT_10;
1859 		cmd[7] = len >> 8;
1860 		cmd[8] = len;
1861 	} else {
1862 		if (len > 255 || data->block_descriptor_length > 255 ||
1863 		    data->longlba)
1864 			return -EINVAL;
1865 
1866 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1867 		if (!real_buffer)
1868 			return -ENOMEM;
1869 		memcpy(real_buffer + 4, buffer, len);
1870 		len += 4;
1871 		real_buffer[0] = 0;
1872 		real_buffer[1] = data->medium_type;
1873 		real_buffer[2] = data->device_specific;
1874 		real_buffer[3] = data->block_descriptor_length;
1875 
1876 
1877 		cmd[0] = MODE_SELECT;
1878 		cmd[4] = len;
1879 	}
1880 
1881 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1882 			       sshdr, timeout, retries, NULL);
1883 	kfree(real_buffer);
1884 	return ret;
1885 }
1886 EXPORT_SYMBOL_GPL(scsi_mode_select);
1887 
1888 /**
1889  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1890  *	@sdev:	SCSI device to be queried
1891  *	@dbd:	set if mode sense will allow block descriptors to be returned
1892  *	@modepage: mode page being requested
1893  *	@buffer: request buffer (may not be smaller than eight bytes)
1894  *	@len:	length of request buffer.
1895  *	@timeout: command timeout
1896  *	@retries: number of retries before failing
1897  *	@data: returns a structure abstracting the mode header data
1898  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1899  *		must be SCSI_SENSE_BUFFERSIZE big.
1900  *
1901  *	Returns zero if unsuccessful, or the header offset (either 4
1902  *	or 8 depending on whether a six or ten byte command was
1903  *	issued) if successful.
1904  */
1905 int
1906 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1907 		  unsigned char *buffer, int len, int timeout, int retries,
1908 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1909 {
1910 	unsigned char cmd[12];
1911 	int use_10_for_ms;
1912 	int header_length;
1913 	int result;
1914 	struct scsi_sense_hdr my_sshdr;
1915 
1916 	memset(data, 0, sizeof(*data));
1917 	memset(&cmd[0], 0, 12);
1918 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1919 	cmd[2] = modepage;
1920 
1921 	/* caller might not be interested in sense, but we need it */
1922 	if (!sshdr)
1923 		sshdr = &my_sshdr;
1924 
1925  retry:
1926 	use_10_for_ms = sdev->use_10_for_ms;
1927 
1928 	if (use_10_for_ms) {
1929 		if (len < 8)
1930 			len = 8;
1931 
1932 		cmd[0] = MODE_SENSE_10;
1933 		cmd[8] = len;
1934 		header_length = 8;
1935 	} else {
1936 		if (len < 4)
1937 			len = 4;
1938 
1939 		cmd[0] = MODE_SENSE;
1940 		cmd[4] = len;
1941 		header_length = 4;
1942 	}
1943 
1944 	memset(buffer, 0, len);
1945 
1946 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1947 				  sshdr, timeout, retries, NULL);
1948 
1949 	/* This code looks awful: what it's doing is making sure an
1950 	 * ILLEGAL REQUEST sense return identifies the actual command
1951 	 * byte as the problem.  MODE_SENSE commands can return
1952 	 * ILLEGAL REQUEST if the code page isn't supported */
1953 
1954 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1955 	    (driver_byte(result) & DRIVER_SENSE)) {
1956 		if (scsi_sense_valid(sshdr)) {
1957 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1958 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1959 				/*
1960 				 * Invalid command operation code
1961 				 */
1962 				sdev->use_10_for_ms = 0;
1963 				goto retry;
1964 			}
1965 		}
1966 	}
1967 
1968 	if(scsi_status_is_good(result)) {
1969 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1970 			     (modepage == 6 || modepage == 8))) {
1971 			/* Initio breakage? */
1972 			header_length = 0;
1973 			data->length = 13;
1974 			data->medium_type = 0;
1975 			data->device_specific = 0;
1976 			data->longlba = 0;
1977 			data->block_descriptor_length = 0;
1978 		} else if(use_10_for_ms) {
1979 			data->length = buffer[0]*256 + buffer[1] + 2;
1980 			data->medium_type = buffer[2];
1981 			data->device_specific = buffer[3];
1982 			data->longlba = buffer[4] & 0x01;
1983 			data->block_descriptor_length = buffer[6]*256
1984 				+ buffer[7];
1985 		} else {
1986 			data->length = buffer[0] + 1;
1987 			data->medium_type = buffer[1];
1988 			data->device_specific = buffer[2];
1989 			data->block_descriptor_length = buffer[3];
1990 		}
1991 		data->header_length = header_length;
1992 	}
1993 
1994 	return result;
1995 }
1996 EXPORT_SYMBOL(scsi_mode_sense);
1997 
1998 /**
1999  *	scsi_test_unit_ready - test if unit is ready
2000  *	@sdev:	scsi device to change the state of.
2001  *	@timeout: command timeout
2002  *	@retries: number of retries before failing
2003  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2004  *		returning sense. Make sure that this is cleared before passing
2005  *		in.
2006  *
2007  *	Returns zero if unsuccessful or an error if TUR failed.  For
2008  *	removable media, UNIT_ATTENTION sets ->changed flag.
2009  **/
2010 int
2011 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2012 		     struct scsi_sense_hdr *sshdr_external)
2013 {
2014 	char cmd[] = {
2015 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2016 	};
2017 	struct scsi_sense_hdr *sshdr;
2018 	int result;
2019 
2020 	if (!sshdr_external)
2021 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2022 	else
2023 		sshdr = sshdr_external;
2024 
2025 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2026 	do {
2027 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2028 					  timeout, retries, NULL);
2029 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2030 		    sshdr->sense_key == UNIT_ATTENTION)
2031 			sdev->changed = 1;
2032 	} while (scsi_sense_valid(sshdr) &&
2033 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2034 
2035 	if (!sshdr_external)
2036 		kfree(sshdr);
2037 	return result;
2038 }
2039 EXPORT_SYMBOL(scsi_test_unit_ready);
2040 
2041 /**
2042  *	scsi_device_set_state - Take the given device through the device state model.
2043  *	@sdev:	scsi device to change the state of.
2044  *	@state:	state to change to.
2045  *
2046  *	Returns zero if unsuccessful or an error if the requested
2047  *	transition is illegal.
2048  */
2049 int
2050 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2051 {
2052 	enum scsi_device_state oldstate = sdev->sdev_state;
2053 
2054 	if (state == oldstate)
2055 		return 0;
2056 
2057 	switch (state) {
2058 	case SDEV_CREATED:
2059 		switch (oldstate) {
2060 		case SDEV_CREATED_BLOCK:
2061 			break;
2062 		default:
2063 			goto illegal;
2064 		}
2065 		break;
2066 
2067 	case SDEV_RUNNING:
2068 		switch (oldstate) {
2069 		case SDEV_CREATED:
2070 		case SDEV_OFFLINE:
2071 		case SDEV_QUIESCE:
2072 		case SDEV_BLOCK:
2073 			break;
2074 		default:
2075 			goto illegal;
2076 		}
2077 		break;
2078 
2079 	case SDEV_QUIESCE:
2080 		switch (oldstate) {
2081 		case SDEV_RUNNING:
2082 		case SDEV_OFFLINE:
2083 			break;
2084 		default:
2085 			goto illegal;
2086 		}
2087 		break;
2088 
2089 	case SDEV_OFFLINE:
2090 		switch (oldstate) {
2091 		case SDEV_CREATED:
2092 		case SDEV_RUNNING:
2093 		case SDEV_QUIESCE:
2094 		case SDEV_BLOCK:
2095 			break;
2096 		default:
2097 			goto illegal;
2098 		}
2099 		break;
2100 
2101 	case SDEV_BLOCK:
2102 		switch (oldstate) {
2103 		case SDEV_RUNNING:
2104 		case SDEV_CREATED_BLOCK:
2105 			break;
2106 		default:
2107 			goto illegal;
2108 		}
2109 		break;
2110 
2111 	case SDEV_CREATED_BLOCK:
2112 		switch (oldstate) {
2113 		case SDEV_CREATED:
2114 			break;
2115 		default:
2116 			goto illegal;
2117 		}
2118 		break;
2119 
2120 	case SDEV_CANCEL:
2121 		switch (oldstate) {
2122 		case SDEV_CREATED:
2123 		case SDEV_RUNNING:
2124 		case SDEV_QUIESCE:
2125 		case SDEV_OFFLINE:
2126 		case SDEV_BLOCK:
2127 			break;
2128 		default:
2129 			goto illegal;
2130 		}
2131 		break;
2132 
2133 	case SDEV_DEL:
2134 		switch (oldstate) {
2135 		case SDEV_CREATED:
2136 		case SDEV_RUNNING:
2137 		case SDEV_OFFLINE:
2138 		case SDEV_CANCEL:
2139 			break;
2140 		default:
2141 			goto illegal;
2142 		}
2143 		break;
2144 
2145 	}
2146 	sdev->sdev_state = state;
2147 	return 0;
2148 
2149  illegal:
2150 	SCSI_LOG_ERROR_RECOVERY(1,
2151 				sdev_printk(KERN_ERR, sdev,
2152 					    "Illegal state transition %s->%s\n",
2153 					    scsi_device_state_name(oldstate),
2154 					    scsi_device_state_name(state))
2155 				);
2156 	return -EINVAL;
2157 }
2158 EXPORT_SYMBOL(scsi_device_set_state);
2159 
2160 /**
2161  * 	sdev_evt_emit - emit a single SCSI device uevent
2162  *	@sdev: associated SCSI device
2163  *	@evt: event to emit
2164  *
2165  *	Send a single uevent (scsi_event) to the associated scsi_device.
2166  */
2167 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2168 {
2169 	int idx = 0;
2170 	char *envp[3];
2171 
2172 	switch (evt->evt_type) {
2173 	case SDEV_EVT_MEDIA_CHANGE:
2174 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2175 		break;
2176 
2177 	default:
2178 		/* do nothing */
2179 		break;
2180 	}
2181 
2182 	envp[idx++] = NULL;
2183 
2184 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2185 }
2186 
2187 /**
2188  * 	sdev_evt_thread - send a uevent for each scsi event
2189  *	@work: work struct for scsi_device
2190  *
2191  *	Dispatch queued events to their associated scsi_device kobjects
2192  *	as uevents.
2193  */
2194 void scsi_evt_thread(struct work_struct *work)
2195 {
2196 	struct scsi_device *sdev;
2197 	LIST_HEAD(event_list);
2198 
2199 	sdev = container_of(work, struct scsi_device, event_work);
2200 
2201 	while (1) {
2202 		struct scsi_event *evt;
2203 		struct list_head *this, *tmp;
2204 		unsigned long flags;
2205 
2206 		spin_lock_irqsave(&sdev->list_lock, flags);
2207 		list_splice_init(&sdev->event_list, &event_list);
2208 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2209 
2210 		if (list_empty(&event_list))
2211 			break;
2212 
2213 		list_for_each_safe(this, tmp, &event_list) {
2214 			evt = list_entry(this, struct scsi_event, node);
2215 			list_del(&evt->node);
2216 			scsi_evt_emit(sdev, evt);
2217 			kfree(evt);
2218 		}
2219 	}
2220 }
2221 
2222 /**
2223  * 	sdev_evt_send - send asserted event to uevent thread
2224  *	@sdev: scsi_device event occurred on
2225  *	@evt: event to send
2226  *
2227  *	Assert scsi device event asynchronously.
2228  */
2229 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2230 {
2231 	unsigned long flags;
2232 
2233 #if 0
2234 	/* FIXME: currently this check eliminates all media change events
2235 	 * for polled devices.  Need to update to discriminate between AN
2236 	 * and polled events */
2237 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2238 		kfree(evt);
2239 		return;
2240 	}
2241 #endif
2242 
2243 	spin_lock_irqsave(&sdev->list_lock, flags);
2244 	list_add_tail(&evt->node, &sdev->event_list);
2245 	schedule_work(&sdev->event_work);
2246 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2247 }
2248 EXPORT_SYMBOL_GPL(sdev_evt_send);
2249 
2250 /**
2251  * 	sdev_evt_alloc - allocate a new scsi event
2252  *	@evt_type: type of event to allocate
2253  *	@gfpflags: GFP flags for allocation
2254  *
2255  *	Allocates and returns a new scsi_event.
2256  */
2257 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2258 				  gfp_t gfpflags)
2259 {
2260 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2261 	if (!evt)
2262 		return NULL;
2263 
2264 	evt->evt_type = evt_type;
2265 	INIT_LIST_HEAD(&evt->node);
2266 
2267 	/* evt_type-specific initialization, if any */
2268 	switch (evt_type) {
2269 	case SDEV_EVT_MEDIA_CHANGE:
2270 	default:
2271 		/* do nothing */
2272 		break;
2273 	}
2274 
2275 	return evt;
2276 }
2277 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2278 
2279 /**
2280  * 	sdev_evt_send_simple - send asserted event to uevent thread
2281  *	@sdev: scsi_device event occurred on
2282  *	@evt_type: type of event to send
2283  *	@gfpflags: GFP flags for allocation
2284  *
2285  *	Assert scsi device event asynchronously, given an event type.
2286  */
2287 void sdev_evt_send_simple(struct scsi_device *sdev,
2288 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2289 {
2290 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2291 	if (!evt) {
2292 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2293 			    evt_type);
2294 		return;
2295 	}
2296 
2297 	sdev_evt_send(sdev, evt);
2298 }
2299 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2300 
2301 /**
2302  *	scsi_device_quiesce - Block user issued commands.
2303  *	@sdev:	scsi device to quiesce.
2304  *
2305  *	This works by trying to transition to the SDEV_QUIESCE state
2306  *	(which must be a legal transition).  When the device is in this
2307  *	state, only special requests will be accepted, all others will
2308  *	be deferred.  Since special requests may also be requeued requests,
2309  *	a successful return doesn't guarantee the device will be
2310  *	totally quiescent.
2311  *
2312  *	Must be called with user context, may sleep.
2313  *
2314  *	Returns zero if unsuccessful or an error if not.
2315  */
2316 int
2317 scsi_device_quiesce(struct scsi_device *sdev)
2318 {
2319 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2320 	if (err)
2321 		return err;
2322 
2323 	scsi_run_queue(sdev->request_queue);
2324 	while (sdev->device_busy) {
2325 		msleep_interruptible(200);
2326 		scsi_run_queue(sdev->request_queue);
2327 	}
2328 	return 0;
2329 }
2330 EXPORT_SYMBOL(scsi_device_quiesce);
2331 
2332 /**
2333  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2334  *	@sdev:	scsi device to resume.
2335  *
2336  *	Moves the device from quiesced back to running and restarts the
2337  *	queues.
2338  *
2339  *	Must be called with user context, may sleep.
2340  */
2341 void
2342 scsi_device_resume(struct scsi_device *sdev)
2343 {
2344 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2345 		return;
2346 	scsi_run_queue(sdev->request_queue);
2347 }
2348 EXPORT_SYMBOL(scsi_device_resume);
2349 
2350 static void
2351 device_quiesce_fn(struct scsi_device *sdev, void *data)
2352 {
2353 	scsi_device_quiesce(sdev);
2354 }
2355 
2356 void
2357 scsi_target_quiesce(struct scsi_target *starget)
2358 {
2359 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2360 }
2361 EXPORT_SYMBOL(scsi_target_quiesce);
2362 
2363 static void
2364 device_resume_fn(struct scsi_device *sdev, void *data)
2365 {
2366 	scsi_device_resume(sdev);
2367 }
2368 
2369 void
2370 scsi_target_resume(struct scsi_target *starget)
2371 {
2372 	starget_for_each_device(starget, NULL, device_resume_fn);
2373 }
2374 EXPORT_SYMBOL(scsi_target_resume);
2375 
2376 /**
2377  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2378  * @sdev:	device to block
2379  *
2380  * Block request made by scsi lld's to temporarily stop all
2381  * scsi commands on the specified device.  Called from interrupt
2382  * or normal process context.
2383  *
2384  * Returns zero if successful or error if not
2385  *
2386  * Notes:
2387  *	This routine transitions the device to the SDEV_BLOCK state
2388  *	(which must be a legal transition).  When the device is in this
2389  *	state, all commands are deferred until the scsi lld reenables
2390  *	the device with scsi_device_unblock or device_block_tmo fires.
2391  *	This routine assumes the host_lock is held on entry.
2392  */
2393 int
2394 scsi_internal_device_block(struct scsi_device *sdev)
2395 {
2396 	struct request_queue *q = sdev->request_queue;
2397 	unsigned long flags;
2398 	int err = 0;
2399 
2400 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2401 	if (err) {
2402 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2403 
2404 		if (err)
2405 			return err;
2406 	}
2407 
2408 	/*
2409 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2410 	 * block layer from calling the midlayer with this device's
2411 	 * request queue.
2412 	 */
2413 	spin_lock_irqsave(q->queue_lock, flags);
2414 	blk_stop_queue(q);
2415 	spin_unlock_irqrestore(q->queue_lock, flags);
2416 
2417 	return 0;
2418 }
2419 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2420 
2421 /**
2422  * scsi_internal_device_unblock - resume a device after a block request
2423  * @sdev:	device to resume
2424  *
2425  * Called by scsi lld's or the midlayer to restart the device queue
2426  * for the previously suspended scsi device.  Called from interrupt or
2427  * normal process context.
2428  *
2429  * Returns zero if successful or error if not.
2430  *
2431  * Notes:
2432  *	This routine transitions the device to the SDEV_RUNNING state
2433  *	(which must be a legal transition) allowing the midlayer to
2434  *	goose the queue for this device.  This routine assumes the
2435  *	host_lock is held upon entry.
2436  */
2437 int
2438 scsi_internal_device_unblock(struct scsi_device *sdev)
2439 {
2440 	struct request_queue *q = sdev->request_queue;
2441 	unsigned long flags;
2442 
2443 	/*
2444 	 * Try to transition the scsi device to SDEV_RUNNING
2445 	 * and goose the device queue if successful.
2446 	 */
2447 	if (sdev->sdev_state == SDEV_BLOCK)
2448 		sdev->sdev_state = SDEV_RUNNING;
2449 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2450 		sdev->sdev_state = SDEV_CREATED;
2451 	else if (sdev->sdev_state != SDEV_CANCEL &&
2452 		 sdev->sdev_state != SDEV_OFFLINE)
2453 		return -EINVAL;
2454 
2455 	spin_lock_irqsave(q->queue_lock, flags);
2456 	blk_start_queue(q);
2457 	spin_unlock_irqrestore(q->queue_lock, flags);
2458 
2459 	return 0;
2460 }
2461 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2462 
2463 static void
2464 device_block(struct scsi_device *sdev, void *data)
2465 {
2466 	scsi_internal_device_block(sdev);
2467 }
2468 
2469 static int
2470 target_block(struct device *dev, void *data)
2471 {
2472 	if (scsi_is_target_device(dev))
2473 		starget_for_each_device(to_scsi_target(dev), NULL,
2474 					device_block);
2475 	return 0;
2476 }
2477 
2478 void
2479 scsi_target_block(struct device *dev)
2480 {
2481 	if (scsi_is_target_device(dev))
2482 		starget_for_each_device(to_scsi_target(dev), NULL,
2483 					device_block);
2484 	else
2485 		device_for_each_child(dev, NULL, target_block);
2486 }
2487 EXPORT_SYMBOL_GPL(scsi_target_block);
2488 
2489 static void
2490 device_unblock(struct scsi_device *sdev, void *data)
2491 {
2492 	scsi_internal_device_unblock(sdev);
2493 }
2494 
2495 static int
2496 target_unblock(struct device *dev, void *data)
2497 {
2498 	if (scsi_is_target_device(dev))
2499 		starget_for_each_device(to_scsi_target(dev), NULL,
2500 					device_unblock);
2501 	return 0;
2502 }
2503 
2504 void
2505 scsi_target_unblock(struct device *dev)
2506 {
2507 	if (scsi_is_target_device(dev))
2508 		starget_for_each_device(to_scsi_target(dev), NULL,
2509 					device_unblock);
2510 	else
2511 		device_for_each_child(dev, NULL, target_unblock);
2512 }
2513 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2514 
2515 /**
2516  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2517  * @sgl:	scatter-gather list
2518  * @sg_count:	number of segments in sg
2519  * @offset:	offset in bytes into sg, on return offset into the mapped area
2520  * @len:	bytes to map, on return number of bytes mapped
2521  *
2522  * Returns virtual address of the start of the mapped page
2523  */
2524 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2525 			  size_t *offset, size_t *len)
2526 {
2527 	int i;
2528 	size_t sg_len = 0, len_complete = 0;
2529 	struct scatterlist *sg;
2530 	struct page *page;
2531 
2532 	WARN_ON(!irqs_disabled());
2533 
2534 	for_each_sg(sgl, sg, sg_count, i) {
2535 		len_complete = sg_len; /* Complete sg-entries */
2536 		sg_len += sg->length;
2537 		if (sg_len > *offset)
2538 			break;
2539 	}
2540 
2541 	if (unlikely(i == sg_count)) {
2542 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2543 			"elements %d\n",
2544 		       __func__, sg_len, *offset, sg_count);
2545 		WARN_ON(1);
2546 		return NULL;
2547 	}
2548 
2549 	/* Offset starting from the beginning of first page in this sg-entry */
2550 	*offset = *offset - len_complete + sg->offset;
2551 
2552 	/* Assumption: contiguous pages can be accessed as "page + i" */
2553 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2554 	*offset &= ~PAGE_MASK;
2555 
2556 	/* Bytes in this sg-entry from *offset to the end of the page */
2557 	sg_len = PAGE_SIZE - *offset;
2558 	if (*len > sg_len)
2559 		*len = sg_len;
2560 
2561 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2562 }
2563 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2564 
2565 /**
2566  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2567  * @virt:	virtual address to be unmapped
2568  */
2569 void scsi_kunmap_atomic_sg(void *virt)
2570 {
2571 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2572 }
2573 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2574