1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/bitops.h> 12 #include <linux/blkdev.h> 13 #include <linux/completion.h> 14 #include <linux/kernel.h> 15 #include <linux/mempool.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 23 #include <scsi/scsi.h> 24 #include <scsi/scsi_cmnd.h> 25 #include <scsi/scsi_dbg.h> 26 #include <scsi/scsi_device.h> 27 #include <scsi/scsi_driver.h> 28 #include <scsi/scsi_eh.h> 29 #include <scsi/scsi_host.h> 30 31 #include "scsi_priv.h" 32 #include "scsi_logging.h" 33 34 35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 36 #define SG_MEMPOOL_SIZE 2 37 38 struct scsi_host_sg_pool { 39 size_t size; 40 char *name; 41 struct kmem_cache *slab; 42 mempool_t *pool; 43 }; 44 45 #define SP(x) { x, "sgpool-" __stringify(x) } 46 #if (SCSI_MAX_SG_SEGMENTS < 32) 47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater) 48 #endif 49 static struct scsi_host_sg_pool scsi_sg_pools[] = { 50 SP(8), 51 SP(16), 52 #if (SCSI_MAX_SG_SEGMENTS > 32) 53 SP(32), 54 #if (SCSI_MAX_SG_SEGMENTS > 64) 55 SP(64), 56 #if (SCSI_MAX_SG_SEGMENTS > 128) 57 SP(128), 58 #if (SCSI_MAX_SG_SEGMENTS > 256) 59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX) 60 #endif 61 #endif 62 #endif 63 #endif 64 SP(SCSI_MAX_SG_SEGMENTS) 65 }; 66 #undef SP 67 68 struct kmem_cache *scsi_sdb_cache; 69 70 /* 71 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 72 * not change behaviour from the previous unplug mechanism, experimentation 73 * may prove this needs changing. 74 */ 75 #define SCSI_QUEUE_DELAY 3 76 77 /* 78 * Function: scsi_unprep_request() 79 * 80 * Purpose: Remove all preparation done for a request, including its 81 * associated scsi_cmnd, so that it can be requeued. 82 * 83 * Arguments: req - request to unprepare 84 * 85 * Lock status: Assumed that no locks are held upon entry. 86 * 87 * Returns: Nothing. 88 */ 89 static void scsi_unprep_request(struct request *req) 90 { 91 struct scsi_cmnd *cmd = req->special; 92 93 blk_unprep_request(req); 94 req->special = NULL; 95 96 scsi_put_command(cmd); 97 } 98 99 /** 100 * __scsi_queue_insert - private queue insertion 101 * @cmd: The SCSI command being requeued 102 * @reason: The reason for the requeue 103 * @unbusy: Whether the queue should be unbusied 104 * 105 * This is a private queue insertion. The public interface 106 * scsi_queue_insert() always assumes the queue should be unbusied 107 * because it's always called before the completion. This function is 108 * for a requeue after completion, which should only occur in this 109 * file. 110 */ 111 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 112 { 113 struct Scsi_Host *host = cmd->device->host; 114 struct scsi_device *device = cmd->device; 115 struct scsi_target *starget = scsi_target(device); 116 struct request_queue *q = device->request_queue; 117 unsigned long flags; 118 119 SCSI_LOG_MLQUEUE(1, 120 printk("Inserting command %p into mlqueue\n", cmd)); 121 122 /* 123 * Set the appropriate busy bit for the device/host. 124 * 125 * If the host/device isn't busy, assume that something actually 126 * completed, and that we should be able to queue a command now. 127 * 128 * Note that the prior mid-layer assumption that any host could 129 * always queue at least one command is now broken. The mid-layer 130 * will implement a user specifiable stall (see 131 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 132 * if a command is requeued with no other commands outstanding 133 * either for the device or for the host. 134 */ 135 switch (reason) { 136 case SCSI_MLQUEUE_HOST_BUSY: 137 host->host_blocked = host->max_host_blocked; 138 break; 139 case SCSI_MLQUEUE_DEVICE_BUSY: 140 device->device_blocked = device->max_device_blocked; 141 break; 142 case SCSI_MLQUEUE_TARGET_BUSY: 143 starget->target_blocked = starget->max_target_blocked; 144 break; 145 } 146 147 /* 148 * Decrement the counters, since these commands are no longer 149 * active on the host/device. 150 */ 151 if (unbusy) 152 scsi_device_unbusy(device); 153 154 /* 155 * Requeue this command. It will go before all other commands 156 * that are already in the queue. 157 */ 158 spin_lock_irqsave(q->queue_lock, flags); 159 blk_requeue_request(q, cmd->request); 160 spin_unlock_irqrestore(q->queue_lock, flags); 161 162 kblockd_schedule_work(q, &device->requeue_work); 163 164 return 0; 165 } 166 167 /* 168 * Function: scsi_queue_insert() 169 * 170 * Purpose: Insert a command in the midlevel queue. 171 * 172 * Arguments: cmd - command that we are adding to queue. 173 * reason - why we are inserting command to queue. 174 * 175 * Lock status: Assumed that lock is not held upon entry. 176 * 177 * Returns: Nothing. 178 * 179 * Notes: We do this for one of two cases. Either the host is busy 180 * and it cannot accept any more commands for the time being, 181 * or the device returned QUEUE_FULL and can accept no more 182 * commands. 183 * Notes: This could be called either from an interrupt context or a 184 * normal process context. 185 */ 186 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 187 { 188 return __scsi_queue_insert(cmd, reason, 1); 189 } 190 /** 191 * scsi_execute - insert request and wait for the result 192 * @sdev: scsi device 193 * @cmd: scsi command 194 * @data_direction: data direction 195 * @buffer: data buffer 196 * @bufflen: len of buffer 197 * @sense: optional sense buffer 198 * @timeout: request timeout in seconds 199 * @retries: number of times to retry request 200 * @flags: or into request flags; 201 * @resid: optional residual length 202 * 203 * returns the req->errors value which is the scsi_cmnd result 204 * field. 205 */ 206 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 207 int data_direction, void *buffer, unsigned bufflen, 208 unsigned char *sense, int timeout, int retries, int flags, 209 int *resid) 210 { 211 struct request *req; 212 int write = (data_direction == DMA_TO_DEVICE); 213 int ret = DRIVER_ERROR << 24; 214 215 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 216 217 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 218 buffer, bufflen, __GFP_WAIT)) 219 goto out; 220 221 req->cmd_len = COMMAND_SIZE(cmd[0]); 222 memcpy(req->cmd, cmd, req->cmd_len); 223 req->sense = sense; 224 req->sense_len = 0; 225 req->retries = retries; 226 req->timeout = timeout; 227 req->cmd_type = REQ_TYPE_BLOCK_PC; 228 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 229 230 /* 231 * head injection *required* here otherwise quiesce won't work 232 */ 233 blk_execute_rq(req->q, NULL, req, 1); 234 235 /* 236 * Some devices (USB mass-storage in particular) may transfer 237 * garbage data together with a residue indicating that the data 238 * is invalid. Prevent the garbage from being misinterpreted 239 * and prevent security leaks by zeroing out the excess data. 240 */ 241 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen)) 242 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len); 243 244 if (resid) 245 *resid = req->resid_len; 246 ret = req->errors; 247 out: 248 blk_put_request(req); 249 250 return ret; 251 } 252 EXPORT_SYMBOL(scsi_execute); 253 254 255 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, 256 int data_direction, void *buffer, unsigned bufflen, 257 struct scsi_sense_hdr *sshdr, int timeout, int retries, 258 int *resid) 259 { 260 char *sense = NULL; 261 int result; 262 263 if (sshdr) { 264 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 265 if (!sense) 266 return DRIVER_ERROR << 24; 267 } 268 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 269 sense, timeout, retries, 0, resid); 270 if (sshdr) 271 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 272 273 kfree(sense); 274 return result; 275 } 276 EXPORT_SYMBOL(scsi_execute_req); 277 278 /* 279 * Function: scsi_init_cmd_errh() 280 * 281 * Purpose: Initialize cmd fields related to error handling. 282 * 283 * Arguments: cmd - command that is ready to be queued. 284 * 285 * Notes: This function has the job of initializing a number of 286 * fields related to error handling. Typically this will 287 * be called once for each command, as required. 288 */ 289 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 290 { 291 cmd->serial_number = 0; 292 scsi_set_resid(cmd, 0); 293 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 294 if (cmd->cmd_len == 0) 295 cmd->cmd_len = scsi_command_size(cmd->cmnd); 296 } 297 298 void scsi_device_unbusy(struct scsi_device *sdev) 299 { 300 struct Scsi_Host *shost = sdev->host; 301 struct scsi_target *starget = scsi_target(sdev); 302 unsigned long flags; 303 304 spin_lock_irqsave(shost->host_lock, flags); 305 shost->host_busy--; 306 starget->target_busy--; 307 if (unlikely(scsi_host_in_recovery(shost) && 308 (shost->host_failed || shost->host_eh_scheduled))) 309 scsi_eh_wakeup(shost); 310 spin_unlock(shost->host_lock); 311 spin_lock(sdev->request_queue->queue_lock); 312 sdev->device_busy--; 313 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 314 } 315 316 /* 317 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 318 * and call blk_run_queue for all the scsi_devices on the target - 319 * including current_sdev first. 320 * 321 * Called with *no* scsi locks held. 322 */ 323 static void scsi_single_lun_run(struct scsi_device *current_sdev) 324 { 325 struct Scsi_Host *shost = current_sdev->host; 326 struct scsi_device *sdev, *tmp; 327 struct scsi_target *starget = scsi_target(current_sdev); 328 unsigned long flags; 329 330 spin_lock_irqsave(shost->host_lock, flags); 331 starget->starget_sdev_user = NULL; 332 spin_unlock_irqrestore(shost->host_lock, flags); 333 334 /* 335 * Call blk_run_queue for all LUNs on the target, starting with 336 * current_sdev. We race with others (to set starget_sdev_user), 337 * but in most cases, we will be first. Ideally, each LU on the 338 * target would get some limited time or requests on the target. 339 */ 340 blk_run_queue(current_sdev->request_queue); 341 342 spin_lock_irqsave(shost->host_lock, flags); 343 if (starget->starget_sdev_user) 344 goto out; 345 list_for_each_entry_safe(sdev, tmp, &starget->devices, 346 same_target_siblings) { 347 if (sdev == current_sdev) 348 continue; 349 if (scsi_device_get(sdev)) 350 continue; 351 352 spin_unlock_irqrestore(shost->host_lock, flags); 353 blk_run_queue(sdev->request_queue); 354 spin_lock_irqsave(shost->host_lock, flags); 355 356 scsi_device_put(sdev); 357 } 358 out: 359 spin_unlock_irqrestore(shost->host_lock, flags); 360 } 361 362 static inline int scsi_device_is_busy(struct scsi_device *sdev) 363 { 364 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked) 365 return 1; 366 367 return 0; 368 } 369 370 static inline int scsi_target_is_busy(struct scsi_target *starget) 371 { 372 return ((starget->can_queue > 0 && 373 starget->target_busy >= starget->can_queue) || 374 starget->target_blocked); 375 } 376 377 static inline int scsi_host_is_busy(struct Scsi_Host *shost) 378 { 379 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 380 shost->host_blocked || shost->host_self_blocked) 381 return 1; 382 383 return 0; 384 } 385 386 /* 387 * Function: scsi_run_queue() 388 * 389 * Purpose: Select a proper request queue to serve next 390 * 391 * Arguments: q - last request's queue 392 * 393 * Returns: Nothing 394 * 395 * Notes: The previous command was completely finished, start 396 * a new one if possible. 397 */ 398 static void scsi_run_queue(struct request_queue *q) 399 { 400 struct scsi_device *sdev = q->queuedata; 401 struct Scsi_Host *shost; 402 LIST_HEAD(starved_list); 403 unsigned long flags; 404 405 /* if the device is dead, sdev will be NULL, so no queue to run */ 406 if (!sdev) 407 return; 408 409 shost = sdev->host; 410 if (scsi_target(sdev)->single_lun) 411 scsi_single_lun_run(sdev); 412 413 spin_lock_irqsave(shost->host_lock, flags); 414 list_splice_init(&shost->starved_list, &starved_list); 415 416 while (!list_empty(&starved_list)) { 417 /* 418 * As long as shost is accepting commands and we have 419 * starved queues, call blk_run_queue. scsi_request_fn 420 * drops the queue_lock and can add us back to the 421 * starved_list. 422 * 423 * host_lock protects the starved_list and starved_entry. 424 * scsi_request_fn must get the host_lock before checking 425 * or modifying starved_list or starved_entry. 426 */ 427 if (scsi_host_is_busy(shost)) 428 break; 429 430 sdev = list_entry(starved_list.next, 431 struct scsi_device, starved_entry); 432 list_del_init(&sdev->starved_entry); 433 if (scsi_target_is_busy(scsi_target(sdev))) { 434 list_move_tail(&sdev->starved_entry, 435 &shost->starved_list); 436 continue; 437 } 438 439 spin_unlock(shost->host_lock); 440 spin_lock(sdev->request_queue->queue_lock); 441 __blk_run_queue(sdev->request_queue); 442 spin_unlock(sdev->request_queue->queue_lock); 443 spin_lock(shost->host_lock); 444 } 445 /* put any unprocessed entries back */ 446 list_splice(&starved_list, &shost->starved_list); 447 spin_unlock_irqrestore(shost->host_lock, flags); 448 449 blk_run_queue(q); 450 } 451 452 void scsi_requeue_run_queue(struct work_struct *work) 453 { 454 struct scsi_device *sdev; 455 struct request_queue *q; 456 457 sdev = container_of(work, struct scsi_device, requeue_work); 458 q = sdev->request_queue; 459 scsi_run_queue(q); 460 } 461 462 /* 463 * Function: scsi_requeue_command() 464 * 465 * Purpose: Handle post-processing of completed commands. 466 * 467 * Arguments: q - queue to operate on 468 * cmd - command that may need to be requeued. 469 * 470 * Returns: Nothing 471 * 472 * Notes: After command completion, there may be blocks left 473 * over which weren't finished by the previous command 474 * this can be for a number of reasons - the main one is 475 * I/O errors in the middle of the request, in which case 476 * we need to request the blocks that come after the bad 477 * sector. 478 * Notes: Upon return, cmd is a stale pointer. 479 */ 480 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 481 { 482 struct request *req = cmd->request; 483 unsigned long flags; 484 485 spin_lock_irqsave(q->queue_lock, flags); 486 scsi_unprep_request(req); 487 blk_requeue_request(q, req); 488 spin_unlock_irqrestore(q->queue_lock, flags); 489 490 scsi_run_queue(q); 491 } 492 493 void scsi_next_command(struct scsi_cmnd *cmd) 494 { 495 struct scsi_device *sdev = cmd->device; 496 struct request_queue *q = sdev->request_queue; 497 498 /* need to hold a reference on the device before we let go of the cmd */ 499 get_device(&sdev->sdev_gendev); 500 501 scsi_put_command(cmd); 502 scsi_run_queue(q); 503 504 /* ok to remove device now */ 505 put_device(&sdev->sdev_gendev); 506 } 507 508 void scsi_run_host_queues(struct Scsi_Host *shost) 509 { 510 struct scsi_device *sdev; 511 512 shost_for_each_device(sdev, shost) 513 scsi_run_queue(sdev->request_queue); 514 } 515 516 static void __scsi_release_buffers(struct scsi_cmnd *, int); 517 518 /* 519 * Function: scsi_end_request() 520 * 521 * Purpose: Post-processing of completed commands (usually invoked at end 522 * of upper level post-processing and scsi_io_completion). 523 * 524 * Arguments: cmd - command that is complete. 525 * error - 0 if I/O indicates success, < 0 for I/O error. 526 * bytes - number of bytes of completed I/O 527 * requeue - indicates whether we should requeue leftovers. 528 * 529 * Lock status: Assumed that lock is not held upon entry. 530 * 531 * Returns: cmd if requeue required, NULL otherwise. 532 * 533 * Notes: This is called for block device requests in order to 534 * mark some number of sectors as complete. 535 * 536 * We are guaranteeing that the request queue will be goosed 537 * at some point during this call. 538 * Notes: If cmd was requeued, upon return it will be a stale pointer. 539 */ 540 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error, 541 int bytes, int requeue) 542 { 543 struct request_queue *q = cmd->device->request_queue; 544 struct request *req = cmd->request; 545 546 /* 547 * If there are blocks left over at the end, set up the command 548 * to queue the remainder of them. 549 */ 550 if (blk_end_request(req, error, bytes)) { 551 /* kill remainder if no retrys */ 552 if (error && scsi_noretry_cmd(cmd)) 553 blk_end_request_all(req, error); 554 else { 555 if (requeue) { 556 /* 557 * Bleah. Leftovers again. Stick the 558 * leftovers in the front of the 559 * queue, and goose the queue again. 560 */ 561 scsi_release_buffers(cmd); 562 scsi_requeue_command(q, cmd); 563 cmd = NULL; 564 } 565 return cmd; 566 } 567 } 568 569 /* 570 * This will goose the queue request function at the end, so we don't 571 * need to worry about launching another command. 572 */ 573 __scsi_release_buffers(cmd, 0); 574 scsi_next_command(cmd); 575 return NULL; 576 } 577 578 static inline unsigned int scsi_sgtable_index(unsigned short nents) 579 { 580 unsigned int index; 581 582 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS); 583 584 if (nents <= 8) 585 index = 0; 586 else 587 index = get_count_order(nents) - 3; 588 589 return index; 590 } 591 592 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents) 593 { 594 struct scsi_host_sg_pool *sgp; 595 596 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 597 mempool_free(sgl, sgp->pool); 598 } 599 600 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask) 601 { 602 struct scsi_host_sg_pool *sgp; 603 604 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 605 return mempool_alloc(sgp->pool, gfp_mask); 606 } 607 608 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, 609 gfp_t gfp_mask) 610 { 611 int ret; 612 613 BUG_ON(!nents); 614 615 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS, 616 gfp_mask, scsi_sg_alloc); 617 if (unlikely(ret)) 618 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, 619 scsi_sg_free); 620 621 return ret; 622 } 623 624 static void scsi_free_sgtable(struct scsi_data_buffer *sdb) 625 { 626 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free); 627 } 628 629 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check) 630 { 631 632 if (cmd->sdb.table.nents) 633 scsi_free_sgtable(&cmd->sdb); 634 635 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 636 637 if (do_bidi_check && scsi_bidi_cmnd(cmd)) { 638 struct scsi_data_buffer *bidi_sdb = 639 cmd->request->next_rq->special; 640 scsi_free_sgtable(bidi_sdb); 641 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 642 cmd->request->next_rq->special = NULL; 643 } 644 645 if (scsi_prot_sg_count(cmd)) 646 scsi_free_sgtable(cmd->prot_sdb); 647 } 648 649 /* 650 * Function: scsi_release_buffers() 651 * 652 * Purpose: Completion processing for block device I/O requests. 653 * 654 * Arguments: cmd - command that we are bailing. 655 * 656 * Lock status: Assumed that no lock is held upon entry. 657 * 658 * Returns: Nothing 659 * 660 * Notes: In the event that an upper level driver rejects a 661 * command, we must release resources allocated during 662 * the __init_io() function. Primarily this would involve 663 * the scatter-gather table, and potentially any bounce 664 * buffers. 665 */ 666 void scsi_release_buffers(struct scsi_cmnd *cmd) 667 { 668 __scsi_release_buffers(cmd, 1); 669 } 670 EXPORT_SYMBOL(scsi_release_buffers); 671 672 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result) 673 { 674 int error = 0; 675 676 switch(host_byte(result)) { 677 case DID_TRANSPORT_FAILFAST: 678 error = -ENOLINK; 679 break; 680 case DID_TARGET_FAILURE: 681 cmd->result |= (DID_OK << 16); 682 error = -EREMOTEIO; 683 break; 684 case DID_NEXUS_FAILURE: 685 cmd->result |= (DID_OK << 16); 686 error = -EBADE; 687 break; 688 default: 689 error = -EIO; 690 break; 691 } 692 693 return error; 694 } 695 696 /* 697 * Function: scsi_io_completion() 698 * 699 * Purpose: Completion processing for block device I/O requests. 700 * 701 * Arguments: cmd - command that is finished. 702 * 703 * Lock status: Assumed that no lock is held upon entry. 704 * 705 * Returns: Nothing 706 * 707 * Notes: This function is matched in terms of capabilities to 708 * the function that created the scatter-gather list. 709 * In other words, if there are no bounce buffers 710 * (the normal case for most drivers), we don't need 711 * the logic to deal with cleaning up afterwards. 712 * 713 * We must call scsi_end_request(). This will finish off 714 * the specified number of sectors. If we are done, the 715 * command block will be released and the queue function 716 * will be goosed. If we are not done then we have to 717 * figure out what to do next: 718 * 719 * a) We can call scsi_requeue_command(). The request 720 * will be unprepared and put back on the queue. Then 721 * a new command will be created for it. This should 722 * be used if we made forward progress, or if we want 723 * to switch from READ(10) to READ(6) for example. 724 * 725 * b) We can call scsi_queue_insert(). The request will 726 * be put back on the queue and retried using the same 727 * command as before, possibly after a delay. 728 * 729 * c) We can call blk_end_request() with -EIO to fail 730 * the remainder of the request. 731 */ 732 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 733 { 734 int result = cmd->result; 735 struct request_queue *q = cmd->device->request_queue; 736 struct request *req = cmd->request; 737 int error = 0; 738 struct scsi_sense_hdr sshdr; 739 int sense_valid = 0; 740 int sense_deferred = 0; 741 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 742 ACTION_DELAYED_RETRY} action; 743 char *description = NULL; 744 745 if (result) { 746 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 747 if (sense_valid) 748 sense_deferred = scsi_sense_is_deferred(&sshdr); 749 } 750 751 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */ 752 req->errors = result; 753 if (result) { 754 if (sense_valid && req->sense) { 755 /* 756 * SG_IO wants current and deferred errors 757 */ 758 int len = 8 + cmd->sense_buffer[7]; 759 760 if (len > SCSI_SENSE_BUFFERSIZE) 761 len = SCSI_SENSE_BUFFERSIZE; 762 memcpy(req->sense, cmd->sense_buffer, len); 763 req->sense_len = len; 764 } 765 if (!sense_deferred) 766 error = __scsi_error_from_host_byte(cmd, result); 767 } 768 769 req->resid_len = scsi_get_resid(cmd); 770 771 if (scsi_bidi_cmnd(cmd)) { 772 /* 773 * Bidi commands Must be complete as a whole, 774 * both sides at once. 775 */ 776 req->next_rq->resid_len = scsi_in(cmd)->resid; 777 778 scsi_release_buffers(cmd); 779 blk_end_request_all(req, 0); 780 781 scsi_next_command(cmd); 782 return; 783 } 784 } 785 786 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */ 787 BUG_ON(blk_bidi_rq(req)); 788 789 /* 790 * Next deal with any sectors which we were able to correctly 791 * handle. 792 */ 793 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, " 794 "%d bytes done.\n", 795 blk_rq_sectors(req), good_bytes)); 796 797 /* 798 * Recovered errors need reporting, but they're always treated 799 * as success, so fiddle the result code here. For BLOCK_PC 800 * we already took a copy of the original into rq->errors which 801 * is what gets returned to the user 802 */ 803 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 804 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 805 * print since caller wants ATA registers. Only occurs on 806 * SCSI ATA PASS_THROUGH commands when CK_COND=1 807 */ 808 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 809 ; 810 else if (!(req->cmd_flags & REQ_QUIET)) 811 scsi_print_sense("", cmd); 812 result = 0; 813 /* BLOCK_PC may have set error */ 814 error = 0; 815 } 816 817 /* 818 * A number of bytes were successfully read. If there 819 * are leftovers and there is some kind of error 820 * (result != 0), retry the rest. 821 */ 822 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL) 823 return; 824 825 error = __scsi_error_from_host_byte(cmd, result); 826 827 if (host_byte(result) == DID_RESET) { 828 /* Third party bus reset or reset for error recovery 829 * reasons. Just retry the command and see what 830 * happens. 831 */ 832 action = ACTION_RETRY; 833 } else if (sense_valid && !sense_deferred) { 834 switch (sshdr.sense_key) { 835 case UNIT_ATTENTION: 836 if (cmd->device->removable) { 837 /* Detected disc change. Set a bit 838 * and quietly refuse further access. 839 */ 840 cmd->device->changed = 1; 841 description = "Media Changed"; 842 action = ACTION_FAIL; 843 } else { 844 /* Must have been a power glitch, or a 845 * bus reset. Could not have been a 846 * media change, so we just retry the 847 * command and see what happens. 848 */ 849 action = ACTION_RETRY; 850 } 851 break; 852 case ILLEGAL_REQUEST: 853 /* If we had an ILLEGAL REQUEST returned, then 854 * we may have performed an unsupported 855 * command. The only thing this should be 856 * would be a ten byte read where only a six 857 * byte read was supported. Also, on a system 858 * where READ CAPACITY failed, we may have 859 * read past the end of the disk. 860 */ 861 if ((cmd->device->use_10_for_rw && 862 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 863 (cmd->cmnd[0] == READ_10 || 864 cmd->cmnd[0] == WRITE_10)) { 865 /* This will issue a new 6-byte command. */ 866 cmd->device->use_10_for_rw = 0; 867 action = ACTION_REPREP; 868 } else if (sshdr.asc == 0x10) /* DIX */ { 869 description = "Host Data Integrity Failure"; 870 action = ACTION_FAIL; 871 error = -EILSEQ; 872 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 873 } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) && 874 (cmd->cmnd[0] == UNMAP || 875 cmd->cmnd[0] == WRITE_SAME_16 || 876 cmd->cmnd[0] == WRITE_SAME)) { 877 description = "Discard failure"; 878 action = ACTION_FAIL; 879 } else 880 action = ACTION_FAIL; 881 break; 882 case ABORTED_COMMAND: 883 action = ACTION_FAIL; 884 if (sshdr.asc == 0x10) { /* DIF */ 885 description = "Target Data Integrity Failure"; 886 error = -EILSEQ; 887 } 888 break; 889 case NOT_READY: 890 /* If the device is in the process of becoming 891 * ready, or has a temporary blockage, retry. 892 */ 893 if (sshdr.asc == 0x04) { 894 switch (sshdr.ascq) { 895 case 0x01: /* becoming ready */ 896 case 0x04: /* format in progress */ 897 case 0x05: /* rebuild in progress */ 898 case 0x06: /* recalculation in progress */ 899 case 0x07: /* operation in progress */ 900 case 0x08: /* Long write in progress */ 901 case 0x09: /* self test in progress */ 902 case 0x14: /* space allocation in progress */ 903 action = ACTION_DELAYED_RETRY; 904 break; 905 default: 906 description = "Device not ready"; 907 action = ACTION_FAIL; 908 break; 909 } 910 } else { 911 description = "Device not ready"; 912 action = ACTION_FAIL; 913 } 914 break; 915 case VOLUME_OVERFLOW: 916 /* See SSC3rXX or current. */ 917 action = ACTION_FAIL; 918 break; 919 default: 920 description = "Unhandled sense code"; 921 action = ACTION_FAIL; 922 break; 923 } 924 } else { 925 description = "Unhandled error code"; 926 action = ACTION_FAIL; 927 } 928 929 switch (action) { 930 case ACTION_FAIL: 931 /* Give up and fail the remainder of the request */ 932 scsi_release_buffers(cmd); 933 if (!(req->cmd_flags & REQ_QUIET)) { 934 if (description) 935 scmd_printk(KERN_INFO, cmd, "%s\n", 936 description); 937 scsi_print_result(cmd); 938 if (driver_byte(result) & DRIVER_SENSE) 939 scsi_print_sense("", cmd); 940 scsi_print_command(cmd); 941 } 942 if (blk_end_request_err(req, error)) 943 scsi_requeue_command(q, cmd); 944 else 945 scsi_next_command(cmd); 946 break; 947 case ACTION_REPREP: 948 /* Unprep the request and put it back at the head of the queue. 949 * A new command will be prepared and issued. 950 */ 951 scsi_release_buffers(cmd); 952 scsi_requeue_command(q, cmd); 953 break; 954 case ACTION_RETRY: 955 /* Retry the same command immediately */ 956 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 957 break; 958 case ACTION_DELAYED_RETRY: 959 /* Retry the same command after a delay */ 960 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 961 break; 962 } 963 } 964 965 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb, 966 gfp_t gfp_mask) 967 { 968 int count; 969 970 /* 971 * If sg table allocation fails, requeue request later. 972 */ 973 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments, 974 gfp_mask))) { 975 return BLKPREP_DEFER; 976 } 977 978 req->buffer = NULL; 979 980 /* 981 * Next, walk the list, and fill in the addresses and sizes of 982 * each segment. 983 */ 984 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 985 BUG_ON(count > sdb->table.nents); 986 sdb->table.nents = count; 987 sdb->length = blk_rq_bytes(req); 988 return BLKPREP_OK; 989 } 990 991 /* 992 * Function: scsi_init_io() 993 * 994 * Purpose: SCSI I/O initialize function. 995 * 996 * Arguments: cmd - Command descriptor we wish to initialize 997 * 998 * Returns: 0 on success 999 * BLKPREP_DEFER if the failure is retryable 1000 * BLKPREP_KILL if the failure is fatal 1001 */ 1002 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask) 1003 { 1004 struct request *rq = cmd->request; 1005 1006 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask); 1007 if (error) 1008 goto err_exit; 1009 1010 if (blk_bidi_rq(rq)) { 1011 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc( 1012 scsi_sdb_cache, GFP_ATOMIC); 1013 if (!bidi_sdb) { 1014 error = BLKPREP_DEFER; 1015 goto err_exit; 1016 } 1017 1018 rq->next_rq->special = bidi_sdb; 1019 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC); 1020 if (error) 1021 goto err_exit; 1022 } 1023 1024 if (blk_integrity_rq(rq)) { 1025 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1026 int ivecs, count; 1027 1028 BUG_ON(prot_sdb == NULL); 1029 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1030 1031 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) { 1032 error = BLKPREP_DEFER; 1033 goto err_exit; 1034 } 1035 1036 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1037 prot_sdb->table.sgl); 1038 BUG_ON(unlikely(count > ivecs)); 1039 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1040 1041 cmd->prot_sdb = prot_sdb; 1042 cmd->prot_sdb->table.nents = count; 1043 } 1044 1045 return BLKPREP_OK ; 1046 1047 err_exit: 1048 scsi_release_buffers(cmd); 1049 cmd->request->special = NULL; 1050 scsi_put_command(cmd); 1051 return error; 1052 } 1053 EXPORT_SYMBOL(scsi_init_io); 1054 1055 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1056 struct request *req) 1057 { 1058 struct scsi_cmnd *cmd; 1059 1060 if (!req->special) { 1061 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1062 if (unlikely(!cmd)) 1063 return NULL; 1064 req->special = cmd; 1065 } else { 1066 cmd = req->special; 1067 } 1068 1069 /* pull a tag out of the request if we have one */ 1070 cmd->tag = req->tag; 1071 cmd->request = req; 1072 1073 cmd->cmnd = req->cmd; 1074 cmd->prot_op = SCSI_PROT_NORMAL; 1075 1076 return cmd; 1077 } 1078 1079 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1080 { 1081 struct scsi_cmnd *cmd; 1082 int ret = scsi_prep_state_check(sdev, req); 1083 1084 if (ret != BLKPREP_OK) 1085 return ret; 1086 1087 cmd = scsi_get_cmd_from_req(sdev, req); 1088 if (unlikely(!cmd)) 1089 return BLKPREP_DEFER; 1090 1091 /* 1092 * BLOCK_PC requests may transfer data, in which case they must 1093 * a bio attached to them. Or they might contain a SCSI command 1094 * that does not transfer data, in which case they may optionally 1095 * submit a request without an attached bio. 1096 */ 1097 if (req->bio) { 1098 int ret; 1099 1100 BUG_ON(!req->nr_phys_segments); 1101 1102 ret = scsi_init_io(cmd, GFP_ATOMIC); 1103 if (unlikely(ret)) 1104 return ret; 1105 } else { 1106 BUG_ON(blk_rq_bytes(req)); 1107 1108 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1109 req->buffer = NULL; 1110 } 1111 1112 cmd->cmd_len = req->cmd_len; 1113 if (!blk_rq_bytes(req)) 1114 cmd->sc_data_direction = DMA_NONE; 1115 else if (rq_data_dir(req) == WRITE) 1116 cmd->sc_data_direction = DMA_TO_DEVICE; 1117 else 1118 cmd->sc_data_direction = DMA_FROM_DEVICE; 1119 1120 cmd->transfersize = blk_rq_bytes(req); 1121 cmd->allowed = req->retries; 1122 return BLKPREP_OK; 1123 } 1124 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd); 1125 1126 /* 1127 * Setup a REQ_TYPE_FS command. These are simple read/write request 1128 * from filesystems that still need to be translated to SCSI CDBs from 1129 * the ULD. 1130 */ 1131 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1132 { 1133 struct scsi_cmnd *cmd; 1134 int ret = scsi_prep_state_check(sdev, req); 1135 1136 if (ret != BLKPREP_OK) 1137 return ret; 1138 1139 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh 1140 && sdev->scsi_dh_data->scsi_dh->prep_fn)) { 1141 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req); 1142 if (ret != BLKPREP_OK) 1143 return ret; 1144 } 1145 1146 /* 1147 * Filesystem requests must transfer data. 1148 */ 1149 BUG_ON(!req->nr_phys_segments); 1150 1151 cmd = scsi_get_cmd_from_req(sdev, req); 1152 if (unlikely(!cmd)) 1153 return BLKPREP_DEFER; 1154 1155 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1156 return scsi_init_io(cmd, GFP_ATOMIC); 1157 } 1158 EXPORT_SYMBOL(scsi_setup_fs_cmnd); 1159 1160 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1161 { 1162 int ret = BLKPREP_OK; 1163 1164 /* 1165 * If the device is not in running state we will reject some 1166 * or all commands. 1167 */ 1168 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1169 switch (sdev->sdev_state) { 1170 case SDEV_OFFLINE: 1171 /* 1172 * If the device is offline we refuse to process any 1173 * commands. The device must be brought online 1174 * before trying any recovery commands. 1175 */ 1176 sdev_printk(KERN_ERR, sdev, 1177 "rejecting I/O to offline device\n"); 1178 ret = BLKPREP_KILL; 1179 break; 1180 case SDEV_DEL: 1181 /* 1182 * If the device is fully deleted, we refuse to 1183 * process any commands as well. 1184 */ 1185 sdev_printk(KERN_ERR, sdev, 1186 "rejecting I/O to dead device\n"); 1187 ret = BLKPREP_KILL; 1188 break; 1189 case SDEV_QUIESCE: 1190 case SDEV_BLOCK: 1191 case SDEV_CREATED_BLOCK: 1192 /* 1193 * If the devices is blocked we defer normal commands. 1194 */ 1195 if (!(req->cmd_flags & REQ_PREEMPT)) 1196 ret = BLKPREP_DEFER; 1197 break; 1198 default: 1199 /* 1200 * For any other not fully online state we only allow 1201 * special commands. In particular any user initiated 1202 * command is not allowed. 1203 */ 1204 if (!(req->cmd_flags & REQ_PREEMPT)) 1205 ret = BLKPREP_KILL; 1206 break; 1207 } 1208 } 1209 return ret; 1210 } 1211 EXPORT_SYMBOL(scsi_prep_state_check); 1212 1213 int scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1214 { 1215 struct scsi_device *sdev = q->queuedata; 1216 1217 switch (ret) { 1218 case BLKPREP_KILL: 1219 req->errors = DID_NO_CONNECT << 16; 1220 /* release the command and kill it */ 1221 if (req->special) { 1222 struct scsi_cmnd *cmd = req->special; 1223 scsi_release_buffers(cmd); 1224 scsi_put_command(cmd); 1225 req->special = NULL; 1226 } 1227 break; 1228 case BLKPREP_DEFER: 1229 /* 1230 * If we defer, the blk_peek_request() returns NULL, but the 1231 * queue must be restarted, so we schedule a callback to happen 1232 * shortly. 1233 */ 1234 if (sdev->device_busy == 0) 1235 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1236 break; 1237 default: 1238 req->cmd_flags |= REQ_DONTPREP; 1239 } 1240 1241 return ret; 1242 } 1243 EXPORT_SYMBOL(scsi_prep_return); 1244 1245 int scsi_prep_fn(struct request_queue *q, struct request *req) 1246 { 1247 struct scsi_device *sdev = q->queuedata; 1248 int ret = BLKPREP_KILL; 1249 1250 if (req->cmd_type == REQ_TYPE_BLOCK_PC) 1251 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1252 return scsi_prep_return(q, req, ret); 1253 } 1254 EXPORT_SYMBOL(scsi_prep_fn); 1255 1256 /* 1257 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1258 * return 0. 1259 * 1260 * Called with the queue_lock held. 1261 */ 1262 static inline int scsi_dev_queue_ready(struct request_queue *q, 1263 struct scsi_device *sdev) 1264 { 1265 if (sdev->device_busy == 0 && sdev->device_blocked) { 1266 /* 1267 * unblock after device_blocked iterates to zero 1268 */ 1269 if (--sdev->device_blocked == 0) { 1270 SCSI_LOG_MLQUEUE(3, 1271 sdev_printk(KERN_INFO, sdev, 1272 "unblocking device at zero depth\n")); 1273 } else { 1274 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1275 return 0; 1276 } 1277 } 1278 if (scsi_device_is_busy(sdev)) 1279 return 0; 1280 1281 return 1; 1282 } 1283 1284 1285 /* 1286 * scsi_target_queue_ready: checks if there we can send commands to target 1287 * @sdev: scsi device on starget to check. 1288 * 1289 * Called with the host lock held. 1290 */ 1291 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1292 struct scsi_device *sdev) 1293 { 1294 struct scsi_target *starget = scsi_target(sdev); 1295 1296 if (starget->single_lun) { 1297 if (starget->starget_sdev_user && 1298 starget->starget_sdev_user != sdev) 1299 return 0; 1300 starget->starget_sdev_user = sdev; 1301 } 1302 1303 if (starget->target_busy == 0 && starget->target_blocked) { 1304 /* 1305 * unblock after target_blocked iterates to zero 1306 */ 1307 if (--starget->target_blocked == 0) { 1308 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1309 "unblocking target at zero depth\n")); 1310 } else 1311 return 0; 1312 } 1313 1314 if (scsi_target_is_busy(starget)) { 1315 if (list_empty(&sdev->starved_entry)) 1316 list_add_tail(&sdev->starved_entry, 1317 &shost->starved_list); 1318 return 0; 1319 } 1320 1321 /* We're OK to process the command, so we can't be starved */ 1322 if (!list_empty(&sdev->starved_entry)) 1323 list_del_init(&sdev->starved_entry); 1324 return 1; 1325 } 1326 1327 /* 1328 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1329 * return 0. We must end up running the queue again whenever 0 is 1330 * returned, else IO can hang. 1331 * 1332 * Called with host_lock held. 1333 */ 1334 static inline int scsi_host_queue_ready(struct request_queue *q, 1335 struct Scsi_Host *shost, 1336 struct scsi_device *sdev) 1337 { 1338 if (scsi_host_in_recovery(shost)) 1339 return 0; 1340 if (shost->host_busy == 0 && shost->host_blocked) { 1341 /* 1342 * unblock after host_blocked iterates to zero 1343 */ 1344 if (--shost->host_blocked == 0) { 1345 SCSI_LOG_MLQUEUE(3, 1346 printk("scsi%d unblocking host at zero depth\n", 1347 shost->host_no)); 1348 } else { 1349 return 0; 1350 } 1351 } 1352 if (scsi_host_is_busy(shost)) { 1353 if (list_empty(&sdev->starved_entry)) 1354 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1355 return 0; 1356 } 1357 1358 /* We're OK to process the command, so we can't be starved */ 1359 if (!list_empty(&sdev->starved_entry)) 1360 list_del_init(&sdev->starved_entry); 1361 1362 return 1; 1363 } 1364 1365 /* 1366 * Busy state exporting function for request stacking drivers. 1367 * 1368 * For efficiency, no lock is taken to check the busy state of 1369 * shost/starget/sdev, since the returned value is not guaranteed and 1370 * may be changed after request stacking drivers call the function, 1371 * regardless of taking lock or not. 1372 * 1373 * When scsi can't dispatch I/Os anymore and needs to kill I/Os 1374 * (e.g. !sdev), scsi needs to return 'not busy'. 1375 * Otherwise, request stacking drivers may hold requests forever. 1376 */ 1377 static int scsi_lld_busy(struct request_queue *q) 1378 { 1379 struct scsi_device *sdev = q->queuedata; 1380 struct Scsi_Host *shost; 1381 struct scsi_target *starget; 1382 1383 if (!sdev) 1384 return 0; 1385 1386 shost = sdev->host; 1387 starget = scsi_target(sdev); 1388 1389 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) || 1390 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev)) 1391 return 1; 1392 1393 return 0; 1394 } 1395 1396 /* 1397 * Kill a request for a dead device 1398 */ 1399 static void scsi_kill_request(struct request *req, struct request_queue *q) 1400 { 1401 struct scsi_cmnd *cmd = req->special; 1402 struct scsi_device *sdev; 1403 struct scsi_target *starget; 1404 struct Scsi_Host *shost; 1405 1406 blk_start_request(req); 1407 1408 sdev = cmd->device; 1409 starget = scsi_target(sdev); 1410 shost = sdev->host; 1411 scsi_init_cmd_errh(cmd); 1412 cmd->result = DID_NO_CONNECT << 16; 1413 atomic_inc(&cmd->device->iorequest_cnt); 1414 1415 /* 1416 * SCSI request completion path will do scsi_device_unbusy(), 1417 * bump busy counts. To bump the counters, we need to dance 1418 * with the locks as normal issue path does. 1419 */ 1420 sdev->device_busy++; 1421 spin_unlock(sdev->request_queue->queue_lock); 1422 spin_lock(shost->host_lock); 1423 shost->host_busy++; 1424 starget->target_busy++; 1425 spin_unlock(shost->host_lock); 1426 spin_lock(sdev->request_queue->queue_lock); 1427 1428 blk_complete_request(req); 1429 } 1430 1431 static void scsi_softirq_done(struct request *rq) 1432 { 1433 struct scsi_cmnd *cmd = rq->special; 1434 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1435 int disposition; 1436 1437 INIT_LIST_HEAD(&cmd->eh_entry); 1438 1439 atomic_inc(&cmd->device->iodone_cnt); 1440 if (cmd->result) 1441 atomic_inc(&cmd->device->ioerr_cnt); 1442 1443 disposition = scsi_decide_disposition(cmd); 1444 if (disposition != SUCCESS && 1445 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1446 sdev_printk(KERN_ERR, cmd->device, 1447 "timing out command, waited %lus\n", 1448 wait_for/HZ); 1449 disposition = SUCCESS; 1450 } 1451 1452 scsi_log_completion(cmd, disposition); 1453 1454 switch (disposition) { 1455 case SUCCESS: 1456 scsi_finish_command(cmd); 1457 break; 1458 case NEEDS_RETRY: 1459 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1460 break; 1461 case ADD_TO_MLQUEUE: 1462 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1463 break; 1464 default: 1465 if (!scsi_eh_scmd_add(cmd, 0)) 1466 scsi_finish_command(cmd); 1467 } 1468 } 1469 1470 /* 1471 * Function: scsi_request_fn() 1472 * 1473 * Purpose: Main strategy routine for SCSI. 1474 * 1475 * Arguments: q - Pointer to actual queue. 1476 * 1477 * Returns: Nothing 1478 * 1479 * Lock status: IO request lock assumed to be held when called. 1480 */ 1481 static void scsi_request_fn(struct request_queue *q) 1482 { 1483 struct scsi_device *sdev = q->queuedata; 1484 struct Scsi_Host *shost; 1485 struct scsi_cmnd *cmd; 1486 struct request *req; 1487 1488 if (!sdev) { 1489 printk("scsi: killing requests for dead queue\n"); 1490 while ((req = blk_peek_request(q)) != NULL) 1491 scsi_kill_request(req, q); 1492 return; 1493 } 1494 1495 if(!get_device(&sdev->sdev_gendev)) 1496 /* We must be tearing the block queue down already */ 1497 return; 1498 1499 /* 1500 * To start with, we keep looping until the queue is empty, or until 1501 * the host is no longer able to accept any more requests. 1502 */ 1503 shost = sdev->host; 1504 for (;;) { 1505 int rtn; 1506 /* 1507 * get next queueable request. We do this early to make sure 1508 * that the request is fully prepared even if we cannot 1509 * accept it. 1510 */ 1511 req = blk_peek_request(q); 1512 if (!req || !scsi_dev_queue_ready(q, sdev)) 1513 break; 1514 1515 if (unlikely(!scsi_device_online(sdev))) { 1516 sdev_printk(KERN_ERR, sdev, 1517 "rejecting I/O to offline device\n"); 1518 scsi_kill_request(req, q); 1519 continue; 1520 } 1521 1522 1523 /* 1524 * Remove the request from the request list. 1525 */ 1526 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1527 blk_start_request(req); 1528 sdev->device_busy++; 1529 1530 spin_unlock(q->queue_lock); 1531 cmd = req->special; 1532 if (unlikely(cmd == NULL)) { 1533 printk(KERN_CRIT "impossible request in %s.\n" 1534 "please mail a stack trace to " 1535 "linux-scsi@vger.kernel.org\n", 1536 __func__); 1537 blk_dump_rq_flags(req, "foo"); 1538 BUG(); 1539 } 1540 spin_lock(shost->host_lock); 1541 1542 /* 1543 * We hit this when the driver is using a host wide 1544 * tag map. For device level tag maps the queue_depth check 1545 * in the device ready fn would prevent us from trying 1546 * to allocate a tag. Since the map is a shared host resource 1547 * we add the dev to the starved list so it eventually gets 1548 * a run when a tag is freed. 1549 */ 1550 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) { 1551 if (list_empty(&sdev->starved_entry)) 1552 list_add_tail(&sdev->starved_entry, 1553 &shost->starved_list); 1554 goto not_ready; 1555 } 1556 1557 if (!scsi_target_queue_ready(shost, sdev)) 1558 goto not_ready; 1559 1560 if (!scsi_host_queue_ready(q, shost, sdev)) 1561 goto not_ready; 1562 1563 scsi_target(sdev)->target_busy++; 1564 shost->host_busy++; 1565 1566 /* 1567 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1568 * take the lock again. 1569 */ 1570 spin_unlock_irq(shost->host_lock); 1571 1572 /* 1573 * Finally, initialize any error handling parameters, and set up 1574 * the timers for timeouts. 1575 */ 1576 scsi_init_cmd_errh(cmd); 1577 1578 /* 1579 * Dispatch the command to the low-level driver. 1580 */ 1581 rtn = scsi_dispatch_cmd(cmd); 1582 spin_lock_irq(q->queue_lock); 1583 if (rtn) 1584 goto out_delay; 1585 } 1586 1587 goto out; 1588 1589 not_ready: 1590 spin_unlock_irq(shost->host_lock); 1591 1592 /* 1593 * lock q, handle tag, requeue req, and decrement device_busy. We 1594 * must return with queue_lock held. 1595 * 1596 * Decrementing device_busy without checking it is OK, as all such 1597 * cases (host limits or settings) should run the queue at some 1598 * later time. 1599 */ 1600 spin_lock_irq(q->queue_lock); 1601 blk_requeue_request(q, req); 1602 sdev->device_busy--; 1603 out_delay: 1604 if (sdev->device_busy == 0) 1605 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1606 out: 1607 /* must be careful here...if we trigger the ->remove() function 1608 * we cannot be holding the q lock */ 1609 spin_unlock_irq(q->queue_lock); 1610 put_device(&sdev->sdev_gendev); 1611 spin_lock_irq(q->queue_lock); 1612 } 1613 1614 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1615 { 1616 struct device *host_dev; 1617 u64 bounce_limit = 0xffffffff; 1618 1619 if (shost->unchecked_isa_dma) 1620 return BLK_BOUNCE_ISA; 1621 /* 1622 * Platforms with virtual-DMA translation 1623 * hardware have no practical limit. 1624 */ 1625 if (!PCI_DMA_BUS_IS_PHYS) 1626 return BLK_BOUNCE_ANY; 1627 1628 host_dev = scsi_get_device(shost); 1629 if (host_dev && host_dev->dma_mask) 1630 bounce_limit = *host_dev->dma_mask; 1631 1632 return bounce_limit; 1633 } 1634 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1635 1636 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1637 request_fn_proc *request_fn) 1638 { 1639 struct request_queue *q; 1640 struct device *dev = shost->shost_gendev.parent; 1641 1642 q = blk_init_queue(request_fn, NULL); 1643 if (!q) 1644 return NULL; 1645 1646 /* 1647 * this limit is imposed by hardware restrictions 1648 */ 1649 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1650 SCSI_MAX_SG_CHAIN_SEGMENTS)); 1651 1652 if (scsi_host_prot_dma(shost)) { 1653 shost->sg_prot_tablesize = 1654 min_not_zero(shost->sg_prot_tablesize, 1655 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1656 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1657 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1658 } 1659 1660 blk_queue_max_hw_sectors(q, shost->max_sectors); 1661 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1662 blk_queue_segment_boundary(q, shost->dma_boundary); 1663 dma_set_seg_boundary(dev, shost->dma_boundary); 1664 1665 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 1666 1667 if (!shost->use_clustering) 1668 q->limits.cluster = 0; 1669 1670 /* 1671 * set a reasonable default alignment on word boundaries: the 1672 * host and device may alter it using 1673 * blk_queue_update_dma_alignment() later. 1674 */ 1675 blk_queue_dma_alignment(q, 0x03); 1676 1677 return q; 1678 } 1679 EXPORT_SYMBOL(__scsi_alloc_queue); 1680 1681 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1682 { 1683 struct request_queue *q; 1684 1685 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1686 if (!q) 1687 return NULL; 1688 1689 blk_queue_prep_rq(q, scsi_prep_fn); 1690 blk_queue_softirq_done(q, scsi_softirq_done); 1691 blk_queue_rq_timed_out(q, scsi_times_out); 1692 blk_queue_lld_busy(q, scsi_lld_busy); 1693 return q; 1694 } 1695 1696 void scsi_free_queue(struct request_queue *q) 1697 { 1698 blk_cleanup_queue(q); 1699 } 1700 1701 /* 1702 * Function: scsi_block_requests() 1703 * 1704 * Purpose: Utility function used by low-level drivers to prevent further 1705 * commands from being queued to the device. 1706 * 1707 * Arguments: shost - Host in question 1708 * 1709 * Returns: Nothing 1710 * 1711 * Lock status: No locks are assumed held. 1712 * 1713 * Notes: There is no timer nor any other means by which the requests 1714 * get unblocked other than the low-level driver calling 1715 * scsi_unblock_requests(). 1716 */ 1717 void scsi_block_requests(struct Scsi_Host *shost) 1718 { 1719 shost->host_self_blocked = 1; 1720 } 1721 EXPORT_SYMBOL(scsi_block_requests); 1722 1723 /* 1724 * Function: scsi_unblock_requests() 1725 * 1726 * Purpose: Utility function used by low-level drivers to allow further 1727 * commands from being queued to the device. 1728 * 1729 * Arguments: shost - Host in question 1730 * 1731 * Returns: Nothing 1732 * 1733 * Lock status: No locks are assumed held. 1734 * 1735 * Notes: There is no timer nor any other means by which the requests 1736 * get unblocked other than the low-level driver calling 1737 * scsi_unblock_requests(). 1738 * 1739 * This is done as an API function so that changes to the 1740 * internals of the scsi mid-layer won't require wholesale 1741 * changes to drivers that use this feature. 1742 */ 1743 void scsi_unblock_requests(struct Scsi_Host *shost) 1744 { 1745 shost->host_self_blocked = 0; 1746 scsi_run_host_queues(shost); 1747 } 1748 EXPORT_SYMBOL(scsi_unblock_requests); 1749 1750 int __init scsi_init_queue(void) 1751 { 1752 int i; 1753 1754 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1755 sizeof(struct scsi_data_buffer), 1756 0, 0, NULL); 1757 if (!scsi_sdb_cache) { 1758 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1759 return -ENOMEM; 1760 } 1761 1762 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1763 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1764 int size = sgp->size * sizeof(struct scatterlist); 1765 1766 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1767 SLAB_HWCACHE_ALIGN, NULL); 1768 if (!sgp->slab) { 1769 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1770 sgp->name); 1771 goto cleanup_sdb; 1772 } 1773 1774 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1775 sgp->slab); 1776 if (!sgp->pool) { 1777 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1778 sgp->name); 1779 goto cleanup_sdb; 1780 } 1781 } 1782 1783 return 0; 1784 1785 cleanup_sdb: 1786 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1787 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1788 if (sgp->pool) 1789 mempool_destroy(sgp->pool); 1790 if (sgp->slab) 1791 kmem_cache_destroy(sgp->slab); 1792 } 1793 kmem_cache_destroy(scsi_sdb_cache); 1794 1795 return -ENOMEM; 1796 } 1797 1798 void scsi_exit_queue(void) 1799 { 1800 int i; 1801 1802 kmem_cache_destroy(scsi_sdb_cache); 1803 1804 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1805 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1806 mempool_destroy(sgp->pool); 1807 kmem_cache_destroy(sgp->slab); 1808 } 1809 } 1810 1811 /** 1812 * scsi_mode_select - issue a mode select 1813 * @sdev: SCSI device to be queried 1814 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1815 * @sp: Save page bit (0 == don't save, 1 == save) 1816 * @modepage: mode page being requested 1817 * @buffer: request buffer (may not be smaller than eight bytes) 1818 * @len: length of request buffer. 1819 * @timeout: command timeout 1820 * @retries: number of retries before failing 1821 * @data: returns a structure abstracting the mode header data 1822 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1823 * must be SCSI_SENSE_BUFFERSIZE big. 1824 * 1825 * Returns zero if successful; negative error number or scsi 1826 * status on error 1827 * 1828 */ 1829 int 1830 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1831 unsigned char *buffer, int len, int timeout, int retries, 1832 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1833 { 1834 unsigned char cmd[10]; 1835 unsigned char *real_buffer; 1836 int ret; 1837 1838 memset(cmd, 0, sizeof(cmd)); 1839 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1840 1841 if (sdev->use_10_for_ms) { 1842 if (len > 65535) 1843 return -EINVAL; 1844 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1845 if (!real_buffer) 1846 return -ENOMEM; 1847 memcpy(real_buffer + 8, buffer, len); 1848 len += 8; 1849 real_buffer[0] = 0; 1850 real_buffer[1] = 0; 1851 real_buffer[2] = data->medium_type; 1852 real_buffer[3] = data->device_specific; 1853 real_buffer[4] = data->longlba ? 0x01 : 0; 1854 real_buffer[5] = 0; 1855 real_buffer[6] = data->block_descriptor_length >> 8; 1856 real_buffer[7] = data->block_descriptor_length; 1857 1858 cmd[0] = MODE_SELECT_10; 1859 cmd[7] = len >> 8; 1860 cmd[8] = len; 1861 } else { 1862 if (len > 255 || data->block_descriptor_length > 255 || 1863 data->longlba) 1864 return -EINVAL; 1865 1866 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1867 if (!real_buffer) 1868 return -ENOMEM; 1869 memcpy(real_buffer + 4, buffer, len); 1870 len += 4; 1871 real_buffer[0] = 0; 1872 real_buffer[1] = data->medium_type; 1873 real_buffer[2] = data->device_specific; 1874 real_buffer[3] = data->block_descriptor_length; 1875 1876 1877 cmd[0] = MODE_SELECT; 1878 cmd[4] = len; 1879 } 1880 1881 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 1882 sshdr, timeout, retries, NULL); 1883 kfree(real_buffer); 1884 return ret; 1885 } 1886 EXPORT_SYMBOL_GPL(scsi_mode_select); 1887 1888 /** 1889 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 1890 * @sdev: SCSI device to be queried 1891 * @dbd: set if mode sense will allow block descriptors to be returned 1892 * @modepage: mode page being requested 1893 * @buffer: request buffer (may not be smaller than eight bytes) 1894 * @len: length of request buffer. 1895 * @timeout: command timeout 1896 * @retries: number of retries before failing 1897 * @data: returns a structure abstracting the mode header data 1898 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1899 * must be SCSI_SENSE_BUFFERSIZE big. 1900 * 1901 * Returns zero if unsuccessful, or the header offset (either 4 1902 * or 8 depending on whether a six or ten byte command was 1903 * issued) if successful. 1904 */ 1905 int 1906 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 1907 unsigned char *buffer, int len, int timeout, int retries, 1908 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1909 { 1910 unsigned char cmd[12]; 1911 int use_10_for_ms; 1912 int header_length; 1913 int result; 1914 struct scsi_sense_hdr my_sshdr; 1915 1916 memset(data, 0, sizeof(*data)); 1917 memset(&cmd[0], 0, 12); 1918 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 1919 cmd[2] = modepage; 1920 1921 /* caller might not be interested in sense, but we need it */ 1922 if (!sshdr) 1923 sshdr = &my_sshdr; 1924 1925 retry: 1926 use_10_for_ms = sdev->use_10_for_ms; 1927 1928 if (use_10_for_ms) { 1929 if (len < 8) 1930 len = 8; 1931 1932 cmd[0] = MODE_SENSE_10; 1933 cmd[8] = len; 1934 header_length = 8; 1935 } else { 1936 if (len < 4) 1937 len = 4; 1938 1939 cmd[0] = MODE_SENSE; 1940 cmd[4] = len; 1941 header_length = 4; 1942 } 1943 1944 memset(buffer, 0, len); 1945 1946 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 1947 sshdr, timeout, retries, NULL); 1948 1949 /* This code looks awful: what it's doing is making sure an 1950 * ILLEGAL REQUEST sense return identifies the actual command 1951 * byte as the problem. MODE_SENSE commands can return 1952 * ILLEGAL REQUEST if the code page isn't supported */ 1953 1954 if (use_10_for_ms && !scsi_status_is_good(result) && 1955 (driver_byte(result) & DRIVER_SENSE)) { 1956 if (scsi_sense_valid(sshdr)) { 1957 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 1958 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 1959 /* 1960 * Invalid command operation code 1961 */ 1962 sdev->use_10_for_ms = 0; 1963 goto retry; 1964 } 1965 } 1966 } 1967 1968 if(scsi_status_is_good(result)) { 1969 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 1970 (modepage == 6 || modepage == 8))) { 1971 /* Initio breakage? */ 1972 header_length = 0; 1973 data->length = 13; 1974 data->medium_type = 0; 1975 data->device_specific = 0; 1976 data->longlba = 0; 1977 data->block_descriptor_length = 0; 1978 } else if(use_10_for_ms) { 1979 data->length = buffer[0]*256 + buffer[1] + 2; 1980 data->medium_type = buffer[2]; 1981 data->device_specific = buffer[3]; 1982 data->longlba = buffer[4] & 0x01; 1983 data->block_descriptor_length = buffer[6]*256 1984 + buffer[7]; 1985 } else { 1986 data->length = buffer[0] + 1; 1987 data->medium_type = buffer[1]; 1988 data->device_specific = buffer[2]; 1989 data->block_descriptor_length = buffer[3]; 1990 } 1991 data->header_length = header_length; 1992 } 1993 1994 return result; 1995 } 1996 EXPORT_SYMBOL(scsi_mode_sense); 1997 1998 /** 1999 * scsi_test_unit_ready - test if unit is ready 2000 * @sdev: scsi device to change the state of. 2001 * @timeout: command timeout 2002 * @retries: number of retries before failing 2003 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 2004 * returning sense. Make sure that this is cleared before passing 2005 * in. 2006 * 2007 * Returns zero if unsuccessful or an error if TUR failed. For 2008 * removable media, UNIT_ATTENTION sets ->changed flag. 2009 **/ 2010 int 2011 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2012 struct scsi_sense_hdr *sshdr_external) 2013 { 2014 char cmd[] = { 2015 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2016 }; 2017 struct scsi_sense_hdr *sshdr; 2018 int result; 2019 2020 if (!sshdr_external) 2021 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 2022 else 2023 sshdr = sshdr_external; 2024 2025 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2026 do { 2027 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2028 timeout, retries, NULL); 2029 if (sdev->removable && scsi_sense_valid(sshdr) && 2030 sshdr->sense_key == UNIT_ATTENTION) 2031 sdev->changed = 1; 2032 } while (scsi_sense_valid(sshdr) && 2033 sshdr->sense_key == UNIT_ATTENTION && --retries); 2034 2035 if (!sshdr_external) 2036 kfree(sshdr); 2037 return result; 2038 } 2039 EXPORT_SYMBOL(scsi_test_unit_ready); 2040 2041 /** 2042 * scsi_device_set_state - Take the given device through the device state model. 2043 * @sdev: scsi device to change the state of. 2044 * @state: state to change to. 2045 * 2046 * Returns zero if unsuccessful or an error if the requested 2047 * transition is illegal. 2048 */ 2049 int 2050 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2051 { 2052 enum scsi_device_state oldstate = sdev->sdev_state; 2053 2054 if (state == oldstate) 2055 return 0; 2056 2057 switch (state) { 2058 case SDEV_CREATED: 2059 switch (oldstate) { 2060 case SDEV_CREATED_BLOCK: 2061 break; 2062 default: 2063 goto illegal; 2064 } 2065 break; 2066 2067 case SDEV_RUNNING: 2068 switch (oldstate) { 2069 case SDEV_CREATED: 2070 case SDEV_OFFLINE: 2071 case SDEV_QUIESCE: 2072 case SDEV_BLOCK: 2073 break; 2074 default: 2075 goto illegal; 2076 } 2077 break; 2078 2079 case SDEV_QUIESCE: 2080 switch (oldstate) { 2081 case SDEV_RUNNING: 2082 case SDEV_OFFLINE: 2083 break; 2084 default: 2085 goto illegal; 2086 } 2087 break; 2088 2089 case SDEV_OFFLINE: 2090 switch (oldstate) { 2091 case SDEV_CREATED: 2092 case SDEV_RUNNING: 2093 case SDEV_QUIESCE: 2094 case SDEV_BLOCK: 2095 break; 2096 default: 2097 goto illegal; 2098 } 2099 break; 2100 2101 case SDEV_BLOCK: 2102 switch (oldstate) { 2103 case SDEV_RUNNING: 2104 case SDEV_CREATED_BLOCK: 2105 break; 2106 default: 2107 goto illegal; 2108 } 2109 break; 2110 2111 case SDEV_CREATED_BLOCK: 2112 switch (oldstate) { 2113 case SDEV_CREATED: 2114 break; 2115 default: 2116 goto illegal; 2117 } 2118 break; 2119 2120 case SDEV_CANCEL: 2121 switch (oldstate) { 2122 case SDEV_CREATED: 2123 case SDEV_RUNNING: 2124 case SDEV_QUIESCE: 2125 case SDEV_OFFLINE: 2126 case SDEV_BLOCK: 2127 break; 2128 default: 2129 goto illegal; 2130 } 2131 break; 2132 2133 case SDEV_DEL: 2134 switch (oldstate) { 2135 case SDEV_CREATED: 2136 case SDEV_RUNNING: 2137 case SDEV_OFFLINE: 2138 case SDEV_CANCEL: 2139 break; 2140 default: 2141 goto illegal; 2142 } 2143 break; 2144 2145 } 2146 sdev->sdev_state = state; 2147 return 0; 2148 2149 illegal: 2150 SCSI_LOG_ERROR_RECOVERY(1, 2151 sdev_printk(KERN_ERR, sdev, 2152 "Illegal state transition %s->%s\n", 2153 scsi_device_state_name(oldstate), 2154 scsi_device_state_name(state)) 2155 ); 2156 return -EINVAL; 2157 } 2158 EXPORT_SYMBOL(scsi_device_set_state); 2159 2160 /** 2161 * sdev_evt_emit - emit a single SCSI device uevent 2162 * @sdev: associated SCSI device 2163 * @evt: event to emit 2164 * 2165 * Send a single uevent (scsi_event) to the associated scsi_device. 2166 */ 2167 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2168 { 2169 int idx = 0; 2170 char *envp[3]; 2171 2172 switch (evt->evt_type) { 2173 case SDEV_EVT_MEDIA_CHANGE: 2174 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2175 break; 2176 2177 default: 2178 /* do nothing */ 2179 break; 2180 } 2181 2182 envp[idx++] = NULL; 2183 2184 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2185 } 2186 2187 /** 2188 * sdev_evt_thread - send a uevent for each scsi event 2189 * @work: work struct for scsi_device 2190 * 2191 * Dispatch queued events to their associated scsi_device kobjects 2192 * as uevents. 2193 */ 2194 void scsi_evt_thread(struct work_struct *work) 2195 { 2196 struct scsi_device *sdev; 2197 LIST_HEAD(event_list); 2198 2199 sdev = container_of(work, struct scsi_device, event_work); 2200 2201 while (1) { 2202 struct scsi_event *evt; 2203 struct list_head *this, *tmp; 2204 unsigned long flags; 2205 2206 spin_lock_irqsave(&sdev->list_lock, flags); 2207 list_splice_init(&sdev->event_list, &event_list); 2208 spin_unlock_irqrestore(&sdev->list_lock, flags); 2209 2210 if (list_empty(&event_list)) 2211 break; 2212 2213 list_for_each_safe(this, tmp, &event_list) { 2214 evt = list_entry(this, struct scsi_event, node); 2215 list_del(&evt->node); 2216 scsi_evt_emit(sdev, evt); 2217 kfree(evt); 2218 } 2219 } 2220 } 2221 2222 /** 2223 * sdev_evt_send - send asserted event to uevent thread 2224 * @sdev: scsi_device event occurred on 2225 * @evt: event to send 2226 * 2227 * Assert scsi device event asynchronously. 2228 */ 2229 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2230 { 2231 unsigned long flags; 2232 2233 #if 0 2234 /* FIXME: currently this check eliminates all media change events 2235 * for polled devices. Need to update to discriminate between AN 2236 * and polled events */ 2237 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2238 kfree(evt); 2239 return; 2240 } 2241 #endif 2242 2243 spin_lock_irqsave(&sdev->list_lock, flags); 2244 list_add_tail(&evt->node, &sdev->event_list); 2245 schedule_work(&sdev->event_work); 2246 spin_unlock_irqrestore(&sdev->list_lock, flags); 2247 } 2248 EXPORT_SYMBOL_GPL(sdev_evt_send); 2249 2250 /** 2251 * sdev_evt_alloc - allocate a new scsi event 2252 * @evt_type: type of event to allocate 2253 * @gfpflags: GFP flags for allocation 2254 * 2255 * Allocates and returns a new scsi_event. 2256 */ 2257 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2258 gfp_t gfpflags) 2259 { 2260 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2261 if (!evt) 2262 return NULL; 2263 2264 evt->evt_type = evt_type; 2265 INIT_LIST_HEAD(&evt->node); 2266 2267 /* evt_type-specific initialization, if any */ 2268 switch (evt_type) { 2269 case SDEV_EVT_MEDIA_CHANGE: 2270 default: 2271 /* do nothing */ 2272 break; 2273 } 2274 2275 return evt; 2276 } 2277 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2278 2279 /** 2280 * sdev_evt_send_simple - send asserted event to uevent thread 2281 * @sdev: scsi_device event occurred on 2282 * @evt_type: type of event to send 2283 * @gfpflags: GFP flags for allocation 2284 * 2285 * Assert scsi device event asynchronously, given an event type. 2286 */ 2287 void sdev_evt_send_simple(struct scsi_device *sdev, 2288 enum scsi_device_event evt_type, gfp_t gfpflags) 2289 { 2290 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2291 if (!evt) { 2292 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2293 evt_type); 2294 return; 2295 } 2296 2297 sdev_evt_send(sdev, evt); 2298 } 2299 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2300 2301 /** 2302 * scsi_device_quiesce - Block user issued commands. 2303 * @sdev: scsi device to quiesce. 2304 * 2305 * This works by trying to transition to the SDEV_QUIESCE state 2306 * (which must be a legal transition). When the device is in this 2307 * state, only special requests will be accepted, all others will 2308 * be deferred. Since special requests may also be requeued requests, 2309 * a successful return doesn't guarantee the device will be 2310 * totally quiescent. 2311 * 2312 * Must be called with user context, may sleep. 2313 * 2314 * Returns zero if unsuccessful or an error if not. 2315 */ 2316 int 2317 scsi_device_quiesce(struct scsi_device *sdev) 2318 { 2319 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2320 if (err) 2321 return err; 2322 2323 scsi_run_queue(sdev->request_queue); 2324 while (sdev->device_busy) { 2325 msleep_interruptible(200); 2326 scsi_run_queue(sdev->request_queue); 2327 } 2328 return 0; 2329 } 2330 EXPORT_SYMBOL(scsi_device_quiesce); 2331 2332 /** 2333 * scsi_device_resume - Restart user issued commands to a quiesced device. 2334 * @sdev: scsi device to resume. 2335 * 2336 * Moves the device from quiesced back to running and restarts the 2337 * queues. 2338 * 2339 * Must be called with user context, may sleep. 2340 */ 2341 void 2342 scsi_device_resume(struct scsi_device *sdev) 2343 { 2344 if(scsi_device_set_state(sdev, SDEV_RUNNING)) 2345 return; 2346 scsi_run_queue(sdev->request_queue); 2347 } 2348 EXPORT_SYMBOL(scsi_device_resume); 2349 2350 static void 2351 device_quiesce_fn(struct scsi_device *sdev, void *data) 2352 { 2353 scsi_device_quiesce(sdev); 2354 } 2355 2356 void 2357 scsi_target_quiesce(struct scsi_target *starget) 2358 { 2359 starget_for_each_device(starget, NULL, device_quiesce_fn); 2360 } 2361 EXPORT_SYMBOL(scsi_target_quiesce); 2362 2363 static void 2364 device_resume_fn(struct scsi_device *sdev, void *data) 2365 { 2366 scsi_device_resume(sdev); 2367 } 2368 2369 void 2370 scsi_target_resume(struct scsi_target *starget) 2371 { 2372 starget_for_each_device(starget, NULL, device_resume_fn); 2373 } 2374 EXPORT_SYMBOL(scsi_target_resume); 2375 2376 /** 2377 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2378 * @sdev: device to block 2379 * 2380 * Block request made by scsi lld's to temporarily stop all 2381 * scsi commands on the specified device. Called from interrupt 2382 * or normal process context. 2383 * 2384 * Returns zero if successful or error if not 2385 * 2386 * Notes: 2387 * This routine transitions the device to the SDEV_BLOCK state 2388 * (which must be a legal transition). When the device is in this 2389 * state, all commands are deferred until the scsi lld reenables 2390 * the device with scsi_device_unblock or device_block_tmo fires. 2391 * This routine assumes the host_lock is held on entry. 2392 */ 2393 int 2394 scsi_internal_device_block(struct scsi_device *sdev) 2395 { 2396 struct request_queue *q = sdev->request_queue; 2397 unsigned long flags; 2398 int err = 0; 2399 2400 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2401 if (err) { 2402 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2403 2404 if (err) 2405 return err; 2406 } 2407 2408 /* 2409 * The device has transitioned to SDEV_BLOCK. Stop the 2410 * block layer from calling the midlayer with this device's 2411 * request queue. 2412 */ 2413 spin_lock_irqsave(q->queue_lock, flags); 2414 blk_stop_queue(q); 2415 spin_unlock_irqrestore(q->queue_lock, flags); 2416 2417 return 0; 2418 } 2419 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2420 2421 /** 2422 * scsi_internal_device_unblock - resume a device after a block request 2423 * @sdev: device to resume 2424 * 2425 * Called by scsi lld's or the midlayer to restart the device queue 2426 * for the previously suspended scsi device. Called from interrupt or 2427 * normal process context. 2428 * 2429 * Returns zero if successful or error if not. 2430 * 2431 * Notes: 2432 * This routine transitions the device to the SDEV_RUNNING state 2433 * (which must be a legal transition) allowing the midlayer to 2434 * goose the queue for this device. This routine assumes the 2435 * host_lock is held upon entry. 2436 */ 2437 int 2438 scsi_internal_device_unblock(struct scsi_device *sdev) 2439 { 2440 struct request_queue *q = sdev->request_queue; 2441 unsigned long flags; 2442 2443 /* 2444 * Try to transition the scsi device to SDEV_RUNNING 2445 * and goose the device queue if successful. 2446 */ 2447 if (sdev->sdev_state == SDEV_BLOCK) 2448 sdev->sdev_state = SDEV_RUNNING; 2449 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) 2450 sdev->sdev_state = SDEV_CREATED; 2451 else if (sdev->sdev_state != SDEV_CANCEL && 2452 sdev->sdev_state != SDEV_OFFLINE) 2453 return -EINVAL; 2454 2455 spin_lock_irqsave(q->queue_lock, flags); 2456 blk_start_queue(q); 2457 spin_unlock_irqrestore(q->queue_lock, flags); 2458 2459 return 0; 2460 } 2461 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2462 2463 static void 2464 device_block(struct scsi_device *sdev, void *data) 2465 { 2466 scsi_internal_device_block(sdev); 2467 } 2468 2469 static int 2470 target_block(struct device *dev, void *data) 2471 { 2472 if (scsi_is_target_device(dev)) 2473 starget_for_each_device(to_scsi_target(dev), NULL, 2474 device_block); 2475 return 0; 2476 } 2477 2478 void 2479 scsi_target_block(struct device *dev) 2480 { 2481 if (scsi_is_target_device(dev)) 2482 starget_for_each_device(to_scsi_target(dev), NULL, 2483 device_block); 2484 else 2485 device_for_each_child(dev, NULL, target_block); 2486 } 2487 EXPORT_SYMBOL_GPL(scsi_target_block); 2488 2489 static void 2490 device_unblock(struct scsi_device *sdev, void *data) 2491 { 2492 scsi_internal_device_unblock(sdev); 2493 } 2494 2495 static int 2496 target_unblock(struct device *dev, void *data) 2497 { 2498 if (scsi_is_target_device(dev)) 2499 starget_for_each_device(to_scsi_target(dev), NULL, 2500 device_unblock); 2501 return 0; 2502 } 2503 2504 void 2505 scsi_target_unblock(struct device *dev) 2506 { 2507 if (scsi_is_target_device(dev)) 2508 starget_for_each_device(to_scsi_target(dev), NULL, 2509 device_unblock); 2510 else 2511 device_for_each_child(dev, NULL, target_unblock); 2512 } 2513 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2514 2515 /** 2516 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2517 * @sgl: scatter-gather list 2518 * @sg_count: number of segments in sg 2519 * @offset: offset in bytes into sg, on return offset into the mapped area 2520 * @len: bytes to map, on return number of bytes mapped 2521 * 2522 * Returns virtual address of the start of the mapped page 2523 */ 2524 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2525 size_t *offset, size_t *len) 2526 { 2527 int i; 2528 size_t sg_len = 0, len_complete = 0; 2529 struct scatterlist *sg; 2530 struct page *page; 2531 2532 WARN_ON(!irqs_disabled()); 2533 2534 for_each_sg(sgl, sg, sg_count, i) { 2535 len_complete = sg_len; /* Complete sg-entries */ 2536 sg_len += sg->length; 2537 if (sg_len > *offset) 2538 break; 2539 } 2540 2541 if (unlikely(i == sg_count)) { 2542 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2543 "elements %d\n", 2544 __func__, sg_len, *offset, sg_count); 2545 WARN_ON(1); 2546 return NULL; 2547 } 2548 2549 /* Offset starting from the beginning of first page in this sg-entry */ 2550 *offset = *offset - len_complete + sg->offset; 2551 2552 /* Assumption: contiguous pages can be accessed as "page + i" */ 2553 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2554 *offset &= ~PAGE_MASK; 2555 2556 /* Bytes in this sg-entry from *offset to the end of the page */ 2557 sg_len = PAGE_SIZE - *offset; 2558 if (*len > sg_len) 2559 *len = sg_len; 2560 2561 return kmap_atomic(page, KM_BIO_SRC_IRQ); 2562 } 2563 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2564 2565 /** 2566 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2567 * @virt: virtual address to be unmapped 2568 */ 2569 void scsi_kunmap_atomic_sg(void *virt) 2570 { 2571 kunmap_atomic(virt, KM_BIO_SRC_IRQ); 2572 } 2573 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2574