1 /* 2 * Copyright (C) 1999 Eric Youngdale 3 * Copyright (C) 2014 Christoph Hellwig 4 * 5 * SCSI queueing library. 6 * Initial versions: Eric Youngdale (eric@andante.org). 7 * Based upon conversations with large numbers 8 * of people at Linux Expo. 9 */ 10 11 #include <linux/bio.h> 12 #include <linux/bitops.h> 13 #include <linux/blkdev.h> 14 #include <linux/completion.h> 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 #include <linux/blk-mq.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_driver.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_dh.h> 34 35 #include <trace/events/scsi.h> 36 37 #include "scsi_priv.h" 38 #include "scsi_logging.h" 39 40 static struct kmem_cache *scsi_sdb_cache; 41 static struct kmem_cache *scsi_sense_cache; 42 static struct kmem_cache *scsi_sense_isadma_cache; 43 static DEFINE_MUTEX(scsi_sense_cache_mutex); 44 45 static inline struct kmem_cache * 46 scsi_select_sense_cache(struct Scsi_Host *shost) 47 { 48 return shost->unchecked_isa_dma ? 49 scsi_sense_isadma_cache : scsi_sense_cache; 50 } 51 52 static void scsi_free_sense_buffer(struct Scsi_Host *shost, 53 unsigned char *sense_buffer) 54 { 55 kmem_cache_free(scsi_select_sense_cache(shost), sense_buffer); 56 } 57 58 static unsigned char *scsi_alloc_sense_buffer(struct Scsi_Host *shost, 59 gfp_t gfp_mask, int numa_node) 60 { 61 return kmem_cache_alloc_node(scsi_select_sense_cache(shost), gfp_mask, 62 numa_node); 63 } 64 65 int scsi_init_sense_cache(struct Scsi_Host *shost) 66 { 67 struct kmem_cache *cache; 68 int ret = 0; 69 70 cache = scsi_select_sense_cache(shost); 71 if (cache) 72 return 0; 73 74 mutex_lock(&scsi_sense_cache_mutex); 75 if (shost->unchecked_isa_dma) { 76 scsi_sense_isadma_cache = 77 kmem_cache_create("scsi_sense_cache(DMA)", 78 SCSI_SENSE_BUFFERSIZE, 0, 79 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 80 if (!scsi_sense_isadma_cache) 81 ret = -ENOMEM; 82 } else { 83 scsi_sense_cache = 84 kmem_cache_create("scsi_sense_cache", 85 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL); 86 if (!scsi_sense_cache) 87 ret = -ENOMEM; 88 } 89 90 mutex_unlock(&scsi_sense_cache_mutex); 91 return ret; 92 } 93 94 /* 95 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 96 * not change behaviour from the previous unplug mechanism, experimentation 97 * may prove this needs changing. 98 */ 99 #define SCSI_QUEUE_DELAY 3 100 101 static void 102 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 103 { 104 struct Scsi_Host *host = cmd->device->host; 105 struct scsi_device *device = cmd->device; 106 struct scsi_target *starget = scsi_target(device); 107 108 /* 109 * Set the appropriate busy bit for the device/host. 110 * 111 * If the host/device isn't busy, assume that something actually 112 * completed, and that we should be able to queue a command now. 113 * 114 * Note that the prior mid-layer assumption that any host could 115 * always queue at least one command is now broken. The mid-layer 116 * will implement a user specifiable stall (see 117 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 118 * if a command is requeued with no other commands outstanding 119 * either for the device or for the host. 120 */ 121 switch (reason) { 122 case SCSI_MLQUEUE_HOST_BUSY: 123 atomic_set(&host->host_blocked, host->max_host_blocked); 124 break; 125 case SCSI_MLQUEUE_DEVICE_BUSY: 126 case SCSI_MLQUEUE_EH_RETRY: 127 atomic_set(&device->device_blocked, 128 device->max_device_blocked); 129 break; 130 case SCSI_MLQUEUE_TARGET_BUSY: 131 atomic_set(&starget->target_blocked, 132 starget->max_target_blocked); 133 break; 134 } 135 } 136 137 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 138 { 139 struct scsi_device *sdev = cmd->device; 140 141 blk_mq_requeue_request(cmd->request, true); 142 put_device(&sdev->sdev_gendev); 143 } 144 145 /** 146 * __scsi_queue_insert - private queue insertion 147 * @cmd: The SCSI command being requeued 148 * @reason: The reason for the requeue 149 * @unbusy: Whether the queue should be unbusied 150 * 151 * This is a private queue insertion. The public interface 152 * scsi_queue_insert() always assumes the queue should be unbusied 153 * because it's always called before the completion. This function is 154 * for a requeue after completion, which should only occur in this 155 * file. 156 */ 157 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 158 { 159 struct scsi_device *device = cmd->device; 160 struct request_queue *q = device->request_queue; 161 unsigned long flags; 162 163 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 164 "Inserting command %p into mlqueue\n", cmd)); 165 166 scsi_set_blocked(cmd, reason); 167 168 /* 169 * Decrement the counters, since these commands are no longer 170 * active on the host/device. 171 */ 172 if (unbusy) 173 scsi_device_unbusy(device); 174 175 /* 176 * Requeue this command. It will go before all other commands 177 * that are already in the queue. Schedule requeue work under 178 * lock such that the kblockd_schedule_work() call happens 179 * before blk_cleanup_queue() finishes. 180 */ 181 cmd->result = 0; 182 if (q->mq_ops) { 183 scsi_mq_requeue_cmd(cmd); 184 return; 185 } 186 spin_lock_irqsave(q->queue_lock, flags); 187 blk_requeue_request(q, cmd->request); 188 kblockd_schedule_work(&device->requeue_work); 189 spin_unlock_irqrestore(q->queue_lock, flags); 190 } 191 192 /* 193 * Function: scsi_queue_insert() 194 * 195 * Purpose: Insert a command in the midlevel queue. 196 * 197 * Arguments: cmd - command that we are adding to queue. 198 * reason - why we are inserting command to queue. 199 * 200 * Lock status: Assumed that lock is not held upon entry. 201 * 202 * Returns: Nothing. 203 * 204 * Notes: We do this for one of two cases. Either the host is busy 205 * and it cannot accept any more commands for the time being, 206 * or the device returned QUEUE_FULL and can accept no more 207 * commands. 208 * Notes: This could be called either from an interrupt context or a 209 * normal process context. 210 */ 211 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 212 { 213 __scsi_queue_insert(cmd, reason, 1); 214 } 215 216 static int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 217 int data_direction, void *buffer, unsigned bufflen, 218 unsigned char *sense, int timeout, int retries, u64 flags, 219 req_flags_t rq_flags, int *resid) 220 { 221 struct request *req; 222 struct scsi_request *rq; 223 int ret = DRIVER_ERROR << 24; 224 225 req = blk_get_request(sdev->request_queue, 226 data_direction == DMA_TO_DEVICE ? 227 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM); 228 if (IS_ERR(req)) 229 return ret; 230 rq = scsi_req(req); 231 scsi_req_init(req); 232 233 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 234 buffer, bufflen, __GFP_RECLAIM)) 235 goto out; 236 237 rq->cmd_len = COMMAND_SIZE(cmd[0]); 238 memcpy(rq->cmd, cmd, rq->cmd_len); 239 req->retries = retries; 240 req->timeout = timeout; 241 req->cmd_flags |= flags; 242 req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT; 243 244 /* 245 * head injection *required* here otherwise quiesce won't work 246 */ 247 blk_execute_rq(req->q, NULL, req, 1); 248 249 /* 250 * Some devices (USB mass-storage in particular) may transfer 251 * garbage data together with a residue indicating that the data 252 * is invalid. Prevent the garbage from being misinterpreted 253 * and prevent security leaks by zeroing out the excess data. 254 */ 255 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 256 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 257 258 if (resid) 259 *resid = rq->resid_len; 260 if (sense && rq->sense_len) 261 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 262 ret = req->errors; 263 out: 264 blk_put_request(req); 265 266 return ret; 267 } 268 269 /** 270 * scsi_execute - insert request and wait for the result 271 * @sdev: scsi device 272 * @cmd: scsi command 273 * @data_direction: data direction 274 * @buffer: data buffer 275 * @bufflen: len of buffer 276 * @sense: optional sense buffer 277 * @timeout: request timeout in seconds 278 * @retries: number of times to retry request 279 * @flags: or into request flags; 280 * @resid: optional residual length 281 * 282 * returns the req->errors value which is the scsi_cmnd result 283 * field. 284 */ 285 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 286 int data_direction, void *buffer, unsigned bufflen, 287 unsigned char *sense, int timeout, int retries, u64 flags, 288 int *resid) 289 { 290 return __scsi_execute(sdev, cmd, data_direction, buffer, bufflen, sense, 291 timeout, retries, flags, 0, resid); 292 } 293 EXPORT_SYMBOL(scsi_execute); 294 295 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd, 296 int data_direction, void *buffer, unsigned bufflen, 297 struct scsi_sense_hdr *sshdr, int timeout, int retries, 298 int *resid, u64 flags, req_flags_t rq_flags) 299 { 300 char *sense = NULL; 301 int result; 302 303 if (sshdr) { 304 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 305 if (!sense) 306 return DRIVER_ERROR << 24; 307 } 308 result = __scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 309 sense, timeout, retries, flags, rq_flags, resid); 310 if (sshdr) 311 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 312 313 kfree(sense); 314 return result; 315 } 316 EXPORT_SYMBOL(scsi_execute_req_flags); 317 318 /* 319 * Function: scsi_init_cmd_errh() 320 * 321 * Purpose: Initialize cmd fields related to error handling. 322 * 323 * Arguments: cmd - command that is ready to be queued. 324 * 325 * Notes: This function has the job of initializing a number of 326 * fields related to error handling. Typically this will 327 * be called once for each command, as required. 328 */ 329 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 330 { 331 cmd->serial_number = 0; 332 scsi_set_resid(cmd, 0); 333 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 334 if (cmd->cmd_len == 0) 335 cmd->cmd_len = scsi_command_size(cmd->cmnd); 336 } 337 338 void scsi_device_unbusy(struct scsi_device *sdev) 339 { 340 struct Scsi_Host *shost = sdev->host; 341 struct scsi_target *starget = scsi_target(sdev); 342 unsigned long flags; 343 344 atomic_dec(&shost->host_busy); 345 if (starget->can_queue > 0) 346 atomic_dec(&starget->target_busy); 347 348 if (unlikely(scsi_host_in_recovery(shost) && 349 (shost->host_failed || shost->host_eh_scheduled))) { 350 spin_lock_irqsave(shost->host_lock, flags); 351 scsi_eh_wakeup(shost); 352 spin_unlock_irqrestore(shost->host_lock, flags); 353 } 354 355 atomic_dec(&sdev->device_busy); 356 } 357 358 static void scsi_kick_queue(struct request_queue *q) 359 { 360 if (q->mq_ops) 361 blk_mq_start_hw_queues(q); 362 else 363 blk_run_queue(q); 364 } 365 366 /* 367 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 368 * and call blk_run_queue for all the scsi_devices on the target - 369 * including current_sdev first. 370 * 371 * Called with *no* scsi locks held. 372 */ 373 static void scsi_single_lun_run(struct scsi_device *current_sdev) 374 { 375 struct Scsi_Host *shost = current_sdev->host; 376 struct scsi_device *sdev, *tmp; 377 struct scsi_target *starget = scsi_target(current_sdev); 378 unsigned long flags; 379 380 spin_lock_irqsave(shost->host_lock, flags); 381 starget->starget_sdev_user = NULL; 382 spin_unlock_irqrestore(shost->host_lock, flags); 383 384 /* 385 * Call blk_run_queue for all LUNs on the target, starting with 386 * current_sdev. We race with others (to set starget_sdev_user), 387 * but in most cases, we will be first. Ideally, each LU on the 388 * target would get some limited time or requests on the target. 389 */ 390 scsi_kick_queue(current_sdev->request_queue); 391 392 spin_lock_irqsave(shost->host_lock, flags); 393 if (starget->starget_sdev_user) 394 goto out; 395 list_for_each_entry_safe(sdev, tmp, &starget->devices, 396 same_target_siblings) { 397 if (sdev == current_sdev) 398 continue; 399 if (scsi_device_get(sdev)) 400 continue; 401 402 spin_unlock_irqrestore(shost->host_lock, flags); 403 scsi_kick_queue(sdev->request_queue); 404 spin_lock_irqsave(shost->host_lock, flags); 405 406 scsi_device_put(sdev); 407 } 408 out: 409 spin_unlock_irqrestore(shost->host_lock, flags); 410 } 411 412 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 413 { 414 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 415 return true; 416 if (atomic_read(&sdev->device_blocked) > 0) 417 return true; 418 return false; 419 } 420 421 static inline bool scsi_target_is_busy(struct scsi_target *starget) 422 { 423 if (starget->can_queue > 0) { 424 if (atomic_read(&starget->target_busy) >= starget->can_queue) 425 return true; 426 if (atomic_read(&starget->target_blocked) > 0) 427 return true; 428 } 429 return false; 430 } 431 432 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 433 { 434 if (shost->can_queue > 0 && 435 atomic_read(&shost->host_busy) >= shost->can_queue) 436 return true; 437 if (atomic_read(&shost->host_blocked) > 0) 438 return true; 439 if (shost->host_self_blocked) 440 return true; 441 return false; 442 } 443 444 static void scsi_starved_list_run(struct Scsi_Host *shost) 445 { 446 LIST_HEAD(starved_list); 447 struct scsi_device *sdev; 448 unsigned long flags; 449 450 spin_lock_irqsave(shost->host_lock, flags); 451 list_splice_init(&shost->starved_list, &starved_list); 452 453 while (!list_empty(&starved_list)) { 454 struct request_queue *slq; 455 456 /* 457 * As long as shost is accepting commands and we have 458 * starved queues, call blk_run_queue. scsi_request_fn 459 * drops the queue_lock and can add us back to the 460 * starved_list. 461 * 462 * host_lock protects the starved_list and starved_entry. 463 * scsi_request_fn must get the host_lock before checking 464 * or modifying starved_list or starved_entry. 465 */ 466 if (scsi_host_is_busy(shost)) 467 break; 468 469 sdev = list_entry(starved_list.next, 470 struct scsi_device, starved_entry); 471 list_del_init(&sdev->starved_entry); 472 if (scsi_target_is_busy(scsi_target(sdev))) { 473 list_move_tail(&sdev->starved_entry, 474 &shost->starved_list); 475 continue; 476 } 477 478 /* 479 * Once we drop the host lock, a racing scsi_remove_device() 480 * call may remove the sdev from the starved list and destroy 481 * it and the queue. Mitigate by taking a reference to the 482 * queue and never touching the sdev again after we drop the 483 * host lock. Note: if __scsi_remove_device() invokes 484 * blk_cleanup_queue() before the queue is run from this 485 * function then blk_run_queue() will return immediately since 486 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 487 */ 488 slq = sdev->request_queue; 489 if (!blk_get_queue(slq)) 490 continue; 491 spin_unlock_irqrestore(shost->host_lock, flags); 492 493 scsi_kick_queue(slq); 494 blk_put_queue(slq); 495 496 spin_lock_irqsave(shost->host_lock, flags); 497 } 498 /* put any unprocessed entries back */ 499 list_splice(&starved_list, &shost->starved_list); 500 spin_unlock_irqrestore(shost->host_lock, flags); 501 } 502 503 /* 504 * Function: scsi_run_queue() 505 * 506 * Purpose: Select a proper request queue to serve next 507 * 508 * Arguments: q - last request's queue 509 * 510 * Returns: Nothing 511 * 512 * Notes: The previous command was completely finished, start 513 * a new one if possible. 514 */ 515 static void scsi_run_queue(struct request_queue *q) 516 { 517 struct scsi_device *sdev = q->queuedata; 518 519 if (scsi_target(sdev)->single_lun) 520 scsi_single_lun_run(sdev); 521 if (!list_empty(&sdev->host->starved_list)) 522 scsi_starved_list_run(sdev->host); 523 524 if (q->mq_ops) 525 blk_mq_start_stopped_hw_queues(q, false); 526 else 527 blk_run_queue(q); 528 } 529 530 void scsi_requeue_run_queue(struct work_struct *work) 531 { 532 struct scsi_device *sdev; 533 struct request_queue *q; 534 535 sdev = container_of(work, struct scsi_device, requeue_work); 536 q = sdev->request_queue; 537 scsi_run_queue(q); 538 } 539 540 /* 541 * Function: scsi_requeue_command() 542 * 543 * Purpose: Handle post-processing of completed commands. 544 * 545 * Arguments: q - queue to operate on 546 * cmd - command that may need to be requeued. 547 * 548 * Returns: Nothing 549 * 550 * Notes: After command completion, there may be blocks left 551 * over which weren't finished by the previous command 552 * this can be for a number of reasons - the main one is 553 * I/O errors in the middle of the request, in which case 554 * we need to request the blocks that come after the bad 555 * sector. 556 * Notes: Upon return, cmd is a stale pointer. 557 */ 558 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 559 { 560 struct scsi_device *sdev = cmd->device; 561 struct request *req = cmd->request; 562 unsigned long flags; 563 564 spin_lock_irqsave(q->queue_lock, flags); 565 blk_unprep_request(req); 566 req->special = NULL; 567 scsi_put_command(cmd); 568 blk_requeue_request(q, req); 569 spin_unlock_irqrestore(q->queue_lock, flags); 570 571 scsi_run_queue(q); 572 573 put_device(&sdev->sdev_gendev); 574 } 575 576 void scsi_run_host_queues(struct Scsi_Host *shost) 577 { 578 struct scsi_device *sdev; 579 580 shost_for_each_device(sdev, shost) 581 scsi_run_queue(sdev->request_queue); 582 } 583 584 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 585 { 586 if (!blk_rq_is_passthrough(cmd->request)) { 587 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 588 589 if (drv->uninit_command) 590 drv->uninit_command(cmd); 591 } 592 } 593 594 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 595 { 596 struct scsi_data_buffer *sdb; 597 598 if (cmd->sdb.table.nents) 599 sg_free_table_chained(&cmd->sdb.table, true); 600 if (cmd->request->next_rq) { 601 sdb = cmd->request->next_rq->special; 602 if (sdb) 603 sg_free_table_chained(&sdb->table, true); 604 } 605 if (scsi_prot_sg_count(cmd)) 606 sg_free_table_chained(&cmd->prot_sdb->table, true); 607 } 608 609 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 610 { 611 struct scsi_device *sdev = cmd->device; 612 struct Scsi_Host *shost = sdev->host; 613 unsigned long flags; 614 615 scsi_mq_free_sgtables(cmd); 616 scsi_uninit_cmd(cmd); 617 618 if (shost->use_cmd_list) { 619 BUG_ON(list_empty(&cmd->list)); 620 spin_lock_irqsave(&sdev->list_lock, flags); 621 list_del_init(&cmd->list); 622 spin_unlock_irqrestore(&sdev->list_lock, flags); 623 } 624 } 625 626 /* 627 * Function: scsi_release_buffers() 628 * 629 * Purpose: Free resources allocate for a scsi_command. 630 * 631 * Arguments: cmd - command that we are bailing. 632 * 633 * Lock status: Assumed that no lock is held upon entry. 634 * 635 * Returns: Nothing 636 * 637 * Notes: In the event that an upper level driver rejects a 638 * command, we must release resources allocated during 639 * the __init_io() function. Primarily this would involve 640 * the scatter-gather table. 641 */ 642 static void scsi_release_buffers(struct scsi_cmnd *cmd) 643 { 644 if (cmd->sdb.table.nents) 645 sg_free_table_chained(&cmd->sdb.table, false); 646 647 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 648 649 if (scsi_prot_sg_count(cmd)) 650 sg_free_table_chained(&cmd->prot_sdb->table, false); 651 } 652 653 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd) 654 { 655 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special; 656 657 sg_free_table_chained(&bidi_sdb->table, false); 658 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 659 cmd->request->next_rq->special = NULL; 660 } 661 662 static bool scsi_end_request(struct request *req, int error, 663 unsigned int bytes, unsigned int bidi_bytes) 664 { 665 struct scsi_cmnd *cmd = req->special; 666 struct scsi_device *sdev = cmd->device; 667 struct request_queue *q = sdev->request_queue; 668 669 if (blk_update_request(req, error, bytes)) 670 return true; 671 672 /* Bidi request must be completed as a whole */ 673 if (unlikely(bidi_bytes) && 674 blk_update_request(req->next_rq, error, bidi_bytes)) 675 return true; 676 677 if (blk_queue_add_random(q)) 678 add_disk_randomness(req->rq_disk); 679 680 if (req->mq_ctx) { 681 /* 682 * In the MQ case the command gets freed by __blk_mq_end_request, 683 * so we have to do all cleanup that depends on it earlier. 684 * 685 * We also can't kick the queues from irq context, so we 686 * will have to defer it to a workqueue. 687 */ 688 scsi_mq_uninit_cmd(cmd); 689 690 __blk_mq_end_request(req, error); 691 692 if (scsi_target(sdev)->single_lun || 693 !list_empty(&sdev->host->starved_list)) 694 kblockd_schedule_work(&sdev->requeue_work); 695 else 696 blk_mq_start_stopped_hw_queues(q, true); 697 } else { 698 unsigned long flags; 699 700 if (bidi_bytes) 701 scsi_release_bidi_buffers(cmd); 702 scsi_release_buffers(cmd); 703 scsi_put_command(cmd); 704 705 spin_lock_irqsave(q->queue_lock, flags); 706 blk_finish_request(req, error); 707 spin_unlock_irqrestore(q->queue_lock, flags); 708 709 scsi_run_queue(q); 710 } 711 712 put_device(&sdev->sdev_gendev); 713 return false; 714 } 715 716 /** 717 * __scsi_error_from_host_byte - translate SCSI error code into errno 718 * @cmd: SCSI command (unused) 719 * @result: scsi error code 720 * 721 * Translate SCSI error code into standard UNIX errno. 722 * Return values: 723 * -ENOLINK temporary transport failure 724 * -EREMOTEIO permanent target failure, do not retry 725 * -EBADE permanent nexus failure, retry on other path 726 * -ENOSPC No write space available 727 * -ENODATA Medium error 728 * -EIO unspecified I/O error 729 */ 730 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result) 731 { 732 int error = 0; 733 734 switch(host_byte(result)) { 735 case DID_TRANSPORT_FAILFAST: 736 error = -ENOLINK; 737 break; 738 case DID_TARGET_FAILURE: 739 set_host_byte(cmd, DID_OK); 740 error = -EREMOTEIO; 741 break; 742 case DID_NEXUS_FAILURE: 743 set_host_byte(cmd, DID_OK); 744 error = -EBADE; 745 break; 746 case DID_ALLOC_FAILURE: 747 set_host_byte(cmd, DID_OK); 748 error = -ENOSPC; 749 break; 750 case DID_MEDIUM_ERROR: 751 set_host_byte(cmd, DID_OK); 752 error = -ENODATA; 753 break; 754 default: 755 error = -EIO; 756 break; 757 } 758 759 return error; 760 } 761 762 /* 763 * Function: scsi_io_completion() 764 * 765 * Purpose: Completion processing for block device I/O requests. 766 * 767 * Arguments: cmd - command that is finished. 768 * 769 * Lock status: Assumed that no lock is held upon entry. 770 * 771 * Returns: Nothing 772 * 773 * Notes: We will finish off the specified number of sectors. If we 774 * are done, the command block will be released and the queue 775 * function will be goosed. If we are not done then we have to 776 * figure out what to do next: 777 * 778 * a) We can call scsi_requeue_command(). The request 779 * will be unprepared and put back on the queue. Then 780 * a new command will be created for it. This should 781 * be used if we made forward progress, or if we want 782 * to switch from READ(10) to READ(6) for example. 783 * 784 * b) We can call __scsi_queue_insert(). The request will 785 * be put back on the queue and retried using the same 786 * command as before, possibly after a delay. 787 * 788 * c) We can call scsi_end_request() with -EIO to fail 789 * the remainder of the request. 790 */ 791 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 792 { 793 int result = cmd->result; 794 struct request_queue *q = cmd->device->request_queue; 795 struct request *req = cmd->request; 796 int error = 0; 797 struct scsi_sense_hdr sshdr; 798 bool sense_valid = false; 799 int sense_deferred = 0, level = 0; 800 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 801 ACTION_DELAYED_RETRY} action; 802 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 803 804 if (result) { 805 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 806 if (sense_valid) 807 sense_deferred = scsi_sense_is_deferred(&sshdr); 808 } 809 810 if (blk_rq_is_passthrough(req)) { 811 if (result) { 812 if (sense_valid) { 813 /* 814 * SG_IO wants current and deferred errors 815 */ 816 scsi_req(req)->sense_len = 817 min(8 + cmd->sense_buffer[7], 818 SCSI_SENSE_BUFFERSIZE); 819 } 820 if (!sense_deferred) 821 error = __scsi_error_from_host_byte(cmd, result); 822 } 823 /* 824 * __scsi_error_from_host_byte may have reset the host_byte 825 */ 826 req->errors = cmd->result; 827 828 scsi_req(req)->resid_len = scsi_get_resid(cmd); 829 830 if (scsi_bidi_cmnd(cmd)) { 831 /* 832 * Bidi commands Must be complete as a whole, 833 * both sides at once. 834 */ 835 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid; 836 if (scsi_end_request(req, 0, blk_rq_bytes(req), 837 blk_rq_bytes(req->next_rq))) 838 BUG(); 839 return; 840 } 841 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) { 842 /* 843 * Flush commands do not transfers any data, and thus cannot use 844 * good_bytes != blk_rq_bytes(req) as the signal for an error. 845 * This sets the error explicitly for the problem case. 846 */ 847 error = __scsi_error_from_host_byte(cmd, result); 848 } 849 850 /* no bidi support for !blk_rq_is_passthrough yet */ 851 BUG_ON(blk_bidi_rq(req)); 852 853 /* 854 * Next deal with any sectors which we were able to correctly 855 * handle. 856 */ 857 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 858 "%u sectors total, %d bytes done.\n", 859 blk_rq_sectors(req), good_bytes)); 860 861 /* 862 * Recovered errors need reporting, but they're always treated as 863 * success, so fiddle the result code here. For passthrough requests 864 * we already took a copy of the original into rq->errors which 865 * is what gets returned to the user 866 */ 867 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 868 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 869 * print since caller wants ATA registers. Only occurs on 870 * SCSI ATA PASS_THROUGH commands when CK_COND=1 871 */ 872 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 873 ; 874 else if (!(req->rq_flags & RQF_QUIET)) 875 scsi_print_sense(cmd); 876 result = 0; 877 /* for passthrough error may be set */ 878 error = 0; 879 } 880 881 /* 882 * special case: failed zero length commands always need to 883 * drop down into the retry code. Otherwise, if we finished 884 * all bytes in the request we are done now. 885 */ 886 if (!(blk_rq_bytes(req) == 0 && error) && 887 !scsi_end_request(req, error, good_bytes, 0)) 888 return; 889 890 /* 891 * Kill remainder if no retrys. 892 */ 893 if (error && scsi_noretry_cmd(cmd)) { 894 if (scsi_end_request(req, error, blk_rq_bytes(req), 0)) 895 BUG(); 896 return; 897 } 898 899 /* 900 * If there had been no error, but we have leftover bytes in the 901 * requeues just queue the command up again. 902 */ 903 if (result == 0) 904 goto requeue; 905 906 error = __scsi_error_from_host_byte(cmd, result); 907 908 if (host_byte(result) == DID_RESET) { 909 /* Third party bus reset or reset for error recovery 910 * reasons. Just retry the command and see what 911 * happens. 912 */ 913 action = ACTION_RETRY; 914 } else if (sense_valid && !sense_deferred) { 915 switch (sshdr.sense_key) { 916 case UNIT_ATTENTION: 917 if (cmd->device->removable) { 918 /* Detected disc change. Set a bit 919 * and quietly refuse further access. 920 */ 921 cmd->device->changed = 1; 922 action = ACTION_FAIL; 923 } else { 924 /* Must have been a power glitch, or a 925 * bus reset. Could not have been a 926 * media change, so we just retry the 927 * command and see what happens. 928 */ 929 action = ACTION_RETRY; 930 } 931 break; 932 case ILLEGAL_REQUEST: 933 /* If we had an ILLEGAL REQUEST returned, then 934 * we may have performed an unsupported 935 * command. The only thing this should be 936 * would be a ten byte read where only a six 937 * byte read was supported. Also, on a system 938 * where READ CAPACITY failed, we may have 939 * read past the end of the disk. 940 */ 941 if ((cmd->device->use_10_for_rw && 942 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 943 (cmd->cmnd[0] == READ_10 || 944 cmd->cmnd[0] == WRITE_10)) { 945 /* This will issue a new 6-byte command. */ 946 cmd->device->use_10_for_rw = 0; 947 action = ACTION_REPREP; 948 } else if (sshdr.asc == 0x10) /* DIX */ { 949 action = ACTION_FAIL; 950 error = -EILSEQ; 951 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 952 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 953 action = ACTION_FAIL; 954 error = -EREMOTEIO; 955 } else 956 action = ACTION_FAIL; 957 break; 958 case ABORTED_COMMAND: 959 action = ACTION_FAIL; 960 if (sshdr.asc == 0x10) /* DIF */ 961 error = -EILSEQ; 962 break; 963 case NOT_READY: 964 /* If the device is in the process of becoming 965 * ready, or has a temporary blockage, retry. 966 */ 967 if (sshdr.asc == 0x04) { 968 switch (sshdr.ascq) { 969 case 0x01: /* becoming ready */ 970 case 0x04: /* format in progress */ 971 case 0x05: /* rebuild in progress */ 972 case 0x06: /* recalculation in progress */ 973 case 0x07: /* operation in progress */ 974 case 0x08: /* Long write in progress */ 975 case 0x09: /* self test in progress */ 976 case 0x14: /* space allocation in progress */ 977 action = ACTION_DELAYED_RETRY; 978 break; 979 default: 980 action = ACTION_FAIL; 981 break; 982 } 983 } else 984 action = ACTION_FAIL; 985 break; 986 case VOLUME_OVERFLOW: 987 /* See SSC3rXX or current. */ 988 action = ACTION_FAIL; 989 break; 990 default: 991 action = ACTION_FAIL; 992 break; 993 } 994 } else 995 action = ACTION_FAIL; 996 997 if (action != ACTION_FAIL && 998 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 999 action = ACTION_FAIL; 1000 1001 switch (action) { 1002 case ACTION_FAIL: 1003 /* Give up and fail the remainder of the request */ 1004 if (!(req->rq_flags & RQF_QUIET)) { 1005 static DEFINE_RATELIMIT_STATE(_rs, 1006 DEFAULT_RATELIMIT_INTERVAL, 1007 DEFAULT_RATELIMIT_BURST); 1008 1009 if (unlikely(scsi_logging_level)) 1010 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 1011 SCSI_LOG_MLCOMPLETE_BITS); 1012 1013 /* 1014 * if logging is enabled the failure will be printed 1015 * in scsi_log_completion(), so avoid duplicate messages 1016 */ 1017 if (!level && __ratelimit(&_rs)) { 1018 scsi_print_result(cmd, NULL, FAILED); 1019 if (driver_byte(result) & DRIVER_SENSE) 1020 scsi_print_sense(cmd); 1021 scsi_print_command(cmd); 1022 } 1023 } 1024 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0)) 1025 return; 1026 /*FALLTHRU*/ 1027 case ACTION_REPREP: 1028 requeue: 1029 /* Unprep the request and put it back at the head of the queue. 1030 * A new command will be prepared and issued. 1031 */ 1032 if (q->mq_ops) { 1033 cmd->request->rq_flags &= ~RQF_DONTPREP; 1034 scsi_mq_uninit_cmd(cmd); 1035 scsi_mq_requeue_cmd(cmd); 1036 } else { 1037 scsi_release_buffers(cmd); 1038 scsi_requeue_command(q, cmd); 1039 } 1040 break; 1041 case ACTION_RETRY: 1042 /* Retry the same command immediately */ 1043 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 1044 break; 1045 case ACTION_DELAYED_RETRY: 1046 /* Retry the same command after a delay */ 1047 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 1048 break; 1049 } 1050 } 1051 1052 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb) 1053 { 1054 int count; 1055 1056 /* 1057 * If sg table allocation fails, requeue request later. 1058 */ 1059 if (unlikely(sg_alloc_table_chained(&sdb->table, 1060 blk_rq_nr_phys_segments(req), sdb->table.sgl))) 1061 return BLKPREP_DEFER; 1062 1063 /* 1064 * Next, walk the list, and fill in the addresses and sizes of 1065 * each segment. 1066 */ 1067 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1068 BUG_ON(count > sdb->table.nents); 1069 sdb->table.nents = count; 1070 sdb->length = blk_rq_payload_bytes(req); 1071 return BLKPREP_OK; 1072 } 1073 1074 /* 1075 * Function: scsi_init_io() 1076 * 1077 * Purpose: SCSI I/O initialize function. 1078 * 1079 * Arguments: cmd - Command descriptor we wish to initialize 1080 * 1081 * Returns: 0 on success 1082 * BLKPREP_DEFER if the failure is retryable 1083 * BLKPREP_KILL if the failure is fatal 1084 */ 1085 int scsi_init_io(struct scsi_cmnd *cmd) 1086 { 1087 struct scsi_device *sdev = cmd->device; 1088 struct request *rq = cmd->request; 1089 bool is_mq = (rq->mq_ctx != NULL); 1090 int error; 1091 1092 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1093 return -EINVAL; 1094 1095 error = scsi_init_sgtable(rq, &cmd->sdb); 1096 if (error) 1097 goto err_exit; 1098 1099 if (blk_bidi_rq(rq)) { 1100 if (!rq->q->mq_ops) { 1101 struct scsi_data_buffer *bidi_sdb = 1102 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC); 1103 if (!bidi_sdb) { 1104 error = BLKPREP_DEFER; 1105 goto err_exit; 1106 } 1107 1108 rq->next_rq->special = bidi_sdb; 1109 } 1110 1111 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special); 1112 if (error) 1113 goto err_exit; 1114 } 1115 1116 if (blk_integrity_rq(rq)) { 1117 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1118 int ivecs, count; 1119 1120 if (prot_sdb == NULL) { 1121 /* 1122 * This can happen if someone (e.g. multipath) 1123 * queues a command to a device on an adapter 1124 * that does not support DIX. 1125 */ 1126 WARN_ON_ONCE(1); 1127 error = BLKPREP_KILL; 1128 goto err_exit; 1129 } 1130 1131 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1132 1133 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1134 prot_sdb->table.sgl)) { 1135 error = BLKPREP_DEFER; 1136 goto err_exit; 1137 } 1138 1139 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1140 prot_sdb->table.sgl); 1141 BUG_ON(unlikely(count > ivecs)); 1142 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1143 1144 cmd->prot_sdb = prot_sdb; 1145 cmd->prot_sdb->table.nents = count; 1146 } 1147 1148 return BLKPREP_OK; 1149 err_exit: 1150 if (is_mq) { 1151 scsi_mq_free_sgtables(cmd); 1152 } else { 1153 scsi_release_buffers(cmd); 1154 cmd->request->special = NULL; 1155 scsi_put_command(cmd); 1156 put_device(&sdev->sdev_gendev); 1157 } 1158 return error; 1159 } 1160 EXPORT_SYMBOL(scsi_init_io); 1161 1162 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1163 { 1164 void *buf = cmd->sense_buffer; 1165 void *prot = cmd->prot_sdb; 1166 unsigned long flags; 1167 1168 /* zero out the cmd, except for the embedded scsi_request */ 1169 memset((char *)cmd + sizeof(cmd->req), 0, 1170 sizeof(*cmd) - sizeof(cmd->req)); 1171 1172 cmd->device = dev; 1173 cmd->sense_buffer = buf; 1174 cmd->prot_sdb = prot; 1175 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1176 cmd->jiffies_at_alloc = jiffies; 1177 1178 spin_lock_irqsave(&dev->list_lock, flags); 1179 list_add_tail(&cmd->list, &dev->cmd_list); 1180 spin_unlock_irqrestore(&dev->list_lock, flags); 1181 } 1182 1183 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req) 1184 { 1185 struct scsi_cmnd *cmd = req->special; 1186 1187 /* 1188 * Passthrough requests may transfer data, in which case they must 1189 * a bio attached to them. Or they might contain a SCSI command 1190 * that does not transfer data, in which case they may optionally 1191 * submit a request without an attached bio. 1192 */ 1193 if (req->bio) { 1194 int ret = scsi_init_io(cmd); 1195 if (unlikely(ret)) 1196 return ret; 1197 } else { 1198 BUG_ON(blk_rq_bytes(req)); 1199 1200 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1201 } 1202 1203 cmd->cmd_len = scsi_req(req)->cmd_len; 1204 cmd->cmnd = scsi_req(req)->cmd; 1205 cmd->transfersize = blk_rq_bytes(req); 1206 cmd->allowed = req->retries; 1207 return BLKPREP_OK; 1208 } 1209 1210 /* 1211 * Setup a normal block command. These are simple request from filesystems 1212 * that still need to be translated to SCSI CDBs from the ULD. 1213 */ 1214 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1215 { 1216 struct scsi_cmnd *cmd = req->special; 1217 1218 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1219 int ret = sdev->handler->prep_fn(sdev, req); 1220 if (ret != BLKPREP_OK) 1221 return ret; 1222 } 1223 1224 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1225 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1226 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1227 } 1228 1229 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req) 1230 { 1231 struct scsi_cmnd *cmd = req->special; 1232 1233 if (!blk_rq_bytes(req)) 1234 cmd->sc_data_direction = DMA_NONE; 1235 else if (rq_data_dir(req) == WRITE) 1236 cmd->sc_data_direction = DMA_TO_DEVICE; 1237 else 1238 cmd->sc_data_direction = DMA_FROM_DEVICE; 1239 1240 if (blk_rq_is_scsi(req)) 1241 return scsi_setup_scsi_cmnd(sdev, req); 1242 else 1243 return scsi_setup_fs_cmnd(sdev, req); 1244 } 1245 1246 static int 1247 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1248 { 1249 int ret = BLKPREP_OK; 1250 1251 /* 1252 * If the device is not in running state we will reject some 1253 * or all commands. 1254 */ 1255 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1256 switch (sdev->sdev_state) { 1257 case SDEV_OFFLINE: 1258 case SDEV_TRANSPORT_OFFLINE: 1259 /* 1260 * If the device is offline we refuse to process any 1261 * commands. The device must be brought online 1262 * before trying any recovery commands. 1263 */ 1264 sdev_printk(KERN_ERR, sdev, 1265 "rejecting I/O to offline device\n"); 1266 ret = BLKPREP_KILL; 1267 break; 1268 case SDEV_DEL: 1269 /* 1270 * If the device is fully deleted, we refuse to 1271 * process any commands as well. 1272 */ 1273 sdev_printk(KERN_ERR, sdev, 1274 "rejecting I/O to dead device\n"); 1275 ret = BLKPREP_KILL; 1276 break; 1277 case SDEV_BLOCK: 1278 case SDEV_CREATED_BLOCK: 1279 ret = BLKPREP_DEFER; 1280 break; 1281 case SDEV_QUIESCE: 1282 /* 1283 * If the devices is blocked we defer normal commands. 1284 */ 1285 if (!(req->rq_flags & RQF_PREEMPT)) 1286 ret = BLKPREP_DEFER; 1287 break; 1288 default: 1289 /* 1290 * For any other not fully online state we only allow 1291 * special commands. In particular any user initiated 1292 * command is not allowed. 1293 */ 1294 if (!(req->rq_flags & RQF_PREEMPT)) 1295 ret = BLKPREP_KILL; 1296 break; 1297 } 1298 } 1299 return ret; 1300 } 1301 1302 static int 1303 scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1304 { 1305 struct scsi_device *sdev = q->queuedata; 1306 1307 switch (ret) { 1308 case BLKPREP_KILL: 1309 case BLKPREP_INVALID: 1310 req->errors = DID_NO_CONNECT << 16; 1311 /* release the command and kill it */ 1312 if (req->special) { 1313 struct scsi_cmnd *cmd = req->special; 1314 scsi_release_buffers(cmd); 1315 scsi_put_command(cmd); 1316 put_device(&sdev->sdev_gendev); 1317 req->special = NULL; 1318 } 1319 break; 1320 case BLKPREP_DEFER: 1321 /* 1322 * If we defer, the blk_peek_request() returns NULL, but the 1323 * queue must be restarted, so we schedule a callback to happen 1324 * shortly. 1325 */ 1326 if (atomic_read(&sdev->device_busy) == 0) 1327 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1328 break; 1329 default: 1330 req->rq_flags |= RQF_DONTPREP; 1331 } 1332 1333 return ret; 1334 } 1335 1336 static int scsi_prep_fn(struct request_queue *q, struct request *req) 1337 { 1338 struct scsi_device *sdev = q->queuedata; 1339 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1340 int ret; 1341 1342 ret = scsi_prep_state_check(sdev, req); 1343 if (ret != BLKPREP_OK) 1344 goto out; 1345 1346 if (!req->special) { 1347 /* Bail if we can't get a reference to the device */ 1348 if (unlikely(!get_device(&sdev->sdev_gendev))) { 1349 ret = BLKPREP_DEFER; 1350 goto out; 1351 } 1352 1353 scsi_init_command(sdev, cmd); 1354 req->special = cmd; 1355 } 1356 1357 cmd->tag = req->tag; 1358 cmd->request = req; 1359 cmd->prot_op = SCSI_PROT_NORMAL; 1360 1361 ret = scsi_setup_cmnd(sdev, req); 1362 out: 1363 return scsi_prep_return(q, req, ret); 1364 } 1365 1366 static void scsi_unprep_fn(struct request_queue *q, struct request *req) 1367 { 1368 scsi_uninit_cmd(req->special); 1369 } 1370 1371 /* 1372 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1373 * return 0. 1374 * 1375 * Called with the queue_lock held. 1376 */ 1377 static inline int scsi_dev_queue_ready(struct request_queue *q, 1378 struct scsi_device *sdev) 1379 { 1380 unsigned int busy; 1381 1382 busy = atomic_inc_return(&sdev->device_busy) - 1; 1383 if (atomic_read(&sdev->device_blocked)) { 1384 if (busy) 1385 goto out_dec; 1386 1387 /* 1388 * unblock after device_blocked iterates to zero 1389 */ 1390 if (atomic_dec_return(&sdev->device_blocked) > 0) { 1391 /* 1392 * For the MQ case we take care of this in the caller. 1393 */ 1394 if (!q->mq_ops) 1395 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1396 goto out_dec; 1397 } 1398 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1399 "unblocking device at zero depth\n")); 1400 } 1401 1402 if (busy >= sdev->queue_depth) 1403 goto out_dec; 1404 1405 return 1; 1406 out_dec: 1407 atomic_dec(&sdev->device_busy); 1408 return 0; 1409 } 1410 1411 /* 1412 * scsi_target_queue_ready: checks if there we can send commands to target 1413 * @sdev: scsi device on starget to check. 1414 */ 1415 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1416 struct scsi_device *sdev) 1417 { 1418 struct scsi_target *starget = scsi_target(sdev); 1419 unsigned int busy; 1420 1421 if (starget->single_lun) { 1422 spin_lock_irq(shost->host_lock); 1423 if (starget->starget_sdev_user && 1424 starget->starget_sdev_user != sdev) { 1425 spin_unlock_irq(shost->host_lock); 1426 return 0; 1427 } 1428 starget->starget_sdev_user = sdev; 1429 spin_unlock_irq(shost->host_lock); 1430 } 1431 1432 if (starget->can_queue <= 0) 1433 return 1; 1434 1435 busy = atomic_inc_return(&starget->target_busy) - 1; 1436 if (atomic_read(&starget->target_blocked) > 0) { 1437 if (busy) 1438 goto starved; 1439 1440 /* 1441 * unblock after target_blocked iterates to zero 1442 */ 1443 if (atomic_dec_return(&starget->target_blocked) > 0) 1444 goto out_dec; 1445 1446 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1447 "unblocking target at zero depth\n")); 1448 } 1449 1450 if (busy >= starget->can_queue) 1451 goto starved; 1452 1453 return 1; 1454 1455 starved: 1456 spin_lock_irq(shost->host_lock); 1457 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1458 spin_unlock_irq(shost->host_lock); 1459 out_dec: 1460 if (starget->can_queue > 0) 1461 atomic_dec(&starget->target_busy); 1462 return 0; 1463 } 1464 1465 /* 1466 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1467 * return 0. We must end up running the queue again whenever 0 is 1468 * returned, else IO can hang. 1469 */ 1470 static inline int scsi_host_queue_ready(struct request_queue *q, 1471 struct Scsi_Host *shost, 1472 struct scsi_device *sdev) 1473 { 1474 unsigned int busy; 1475 1476 if (scsi_host_in_recovery(shost)) 1477 return 0; 1478 1479 busy = atomic_inc_return(&shost->host_busy) - 1; 1480 if (atomic_read(&shost->host_blocked) > 0) { 1481 if (busy) 1482 goto starved; 1483 1484 /* 1485 * unblock after host_blocked iterates to zero 1486 */ 1487 if (atomic_dec_return(&shost->host_blocked) > 0) 1488 goto out_dec; 1489 1490 SCSI_LOG_MLQUEUE(3, 1491 shost_printk(KERN_INFO, shost, 1492 "unblocking host at zero depth\n")); 1493 } 1494 1495 if (shost->can_queue > 0 && busy >= shost->can_queue) 1496 goto starved; 1497 if (shost->host_self_blocked) 1498 goto starved; 1499 1500 /* We're OK to process the command, so we can't be starved */ 1501 if (!list_empty(&sdev->starved_entry)) { 1502 spin_lock_irq(shost->host_lock); 1503 if (!list_empty(&sdev->starved_entry)) 1504 list_del_init(&sdev->starved_entry); 1505 spin_unlock_irq(shost->host_lock); 1506 } 1507 1508 return 1; 1509 1510 starved: 1511 spin_lock_irq(shost->host_lock); 1512 if (list_empty(&sdev->starved_entry)) 1513 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1514 spin_unlock_irq(shost->host_lock); 1515 out_dec: 1516 atomic_dec(&shost->host_busy); 1517 return 0; 1518 } 1519 1520 /* 1521 * Busy state exporting function for request stacking drivers. 1522 * 1523 * For efficiency, no lock is taken to check the busy state of 1524 * shost/starget/sdev, since the returned value is not guaranteed and 1525 * may be changed after request stacking drivers call the function, 1526 * regardless of taking lock or not. 1527 * 1528 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1529 * needs to return 'not busy'. Otherwise, request stacking drivers 1530 * may hold requests forever. 1531 */ 1532 static int scsi_lld_busy(struct request_queue *q) 1533 { 1534 struct scsi_device *sdev = q->queuedata; 1535 struct Scsi_Host *shost; 1536 1537 if (blk_queue_dying(q)) 1538 return 0; 1539 1540 shost = sdev->host; 1541 1542 /* 1543 * Ignore host/starget busy state. 1544 * Since block layer does not have a concept of fairness across 1545 * multiple queues, congestion of host/starget needs to be handled 1546 * in SCSI layer. 1547 */ 1548 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1549 return 1; 1550 1551 return 0; 1552 } 1553 1554 /* 1555 * Kill a request for a dead device 1556 */ 1557 static void scsi_kill_request(struct request *req, struct request_queue *q) 1558 { 1559 struct scsi_cmnd *cmd = req->special; 1560 struct scsi_device *sdev; 1561 struct scsi_target *starget; 1562 struct Scsi_Host *shost; 1563 1564 blk_start_request(req); 1565 1566 scmd_printk(KERN_INFO, cmd, "killing request\n"); 1567 1568 sdev = cmd->device; 1569 starget = scsi_target(sdev); 1570 shost = sdev->host; 1571 scsi_init_cmd_errh(cmd); 1572 cmd->result = DID_NO_CONNECT << 16; 1573 atomic_inc(&cmd->device->iorequest_cnt); 1574 1575 /* 1576 * SCSI request completion path will do scsi_device_unbusy(), 1577 * bump busy counts. To bump the counters, we need to dance 1578 * with the locks as normal issue path does. 1579 */ 1580 atomic_inc(&sdev->device_busy); 1581 atomic_inc(&shost->host_busy); 1582 if (starget->can_queue > 0) 1583 atomic_inc(&starget->target_busy); 1584 1585 blk_complete_request(req); 1586 } 1587 1588 static void scsi_softirq_done(struct request *rq) 1589 { 1590 struct scsi_cmnd *cmd = rq->special; 1591 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1592 int disposition; 1593 1594 INIT_LIST_HEAD(&cmd->eh_entry); 1595 1596 atomic_inc(&cmd->device->iodone_cnt); 1597 if (cmd->result) 1598 atomic_inc(&cmd->device->ioerr_cnt); 1599 1600 disposition = scsi_decide_disposition(cmd); 1601 if (disposition != SUCCESS && 1602 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1603 sdev_printk(KERN_ERR, cmd->device, 1604 "timing out command, waited %lus\n", 1605 wait_for/HZ); 1606 disposition = SUCCESS; 1607 } 1608 1609 scsi_log_completion(cmd, disposition); 1610 1611 switch (disposition) { 1612 case SUCCESS: 1613 scsi_finish_command(cmd); 1614 break; 1615 case NEEDS_RETRY: 1616 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1617 break; 1618 case ADD_TO_MLQUEUE: 1619 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1620 break; 1621 default: 1622 if (!scsi_eh_scmd_add(cmd, 0)) 1623 scsi_finish_command(cmd); 1624 } 1625 } 1626 1627 /** 1628 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1629 * @cmd: command block we are dispatching. 1630 * 1631 * Return: nonzero return request was rejected and device's queue needs to be 1632 * plugged. 1633 */ 1634 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1635 { 1636 struct Scsi_Host *host = cmd->device->host; 1637 int rtn = 0; 1638 1639 atomic_inc(&cmd->device->iorequest_cnt); 1640 1641 /* check if the device is still usable */ 1642 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1643 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1644 * returns an immediate error upwards, and signals 1645 * that the device is no longer present */ 1646 cmd->result = DID_NO_CONNECT << 16; 1647 goto done; 1648 } 1649 1650 /* Check to see if the scsi lld made this device blocked. */ 1651 if (unlikely(scsi_device_blocked(cmd->device))) { 1652 /* 1653 * in blocked state, the command is just put back on 1654 * the device queue. The suspend state has already 1655 * blocked the queue so future requests should not 1656 * occur until the device transitions out of the 1657 * suspend state. 1658 */ 1659 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1660 "queuecommand : device blocked\n")); 1661 return SCSI_MLQUEUE_DEVICE_BUSY; 1662 } 1663 1664 /* Store the LUN value in cmnd, if needed. */ 1665 if (cmd->device->lun_in_cdb) 1666 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1667 (cmd->device->lun << 5 & 0xe0); 1668 1669 scsi_log_send(cmd); 1670 1671 /* 1672 * Before we queue this command, check if the command 1673 * length exceeds what the host adapter can handle. 1674 */ 1675 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1676 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1677 "queuecommand : command too long. " 1678 "cdb_size=%d host->max_cmd_len=%d\n", 1679 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1680 cmd->result = (DID_ABORT << 16); 1681 goto done; 1682 } 1683 1684 if (unlikely(host->shost_state == SHOST_DEL)) { 1685 cmd->result = (DID_NO_CONNECT << 16); 1686 goto done; 1687 1688 } 1689 1690 trace_scsi_dispatch_cmd_start(cmd); 1691 rtn = host->hostt->queuecommand(host, cmd); 1692 if (rtn) { 1693 trace_scsi_dispatch_cmd_error(cmd, rtn); 1694 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1695 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1696 rtn = SCSI_MLQUEUE_HOST_BUSY; 1697 1698 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1699 "queuecommand : request rejected\n")); 1700 } 1701 1702 return rtn; 1703 done: 1704 cmd->scsi_done(cmd); 1705 return 0; 1706 } 1707 1708 /** 1709 * scsi_done - Invoke completion on finished SCSI command. 1710 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives 1711 * ownership back to SCSI Core -- i.e. the LLDD has finished with it. 1712 * 1713 * Description: This function is the mid-level's (SCSI Core) interrupt routine, 1714 * which regains ownership of the SCSI command (de facto) from a LLDD, and 1715 * calls blk_complete_request() for further processing. 1716 * 1717 * This function is interrupt context safe. 1718 */ 1719 static void scsi_done(struct scsi_cmnd *cmd) 1720 { 1721 trace_scsi_dispatch_cmd_done(cmd); 1722 blk_complete_request(cmd->request); 1723 } 1724 1725 /* 1726 * Function: scsi_request_fn() 1727 * 1728 * Purpose: Main strategy routine for SCSI. 1729 * 1730 * Arguments: q - Pointer to actual queue. 1731 * 1732 * Returns: Nothing 1733 * 1734 * Lock status: IO request lock assumed to be held when called. 1735 */ 1736 static void scsi_request_fn(struct request_queue *q) 1737 __releases(q->queue_lock) 1738 __acquires(q->queue_lock) 1739 { 1740 struct scsi_device *sdev = q->queuedata; 1741 struct Scsi_Host *shost; 1742 struct scsi_cmnd *cmd; 1743 struct request *req; 1744 1745 /* 1746 * To start with, we keep looping until the queue is empty, or until 1747 * the host is no longer able to accept any more requests. 1748 */ 1749 shost = sdev->host; 1750 for (;;) { 1751 int rtn; 1752 /* 1753 * get next queueable request. We do this early to make sure 1754 * that the request is fully prepared even if we cannot 1755 * accept it. 1756 */ 1757 req = blk_peek_request(q); 1758 if (!req) 1759 break; 1760 1761 if (unlikely(!scsi_device_online(sdev))) { 1762 sdev_printk(KERN_ERR, sdev, 1763 "rejecting I/O to offline device\n"); 1764 scsi_kill_request(req, q); 1765 continue; 1766 } 1767 1768 if (!scsi_dev_queue_ready(q, sdev)) 1769 break; 1770 1771 /* 1772 * Remove the request from the request list. 1773 */ 1774 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1775 blk_start_request(req); 1776 1777 spin_unlock_irq(q->queue_lock); 1778 cmd = req->special; 1779 if (unlikely(cmd == NULL)) { 1780 printk(KERN_CRIT "impossible request in %s.\n" 1781 "please mail a stack trace to " 1782 "linux-scsi@vger.kernel.org\n", 1783 __func__); 1784 blk_dump_rq_flags(req, "foo"); 1785 BUG(); 1786 } 1787 1788 /* 1789 * We hit this when the driver is using a host wide 1790 * tag map. For device level tag maps the queue_depth check 1791 * in the device ready fn would prevent us from trying 1792 * to allocate a tag. Since the map is a shared host resource 1793 * we add the dev to the starved list so it eventually gets 1794 * a run when a tag is freed. 1795 */ 1796 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) { 1797 spin_lock_irq(shost->host_lock); 1798 if (list_empty(&sdev->starved_entry)) 1799 list_add_tail(&sdev->starved_entry, 1800 &shost->starved_list); 1801 spin_unlock_irq(shost->host_lock); 1802 goto not_ready; 1803 } 1804 1805 if (!scsi_target_queue_ready(shost, sdev)) 1806 goto not_ready; 1807 1808 if (!scsi_host_queue_ready(q, shost, sdev)) 1809 goto host_not_ready; 1810 1811 if (sdev->simple_tags) 1812 cmd->flags |= SCMD_TAGGED; 1813 else 1814 cmd->flags &= ~SCMD_TAGGED; 1815 1816 /* 1817 * Finally, initialize any error handling parameters, and set up 1818 * the timers for timeouts. 1819 */ 1820 scsi_init_cmd_errh(cmd); 1821 1822 /* 1823 * Dispatch the command to the low-level driver. 1824 */ 1825 cmd->scsi_done = scsi_done; 1826 rtn = scsi_dispatch_cmd(cmd); 1827 if (rtn) { 1828 scsi_queue_insert(cmd, rtn); 1829 spin_lock_irq(q->queue_lock); 1830 goto out_delay; 1831 } 1832 spin_lock_irq(q->queue_lock); 1833 } 1834 1835 return; 1836 1837 host_not_ready: 1838 if (scsi_target(sdev)->can_queue > 0) 1839 atomic_dec(&scsi_target(sdev)->target_busy); 1840 not_ready: 1841 /* 1842 * lock q, handle tag, requeue req, and decrement device_busy. We 1843 * must return with queue_lock held. 1844 * 1845 * Decrementing device_busy without checking it is OK, as all such 1846 * cases (host limits or settings) should run the queue at some 1847 * later time. 1848 */ 1849 spin_lock_irq(q->queue_lock); 1850 blk_requeue_request(q, req); 1851 atomic_dec(&sdev->device_busy); 1852 out_delay: 1853 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev)) 1854 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1855 } 1856 1857 static inline int prep_to_mq(int ret) 1858 { 1859 switch (ret) { 1860 case BLKPREP_OK: 1861 return BLK_MQ_RQ_QUEUE_OK; 1862 case BLKPREP_DEFER: 1863 return BLK_MQ_RQ_QUEUE_BUSY; 1864 default: 1865 return BLK_MQ_RQ_QUEUE_ERROR; 1866 } 1867 } 1868 1869 static int scsi_mq_prep_fn(struct request *req) 1870 { 1871 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1872 struct scsi_device *sdev = req->q->queuedata; 1873 struct Scsi_Host *shost = sdev->host; 1874 unsigned char *sense_buf = cmd->sense_buffer; 1875 struct scatterlist *sg; 1876 1877 /* zero out the cmd, except for the embedded scsi_request */ 1878 memset((char *)cmd + sizeof(cmd->req), 0, 1879 sizeof(*cmd) - sizeof(cmd->req)); 1880 1881 req->special = cmd; 1882 1883 cmd->request = req; 1884 cmd->device = sdev; 1885 cmd->sense_buffer = sense_buf; 1886 1887 cmd->tag = req->tag; 1888 1889 cmd->prot_op = SCSI_PROT_NORMAL; 1890 1891 INIT_LIST_HEAD(&cmd->list); 1892 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1893 cmd->jiffies_at_alloc = jiffies; 1894 1895 if (shost->use_cmd_list) { 1896 spin_lock_irq(&sdev->list_lock); 1897 list_add_tail(&cmd->list, &sdev->cmd_list); 1898 spin_unlock_irq(&sdev->list_lock); 1899 } 1900 1901 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1902 cmd->sdb.table.sgl = sg; 1903 1904 if (scsi_host_get_prot(shost)) { 1905 cmd->prot_sdb = (void *)sg + 1906 min_t(unsigned int, 1907 shost->sg_tablesize, SG_CHUNK_SIZE) * 1908 sizeof(struct scatterlist); 1909 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1910 1911 cmd->prot_sdb->table.sgl = 1912 (struct scatterlist *)(cmd->prot_sdb + 1); 1913 } 1914 1915 if (blk_bidi_rq(req)) { 1916 struct request *next_rq = req->next_rq; 1917 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq); 1918 1919 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer)); 1920 bidi_sdb->table.sgl = 1921 (struct scatterlist *)(bidi_sdb + 1); 1922 1923 next_rq->special = bidi_sdb; 1924 } 1925 1926 blk_mq_start_request(req); 1927 1928 return scsi_setup_cmnd(sdev, req); 1929 } 1930 1931 static void scsi_mq_done(struct scsi_cmnd *cmd) 1932 { 1933 trace_scsi_dispatch_cmd_done(cmd); 1934 blk_mq_complete_request(cmd->request, cmd->request->errors); 1935 } 1936 1937 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1938 const struct blk_mq_queue_data *bd) 1939 { 1940 struct request *req = bd->rq; 1941 struct request_queue *q = req->q; 1942 struct scsi_device *sdev = q->queuedata; 1943 struct Scsi_Host *shost = sdev->host; 1944 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1945 int ret; 1946 int reason; 1947 1948 ret = prep_to_mq(scsi_prep_state_check(sdev, req)); 1949 if (ret != BLK_MQ_RQ_QUEUE_OK) 1950 goto out; 1951 1952 ret = BLK_MQ_RQ_QUEUE_BUSY; 1953 if (!get_device(&sdev->sdev_gendev)) 1954 goto out; 1955 1956 if (!scsi_dev_queue_ready(q, sdev)) 1957 goto out_put_device; 1958 if (!scsi_target_queue_ready(shost, sdev)) 1959 goto out_dec_device_busy; 1960 if (!scsi_host_queue_ready(q, shost, sdev)) 1961 goto out_dec_target_busy; 1962 1963 if (!(req->rq_flags & RQF_DONTPREP)) { 1964 ret = prep_to_mq(scsi_mq_prep_fn(req)); 1965 if (ret != BLK_MQ_RQ_QUEUE_OK) 1966 goto out_dec_host_busy; 1967 req->rq_flags |= RQF_DONTPREP; 1968 } else { 1969 blk_mq_start_request(req); 1970 } 1971 1972 if (sdev->simple_tags) 1973 cmd->flags |= SCMD_TAGGED; 1974 else 1975 cmd->flags &= ~SCMD_TAGGED; 1976 1977 scsi_init_cmd_errh(cmd); 1978 cmd->scsi_done = scsi_mq_done; 1979 1980 reason = scsi_dispatch_cmd(cmd); 1981 if (reason) { 1982 scsi_set_blocked(cmd, reason); 1983 ret = BLK_MQ_RQ_QUEUE_BUSY; 1984 goto out_dec_host_busy; 1985 } 1986 1987 return BLK_MQ_RQ_QUEUE_OK; 1988 1989 out_dec_host_busy: 1990 atomic_dec(&shost->host_busy); 1991 out_dec_target_busy: 1992 if (scsi_target(sdev)->can_queue > 0) 1993 atomic_dec(&scsi_target(sdev)->target_busy); 1994 out_dec_device_busy: 1995 atomic_dec(&sdev->device_busy); 1996 out_put_device: 1997 put_device(&sdev->sdev_gendev); 1998 out: 1999 switch (ret) { 2000 case BLK_MQ_RQ_QUEUE_BUSY: 2001 if (atomic_read(&sdev->device_busy) == 0 && 2002 !scsi_device_blocked(sdev)) 2003 blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY); 2004 break; 2005 case BLK_MQ_RQ_QUEUE_ERROR: 2006 /* 2007 * Make sure to release all allocated ressources when 2008 * we hit an error, as we will never see this command 2009 * again. 2010 */ 2011 if (req->rq_flags & RQF_DONTPREP) 2012 scsi_mq_uninit_cmd(cmd); 2013 break; 2014 default: 2015 break; 2016 } 2017 return ret; 2018 } 2019 2020 static enum blk_eh_timer_return scsi_timeout(struct request *req, 2021 bool reserved) 2022 { 2023 if (reserved) 2024 return BLK_EH_RESET_TIMER; 2025 return scsi_times_out(req); 2026 } 2027 2028 static int scsi_init_request(void *data, struct request *rq, 2029 unsigned int hctx_idx, unsigned int request_idx, 2030 unsigned int numa_node) 2031 { 2032 struct Scsi_Host *shost = data; 2033 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2034 2035 cmd->sense_buffer = 2036 scsi_alloc_sense_buffer(shost, GFP_KERNEL, numa_node); 2037 if (!cmd->sense_buffer) 2038 return -ENOMEM; 2039 cmd->req.sense = cmd->sense_buffer; 2040 return 0; 2041 } 2042 2043 static void scsi_exit_request(void *data, struct request *rq, 2044 unsigned int hctx_idx, unsigned int request_idx) 2045 { 2046 struct Scsi_Host *shost = data; 2047 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2048 2049 scsi_free_sense_buffer(shost, cmd->sense_buffer); 2050 } 2051 2052 static int scsi_map_queues(struct blk_mq_tag_set *set) 2053 { 2054 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 2055 2056 if (shost->hostt->map_queues) 2057 return shost->hostt->map_queues(shost); 2058 return blk_mq_map_queues(set); 2059 } 2060 2061 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 2062 { 2063 struct device *host_dev; 2064 u64 bounce_limit = 0xffffffff; 2065 2066 if (shost->unchecked_isa_dma) 2067 return BLK_BOUNCE_ISA; 2068 /* 2069 * Platforms with virtual-DMA translation 2070 * hardware have no practical limit. 2071 */ 2072 if (!PCI_DMA_BUS_IS_PHYS) 2073 return BLK_BOUNCE_ANY; 2074 2075 host_dev = scsi_get_device(shost); 2076 if (host_dev && host_dev->dma_mask) 2077 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT; 2078 2079 return bounce_limit; 2080 } 2081 2082 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 2083 { 2084 struct device *dev = shost->dma_dev; 2085 2086 /* 2087 * this limit is imposed by hardware restrictions 2088 */ 2089 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 2090 SG_MAX_SEGMENTS)); 2091 2092 if (scsi_host_prot_dma(shost)) { 2093 shost->sg_prot_tablesize = 2094 min_not_zero(shost->sg_prot_tablesize, 2095 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 2096 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 2097 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 2098 } 2099 2100 blk_queue_max_hw_sectors(q, shost->max_sectors); 2101 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 2102 blk_queue_segment_boundary(q, shost->dma_boundary); 2103 dma_set_seg_boundary(dev, shost->dma_boundary); 2104 2105 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 2106 2107 if (!shost->use_clustering) 2108 q->limits.cluster = 0; 2109 2110 /* 2111 * set a reasonable default alignment on word boundaries: the 2112 * host and device may alter it using 2113 * blk_queue_update_dma_alignment() later. 2114 */ 2115 blk_queue_dma_alignment(q, 0x03); 2116 } 2117 EXPORT_SYMBOL_GPL(__scsi_init_queue); 2118 2119 static int scsi_init_rq(struct request_queue *q, struct request *rq, gfp_t gfp) 2120 { 2121 struct Scsi_Host *shost = q->rq_alloc_data; 2122 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2123 2124 memset(cmd, 0, sizeof(*cmd)); 2125 2126 cmd->sense_buffer = scsi_alloc_sense_buffer(shost, gfp, NUMA_NO_NODE); 2127 if (!cmd->sense_buffer) 2128 goto fail; 2129 cmd->req.sense = cmd->sense_buffer; 2130 2131 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) { 2132 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp); 2133 if (!cmd->prot_sdb) 2134 goto fail_free_sense; 2135 } 2136 2137 return 0; 2138 2139 fail_free_sense: 2140 scsi_free_sense_buffer(shost, cmd->sense_buffer); 2141 fail: 2142 return -ENOMEM; 2143 } 2144 2145 static void scsi_exit_rq(struct request_queue *q, struct request *rq) 2146 { 2147 struct Scsi_Host *shost = q->rq_alloc_data; 2148 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2149 2150 if (cmd->prot_sdb) 2151 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb); 2152 scsi_free_sense_buffer(shost, cmd->sense_buffer); 2153 } 2154 2155 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 2156 { 2157 struct Scsi_Host *shost = sdev->host; 2158 struct request_queue *q; 2159 2160 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE); 2161 if (!q) 2162 return NULL; 2163 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 2164 q->rq_alloc_data = shost; 2165 q->request_fn = scsi_request_fn; 2166 q->init_rq_fn = scsi_init_rq; 2167 q->exit_rq_fn = scsi_exit_rq; 2168 2169 if (blk_init_allocated_queue(q) < 0) { 2170 blk_cleanup_queue(q); 2171 return NULL; 2172 } 2173 2174 __scsi_init_queue(shost, q); 2175 blk_queue_prep_rq(q, scsi_prep_fn); 2176 blk_queue_unprep_rq(q, scsi_unprep_fn); 2177 blk_queue_softirq_done(q, scsi_softirq_done); 2178 blk_queue_rq_timed_out(q, scsi_times_out); 2179 blk_queue_lld_busy(q, scsi_lld_busy); 2180 return q; 2181 } 2182 2183 static struct blk_mq_ops scsi_mq_ops = { 2184 .queue_rq = scsi_queue_rq, 2185 .complete = scsi_softirq_done, 2186 .timeout = scsi_timeout, 2187 .init_request = scsi_init_request, 2188 .exit_request = scsi_exit_request, 2189 .map_queues = scsi_map_queues, 2190 }; 2191 2192 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 2193 { 2194 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 2195 if (IS_ERR(sdev->request_queue)) 2196 return NULL; 2197 2198 sdev->request_queue->queuedata = sdev; 2199 __scsi_init_queue(sdev->host, sdev->request_queue); 2200 return sdev->request_queue; 2201 } 2202 2203 int scsi_mq_setup_tags(struct Scsi_Host *shost) 2204 { 2205 unsigned int cmd_size, sgl_size, tbl_size; 2206 2207 tbl_size = shost->sg_tablesize; 2208 if (tbl_size > SG_CHUNK_SIZE) 2209 tbl_size = SG_CHUNK_SIZE; 2210 sgl_size = tbl_size * sizeof(struct scatterlist); 2211 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 2212 if (scsi_host_get_prot(shost)) 2213 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size; 2214 2215 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 2216 shost->tag_set.ops = &scsi_mq_ops; 2217 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 2218 shost->tag_set.queue_depth = shost->can_queue; 2219 shost->tag_set.cmd_size = cmd_size; 2220 shost->tag_set.numa_node = NUMA_NO_NODE; 2221 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2222 shost->tag_set.flags |= 2223 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 2224 shost->tag_set.driver_data = shost; 2225 2226 return blk_mq_alloc_tag_set(&shost->tag_set); 2227 } 2228 2229 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 2230 { 2231 blk_mq_free_tag_set(&shost->tag_set); 2232 } 2233 2234 /* 2235 * Function: scsi_block_requests() 2236 * 2237 * Purpose: Utility function used by low-level drivers to prevent further 2238 * commands from being queued to the device. 2239 * 2240 * Arguments: shost - Host in question 2241 * 2242 * Returns: Nothing 2243 * 2244 * Lock status: No locks are assumed held. 2245 * 2246 * Notes: There is no timer nor any other means by which the requests 2247 * get unblocked other than the low-level driver calling 2248 * scsi_unblock_requests(). 2249 */ 2250 void scsi_block_requests(struct Scsi_Host *shost) 2251 { 2252 shost->host_self_blocked = 1; 2253 } 2254 EXPORT_SYMBOL(scsi_block_requests); 2255 2256 /* 2257 * Function: scsi_unblock_requests() 2258 * 2259 * Purpose: Utility function used by low-level drivers to allow further 2260 * commands from being queued to the device. 2261 * 2262 * Arguments: shost - Host in question 2263 * 2264 * Returns: Nothing 2265 * 2266 * Lock status: No locks are assumed held. 2267 * 2268 * Notes: There is no timer nor any other means by which the requests 2269 * get unblocked other than the low-level driver calling 2270 * scsi_unblock_requests(). 2271 * 2272 * This is done as an API function so that changes to the 2273 * internals of the scsi mid-layer won't require wholesale 2274 * changes to drivers that use this feature. 2275 */ 2276 void scsi_unblock_requests(struct Scsi_Host *shost) 2277 { 2278 shost->host_self_blocked = 0; 2279 scsi_run_host_queues(shost); 2280 } 2281 EXPORT_SYMBOL(scsi_unblock_requests); 2282 2283 int __init scsi_init_queue(void) 2284 { 2285 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 2286 sizeof(struct scsi_data_buffer), 2287 0, 0, NULL); 2288 if (!scsi_sdb_cache) { 2289 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 2290 return -ENOMEM; 2291 } 2292 2293 return 0; 2294 } 2295 2296 void scsi_exit_queue(void) 2297 { 2298 kmem_cache_destroy(scsi_sense_cache); 2299 kmem_cache_destroy(scsi_sense_isadma_cache); 2300 kmem_cache_destroy(scsi_sdb_cache); 2301 } 2302 2303 /** 2304 * scsi_mode_select - issue a mode select 2305 * @sdev: SCSI device to be queried 2306 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2307 * @sp: Save page bit (0 == don't save, 1 == save) 2308 * @modepage: mode page being requested 2309 * @buffer: request buffer (may not be smaller than eight bytes) 2310 * @len: length of request buffer. 2311 * @timeout: command timeout 2312 * @retries: number of retries before failing 2313 * @data: returns a structure abstracting the mode header data 2314 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2315 * must be SCSI_SENSE_BUFFERSIZE big. 2316 * 2317 * Returns zero if successful; negative error number or scsi 2318 * status on error 2319 * 2320 */ 2321 int 2322 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2323 unsigned char *buffer, int len, int timeout, int retries, 2324 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2325 { 2326 unsigned char cmd[10]; 2327 unsigned char *real_buffer; 2328 int ret; 2329 2330 memset(cmd, 0, sizeof(cmd)); 2331 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2332 2333 if (sdev->use_10_for_ms) { 2334 if (len > 65535) 2335 return -EINVAL; 2336 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2337 if (!real_buffer) 2338 return -ENOMEM; 2339 memcpy(real_buffer + 8, buffer, len); 2340 len += 8; 2341 real_buffer[0] = 0; 2342 real_buffer[1] = 0; 2343 real_buffer[2] = data->medium_type; 2344 real_buffer[3] = data->device_specific; 2345 real_buffer[4] = data->longlba ? 0x01 : 0; 2346 real_buffer[5] = 0; 2347 real_buffer[6] = data->block_descriptor_length >> 8; 2348 real_buffer[7] = data->block_descriptor_length; 2349 2350 cmd[0] = MODE_SELECT_10; 2351 cmd[7] = len >> 8; 2352 cmd[8] = len; 2353 } else { 2354 if (len > 255 || data->block_descriptor_length > 255 || 2355 data->longlba) 2356 return -EINVAL; 2357 2358 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2359 if (!real_buffer) 2360 return -ENOMEM; 2361 memcpy(real_buffer + 4, buffer, len); 2362 len += 4; 2363 real_buffer[0] = 0; 2364 real_buffer[1] = data->medium_type; 2365 real_buffer[2] = data->device_specific; 2366 real_buffer[3] = data->block_descriptor_length; 2367 2368 2369 cmd[0] = MODE_SELECT; 2370 cmd[4] = len; 2371 } 2372 2373 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2374 sshdr, timeout, retries, NULL); 2375 kfree(real_buffer); 2376 return ret; 2377 } 2378 EXPORT_SYMBOL_GPL(scsi_mode_select); 2379 2380 /** 2381 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2382 * @sdev: SCSI device to be queried 2383 * @dbd: set if mode sense will allow block descriptors to be returned 2384 * @modepage: mode page being requested 2385 * @buffer: request buffer (may not be smaller than eight bytes) 2386 * @len: length of request buffer. 2387 * @timeout: command timeout 2388 * @retries: number of retries before failing 2389 * @data: returns a structure abstracting the mode header data 2390 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2391 * must be SCSI_SENSE_BUFFERSIZE big. 2392 * 2393 * Returns zero if unsuccessful, or the header offset (either 4 2394 * or 8 depending on whether a six or ten byte command was 2395 * issued) if successful. 2396 */ 2397 int 2398 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2399 unsigned char *buffer, int len, int timeout, int retries, 2400 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2401 { 2402 unsigned char cmd[12]; 2403 int use_10_for_ms; 2404 int header_length; 2405 int result, retry_count = retries; 2406 struct scsi_sense_hdr my_sshdr; 2407 2408 memset(data, 0, sizeof(*data)); 2409 memset(&cmd[0], 0, 12); 2410 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2411 cmd[2] = modepage; 2412 2413 /* caller might not be interested in sense, but we need it */ 2414 if (!sshdr) 2415 sshdr = &my_sshdr; 2416 2417 retry: 2418 use_10_for_ms = sdev->use_10_for_ms; 2419 2420 if (use_10_for_ms) { 2421 if (len < 8) 2422 len = 8; 2423 2424 cmd[0] = MODE_SENSE_10; 2425 cmd[8] = len; 2426 header_length = 8; 2427 } else { 2428 if (len < 4) 2429 len = 4; 2430 2431 cmd[0] = MODE_SENSE; 2432 cmd[4] = len; 2433 header_length = 4; 2434 } 2435 2436 memset(buffer, 0, len); 2437 2438 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2439 sshdr, timeout, retries, NULL); 2440 2441 /* This code looks awful: what it's doing is making sure an 2442 * ILLEGAL REQUEST sense return identifies the actual command 2443 * byte as the problem. MODE_SENSE commands can return 2444 * ILLEGAL REQUEST if the code page isn't supported */ 2445 2446 if (use_10_for_ms && !scsi_status_is_good(result) && 2447 (driver_byte(result) & DRIVER_SENSE)) { 2448 if (scsi_sense_valid(sshdr)) { 2449 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2450 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2451 /* 2452 * Invalid command operation code 2453 */ 2454 sdev->use_10_for_ms = 0; 2455 goto retry; 2456 } 2457 } 2458 } 2459 2460 if(scsi_status_is_good(result)) { 2461 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2462 (modepage == 6 || modepage == 8))) { 2463 /* Initio breakage? */ 2464 header_length = 0; 2465 data->length = 13; 2466 data->medium_type = 0; 2467 data->device_specific = 0; 2468 data->longlba = 0; 2469 data->block_descriptor_length = 0; 2470 } else if(use_10_for_ms) { 2471 data->length = buffer[0]*256 + buffer[1] + 2; 2472 data->medium_type = buffer[2]; 2473 data->device_specific = buffer[3]; 2474 data->longlba = buffer[4] & 0x01; 2475 data->block_descriptor_length = buffer[6]*256 2476 + buffer[7]; 2477 } else { 2478 data->length = buffer[0] + 1; 2479 data->medium_type = buffer[1]; 2480 data->device_specific = buffer[2]; 2481 data->block_descriptor_length = buffer[3]; 2482 } 2483 data->header_length = header_length; 2484 } else if ((status_byte(result) == CHECK_CONDITION) && 2485 scsi_sense_valid(sshdr) && 2486 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2487 retry_count--; 2488 goto retry; 2489 } 2490 2491 return result; 2492 } 2493 EXPORT_SYMBOL(scsi_mode_sense); 2494 2495 /** 2496 * scsi_test_unit_ready - test if unit is ready 2497 * @sdev: scsi device to change the state of. 2498 * @timeout: command timeout 2499 * @retries: number of retries before failing 2500 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 2501 * returning sense. Make sure that this is cleared before passing 2502 * in. 2503 * 2504 * Returns zero if unsuccessful or an error if TUR failed. For 2505 * removable media, UNIT_ATTENTION sets ->changed flag. 2506 **/ 2507 int 2508 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2509 struct scsi_sense_hdr *sshdr_external) 2510 { 2511 char cmd[] = { 2512 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2513 }; 2514 struct scsi_sense_hdr *sshdr; 2515 int result; 2516 2517 if (!sshdr_external) 2518 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 2519 else 2520 sshdr = sshdr_external; 2521 2522 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2523 do { 2524 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2525 timeout, retries, NULL); 2526 if (sdev->removable && scsi_sense_valid(sshdr) && 2527 sshdr->sense_key == UNIT_ATTENTION) 2528 sdev->changed = 1; 2529 } while (scsi_sense_valid(sshdr) && 2530 sshdr->sense_key == UNIT_ATTENTION && --retries); 2531 2532 if (!sshdr_external) 2533 kfree(sshdr); 2534 return result; 2535 } 2536 EXPORT_SYMBOL(scsi_test_unit_ready); 2537 2538 /** 2539 * scsi_device_set_state - Take the given device through the device state model. 2540 * @sdev: scsi device to change the state of. 2541 * @state: state to change to. 2542 * 2543 * Returns zero if unsuccessful or an error if the requested 2544 * transition is illegal. 2545 */ 2546 int 2547 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2548 { 2549 enum scsi_device_state oldstate = sdev->sdev_state; 2550 2551 if (state == oldstate) 2552 return 0; 2553 2554 switch (state) { 2555 case SDEV_CREATED: 2556 switch (oldstate) { 2557 case SDEV_CREATED_BLOCK: 2558 break; 2559 default: 2560 goto illegal; 2561 } 2562 break; 2563 2564 case SDEV_RUNNING: 2565 switch (oldstate) { 2566 case SDEV_CREATED: 2567 case SDEV_OFFLINE: 2568 case SDEV_TRANSPORT_OFFLINE: 2569 case SDEV_QUIESCE: 2570 case SDEV_BLOCK: 2571 break; 2572 default: 2573 goto illegal; 2574 } 2575 break; 2576 2577 case SDEV_QUIESCE: 2578 switch (oldstate) { 2579 case SDEV_RUNNING: 2580 case SDEV_OFFLINE: 2581 case SDEV_TRANSPORT_OFFLINE: 2582 break; 2583 default: 2584 goto illegal; 2585 } 2586 break; 2587 2588 case SDEV_OFFLINE: 2589 case SDEV_TRANSPORT_OFFLINE: 2590 switch (oldstate) { 2591 case SDEV_CREATED: 2592 case SDEV_RUNNING: 2593 case SDEV_QUIESCE: 2594 case SDEV_BLOCK: 2595 break; 2596 default: 2597 goto illegal; 2598 } 2599 break; 2600 2601 case SDEV_BLOCK: 2602 switch (oldstate) { 2603 case SDEV_RUNNING: 2604 case SDEV_CREATED_BLOCK: 2605 break; 2606 default: 2607 goto illegal; 2608 } 2609 break; 2610 2611 case SDEV_CREATED_BLOCK: 2612 switch (oldstate) { 2613 case SDEV_CREATED: 2614 break; 2615 default: 2616 goto illegal; 2617 } 2618 break; 2619 2620 case SDEV_CANCEL: 2621 switch (oldstate) { 2622 case SDEV_CREATED: 2623 case SDEV_RUNNING: 2624 case SDEV_QUIESCE: 2625 case SDEV_OFFLINE: 2626 case SDEV_TRANSPORT_OFFLINE: 2627 case SDEV_BLOCK: 2628 break; 2629 default: 2630 goto illegal; 2631 } 2632 break; 2633 2634 case SDEV_DEL: 2635 switch (oldstate) { 2636 case SDEV_CREATED: 2637 case SDEV_RUNNING: 2638 case SDEV_OFFLINE: 2639 case SDEV_TRANSPORT_OFFLINE: 2640 case SDEV_CANCEL: 2641 case SDEV_CREATED_BLOCK: 2642 break; 2643 default: 2644 goto illegal; 2645 } 2646 break; 2647 2648 } 2649 sdev->sdev_state = state; 2650 return 0; 2651 2652 illegal: 2653 SCSI_LOG_ERROR_RECOVERY(1, 2654 sdev_printk(KERN_ERR, sdev, 2655 "Illegal state transition %s->%s", 2656 scsi_device_state_name(oldstate), 2657 scsi_device_state_name(state)) 2658 ); 2659 return -EINVAL; 2660 } 2661 EXPORT_SYMBOL(scsi_device_set_state); 2662 2663 /** 2664 * sdev_evt_emit - emit a single SCSI device uevent 2665 * @sdev: associated SCSI device 2666 * @evt: event to emit 2667 * 2668 * Send a single uevent (scsi_event) to the associated scsi_device. 2669 */ 2670 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2671 { 2672 int idx = 0; 2673 char *envp[3]; 2674 2675 switch (evt->evt_type) { 2676 case SDEV_EVT_MEDIA_CHANGE: 2677 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2678 break; 2679 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2680 scsi_rescan_device(&sdev->sdev_gendev); 2681 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2682 break; 2683 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2684 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2685 break; 2686 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2687 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2688 break; 2689 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2690 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2691 break; 2692 case SDEV_EVT_LUN_CHANGE_REPORTED: 2693 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2694 break; 2695 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2696 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2697 break; 2698 default: 2699 /* do nothing */ 2700 break; 2701 } 2702 2703 envp[idx++] = NULL; 2704 2705 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2706 } 2707 2708 /** 2709 * sdev_evt_thread - send a uevent for each scsi event 2710 * @work: work struct for scsi_device 2711 * 2712 * Dispatch queued events to their associated scsi_device kobjects 2713 * as uevents. 2714 */ 2715 void scsi_evt_thread(struct work_struct *work) 2716 { 2717 struct scsi_device *sdev; 2718 enum scsi_device_event evt_type; 2719 LIST_HEAD(event_list); 2720 2721 sdev = container_of(work, struct scsi_device, event_work); 2722 2723 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2724 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2725 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2726 2727 while (1) { 2728 struct scsi_event *evt; 2729 struct list_head *this, *tmp; 2730 unsigned long flags; 2731 2732 spin_lock_irqsave(&sdev->list_lock, flags); 2733 list_splice_init(&sdev->event_list, &event_list); 2734 spin_unlock_irqrestore(&sdev->list_lock, flags); 2735 2736 if (list_empty(&event_list)) 2737 break; 2738 2739 list_for_each_safe(this, tmp, &event_list) { 2740 evt = list_entry(this, struct scsi_event, node); 2741 list_del(&evt->node); 2742 scsi_evt_emit(sdev, evt); 2743 kfree(evt); 2744 } 2745 } 2746 } 2747 2748 /** 2749 * sdev_evt_send - send asserted event to uevent thread 2750 * @sdev: scsi_device event occurred on 2751 * @evt: event to send 2752 * 2753 * Assert scsi device event asynchronously. 2754 */ 2755 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2756 { 2757 unsigned long flags; 2758 2759 #if 0 2760 /* FIXME: currently this check eliminates all media change events 2761 * for polled devices. Need to update to discriminate between AN 2762 * and polled events */ 2763 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2764 kfree(evt); 2765 return; 2766 } 2767 #endif 2768 2769 spin_lock_irqsave(&sdev->list_lock, flags); 2770 list_add_tail(&evt->node, &sdev->event_list); 2771 schedule_work(&sdev->event_work); 2772 spin_unlock_irqrestore(&sdev->list_lock, flags); 2773 } 2774 EXPORT_SYMBOL_GPL(sdev_evt_send); 2775 2776 /** 2777 * sdev_evt_alloc - allocate a new scsi event 2778 * @evt_type: type of event to allocate 2779 * @gfpflags: GFP flags for allocation 2780 * 2781 * Allocates and returns a new scsi_event. 2782 */ 2783 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2784 gfp_t gfpflags) 2785 { 2786 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2787 if (!evt) 2788 return NULL; 2789 2790 evt->evt_type = evt_type; 2791 INIT_LIST_HEAD(&evt->node); 2792 2793 /* evt_type-specific initialization, if any */ 2794 switch (evt_type) { 2795 case SDEV_EVT_MEDIA_CHANGE: 2796 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2797 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2798 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2799 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2800 case SDEV_EVT_LUN_CHANGE_REPORTED: 2801 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2802 default: 2803 /* do nothing */ 2804 break; 2805 } 2806 2807 return evt; 2808 } 2809 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2810 2811 /** 2812 * sdev_evt_send_simple - send asserted event to uevent thread 2813 * @sdev: scsi_device event occurred on 2814 * @evt_type: type of event to send 2815 * @gfpflags: GFP flags for allocation 2816 * 2817 * Assert scsi device event asynchronously, given an event type. 2818 */ 2819 void sdev_evt_send_simple(struct scsi_device *sdev, 2820 enum scsi_device_event evt_type, gfp_t gfpflags) 2821 { 2822 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2823 if (!evt) { 2824 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2825 evt_type); 2826 return; 2827 } 2828 2829 sdev_evt_send(sdev, evt); 2830 } 2831 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2832 2833 /** 2834 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn() 2835 * @sdev: SCSI device to count the number of scsi_request_fn() callers for. 2836 */ 2837 static int scsi_request_fn_active(struct scsi_device *sdev) 2838 { 2839 struct request_queue *q = sdev->request_queue; 2840 int request_fn_active; 2841 2842 WARN_ON_ONCE(sdev->host->use_blk_mq); 2843 2844 spin_lock_irq(q->queue_lock); 2845 request_fn_active = q->request_fn_active; 2846 spin_unlock_irq(q->queue_lock); 2847 2848 return request_fn_active; 2849 } 2850 2851 /** 2852 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls 2853 * @sdev: SCSI device pointer. 2854 * 2855 * Wait until the ongoing shost->hostt->queuecommand() calls that are 2856 * invoked from scsi_request_fn() have finished. 2857 */ 2858 static void scsi_wait_for_queuecommand(struct scsi_device *sdev) 2859 { 2860 WARN_ON_ONCE(sdev->host->use_blk_mq); 2861 2862 while (scsi_request_fn_active(sdev)) 2863 msleep(20); 2864 } 2865 2866 /** 2867 * scsi_device_quiesce - Block user issued commands. 2868 * @sdev: scsi device to quiesce. 2869 * 2870 * This works by trying to transition to the SDEV_QUIESCE state 2871 * (which must be a legal transition). When the device is in this 2872 * state, only special requests will be accepted, all others will 2873 * be deferred. Since special requests may also be requeued requests, 2874 * a successful return doesn't guarantee the device will be 2875 * totally quiescent. 2876 * 2877 * Must be called with user context, may sleep. 2878 * 2879 * Returns zero if unsuccessful or an error if not. 2880 */ 2881 int 2882 scsi_device_quiesce(struct scsi_device *sdev) 2883 { 2884 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2885 if (err) 2886 return err; 2887 2888 scsi_run_queue(sdev->request_queue); 2889 while (atomic_read(&sdev->device_busy)) { 2890 msleep_interruptible(200); 2891 scsi_run_queue(sdev->request_queue); 2892 } 2893 return 0; 2894 } 2895 EXPORT_SYMBOL(scsi_device_quiesce); 2896 2897 /** 2898 * scsi_device_resume - Restart user issued commands to a quiesced device. 2899 * @sdev: scsi device to resume. 2900 * 2901 * Moves the device from quiesced back to running and restarts the 2902 * queues. 2903 * 2904 * Must be called with user context, may sleep. 2905 */ 2906 void scsi_device_resume(struct scsi_device *sdev) 2907 { 2908 /* check if the device state was mutated prior to resume, and if 2909 * so assume the state is being managed elsewhere (for example 2910 * device deleted during suspend) 2911 */ 2912 if (sdev->sdev_state != SDEV_QUIESCE || 2913 scsi_device_set_state(sdev, SDEV_RUNNING)) 2914 return; 2915 scsi_run_queue(sdev->request_queue); 2916 } 2917 EXPORT_SYMBOL(scsi_device_resume); 2918 2919 static void 2920 device_quiesce_fn(struct scsi_device *sdev, void *data) 2921 { 2922 scsi_device_quiesce(sdev); 2923 } 2924 2925 void 2926 scsi_target_quiesce(struct scsi_target *starget) 2927 { 2928 starget_for_each_device(starget, NULL, device_quiesce_fn); 2929 } 2930 EXPORT_SYMBOL(scsi_target_quiesce); 2931 2932 static void 2933 device_resume_fn(struct scsi_device *sdev, void *data) 2934 { 2935 scsi_device_resume(sdev); 2936 } 2937 2938 void 2939 scsi_target_resume(struct scsi_target *starget) 2940 { 2941 starget_for_each_device(starget, NULL, device_resume_fn); 2942 } 2943 EXPORT_SYMBOL(scsi_target_resume); 2944 2945 /** 2946 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2947 * @sdev: device to block 2948 * 2949 * Block request made by scsi lld's to temporarily stop all 2950 * scsi commands on the specified device. May sleep. 2951 * 2952 * Returns zero if successful or error if not 2953 * 2954 * Notes: 2955 * This routine transitions the device to the SDEV_BLOCK state 2956 * (which must be a legal transition). When the device is in this 2957 * state, all commands are deferred until the scsi lld reenables 2958 * the device with scsi_device_unblock or device_block_tmo fires. 2959 * 2960 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after 2961 * scsi_internal_device_block() has blocked a SCSI device and also 2962 * remove the rport mutex lock and unlock calls from srp_queuecommand(). 2963 */ 2964 int 2965 scsi_internal_device_block(struct scsi_device *sdev) 2966 { 2967 struct request_queue *q = sdev->request_queue; 2968 unsigned long flags; 2969 int err = 0; 2970 2971 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2972 if (err) { 2973 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2974 2975 if (err) 2976 return err; 2977 } 2978 2979 /* 2980 * The device has transitioned to SDEV_BLOCK. Stop the 2981 * block layer from calling the midlayer with this device's 2982 * request queue. 2983 */ 2984 if (q->mq_ops) { 2985 blk_mq_quiesce_queue(q); 2986 } else { 2987 spin_lock_irqsave(q->queue_lock, flags); 2988 blk_stop_queue(q); 2989 spin_unlock_irqrestore(q->queue_lock, flags); 2990 scsi_wait_for_queuecommand(sdev); 2991 } 2992 2993 return 0; 2994 } 2995 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2996 2997 /** 2998 * scsi_internal_device_unblock - resume a device after a block request 2999 * @sdev: device to resume 3000 * @new_state: state to set devices to after unblocking 3001 * 3002 * Called by scsi lld's or the midlayer to restart the device queue 3003 * for the previously suspended scsi device. Called from interrupt or 3004 * normal process context. 3005 * 3006 * Returns zero if successful or error if not. 3007 * 3008 * Notes: 3009 * This routine transitions the device to the SDEV_RUNNING state 3010 * or to one of the offline states (which must be a legal transition) 3011 * allowing the midlayer to goose the queue for this device. 3012 */ 3013 int 3014 scsi_internal_device_unblock(struct scsi_device *sdev, 3015 enum scsi_device_state new_state) 3016 { 3017 struct request_queue *q = sdev->request_queue; 3018 unsigned long flags; 3019 3020 /* 3021 * Try to transition the scsi device to SDEV_RUNNING or one of the 3022 * offlined states and goose the device queue if successful. 3023 */ 3024 if ((sdev->sdev_state == SDEV_BLOCK) || 3025 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE)) 3026 sdev->sdev_state = new_state; 3027 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) { 3028 if (new_state == SDEV_TRANSPORT_OFFLINE || 3029 new_state == SDEV_OFFLINE) 3030 sdev->sdev_state = new_state; 3031 else 3032 sdev->sdev_state = SDEV_CREATED; 3033 } else if (sdev->sdev_state != SDEV_CANCEL && 3034 sdev->sdev_state != SDEV_OFFLINE) 3035 return -EINVAL; 3036 3037 if (q->mq_ops) { 3038 blk_mq_start_stopped_hw_queues(q, false); 3039 } else { 3040 spin_lock_irqsave(q->queue_lock, flags); 3041 blk_start_queue(q); 3042 spin_unlock_irqrestore(q->queue_lock, flags); 3043 } 3044 3045 return 0; 3046 } 3047 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 3048 3049 static void 3050 device_block(struct scsi_device *sdev, void *data) 3051 { 3052 scsi_internal_device_block(sdev); 3053 } 3054 3055 static int 3056 target_block(struct device *dev, void *data) 3057 { 3058 if (scsi_is_target_device(dev)) 3059 starget_for_each_device(to_scsi_target(dev), NULL, 3060 device_block); 3061 return 0; 3062 } 3063 3064 void 3065 scsi_target_block(struct device *dev) 3066 { 3067 if (scsi_is_target_device(dev)) 3068 starget_for_each_device(to_scsi_target(dev), NULL, 3069 device_block); 3070 else 3071 device_for_each_child(dev, NULL, target_block); 3072 } 3073 EXPORT_SYMBOL_GPL(scsi_target_block); 3074 3075 static void 3076 device_unblock(struct scsi_device *sdev, void *data) 3077 { 3078 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 3079 } 3080 3081 static int 3082 target_unblock(struct device *dev, void *data) 3083 { 3084 if (scsi_is_target_device(dev)) 3085 starget_for_each_device(to_scsi_target(dev), data, 3086 device_unblock); 3087 return 0; 3088 } 3089 3090 void 3091 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 3092 { 3093 if (scsi_is_target_device(dev)) 3094 starget_for_each_device(to_scsi_target(dev), &new_state, 3095 device_unblock); 3096 else 3097 device_for_each_child(dev, &new_state, target_unblock); 3098 } 3099 EXPORT_SYMBOL_GPL(scsi_target_unblock); 3100 3101 /** 3102 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 3103 * @sgl: scatter-gather list 3104 * @sg_count: number of segments in sg 3105 * @offset: offset in bytes into sg, on return offset into the mapped area 3106 * @len: bytes to map, on return number of bytes mapped 3107 * 3108 * Returns virtual address of the start of the mapped page 3109 */ 3110 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3111 size_t *offset, size_t *len) 3112 { 3113 int i; 3114 size_t sg_len = 0, len_complete = 0; 3115 struct scatterlist *sg; 3116 struct page *page; 3117 3118 WARN_ON(!irqs_disabled()); 3119 3120 for_each_sg(sgl, sg, sg_count, i) { 3121 len_complete = sg_len; /* Complete sg-entries */ 3122 sg_len += sg->length; 3123 if (sg_len > *offset) 3124 break; 3125 } 3126 3127 if (unlikely(i == sg_count)) { 3128 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3129 "elements %d\n", 3130 __func__, sg_len, *offset, sg_count); 3131 WARN_ON(1); 3132 return NULL; 3133 } 3134 3135 /* Offset starting from the beginning of first page in this sg-entry */ 3136 *offset = *offset - len_complete + sg->offset; 3137 3138 /* Assumption: contiguous pages can be accessed as "page + i" */ 3139 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3140 *offset &= ~PAGE_MASK; 3141 3142 /* Bytes in this sg-entry from *offset to the end of the page */ 3143 sg_len = PAGE_SIZE - *offset; 3144 if (*len > sg_len) 3145 *len = sg_len; 3146 3147 return kmap_atomic(page); 3148 } 3149 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3150 3151 /** 3152 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3153 * @virt: virtual address to be unmapped 3154 */ 3155 void scsi_kunmap_atomic_sg(void *virt) 3156 { 3157 kunmap_atomic(virt); 3158 } 3159 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3160 3161 void sdev_disable_disk_events(struct scsi_device *sdev) 3162 { 3163 atomic_inc(&sdev->disk_events_disable_depth); 3164 } 3165 EXPORT_SYMBOL(sdev_disable_disk_events); 3166 3167 void sdev_enable_disk_events(struct scsi_device *sdev) 3168 { 3169 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3170 return; 3171 atomic_dec(&sdev->disk_events_disable_depth); 3172 } 3173 EXPORT_SYMBOL(sdev_enable_disk_events); 3174 3175 /** 3176 * scsi_vpd_lun_id - return a unique device identification 3177 * @sdev: SCSI device 3178 * @id: buffer for the identification 3179 * @id_len: length of the buffer 3180 * 3181 * Copies a unique device identification into @id based 3182 * on the information in the VPD page 0x83 of the device. 3183 * The string will be formatted as a SCSI name string. 3184 * 3185 * Returns the length of the identification or error on failure. 3186 * If the identifier is longer than the supplied buffer the actual 3187 * identifier length is returned and the buffer is not zero-padded. 3188 */ 3189 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3190 { 3191 u8 cur_id_type = 0xff; 3192 u8 cur_id_size = 0; 3193 unsigned char *d, *cur_id_str; 3194 unsigned char __rcu *vpd_pg83; 3195 int id_size = -EINVAL; 3196 3197 rcu_read_lock(); 3198 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3199 if (!vpd_pg83) { 3200 rcu_read_unlock(); 3201 return -ENXIO; 3202 } 3203 3204 /* 3205 * Look for the correct descriptor. 3206 * Order of preference for lun descriptor: 3207 * - SCSI name string 3208 * - NAA IEEE Registered Extended 3209 * - EUI-64 based 16-byte 3210 * - EUI-64 based 12-byte 3211 * - NAA IEEE Registered 3212 * - NAA IEEE Extended 3213 * - T10 Vendor ID 3214 * as longer descriptors reduce the likelyhood 3215 * of identification clashes. 3216 */ 3217 3218 /* The id string must be at least 20 bytes + terminating NULL byte */ 3219 if (id_len < 21) { 3220 rcu_read_unlock(); 3221 return -EINVAL; 3222 } 3223 3224 memset(id, 0, id_len); 3225 d = vpd_pg83 + 4; 3226 while (d < vpd_pg83 + sdev->vpd_pg83_len) { 3227 /* Skip designators not referring to the LUN */ 3228 if ((d[1] & 0x30) != 0x00) 3229 goto next_desig; 3230 3231 switch (d[1] & 0xf) { 3232 case 0x1: 3233 /* T10 Vendor ID */ 3234 if (cur_id_size > d[3]) 3235 break; 3236 /* Prefer anything */ 3237 if (cur_id_type > 0x01 && cur_id_type != 0xff) 3238 break; 3239 cur_id_size = d[3]; 3240 if (cur_id_size + 4 > id_len) 3241 cur_id_size = id_len - 4; 3242 cur_id_str = d + 4; 3243 cur_id_type = d[1] & 0xf; 3244 id_size = snprintf(id, id_len, "t10.%*pE", 3245 cur_id_size, cur_id_str); 3246 break; 3247 case 0x2: 3248 /* EUI-64 */ 3249 if (cur_id_size > d[3]) 3250 break; 3251 /* Prefer NAA IEEE Registered Extended */ 3252 if (cur_id_type == 0x3 && 3253 cur_id_size == d[3]) 3254 break; 3255 cur_id_size = d[3]; 3256 cur_id_str = d + 4; 3257 cur_id_type = d[1] & 0xf; 3258 switch (cur_id_size) { 3259 case 8: 3260 id_size = snprintf(id, id_len, 3261 "eui.%8phN", 3262 cur_id_str); 3263 break; 3264 case 12: 3265 id_size = snprintf(id, id_len, 3266 "eui.%12phN", 3267 cur_id_str); 3268 break; 3269 case 16: 3270 id_size = snprintf(id, id_len, 3271 "eui.%16phN", 3272 cur_id_str); 3273 break; 3274 default: 3275 cur_id_size = 0; 3276 break; 3277 } 3278 break; 3279 case 0x3: 3280 /* NAA */ 3281 if (cur_id_size > d[3]) 3282 break; 3283 cur_id_size = d[3]; 3284 cur_id_str = d + 4; 3285 cur_id_type = d[1] & 0xf; 3286 switch (cur_id_size) { 3287 case 8: 3288 id_size = snprintf(id, id_len, 3289 "naa.%8phN", 3290 cur_id_str); 3291 break; 3292 case 16: 3293 id_size = snprintf(id, id_len, 3294 "naa.%16phN", 3295 cur_id_str); 3296 break; 3297 default: 3298 cur_id_size = 0; 3299 break; 3300 } 3301 break; 3302 case 0x8: 3303 /* SCSI name string */ 3304 if (cur_id_size + 4 > d[3]) 3305 break; 3306 /* Prefer others for truncated descriptor */ 3307 if (cur_id_size && d[3] > id_len) 3308 break; 3309 cur_id_size = id_size = d[3]; 3310 cur_id_str = d + 4; 3311 cur_id_type = d[1] & 0xf; 3312 if (cur_id_size >= id_len) 3313 cur_id_size = id_len - 1; 3314 memcpy(id, cur_id_str, cur_id_size); 3315 /* Decrease priority for truncated descriptor */ 3316 if (cur_id_size != id_size) 3317 cur_id_size = 6; 3318 break; 3319 default: 3320 break; 3321 } 3322 next_desig: 3323 d += d[3] + 4; 3324 } 3325 rcu_read_unlock(); 3326 3327 return id_size; 3328 } 3329 EXPORT_SYMBOL(scsi_vpd_lun_id); 3330 3331 /* 3332 * scsi_vpd_tpg_id - return a target port group identifier 3333 * @sdev: SCSI device 3334 * 3335 * Returns the Target Port Group identifier from the information 3336 * froom VPD page 0x83 of the device. 3337 * 3338 * Returns the identifier or error on failure. 3339 */ 3340 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3341 { 3342 unsigned char *d; 3343 unsigned char __rcu *vpd_pg83; 3344 int group_id = -EAGAIN, rel_port = -1; 3345 3346 rcu_read_lock(); 3347 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3348 if (!vpd_pg83) { 3349 rcu_read_unlock(); 3350 return -ENXIO; 3351 } 3352 3353 d = sdev->vpd_pg83 + 4; 3354 while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) { 3355 switch (d[1] & 0xf) { 3356 case 0x4: 3357 /* Relative target port */ 3358 rel_port = get_unaligned_be16(&d[6]); 3359 break; 3360 case 0x5: 3361 /* Target port group */ 3362 group_id = get_unaligned_be16(&d[6]); 3363 break; 3364 default: 3365 break; 3366 } 3367 d += d[3] + 4; 3368 } 3369 rcu_read_unlock(); 3370 3371 if (group_id >= 0 && rel_id && rel_port != -1) 3372 *rel_id = rel_port; 3373 3374 return group_id; 3375 } 3376 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3377