xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 4e1a33b1)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_dh.h>
34 
35 #include <trace/events/scsi.h>
36 
37 #include "scsi_priv.h"
38 #include "scsi_logging.h"
39 
40 static struct kmem_cache *scsi_sdb_cache;
41 static struct kmem_cache *scsi_sense_cache;
42 static struct kmem_cache *scsi_sense_isadma_cache;
43 static DEFINE_MUTEX(scsi_sense_cache_mutex);
44 
45 static inline struct kmem_cache *
46 scsi_select_sense_cache(struct Scsi_Host *shost)
47 {
48 	return shost->unchecked_isa_dma ?
49 		scsi_sense_isadma_cache : scsi_sense_cache;
50 }
51 
52 static void scsi_free_sense_buffer(struct Scsi_Host *shost,
53 		unsigned char *sense_buffer)
54 {
55 	kmem_cache_free(scsi_select_sense_cache(shost), sense_buffer);
56 }
57 
58 static unsigned char *scsi_alloc_sense_buffer(struct Scsi_Host *shost,
59 	gfp_t gfp_mask, int numa_node)
60 {
61 	return kmem_cache_alloc_node(scsi_select_sense_cache(shost), gfp_mask,
62 			numa_node);
63 }
64 
65 int scsi_init_sense_cache(struct Scsi_Host *shost)
66 {
67 	struct kmem_cache *cache;
68 	int ret = 0;
69 
70 	cache = scsi_select_sense_cache(shost);
71 	if (cache)
72 		return 0;
73 
74 	mutex_lock(&scsi_sense_cache_mutex);
75 	if (shost->unchecked_isa_dma) {
76 		scsi_sense_isadma_cache =
77 			kmem_cache_create("scsi_sense_cache(DMA)",
78 			SCSI_SENSE_BUFFERSIZE, 0,
79 			SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
80 		if (!scsi_sense_isadma_cache)
81 			ret = -ENOMEM;
82 	} else {
83 		scsi_sense_cache =
84 			kmem_cache_create("scsi_sense_cache",
85 			SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
86 		if (!scsi_sense_cache)
87 			ret = -ENOMEM;
88 	}
89 
90 	mutex_unlock(&scsi_sense_cache_mutex);
91 	return ret;
92 }
93 
94 /*
95  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
96  * not change behaviour from the previous unplug mechanism, experimentation
97  * may prove this needs changing.
98  */
99 #define SCSI_QUEUE_DELAY	3
100 
101 static void
102 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
103 {
104 	struct Scsi_Host *host = cmd->device->host;
105 	struct scsi_device *device = cmd->device;
106 	struct scsi_target *starget = scsi_target(device);
107 
108 	/*
109 	 * Set the appropriate busy bit for the device/host.
110 	 *
111 	 * If the host/device isn't busy, assume that something actually
112 	 * completed, and that we should be able to queue a command now.
113 	 *
114 	 * Note that the prior mid-layer assumption that any host could
115 	 * always queue at least one command is now broken.  The mid-layer
116 	 * will implement a user specifiable stall (see
117 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
118 	 * if a command is requeued with no other commands outstanding
119 	 * either for the device or for the host.
120 	 */
121 	switch (reason) {
122 	case SCSI_MLQUEUE_HOST_BUSY:
123 		atomic_set(&host->host_blocked, host->max_host_blocked);
124 		break;
125 	case SCSI_MLQUEUE_DEVICE_BUSY:
126 	case SCSI_MLQUEUE_EH_RETRY:
127 		atomic_set(&device->device_blocked,
128 			   device->max_device_blocked);
129 		break;
130 	case SCSI_MLQUEUE_TARGET_BUSY:
131 		atomic_set(&starget->target_blocked,
132 			   starget->max_target_blocked);
133 		break;
134 	}
135 }
136 
137 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
138 {
139 	struct scsi_device *sdev = cmd->device;
140 
141 	blk_mq_requeue_request(cmd->request, true);
142 	put_device(&sdev->sdev_gendev);
143 }
144 
145 /**
146  * __scsi_queue_insert - private queue insertion
147  * @cmd: The SCSI command being requeued
148  * @reason:  The reason for the requeue
149  * @unbusy: Whether the queue should be unbusied
150  *
151  * This is a private queue insertion.  The public interface
152  * scsi_queue_insert() always assumes the queue should be unbusied
153  * because it's always called before the completion.  This function is
154  * for a requeue after completion, which should only occur in this
155  * file.
156  */
157 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
158 {
159 	struct scsi_device *device = cmd->device;
160 	struct request_queue *q = device->request_queue;
161 	unsigned long flags;
162 
163 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
164 		"Inserting command %p into mlqueue\n", cmd));
165 
166 	scsi_set_blocked(cmd, reason);
167 
168 	/*
169 	 * Decrement the counters, since these commands are no longer
170 	 * active on the host/device.
171 	 */
172 	if (unbusy)
173 		scsi_device_unbusy(device);
174 
175 	/*
176 	 * Requeue this command.  It will go before all other commands
177 	 * that are already in the queue. Schedule requeue work under
178 	 * lock such that the kblockd_schedule_work() call happens
179 	 * before blk_cleanup_queue() finishes.
180 	 */
181 	cmd->result = 0;
182 	if (q->mq_ops) {
183 		scsi_mq_requeue_cmd(cmd);
184 		return;
185 	}
186 	spin_lock_irqsave(q->queue_lock, flags);
187 	blk_requeue_request(q, cmd->request);
188 	kblockd_schedule_work(&device->requeue_work);
189 	spin_unlock_irqrestore(q->queue_lock, flags);
190 }
191 
192 /*
193  * Function:    scsi_queue_insert()
194  *
195  * Purpose:     Insert a command in the midlevel queue.
196  *
197  * Arguments:   cmd    - command that we are adding to queue.
198  *              reason - why we are inserting command to queue.
199  *
200  * Lock status: Assumed that lock is not held upon entry.
201  *
202  * Returns:     Nothing.
203  *
204  * Notes:       We do this for one of two cases.  Either the host is busy
205  *              and it cannot accept any more commands for the time being,
206  *              or the device returned QUEUE_FULL and can accept no more
207  *              commands.
208  * Notes:       This could be called either from an interrupt context or a
209  *              normal process context.
210  */
211 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
212 {
213 	__scsi_queue_insert(cmd, reason, 1);
214 }
215 
216 static int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
217 		 int data_direction, void *buffer, unsigned bufflen,
218 		 unsigned char *sense, int timeout, int retries, u64 flags,
219 		 req_flags_t rq_flags, int *resid)
220 {
221 	struct request *req;
222 	struct scsi_request *rq;
223 	int ret = DRIVER_ERROR << 24;
224 
225 	req = blk_get_request(sdev->request_queue,
226 			data_direction == DMA_TO_DEVICE ?
227 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM);
228 	if (IS_ERR(req))
229 		return ret;
230 	rq = scsi_req(req);
231 	scsi_req_init(req);
232 
233 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
234 					buffer, bufflen, __GFP_RECLAIM))
235 		goto out;
236 
237 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
238 	memcpy(rq->cmd, cmd, rq->cmd_len);
239 	req->retries = retries;
240 	req->timeout = timeout;
241 	req->cmd_flags |= flags;
242 	req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT;
243 
244 	/*
245 	 * head injection *required* here otherwise quiesce won't work
246 	 */
247 	blk_execute_rq(req->q, NULL, req, 1);
248 
249 	/*
250 	 * Some devices (USB mass-storage in particular) may transfer
251 	 * garbage data together with a residue indicating that the data
252 	 * is invalid.  Prevent the garbage from being misinterpreted
253 	 * and prevent security leaks by zeroing out the excess data.
254 	 */
255 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
256 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
257 
258 	if (resid)
259 		*resid = rq->resid_len;
260 	if (sense && rq->sense_len)
261 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
262 	ret = req->errors;
263  out:
264 	blk_put_request(req);
265 
266 	return ret;
267 }
268 
269 /**
270  * scsi_execute - insert request and wait for the result
271  * @sdev:	scsi device
272  * @cmd:	scsi command
273  * @data_direction: data direction
274  * @buffer:	data buffer
275  * @bufflen:	len of buffer
276  * @sense:	optional sense buffer
277  * @timeout:	request timeout in seconds
278  * @retries:	number of times to retry request
279  * @flags:	or into request flags;
280  * @resid:	optional residual length
281  *
282  * returns the req->errors value which is the scsi_cmnd result
283  * field.
284  */
285 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
286 		 int data_direction, void *buffer, unsigned bufflen,
287 		 unsigned char *sense, int timeout, int retries, u64 flags,
288 		 int *resid)
289 {
290 	return __scsi_execute(sdev, cmd, data_direction, buffer, bufflen, sense,
291 			timeout, retries, flags, 0, resid);
292 }
293 EXPORT_SYMBOL(scsi_execute);
294 
295 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
296 		     int data_direction, void *buffer, unsigned bufflen,
297 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
298 		     int *resid, u64 flags, req_flags_t rq_flags)
299 {
300 	char *sense = NULL;
301 	int result;
302 
303 	if (sshdr) {
304 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
305 		if (!sense)
306 			return DRIVER_ERROR << 24;
307 	}
308 	result = __scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
309 			      sense, timeout, retries, flags, rq_flags, resid);
310 	if (sshdr)
311 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
312 
313 	kfree(sense);
314 	return result;
315 }
316 EXPORT_SYMBOL(scsi_execute_req_flags);
317 
318 /*
319  * Function:    scsi_init_cmd_errh()
320  *
321  * Purpose:     Initialize cmd fields related to error handling.
322  *
323  * Arguments:   cmd	- command that is ready to be queued.
324  *
325  * Notes:       This function has the job of initializing a number of
326  *              fields related to error handling.   Typically this will
327  *              be called once for each command, as required.
328  */
329 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
330 {
331 	cmd->serial_number = 0;
332 	scsi_set_resid(cmd, 0);
333 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
334 	if (cmd->cmd_len == 0)
335 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
336 }
337 
338 void scsi_device_unbusy(struct scsi_device *sdev)
339 {
340 	struct Scsi_Host *shost = sdev->host;
341 	struct scsi_target *starget = scsi_target(sdev);
342 	unsigned long flags;
343 
344 	atomic_dec(&shost->host_busy);
345 	if (starget->can_queue > 0)
346 		atomic_dec(&starget->target_busy);
347 
348 	if (unlikely(scsi_host_in_recovery(shost) &&
349 		     (shost->host_failed || shost->host_eh_scheduled))) {
350 		spin_lock_irqsave(shost->host_lock, flags);
351 		scsi_eh_wakeup(shost);
352 		spin_unlock_irqrestore(shost->host_lock, flags);
353 	}
354 
355 	atomic_dec(&sdev->device_busy);
356 }
357 
358 static void scsi_kick_queue(struct request_queue *q)
359 {
360 	if (q->mq_ops)
361 		blk_mq_start_hw_queues(q);
362 	else
363 		blk_run_queue(q);
364 }
365 
366 /*
367  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
368  * and call blk_run_queue for all the scsi_devices on the target -
369  * including current_sdev first.
370  *
371  * Called with *no* scsi locks held.
372  */
373 static void scsi_single_lun_run(struct scsi_device *current_sdev)
374 {
375 	struct Scsi_Host *shost = current_sdev->host;
376 	struct scsi_device *sdev, *tmp;
377 	struct scsi_target *starget = scsi_target(current_sdev);
378 	unsigned long flags;
379 
380 	spin_lock_irqsave(shost->host_lock, flags);
381 	starget->starget_sdev_user = NULL;
382 	spin_unlock_irqrestore(shost->host_lock, flags);
383 
384 	/*
385 	 * Call blk_run_queue for all LUNs on the target, starting with
386 	 * current_sdev. We race with others (to set starget_sdev_user),
387 	 * but in most cases, we will be first. Ideally, each LU on the
388 	 * target would get some limited time or requests on the target.
389 	 */
390 	scsi_kick_queue(current_sdev->request_queue);
391 
392 	spin_lock_irqsave(shost->host_lock, flags);
393 	if (starget->starget_sdev_user)
394 		goto out;
395 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
396 			same_target_siblings) {
397 		if (sdev == current_sdev)
398 			continue;
399 		if (scsi_device_get(sdev))
400 			continue;
401 
402 		spin_unlock_irqrestore(shost->host_lock, flags);
403 		scsi_kick_queue(sdev->request_queue);
404 		spin_lock_irqsave(shost->host_lock, flags);
405 
406 		scsi_device_put(sdev);
407 	}
408  out:
409 	spin_unlock_irqrestore(shost->host_lock, flags);
410 }
411 
412 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
413 {
414 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
415 		return true;
416 	if (atomic_read(&sdev->device_blocked) > 0)
417 		return true;
418 	return false;
419 }
420 
421 static inline bool scsi_target_is_busy(struct scsi_target *starget)
422 {
423 	if (starget->can_queue > 0) {
424 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
425 			return true;
426 		if (atomic_read(&starget->target_blocked) > 0)
427 			return true;
428 	}
429 	return false;
430 }
431 
432 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
433 {
434 	if (shost->can_queue > 0 &&
435 	    atomic_read(&shost->host_busy) >= shost->can_queue)
436 		return true;
437 	if (atomic_read(&shost->host_blocked) > 0)
438 		return true;
439 	if (shost->host_self_blocked)
440 		return true;
441 	return false;
442 }
443 
444 static void scsi_starved_list_run(struct Scsi_Host *shost)
445 {
446 	LIST_HEAD(starved_list);
447 	struct scsi_device *sdev;
448 	unsigned long flags;
449 
450 	spin_lock_irqsave(shost->host_lock, flags);
451 	list_splice_init(&shost->starved_list, &starved_list);
452 
453 	while (!list_empty(&starved_list)) {
454 		struct request_queue *slq;
455 
456 		/*
457 		 * As long as shost is accepting commands and we have
458 		 * starved queues, call blk_run_queue. scsi_request_fn
459 		 * drops the queue_lock and can add us back to the
460 		 * starved_list.
461 		 *
462 		 * host_lock protects the starved_list and starved_entry.
463 		 * scsi_request_fn must get the host_lock before checking
464 		 * or modifying starved_list or starved_entry.
465 		 */
466 		if (scsi_host_is_busy(shost))
467 			break;
468 
469 		sdev = list_entry(starved_list.next,
470 				  struct scsi_device, starved_entry);
471 		list_del_init(&sdev->starved_entry);
472 		if (scsi_target_is_busy(scsi_target(sdev))) {
473 			list_move_tail(&sdev->starved_entry,
474 				       &shost->starved_list);
475 			continue;
476 		}
477 
478 		/*
479 		 * Once we drop the host lock, a racing scsi_remove_device()
480 		 * call may remove the sdev from the starved list and destroy
481 		 * it and the queue.  Mitigate by taking a reference to the
482 		 * queue and never touching the sdev again after we drop the
483 		 * host lock.  Note: if __scsi_remove_device() invokes
484 		 * blk_cleanup_queue() before the queue is run from this
485 		 * function then blk_run_queue() will return immediately since
486 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
487 		 */
488 		slq = sdev->request_queue;
489 		if (!blk_get_queue(slq))
490 			continue;
491 		spin_unlock_irqrestore(shost->host_lock, flags);
492 
493 		scsi_kick_queue(slq);
494 		blk_put_queue(slq);
495 
496 		spin_lock_irqsave(shost->host_lock, flags);
497 	}
498 	/* put any unprocessed entries back */
499 	list_splice(&starved_list, &shost->starved_list);
500 	spin_unlock_irqrestore(shost->host_lock, flags);
501 }
502 
503 /*
504  * Function:   scsi_run_queue()
505  *
506  * Purpose:    Select a proper request queue to serve next
507  *
508  * Arguments:  q       - last request's queue
509  *
510  * Returns:     Nothing
511  *
512  * Notes:      The previous command was completely finished, start
513  *             a new one if possible.
514  */
515 static void scsi_run_queue(struct request_queue *q)
516 {
517 	struct scsi_device *sdev = q->queuedata;
518 
519 	if (scsi_target(sdev)->single_lun)
520 		scsi_single_lun_run(sdev);
521 	if (!list_empty(&sdev->host->starved_list))
522 		scsi_starved_list_run(sdev->host);
523 
524 	if (q->mq_ops)
525 		blk_mq_start_stopped_hw_queues(q, false);
526 	else
527 		blk_run_queue(q);
528 }
529 
530 void scsi_requeue_run_queue(struct work_struct *work)
531 {
532 	struct scsi_device *sdev;
533 	struct request_queue *q;
534 
535 	sdev = container_of(work, struct scsi_device, requeue_work);
536 	q = sdev->request_queue;
537 	scsi_run_queue(q);
538 }
539 
540 /*
541  * Function:	scsi_requeue_command()
542  *
543  * Purpose:	Handle post-processing of completed commands.
544  *
545  * Arguments:	q	- queue to operate on
546  *		cmd	- command that may need to be requeued.
547  *
548  * Returns:	Nothing
549  *
550  * Notes:	After command completion, there may be blocks left
551  *		over which weren't finished by the previous command
552  *		this can be for a number of reasons - the main one is
553  *		I/O errors in the middle of the request, in which case
554  *		we need to request the blocks that come after the bad
555  *		sector.
556  * Notes:	Upon return, cmd is a stale pointer.
557  */
558 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
559 {
560 	struct scsi_device *sdev = cmd->device;
561 	struct request *req = cmd->request;
562 	unsigned long flags;
563 
564 	spin_lock_irqsave(q->queue_lock, flags);
565 	blk_unprep_request(req);
566 	req->special = NULL;
567 	scsi_put_command(cmd);
568 	blk_requeue_request(q, req);
569 	spin_unlock_irqrestore(q->queue_lock, flags);
570 
571 	scsi_run_queue(q);
572 
573 	put_device(&sdev->sdev_gendev);
574 }
575 
576 void scsi_run_host_queues(struct Scsi_Host *shost)
577 {
578 	struct scsi_device *sdev;
579 
580 	shost_for_each_device(sdev, shost)
581 		scsi_run_queue(sdev->request_queue);
582 }
583 
584 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
585 {
586 	if (!blk_rq_is_passthrough(cmd->request)) {
587 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
588 
589 		if (drv->uninit_command)
590 			drv->uninit_command(cmd);
591 	}
592 }
593 
594 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
595 {
596 	struct scsi_data_buffer *sdb;
597 
598 	if (cmd->sdb.table.nents)
599 		sg_free_table_chained(&cmd->sdb.table, true);
600 	if (cmd->request->next_rq) {
601 		sdb = cmd->request->next_rq->special;
602 		if (sdb)
603 			sg_free_table_chained(&sdb->table, true);
604 	}
605 	if (scsi_prot_sg_count(cmd))
606 		sg_free_table_chained(&cmd->prot_sdb->table, true);
607 }
608 
609 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
610 {
611 	struct scsi_device *sdev = cmd->device;
612 	struct Scsi_Host *shost = sdev->host;
613 	unsigned long flags;
614 
615 	scsi_mq_free_sgtables(cmd);
616 	scsi_uninit_cmd(cmd);
617 
618 	if (shost->use_cmd_list) {
619 		BUG_ON(list_empty(&cmd->list));
620 		spin_lock_irqsave(&sdev->list_lock, flags);
621 		list_del_init(&cmd->list);
622 		spin_unlock_irqrestore(&sdev->list_lock, flags);
623 	}
624 }
625 
626 /*
627  * Function:    scsi_release_buffers()
628  *
629  * Purpose:     Free resources allocate for a scsi_command.
630  *
631  * Arguments:   cmd	- command that we are bailing.
632  *
633  * Lock status: Assumed that no lock is held upon entry.
634  *
635  * Returns:     Nothing
636  *
637  * Notes:       In the event that an upper level driver rejects a
638  *		command, we must release resources allocated during
639  *		the __init_io() function.  Primarily this would involve
640  *		the scatter-gather table.
641  */
642 static void scsi_release_buffers(struct scsi_cmnd *cmd)
643 {
644 	if (cmd->sdb.table.nents)
645 		sg_free_table_chained(&cmd->sdb.table, false);
646 
647 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
648 
649 	if (scsi_prot_sg_count(cmd))
650 		sg_free_table_chained(&cmd->prot_sdb->table, false);
651 }
652 
653 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
654 {
655 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
656 
657 	sg_free_table_chained(&bidi_sdb->table, false);
658 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
659 	cmd->request->next_rq->special = NULL;
660 }
661 
662 static bool scsi_end_request(struct request *req, int error,
663 		unsigned int bytes, unsigned int bidi_bytes)
664 {
665 	struct scsi_cmnd *cmd = req->special;
666 	struct scsi_device *sdev = cmd->device;
667 	struct request_queue *q = sdev->request_queue;
668 
669 	if (blk_update_request(req, error, bytes))
670 		return true;
671 
672 	/* Bidi request must be completed as a whole */
673 	if (unlikely(bidi_bytes) &&
674 	    blk_update_request(req->next_rq, error, bidi_bytes))
675 		return true;
676 
677 	if (blk_queue_add_random(q))
678 		add_disk_randomness(req->rq_disk);
679 
680 	if (req->mq_ctx) {
681 		/*
682 		 * In the MQ case the command gets freed by __blk_mq_end_request,
683 		 * so we have to do all cleanup that depends on it earlier.
684 		 *
685 		 * We also can't kick the queues from irq context, so we
686 		 * will have to defer it to a workqueue.
687 		 */
688 		scsi_mq_uninit_cmd(cmd);
689 
690 		__blk_mq_end_request(req, error);
691 
692 		if (scsi_target(sdev)->single_lun ||
693 		    !list_empty(&sdev->host->starved_list))
694 			kblockd_schedule_work(&sdev->requeue_work);
695 		else
696 			blk_mq_start_stopped_hw_queues(q, true);
697 	} else {
698 		unsigned long flags;
699 
700 		if (bidi_bytes)
701 			scsi_release_bidi_buffers(cmd);
702 		scsi_release_buffers(cmd);
703 		scsi_put_command(cmd);
704 
705 		spin_lock_irqsave(q->queue_lock, flags);
706 		blk_finish_request(req, error);
707 		spin_unlock_irqrestore(q->queue_lock, flags);
708 
709 		scsi_run_queue(q);
710 	}
711 
712 	put_device(&sdev->sdev_gendev);
713 	return false;
714 }
715 
716 /**
717  * __scsi_error_from_host_byte - translate SCSI error code into errno
718  * @cmd:	SCSI command (unused)
719  * @result:	scsi error code
720  *
721  * Translate SCSI error code into standard UNIX errno.
722  * Return values:
723  * -ENOLINK	temporary transport failure
724  * -EREMOTEIO	permanent target failure, do not retry
725  * -EBADE	permanent nexus failure, retry on other path
726  * -ENOSPC	No write space available
727  * -ENODATA	Medium error
728  * -EIO		unspecified I/O error
729  */
730 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
731 {
732 	int error = 0;
733 
734 	switch(host_byte(result)) {
735 	case DID_TRANSPORT_FAILFAST:
736 		error = -ENOLINK;
737 		break;
738 	case DID_TARGET_FAILURE:
739 		set_host_byte(cmd, DID_OK);
740 		error = -EREMOTEIO;
741 		break;
742 	case DID_NEXUS_FAILURE:
743 		set_host_byte(cmd, DID_OK);
744 		error = -EBADE;
745 		break;
746 	case DID_ALLOC_FAILURE:
747 		set_host_byte(cmd, DID_OK);
748 		error = -ENOSPC;
749 		break;
750 	case DID_MEDIUM_ERROR:
751 		set_host_byte(cmd, DID_OK);
752 		error = -ENODATA;
753 		break;
754 	default:
755 		error = -EIO;
756 		break;
757 	}
758 
759 	return error;
760 }
761 
762 /*
763  * Function:    scsi_io_completion()
764  *
765  * Purpose:     Completion processing for block device I/O requests.
766  *
767  * Arguments:   cmd   - command that is finished.
768  *
769  * Lock status: Assumed that no lock is held upon entry.
770  *
771  * Returns:     Nothing
772  *
773  * Notes:       We will finish off the specified number of sectors.  If we
774  *		are done, the command block will be released and the queue
775  *		function will be goosed.  If we are not done then we have to
776  *		figure out what to do next:
777  *
778  *		a) We can call scsi_requeue_command().  The request
779  *		   will be unprepared and put back on the queue.  Then
780  *		   a new command will be created for it.  This should
781  *		   be used if we made forward progress, or if we want
782  *		   to switch from READ(10) to READ(6) for example.
783  *
784  *		b) We can call __scsi_queue_insert().  The request will
785  *		   be put back on the queue and retried using the same
786  *		   command as before, possibly after a delay.
787  *
788  *		c) We can call scsi_end_request() with -EIO to fail
789  *		   the remainder of the request.
790  */
791 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
792 {
793 	int result = cmd->result;
794 	struct request_queue *q = cmd->device->request_queue;
795 	struct request *req = cmd->request;
796 	int error = 0;
797 	struct scsi_sense_hdr sshdr;
798 	bool sense_valid = false;
799 	int sense_deferred = 0, level = 0;
800 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
801 	      ACTION_DELAYED_RETRY} action;
802 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
803 
804 	if (result) {
805 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
806 		if (sense_valid)
807 			sense_deferred = scsi_sense_is_deferred(&sshdr);
808 	}
809 
810 	if (blk_rq_is_passthrough(req)) {
811 		if (result) {
812 			if (sense_valid) {
813 				/*
814 				 * SG_IO wants current and deferred errors
815 				 */
816 				scsi_req(req)->sense_len =
817 					min(8 + cmd->sense_buffer[7],
818 					    SCSI_SENSE_BUFFERSIZE);
819 			}
820 			if (!sense_deferred)
821 				error = __scsi_error_from_host_byte(cmd, result);
822 		}
823 		/*
824 		 * __scsi_error_from_host_byte may have reset the host_byte
825 		 */
826 		req->errors = cmd->result;
827 
828 		scsi_req(req)->resid_len = scsi_get_resid(cmd);
829 
830 		if (scsi_bidi_cmnd(cmd)) {
831 			/*
832 			 * Bidi commands Must be complete as a whole,
833 			 * both sides at once.
834 			 */
835 			scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
836 			if (scsi_end_request(req, 0, blk_rq_bytes(req),
837 					blk_rq_bytes(req->next_rq)))
838 				BUG();
839 			return;
840 		}
841 	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
842 		/*
843 		 * Flush commands do not transfers any data, and thus cannot use
844 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
845 		 * This sets the error explicitly for the problem case.
846 		 */
847 		error = __scsi_error_from_host_byte(cmd, result);
848 	}
849 
850 	/* no bidi support for !blk_rq_is_passthrough yet */
851 	BUG_ON(blk_bidi_rq(req));
852 
853 	/*
854 	 * Next deal with any sectors which we were able to correctly
855 	 * handle.
856 	 */
857 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
858 		"%u sectors total, %d bytes done.\n",
859 		blk_rq_sectors(req), good_bytes));
860 
861 	/*
862 	 * Recovered errors need reporting, but they're always treated as
863 	 * success, so fiddle the result code here.  For passthrough requests
864 	 * we already took a copy of the original into rq->errors which
865 	 * is what gets returned to the user
866 	 */
867 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
868 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
869 		 * print since caller wants ATA registers. Only occurs on
870 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
871 		 */
872 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
873 			;
874 		else if (!(req->rq_flags & RQF_QUIET))
875 			scsi_print_sense(cmd);
876 		result = 0;
877 		/* for passthrough error may be set */
878 		error = 0;
879 	}
880 
881 	/*
882 	 * special case: failed zero length commands always need to
883 	 * drop down into the retry code. Otherwise, if we finished
884 	 * all bytes in the request we are done now.
885 	 */
886 	if (!(blk_rq_bytes(req) == 0 && error) &&
887 	    !scsi_end_request(req, error, good_bytes, 0))
888 		return;
889 
890 	/*
891 	 * Kill remainder if no retrys.
892 	 */
893 	if (error && scsi_noretry_cmd(cmd)) {
894 		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
895 			BUG();
896 		return;
897 	}
898 
899 	/*
900 	 * If there had been no error, but we have leftover bytes in the
901 	 * requeues just queue the command up again.
902 	 */
903 	if (result == 0)
904 		goto requeue;
905 
906 	error = __scsi_error_from_host_byte(cmd, result);
907 
908 	if (host_byte(result) == DID_RESET) {
909 		/* Third party bus reset or reset for error recovery
910 		 * reasons.  Just retry the command and see what
911 		 * happens.
912 		 */
913 		action = ACTION_RETRY;
914 	} else if (sense_valid && !sense_deferred) {
915 		switch (sshdr.sense_key) {
916 		case UNIT_ATTENTION:
917 			if (cmd->device->removable) {
918 				/* Detected disc change.  Set a bit
919 				 * and quietly refuse further access.
920 				 */
921 				cmd->device->changed = 1;
922 				action = ACTION_FAIL;
923 			} else {
924 				/* Must have been a power glitch, or a
925 				 * bus reset.  Could not have been a
926 				 * media change, so we just retry the
927 				 * command and see what happens.
928 				 */
929 				action = ACTION_RETRY;
930 			}
931 			break;
932 		case ILLEGAL_REQUEST:
933 			/* If we had an ILLEGAL REQUEST returned, then
934 			 * we may have performed an unsupported
935 			 * command.  The only thing this should be
936 			 * would be a ten byte read where only a six
937 			 * byte read was supported.  Also, on a system
938 			 * where READ CAPACITY failed, we may have
939 			 * read past the end of the disk.
940 			 */
941 			if ((cmd->device->use_10_for_rw &&
942 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
943 			    (cmd->cmnd[0] == READ_10 ||
944 			     cmd->cmnd[0] == WRITE_10)) {
945 				/* This will issue a new 6-byte command. */
946 				cmd->device->use_10_for_rw = 0;
947 				action = ACTION_REPREP;
948 			} else if (sshdr.asc == 0x10) /* DIX */ {
949 				action = ACTION_FAIL;
950 				error = -EILSEQ;
951 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
952 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
953 				action = ACTION_FAIL;
954 				error = -EREMOTEIO;
955 			} else
956 				action = ACTION_FAIL;
957 			break;
958 		case ABORTED_COMMAND:
959 			action = ACTION_FAIL;
960 			if (sshdr.asc == 0x10) /* DIF */
961 				error = -EILSEQ;
962 			break;
963 		case NOT_READY:
964 			/* If the device is in the process of becoming
965 			 * ready, or has a temporary blockage, retry.
966 			 */
967 			if (sshdr.asc == 0x04) {
968 				switch (sshdr.ascq) {
969 				case 0x01: /* becoming ready */
970 				case 0x04: /* format in progress */
971 				case 0x05: /* rebuild in progress */
972 				case 0x06: /* recalculation in progress */
973 				case 0x07: /* operation in progress */
974 				case 0x08: /* Long write in progress */
975 				case 0x09: /* self test in progress */
976 				case 0x14: /* space allocation in progress */
977 					action = ACTION_DELAYED_RETRY;
978 					break;
979 				default:
980 					action = ACTION_FAIL;
981 					break;
982 				}
983 			} else
984 				action = ACTION_FAIL;
985 			break;
986 		case VOLUME_OVERFLOW:
987 			/* See SSC3rXX or current. */
988 			action = ACTION_FAIL;
989 			break;
990 		default:
991 			action = ACTION_FAIL;
992 			break;
993 		}
994 	} else
995 		action = ACTION_FAIL;
996 
997 	if (action != ACTION_FAIL &&
998 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
999 		action = ACTION_FAIL;
1000 
1001 	switch (action) {
1002 	case ACTION_FAIL:
1003 		/* Give up and fail the remainder of the request */
1004 		if (!(req->rq_flags & RQF_QUIET)) {
1005 			static DEFINE_RATELIMIT_STATE(_rs,
1006 					DEFAULT_RATELIMIT_INTERVAL,
1007 					DEFAULT_RATELIMIT_BURST);
1008 
1009 			if (unlikely(scsi_logging_level))
1010 				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1011 						       SCSI_LOG_MLCOMPLETE_BITS);
1012 
1013 			/*
1014 			 * if logging is enabled the failure will be printed
1015 			 * in scsi_log_completion(), so avoid duplicate messages
1016 			 */
1017 			if (!level && __ratelimit(&_rs)) {
1018 				scsi_print_result(cmd, NULL, FAILED);
1019 				if (driver_byte(result) & DRIVER_SENSE)
1020 					scsi_print_sense(cmd);
1021 				scsi_print_command(cmd);
1022 			}
1023 		}
1024 		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1025 			return;
1026 		/*FALLTHRU*/
1027 	case ACTION_REPREP:
1028 	requeue:
1029 		/* Unprep the request and put it back at the head of the queue.
1030 		 * A new command will be prepared and issued.
1031 		 */
1032 		if (q->mq_ops) {
1033 			cmd->request->rq_flags &= ~RQF_DONTPREP;
1034 			scsi_mq_uninit_cmd(cmd);
1035 			scsi_mq_requeue_cmd(cmd);
1036 		} else {
1037 			scsi_release_buffers(cmd);
1038 			scsi_requeue_command(q, cmd);
1039 		}
1040 		break;
1041 	case ACTION_RETRY:
1042 		/* Retry the same command immediately */
1043 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1044 		break;
1045 	case ACTION_DELAYED_RETRY:
1046 		/* Retry the same command after a delay */
1047 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1048 		break;
1049 	}
1050 }
1051 
1052 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1053 {
1054 	int count;
1055 
1056 	/*
1057 	 * If sg table allocation fails, requeue request later.
1058 	 */
1059 	if (unlikely(sg_alloc_table_chained(&sdb->table,
1060 			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1061 		return BLKPREP_DEFER;
1062 
1063 	/*
1064 	 * Next, walk the list, and fill in the addresses and sizes of
1065 	 * each segment.
1066 	 */
1067 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1068 	BUG_ON(count > sdb->table.nents);
1069 	sdb->table.nents = count;
1070 	sdb->length = blk_rq_payload_bytes(req);
1071 	return BLKPREP_OK;
1072 }
1073 
1074 /*
1075  * Function:    scsi_init_io()
1076  *
1077  * Purpose:     SCSI I/O initialize function.
1078  *
1079  * Arguments:   cmd   - Command descriptor we wish to initialize
1080  *
1081  * Returns:     0 on success
1082  *		BLKPREP_DEFER if the failure is retryable
1083  *		BLKPREP_KILL if the failure is fatal
1084  */
1085 int scsi_init_io(struct scsi_cmnd *cmd)
1086 {
1087 	struct scsi_device *sdev = cmd->device;
1088 	struct request *rq = cmd->request;
1089 	bool is_mq = (rq->mq_ctx != NULL);
1090 	int error;
1091 
1092 	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1093 		return -EINVAL;
1094 
1095 	error = scsi_init_sgtable(rq, &cmd->sdb);
1096 	if (error)
1097 		goto err_exit;
1098 
1099 	if (blk_bidi_rq(rq)) {
1100 		if (!rq->q->mq_ops) {
1101 			struct scsi_data_buffer *bidi_sdb =
1102 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1103 			if (!bidi_sdb) {
1104 				error = BLKPREP_DEFER;
1105 				goto err_exit;
1106 			}
1107 
1108 			rq->next_rq->special = bidi_sdb;
1109 		}
1110 
1111 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1112 		if (error)
1113 			goto err_exit;
1114 	}
1115 
1116 	if (blk_integrity_rq(rq)) {
1117 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1118 		int ivecs, count;
1119 
1120 		if (prot_sdb == NULL) {
1121 			/*
1122 			 * This can happen if someone (e.g. multipath)
1123 			 * queues a command to a device on an adapter
1124 			 * that does not support DIX.
1125 			 */
1126 			WARN_ON_ONCE(1);
1127 			error = BLKPREP_KILL;
1128 			goto err_exit;
1129 		}
1130 
1131 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1132 
1133 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1134 				prot_sdb->table.sgl)) {
1135 			error = BLKPREP_DEFER;
1136 			goto err_exit;
1137 		}
1138 
1139 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1140 						prot_sdb->table.sgl);
1141 		BUG_ON(unlikely(count > ivecs));
1142 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1143 
1144 		cmd->prot_sdb = prot_sdb;
1145 		cmd->prot_sdb->table.nents = count;
1146 	}
1147 
1148 	return BLKPREP_OK;
1149 err_exit:
1150 	if (is_mq) {
1151 		scsi_mq_free_sgtables(cmd);
1152 	} else {
1153 		scsi_release_buffers(cmd);
1154 		cmd->request->special = NULL;
1155 		scsi_put_command(cmd);
1156 		put_device(&sdev->sdev_gendev);
1157 	}
1158 	return error;
1159 }
1160 EXPORT_SYMBOL(scsi_init_io);
1161 
1162 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1163 {
1164 	void *buf = cmd->sense_buffer;
1165 	void *prot = cmd->prot_sdb;
1166 	unsigned long flags;
1167 
1168 	/* zero out the cmd, except for the embedded scsi_request */
1169 	memset((char *)cmd + sizeof(cmd->req), 0,
1170 		sizeof(*cmd) - sizeof(cmd->req));
1171 
1172 	cmd->device = dev;
1173 	cmd->sense_buffer = buf;
1174 	cmd->prot_sdb = prot;
1175 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1176 	cmd->jiffies_at_alloc = jiffies;
1177 
1178 	spin_lock_irqsave(&dev->list_lock, flags);
1179 	list_add_tail(&cmd->list, &dev->cmd_list);
1180 	spin_unlock_irqrestore(&dev->list_lock, flags);
1181 }
1182 
1183 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1184 {
1185 	struct scsi_cmnd *cmd = req->special;
1186 
1187 	/*
1188 	 * Passthrough requests may transfer data, in which case they must
1189 	 * a bio attached to them.  Or they might contain a SCSI command
1190 	 * that does not transfer data, in which case they may optionally
1191 	 * submit a request without an attached bio.
1192 	 */
1193 	if (req->bio) {
1194 		int ret = scsi_init_io(cmd);
1195 		if (unlikely(ret))
1196 			return ret;
1197 	} else {
1198 		BUG_ON(blk_rq_bytes(req));
1199 
1200 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1201 	}
1202 
1203 	cmd->cmd_len = scsi_req(req)->cmd_len;
1204 	cmd->cmnd = scsi_req(req)->cmd;
1205 	cmd->transfersize = blk_rq_bytes(req);
1206 	cmd->allowed = req->retries;
1207 	return BLKPREP_OK;
1208 }
1209 
1210 /*
1211  * Setup a normal block command.  These are simple request from filesystems
1212  * that still need to be translated to SCSI CDBs from the ULD.
1213  */
1214 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1215 {
1216 	struct scsi_cmnd *cmd = req->special;
1217 
1218 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1219 		int ret = sdev->handler->prep_fn(sdev, req);
1220 		if (ret != BLKPREP_OK)
1221 			return ret;
1222 	}
1223 
1224 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1225 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1226 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1227 }
1228 
1229 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1230 {
1231 	struct scsi_cmnd *cmd = req->special;
1232 
1233 	if (!blk_rq_bytes(req))
1234 		cmd->sc_data_direction = DMA_NONE;
1235 	else if (rq_data_dir(req) == WRITE)
1236 		cmd->sc_data_direction = DMA_TO_DEVICE;
1237 	else
1238 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1239 
1240 	if (blk_rq_is_scsi(req))
1241 		return scsi_setup_scsi_cmnd(sdev, req);
1242 	else
1243 		return scsi_setup_fs_cmnd(sdev, req);
1244 }
1245 
1246 static int
1247 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1248 {
1249 	int ret = BLKPREP_OK;
1250 
1251 	/*
1252 	 * If the device is not in running state we will reject some
1253 	 * or all commands.
1254 	 */
1255 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1256 		switch (sdev->sdev_state) {
1257 		case SDEV_OFFLINE:
1258 		case SDEV_TRANSPORT_OFFLINE:
1259 			/*
1260 			 * If the device is offline we refuse to process any
1261 			 * commands.  The device must be brought online
1262 			 * before trying any recovery commands.
1263 			 */
1264 			sdev_printk(KERN_ERR, sdev,
1265 				    "rejecting I/O to offline device\n");
1266 			ret = BLKPREP_KILL;
1267 			break;
1268 		case SDEV_DEL:
1269 			/*
1270 			 * If the device is fully deleted, we refuse to
1271 			 * process any commands as well.
1272 			 */
1273 			sdev_printk(KERN_ERR, sdev,
1274 				    "rejecting I/O to dead device\n");
1275 			ret = BLKPREP_KILL;
1276 			break;
1277 		case SDEV_BLOCK:
1278 		case SDEV_CREATED_BLOCK:
1279 			ret = BLKPREP_DEFER;
1280 			break;
1281 		case SDEV_QUIESCE:
1282 			/*
1283 			 * If the devices is blocked we defer normal commands.
1284 			 */
1285 			if (!(req->rq_flags & RQF_PREEMPT))
1286 				ret = BLKPREP_DEFER;
1287 			break;
1288 		default:
1289 			/*
1290 			 * For any other not fully online state we only allow
1291 			 * special commands.  In particular any user initiated
1292 			 * command is not allowed.
1293 			 */
1294 			if (!(req->rq_flags & RQF_PREEMPT))
1295 				ret = BLKPREP_KILL;
1296 			break;
1297 		}
1298 	}
1299 	return ret;
1300 }
1301 
1302 static int
1303 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1304 {
1305 	struct scsi_device *sdev = q->queuedata;
1306 
1307 	switch (ret) {
1308 	case BLKPREP_KILL:
1309 	case BLKPREP_INVALID:
1310 		req->errors = DID_NO_CONNECT << 16;
1311 		/* release the command and kill it */
1312 		if (req->special) {
1313 			struct scsi_cmnd *cmd = req->special;
1314 			scsi_release_buffers(cmd);
1315 			scsi_put_command(cmd);
1316 			put_device(&sdev->sdev_gendev);
1317 			req->special = NULL;
1318 		}
1319 		break;
1320 	case BLKPREP_DEFER:
1321 		/*
1322 		 * If we defer, the blk_peek_request() returns NULL, but the
1323 		 * queue must be restarted, so we schedule a callback to happen
1324 		 * shortly.
1325 		 */
1326 		if (atomic_read(&sdev->device_busy) == 0)
1327 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1328 		break;
1329 	default:
1330 		req->rq_flags |= RQF_DONTPREP;
1331 	}
1332 
1333 	return ret;
1334 }
1335 
1336 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1337 {
1338 	struct scsi_device *sdev = q->queuedata;
1339 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1340 	int ret;
1341 
1342 	ret = scsi_prep_state_check(sdev, req);
1343 	if (ret != BLKPREP_OK)
1344 		goto out;
1345 
1346 	if (!req->special) {
1347 		/* Bail if we can't get a reference to the device */
1348 		if (unlikely(!get_device(&sdev->sdev_gendev))) {
1349 			ret = BLKPREP_DEFER;
1350 			goto out;
1351 		}
1352 
1353 		scsi_init_command(sdev, cmd);
1354 		req->special = cmd;
1355 	}
1356 
1357 	cmd->tag = req->tag;
1358 	cmd->request = req;
1359 	cmd->prot_op = SCSI_PROT_NORMAL;
1360 
1361 	ret = scsi_setup_cmnd(sdev, req);
1362 out:
1363 	return scsi_prep_return(q, req, ret);
1364 }
1365 
1366 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1367 {
1368 	scsi_uninit_cmd(req->special);
1369 }
1370 
1371 /*
1372  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1373  * return 0.
1374  *
1375  * Called with the queue_lock held.
1376  */
1377 static inline int scsi_dev_queue_ready(struct request_queue *q,
1378 				  struct scsi_device *sdev)
1379 {
1380 	unsigned int busy;
1381 
1382 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1383 	if (atomic_read(&sdev->device_blocked)) {
1384 		if (busy)
1385 			goto out_dec;
1386 
1387 		/*
1388 		 * unblock after device_blocked iterates to zero
1389 		 */
1390 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1391 			/*
1392 			 * For the MQ case we take care of this in the caller.
1393 			 */
1394 			if (!q->mq_ops)
1395 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1396 			goto out_dec;
1397 		}
1398 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1399 				   "unblocking device at zero depth\n"));
1400 	}
1401 
1402 	if (busy >= sdev->queue_depth)
1403 		goto out_dec;
1404 
1405 	return 1;
1406 out_dec:
1407 	atomic_dec(&sdev->device_busy);
1408 	return 0;
1409 }
1410 
1411 /*
1412  * scsi_target_queue_ready: checks if there we can send commands to target
1413  * @sdev: scsi device on starget to check.
1414  */
1415 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1416 					   struct scsi_device *sdev)
1417 {
1418 	struct scsi_target *starget = scsi_target(sdev);
1419 	unsigned int busy;
1420 
1421 	if (starget->single_lun) {
1422 		spin_lock_irq(shost->host_lock);
1423 		if (starget->starget_sdev_user &&
1424 		    starget->starget_sdev_user != sdev) {
1425 			spin_unlock_irq(shost->host_lock);
1426 			return 0;
1427 		}
1428 		starget->starget_sdev_user = sdev;
1429 		spin_unlock_irq(shost->host_lock);
1430 	}
1431 
1432 	if (starget->can_queue <= 0)
1433 		return 1;
1434 
1435 	busy = atomic_inc_return(&starget->target_busy) - 1;
1436 	if (atomic_read(&starget->target_blocked) > 0) {
1437 		if (busy)
1438 			goto starved;
1439 
1440 		/*
1441 		 * unblock after target_blocked iterates to zero
1442 		 */
1443 		if (atomic_dec_return(&starget->target_blocked) > 0)
1444 			goto out_dec;
1445 
1446 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1447 				 "unblocking target at zero depth\n"));
1448 	}
1449 
1450 	if (busy >= starget->can_queue)
1451 		goto starved;
1452 
1453 	return 1;
1454 
1455 starved:
1456 	spin_lock_irq(shost->host_lock);
1457 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1458 	spin_unlock_irq(shost->host_lock);
1459 out_dec:
1460 	if (starget->can_queue > 0)
1461 		atomic_dec(&starget->target_busy);
1462 	return 0;
1463 }
1464 
1465 /*
1466  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1467  * return 0. We must end up running the queue again whenever 0 is
1468  * returned, else IO can hang.
1469  */
1470 static inline int scsi_host_queue_ready(struct request_queue *q,
1471 				   struct Scsi_Host *shost,
1472 				   struct scsi_device *sdev)
1473 {
1474 	unsigned int busy;
1475 
1476 	if (scsi_host_in_recovery(shost))
1477 		return 0;
1478 
1479 	busy = atomic_inc_return(&shost->host_busy) - 1;
1480 	if (atomic_read(&shost->host_blocked) > 0) {
1481 		if (busy)
1482 			goto starved;
1483 
1484 		/*
1485 		 * unblock after host_blocked iterates to zero
1486 		 */
1487 		if (atomic_dec_return(&shost->host_blocked) > 0)
1488 			goto out_dec;
1489 
1490 		SCSI_LOG_MLQUEUE(3,
1491 			shost_printk(KERN_INFO, shost,
1492 				     "unblocking host at zero depth\n"));
1493 	}
1494 
1495 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1496 		goto starved;
1497 	if (shost->host_self_blocked)
1498 		goto starved;
1499 
1500 	/* We're OK to process the command, so we can't be starved */
1501 	if (!list_empty(&sdev->starved_entry)) {
1502 		spin_lock_irq(shost->host_lock);
1503 		if (!list_empty(&sdev->starved_entry))
1504 			list_del_init(&sdev->starved_entry);
1505 		spin_unlock_irq(shost->host_lock);
1506 	}
1507 
1508 	return 1;
1509 
1510 starved:
1511 	spin_lock_irq(shost->host_lock);
1512 	if (list_empty(&sdev->starved_entry))
1513 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1514 	spin_unlock_irq(shost->host_lock);
1515 out_dec:
1516 	atomic_dec(&shost->host_busy);
1517 	return 0;
1518 }
1519 
1520 /*
1521  * Busy state exporting function for request stacking drivers.
1522  *
1523  * For efficiency, no lock is taken to check the busy state of
1524  * shost/starget/sdev, since the returned value is not guaranteed and
1525  * may be changed after request stacking drivers call the function,
1526  * regardless of taking lock or not.
1527  *
1528  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1529  * needs to return 'not busy'. Otherwise, request stacking drivers
1530  * may hold requests forever.
1531  */
1532 static int scsi_lld_busy(struct request_queue *q)
1533 {
1534 	struct scsi_device *sdev = q->queuedata;
1535 	struct Scsi_Host *shost;
1536 
1537 	if (blk_queue_dying(q))
1538 		return 0;
1539 
1540 	shost = sdev->host;
1541 
1542 	/*
1543 	 * Ignore host/starget busy state.
1544 	 * Since block layer does not have a concept of fairness across
1545 	 * multiple queues, congestion of host/starget needs to be handled
1546 	 * in SCSI layer.
1547 	 */
1548 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1549 		return 1;
1550 
1551 	return 0;
1552 }
1553 
1554 /*
1555  * Kill a request for a dead device
1556  */
1557 static void scsi_kill_request(struct request *req, struct request_queue *q)
1558 {
1559 	struct scsi_cmnd *cmd = req->special;
1560 	struct scsi_device *sdev;
1561 	struct scsi_target *starget;
1562 	struct Scsi_Host *shost;
1563 
1564 	blk_start_request(req);
1565 
1566 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1567 
1568 	sdev = cmd->device;
1569 	starget = scsi_target(sdev);
1570 	shost = sdev->host;
1571 	scsi_init_cmd_errh(cmd);
1572 	cmd->result = DID_NO_CONNECT << 16;
1573 	atomic_inc(&cmd->device->iorequest_cnt);
1574 
1575 	/*
1576 	 * SCSI request completion path will do scsi_device_unbusy(),
1577 	 * bump busy counts.  To bump the counters, we need to dance
1578 	 * with the locks as normal issue path does.
1579 	 */
1580 	atomic_inc(&sdev->device_busy);
1581 	atomic_inc(&shost->host_busy);
1582 	if (starget->can_queue > 0)
1583 		atomic_inc(&starget->target_busy);
1584 
1585 	blk_complete_request(req);
1586 }
1587 
1588 static void scsi_softirq_done(struct request *rq)
1589 {
1590 	struct scsi_cmnd *cmd = rq->special;
1591 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1592 	int disposition;
1593 
1594 	INIT_LIST_HEAD(&cmd->eh_entry);
1595 
1596 	atomic_inc(&cmd->device->iodone_cnt);
1597 	if (cmd->result)
1598 		atomic_inc(&cmd->device->ioerr_cnt);
1599 
1600 	disposition = scsi_decide_disposition(cmd);
1601 	if (disposition != SUCCESS &&
1602 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1603 		sdev_printk(KERN_ERR, cmd->device,
1604 			    "timing out command, waited %lus\n",
1605 			    wait_for/HZ);
1606 		disposition = SUCCESS;
1607 	}
1608 
1609 	scsi_log_completion(cmd, disposition);
1610 
1611 	switch (disposition) {
1612 		case SUCCESS:
1613 			scsi_finish_command(cmd);
1614 			break;
1615 		case NEEDS_RETRY:
1616 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1617 			break;
1618 		case ADD_TO_MLQUEUE:
1619 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1620 			break;
1621 		default:
1622 			if (!scsi_eh_scmd_add(cmd, 0))
1623 				scsi_finish_command(cmd);
1624 	}
1625 }
1626 
1627 /**
1628  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1629  * @cmd: command block we are dispatching.
1630  *
1631  * Return: nonzero return request was rejected and device's queue needs to be
1632  * plugged.
1633  */
1634 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1635 {
1636 	struct Scsi_Host *host = cmd->device->host;
1637 	int rtn = 0;
1638 
1639 	atomic_inc(&cmd->device->iorequest_cnt);
1640 
1641 	/* check if the device is still usable */
1642 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1643 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1644 		 * returns an immediate error upwards, and signals
1645 		 * that the device is no longer present */
1646 		cmd->result = DID_NO_CONNECT << 16;
1647 		goto done;
1648 	}
1649 
1650 	/* Check to see if the scsi lld made this device blocked. */
1651 	if (unlikely(scsi_device_blocked(cmd->device))) {
1652 		/*
1653 		 * in blocked state, the command is just put back on
1654 		 * the device queue.  The suspend state has already
1655 		 * blocked the queue so future requests should not
1656 		 * occur until the device transitions out of the
1657 		 * suspend state.
1658 		 */
1659 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1660 			"queuecommand : device blocked\n"));
1661 		return SCSI_MLQUEUE_DEVICE_BUSY;
1662 	}
1663 
1664 	/* Store the LUN value in cmnd, if needed. */
1665 	if (cmd->device->lun_in_cdb)
1666 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1667 			       (cmd->device->lun << 5 & 0xe0);
1668 
1669 	scsi_log_send(cmd);
1670 
1671 	/*
1672 	 * Before we queue this command, check if the command
1673 	 * length exceeds what the host adapter can handle.
1674 	 */
1675 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1676 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1677 			       "queuecommand : command too long. "
1678 			       "cdb_size=%d host->max_cmd_len=%d\n",
1679 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1680 		cmd->result = (DID_ABORT << 16);
1681 		goto done;
1682 	}
1683 
1684 	if (unlikely(host->shost_state == SHOST_DEL)) {
1685 		cmd->result = (DID_NO_CONNECT << 16);
1686 		goto done;
1687 
1688 	}
1689 
1690 	trace_scsi_dispatch_cmd_start(cmd);
1691 	rtn = host->hostt->queuecommand(host, cmd);
1692 	if (rtn) {
1693 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1694 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1695 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1696 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1697 
1698 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1699 			"queuecommand : request rejected\n"));
1700 	}
1701 
1702 	return rtn;
1703  done:
1704 	cmd->scsi_done(cmd);
1705 	return 0;
1706 }
1707 
1708 /**
1709  * scsi_done - Invoke completion on finished SCSI command.
1710  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1711  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1712  *
1713  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1714  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1715  * calls blk_complete_request() for further processing.
1716  *
1717  * This function is interrupt context safe.
1718  */
1719 static void scsi_done(struct scsi_cmnd *cmd)
1720 {
1721 	trace_scsi_dispatch_cmd_done(cmd);
1722 	blk_complete_request(cmd->request);
1723 }
1724 
1725 /*
1726  * Function:    scsi_request_fn()
1727  *
1728  * Purpose:     Main strategy routine for SCSI.
1729  *
1730  * Arguments:   q       - Pointer to actual queue.
1731  *
1732  * Returns:     Nothing
1733  *
1734  * Lock status: IO request lock assumed to be held when called.
1735  */
1736 static void scsi_request_fn(struct request_queue *q)
1737 	__releases(q->queue_lock)
1738 	__acquires(q->queue_lock)
1739 {
1740 	struct scsi_device *sdev = q->queuedata;
1741 	struct Scsi_Host *shost;
1742 	struct scsi_cmnd *cmd;
1743 	struct request *req;
1744 
1745 	/*
1746 	 * To start with, we keep looping until the queue is empty, or until
1747 	 * the host is no longer able to accept any more requests.
1748 	 */
1749 	shost = sdev->host;
1750 	for (;;) {
1751 		int rtn;
1752 		/*
1753 		 * get next queueable request.  We do this early to make sure
1754 		 * that the request is fully prepared even if we cannot
1755 		 * accept it.
1756 		 */
1757 		req = blk_peek_request(q);
1758 		if (!req)
1759 			break;
1760 
1761 		if (unlikely(!scsi_device_online(sdev))) {
1762 			sdev_printk(KERN_ERR, sdev,
1763 				    "rejecting I/O to offline device\n");
1764 			scsi_kill_request(req, q);
1765 			continue;
1766 		}
1767 
1768 		if (!scsi_dev_queue_ready(q, sdev))
1769 			break;
1770 
1771 		/*
1772 		 * Remove the request from the request list.
1773 		 */
1774 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1775 			blk_start_request(req);
1776 
1777 		spin_unlock_irq(q->queue_lock);
1778 		cmd = req->special;
1779 		if (unlikely(cmd == NULL)) {
1780 			printk(KERN_CRIT "impossible request in %s.\n"
1781 					 "please mail a stack trace to "
1782 					 "linux-scsi@vger.kernel.org\n",
1783 					 __func__);
1784 			blk_dump_rq_flags(req, "foo");
1785 			BUG();
1786 		}
1787 
1788 		/*
1789 		 * We hit this when the driver is using a host wide
1790 		 * tag map. For device level tag maps the queue_depth check
1791 		 * in the device ready fn would prevent us from trying
1792 		 * to allocate a tag. Since the map is a shared host resource
1793 		 * we add the dev to the starved list so it eventually gets
1794 		 * a run when a tag is freed.
1795 		 */
1796 		if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1797 			spin_lock_irq(shost->host_lock);
1798 			if (list_empty(&sdev->starved_entry))
1799 				list_add_tail(&sdev->starved_entry,
1800 					      &shost->starved_list);
1801 			spin_unlock_irq(shost->host_lock);
1802 			goto not_ready;
1803 		}
1804 
1805 		if (!scsi_target_queue_ready(shost, sdev))
1806 			goto not_ready;
1807 
1808 		if (!scsi_host_queue_ready(q, shost, sdev))
1809 			goto host_not_ready;
1810 
1811 		if (sdev->simple_tags)
1812 			cmd->flags |= SCMD_TAGGED;
1813 		else
1814 			cmd->flags &= ~SCMD_TAGGED;
1815 
1816 		/*
1817 		 * Finally, initialize any error handling parameters, and set up
1818 		 * the timers for timeouts.
1819 		 */
1820 		scsi_init_cmd_errh(cmd);
1821 
1822 		/*
1823 		 * Dispatch the command to the low-level driver.
1824 		 */
1825 		cmd->scsi_done = scsi_done;
1826 		rtn = scsi_dispatch_cmd(cmd);
1827 		if (rtn) {
1828 			scsi_queue_insert(cmd, rtn);
1829 			spin_lock_irq(q->queue_lock);
1830 			goto out_delay;
1831 		}
1832 		spin_lock_irq(q->queue_lock);
1833 	}
1834 
1835 	return;
1836 
1837  host_not_ready:
1838 	if (scsi_target(sdev)->can_queue > 0)
1839 		atomic_dec(&scsi_target(sdev)->target_busy);
1840  not_ready:
1841 	/*
1842 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1843 	 * must return with queue_lock held.
1844 	 *
1845 	 * Decrementing device_busy without checking it is OK, as all such
1846 	 * cases (host limits or settings) should run the queue at some
1847 	 * later time.
1848 	 */
1849 	spin_lock_irq(q->queue_lock);
1850 	blk_requeue_request(q, req);
1851 	atomic_dec(&sdev->device_busy);
1852 out_delay:
1853 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1854 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1855 }
1856 
1857 static inline int prep_to_mq(int ret)
1858 {
1859 	switch (ret) {
1860 	case BLKPREP_OK:
1861 		return BLK_MQ_RQ_QUEUE_OK;
1862 	case BLKPREP_DEFER:
1863 		return BLK_MQ_RQ_QUEUE_BUSY;
1864 	default:
1865 		return BLK_MQ_RQ_QUEUE_ERROR;
1866 	}
1867 }
1868 
1869 static int scsi_mq_prep_fn(struct request *req)
1870 {
1871 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1872 	struct scsi_device *sdev = req->q->queuedata;
1873 	struct Scsi_Host *shost = sdev->host;
1874 	unsigned char *sense_buf = cmd->sense_buffer;
1875 	struct scatterlist *sg;
1876 
1877 	/* zero out the cmd, except for the embedded scsi_request */
1878 	memset((char *)cmd + sizeof(cmd->req), 0,
1879 		sizeof(*cmd) - sizeof(cmd->req));
1880 
1881 	req->special = cmd;
1882 
1883 	cmd->request = req;
1884 	cmd->device = sdev;
1885 	cmd->sense_buffer = sense_buf;
1886 
1887 	cmd->tag = req->tag;
1888 
1889 	cmd->prot_op = SCSI_PROT_NORMAL;
1890 
1891 	INIT_LIST_HEAD(&cmd->list);
1892 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1893 	cmd->jiffies_at_alloc = jiffies;
1894 
1895 	if (shost->use_cmd_list) {
1896 		spin_lock_irq(&sdev->list_lock);
1897 		list_add_tail(&cmd->list, &sdev->cmd_list);
1898 		spin_unlock_irq(&sdev->list_lock);
1899 	}
1900 
1901 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1902 	cmd->sdb.table.sgl = sg;
1903 
1904 	if (scsi_host_get_prot(shost)) {
1905 		cmd->prot_sdb = (void *)sg +
1906 			min_t(unsigned int,
1907 			      shost->sg_tablesize, SG_CHUNK_SIZE) *
1908 			sizeof(struct scatterlist);
1909 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1910 
1911 		cmd->prot_sdb->table.sgl =
1912 			(struct scatterlist *)(cmd->prot_sdb + 1);
1913 	}
1914 
1915 	if (blk_bidi_rq(req)) {
1916 		struct request *next_rq = req->next_rq;
1917 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1918 
1919 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1920 		bidi_sdb->table.sgl =
1921 			(struct scatterlist *)(bidi_sdb + 1);
1922 
1923 		next_rq->special = bidi_sdb;
1924 	}
1925 
1926 	blk_mq_start_request(req);
1927 
1928 	return scsi_setup_cmnd(sdev, req);
1929 }
1930 
1931 static void scsi_mq_done(struct scsi_cmnd *cmd)
1932 {
1933 	trace_scsi_dispatch_cmd_done(cmd);
1934 	blk_mq_complete_request(cmd->request, cmd->request->errors);
1935 }
1936 
1937 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1938 			 const struct blk_mq_queue_data *bd)
1939 {
1940 	struct request *req = bd->rq;
1941 	struct request_queue *q = req->q;
1942 	struct scsi_device *sdev = q->queuedata;
1943 	struct Scsi_Host *shost = sdev->host;
1944 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1945 	int ret;
1946 	int reason;
1947 
1948 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1949 	if (ret != BLK_MQ_RQ_QUEUE_OK)
1950 		goto out;
1951 
1952 	ret = BLK_MQ_RQ_QUEUE_BUSY;
1953 	if (!get_device(&sdev->sdev_gendev))
1954 		goto out;
1955 
1956 	if (!scsi_dev_queue_ready(q, sdev))
1957 		goto out_put_device;
1958 	if (!scsi_target_queue_ready(shost, sdev))
1959 		goto out_dec_device_busy;
1960 	if (!scsi_host_queue_ready(q, shost, sdev))
1961 		goto out_dec_target_busy;
1962 
1963 	if (!(req->rq_flags & RQF_DONTPREP)) {
1964 		ret = prep_to_mq(scsi_mq_prep_fn(req));
1965 		if (ret != BLK_MQ_RQ_QUEUE_OK)
1966 			goto out_dec_host_busy;
1967 		req->rq_flags |= RQF_DONTPREP;
1968 	} else {
1969 		blk_mq_start_request(req);
1970 	}
1971 
1972 	if (sdev->simple_tags)
1973 		cmd->flags |= SCMD_TAGGED;
1974 	else
1975 		cmd->flags &= ~SCMD_TAGGED;
1976 
1977 	scsi_init_cmd_errh(cmd);
1978 	cmd->scsi_done = scsi_mq_done;
1979 
1980 	reason = scsi_dispatch_cmd(cmd);
1981 	if (reason) {
1982 		scsi_set_blocked(cmd, reason);
1983 		ret = BLK_MQ_RQ_QUEUE_BUSY;
1984 		goto out_dec_host_busy;
1985 	}
1986 
1987 	return BLK_MQ_RQ_QUEUE_OK;
1988 
1989 out_dec_host_busy:
1990 	atomic_dec(&shost->host_busy);
1991 out_dec_target_busy:
1992 	if (scsi_target(sdev)->can_queue > 0)
1993 		atomic_dec(&scsi_target(sdev)->target_busy);
1994 out_dec_device_busy:
1995 	atomic_dec(&sdev->device_busy);
1996 out_put_device:
1997 	put_device(&sdev->sdev_gendev);
1998 out:
1999 	switch (ret) {
2000 	case BLK_MQ_RQ_QUEUE_BUSY:
2001 		if (atomic_read(&sdev->device_busy) == 0 &&
2002 		    !scsi_device_blocked(sdev))
2003 			blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
2004 		break;
2005 	case BLK_MQ_RQ_QUEUE_ERROR:
2006 		/*
2007 		 * Make sure to release all allocated ressources when
2008 		 * we hit an error, as we will never see this command
2009 		 * again.
2010 		 */
2011 		if (req->rq_flags & RQF_DONTPREP)
2012 			scsi_mq_uninit_cmd(cmd);
2013 		break;
2014 	default:
2015 		break;
2016 	}
2017 	return ret;
2018 }
2019 
2020 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2021 		bool reserved)
2022 {
2023 	if (reserved)
2024 		return BLK_EH_RESET_TIMER;
2025 	return scsi_times_out(req);
2026 }
2027 
2028 static int scsi_init_request(void *data, struct request *rq,
2029 		unsigned int hctx_idx, unsigned int request_idx,
2030 		unsigned int numa_node)
2031 {
2032 	struct Scsi_Host *shost = data;
2033 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2034 
2035 	cmd->sense_buffer =
2036 		scsi_alloc_sense_buffer(shost, GFP_KERNEL, numa_node);
2037 	if (!cmd->sense_buffer)
2038 		return -ENOMEM;
2039 	cmd->req.sense = cmd->sense_buffer;
2040 	return 0;
2041 }
2042 
2043 static void scsi_exit_request(void *data, struct request *rq,
2044 		unsigned int hctx_idx, unsigned int request_idx)
2045 {
2046 	struct Scsi_Host *shost = data;
2047 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2048 
2049 	scsi_free_sense_buffer(shost, cmd->sense_buffer);
2050 }
2051 
2052 static int scsi_map_queues(struct blk_mq_tag_set *set)
2053 {
2054 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2055 
2056 	if (shost->hostt->map_queues)
2057 		return shost->hostt->map_queues(shost);
2058 	return blk_mq_map_queues(set);
2059 }
2060 
2061 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2062 {
2063 	struct device *host_dev;
2064 	u64 bounce_limit = 0xffffffff;
2065 
2066 	if (shost->unchecked_isa_dma)
2067 		return BLK_BOUNCE_ISA;
2068 	/*
2069 	 * Platforms with virtual-DMA translation
2070 	 * hardware have no practical limit.
2071 	 */
2072 	if (!PCI_DMA_BUS_IS_PHYS)
2073 		return BLK_BOUNCE_ANY;
2074 
2075 	host_dev = scsi_get_device(shost);
2076 	if (host_dev && host_dev->dma_mask)
2077 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2078 
2079 	return bounce_limit;
2080 }
2081 
2082 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2083 {
2084 	struct device *dev = shost->dma_dev;
2085 
2086 	/*
2087 	 * this limit is imposed by hardware restrictions
2088 	 */
2089 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2090 					SG_MAX_SEGMENTS));
2091 
2092 	if (scsi_host_prot_dma(shost)) {
2093 		shost->sg_prot_tablesize =
2094 			min_not_zero(shost->sg_prot_tablesize,
2095 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2096 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2097 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2098 	}
2099 
2100 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2101 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2102 	blk_queue_segment_boundary(q, shost->dma_boundary);
2103 	dma_set_seg_boundary(dev, shost->dma_boundary);
2104 
2105 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2106 
2107 	if (!shost->use_clustering)
2108 		q->limits.cluster = 0;
2109 
2110 	/*
2111 	 * set a reasonable default alignment on word boundaries: the
2112 	 * host and device may alter it using
2113 	 * blk_queue_update_dma_alignment() later.
2114 	 */
2115 	blk_queue_dma_alignment(q, 0x03);
2116 }
2117 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2118 
2119 static int scsi_init_rq(struct request_queue *q, struct request *rq, gfp_t gfp)
2120 {
2121 	struct Scsi_Host *shost = q->rq_alloc_data;
2122 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2123 
2124 	memset(cmd, 0, sizeof(*cmd));
2125 
2126 	cmd->sense_buffer = scsi_alloc_sense_buffer(shost, gfp, NUMA_NO_NODE);
2127 	if (!cmd->sense_buffer)
2128 		goto fail;
2129 	cmd->req.sense = cmd->sense_buffer;
2130 
2131 	if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2132 		cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2133 		if (!cmd->prot_sdb)
2134 			goto fail_free_sense;
2135 	}
2136 
2137 	return 0;
2138 
2139 fail_free_sense:
2140 	scsi_free_sense_buffer(shost, cmd->sense_buffer);
2141 fail:
2142 	return -ENOMEM;
2143 }
2144 
2145 static void scsi_exit_rq(struct request_queue *q, struct request *rq)
2146 {
2147 	struct Scsi_Host *shost = q->rq_alloc_data;
2148 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2149 
2150 	if (cmd->prot_sdb)
2151 		kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2152 	scsi_free_sense_buffer(shost, cmd->sense_buffer);
2153 }
2154 
2155 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2156 {
2157 	struct Scsi_Host *shost = sdev->host;
2158 	struct request_queue *q;
2159 
2160 	q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2161 	if (!q)
2162 		return NULL;
2163 	q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2164 	q->rq_alloc_data = shost;
2165 	q->request_fn = scsi_request_fn;
2166 	q->init_rq_fn = scsi_init_rq;
2167 	q->exit_rq_fn = scsi_exit_rq;
2168 
2169 	if (blk_init_allocated_queue(q) < 0) {
2170 		blk_cleanup_queue(q);
2171 		return NULL;
2172 	}
2173 
2174 	__scsi_init_queue(shost, q);
2175 	blk_queue_prep_rq(q, scsi_prep_fn);
2176 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2177 	blk_queue_softirq_done(q, scsi_softirq_done);
2178 	blk_queue_rq_timed_out(q, scsi_times_out);
2179 	blk_queue_lld_busy(q, scsi_lld_busy);
2180 	return q;
2181 }
2182 
2183 static struct blk_mq_ops scsi_mq_ops = {
2184 	.queue_rq	= scsi_queue_rq,
2185 	.complete	= scsi_softirq_done,
2186 	.timeout	= scsi_timeout,
2187 	.init_request	= scsi_init_request,
2188 	.exit_request	= scsi_exit_request,
2189 	.map_queues	= scsi_map_queues,
2190 };
2191 
2192 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2193 {
2194 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2195 	if (IS_ERR(sdev->request_queue))
2196 		return NULL;
2197 
2198 	sdev->request_queue->queuedata = sdev;
2199 	__scsi_init_queue(sdev->host, sdev->request_queue);
2200 	return sdev->request_queue;
2201 }
2202 
2203 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2204 {
2205 	unsigned int cmd_size, sgl_size, tbl_size;
2206 
2207 	tbl_size = shost->sg_tablesize;
2208 	if (tbl_size > SG_CHUNK_SIZE)
2209 		tbl_size = SG_CHUNK_SIZE;
2210 	sgl_size = tbl_size * sizeof(struct scatterlist);
2211 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2212 	if (scsi_host_get_prot(shost))
2213 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2214 
2215 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2216 	shost->tag_set.ops = &scsi_mq_ops;
2217 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2218 	shost->tag_set.queue_depth = shost->can_queue;
2219 	shost->tag_set.cmd_size = cmd_size;
2220 	shost->tag_set.numa_node = NUMA_NO_NODE;
2221 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2222 	shost->tag_set.flags |=
2223 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2224 	shost->tag_set.driver_data = shost;
2225 
2226 	return blk_mq_alloc_tag_set(&shost->tag_set);
2227 }
2228 
2229 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2230 {
2231 	blk_mq_free_tag_set(&shost->tag_set);
2232 }
2233 
2234 /*
2235  * Function:    scsi_block_requests()
2236  *
2237  * Purpose:     Utility function used by low-level drivers to prevent further
2238  *		commands from being queued to the device.
2239  *
2240  * Arguments:   shost       - Host in question
2241  *
2242  * Returns:     Nothing
2243  *
2244  * Lock status: No locks are assumed held.
2245  *
2246  * Notes:       There is no timer nor any other means by which the requests
2247  *		get unblocked other than the low-level driver calling
2248  *		scsi_unblock_requests().
2249  */
2250 void scsi_block_requests(struct Scsi_Host *shost)
2251 {
2252 	shost->host_self_blocked = 1;
2253 }
2254 EXPORT_SYMBOL(scsi_block_requests);
2255 
2256 /*
2257  * Function:    scsi_unblock_requests()
2258  *
2259  * Purpose:     Utility function used by low-level drivers to allow further
2260  *		commands from being queued to the device.
2261  *
2262  * Arguments:   shost       - Host in question
2263  *
2264  * Returns:     Nothing
2265  *
2266  * Lock status: No locks are assumed held.
2267  *
2268  * Notes:       There is no timer nor any other means by which the requests
2269  *		get unblocked other than the low-level driver calling
2270  *		scsi_unblock_requests().
2271  *
2272  *		This is done as an API function so that changes to the
2273  *		internals of the scsi mid-layer won't require wholesale
2274  *		changes to drivers that use this feature.
2275  */
2276 void scsi_unblock_requests(struct Scsi_Host *shost)
2277 {
2278 	shost->host_self_blocked = 0;
2279 	scsi_run_host_queues(shost);
2280 }
2281 EXPORT_SYMBOL(scsi_unblock_requests);
2282 
2283 int __init scsi_init_queue(void)
2284 {
2285 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2286 					   sizeof(struct scsi_data_buffer),
2287 					   0, 0, NULL);
2288 	if (!scsi_sdb_cache) {
2289 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2290 		return -ENOMEM;
2291 	}
2292 
2293 	return 0;
2294 }
2295 
2296 void scsi_exit_queue(void)
2297 {
2298 	kmem_cache_destroy(scsi_sense_cache);
2299 	kmem_cache_destroy(scsi_sense_isadma_cache);
2300 	kmem_cache_destroy(scsi_sdb_cache);
2301 }
2302 
2303 /**
2304  *	scsi_mode_select - issue a mode select
2305  *	@sdev:	SCSI device to be queried
2306  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2307  *	@sp:	Save page bit (0 == don't save, 1 == save)
2308  *	@modepage: mode page being requested
2309  *	@buffer: request buffer (may not be smaller than eight bytes)
2310  *	@len:	length of request buffer.
2311  *	@timeout: command timeout
2312  *	@retries: number of retries before failing
2313  *	@data: returns a structure abstracting the mode header data
2314  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2315  *		must be SCSI_SENSE_BUFFERSIZE big.
2316  *
2317  *	Returns zero if successful; negative error number or scsi
2318  *	status on error
2319  *
2320  */
2321 int
2322 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2323 		 unsigned char *buffer, int len, int timeout, int retries,
2324 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2325 {
2326 	unsigned char cmd[10];
2327 	unsigned char *real_buffer;
2328 	int ret;
2329 
2330 	memset(cmd, 0, sizeof(cmd));
2331 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2332 
2333 	if (sdev->use_10_for_ms) {
2334 		if (len > 65535)
2335 			return -EINVAL;
2336 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2337 		if (!real_buffer)
2338 			return -ENOMEM;
2339 		memcpy(real_buffer + 8, buffer, len);
2340 		len += 8;
2341 		real_buffer[0] = 0;
2342 		real_buffer[1] = 0;
2343 		real_buffer[2] = data->medium_type;
2344 		real_buffer[3] = data->device_specific;
2345 		real_buffer[4] = data->longlba ? 0x01 : 0;
2346 		real_buffer[5] = 0;
2347 		real_buffer[6] = data->block_descriptor_length >> 8;
2348 		real_buffer[7] = data->block_descriptor_length;
2349 
2350 		cmd[0] = MODE_SELECT_10;
2351 		cmd[7] = len >> 8;
2352 		cmd[8] = len;
2353 	} else {
2354 		if (len > 255 || data->block_descriptor_length > 255 ||
2355 		    data->longlba)
2356 			return -EINVAL;
2357 
2358 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2359 		if (!real_buffer)
2360 			return -ENOMEM;
2361 		memcpy(real_buffer + 4, buffer, len);
2362 		len += 4;
2363 		real_buffer[0] = 0;
2364 		real_buffer[1] = data->medium_type;
2365 		real_buffer[2] = data->device_specific;
2366 		real_buffer[3] = data->block_descriptor_length;
2367 
2368 
2369 		cmd[0] = MODE_SELECT;
2370 		cmd[4] = len;
2371 	}
2372 
2373 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2374 			       sshdr, timeout, retries, NULL);
2375 	kfree(real_buffer);
2376 	return ret;
2377 }
2378 EXPORT_SYMBOL_GPL(scsi_mode_select);
2379 
2380 /**
2381  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2382  *	@sdev:	SCSI device to be queried
2383  *	@dbd:	set if mode sense will allow block descriptors to be returned
2384  *	@modepage: mode page being requested
2385  *	@buffer: request buffer (may not be smaller than eight bytes)
2386  *	@len:	length of request buffer.
2387  *	@timeout: command timeout
2388  *	@retries: number of retries before failing
2389  *	@data: returns a structure abstracting the mode header data
2390  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2391  *		must be SCSI_SENSE_BUFFERSIZE big.
2392  *
2393  *	Returns zero if unsuccessful, or the header offset (either 4
2394  *	or 8 depending on whether a six or ten byte command was
2395  *	issued) if successful.
2396  */
2397 int
2398 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2399 		  unsigned char *buffer, int len, int timeout, int retries,
2400 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2401 {
2402 	unsigned char cmd[12];
2403 	int use_10_for_ms;
2404 	int header_length;
2405 	int result, retry_count = retries;
2406 	struct scsi_sense_hdr my_sshdr;
2407 
2408 	memset(data, 0, sizeof(*data));
2409 	memset(&cmd[0], 0, 12);
2410 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2411 	cmd[2] = modepage;
2412 
2413 	/* caller might not be interested in sense, but we need it */
2414 	if (!sshdr)
2415 		sshdr = &my_sshdr;
2416 
2417  retry:
2418 	use_10_for_ms = sdev->use_10_for_ms;
2419 
2420 	if (use_10_for_ms) {
2421 		if (len < 8)
2422 			len = 8;
2423 
2424 		cmd[0] = MODE_SENSE_10;
2425 		cmd[8] = len;
2426 		header_length = 8;
2427 	} else {
2428 		if (len < 4)
2429 			len = 4;
2430 
2431 		cmd[0] = MODE_SENSE;
2432 		cmd[4] = len;
2433 		header_length = 4;
2434 	}
2435 
2436 	memset(buffer, 0, len);
2437 
2438 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2439 				  sshdr, timeout, retries, NULL);
2440 
2441 	/* This code looks awful: what it's doing is making sure an
2442 	 * ILLEGAL REQUEST sense return identifies the actual command
2443 	 * byte as the problem.  MODE_SENSE commands can return
2444 	 * ILLEGAL REQUEST if the code page isn't supported */
2445 
2446 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2447 	    (driver_byte(result) & DRIVER_SENSE)) {
2448 		if (scsi_sense_valid(sshdr)) {
2449 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2450 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2451 				/*
2452 				 * Invalid command operation code
2453 				 */
2454 				sdev->use_10_for_ms = 0;
2455 				goto retry;
2456 			}
2457 		}
2458 	}
2459 
2460 	if(scsi_status_is_good(result)) {
2461 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2462 			     (modepage == 6 || modepage == 8))) {
2463 			/* Initio breakage? */
2464 			header_length = 0;
2465 			data->length = 13;
2466 			data->medium_type = 0;
2467 			data->device_specific = 0;
2468 			data->longlba = 0;
2469 			data->block_descriptor_length = 0;
2470 		} else if(use_10_for_ms) {
2471 			data->length = buffer[0]*256 + buffer[1] + 2;
2472 			data->medium_type = buffer[2];
2473 			data->device_specific = buffer[3];
2474 			data->longlba = buffer[4] & 0x01;
2475 			data->block_descriptor_length = buffer[6]*256
2476 				+ buffer[7];
2477 		} else {
2478 			data->length = buffer[0] + 1;
2479 			data->medium_type = buffer[1];
2480 			data->device_specific = buffer[2];
2481 			data->block_descriptor_length = buffer[3];
2482 		}
2483 		data->header_length = header_length;
2484 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2485 		   scsi_sense_valid(sshdr) &&
2486 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2487 		retry_count--;
2488 		goto retry;
2489 	}
2490 
2491 	return result;
2492 }
2493 EXPORT_SYMBOL(scsi_mode_sense);
2494 
2495 /**
2496  *	scsi_test_unit_ready - test if unit is ready
2497  *	@sdev:	scsi device to change the state of.
2498  *	@timeout: command timeout
2499  *	@retries: number of retries before failing
2500  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2501  *		returning sense. Make sure that this is cleared before passing
2502  *		in.
2503  *
2504  *	Returns zero if unsuccessful or an error if TUR failed.  For
2505  *	removable media, UNIT_ATTENTION sets ->changed flag.
2506  **/
2507 int
2508 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2509 		     struct scsi_sense_hdr *sshdr_external)
2510 {
2511 	char cmd[] = {
2512 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2513 	};
2514 	struct scsi_sense_hdr *sshdr;
2515 	int result;
2516 
2517 	if (!sshdr_external)
2518 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2519 	else
2520 		sshdr = sshdr_external;
2521 
2522 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2523 	do {
2524 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2525 					  timeout, retries, NULL);
2526 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2527 		    sshdr->sense_key == UNIT_ATTENTION)
2528 			sdev->changed = 1;
2529 	} while (scsi_sense_valid(sshdr) &&
2530 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2531 
2532 	if (!sshdr_external)
2533 		kfree(sshdr);
2534 	return result;
2535 }
2536 EXPORT_SYMBOL(scsi_test_unit_ready);
2537 
2538 /**
2539  *	scsi_device_set_state - Take the given device through the device state model.
2540  *	@sdev:	scsi device to change the state of.
2541  *	@state:	state to change to.
2542  *
2543  *	Returns zero if unsuccessful or an error if the requested
2544  *	transition is illegal.
2545  */
2546 int
2547 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2548 {
2549 	enum scsi_device_state oldstate = sdev->sdev_state;
2550 
2551 	if (state == oldstate)
2552 		return 0;
2553 
2554 	switch (state) {
2555 	case SDEV_CREATED:
2556 		switch (oldstate) {
2557 		case SDEV_CREATED_BLOCK:
2558 			break;
2559 		default:
2560 			goto illegal;
2561 		}
2562 		break;
2563 
2564 	case SDEV_RUNNING:
2565 		switch (oldstate) {
2566 		case SDEV_CREATED:
2567 		case SDEV_OFFLINE:
2568 		case SDEV_TRANSPORT_OFFLINE:
2569 		case SDEV_QUIESCE:
2570 		case SDEV_BLOCK:
2571 			break;
2572 		default:
2573 			goto illegal;
2574 		}
2575 		break;
2576 
2577 	case SDEV_QUIESCE:
2578 		switch (oldstate) {
2579 		case SDEV_RUNNING:
2580 		case SDEV_OFFLINE:
2581 		case SDEV_TRANSPORT_OFFLINE:
2582 			break;
2583 		default:
2584 			goto illegal;
2585 		}
2586 		break;
2587 
2588 	case SDEV_OFFLINE:
2589 	case SDEV_TRANSPORT_OFFLINE:
2590 		switch (oldstate) {
2591 		case SDEV_CREATED:
2592 		case SDEV_RUNNING:
2593 		case SDEV_QUIESCE:
2594 		case SDEV_BLOCK:
2595 			break;
2596 		default:
2597 			goto illegal;
2598 		}
2599 		break;
2600 
2601 	case SDEV_BLOCK:
2602 		switch (oldstate) {
2603 		case SDEV_RUNNING:
2604 		case SDEV_CREATED_BLOCK:
2605 			break;
2606 		default:
2607 			goto illegal;
2608 		}
2609 		break;
2610 
2611 	case SDEV_CREATED_BLOCK:
2612 		switch (oldstate) {
2613 		case SDEV_CREATED:
2614 			break;
2615 		default:
2616 			goto illegal;
2617 		}
2618 		break;
2619 
2620 	case SDEV_CANCEL:
2621 		switch (oldstate) {
2622 		case SDEV_CREATED:
2623 		case SDEV_RUNNING:
2624 		case SDEV_QUIESCE:
2625 		case SDEV_OFFLINE:
2626 		case SDEV_TRANSPORT_OFFLINE:
2627 		case SDEV_BLOCK:
2628 			break;
2629 		default:
2630 			goto illegal;
2631 		}
2632 		break;
2633 
2634 	case SDEV_DEL:
2635 		switch (oldstate) {
2636 		case SDEV_CREATED:
2637 		case SDEV_RUNNING:
2638 		case SDEV_OFFLINE:
2639 		case SDEV_TRANSPORT_OFFLINE:
2640 		case SDEV_CANCEL:
2641 		case SDEV_CREATED_BLOCK:
2642 			break;
2643 		default:
2644 			goto illegal;
2645 		}
2646 		break;
2647 
2648 	}
2649 	sdev->sdev_state = state;
2650 	return 0;
2651 
2652  illegal:
2653 	SCSI_LOG_ERROR_RECOVERY(1,
2654 				sdev_printk(KERN_ERR, sdev,
2655 					    "Illegal state transition %s->%s",
2656 					    scsi_device_state_name(oldstate),
2657 					    scsi_device_state_name(state))
2658 				);
2659 	return -EINVAL;
2660 }
2661 EXPORT_SYMBOL(scsi_device_set_state);
2662 
2663 /**
2664  * 	sdev_evt_emit - emit a single SCSI device uevent
2665  *	@sdev: associated SCSI device
2666  *	@evt: event to emit
2667  *
2668  *	Send a single uevent (scsi_event) to the associated scsi_device.
2669  */
2670 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2671 {
2672 	int idx = 0;
2673 	char *envp[3];
2674 
2675 	switch (evt->evt_type) {
2676 	case SDEV_EVT_MEDIA_CHANGE:
2677 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2678 		break;
2679 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2680 		scsi_rescan_device(&sdev->sdev_gendev);
2681 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2682 		break;
2683 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2684 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2685 		break;
2686 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2687 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2688 		break;
2689 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2690 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2691 		break;
2692 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2693 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2694 		break;
2695 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2696 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2697 		break;
2698 	default:
2699 		/* do nothing */
2700 		break;
2701 	}
2702 
2703 	envp[idx++] = NULL;
2704 
2705 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2706 }
2707 
2708 /**
2709  * 	sdev_evt_thread - send a uevent for each scsi event
2710  *	@work: work struct for scsi_device
2711  *
2712  *	Dispatch queued events to their associated scsi_device kobjects
2713  *	as uevents.
2714  */
2715 void scsi_evt_thread(struct work_struct *work)
2716 {
2717 	struct scsi_device *sdev;
2718 	enum scsi_device_event evt_type;
2719 	LIST_HEAD(event_list);
2720 
2721 	sdev = container_of(work, struct scsi_device, event_work);
2722 
2723 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2724 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2725 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2726 
2727 	while (1) {
2728 		struct scsi_event *evt;
2729 		struct list_head *this, *tmp;
2730 		unsigned long flags;
2731 
2732 		spin_lock_irqsave(&sdev->list_lock, flags);
2733 		list_splice_init(&sdev->event_list, &event_list);
2734 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2735 
2736 		if (list_empty(&event_list))
2737 			break;
2738 
2739 		list_for_each_safe(this, tmp, &event_list) {
2740 			evt = list_entry(this, struct scsi_event, node);
2741 			list_del(&evt->node);
2742 			scsi_evt_emit(sdev, evt);
2743 			kfree(evt);
2744 		}
2745 	}
2746 }
2747 
2748 /**
2749  * 	sdev_evt_send - send asserted event to uevent thread
2750  *	@sdev: scsi_device event occurred on
2751  *	@evt: event to send
2752  *
2753  *	Assert scsi device event asynchronously.
2754  */
2755 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2756 {
2757 	unsigned long flags;
2758 
2759 #if 0
2760 	/* FIXME: currently this check eliminates all media change events
2761 	 * for polled devices.  Need to update to discriminate between AN
2762 	 * and polled events */
2763 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2764 		kfree(evt);
2765 		return;
2766 	}
2767 #endif
2768 
2769 	spin_lock_irqsave(&sdev->list_lock, flags);
2770 	list_add_tail(&evt->node, &sdev->event_list);
2771 	schedule_work(&sdev->event_work);
2772 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2773 }
2774 EXPORT_SYMBOL_GPL(sdev_evt_send);
2775 
2776 /**
2777  * 	sdev_evt_alloc - allocate a new scsi event
2778  *	@evt_type: type of event to allocate
2779  *	@gfpflags: GFP flags for allocation
2780  *
2781  *	Allocates and returns a new scsi_event.
2782  */
2783 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2784 				  gfp_t gfpflags)
2785 {
2786 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2787 	if (!evt)
2788 		return NULL;
2789 
2790 	evt->evt_type = evt_type;
2791 	INIT_LIST_HEAD(&evt->node);
2792 
2793 	/* evt_type-specific initialization, if any */
2794 	switch (evt_type) {
2795 	case SDEV_EVT_MEDIA_CHANGE:
2796 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2797 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2798 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2799 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2800 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2801 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2802 	default:
2803 		/* do nothing */
2804 		break;
2805 	}
2806 
2807 	return evt;
2808 }
2809 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2810 
2811 /**
2812  * 	sdev_evt_send_simple - send asserted event to uevent thread
2813  *	@sdev: scsi_device event occurred on
2814  *	@evt_type: type of event to send
2815  *	@gfpflags: GFP flags for allocation
2816  *
2817  *	Assert scsi device event asynchronously, given an event type.
2818  */
2819 void sdev_evt_send_simple(struct scsi_device *sdev,
2820 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2821 {
2822 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2823 	if (!evt) {
2824 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2825 			    evt_type);
2826 		return;
2827 	}
2828 
2829 	sdev_evt_send(sdev, evt);
2830 }
2831 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2832 
2833 /**
2834  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2835  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2836  */
2837 static int scsi_request_fn_active(struct scsi_device *sdev)
2838 {
2839 	struct request_queue *q = sdev->request_queue;
2840 	int request_fn_active;
2841 
2842 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2843 
2844 	spin_lock_irq(q->queue_lock);
2845 	request_fn_active = q->request_fn_active;
2846 	spin_unlock_irq(q->queue_lock);
2847 
2848 	return request_fn_active;
2849 }
2850 
2851 /**
2852  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2853  * @sdev: SCSI device pointer.
2854  *
2855  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2856  * invoked from scsi_request_fn() have finished.
2857  */
2858 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2859 {
2860 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2861 
2862 	while (scsi_request_fn_active(sdev))
2863 		msleep(20);
2864 }
2865 
2866 /**
2867  *	scsi_device_quiesce - Block user issued commands.
2868  *	@sdev:	scsi device to quiesce.
2869  *
2870  *	This works by trying to transition to the SDEV_QUIESCE state
2871  *	(which must be a legal transition).  When the device is in this
2872  *	state, only special requests will be accepted, all others will
2873  *	be deferred.  Since special requests may also be requeued requests,
2874  *	a successful return doesn't guarantee the device will be
2875  *	totally quiescent.
2876  *
2877  *	Must be called with user context, may sleep.
2878  *
2879  *	Returns zero if unsuccessful or an error if not.
2880  */
2881 int
2882 scsi_device_quiesce(struct scsi_device *sdev)
2883 {
2884 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2885 	if (err)
2886 		return err;
2887 
2888 	scsi_run_queue(sdev->request_queue);
2889 	while (atomic_read(&sdev->device_busy)) {
2890 		msleep_interruptible(200);
2891 		scsi_run_queue(sdev->request_queue);
2892 	}
2893 	return 0;
2894 }
2895 EXPORT_SYMBOL(scsi_device_quiesce);
2896 
2897 /**
2898  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2899  *	@sdev:	scsi device to resume.
2900  *
2901  *	Moves the device from quiesced back to running and restarts the
2902  *	queues.
2903  *
2904  *	Must be called with user context, may sleep.
2905  */
2906 void scsi_device_resume(struct scsi_device *sdev)
2907 {
2908 	/* check if the device state was mutated prior to resume, and if
2909 	 * so assume the state is being managed elsewhere (for example
2910 	 * device deleted during suspend)
2911 	 */
2912 	if (sdev->sdev_state != SDEV_QUIESCE ||
2913 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2914 		return;
2915 	scsi_run_queue(sdev->request_queue);
2916 }
2917 EXPORT_SYMBOL(scsi_device_resume);
2918 
2919 static void
2920 device_quiesce_fn(struct scsi_device *sdev, void *data)
2921 {
2922 	scsi_device_quiesce(sdev);
2923 }
2924 
2925 void
2926 scsi_target_quiesce(struct scsi_target *starget)
2927 {
2928 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2929 }
2930 EXPORT_SYMBOL(scsi_target_quiesce);
2931 
2932 static void
2933 device_resume_fn(struct scsi_device *sdev, void *data)
2934 {
2935 	scsi_device_resume(sdev);
2936 }
2937 
2938 void
2939 scsi_target_resume(struct scsi_target *starget)
2940 {
2941 	starget_for_each_device(starget, NULL, device_resume_fn);
2942 }
2943 EXPORT_SYMBOL(scsi_target_resume);
2944 
2945 /**
2946  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2947  * @sdev:	device to block
2948  *
2949  * Block request made by scsi lld's to temporarily stop all
2950  * scsi commands on the specified device. May sleep.
2951  *
2952  * Returns zero if successful or error if not
2953  *
2954  * Notes:
2955  *	This routine transitions the device to the SDEV_BLOCK state
2956  *	(which must be a legal transition).  When the device is in this
2957  *	state, all commands are deferred until the scsi lld reenables
2958  *	the device with scsi_device_unblock or device_block_tmo fires.
2959  *
2960  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
2961  * scsi_internal_device_block() has blocked a SCSI device and also
2962  * remove the rport mutex lock and unlock calls from srp_queuecommand().
2963  */
2964 int
2965 scsi_internal_device_block(struct scsi_device *sdev)
2966 {
2967 	struct request_queue *q = sdev->request_queue;
2968 	unsigned long flags;
2969 	int err = 0;
2970 
2971 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2972 	if (err) {
2973 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2974 
2975 		if (err)
2976 			return err;
2977 	}
2978 
2979 	/*
2980 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2981 	 * block layer from calling the midlayer with this device's
2982 	 * request queue.
2983 	 */
2984 	if (q->mq_ops) {
2985 		blk_mq_quiesce_queue(q);
2986 	} else {
2987 		spin_lock_irqsave(q->queue_lock, flags);
2988 		blk_stop_queue(q);
2989 		spin_unlock_irqrestore(q->queue_lock, flags);
2990 		scsi_wait_for_queuecommand(sdev);
2991 	}
2992 
2993 	return 0;
2994 }
2995 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2996 
2997 /**
2998  * scsi_internal_device_unblock - resume a device after a block request
2999  * @sdev:	device to resume
3000  * @new_state:	state to set devices to after unblocking
3001  *
3002  * Called by scsi lld's or the midlayer to restart the device queue
3003  * for the previously suspended scsi device.  Called from interrupt or
3004  * normal process context.
3005  *
3006  * Returns zero if successful or error if not.
3007  *
3008  * Notes:
3009  *	This routine transitions the device to the SDEV_RUNNING state
3010  *	or to one of the offline states (which must be a legal transition)
3011  *	allowing the midlayer to goose the queue for this device.
3012  */
3013 int
3014 scsi_internal_device_unblock(struct scsi_device *sdev,
3015 			     enum scsi_device_state new_state)
3016 {
3017 	struct request_queue *q = sdev->request_queue;
3018 	unsigned long flags;
3019 
3020 	/*
3021 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3022 	 * offlined states and goose the device queue if successful.
3023 	 */
3024 	if ((sdev->sdev_state == SDEV_BLOCK) ||
3025 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3026 		sdev->sdev_state = new_state;
3027 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3028 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3029 		    new_state == SDEV_OFFLINE)
3030 			sdev->sdev_state = new_state;
3031 		else
3032 			sdev->sdev_state = SDEV_CREATED;
3033 	} else if (sdev->sdev_state != SDEV_CANCEL &&
3034 		 sdev->sdev_state != SDEV_OFFLINE)
3035 		return -EINVAL;
3036 
3037 	if (q->mq_ops) {
3038 		blk_mq_start_stopped_hw_queues(q, false);
3039 	} else {
3040 		spin_lock_irqsave(q->queue_lock, flags);
3041 		blk_start_queue(q);
3042 		spin_unlock_irqrestore(q->queue_lock, flags);
3043 	}
3044 
3045 	return 0;
3046 }
3047 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3048 
3049 static void
3050 device_block(struct scsi_device *sdev, void *data)
3051 {
3052 	scsi_internal_device_block(sdev);
3053 }
3054 
3055 static int
3056 target_block(struct device *dev, void *data)
3057 {
3058 	if (scsi_is_target_device(dev))
3059 		starget_for_each_device(to_scsi_target(dev), NULL,
3060 					device_block);
3061 	return 0;
3062 }
3063 
3064 void
3065 scsi_target_block(struct device *dev)
3066 {
3067 	if (scsi_is_target_device(dev))
3068 		starget_for_each_device(to_scsi_target(dev), NULL,
3069 					device_block);
3070 	else
3071 		device_for_each_child(dev, NULL, target_block);
3072 }
3073 EXPORT_SYMBOL_GPL(scsi_target_block);
3074 
3075 static void
3076 device_unblock(struct scsi_device *sdev, void *data)
3077 {
3078 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3079 }
3080 
3081 static int
3082 target_unblock(struct device *dev, void *data)
3083 {
3084 	if (scsi_is_target_device(dev))
3085 		starget_for_each_device(to_scsi_target(dev), data,
3086 					device_unblock);
3087 	return 0;
3088 }
3089 
3090 void
3091 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3092 {
3093 	if (scsi_is_target_device(dev))
3094 		starget_for_each_device(to_scsi_target(dev), &new_state,
3095 					device_unblock);
3096 	else
3097 		device_for_each_child(dev, &new_state, target_unblock);
3098 }
3099 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3100 
3101 /**
3102  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3103  * @sgl:	scatter-gather list
3104  * @sg_count:	number of segments in sg
3105  * @offset:	offset in bytes into sg, on return offset into the mapped area
3106  * @len:	bytes to map, on return number of bytes mapped
3107  *
3108  * Returns virtual address of the start of the mapped page
3109  */
3110 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3111 			  size_t *offset, size_t *len)
3112 {
3113 	int i;
3114 	size_t sg_len = 0, len_complete = 0;
3115 	struct scatterlist *sg;
3116 	struct page *page;
3117 
3118 	WARN_ON(!irqs_disabled());
3119 
3120 	for_each_sg(sgl, sg, sg_count, i) {
3121 		len_complete = sg_len; /* Complete sg-entries */
3122 		sg_len += sg->length;
3123 		if (sg_len > *offset)
3124 			break;
3125 	}
3126 
3127 	if (unlikely(i == sg_count)) {
3128 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3129 			"elements %d\n",
3130 		       __func__, sg_len, *offset, sg_count);
3131 		WARN_ON(1);
3132 		return NULL;
3133 	}
3134 
3135 	/* Offset starting from the beginning of first page in this sg-entry */
3136 	*offset = *offset - len_complete + sg->offset;
3137 
3138 	/* Assumption: contiguous pages can be accessed as "page + i" */
3139 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3140 	*offset &= ~PAGE_MASK;
3141 
3142 	/* Bytes in this sg-entry from *offset to the end of the page */
3143 	sg_len = PAGE_SIZE - *offset;
3144 	if (*len > sg_len)
3145 		*len = sg_len;
3146 
3147 	return kmap_atomic(page);
3148 }
3149 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3150 
3151 /**
3152  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3153  * @virt:	virtual address to be unmapped
3154  */
3155 void scsi_kunmap_atomic_sg(void *virt)
3156 {
3157 	kunmap_atomic(virt);
3158 }
3159 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3160 
3161 void sdev_disable_disk_events(struct scsi_device *sdev)
3162 {
3163 	atomic_inc(&sdev->disk_events_disable_depth);
3164 }
3165 EXPORT_SYMBOL(sdev_disable_disk_events);
3166 
3167 void sdev_enable_disk_events(struct scsi_device *sdev)
3168 {
3169 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3170 		return;
3171 	atomic_dec(&sdev->disk_events_disable_depth);
3172 }
3173 EXPORT_SYMBOL(sdev_enable_disk_events);
3174 
3175 /**
3176  * scsi_vpd_lun_id - return a unique device identification
3177  * @sdev: SCSI device
3178  * @id:   buffer for the identification
3179  * @id_len:  length of the buffer
3180  *
3181  * Copies a unique device identification into @id based
3182  * on the information in the VPD page 0x83 of the device.
3183  * The string will be formatted as a SCSI name string.
3184  *
3185  * Returns the length of the identification or error on failure.
3186  * If the identifier is longer than the supplied buffer the actual
3187  * identifier length is returned and the buffer is not zero-padded.
3188  */
3189 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3190 {
3191 	u8 cur_id_type = 0xff;
3192 	u8 cur_id_size = 0;
3193 	unsigned char *d, *cur_id_str;
3194 	unsigned char __rcu *vpd_pg83;
3195 	int id_size = -EINVAL;
3196 
3197 	rcu_read_lock();
3198 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3199 	if (!vpd_pg83) {
3200 		rcu_read_unlock();
3201 		return -ENXIO;
3202 	}
3203 
3204 	/*
3205 	 * Look for the correct descriptor.
3206 	 * Order of preference for lun descriptor:
3207 	 * - SCSI name string
3208 	 * - NAA IEEE Registered Extended
3209 	 * - EUI-64 based 16-byte
3210 	 * - EUI-64 based 12-byte
3211 	 * - NAA IEEE Registered
3212 	 * - NAA IEEE Extended
3213 	 * - T10 Vendor ID
3214 	 * as longer descriptors reduce the likelyhood
3215 	 * of identification clashes.
3216 	 */
3217 
3218 	/* The id string must be at least 20 bytes + terminating NULL byte */
3219 	if (id_len < 21) {
3220 		rcu_read_unlock();
3221 		return -EINVAL;
3222 	}
3223 
3224 	memset(id, 0, id_len);
3225 	d = vpd_pg83 + 4;
3226 	while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3227 		/* Skip designators not referring to the LUN */
3228 		if ((d[1] & 0x30) != 0x00)
3229 			goto next_desig;
3230 
3231 		switch (d[1] & 0xf) {
3232 		case 0x1:
3233 			/* T10 Vendor ID */
3234 			if (cur_id_size > d[3])
3235 				break;
3236 			/* Prefer anything */
3237 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3238 				break;
3239 			cur_id_size = d[3];
3240 			if (cur_id_size + 4 > id_len)
3241 				cur_id_size = id_len - 4;
3242 			cur_id_str = d + 4;
3243 			cur_id_type = d[1] & 0xf;
3244 			id_size = snprintf(id, id_len, "t10.%*pE",
3245 					   cur_id_size, cur_id_str);
3246 			break;
3247 		case 0x2:
3248 			/* EUI-64 */
3249 			if (cur_id_size > d[3])
3250 				break;
3251 			/* Prefer NAA IEEE Registered Extended */
3252 			if (cur_id_type == 0x3 &&
3253 			    cur_id_size == d[3])
3254 				break;
3255 			cur_id_size = d[3];
3256 			cur_id_str = d + 4;
3257 			cur_id_type = d[1] & 0xf;
3258 			switch (cur_id_size) {
3259 			case 8:
3260 				id_size = snprintf(id, id_len,
3261 						   "eui.%8phN",
3262 						   cur_id_str);
3263 				break;
3264 			case 12:
3265 				id_size = snprintf(id, id_len,
3266 						   "eui.%12phN",
3267 						   cur_id_str);
3268 				break;
3269 			case 16:
3270 				id_size = snprintf(id, id_len,
3271 						   "eui.%16phN",
3272 						   cur_id_str);
3273 				break;
3274 			default:
3275 				cur_id_size = 0;
3276 				break;
3277 			}
3278 			break;
3279 		case 0x3:
3280 			/* NAA */
3281 			if (cur_id_size > d[3])
3282 				break;
3283 			cur_id_size = d[3];
3284 			cur_id_str = d + 4;
3285 			cur_id_type = d[1] & 0xf;
3286 			switch (cur_id_size) {
3287 			case 8:
3288 				id_size = snprintf(id, id_len,
3289 						   "naa.%8phN",
3290 						   cur_id_str);
3291 				break;
3292 			case 16:
3293 				id_size = snprintf(id, id_len,
3294 						   "naa.%16phN",
3295 						   cur_id_str);
3296 				break;
3297 			default:
3298 				cur_id_size = 0;
3299 				break;
3300 			}
3301 			break;
3302 		case 0x8:
3303 			/* SCSI name string */
3304 			if (cur_id_size + 4 > d[3])
3305 				break;
3306 			/* Prefer others for truncated descriptor */
3307 			if (cur_id_size && d[3] > id_len)
3308 				break;
3309 			cur_id_size = id_size = d[3];
3310 			cur_id_str = d + 4;
3311 			cur_id_type = d[1] & 0xf;
3312 			if (cur_id_size >= id_len)
3313 				cur_id_size = id_len - 1;
3314 			memcpy(id, cur_id_str, cur_id_size);
3315 			/* Decrease priority for truncated descriptor */
3316 			if (cur_id_size != id_size)
3317 				cur_id_size = 6;
3318 			break;
3319 		default:
3320 			break;
3321 		}
3322 next_desig:
3323 		d += d[3] + 4;
3324 	}
3325 	rcu_read_unlock();
3326 
3327 	return id_size;
3328 }
3329 EXPORT_SYMBOL(scsi_vpd_lun_id);
3330 
3331 /*
3332  * scsi_vpd_tpg_id - return a target port group identifier
3333  * @sdev: SCSI device
3334  *
3335  * Returns the Target Port Group identifier from the information
3336  * froom VPD page 0x83 of the device.
3337  *
3338  * Returns the identifier or error on failure.
3339  */
3340 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3341 {
3342 	unsigned char *d;
3343 	unsigned char __rcu *vpd_pg83;
3344 	int group_id = -EAGAIN, rel_port = -1;
3345 
3346 	rcu_read_lock();
3347 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3348 	if (!vpd_pg83) {
3349 		rcu_read_unlock();
3350 		return -ENXIO;
3351 	}
3352 
3353 	d = sdev->vpd_pg83 + 4;
3354 	while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3355 		switch (d[1] & 0xf) {
3356 		case 0x4:
3357 			/* Relative target port */
3358 			rel_port = get_unaligned_be16(&d[6]);
3359 			break;
3360 		case 0x5:
3361 			/* Target port group */
3362 			group_id = get_unaligned_be16(&d[6]);
3363 			break;
3364 		default:
3365 			break;
3366 		}
3367 		d += d[3] + 4;
3368 	}
3369 	rcu_read_unlock();
3370 
3371 	if (group_id >= 0 && rel_id && rel_port != -1)
3372 		*rel_id = rel_port;
3373 
3374 	return group_id;
3375 }
3376 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3377