xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35 
36 #include <trace/events/scsi.h>
37 
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41 
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46 
47 static inline struct kmem_cache *
48 scsi_select_sense_cache(bool unchecked_isa_dma)
49 {
50 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
51 }
52 
53 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
54 				   unsigned char *sense_buffer)
55 {
56 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
57 			sense_buffer);
58 }
59 
60 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
61 	gfp_t gfp_mask, int numa_node)
62 {
63 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
64 				     gfp_mask, numa_node);
65 }
66 
67 int scsi_init_sense_cache(struct Scsi_Host *shost)
68 {
69 	struct kmem_cache *cache;
70 	int ret = 0;
71 
72 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
73 	if (cache)
74 		return 0;
75 
76 	mutex_lock(&scsi_sense_cache_mutex);
77 	if (shost->unchecked_isa_dma) {
78 		scsi_sense_isadma_cache =
79 			kmem_cache_create("scsi_sense_cache(DMA)",
80 			SCSI_SENSE_BUFFERSIZE, 0,
81 			SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
82 		if (!scsi_sense_isadma_cache)
83 			ret = -ENOMEM;
84 	} else {
85 		scsi_sense_cache =
86 			kmem_cache_create("scsi_sense_cache",
87 			SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
88 		if (!scsi_sense_cache)
89 			ret = -ENOMEM;
90 	}
91 
92 	mutex_unlock(&scsi_sense_cache_mutex);
93 	return ret;
94 }
95 
96 /*
97  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
98  * not change behaviour from the previous unplug mechanism, experimentation
99  * may prove this needs changing.
100  */
101 #define SCSI_QUEUE_DELAY	3
102 
103 static void
104 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
105 {
106 	struct Scsi_Host *host = cmd->device->host;
107 	struct scsi_device *device = cmd->device;
108 	struct scsi_target *starget = scsi_target(device);
109 
110 	/*
111 	 * Set the appropriate busy bit for the device/host.
112 	 *
113 	 * If the host/device isn't busy, assume that something actually
114 	 * completed, and that we should be able to queue a command now.
115 	 *
116 	 * Note that the prior mid-layer assumption that any host could
117 	 * always queue at least one command is now broken.  The mid-layer
118 	 * will implement a user specifiable stall (see
119 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
120 	 * if a command is requeued with no other commands outstanding
121 	 * either for the device or for the host.
122 	 */
123 	switch (reason) {
124 	case SCSI_MLQUEUE_HOST_BUSY:
125 		atomic_set(&host->host_blocked, host->max_host_blocked);
126 		break;
127 	case SCSI_MLQUEUE_DEVICE_BUSY:
128 	case SCSI_MLQUEUE_EH_RETRY:
129 		atomic_set(&device->device_blocked,
130 			   device->max_device_blocked);
131 		break;
132 	case SCSI_MLQUEUE_TARGET_BUSY:
133 		atomic_set(&starget->target_blocked,
134 			   starget->max_target_blocked);
135 		break;
136 	}
137 }
138 
139 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
140 {
141 	struct scsi_device *sdev = cmd->device;
142 
143 	blk_mq_requeue_request(cmd->request, true);
144 	put_device(&sdev->sdev_gendev);
145 }
146 
147 /**
148  * __scsi_queue_insert - private queue insertion
149  * @cmd: The SCSI command being requeued
150  * @reason:  The reason for the requeue
151  * @unbusy: Whether the queue should be unbusied
152  *
153  * This is a private queue insertion.  The public interface
154  * scsi_queue_insert() always assumes the queue should be unbusied
155  * because it's always called before the completion.  This function is
156  * for a requeue after completion, which should only occur in this
157  * file.
158  */
159 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
160 {
161 	struct scsi_device *device = cmd->device;
162 	struct request_queue *q = device->request_queue;
163 	unsigned long flags;
164 
165 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
166 		"Inserting command %p into mlqueue\n", cmd));
167 
168 	scsi_set_blocked(cmd, reason);
169 
170 	/*
171 	 * Decrement the counters, since these commands are no longer
172 	 * active on the host/device.
173 	 */
174 	if (unbusy)
175 		scsi_device_unbusy(device);
176 
177 	/*
178 	 * Requeue this command.  It will go before all other commands
179 	 * that are already in the queue. Schedule requeue work under
180 	 * lock such that the kblockd_schedule_work() call happens
181 	 * before blk_cleanup_queue() finishes.
182 	 */
183 	cmd->result = 0;
184 	if (q->mq_ops) {
185 		scsi_mq_requeue_cmd(cmd);
186 		return;
187 	}
188 	spin_lock_irqsave(q->queue_lock, flags);
189 	blk_requeue_request(q, cmd->request);
190 	kblockd_schedule_work(&device->requeue_work);
191 	spin_unlock_irqrestore(q->queue_lock, flags);
192 }
193 
194 /*
195  * Function:    scsi_queue_insert()
196  *
197  * Purpose:     Insert a command in the midlevel queue.
198  *
199  * Arguments:   cmd    - command that we are adding to queue.
200  *              reason - why we are inserting command to queue.
201  *
202  * Lock status: Assumed that lock is not held upon entry.
203  *
204  * Returns:     Nothing.
205  *
206  * Notes:       We do this for one of two cases.  Either the host is busy
207  *              and it cannot accept any more commands for the time being,
208  *              or the device returned QUEUE_FULL and can accept no more
209  *              commands.
210  * Notes:       This could be called either from an interrupt context or a
211  *              normal process context.
212  */
213 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
214 {
215 	__scsi_queue_insert(cmd, reason, 1);
216 }
217 
218 
219 /**
220  * scsi_execute - insert request and wait for the result
221  * @sdev:	scsi device
222  * @cmd:	scsi command
223  * @data_direction: data direction
224  * @buffer:	data buffer
225  * @bufflen:	len of buffer
226  * @sense:	optional sense buffer
227  * @sshdr:	optional decoded sense header
228  * @timeout:	request timeout in seconds
229  * @retries:	number of times to retry request
230  * @flags:	flags for ->cmd_flags
231  * @rq_flags:	flags for ->rq_flags
232  * @resid:	optional residual length
233  *
234  * Returns the scsi_cmnd result field if a command was executed, or a negative
235  * Linux error code if we didn't get that far.
236  */
237 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
238 		 int data_direction, void *buffer, unsigned bufflen,
239 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
240 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
241 		 int *resid)
242 {
243 	struct request *req;
244 	struct scsi_request *rq;
245 	int ret = DRIVER_ERROR << 24;
246 
247 	req = blk_get_request(sdev->request_queue,
248 			data_direction == DMA_TO_DEVICE ?
249 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM);
250 	if (IS_ERR(req))
251 		return ret;
252 	rq = scsi_req(req);
253 
254 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
255 					buffer, bufflen, __GFP_RECLAIM))
256 		goto out;
257 
258 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
259 	memcpy(rq->cmd, cmd, rq->cmd_len);
260 	rq->retries = retries;
261 	req->timeout = timeout;
262 	req->cmd_flags |= flags;
263 	req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT;
264 
265 	/*
266 	 * head injection *required* here otherwise quiesce won't work
267 	 */
268 	blk_execute_rq(req->q, NULL, req, 1);
269 
270 	/*
271 	 * Some devices (USB mass-storage in particular) may transfer
272 	 * garbage data together with a residue indicating that the data
273 	 * is invalid.  Prevent the garbage from being misinterpreted
274 	 * and prevent security leaks by zeroing out the excess data.
275 	 */
276 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
277 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
278 
279 	if (resid)
280 		*resid = rq->resid_len;
281 	if (sense && rq->sense_len)
282 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
283 	if (sshdr)
284 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
285 	ret = rq->result;
286  out:
287 	blk_put_request(req);
288 
289 	return ret;
290 }
291 EXPORT_SYMBOL(scsi_execute);
292 
293 /*
294  * Function:    scsi_init_cmd_errh()
295  *
296  * Purpose:     Initialize cmd fields related to error handling.
297  *
298  * Arguments:   cmd	- command that is ready to be queued.
299  *
300  * Notes:       This function has the job of initializing a number of
301  *              fields related to error handling.   Typically this will
302  *              be called once for each command, as required.
303  */
304 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
305 {
306 	cmd->serial_number = 0;
307 	scsi_set_resid(cmd, 0);
308 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
309 	if (cmd->cmd_len == 0)
310 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
311 }
312 
313 void scsi_device_unbusy(struct scsi_device *sdev)
314 {
315 	struct Scsi_Host *shost = sdev->host;
316 	struct scsi_target *starget = scsi_target(sdev);
317 	unsigned long flags;
318 
319 	atomic_dec(&shost->host_busy);
320 	if (starget->can_queue > 0)
321 		atomic_dec(&starget->target_busy);
322 
323 	if (unlikely(scsi_host_in_recovery(shost) &&
324 		     (shost->host_failed || shost->host_eh_scheduled))) {
325 		spin_lock_irqsave(shost->host_lock, flags);
326 		scsi_eh_wakeup(shost);
327 		spin_unlock_irqrestore(shost->host_lock, flags);
328 	}
329 
330 	atomic_dec(&sdev->device_busy);
331 }
332 
333 static void scsi_kick_queue(struct request_queue *q)
334 {
335 	if (q->mq_ops)
336 		blk_mq_start_hw_queues(q);
337 	else
338 		blk_run_queue(q);
339 }
340 
341 /*
342  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
343  * and call blk_run_queue for all the scsi_devices on the target -
344  * including current_sdev first.
345  *
346  * Called with *no* scsi locks held.
347  */
348 static void scsi_single_lun_run(struct scsi_device *current_sdev)
349 {
350 	struct Scsi_Host *shost = current_sdev->host;
351 	struct scsi_device *sdev, *tmp;
352 	struct scsi_target *starget = scsi_target(current_sdev);
353 	unsigned long flags;
354 
355 	spin_lock_irqsave(shost->host_lock, flags);
356 	starget->starget_sdev_user = NULL;
357 	spin_unlock_irqrestore(shost->host_lock, flags);
358 
359 	/*
360 	 * Call blk_run_queue for all LUNs on the target, starting with
361 	 * current_sdev. We race with others (to set starget_sdev_user),
362 	 * but in most cases, we will be first. Ideally, each LU on the
363 	 * target would get some limited time or requests on the target.
364 	 */
365 	scsi_kick_queue(current_sdev->request_queue);
366 
367 	spin_lock_irqsave(shost->host_lock, flags);
368 	if (starget->starget_sdev_user)
369 		goto out;
370 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
371 			same_target_siblings) {
372 		if (sdev == current_sdev)
373 			continue;
374 		if (scsi_device_get(sdev))
375 			continue;
376 
377 		spin_unlock_irqrestore(shost->host_lock, flags);
378 		scsi_kick_queue(sdev->request_queue);
379 		spin_lock_irqsave(shost->host_lock, flags);
380 
381 		scsi_device_put(sdev);
382 	}
383  out:
384 	spin_unlock_irqrestore(shost->host_lock, flags);
385 }
386 
387 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
388 {
389 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
390 		return true;
391 	if (atomic_read(&sdev->device_blocked) > 0)
392 		return true;
393 	return false;
394 }
395 
396 static inline bool scsi_target_is_busy(struct scsi_target *starget)
397 {
398 	if (starget->can_queue > 0) {
399 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
400 			return true;
401 		if (atomic_read(&starget->target_blocked) > 0)
402 			return true;
403 	}
404 	return false;
405 }
406 
407 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
408 {
409 	if (shost->can_queue > 0 &&
410 	    atomic_read(&shost->host_busy) >= shost->can_queue)
411 		return true;
412 	if (atomic_read(&shost->host_blocked) > 0)
413 		return true;
414 	if (shost->host_self_blocked)
415 		return true;
416 	return false;
417 }
418 
419 static void scsi_starved_list_run(struct Scsi_Host *shost)
420 {
421 	LIST_HEAD(starved_list);
422 	struct scsi_device *sdev;
423 	unsigned long flags;
424 
425 	spin_lock_irqsave(shost->host_lock, flags);
426 	list_splice_init(&shost->starved_list, &starved_list);
427 
428 	while (!list_empty(&starved_list)) {
429 		struct request_queue *slq;
430 
431 		/*
432 		 * As long as shost is accepting commands and we have
433 		 * starved queues, call blk_run_queue. scsi_request_fn
434 		 * drops the queue_lock and can add us back to the
435 		 * starved_list.
436 		 *
437 		 * host_lock protects the starved_list and starved_entry.
438 		 * scsi_request_fn must get the host_lock before checking
439 		 * or modifying starved_list or starved_entry.
440 		 */
441 		if (scsi_host_is_busy(shost))
442 			break;
443 
444 		sdev = list_entry(starved_list.next,
445 				  struct scsi_device, starved_entry);
446 		list_del_init(&sdev->starved_entry);
447 		if (scsi_target_is_busy(scsi_target(sdev))) {
448 			list_move_tail(&sdev->starved_entry,
449 				       &shost->starved_list);
450 			continue;
451 		}
452 
453 		/*
454 		 * Once we drop the host lock, a racing scsi_remove_device()
455 		 * call may remove the sdev from the starved list and destroy
456 		 * it and the queue.  Mitigate by taking a reference to the
457 		 * queue and never touching the sdev again after we drop the
458 		 * host lock.  Note: if __scsi_remove_device() invokes
459 		 * blk_cleanup_queue() before the queue is run from this
460 		 * function then blk_run_queue() will return immediately since
461 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
462 		 */
463 		slq = sdev->request_queue;
464 		if (!blk_get_queue(slq))
465 			continue;
466 		spin_unlock_irqrestore(shost->host_lock, flags);
467 
468 		scsi_kick_queue(slq);
469 		blk_put_queue(slq);
470 
471 		spin_lock_irqsave(shost->host_lock, flags);
472 	}
473 	/* put any unprocessed entries back */
474 	list_splice(&starved_list, &shost->starved_list);
475 	spin_unlock_irqrestore(shost->host_lock, flags);
476 }
477 
478 /*
479  * Function:   scsi_run_queue()
480  *
481  * Purpose:    Select a proper request queue to serve next
482  *
483  * Arguments:  q       - last request's queue
484  *
485  * Returns:     Nothing
486  *
487  * Notes:      The previous command was completely finished, start
488  *             a new one if possible.
489  */
490 static void scsi_run_queue(struct request_queue *q)
491 {
492 	struct scsi_device *sdev = q->queuedata;
493 
494 	if (scsi_target(sdev)->single_lun)
495 		scsi_single_lun_run(sdev);
496 	if (!list_empty(&sdev->host->starved_list))
497 		scsi_starved_list_run(sdev->host);
498 
499 	if (q->mq_ops)
500 		blk_mq_run_hw_queues(q, false);
501 	else
502 		blk_run_queue(q);
503 }
504 
505 void scsi_requeue_run_queue(struct work_struct *work)
506 {
507 	struct scsi_device *sdev;
508 	struct request_queue *q;
509 
510 	sdev = container_of(work, struct scsi_device, requeue_work);
511 	q = sdev->request_queue;
512 	scsi_run_queue(q);
513 }
514 
515 /*
516  * Function:	scsi_requeue_command()
517  *
518  * Purpose:	Handle post-processing of completed commands.
519  *
520  * Arguments:	q	- queue to operate on
521  *		cmd	- command that may need to be requeued.
522  *
523  * Returns:	Nothing
524  *
525  * Notes:	After command completion, there may be blocks left
526  *		over which weren't finished by the previous command
527  *		this can be for a number of reasons - the main one is
528  *		I/O errors in the middle of the request, in which case
529  *		we need to request the blocks that come after the bad
530  *		sector.
531  * Notes:	Upon return, cmd is a stale pointer.
532  */
533 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
534 {
535 	struct scsi_device *sdev = cmd->device;
536 	struct request *req = cmd->request;
537 	unsigned long flags;
538 
539 	spin_lock_irqsave(q->queue_lock, flags);
540 	blk_unprep_request(req);
541 	req->special = NULL;
542 	scsi_put_command(cmd);
543 	blk_requeue_request(q, req);
544 	spin_unlock_irqrestore(q->queue_lock, flags);
545 
546 	scsi_run_queue(q);
547 
548 	put_device(&sdev->sdev_gendev);
549 }
550 
551 void scsi_run_host_queues(struct Scsi_Host *shost)
552 {
553 	struct scsi_device *sdev;
554 
555 	shost_for_each_device(sdev, shost)
556 		scsi_run_queue(sdev->request_queue);
557 }
558 
559 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
560 {
561 	if (!blk_rq_is_passthrough(cmd->request)) {
562 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
563 
564 		if (drv->uninit_command)
565 			drv->uninit_command(cmd);
566 	}
567 }
568 
569 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
570 {
571 	struct scsi_data_buffer *sdb;
572 
573 	if (cmd->sdb.table.nents)
574 		sg_free_table_chained(&cmd->sdb.table, true);
575 	if (cmd->request->next_rq) {
576 		sdb = cmd->request->next_rq->special;
577 		if (sdb)
578 			sg_free_table_chained(&sdb->table, true);
579 	}
580 	if (scsi_prot_sg_count(cmd))
581 		sg_free_table_chained(&cmd->prot_sdb->table, true);
582 }
583 
584 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
585 {
586 	scsi_mq_free_sgtables(cmd);
587 	scsi_uninit_cmd(cmd);
588 	scsi_del_cmd_from_list(cmd);
589 }
590 
591 /*
592  * Function:    scsi_release_buffers()
593  *
594  * Purpose:     Free resources allocate for a scsi_command.
595  *
596  * Arguments:   cmd	- command that we are bailing.
597  *
598  * Lock status: Assumed that no lock is held upon entry.
599  *
600  * Returns:     Nothing
601  *
602  * Notes:       In the event that an upper level driver rejects a
603  *		command, we must release resources allocated during
604  *		the __init_io() function.  Primarily this would involve
605  *		the scatter-gather table.
606  */
607 static void scsi_release_buffers(struct scsi_cmnd *cmd)
608 {
609 	if (cmd->sdb.table.nents)
610 		sg_free_table_chained(&cmd->sdb.table, false);
611 
612 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
613 
614 	if (scsi_prot_sg_count(cmd))
615 		sg_free_table_chained(&cmd->prot_sdb->table, false);
616 }
617 
618 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
619 {
620 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
621 
622 	sg_free_table_chained(&bidi_sdb->table, false);
623 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
624 	cmd->request->next_rq->special = NULL;
625 }
626 
627 static bool scsi_end_request(struct request *req, blk_status_t error,
628 		unsigned int bytes, unsigned int bidi_bytes)
629 {
630 	struct scsi_cmnd *cmd = req->special;
631 	struct scsi_device *sdev = cmd->device;
632 	struct request_queue *q = sdev->request_queue;
633 
634 	if (blk_update_request(req, error, bytes))
635 		return true;
636 
637 	/* Bidi request must be completed as a whole */
638 	if (unlikely(bidi_bytes) &&
639 	    blk_update_request(req->next_rq, error, bidi_bytes))
640 		return true;
641 
642 	if (blk_queue_add_random(q))
643 		add_disk_randomness(req->rq_disk);
644 
645 	if (req->mq_ctx) {
646 		/*
647 		 * In the MQ case the command gets freed by __blk_mq_end_request,
648 		 * so we have to do all cleanup that depends on it earlier.
649 		 *
650 		 * We also can't kick the queues from irq context, so we
651 		 * will have to defer it to a workqueue.
652 		 */
653 		scsi_mq_uninit_cmd(cmd);
654 
655 		__blk_mq_end_request(req, error);
656 
657 		if (scsi_target(sdev)->single_lun ||
658 		    !list_empty(&sdev->host->starved_list))
659 			kblockd_schedule_work(&sdev->requeue_work);
660 		else
661 			blk_mq_run_hw_queues(q, true);
662 	} else {
663 		unsigned long flags;
664 
665 		if (bidi_bytes)
666 			scsi_release_bidi_buffers(cmd);
667 		scsi_release_buffers(cmd);
668 		scsi_put_command(cmd);
669 
670 		spin_lock_irqsave(q->queue_lock, flags);
671 		blk_finish_request(req, error);
672 		spin_unlock_irqrestore(q->queue_lock, flags);
673 
674 		scsi_run_queue(q);
675 	}
676 
677 	put_device(&sdev->sdev_gendev);
678 	return false;
679 }
680 
681 /**
682  * __scsi_error_from_host_byte - translate SCSI error code into errno
683  * @cmd:	SCSI command (unused)
684  * @result:	scsi error code
685  *
686  * Translate SCSI error code into block errors.
687  */
688 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
689 		int result)
690 {
691 	switch (host_byte(result)) {
692 	case DID_TRANSPORT_FAILFAST:
693 		return BLK_STS_TRANSPORT;
694 	case DID_TARGET_FAILURE:
695 		set_host_byte(cmd, DID_OK);
696 		return BLK_STS_TARGET;
697 	case DID_NEXUS_FAILURE:
698 		return BLK_STS_NEXUS;
699 	case DID_ALLOC_FAILURE:
700 		set_host_byte(cmd, DID_OK);
701 		return BLK_STS_NOSPC;
702 	case DID_MEDIUM_ERROR:
703 		set_host_byte(cmd, DID_OK);
704 		return BLK_STS_MEDIUM;
705 	default:
706 		return BLK_STS_IOERR;
707 	}
708 }
709 
710 /*
711  * Function:    scsi_io_completion()
712  *
713  * Purpose:     Completion processing for block device I/O requests.
714  *
715  * Arguments:   cmd   - command that is finished.
716  *
717  * Lock status: Assumed that no lock is held upon entry.
718  *
719  * Returns:     Nothing
720  *
721  * Notes:       We will finish off the specified number of sectors.  If we
722  *		are done, the command block will be released and the queue
723  *		function will be goosed.  If we are not done then we have to
724  *		figure out what to do next:
725  *
726  *		a) We can call scsi_requeue_command().  The request
727  *		   will be unprepared and put back on the queue.  Then
728  *		   a new command will be created for it.  This should
729  *		   be used if we made forward progress, or if we want
730  *		   to switch from READ(10) to READ(6) for example.
731  *
732  *		b) We can call __scsi_queue_insert().  The request will
733  *		   be put back on the queue and retried using the same
734  *		   command as before, possibly after a delay.
735  *
736  *		c) We can call scsi_end_request() with -EIO to fail
737  *		   the remainder of the request.
738  */
739 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
740 {
741 	int result = cmd->result;
742 	struct request_queue *q = cmd->device->request_queue;
743 	struct request *req = cmd->request;
744 	blk_status_t error = BLK_STS_OK;
745 	struct scsi_sense_hdr sshdr;
746 	bool sense_valid = false;
747 	int sense_deferred = 0, level = 0;
748 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
749 	      ACTION_DELAYED_RETRY} action;
750 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
751 
752 	if (result) {
753 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
754 		if (sense_valid)
755 			sense_deferred = scsi_sense_is_deferred(&sshdr);
756 	}
757 
758 	if (blk_rq_is_passthrough(req)) {
759 		if (result) {
760 			if (sense_valid) {
761 				/*
762 				 * SG_IO wants current and deferred errors
763 				 */
764 				scsi_req(req)->sense_len =
765 					min(8 + cmd->sense_buffer[7],
766 					    SCSI_SENSE_BUFFERSIZE);
767 			}
768 			if (!sense_deferred)
769 				error = __scsi_error_from_host_byte(cmd, result);
770 		}
771 		/*
772 		 * __scsi_error_from_host_byte may have reset the host_byte
773 		 */
774 		scsi_req(req)->result = cmd->result;
775 		scsi_req(req)->resid_len = scsi_get_resid(cmd);
776 
777 		if (scsi_bidi_cmnd(cmd)) {
778 			/*
779 			 * Bidi commands Must be complete as a whole,
780 			 * both sides at once.
781 			 */
782 			scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
783 			if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
784 					blk_rq_bytes(req->next_rq)))
785 				BUG();
786 			return;
787 		}
788 	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
789 		/*
790 		 * Flush commands do not transfers any data, and thus cannot use
791 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
792 		 * This sets the error explicitly for the problem case.
793 		 */
794 		error = __scsi_error_from_host_byte(cmd, result);
795 	}
796 
797 	/* no bidi support for !blk_rq_is_passthrough yet */
798 	BUG_ON(blk_bidi_rq(req));
799 
800 	/*
801 	 * Next deal with any sectors which we were able to correctly
802 	 * handle.
803 	 */
804 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
805 		"%u sectors total, %d bytes done.\n",
806 		blk_rq_sectors(req), good_bytes));
807 
808 	/*
809 	 * Recovered errors need reporting, but they're always treated as
810 	 * success, so fiddle the result code here.  For passthrough requests
811 	 * we already took a copy of the original into sreq->result which
812 	 * is what gets returned to the user
813 	 */
814 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
815 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
816 		 * print since caller wants ATA registers. Only occurs on
817 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
818 		 */
819 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
820 			;
821 		else if (!(req->rq_flags & RQF_QUIET))
822 			scsi_print_sense(cmd);
823 		result = 0;
824 		/* for passthrough error may be set */
825 		error = BLK_STS_OK;
826 	}
827 
828 	/*
829 	 * special case: failed zero length commands always need to
830 	 * drop down into the retry code. Otherwise, if we finished
831 	 * all bytes in the request we are done now.
832 	 */
833 	if (!(blk_rq_bytes(req) == 0 && error) &&
834 	    !scsi_end_request(req, error, good_bytes, 0))
835 		return;
836 
837 	/*
838 	 * Kill remainder if no retrys.
839 	 */
840 	if (error && scsi_noretry_cmd(cmd)) {
841 		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
842 			BUG();
843 		return;
844 	}
845 
846 	/*
847 	 * If there had been no error, but we have leftover bytes in the
848 	 * requeues just queue the command up again.
849 	 */
850 	if (result == 0)
851 		goto requeue;
852 
853 	error = __scsi_error_from_host_byte(cmd, result);
854 
855 	if (host_byte(result) == DID_RESET) {
856 		/* Third party bus reset or reset for error recovery
857 		 * reasons.  Just retry the command and see what
858 		 * happens.
859 		 */
860 		action = ACTION_RETRY;
861 	} else if (sense_valid && !sense_deferred) {
862 		switch (sshdr.sense_key) {
863 		case UNIT_ATTENTION:
864 			if (cmd->device->removable) {
865 				/* Detected disc change.  Set a bit
866 				 * and quietly refuse further access.
867 				 */
868 				cmd->device->changed = 1;
869 				action = ACTION_FAIL;
870 			} else {
871 				/* Must have been a power glitch, or a
872 				 * bus reset.  Could not have been a
873 				 * media change, so we just retry the
874 				 * command and see what happens.
875 				 */
876 				action = ACTION_RETRY;
877 			}
878 			break;
879 		case ILLEGAL_REQUEST:
880 			/* If we had an ILLEGAL REQUEST returned, then
881 			 * we may have performed an unsupported
882 			 * command.  The only thing this should be
883 			 * would be a ten byte read where only a six
884 			 * byte read was supported.  Also, on a system
885 			 * where READ CAPACITY failed, we may have
886 			 * read past the end of the disk.
887 			 */
888 			if ((cmd->device->use_10_for_rw &&
889 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
890 			    (cmd->cmnd[0] == READ_10 ||
891 			     cmd->cmnd[0] == WRITE_10)) {
892 				/* This will issue a new 6-byte command. */
893 				cmd->device->use_10_for_rw = 0;
894 				action = ACTION_REPREP;
895 			} else if (sshdr.asc == 0x10) /* DIX */ {
896 				action = ACTION_FAIL;
897 				error = BLK_STS_PROTECTION;
898 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
899 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
900 				action = ACTION_FAIL;
901 				error = BLK_STS_TARGET;
902 			} else
903 				action = ACTION_FAIL;
904 			break;
905 		case ABORTED_COMMAND:
906 			action = ACTION_FAIL;
907 			if (sshdr.asc == 0x10) /* DIF */
908 				error = BLK_STS_PROTECTION;
909 			break;
910 		case NOT_READY:
911 			/* If the device is in the process of becoming
912 			 * ready, or has a temporary blockage, retry.
913 			 */
914 			if (sshdr.asc == 0x04) {
915 				switch (sshdr.ascq) {
916 				case 0x01: /* becoming ready */
917 				case 0x04: /* format in progress */
918 				case 0x05: /* rebuild in progress */
919 				case 0x06: /* recalculation in progress */
920 				case 0x07: /* operation in progress */
921 				case 0x08: /* Long write in progress */
922 				case 0x09: /* self test in progress */
923 				case 0x14: /* space allocation in progress */
924 					action = ACTION_DELAYED_RETRY;
925 					break;
926 				default:
927 					action = ACTION_FAIL;
928 					break;
929 				}
930 			} else
931 				action = ACTION_FAIL;
932 			break;
933 		case VOLUME_OVERFLOW:
934 			/* See SSC3rXX or current. */
935 			action = ACTION_FAIL;
936 			break;
937 		default:
938 			action = ACTION_FAIL;
939 			break;
940 		}
941 	} else
942 		action = ACTION_FAIL;
943 
944 	if (action != ACTION_FAIL &&
945 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
946 		action = ACTION_FAIL;
947 
948 	switch (action) {
949 	case ACTION_FAIL:
950 		/* Give up and fail the remainder of the request */
951 		if (!(req->rq_flags & RQF_QUIET)) {
952 			static DEFINE_RATELIMIT_STATE(_rs,
953 					DEFAULT_RATELIMIT_INTERVAL,
954 					DEFAULT_RATELIMIT_BURST);
955 
956 			if (unlikely(scsi_logging_level))
957 				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
958 						       SCSI_LOG_MLCOMPLETE_BITS);
959 
960 			/*
961 			 * if logging is enabled the failure will be printed
962 			 * in scsi_log_completion(), so avoid duplicate messages
963 			 */
964 			if (!level && __ratelimit(&_rs)) {
965 				scsi_print_result(cmd, NULL, FAILED);
966 				if (driver_byte(result) & DRIVER_SENSE)
967 					scsi_print_sense(cmd);
968 				scsi_print_command(cmd);
969 			}
970 		}
971 		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
972 			return;
973 		/*FALLTHRU*/
974 	case ACTION_REPREP:
975 	requeue:
976 		/* Unprep the request and put it back at the head of the queue.
977 		 * A new command will be prepared and issued.
978 		 */
979 		if (q->mq_ops) {
980 			cmd->request->rq_flags &= ~RQF_DONTPREP;
981 			scsi_mq_uninit_cmd(cmd);
982 			scsi_mq_requeue_cmd(cmd);
983 		} else {
984 			scsi_release_buffers(cmd);
985 			scsi_requeue_command(q, cmd);
986 		}
987 		break;
988 	case ACTION_RETRY:
989 		/* Retry the same command immediately */
990 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
991 		break;
992 	case ACTION_DELAYED_RETRY:
993 		/* Retry the same command after a delay */
994 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
995 		break;
996 	}
997 }
998 
999 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1000 {
1001 	int count;
1002 
1003 	/*
1004 	 * If sg table allocation fails, requeue request later.
1005 	 */
1006 	if (unlikely(sg_alloc_table_chained(&sdb->table,
1007 			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1008 		return BLKPREP_DEFER;
1009 
1010 	/*
1011 	 * Next, walk the list, and fill in the addresses and sizes of
1012 	 * each segment.
1013 	 */
1014 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1015 	BUG_ON(count > sdb->table.nents);
1016 	sdb->table.nents = count;
1017 	sdb->length = blk_rq_payload_bytes(req);
1018 	return BLKPREP_OK;
1019 }
1020 
1021 /*
1022  * Function:    scsi_init_io()
1023  *
1024  * Purpose:     SCSI I/O initialize function.
1025  *
1026  * Arguments:   cmd   - Command descriptor we wish to initialize
1027  *
1028  * Returns:     0 on success
1029  *		BLKPREP_DEFER if the failure is retryable
1030  *		BLKPREP_KILL if the failure is fatal
1031  */
1032 int scsi_init_io(struct scsi_cmnd *cmd)
1033 {
1034 	struct scsi_device *sdev = cmd->device;
1035 	struct request *rq = cmd->request;
1036 	bool is_mq = (rq->mq_ctx != NULL);
1037 	int error = BLKPREP_KILL;
1038 
1039 	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1040 		goto err_exit;
1041 
1042 	error = scsi_init_sgtable(rq, &cmd->sdb);
1043 	if (error)
1044 		goto err_exit;
1045 
1046 	if (blk_bidi_rq(rq)) {
1047 		if (!rq->q->mq_ops) {
1048 			struct scsi_data_buffer *bidi_sdb =
1049 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1050 			if (!bidi_sdb) {
1051 				error = BLKPREP_DEFER;
1052 				goto err_exit;
1053 			}
1054 
1055 			rq->next_rq->special = bidi_sdb;
1056 		}
1057 
1058 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1059 		if (error)
1060 			goto err_exit;
1061 	}
1062 
1063 	if (blk_integrity_rq(rq)) {
1064 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1065 		int ivecs, count;
1066 
1067 		if (prot_sdb == NULL) {
1068 			/*
1069 			 * This can happen if someone (e.g. multipath)
1070 			 * queues a command to a device on an adapter
1071 			 * that does not support DIX.
1072 			 */
1073 			WARN_ON_ONCE(1);
1074 			error = BLKPREP_KILL;
1075 			goto err_exit;
1076 		}
1077 
1078 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1079 
1080 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1081 				prot_sdb->table.sgl)) {
1082 			error = BLKPREP_DEFER;
1083 			goto err_exit;
1084 		}
1085 
1086 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1087 						prot_sdb->table.sgl);
1088 		BUG_ON(unlikely(count > ivecs));
1089 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1090 
1091 		cmd->prot_sdb = prot_sdb;
1092 		cmd->prot_sdb->table.nents = count;
1093 	}
1094 
1095 	return BLKPREP_OK;
1096 err_exit:
1097 	if (is_mq) {
1098 		scsi_mq_free_sgtables(cmd);
1099 	} else {
1100 		scsi_release_buffers(cmd);
1101 		cmd->request->special = NULL;
1102 		scsi_put_command(cmd);
1103 		put_device(&sdev->sdev_gendev);
1104 	}
1105 	return error;
1106 }
1107 EXPORT_SYMBOL(scsi_init_io);
1108 
1109 /**
1110  * scsi_initialize_rq - initialize struct scsi_cmnd.req
1111  *
1112  * Called from inside blk_get_request().
1113  */
1114 void scsi_initialize_rq(struct request *rq)
1115 {
1116 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1117 
1118 	scsi_req_init(&cmd->req);
1119 }
1120 EXPORT_SYMBOL(scsi_initialize_rq);
1121 
1122 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1123 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1124 {
1125 	struct scsi_device *sdev = cmd->device;
1126 	struct Scsi_Host *shost = sdev->host;
1127 	unsigned long flags;
1128 
1129 	if (shost->use_cmd_list) {
1130 		spin_lock_irqsave(&sdev->list_lock, flags);
1131 		list_add_tail(&cmd->list, &sdev->cmd_list);
1132 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1133 	}
1134 }
1135 
1136 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1137 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1138 {
1139 	struct scsi_device *sdev = cmd->device;
1140 	struct Scsi_Host *shost = sdev->host;
1141 	unsigned long flags;
1142 
1143 	if (shost->use_cmd_list) {
1144 		spin_lock_irqsave(&sdev->list_lock, flags);
1145 		BUG_ON(list_empty(&cmd->list));
1146 		list_del_init(&cmd->list);
1147 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1148 	}
1149 }
1150 
1151 /* Called after a request has been started. */
1152 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1153 {
1154 	void *buf = cmd->sense_buffer;
1155 	void *prot = cmd->prot_sdb;
1156 	unsigned int unchecked_isa_dma = cmd->flags & SCMD_UNCHECKED_ISA_DMA;
1157 
1158 	/* zero out the cmd, except for the embedded scsi_request */
1159 	memset((char *)cmd + sizeof(cmd->req), 0,
1160 		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1161 
1162 	cmd->device = dev;
1163 	cmd->sense_buffer = buf;
1164 	cmd->prot_sdb = prot;
1165 	cmd->flags = unchecked_isa_dma;
1166 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1167 	cmd->jiffies_at_alloc = jiffies;
1168 
1169 	scsi_add_cmd_to_list(cmd);
1170 }
1171 
1172 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1173 {
1174 	struct scsi_cmnd *cmd = req->special;
1175 
1176 	/*
1177 	 * Passthrough requests may transfer data, in which case they must
1178 	 * a bio attached to them.  Or they might contain a SCSI command
1179 	 * that does not transfer data, in which case they may optionally
1180 	 * submit a request without an attached bio.
1181 	 */
1182 	if (req->bio) {
1183 		int ret = scsi_init_io(cmd);
1184 		if (unlikely(ret))
1185 			return ret;
1186 	} else {
1187 		BUG_ON(blk_rq_bytes(req));
1188 
1189 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1190 	}
1191 
1192 	cmd->cmd_len = scsi_req(req)->cmd_len;
1193 	cmd->cmnd = scsi_req(req)->cmd;
1194 	cmd->transfersize = blk_rq_bytes(req);
1195 	cmd->allowed = scsi_req(req)->retries;
1196 	return BLKPREP_OK;
1197 }
1198 
1199 /*
1200  * Setup a normal block command.  These are simple request from filesystems
1201  * that still need to be translated to SCSI CDBs from the ULD.
1202  */
1203 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1204 {
1205 	struct scsi_cmnd *cmd = req->special;
1206 
1207 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1208 		int ret = sdev->handler->prep_fn(sdev, req);
1209 		if (ret != BLKPREP_OK)
1210 			return ret;
1211 	}
1212 
1213 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1214 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1215 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1216 }
1217 
1218 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1219 {
1220 	struct scsi_cmnd *cmd = req->special;
1221 
1222 	if (!blk_rq_bytes(req))
1223 		cmd->sc_data_direction = DMA_NONE;
1224 	else if (rq_data_dir(req) == WRITE)
1225 		cmd->sc_data_direction = DMA_TO_DEVICE;
1226 	else
1227 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1228 
1229 	if (blk_rq_is_scsi(req))
1230 		return scsi_setup_scsi_cmnd(sdev, req);
1231 	else
1232 		return scsi_setup_fs_cmnd(sdev, req);
1233 }
1234 
1235 static int
1236 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1237 {
1238 	int ret = BLKPREP_OK;
1239 
1240 	/*
1241 	 * If the device is not in running state we will reject some
1242 	 * or all commands.
1243 	 */
1244 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1245 		switch (sdev->sdev_state) {
1246 		case SDEV_OFFLINE:
1247 		case SDEV_TRANSPORT_OFFLINE:
1248 			/*
1249 			 * If the device is offline we refuse to process any
1250 			 * commands.  The device must be brought online
1251 			 * before trying any recovery commands.
1252 			 */
1253 			sdev_printk(KERN_ERR, sdev,
1254 				    "rejecting I/O to offline device\n");
1255 			ret = BLKPREP_KILL;
1256 			break;
1257 		case SDEV_DEL:
1258 			/*
1259 			 * If the device is fully deleted, we refuse to
1260 			 * process any commands as well.
1261 			 */
1262 			sdev_printk(KERN_ERR, sdev,
1263 				    "rejecting I/O to dead device\n");
1264 			ret = BLKPREP_KILL;
1265 			break;
1266 		case SDEV_BLOCK:
1267 		case SDEV_CREATED_BLOCK:
1268 			ret = BLKPREP_DEFER;
1269 			break;
1270 		case SDEV_QUIESCE:
1271 			/*
1272 			 * If the devices is blocked we defer normal commands.
1273 			 */
1274 			if (!(req->rq_flags & RQF_PREEMPT))
1275 				ret = BLKPREP_DEFER;
1276 			break;
1277 		default:
1278 			/*
1279 			 * For any other not fully online state we only allow
1280 			 * special commands.  In particular any user initiated
1281 			 * command is not allowed.
1282 			 */
1283 			if (!(req->rq_flags & RQF_PREEMPT))
1284 				ret = BLKPREP_KILL;
1285 			break;
1286 		}
1287 	}
1288 	return ret;
1289 }
1290 
1291 static int
1292 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1293 {
1294 	struct scsi_device *sdev = q->queuedata;
1295 
1296 	switch (ret) {
1297 	case BLKPREP_KILL:
1298 	case BLKPREP_INVALID:
1299 		scsi_req(req)->result = DID_NO_CONNECT << 16;
1300 		/* release the command and kill it */
1301 		if (req->special) {
1302 			struct scsi_cmnd *cmd = req->special;
1303 			scsi_release_buffers(cmd);
1304 			scsi_put_command(cmd);
1305 			put_device(&sdev->sdev_gendev);
1306 			req->special = NULL;
1307 		}
1308 		break;
1309 	case BLKPREP_DEFER:
1310 		/*
1311 		 * If we defer, the blk_peek_request() returns NULL, but the
1312 		 * queue must be restarted, so we schedule a callback to happen
1313 		 * shortly.
1314 		 */
1315 		if (atomic_read(&sdev->device_busy) == 0)
1316 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1317 		break;
1318 	default:
1319 		req->rq_flags |= RQF_DONTPREP;
1320 	}
1321 
1322 	return ret;
1323 }
1324 
1325 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1326 {
1327 	struct scsi_device *sdev = q->queuedata;
1328 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1329 	int ret;
1330 
1331 	ret = scsi_prep_state_check(sdev, req);
1332 	if (ret != BLKPREP_OK)
1333 		goto out;
1334 
1335 	if (!req->special) {
1336 		/* Bail if we can't get a reference to the device */
1337 		if (unlikely(!get_device(&sdev->sdev_gendev))) {
1338 			ret = BLKPREP_DEFER;
1339 			goto out;
1340 		}
1341 
1342 		scsi_init_command(sdev, cmd);
1343 		req->special = cmd;
1344 	}
1345 
1346 	cmd->tag = req->tag;
1347 	cmd->request = req;
1348 	cmd->prot_op = SCSI_PROT_NORMAL;
1349 
1350 	ret = scsi_setup_cmnd(sdev, req);
1351 out:
1352 	return scsi_prep_return(q, req, ret);
1353 }
1354 
1355 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1356 {
1357 	scsi_uninit_cmd(req->special);
1358 }
1359 
1360 /*
1361  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1362  * return 0.
1363  *
1364  * Called with the queue_lock held.
1365  */
1366 static inline int scsi_dev_queue_ready(struct request_queue *q,
1367 				  struct scsi_device *sdev)
1368 {
1369 	unsigned int busy;
1370 
1371 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1372 	if (atomic_read(&sdev->device_blocked)) {
1373 		if (busy)
1374 			goto out_dec;
1375 
1376 		/*
1377 		 * unblock after device_blocked iterates to zero
1378 		 */
1379 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1380 			/*
1381 			 * For the MQ case we take care of this in the caller.
1382 			 */
1383 			if (!q->mq_ops)
1384 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1385 			goto out_dec;
1386 		}
1387 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1388 				   "unblocking device at zero depth\n"));
1389 	}
1390 
1391 	if (busy >= sdev->queue_depth)
1392 		goto out_dec;
1393 
1394 	return 1;
1395 out_dec:
1396 	atomic_dec(&sdev->device_busy);
1397 	return 0;
1398 }
1399 
1400 /*
1401  * scsi_target_queue_ready: checks if there we can send commands to target
1402  * @sdev: scsi device on starget to check.
1403  */
1404 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1405 					   struct scsi_device *sdev)
1406 {
1407 	struct scsi_target *starget = scsi_target(sdev);
1408 	unsigned int busy;
1409 
1410 	if (starget->single_lun) {
1411 		spin_lock_irq(shost->host_lock);
1412 		if (starget->starget_sdev_user &&
1413 		    starget->starget_sdev_user != sdev) {
1414 			spin_unlock_irq(shost->host_lock);
1415 			return 0;
1416 		}
1417 		starget->starget_sdev_user = sdev;
1418 		spin_unlock_irq(shost->host_lock);
1419 	}
1420 
1421 	if (starget->can_queue <= 0)
1422 		return 1;
1423 
1424 	busy = atomic_inc_return(&starget->target_busy) - 1;
1425 	if (atomic_read(&starget->target_blocked) > 0) {
1426 		if (busy)
1427 			goto starved;
1428 
1429 		/*
1430 		 * unblock after target_blocked iterates to zero
1431 		 */
1432 		if (atomic_dec_return(&starget->target_blocked) > 0)
1433 			goto out_dec;
1434 
1435 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1436 				 "unblocking target at zero depth\n"));
1437 	}
1438 
1439 	if (busy >= starget->can_queue)
1440 		goto starved;
1441 
1442 	return 1;
1443 
1444 starved:
1445 	spin_lock_irq(shost->host_lock);
1446 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1447 	spin_unlock_irq(shost->host_lock);
1448 out_dec:
1449 	if (starget->can_queue > 0)
1450 		atomic_dec(&starget->target_busy);
1451 	return 0;
1452 }
1453 
1454 /*
1455  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1456  * return 0. We must end up running the queue again whenever 0 is
1457  * returned, else IO can hang.
1458  */
1459 static inline int scsi_host_queue_ready(struct request_queue *q,
1460 				   struct Scsi_Host *shost,
1461 				   struct scsi_device *sdev)
1462 {
1463 	unsigned int busy;
1464 
1465 	if (scsi_host_in_recovery(shost))
1466 		return 0;
1467 
1468 	busy = atomic_inc_return(&shost->host_busy) - 1;
1469 	if (atomic_read(&shost->host_blocked) > 0) {
1470 		if (busy)
1471 			goto starved;
1472 
1473 		/*
1474 		 * unblock after host_blocked iterates to zero
1475 		 */
1476 		if (atomic_dec_return(&shost->host_blocked) > 0)
1477 			goto out_dec;
1478 
1479 		SCSI_LOG_MLQUEUE(3,
1480 			shost_printk(KERN_INFO, shost,
1481 				     "unblocking host at zero depth\n"));
1482 	}
1483 
1484 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1485 		goto starved;
1486 	if (shost->host_self_blocked)
1487 		goto starved;
1488 
1489 	/* We're OK to process the command, so we can't be starved */
1490 	if (!list_empty(&sdev->starved_entry)) {
1491 		spin_lock_irq(shost->host_lock);
1492 		if (!list_empty(&sdev->starved_entry))
1493 			list_del_init(&sdev->starved_entry);
1494 		spin_unlock_irq(shost->host_lock);
1495 	}
1496 
1497 	return 1;
1498 
1499 starved:
1500 	spin_lock_irq(shost->host_lock);
1501 	if (list_empty(&sdev->starved_entry))
1502 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1503 	spin_unlock_irq(shost->host_lock);
1504 out_dec:
1505 	atomic_dec(&shost->host_busy);
1506 	return 0;
1507 }
1508 
1509 /*
1510  * Busy state exporting function for request stacking drivers.
1511  *
1512  * For efficiency, no lock is taken to check the busy state of
1513  * shost/starget/sdev, since the returned value is not guaranteed and
1514  * may be changed after request stacking drivers call the function,
1515  * regardless of taking lock or not.
1516  *
1517  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1518  * needs to return 'not busy'. Otherwise, request stacking drivers
1519  * may hold requests forever.
1520  */
1521 static int scsi_lld_busy(struct request_queue *q)
1522 {
1523 	struct scsi_device *sdev = q->queuedata;
1524 	struct Scsi_Host *shost;
1525 
1526 	if (blk_queue_dying(q))
1527 		return 0;
1528 
1529 	shost = sdev->host;
1530 
1531 	/*
1532 	 * Ignore host/starget busy state.
1533 	 * Since block layer does not have a concept of fairness across
1534 	 * multiple queues, congestion of host/starget needs to be handled
1535 	 * in SCSI layer.
1536 	 */
1537 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1538 		return 1;
1539 
1540 	return 0;
1541 }
1542 
1543 /*
1544  * Kill a request for a dead device
1545  */
1546 static void scsi_kill_request(struct request *req, struct request_queue *q)
1547 {
1548 	struct scsi_cmnd *cmd = req->special;
1549 	struct scsi_device *sdev;
1550 	struct scsi_target *starget;
1551 	struct Scsi_Host *shost;
1552 
1553 	blk_start_request(req);
1554 
1555 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1556 
1557 	sdev = cmd->device;
1558 	starget = scsi_target(sdev);
1559 	shost = sdev->host;
1560 	scsi_init_cmd_errh(cmd);
1561 	cmd->result = DID_NO_CONNECT << 16;
1562 	atomic_inc(&cmd->device->iorequest_cnt);
1563 
1564 	/*
1565 	 * SCSI request completion path will do scsi_device_unbusy(),
1566 	 * bump busy counts.  To bump the counters, we need to dance
1567 	 * with the locks as normal issue path does.
1568 	 */
1569 	atomic_inc(&sdev->device_busy);
1570 	atomic_inc(&shost->host_busy);
1571 	if (starget->can_queue > 0)
1572 		atomic_inc(&starget->target_busy);
1573 
1574 	blk_complete_request(req);
1575 }
1576 
1577 static void scsi_softirq_done(struct request *rq)
1578 {
1579 	struct scsi_cmnd *cmd = rq->special;
1580 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1581 	int disposition;
1582 
1583 	INIT_LIST_HEAD(&cmd->eh_entry);
1584 
1585 	atomic_inc(&cmd->device->iodone_cnt);
1586 	if (cmd->result)
1587 		atomic_inc(&cmd->device->ioerr_cnt);
1588 
1589 	disposition = scsi_decide_disposition(cmd);
1590 	if (disposition != SUCCESS &&
1591 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1592 		sdev_printk(KERN_ERR, cmd->device,
1593 			    "timing out command, waited %lus\n",
1594 			    wait_for/HZ);
1595 		disposition = SUCCESS;
1596 	}
1597 
1598 	scsi_log_completion(cmd, disposition);
1599 
1600 	switch (disposition) {
1601 		case SUCCESS:
1602 			scsi_finish_command(cmd);
1603 			break;
1604 		case NEEDS_RETRY:
1605 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1606 			break;
1607 		case ADD_TO_MLQUEUE:
1608 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1609 			break;
1610 		default:
1611 			scsi_eh_scmd_add(cmd);
1612 			break;
1613 	}
1614 }
1615 
1616 /**
1617  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1618  * @cmd: command block we are dispatching.
1619  *
1620  * Return: nonzero return request was rejected and device's queue needs to be
1621  * plugged.
1622  */
1623 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1624 {
1625 	struct Scsi_Host *host = cmd->device->host;
1626 	int rtn = 0;
1627 
1628 	atomic_inc(&cmd->device->iorequest_cnt);
1629 
1630 	/* check if the device is still usable */
1631 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1632 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1633 		 * returns an immediate error upwards, and signals
1634 		 * that the device is no longer present */
1635 		cmd->result = DID_NO_CONNECT << 16;
1636 		goto done;
1637 	}
1638 
1639 	/* Check to see if the scsi lld made this device blocked. */
1640 	if (unlikely(scsi_device_blocked(cmd->device))) {
1641 		/*
1642 		 * in blocked state, the command is just put back on
1643 		 * the device queue.  The suspend state has already
1644 		 * blocked the queue so future requests should not
1645 		 * occur until the device transitions out of the
1646 		 * suspend state.
1647 		 */
1648 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1649 			"queuecommand : device blocked\n"));
1650 		return SCSI_MLQUEUE_DEVICE_BUSY;
1651 	}
1652 
1653 	/* Store the LUN value in cmnd, if needed. */
1654 	if (cmd->device->lun_in_cdb)
1655 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1656 			       (cmd->device->lun << 5 & 0xe0);
1657 
1658 	scsi_log_send(cmd);
1659 
1660 	/*
1661 	 * Before we queue this command, check if the command
1662 	 * length exceeds what the host adapter can handle.
1663 	 */
1664 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1665 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1666 			       "queuecommand : command too long. "
1667 			       "cdb_size=%d host->max_cmd_len=%d\n",
1668 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1669 		cmd->result = (DID_ABORT << 16);
1670 		goto done;
1671 	}
1672 
1673 	if (unlikely(host->shost_state == SHOST_DEL)) {
1674 		cmd->result = (DID_NO_CONNECT << 16);
1675 		goto done;
1676 
1677 	}
1678 
1679 	trace_scsi_dispatch_cmd_start(cmd);
1680 	rtn = host->hostt->queuecommand(host, cmd);
1681 	if (rtn) {
1682 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1683 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1684 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1685 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1686 
1687 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1688 			"queuecommand : request rejected\n"));
1689 	}
1690 
1691 	return rtn;
1692  done:
1693 	cmd->scsi_done(cmd);
1694 	return 0;
1695 }
1696 
1697 /**
1698  * scsi_done - Invoke completion on finished SCSI command.
1699  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1700  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1701  *
1702  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1703  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1704  * calls blk_complete_request() for further processing.
1705  *
1706  * This function is interrupt context safe.
1707  */
1708 static void scsi_done(struct scsi_cmnd *cmd)
1709 {
1710 	trace_scsi_dispatch_cmd_done(cmd);
1711 	blk_complete_request(cmd->request);
1712 }
1713 
1714 /*
1715  * Function:    scsi_request_fn()
1716  *
1717  * Purpose:     Main strategy routine for SCSI.
1718  *
1719  * Arguments:   q       - Pointer to actual queue.
1720  *
1721  * Returns:     Nothing
1722  *
1723  * Lock status: IO request lock assumed to be held when called.
1724  */
1725 static void scsi_request_fn(struct request_queue *q)
1726 	__releases(q->queue_lock)
1727 	__acquires(q->queue_lock)
1728 {
1729 	struct scsi_device *sdev = q->queuedata;
1730 	struct Scsi_Host *shost;
1731 	struct scsi_cmnd *cmd;
1732 	struct request *req;
1733 
1734 	/*
1735 	 * To start with, we keep looping until the queue is empty, or until
1736 	 * the host is no longer able to accept any more requests.
1737 	 */
1738 	shost = sdev->host;
1739 	for (;;) {
1740 		int rtn;
1741 		/*
1742 		 * get next queueable request.  We do this early to make sure
1743 		 * that the request is fully prepared even if we cannot
1744 		 * accept it.
1745 		 */
1746 		req = blk_peek_request(q);
1747 		if (!req)
1748 			break;
1749 
1750 		if (unlikely(!scsi_device_online(sdev))) {
1751 			sdev_printk(KERN_ERR, sdev,
1752 				    "rejecting I/O to offline device\n");
1753 			scsi_kill_request(req, q);
1754 			continue;
1755 		}
1756 
1757 		if (!scsi_dev_queue_ready(q, sdev))
1758 			break;
1759 
1760 		/*
1761 		 * Remove the request from the request list.
1762 		 */
1763 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1764 			blk_start_request(req);
1765 
1766 		spin_unlock_irq(q->queue_lock);
1767 		cmd = req->special;
1768 		if (unlikely(cmd == NULL)) {
1769 			printk(KERN_CRIT "impossible request in %s.\n"
1770 					 "please mail a stack trace to "
1771 					 "linux-scsi@vger.kernel.org\n",
1772 					 __func__);
1773 			blk_dump_rq_flags(req, "foo");
1774 			BUG();
1775 		}
1776 
1777 		/*
1778 		 * We hit this when the driver is using a host wide
1779 		 * tag map. For device level tag maps the queue_depth check
1780 		 * in the device ready fn would prevent us from trying
1781 		 * to allocate a tag. Since the map is a shared host resource
1782 		 * we add the dev to the starved list so it eventually gets
1783 		 * a run when a tag is freed.
1784 		 */
1785 		if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1786 			spin_lock_irq(shost->host_lock);
1787 			if (list_empty(&sdev->starved_entry))
1788 				list_add_tail(&sdev->starved_entry,
1789 					      &shost->starved_list);
1790 			spin_unlock_irq(shost->host_lock);
1791 			goto not_ready;
1792 		}
1793 
1794 		if (!scsi_target_queue_ready(shost, sdev))
1795 			goto not_ready;
1796 
1797 		if (!scsi_host_queue_ready(q, shost, sdev))
1798 			goto host_not_ready;
1799 
1800 		if (sdev->simple_tags)
1801 			cmd->flags |= SCMD_TAGGED;
1802 		else
1803 			cmd->flags &= ~SCMD_TAGGED;
1804 
1805 		/*
1806 		 * Finally, initialize any error handling parameters, and set up
1807 		 * the timers for timeouts.
1808 		 */
1809 		scsi_init_cmd_errh(cmd);
1810 
1811 		/*
1812 		 * Dispatch the command to the low-level driver.
1813 		 */
1814 		cmd->scsi_done = scsi_done;
1815 		rtn = scsi_dispatch_cmd(cmd);
1816 		if (rtn) {
1817 			scsi_queue_insert(cmd, rtn);
1818 			spin_lock_irq(q->queue_lock);
1819 			goto out_delay;
1820 		}
1821 		spin_lock_irq(q->queue_lock);
1822 	}
1823 
1824 	return;
1825 
1826  host_not_ready:
1827 	if (scsi_target(sdev)->can_queue > 0)
1828 		atomic_dec(&scsi_target(sdev)->target_busy);
1829  not_ready:
1830 	/*
1831 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1832 	 * must return with queue_lock held.
1833 	 *
1834 	 * Decrementing device_busy without checking it is OK, as all such
1835 	 * cases (host limits or settings) should run the queue at some
1836 	 * later time.
1837 	 */
1838 	spin_lock_irq(q->queue_lock);
1839 	blk_requeue_request(q, req);
1840 	atomic_dec(&sdev->device_busy);
1841 out_delay:
1842 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1843 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1844 }
1845 
1846 static inline blk_status_t prep_to_mq(int ret)
1847 {
1848 	switch (ret) {
1849 	case BLKPREP_OK:
1850 		return BLK_STS_OK;
1851 	case BLKPREP_DEFER:
1852 		return BLK_STS_RESOURCE;
1853 	default:
1854 		return BLK_STS_IOERR;
1855 	}
1856 }
1857 
1858 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1859 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1860 {
1861 	return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1862 		sizeof(struct scatterlist);
1863 }
1864 
1865 static int scsi_mq_prep_fn(struct request *req)
1866 {
1867 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1868 	struct scsi_device *sdev = req->q->queuedata;
1869 	struct Scsi_Host *shost = sdev->host;
1870 	struct scatterlist *sg;
1871 
1872 	scsi_init_command(sdev, cmd);
1873 
1874 	req->special = cmd;
1875 
1876 	cmd->request = req;
1877 
1878 	cmd->tag = req->tag;
1879 	cmd->prot_op = SCSI_PROT_NORMAL;
1880 
1881 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1882 	cmd->sdb.table.sgl = sg;
1883 
1884 	if (scsi_host_get_prot(shost)) {
1885 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1886 
1887 		cmd->prot_sdb->table.sgl =
1888 			(struct scatterlist *)(cmd->prot_sdb + 1);
1889 	}
1890 
1891 	if (blk_bidi_rq(req)) {
1892 		struct request *next_rq = req->next_rq;
1893 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1894 
1895 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1896 		bidi_sdb->table.sgl =
1897 			(struct scatterlist *)(bidi_sdb + 1);
1898 
1899 		next_rq->special = bidi_sdb;
1900 	}
1901 
1902 	blk_mq_start_request(req);
1903 
1904 	return scsi_setup_cmnd(sdev, req);
1905 }
1906 
1907 static void scsi_mq_done(struct scsi_cmnd *cmd)
1908 {
1909 	trace_scsi_dispatch_cmd_done(cmd);
1910 	blk_mq_complete_request(cmd->request);
1911 }
1912 
1913 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1914 			 const struct blk_mq_queue_data *bd)
1915 {
1916 	struct request *req = bd->rq;
1917 	struct request_queue *q = req->q;
1918 	struct scsi_device *sdev = q->queuedata;
1919 	struct Scsi_Host *shost = sdev->host;
1920 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1921 	blk_status_t ret;
1922 	int reason;
1923 
1924 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1925 	if (ret != BLK_STS_OK)
1926 		goto out;
1927 
1928 	ret = BLK_STS_RESOURCE;
1929 	if (!get_device(&sdev->sdev_gendev))
1930 		goto out;
1931 
1932 	if (!scsi_dev_queue_ready(q, sdev))
1933 		goto out_put_device;
1934 	if (!scsi_target_queue_ready(shost, sdev))
1935 		goto out_dec_device_busy;
1936 	if (!scsi_host_queue_ready(q, shost, sdev))
1937 		goto out_dec_target_busy;
1938 
1939 	if (!(req->rq_flags & RQF_DONTPREP)) {
1940 		ret = prep_to_mq(scsi_mq_prep_fn(req));
1941 		if (ret != BLK_STS_OK)
1942 			goto out_dec_host_busy;
1943 		req->rq_flags |= RQF_DONTPREP;
1944 	} else {
1945 		blk_mq_start_request(req);
1946 	}
1947 
1948 	if (sdev->simple_tags)
1949 		cmd->flags |= SCMD_TAGGED;
1950 	else
1951 		cmd->flags &= ~SCMD_TAGGED;
1952 
1953 	scsi_init_cmd_errh(cmd);
1954 	cmd->scsi_done = scsi_mq_done;
1955 
1956 	reason = scsi_dispatch_cmd(cmd);
1957 	if (reason) {
1958 		scsi_set_blocked(cmd, reason);
1959 		ret = BLK_STS_RESOURCE;
1960 		goto out_dec_host_busy;
1961 	}
1962 
1963 	return BLK_STS_OK;
1964 
1965 out_dec_host_busy:
1966 	atomic_dec(&shost->host_busy);
1967 out_dec_target_busy:
1968 	if (scsi_target(sdev)->can_queue > 0)
1969 		atomic_dec(&scsi_target(sdev)->target_busy);
1970 out_dec_device_busy:
1971 	atomic_dec(&sdev->device_busy);
1972 out_put_device:
1973 	put_device(&sdev->sdev_gendev);
1974 out:
1975 	switch (ret) {
1976 	case BLK_STS_OK:
1977 		break;
1978 	case BLK_STS_RESOURCE:
1979 		if (atomic_read(&sdev->device_busy) == 0 &&
1980 		    !scsi_device_blocked(sdev))
1981 			blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1982 		break;
1983 	default:
1984 		/*
1985 		 * Make sure to release all allocated ressources when
1986 		 * we hit an error, as we will never see this command
1987 		 * again.
1988 		 */
1989 		if (req->rq_flags & RQF_DONTPREP)
1990 			scsi_mq_uninit_cmd(cmd);
1991 		break;
1992 	}
1993 	return ret;
1994 }
1995 
1996 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1997 		bool reserved)
1998 {
1999 	if (reserved)
2000 		return BLK_EH_RESET_TIMER;
2001 	return scsi_times_out(req);
2002 }
2003 
2004 static int scsi_init_request(struct blk_mq_tag_set *set, struct request *rq,
2005 		unsigned int hctx_idx, unsigned int numa_node)
2006 {
2007 	struct Scsi_Host *shost = set->driver_data;
2008 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2009 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2010 	struct scatterlist *sg;
2011 
2012 	if (unchecked_isa_dma)
2013 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2014 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2015 						    GFP_KERNEL, numa_node);
2016 	if (!cmd->sense_buffer)
2017 		return -ENOMEM;
2018 	cmd->req.sense = cmd->sense_buffer;
2019 
2020 	if (scsi_host_get_prot(shost)) {
2021 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2022 			shost->hostt->cmd_size;
2023 		cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2024 	}
2025 
2026 	return 0;
2027 }
2028 
2029 static void scsi_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2030 		unsigned int hctx_idx)
2031 {
2032 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2033 
2034 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2035 			       cmd->sense_buffer);
2036 }
2037 
2038 static int scsi_map_queues(struct blk_mq_tag_set *set)
2039 {
2040 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2041 
2042 	if (shost->hostt->map_queues)
2043 		return shost->hostt->map_queues(shost);
2044 	return blk_mq_map_queues(set);
2045 }
2046 
2047 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2048 {
2049 	struct device *host_dev;
2050 	u64 bounce_limit = 0xffffffff;
2051 
2052 	if (shost->unchecked_isa_dma)
2053 		return BLK_BOUNCE_ISA;
2054 	/*
2055 	 * Platforms with virtual-DMA translation
2056 	 * hardware have no practical limit.
2057 	 */
2058 	if (!PCI_DMA_BUS_IS_PHYS)
2059 		return BLK_BOUNCE_ANY;
2060 
2061 	host_dev = scsi_get_device(shost);
2062 	if (host_dev && host_dev->dma_mask)
2063 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2064 
2065 	return bounce_limit;
2066 }
2067 
2068 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2069 {
2070 	struct device *dev = shost->dma_dev;
2071 
2072 	queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2073 
2074 	/*
2075 	 * this limit is imposed by hardware restrictions
2076 	 */
2077 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2078 					SG_MAX_SEGMENTS));
2079 
2080 	if (scsi_host_prot_dma(shost)) {
2081 		shost->sg_prot_tablesize =
2082 			min_not_zero(shost->sg_prot_tablesize,
2083 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2084 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2085 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2086 	}
2087 
2088 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2089 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2090 	blk_queue_segment_boundary(q, shost->dma_boundary);
2091 	dma_set_seg_boundary(dev, shost->dma_boundary);
2092 
2093 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2094 
2095 	if (!shost->use_clustering)
2096 		q->limits.cluster = 0;
2097 
2098 	/*
2099 	 * set a reasonable default alignment on word boundaries: the
2100 	 * host and device may alter it using
2101 	 * blk_queue_update_dma_alignment() later.
2102 	 */
2103 	blk_queue_dma_alignment(q, 0x03);
2104 }
2105 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2106 
2107 static int scsi_init_rq(struct request_queue *q, struct request *rq, gfp_t gfp)
2108 {
2109 	struct Scsi_Host *shost = q->rq_alloc_data;
2110 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2111 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2112 
2113 	memset(cmd, 0, sizeof(*cmd));
2114 
2115 	if (unchecked_isa_dma)
2116 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2117 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2118 						    NUMA_NO_NODE);
2119 	if (!cmd->sense_buffer)
2120 		goto fail;
2121 	cmd->req.sense = cmd->sense_buffer;
2122 
2123 	if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2124 		cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2125 		if (!cmd->prot_sdb)
2126 			goto fail_free_sense;
2127 	}
2128 
2129 	return 0;
2130 
2131 fail_free_sense:
2132 	scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2133 fail:
2134 	return -ENOMEM;
2135 }
2136 
2137 static void scsi_exit_rq(struct request_queue *q, struct request *rq)
2138 {
2139 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2140 
2141 	if (cmd->prot_sdb)
2142 		kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2143 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2144 			       cmd->sense_buffer);
2145 }
2146 
2147 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2148 {
2149 	struct Scsi_Host *shost = sdev->host;
2150 	struct request_queue *q;
2151 
2152 	q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2153 	if (!q)
2154 		return NULL;
2155 	q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2156 	q->rq_alloc_data = shost;
2157 	q->request_fn = scsi_request_fn;
2158 	q->init_rq_fn = scsi_init_rq;
2159 	q->exit_rq_fn = scsi_exit_rq;
2160 	q->initialize_rq_fn = scsi_initialize_rq;
2161 
2162 	if (blk_init_allocated_queue(q) < 0) {
2163 		blk_cleanup_queue(q);
2164 		return NULL;
2165 	}
2166 
2167 	__scsi_init_queue(shost, q);
2168 	blk_queue_prep_rq(q, scsi_prep_fn);
2169 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2170 	blk_queue_softirq_done(q, scsi_softirq_done);
2171 	blk_queue_rq_timed_out(q, scsi_times_out);
2172 	blk_queue_lld_busy(q, scsi_lld_busy);
2173 	return q;
2174 }
2175 
2176 static const struct blk_mq_ops scsi_mq_ops = {
2177 	.queue_rq	= scsi_queue_rq,
2178 	.complete	= scsi_softirq_done,
2179 	.timeout	= scsi_timeout,
2180 #ifdef CONFIG_BLK_DEBUG_FS
2181 	.show_rq	= scsi_show_rq,
2182 #endif
2183 	.init_request	= scsi_init_request,
2184 	.exit_request	= scsi_exit_request,
2185 	.initialize_rq_fn = scsi_initialize_rq,
2186 	.map_queues	= scsi_map_queues,
2187 };
2188 
2189 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2190 {
2191 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2192 	if (IS_ERR(sdev->request_queue))
2193 		return NULL;
2194 
2195 	sdev->request_queue->queuedata = sdev;
2196 	__scsi_init_queue(sdev->host, sdev->request_queue);
2197 	return sdev->request_queue;
2198 }
2199 
2200 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2201 {
2202 	unsigned int cmd_size, sgl_size;
2203 
2204 	sgl_size = scsi_mq_sgl_size(shost);
2205 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2206 	if (scsi_host_get_prot(shost))
2207 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2208 
2209 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2210 	shost->tag_set.ops = &scsi_mq_ops;
2211 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2212 	shost->tag_set.queue_depth = shost->can_queue;
2213 	shost->tag_set.cmd_size = cmd_size;
2214 	shost->tag_set.numa_node = NUMA_NO_NODE;
2215 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2216 	shost->tag_set.flags |=
2217 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2218 	shost->tag_set.driver_data = shost;
2219 
2220 	return blk_mq_alloc_tag_set(&shost->tag_set);
2221 }
2222 
2223 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2224 {
2225 	blk_mq_free_tag_set(&shost->tag_set);
2226 }
2227 
2228 /**
2229  * scsi_device_from_queue - return sdev associated with a request_queue
2230  * @q: The request queue to return the sdev from
2231  *
2232  * Return the sdev associated with a request queue or NULL if the
2233  * request_queue does not reference a SCSI device.
2234  */
2235 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2236 {
2237 	struct scsi_device *sdev = NULL;
2238 
2239 	if (q->mq_ops) {
2240 		if (q->mq_ops == &scsi_mq_ops)
2241 			sdev = q->queuedata;
2242 	} else if (q->request_fn == scsi_request_fn)
2243 		sdev = q->queuedata;
2244 	if (!sdev || !get_device(&sdev->sdev_gendev))
2245 		sdev = NULL;
2246 
2247 	return sdev;
2248 }
2249 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2250 
2251 /*
2252  * Function:    scsi_block_requests()
2253  *
2254  * Purpose:     Utility function used by low-level drivers to prevent further
2255  *		commands from being queued to the device.
2256  *
2257  * Arguments:   shost       - Host in question
2258  *
2259  * Returns:     Nothing
2260  *
2261  * Lock status: No locks are assumed held.
2262  *
2263  * Notes:       There is no timer nor any other means by which the requests
2264  *		get unblocked other than the low-level driver calling
2265  *		scsi_unblock_requests().
2266  */
2267 void scsi_block_requests(struct Scsi_Host *shost)
2268 {
2269 	shost->host_self_blocked = 1;
2270 }
2271 EXPORT_SYMBOL(scsi_block_requests);
2272 
2273 /*
2274  * Function:    scsi_unblock_requests()
2275  *
2276  * Purpose:     Utility function used by low-level drivers to allow further
2277  *		commands from being queued to the device.
2278  *
2279  * Arguments:   shost       - Host in question
2280  *
2281  * Returns:     Nothing
2282  *
2283  * Lock status: No locks are assumed held.
2284  *
2285  * Notes:       There is no timer nor any other means by which the requests
2286  *		get unblocked other than the low-level driver calling
2287  *		scsi_unblock_requests().
2288  *
2289  *		This is done as an API function so that changes to the
2290  *		internals of the scsi mid-layer won't require wholesale
2291  *		changes to drivers that use this feature.
2292  */
2293 void scsi_unblock_requests(struct Scsi_Host *shost)
2294 {
2295 	shost->host_self_blocked = 0;
2296 	scsi_run_host_queues(shost);
2297 }
2298 EXPORT_SYMBOL(scsi_unblock_requests);
2299 
2300 int __init scsi_init_queue(void)
2301 {
2302 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2303 					   sizeof(struct scsi_data_buffer),
2304 					   0, 0, NULL);
2305 	if (!scsi_sdb_cache) {
2306 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2307 		return -ENOMEM;
2308 	}
2309 
2310 	return 0;
2311 }
2312 
2313 void scsi_exit_queue(void)
2314 {
2315 	kmem_cache_destroy(scsi_sense_cache);
2316 	kmem_cache_destroy(scsi_sense_isadma_cache);
2317 	kmem_cache_destroy(scsi_sdb_cache);
2318 }
2319 
2320 /**
2321  *	scsi_mode_select - issue a mode select
2322  *	@sdev:	SCSI device to be queried
2323  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2324  *	@sp:	Save page bit (0 == don't save, 1 == save)
2325  *	@modepage: mode page being requested
2326  *	@buffer: request buffer (may not be smaller than eight bytes)
2327  *	@len:	length of request buffer.
2328  *	@timeout: command timeout
2329  *	@retries: number of retries before failing
2330  *	@data: returns a structure abstracting the mode header data
2331  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2332  *		must be SCSI_SENSE_BUFFERSIZE big.
2333  *
2334  *	Returns zero if successful; negative error number or scsi
2335  *	status on error
2336  *
2337  */
2338 int
2339 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2340 		 unsigned char *buffer, int len, int timeout, int retries,
2341 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2342 {
2343 	unsigned char cmd[10];
2344 	unsigned char *real_buffer;
2345 	int ret;
2346 
2347 	memset(cmd, 0, sizeof(cmd));
2348 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2349 
2350 	if (sdev->use_10_for_ms) {
2351 		if (len > 65535)
2352 			return -EINVAL;
2353 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2354 		if (!real_buffer)
2355 			return -ENOMEM;
2356 		memcpy(real_buffer + 8, buffer, len);
2357 		len += 8;
2358 		real_buffer[0] = 0;
2359 		real_buffer[1] = 0;
2360 		real_buffer[2] = data->medium_type;
2361 		real_buffer[3] = data->device_specific;
2362 		real_buffer[4] = data->longlba ? 0x01 : 0;
2363 		real_buffer[5] = 0;
2364 		real_buffer[6] = data->block_descriptor_length >> 8;
2365 		real_buffer[7] = data->block_descriptor_length;
2366 
2367 		cmd[0] = MODE_SELECT_10;
2368 		cmd[7] = len >> 8;
2369 		cmd[8] = len;
2370 	} else {
2371 		if (len > 255 || data->block_descriptor_length > 255 ||
2372 		    data->longlba)
2373 			return -EINVAL;
2374 
2375 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2376 		if (!real_buffer)
2377 			return -ENOMEM;
2378 		memcpy(real_buffer + 4, buffer, len);
2379 		len += 4;
2380 		real_buffer[0] = 0;
2381 		real_buffer[1] = data->medium_type;
2382 		real_buffer[2] = data->device_specific;
2383 		real_buffer[3] = data->block_descriptor_length;
2384 
2385 
2386 		cmd[0] = MODE_SELECT;
2387 		cmd[4] = len;
2388 	}
2389 
2390 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2391 			       sshdr, timeout, retries, NULL);
2392 	kfree(real_buffer);
2393 	return ret;
2394 }
2395 EXPORT_SYMBOL_GPL(scsi_mode_select);
2396 
2397 /**
2398  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2399  *	@sdev:	SCSI device to be queried
2400  *	@dbd:	set if mode sense will allow block descriptors to be returned
2401  *	@modepage: mode page being requested
2402  *	@buffer: request buffer (may not be smaller than eight bytes)
2403  *	@len:	length of request buffer.
2404  *	@timeout: command timeout
2405  *	@retries: number of retries before failing
2406  *	@data: returns a structure abstracting the mode header data
2407  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2408  *		must be SCSI_SENSE_BUFFERSIZE big.
2409  *
2410  *	Returns zero if unsuccessful, or the header offset (either 4
2411  *	or 8 depending on whether a six or ten byte command was
2412  *	issued) if successful.
2413  */
2414 int
2415 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2416 		  unsigned char *buffer, int len, int timeout, int retries,
2417 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2418 {
2419 	unsigned char cmd[12];
2420 	int use_10_for_ms;
2421 	int header_length;
2422 	int result, retry_count = retries;
2423 	struct scsi_sense_hdr my_sshdr;
2424 
2425 	memset(data, 0, sizeof(*data));
2426 	memset(&cmd[0], 0, 12);
2427 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2428 	cmd[2] = modepage;
2429 
2430 	/* caller might not be interested in sense, but we need it */
2431 	if (!sshdr)
2432 		sshdr = &my_sshdr;
2433 
2434  retry:
2435 	use_10_for_ms = sdev->use_10_for_ms;
2436 
2437 	if (use_10_for_ms) {
2438 		if (len < 8)
2439 			len = 8;
2440 
2441 		cmd[0] = MODE_SENSE_10;
2442 		cmd[8] = len;
2443 		header_length = 8;
2444 	} else {
2445 		if (len < 4)
2446 			len = 4;
2447 
2448 		cmd[0] = MODE_SENSE;
2449 		cmd[4] = len;
2450 		header_length = 4;
2451 	}
2452 
2453 	memset(buffer, 0, len);
2454 
2455 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2456 				  sshdr, timeout, retries, NULL);
2457 
2458 	/* This code looks awful: what it's doing is making sure an
2459 	 * ILLEGAL REQUEST sense return identifies the actual command
2460 	 * byte as the problem.  MODE_SENSE commands can return
2461 	 * ILLEGAL REQUEST if the code page isn't supported */
2462 
2463 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2464 	    (driver_byte(result) & DRIVER_SENSE)) {
2465 		if (scsi_sense_valid(sshdr)) {
2466 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2467 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2468 				/*
2469 				 * Invalid command operation code
2470 				 */
2471 				sdev->use_10_for_ms = 0;
2472 				goto retry;
2473 			}
2474 		}
2475 	}
2476 
2477 	if(scsi_status_is_good(result)) {
2478 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2479 			     (modepage == 6 || modepage == 8))) {
2480 			/* Initio breakage? */
2481 			header_length = 0;
2482 			data->length = 13;
2483 			data->medium_type = 0;
2484 			data->device_specific = 0;
2485 			data->longlba = 0;
2486 			data->block_descriptor_length = 0;
2487 		} else if(use_10_for_ms) {
2488 			data->length = buffer[0]*256 + buffer[1] + 2;
2489 			data->medium_type = buffer[2];
2490 			data->device_specific = buffer[3];
2491 			data->longlba = buffer[4] & 0x01;
2492 			data->block_descriptor_length = buffer[6]*256
2493 				+ buffer[7];
2494 		} else {
2495 			data->length = buffer[0] + 1;
2496 			data->medium_type = buffer[1];
2497 			data->device_specific = buffer[2];
2498 			data->block_descriptor_length = buffer[3];
2499 		}
2500 		data->header_length = header_length;
2501 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2502 		   scsi_sense_valid(sshdr) &&
2503 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2504 		retry_count--;
2505 		goto retry;
2506 	}
2507 
2508 	return result;
2509 }
2510 EXPORT_SYMBOL(scsi_mode_sense);
2511 
2512 /**
2513  *	scsi_test_unit_ready - test if unit is ready
2514  *	@sdev:	scsi device to change the state of.
2515  *	@timeout: command timeout
2516  *	@retries: number of retries before failing
2517  *	@sshdr: outpout pointer for decoded sense information.
2518  *
2519  *	Returns zero if unsuccessful or an error if TUR failed.  For
2520  *	removable media, UNIT_ATTENTION sets ->changed flag.
2521  **/
2522 int
2523 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2524 		     struct scsi_sense_hdr *sshdr)
2525 {
2526 	char cmd[] = {
2527 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2528 	};
2529 	int result;
2530 
2531 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2532 	do {
2533 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2534 					  timeout, retries, NULL);
2535 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2536 		    sshdr->sense_key == UNIT_ATTENTION)
2537 			sdev->changed = 1;
2538 	} while (scsi_sense_valid(sshdr) &&
2539 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2540 
2541 	return result;
2542 }
2543 EXPORT_SYMBOL(scsi_test_unit_ready);
2544 
2545 /**
2546  *	scsi_device_set_state - Take the given device through the device state model.
2547  *	@sdev:	scsi device to change the state of.
2548  *	@state:	state to change to.
2549  *
2550  *	Returns zero if unsuccessful or an error if the requested
2551  *	transition is illegal.
2552  */
2553 int
2554 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2555 {
2556 	enum scsi_device_state oldstate = sdev->sdev_state;
2557 
2558 	if (state == oldstate)
2559 		return 0;
2560 
2561 	switch (state) {
2562 	case SDEV_CREATED:
2563 		switch (oldstate) {
2564 		case SDEV_CREATED_BLOCK:
2565 			break;
2566 		default:
2567 			goto illegal;
2568 		}
2569 		break;
2570 
2571 	case SDEV_RUNNING:
2572 		switch (oldstate) {
2573 		case SDEV_CREATED:
2574 		case SDEV_OFFLINE:
2575 		case SDEV_TRANSPORT_OFFLINE:
2576 		case SDEV_QUIESCE:
2577 		case SDEV_BLOCK:
2578 			break;
2579 		default:
2580 			goto illegal;
2581 		}
2582 		break;
2583 
2584 	case SDEV_QUIESCE:
2585 		switch (oldstate) {
2586 		case SDEV_RUNNING:
2587 		case SDEV_OFFLINE:
2588 		case SDEV_TRANSPORT_OFFLINE:
2589 			break;
2590 		default:
2591 			goto illegal;
2592 		}
2593 		break;
2594 
2595 	case SDEV_OFFLINE:
2596 	case SDEV_TRANSPORT_OFFLINE:
2597 		switch (oldstate) {
2598 		case SDEV_CREATED:
2599 		case SDEV_RUNNING:
2600 		case SDEV_QUIESCE:
2601 		case SDEV_BLOCK:
2602 			break;
2603 		default:
2604 			goto illegal;
2605 		}
2606 		break;
2607 
2608 	case SDEV_BLOCK:
2609 		switch (oldstate) {
2610 		case SDEV_RUNNING:
2611 		case SDEV_CREATED_BLOCK:
2612 			break;
2613 		default:
2614 			goto illegal;
2615 		}
2616 		break;
2617 
2618 	case SDEV_CREATED_BLOCK:
2619 		switch (oldstate) {
2620 		case SDEV_CREATED:
2621 			break;
2622 		default:
2623 			goto illegal;
2624 		}
2625 		break;
2626 
2627 	case SDEV_CANCEL:
2628 		switch (oldstate) {
2629 		case SDEV_CREATED:
2630 		case SDEV_RUNNING:
2631 		case SDEV_QUIESCE:
2632 		case SDEV_OFFLINE:
2633 		case SDEV_TRANSPORT_OFFLINE:
2634 			break;
2635 		default:
2636 			goto illegal;
2637 		}
2638 		break;
2639 
2640 	case SDEV_DEL:
2641 		switch (oldstate) {
2642 		case SDEV_CREATED:
2643 		case SDEV_RUNNING:
2644 		case SDEV_OFFLINE:
2645 		case SDEV_TRANSPORT_OFFLINE:
2646 		case SDEV_CANCEL:
2647 		case SDEV_BLOCK:
2648 		case SDEV_CREATED_BLOCK:
2649 			break;
2650 		default:
2651 			goto illegal;
2652 		}
2653 		break;
2654 
2655 	}
2656 	sdev->sdev_state = state;
2657 	return 0;
2658 
2659  illegal:
2660 	SCSI_LOG_ERROR_RECOVERY(1,
2661 				sdev_printk(KERN_ERR, sdev,
2662 					    "Illegal state transition %s->%s",
2663 					    scsi_device_state_name(oldstate),
2664 					    scsi_device_state_name(state))
2665 				);
2666 	return -EINVAL;
2667 }
2668 EXPORT_SYMBOL(scsi_device_set_state);
2669 
2670 /**
2671  * 	sdev_evt_emit - emit a single SCSI device uevent
2672  *	@sdev: associated SCSI device
2673  *	@evt: event to emit
2674  *
2675  *	Send a single uevent (scsi_event) to the associated scsi_device.
2676  */
2677 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2678 {
2679 	int idx = 0;
2680 	char *envp[3];
2681 
2682 	switch (evt->evt_type) {
2683 	case SDEV_EVT_MEDIA_CHANGE:
2684 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2685 		break;
2686 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2687 		scsi_rescan_device(&sdev->sdev_gendev);
2688 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2689 		break;
2690 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2691 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2692 		break;
2693 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2694 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2695 		break;
2696 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2697 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2698 		break;
2699 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2700 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2701 		break;
2702 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2703 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2704 		break;
2705 	default:
2706 		/* do nothing */
2707 		break;
2708 	}
2709 
2710 	envp[idx++] = NULL;
2711 
2712 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2713 }
2714 
2715 /**
2716  * 	sdev_evt_thread - send a uevent for each scsi event
2717  *	@work: work struct for scsi_device
2718  *
2719  *	Dispatch queued events to their associated scsi_device kobjects
2720  *	as uevents.
2721  */
2722 void scsi_evt_thread(struct work_struct *work)
2723 {
2724 	struct scsi_device *sdev;
2725 	enum scsi_device_event evt_type;
2726 	LIST_HEAD(event_list);
2727 
2728 	sdev = container_of(work, struct scsi_device, event_work);
2729 
2730 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2731 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2732 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2733 
2734 	while (1) {
2735 		struct scsi_event *evt;
2736 		struct list_head *this, *tmp;
2737 		unsigned long flags;
2738 
2739 		spin_lock_irqsave(&sdev->list_lock, flags);
2740 		list_splice_init(&sdev->event_list, &event_list);
2741 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2742 
2743 		if (list_empty(&event_list))
2744 			break;
2745 
2746 		list_for_each_safe(this, tmp, &event_list) {
2747 			evt = list_entry(this, struct scsi_event, node);
2748 			list_del(&evt->node);
2749 			scsi_evt_emit(sdev, evt);
2750 			kfree(evt);
2751 		}
2752 	}
2753 }
2754 
2755 /**
2756  * 	sdev_evt_send - send asserted event to uevent thread
2757  *	@sdev: scsi_device event occurred on
2758  *	@evt: event to send
2759  *
2760  *	Assert scsi device event asynchronously.
2761  */
2762 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2763 {
2764 	unsigned long flags;
2765 
2766 #if 0
2767 	/* FIXME: currently this check eliminates all media change events
2768 	 * for polled devices.  Need to update to discriminate between AN
2769 	 * and polled events */
2770 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2771 		kfree(evt);
2772 		return;
2773 	}
2774 #endif
2775 
2776 	spin_lock_irqsave(&sdev->list_lock, flags);
2777 	list_add_tail(&evt->node, &sdev->event_list);
2778 	schedule_work(&sdev->event_work);
2779 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2780 }
2781 EXPORT_SYMBOL_GPL(sdev_evt_send);
2782 
2783 /**
2784  * 	sdev_evt_alloc - allocate a new scsi event
2785  *	@evt_type: type of event to allocate
2786  *	@gfpflags: GFP flags for allocation
2787  *
2788  *	Allocates and returns a new scsi_event.
2789  */
2790 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2791 				  gfp_t gfpflags)
2792 {
2793 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2794 	if (!evt)
2795 		return NULL;
2796 
2797 	evt->evt_type = evt_type;
2798 	INIT_LIST_HEAD(&evt->node);
2799 
2800 	/* evt_type-specific initialization, if any */
2801 	switch (evt_type) {
2802 	case SDEV_EVT_MEDIA_CHANGE:
2803 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2804 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2805 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2806 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2807 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2808 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2809 	default:
2810 		/* do nothing */
2811 		break;
2812 	}
2813 
2814 	return evt;
2815 }
2816 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2817 
2818 /**
2819  * 	sdev_evt_send_simple - send asserted event to uevent thread
2820  *	@sdev: scsi_device event occurred on
2821  *	@evt_type: type of event to send
2822  *	@gfpflags: GFP flags for allocation
2823  *
2824  *	Assert scsi device event asynchronously, given an event type.
2825  */
2826 void sdev_evt_send_simple(struct scsi_device *sdev,
2827 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2828 {
2829 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2830 	if (!evt) {
2831 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2832 			    evt_type);
2833 		return;
2834 	}
2835 
2836 	sdev_evt_send(sdev, evt);
2837 }
2838 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2839 
2840 /**
2841  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2842  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2843  */
2844 static int scsi_request_fn_active(struct scsi_device *sdev)
2845 {
2846 	struct request_queue *q = sdev->request_queue;
2847 	int request_fn_active;
2848 
2849 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2850 
2851 	spin_lock_irq(q->queue_lock);
2852 	request_fn_active = q->request_fn_active;
2853 	spin_unlock_irq(q->queue_lock);
2854 
2855 	return request_fn_active;
2856 }
2857 
2858 /**
2859  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2860  * @sdev: SCSI device pointer.
2861  *
2862  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2863  * invoked from scsi_request_fn() have finished.
2864  */
2865 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2866 {
2867 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2868 
2869 	while (scsi_request_fn_active(sdev))
2870 		msleep(20);
2871 }
2872 
2873 /**
2874  *	scsi_device_quiesce - Block user issued commands.
2875  *	@sdev:	scsi device to quiesce.
2876  *
2877  *	This works by trying to transition to the SDEV_QUIESCE state
2878  *	(which must be a legal transition).  When the device is in this
2879  *	state, only special requests will be accepted, all others will
2880  *	be deferred.  Since special requests may also be requeued requests,
2881  *	a successful return doesn't guarantee the device will be
2882  *	totally quiescent.
2883  *
2884  *	Must be called with user context, may sleep.
2885  *
2886  *	Returns zero if unsuccessful or an error if not.
2887  */
2888 int
2889 scsi_device_quiesce(struct scsi_device *sdev)
2890 {
2891 	int err;
2892 
2893 	mutex_lock(&sdev->state_mutex);
2894 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2895 	mutex_unlock(&sdev->state_mutex);
2896 
2897 	if (err)
2898 		return err;
2899 
2900 	scsi_run_queue(sdev->request_queue);
2901 	while (atomic_read(&sdev->device_busy)) {
2902 		msleep_interruptible(200);
2903 		scsi_run_queue(sdev->request_queue);
2904 	}
2905 	return 0;
2906 }
2907 EXPORT_SYMBOL(scsi_device_quiesce);
2908 
2909 /**
2910  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2911  *	@sdev:	scsi device to resume.
2912  *
2913  *	Moves the device from quiesced back to running and restarts the
2914  *	queues.
2915  *
2916  *	Must be called with user context, may sleep.
2917  */
2918 void scsi_device_resume(struct scsi_device *sdev)
2919 {
2920 	/* check if the device state was mutated prior to resume, and if
2921 	 * so assume the state is being managed elsewhere (for example
2922 	 * device deleted during suspend)
2923 	 */
2924 	mutex_lock(&sdev->state_mutex);
2925 	if (sdev->sdev_state == SDEV_QUIESCE &&
2926 	    scsi_device_set_state(sdev, SDEV_RUNNING) == 0)
2927 		scsi_run_queue(sdev->request_queue);
2928 	mutex_unlock(&sdev->state_mutex);
2929 }
2930 EXPORT_SYMBOL(scsi_device_resume);
2931 
2932 static void
2933 device_quiesce_fn(struct scsi_device *sdev, void *data)
2934 {
2935 	scsi_device_quiesce(sdev);
2936 }
2937 
2938 void
2939 scsi_target_quiesce(struct scsi_target *starget)
2940 {
2941 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2942 }
2943 EXPORT_SYMBOL(scsi_target_quiesce);
2944 
2945 static void
2946 device_resume_fn(struct scsi_device *sdev, void *data)
2947 {
2948 	scsi_device_resume(sdev);
2949 }
2950 
2951 void
2952 scsi_target_resume(struct scsi_target *starget)
2953 {
2954 	starget_for_each_device(starget, NULL, device_resume_fn);
2955 }
2956 EXPORT_SYMBOL(scsi_target_resume);
2957 
2958 /**
2959  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2960  * @sdev: device to block
2961  *
2962  * Pause SCSI command processing on the specified device. Does not sleep.
2963  *
2964  * Returns zero if successful or a negative error code upon failure.
2965  *
2966  * Notes:
2967  * This routine transitions the device to the SDEV_BLOCK state (which must be
2968  * a legal transition). When the device is in this state, command processing
2969  * is paused until the device leaves the SDEV_BLOCK state. See also
2970  * scsi_internal_device_unblock_nowait().
2971  */
2972 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2973 {
2974 	struct request_queue *q = sdev->request_queue;
2975 	unsigned long flags;
2976 	int err = 0;
2977 
2978 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2979 	if (err) {
2980 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2981 
2982 		if (err)
2983 			return err;
2984 	}
2985 
2986 	/*
2987 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2988 	 * block layer from calling the midlayer with this device's
2989 	 * request queue.
2990 	 */
2991 	if (q->mq_ops) {
2992 		blk_mq_quiesce_queue_nowait(q);
2993 	} else {
2994 		spin_lock_irqsave(q->queue_lock, flags);
2995 		blk_stop_queue(q);
2996 		spin_unlock_irqrestore(q->queue_lock, flags);
2997 	}
2998 
2999 	return 0;
3000 }
3001 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3002 
3003 /**
3004  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3005  * @sdev: device to block
3006  *
3007  * Pause SCSI command processing on the specified device and wait until all
3008  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3009  *
3010  * Returns zero if successful or a negative error code upon failure.
3011  *
3012  * Note:
3013  * This routine transitions the device to the SDEV_BLOCK state (which must be
3014  * a legal transition). When the device is in this state, command processing
3015  * is paused until the device leaves the SDEV_BLOCK state. See also
3016  * scsi_internal_device_unblock().
3017  *
3018  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3019  * scsi_internal_device_block() has blocked a SCSI device and also
3020  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3021  */
3022 static int scsi_internal_device_block(struct scsi_device *sdev)
3023 {
3024 	struct request_queue *q = sdev->request_queue;
3025 	int err;
3026 
3027 	mutex_lock(&sdev->state_mutex);
3028 	err = scsi_internal_device_block_nowait(sdev);
3029 	if (err == 0) {
3030 		if (q->mq_ops)
3031 			blk_mq_quiesce_queue(q);
3032 		else
3033 			scsi_wait_for_queuecommand(sdev);
3034 	}
3035 	mutex_unlock(&sdev->state_mutex);
3036 
3037 	return err;
3038 }
3039 
3040 void scsi_start_queue(struct scsi_device *sdev)
3041 {
3042 	struct request_queue *q = sdev->request_queue;
3043 	unsigned long flags;
3044 
3045 	if (q->mq_ops) {
3046 		blk_mq_unquiesce_queue(q);
3047 	} else {
3048 		spin_lock_irqsave(q->queue_lock, flags);
3049 		blk_start_queue(q);
3050 		spin_unlock_irqrestore(q->queue_lock, flags);
3051 	}
3052 }
3053 
3054 /**
3055  * scsi_internal_device_unblock_nowait - resume a device after a block request
3056  * @sdev:	device to resume
3057  * @new_state:	state to set the device to after unblocking
3058  *
3059  * Restart the device queue for a previously suspended SCSI device. Does not
3060  * sleep.
3061  *
3062  * Returns zero if successful or a negative error code upon failure.
3063  *
3064  * Notes:
3065  * This routine transitions the device to the SDEV_RUNNING state or to one of
3066  * the offline states (which must be a legal transition) allowing the midlayer
3067  * to goose the queue for this device.
3068  */
3069 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3070 					enum scsi_device_state new_state)
3071 {
3072 	/*
3073 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3074 	 * offlined states and goose the device queue if successful.
3075 	 */
3076 	if ((sdev->sdev_state == SDEV_BLOCK) ||
3077 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3078 		sdev->sdev_state = new_state;
3079 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3080 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3081 		    new_state == SDEV_OFFLINE)
3082 			sdev->sdev_state = new_state;
3083 		else
3084 			sdev->sdev_state = SDEV_CREATED;
3085 	} else if (sdev->sdev_state != SDEV_CANCEL &&
3086 		 sdev->sdev_state != SDEV_OFFLINE)
3087 		return -EINVAL;
3088 
3089 	scsi_start_queue(sdev);
3090 
3091 	return 0;
3092 }
3093 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3094 
3095 /**
3096  * scsi_internal_device_unblock - resume a device after a block request
3097  * @sdev:	device to resume
3098  * @new_state:	state to set the device to after unblocking
3099  *
3100  * Restart the device queue for a previously suspended SCSI device. May sleep.
3101  *
3102  * Returns zero if successful or a negative error code upon failure.
3103  *
3104  * Notes:
3105  * This routine transitions the device to the SDEV_RUNNING state or to one of
3106  * the offline states (which must be a legal transition) allowing the midlayer
3107  * to goose the queue for this device.
3108  */
3109 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3110 					enum scsi_device_state new_state)
3111 {
3112 	int ret;
3113 
3114 	mutex_lock(&sdev->state_mutex);
3115 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3116 	mutex_unlock(&sdev->state_mutex);
3117 
3118 	return ret;
3119 }
3120 
3121 static void
3122 device_block(struct scsi_device *sdev, void *data)
3123 {
3124 	scsi_internal_device_block(sdev);
3125 }
3126 
3127 static int
3128 target_block(struct device *dev, void *data)
3129 {
3130 	if (scsi_is_target_device(dev))
3131 		starget_for_each_device(to_scsi_target(dev), NULL,
3132 					device_block);
3133 	return 0;
3134 }
3135 
3136 void
3137 scsi_target_block(struct device *dev)
3138 {
3139 	if (scsi_is_target_device(dev))
3140 		starget_for_each_device(to_scsi_target(dev), NULL,
3141 					device_block);
3142 	else
3143 		device_for_each_child(dev, NULL, target_block);
3144 }
3145 EXPORT_SYMBOL_GPL(scsi_target_block);
3146 
3147 static void
3148 device_unblock(struct scsi_device *sdev, void *data)
3149 {
3150 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3151 }
3152 
3153 static int
3154 target_unblock(struct device *dev, void *data)
3155 {
3156 	if (scsi_is_target_device(dev))
3157 		starget_for_each_device(to_scsi_target(dev), data,
3158 					device_unblock);
3159 	return 0;
3160 }
3161 
3162 void
3163 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3164 {
3165 	if (scsi_is_target_device(dev))
3166 		starget_for_each_device(to_scsi_target(dev), &new_state,
3167 					device_unblock);
3168 	else
3169 		device_for_each_child(dev, &new_state, target_unblock);
3170 }
3171 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3172 
3173 /**
3174  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3175  * @sgl:	scatter-gather list
3176  * @sg_count:	number of segments in sg
3177  * @offset:	offset in bytes into sg, on return offset into the mapped area
3178  * @len:	bytes to map, on return number of bytes mapped
3179  *
3180  * Returns virtual address of the start of the mapped page
3181  */
3182 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3183 			  size_t *offset, size_t *len)
3184 {
3185 	int i;
3186 	size_t sg_len = 0, len_complete = 0;
3187 	struct scatterlist *sg;
3188 	struct page *page;
3189 
3190 	WARN_ON(!irqs_disabled());
3191 
3192 	for_each_sg(sgl, sg, sg_count, i) {
3193 		len_complete = sg_len; /* Complete sg-entries */
3194 		sg_len += sg->length;
3195 		if (sg_len > *offset)
3196 			break;
3197 	}
3198 
3199 	if (unlikely(i == sg_count)) {
3200 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3201 			"elements %d\n",
3202 		       __func__, sg_len, *offset, sg_count);
3203 		WARN_ON(1);
3204 		return NULL;
3205 	}
3206 
3207 	/* Offset starting from the beginning of first page in this sg-entry */
3208 	*offset = *offset - len_complete + sg->offset;
3209 
3210 	/* Assumption: contiguous pages can be accessed as "page + i" */
3211 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3212 	*offset &= ~PAGE_MASK;
3213 
3214 	/* Bytes in this sg-entry from *offset to the end of the page */
3215 	sg_len = PAGE_SIZE - *offset;
3216 	if (*len > sg_len)
3217 		*len = sg_len;
3218 
3219 	return kmap_atomic(page);
3220 }
3221 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3222 
3223 /**
3224  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3225  * @virt:	virtual address to be unmapped
3226  */
3227 void scsi_kunmap_atomic_sg(void *virt)
3228 {
3229 	kunmap_atomic(virt);
3230 }
3231 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3232 
3233 void sdev_disable_disk_events(struct scsi_device *sdev)
3234 {
3235 	atomic_inc(&sdev->disk_events_disable_depth);
3236 }
3237 EXPORT_SYMBOL(sdev_disable_disk_events);
3238 
3239 void sdev_enable_disk_events(struct scsi_device *sdev)
3240 {
3241 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3242 		return;
3243 	atomic_dec(&sdev->disk_events_disable_depth);
3244 }
3245 EXPORT_SYMBOL(sdev_enable_disk_events);
3246 
3247 /**
3248  * scsi_vpd_lun_id - return a unique device identification
3249  * @sdev: SCSI device
3250  * @id:   buffer for the identification
3251  * @id_len:  length of the buffer
3252  *
3253  * Copies a unique device identification into @id based
3254  * on the information in the VPD page 0x83 of the device.
3255  * The string will be formatted as a SCSI name string.
3256  *
3257  * Returns the length of the identification or error on failure.
3258  * If the identifier is longer than the supplied buffer the actual
3259  * identifier length is returned and the buffer is not zero-padded.
3260  */
3261 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3262 {
3263 	u8 cur_id_type = 0xff;
3264 	u8 cur_id_size = 0;
3265 	unsigned char *d, *cur_id_str;
3266 	unsigned char __rcu *vpd_pg83;
3267 	int id_size = -EINVAL;
3268 
3269 	rcu_read_lock();
3270 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3271 	if (!vpd_pg83) {
3272 		rcu_read_unlock();
3273 		return -ENXIO;
3274 	}
3275 
3276 	/*
3277 	 * Look for the correct descriptor.
3278 	 * Order of preference for lun descriptor:
3279 	 * - SCSI name string
3280 	 * - NAA IEEE Registered Extended
3281 	 * - EUI-64 based 16-byte
3282 	 * - EUI-64 based 12-byte
3283 	 * - NAA IEEE Registered
3284 	 * - NAA IEEE Extended
3285 	 * - T10 Vendor ID
3286 	 * as longer descriptors reduce the likelyhood
3287 	 * of identification clashes.
3288 	 */
3289 
3290 	/* The id string must be at least 20 bytes + terminating NULL byte */
3291 	if (id_len < 21) {
3292 		rcu_read_unlock();
3293 		return -EINVAL;
3294 	}
3295 
3296 	memset(id, 0, id_len);
3297 	d = vpd_pg83 + 4;
3298 	while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3299 		/* Skip designators not referring to the LUN */
3300 		if ((d[1] & 0x30) != 0x00)
3301 			goto next_desig;
3302 
3303 		switch (d[1] & 0xf) {
3304 		case 0x1:
3305 			/* T10 Vendor ID */
3306 			if (cur_id_size > d[3])
3307 				break;
3308 			/* Prefer anything */
3309 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3310 				break;
3311 			cur_id_size = d[3];
3312 			if (cur_id_size + 4 > id_len)
3313 				cur_id_size = id_len - 4;
3314 			cur_id_str = d + 4;
3315 			cur_id_type = d[1] & 0xf;
3316 			id_size = snprintf(id, id_len, "t10.%*pE",
3317 					   cur_id_size, cur_id_str);
3318 			break;
3319 		case 0x2:
3320 			/* EUI-64 */
3321 			if (cur_id_size > d[3])
3322 				break;
3323 			/* Prefer NAA IEEE Registered Extended */
3324 			if (cur_id_type == 0x3 &&
3325 			    cur_id_size == d[3])
3326 				break;
3327 			cur_id_size = d[3];
3328 			cur_id_str = d + 4;
3329 			cur_id_type = d[1] & 0xf;
3330 			switch (cur_id_size) {
3331 			case 8:
3332 				id_size = snprintf(id, id_len,
3333 						   "eui.%8phN",
3334 						   cur_id_str);
3335 				break;
3336 			case 12:
3337 				id_size = snprintf(id, id_len,
3338 						   "eui.%12phN",
3339 						   cur_id_str);
3340 				break;
3341 			case 16:
3342 				id_size = snprintf(id, id_len,
3343 						   "eui.%16phN",
3344 						   cur_id_str);
3345 				break;
3346 			default:
3347 				cur_id_size = 0;
3348 				break;
3349 			}
3350 			break;
3351 		case 0x3:
3352 			/* NAA */
3353 			if (cur_id_size > d[3])
3354 				break;
3355 			cur_id_size = d[3];
3356 			cur_id_str = d + 4;
3357 			cur_id_type = d[1] & 0xf;
3358 			switch (cur_id_size) {
3359 			case 8:
3360 				id_size = snprintf(id, id_len,
3361 						   "naa.%8phN",
3362 						   cur_id_str);
3363 				break;
3364 			case 16:
3365 				id_size = snprintf(id, id_len,
3366 						   "naa.%16phN",
3367 						   cur_id_str);
3368 				break;
3369 			default:
3370 				cur_id_size = 0;
3371 				break;
3372 			}
3373 			break;
3374 		case 0x8:
3375 			/* SCSI name string */
3376 			if (cur_id_size + 4 > d[3])
3377 				break;
3378 			/* Prefer others for truncated descriptor */
3379 			if (cur_id_size && d[3] > id_len)
3380 				break;
3381 			cur_id_size = id_size = d[3];
3382 			cur_id_str = d + 4;
3383 			cur_id_type = d[1] & 0xf;
3384 			if (cur_id_size >= id_len)
3385 				cur_id_size = id_len - 1;
3386 			memcpy(id, cur_id_str, cur_id_size);
3387 			/* Decrease priority for truncated descriptor */
3388 			if (cur_id_size != id_size)
3389 				cur_id_size = 6;
3390 			break;
3391 		default:
3392 			break;
3393 		}
3394 next_desig:
3395 		d += d[3] + 4;
3396 	}
3397 	rcu_read_unlock();
3398 
3399 	return id_size;
3400 }
3401 EXPORT_SYMBOL(scsi_vpd_lun_id);
3402 
3403 /*
3404  * scsi_vpd_tpg_id - return a target port group identifier
3405  * @sdev: SCSI device
3406  *
3407  * Returns the Target Port Group identifier from the information
3408  * froom VPD page 0x83 of the device.
3409  *
3410  * Returns the identifier or error on failure.
3411  */
3412 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3413 {
3414 	unsigned char *d;
3415 	unsigned char __rcu *vpd_pg83;
3416 	int group_id = -EAGAIN, rel_port = -1;
3417 
3418 	rcu_read_lock();
3419 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3420 	if (!vpd_pg83) {
3421 		rcu_read_unlock();
3422 		return -ENXIO;
3423 	}
3424 
3425 	d = sdev->vpd_pg83 + 4;
3426 	while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3427 		switch (d[1] & 0xf) {
3428 		case 0x4:
3429 			/* Relative target port */
3430 			rel_port = get_unaligned_be16(&d[6]);
3431 			break;
3432 		case 0x5:
3433 			/* Target port group */
3434 			group_id = get_unaligned_be16(&d[6]);
3435 			break;
3436 		default:
3437 			break;
3438 		}
3439 		d += d[3] + 4;
3440 	}
3441 	rcu_read_unlock();
3442 
3443 	if (group_id >= 0 && rel_id && rel_port != -1)
3444 		*rel_id = rel_port;
3445 
3446 	return group_id;
3447 }
3448 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3449