xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 4ce94eab)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sense_cache;
56 static struct kmem_cache *scsi_sense_isadma_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
61 static inline struct kmem_cache *
62 scsi_select_sense_cache(bool unchecked_isa_dma)
63 {
64 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
65 }
66 
67 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
68 				   unsigned char *sense_buffer)
69 {
70 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
71 			sense_buffer);
72 }
73 
74 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
75 	gfp_t gfp_mask, int numa_node)
76 {
77 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
78 				     gfp_mask, numa_node);
79 }
80 
81 int scsi_init_sense_cache(struct Scsi_Host *shost)
82 {
83 	struct kmem_cache *cache;
84 	int ret = 0;
85 
86 	mutex_lock(&scsi_sense_cache_mutex);
87 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
88 	if (cache)
89 		goto exit;
90 
91 	if (shost->unchecked_isa_dma) {
92 		scsi_sense_isadma_cache =
93 			kmem_cache_create("scsi_sense_cache(DMA)",
94 				SCSI_SENSE_BUFFERSIZE, 0,
95 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
96 		if (!scsi_sense_isadma_cache)
97 			ret = -ENOMEM;
98 	} else {
99 		scsi_sense_cache =
100 			kmem_cache_create_usercopy("scsi_sense_cache",
101 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
102 				0, SCSI_SENSE_BUFFERSIZE, NULL);
103 		if (!scsi_sense_cache)
104 			ret = -ENOMEM;
105 	}
106  exit:
107 	mutex_unlock(&scsi_sense_cache_mutex);
108 	return ret;
109 }
110 
111 /*
112  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
113  * not change behaviour from the previous unplug mechanism, experimentation
114  * may prove this needs changing.
115  */
116 #define SCSI_QUEUE_DELAY	3
117 
118 static void
119 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
120 {
121 	struct Scsi_Host *host = cmd->device->host;
122 	struct scsi_device *device = cmd->device;
123 	struct scsi_target *starget = scsi_target(device);
124 
125 	/*
126 	 * Set the appropriate busy bit for the device/host.
127 	 *
128 	 * If the host/device isn't busy, assume that something actually
129 	 * completed, and that we should be able to queue a command now.
130 	 *
131 	 * Note that the prior mid-layer assumption that any host could
132 	 * always queue at least one command is now broken.  The mid-layer
133 	 * will implement a user specifiable stall (see
134 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
135 	 * if a command is requeued with no other commands outstanding
136 	 * either for the device or for the host.
137 	 */
138 	switch (reason) {
139 	case SCSI_MLQUEUE_HOST_BUSY:
140 		atomic_set(&host->host_blocked, host->max_host_blocked);
141 		break;
142 	case SCSI_MLQUEUE_DEVICE_BUSY:
143 	case SCSI_MLQUEUE_EH_RETRY:
144 		atomic_set(&device->device_blocked,
145 			   device->max_device_blocked);
146 		break;
147 	case SCSI_MLQUEUE_TARGET_BUSY:
148 		atomic_set(&starget->target_blocked,
149 			   starget->max_target_blocked);
150 		break;
151 	}
152 }
153 
154 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
155 {
156 	if (cmd->request->rq_flags & RQF_DONTPREP) {
157 		cmd->request->rq_flags &= ~RQF_DONTPREP;
158 		scsi_mq_uninit_cmd(cmd);
159 	} else {
160 		WARN_ON_ONCE(true);
161 	}
162 	blk_mq_requeue_request(cmd->request, true);
163 }
164 
165 /**
166  * __scsi_queue_insert - private queue insertion
167  * @cmd: The SCSI command being requeued
168  * @reason:  The reason for the requeue
169  * @unbusy: Whether the queue should be unbusied
170  *
171  * This is a private queue insertion.  The public interface
172  * scsi_queue_insert() always assumes the queue should be unbusied
173  * because it's always called before the completion.  This function is
174  * for a requeue after completion, which should only occur in this
175  * file.
176  */
177 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
178 {
179 	struct scsi_device *device = cmd->device;
180 
181 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
182 		"Inserting command %p into mlqueue\n", cmd));
183 
184 	scsi_set_blocked(cmd, reason);
185 
186 	/*
187 	 * Decrement the counters, since these commands are no longer
188 	 * active on the host/device.
189 	 */
190 	if (unbusy)
191 		scsi_device_unbusy(device, cmd);
192 
193 	/*
194 	 * Requeue this command.  It will go before all other commands
195 	 * that are already in the queue. Schedule requeue work under
196 	 * lock such that the kblockd_schedule_work() call happens
197 	 * before blk_cleanup_queue() finishes.
198 	 */
199 	cmd->result = 0;
200 
201 	blk_mq_requeue_request(cmd->request, true);
202 }
203 
204 /**
205  * scsi_queue_insert - Reinsert a command in the queue.
206  * @cmd:    command that we are adding to queue.
207  * @reason: why we are inserting command to queue.
208  *
209  * We do this for one of two cases. Either the host is busy and it cannot accept
210  * any more commands for the time being, or the device returned QUEUE_FULL and
211  * can accept no more commands.
212  *
213  * Context: This could be called either from an interrupt context or a normal
214  * process context.
215  */
216 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
217 {
218 	__scsi_queue_insert(cmd, reason, true);
219 }
220 
221 
222 /**
223  * __scsi_execute - insert request and wait for the result
224  * @sdev:	scsi device
225  * @cmd:	scsi command
226  * @data_direction: data direction
227  * @buffer:	data buffer
228  * @bufflen:	len of buffer
229  * @sense:	optional sense buffer
230  * @sshdr:	optional decoded sense header
231  * @timeout:	request timeout in seconds
232  * @retries:	number of times to retry request
233  * @flags:	flags for ->cmd_flags
234  * @rq_flags:	flags for ->rq_flags
235  * @resid:	optional residual length
236  *
237  * Returns the scsi_cmnd result field if a command was executed, or a negative
238  * Linux error code if we didn't get that far.
239  */
240 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
241 		 int data_direction, void *buffer, unsigned bufflen,
242 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
243 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
244 		 int *resid)
245 {
246 	struct request *req;
247 	struct scsi_request *rq;
248 	int ret = DRIVER_ERROR << 24;
249 
250 	req = blk_get_request(sdev->request_queue,
251 			data_direction == DMA_TO_DEVICE ?
252 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN,
253 			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
254 	if (IS_ERR(req))
255 		return ret;
256 	rq = scsi_req(req);
257 
258 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
259 					buffer, bufflen, GFP_NOIO))
260 		goto out;
261 
262 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
263 	memcpy(rq->cmd, cmd, rq->cmd_len);
264 	rq->retries = retries;
265 	req->timeout = timeout;
266 	req->cmd_flags |= flags;
267 	req->rq_flags |= rq_flags | RQF_QUIET;
268 
269 	/*
270 	 * head injection *required* here otherwise quiesce won't work
271 	 */
272 	blk_execute_rq(NULL, req, 1);
273 
274 	/*
275 	 * Some devices (USB mass-storage in particular) may transfer
276 	 * garbage data together with a residue indicating that the data
277 	 * is invalid.  Prevent the garbage from being misinterpreted
278 	 * and prevent security leaks by zeroing out the excess data.
279 	 */
280 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
281 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
282 
283 	if (resid)
284 		*resid = rq->resid_len;
285 	if (sense && rq->sense_len)
286 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
287 	if (sshdr)
288 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
289 	ret = rq->result;
290  out:
291 	blk_put_request(req);
292 
293 	return ret;
294 }
295 EXPORT_SYMBOL(__scsi_execute);
296 
297 /*
298  * Wake up the error handler if necessary. Avoid as follows that the error
299  * handler is not woken up if host in-flight requests number ==
300  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
301  * with an RCU read lock in this function to ensure that this function in
302  * its entirety either finishes before scsi_eh_scmd_add() increases the
303  * host_failed counter or that it notices the shost state change made by
304  * scsi_eh_scmd_add().
305  */
306 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
307 {
308 	unsigned long flags;
309 
310 	rcu_read_lock();
311 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
312 	if (unlikely(scsi_host_in_recovery(shost))) {
313 		spin_lock_irqsave(shost->host_lock, flags);
314 		if (shost->host_failed || shost->host_eh_scheduled)
315 			scsi_eh_wakeup(shost);
316 		spin_unlock_irqrestore(shost->host_lock, flags);
317 	}
318 	rcu_read_unlock();
319 }
320 
321 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
322 {
323 	struct Scsi_Host *shost = sdev->host;
324 	struct scsi_target *starget = scsi_target(sdev);
325 
326 	scsi_dec_host_busy(shost, cmd);
327 
328 	if (starget->can_queue > 0)
329 		atomic_dec(&starget->target_busy);
330 
331 	atomic_dec(&sdev->device_busy);
332 }
333 
334 static void scsi_kick_queue(struct request_queue *q)
335 {
336 	blk_mq_run_hw_queues(q, false);
337 }
338 
339 /*
340  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
341  * and call blk_run_queue for all the scsi_devices on the target -
342  * including current_sdev first.
343  *
344  * Called with *no* scsi locks held.
345  */
346 static void scsi_single_lun_run(struct scsi_device *current_sdev)
347 {
348 	struct Scsi_Host *shost = current_sdev->host;
349 	struct scsi_device *sdev, *tmp;
350 	struct scsi_target *starget = scsi_target(current_sdev);
351 	unsigned long flags;
352 
353 	spin_lock_irqsave(shost->host_lock, flags);
354 	starget->starget_sdev_user = NULL;
355 	spin_unlock_irqrestore(shost->host_lock, flags);
356 
357 	/*
358 	 * Call blk_run_queue for all LUNs on the target, starting with
359 	 * current_sdev. We race with others (to set starget_sdev_user),
360 	 * but in most cases, we will be first. Ideally, each LU on the
361 	 * target would get some limited time or requests on the target.
362 	 */
363 	scsi_kick_queue(current_sdev->request_queue);
364 
365 	spin_lock_irqsave(shost->host_lock, flags);
366 	if (starget->starget_sdev_user)
367 		goto out;
368 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
369 			same_target_siblings) {
370 		if (sdev == current_sdev)
371 			continue;
372 		if (scsi_device_get(sdev))
373 			continue;
374 
375 		spin_unlock_irqrestore(shost->host_lock, flags);
376 		scsi_kick_queue(sdev->request_queue);
377 		spin_lock_irqsave(shost->host_lock, flags);
378 
379 		scsi_device_put(sdev);
380 	}
381  out:
382 	spin_unlock_irqrestore(shost->host_lock, flags);
383 }
384 
385 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
386 {
387 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
388 		return true;
389 	if (atomic_read(&sdev->device_blocked) > 0)
390 		return true;
391 	return false;
392 }
393 
394 static inline bool scsi_target_is_busy(struct scsi_target *starget)
395 {
396 	if (starget->can_queue > 0) {
397 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
398 			return true;
399 		if (atomic_read(&starget->target_blocked) > 0)
400 			return true;
401 	}
402 	return false;
403 }
404 
405 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
406 {
407 	if (atomic_read(&shost->host_blocked) > 0)
408 		return true;
409 	if (shost->host_self_blocked)
410 		return true;
411 	return false;
412 }
413 
414 static void scsi_starved_list_run(struct Scsi_Host *shost)
415 {
416 	LIST_HEAD(starved_list);
417 	struct scsi_device *sdev;
418 	unsigned long flags;
419 
420 	spin_lock_irqsave(shost->host_lock, flags);
421 	list_splice_init(&shost->starved_list, &starved_list);
422 
423 	while (!list_empty(&starved_list)) {
424 		struct request_queue *slq;
425 
426 		/*
427 		 * As long as shost is accepting commands and we have
428 		 * starved queues, call blk_run_queue. scsi_request_fn
429 		 * drops the queue_lock and can add us back to the
430 		 * starved_list.
431 		 *
432 		 * host_lock protects the starved_list and starved_entry.
433 		 * scsi_request_fn must get the host_lock before checking
434 		 * or modifying starved_list or starved_entry.
435 		 */
436 		if (scsi_host_is_busy(shost))
437 			break;
438 
439 		sdev = list_entry(starved_list.next,
440 				  struct scsi_device, starved_entry);
441 		list_del_init(&sdev->starved_entry);
442 		if (scsi_target_is_busy(scsi_target(sdev))) {
443 			list_move_tail(&sdev->starved_entry,
444 				       &shost->starved_list);
445 			continue;
446 		}
447 
448 		/*
449 		 * Once we drop the host lock, a racing scsi_remove_device()
450 		 * call may remove the sdev from the starved list and destroy
451 		 * it and the queue.  Mitigate by taking a reference to the
452 		 * queue and never touching the sdev again after we drop the
453 		 * host lock.  Note: if __scsi_remove_device() invokes
454 		 * blk_cleanup_queue() before the queue is run from this
455 		 * function then blk_run_queue() will return immediately since
456 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
457 		 */
458 		slq = sdev->request_queue;
459 		if (!blk_get_queue(slq))
460 			continue;
461 		spin_unlock_irqrestore(shost->host_lock, flags);
462 
463 		scsi_kick_queue(slq);
464 		blk_put_queue(slq);
465 
466 		spin_lock_irqsave(shost->host_lock, flags);
467 	}
468 	/* put any unprocessed entries back */
469 	list_splice(&starved_list, &shost->starved_list);
470 	spin_unlock_irqrestore(shost->host_lock, flags);
471 }
472 
473 /**
474  * scsi_run_queue - Select a proper request queue to serve next.
475  * @q:  last request's queue
476  *
477  * The previous command was completely finished, start a new one if possible.
478  */
479 static void scsi_run_queue(struct request_queue *q)
480 {
481 	struct scsi_device *sdev = q->queuedata;
482 
483 	if (scsi_target(sdev)->single_lun)
484 		scsi_single_lun_run(sdev);
485 	if (!list_empty(&sdev->host->starved_list))
486 		scsi_starved_list_run(sdev->host);
487 
488 	blk_mq_run_hw_queues(q, false);
489 }
490 
491 void scsi_requeue_run_queue(struct work_struct *work)
492 {
493 	struct scsi_device *sdev;
494 	struct request_queue *q;
495 
496 	sdev = container_of(work, struct scsi_device, requeue_work);
497 	q = sdev->request_queue;
498 	scsi_run_queue(q);
499 }
500 
501 void scsi_run_host_queues(struct Scsi_Host *shost)
502 {
503 	struct scsi_device *sdev;
504 
505 	shost_for_each_device(sdev, shost)
506 		scsi_run_queue(sdev->request_queue);
507 }
508 
509 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
510 {
511 	if (!blk_rq_is_passthrough(cmd->request)) {
512 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
513 
514 		if (drv->uninit_command)
515 			drv->uninit_command(cmd);
516 	}
517 }
518 
519 void scsi_free_sgtables(struct scsi_cmnd *cmd)
520 {
521 	if (cmd->sdb.table.nents)
522 		sg_free_table_chained(&cmd->sdb.table,
523 				SCSI_INLINE_SG_CNT);
524 	if (scsi_prot_sg_count(cmd))
525 		sg_free_table_chained(&cmd->prot_sdb->table,
526 				SCSI_INLINE_PROT_SG_CNT);
527 }
528 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
529 
530 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
531 {
532 	scsi_free_sgtables(cmd);
533 	scsi_uninit_cmd(cmd);
534 }
535 
536 static void scsi_run_queue_async(struct scsi_device *sdev)
537 {
538 	if (scsi_target(sdev)->single_lun ||
539 	    !list_empty(&sdev->host->starved_list)) {
540 		kblockd_schedule_work(&sdev->requeue_work);
541 	} else {
542 		/*
543 		 * smp_mb() present in sbitmap_queue_clear() or implied in
544 		 * .end_io is for ordering writing .device_busy in
545 		 * scsi_device_unbusy() and reading sdev->restarts.
546 		 */
547 		int old = atomic_read(&sdev->restarts);
548 
549 		/*
550 		 * ->restarts has to be kept as non-zero if new budget
551 		 *  contention occurs.
552 		 *
553 		 *  No need to run queue when either another re-run
554 		 *  queue wins in updating ->restarts or a new budget
555 		 *  contention occurs.
556 		 */
557 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
558 			blk_mq_run_hw_queues(sdev->request_queue, true);
559 	}
560 }
561 
562 /* Returns false when no more bytes to process, true if there are more */
563 static bool scsi_end_request(struct request *req, blk_status_t error,
564 		unsigned int bytes)
565 {
566 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
567 	struct scsi_device *sdev = cmd->device;
568 	struct request_queue *q = sdev->request_queue;
569 
570 	if (blk_update_request(req, error, bytes))
571 		return true;
572 
573 	if (blk_queue_add_random(q))
574 		add_disk_randomness(req->rq_disk);
575 
576 	if (!blk_rq_is_scsi(req)) {
577 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
578 		cmd->flags &= ~SCMD_INITIALIZED;
579 	}
580 
581 	/*
582 	 * Calling rcu_barrier() is not necessary here because the
583 	 * SCSI error handler guarantees that the function called by
584 	 * call_rcu() has been called before scsi_end_request() is
585 	 * called.
586 	 */
587 	destroy_rcu_head(&cmd->rcu);
588 
589 	/*
590 	 * In the MQ case the command gets freed by __blk_mq_end_request,
591 	 * so we have to do all cleanup that depends on it earlier.
592 	 *
593 	 * We also can't kick the queues from irq context, so we
594 	 * will have to defer it to a workqueue.
595 	 */
596 	scsi_mq_uninit_cmd(cmd);
597 
598 	/*
599 	 * queue is still alive, so grab the ref for preventing it
600 	 * from being cleaned up during running queue.
601 	 */
602 	percpu_ref_get(&q->q_usage_counter);
603 
604 	__blk_mq_end_request(req, error);
605 
606 	scsi_run_queue_async(sdev);
607 
608 	percpu_ref_put(&q->q_usage_counter);
609 	return false;
610 }
611 
612 /**
613  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
614  * @cmd:	SCSI command
615  * @result:	scsi error code
616  *
617  * Translate a SCSI result code into a blk_status_t value. May reset the host
618  * byte of @cmd->result.
619  */
620 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
621 {
622 	switch (host_byte(result)) {
623 	case DID_OK:
624 		/*
625 		 * Also check the other bytes than the status byte in result
626 		 * to handle the case when a SCSI LLD sets result to
627 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
628 		 */
629 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
630 			return BLK_STS_OK;
631 		return BLK_STS_IOERR;
632 	case DID_TRANSPORT_FAILFAST:
633 	case DID_TRANSPORT_MARGINAL:
634 		return BLK_STS_TRANSPORT;
635 	case DID_TARGET_FAILURE:
636 		set_host_byte(cmd, DID_OK);
637 		return BLK_STS_TARGET;
638 	case DID_NEXUS_FAILURE:
639 		set_host_byte(cmd, DID_OK);
640 		return BLK_STS_NEXUS;
641 	case DID_ALLOC_FAILURE:
642 		set_host_byte(cmd, DID_OK);
643 		return BLK_STS_NOSPC;
644 	case DID_MEDIUM_ERROR:
645 		set_host_byte(cmd, DID_OK);
646 		return BLK_STS_MEDIUM;
647 	default:
648 		return BLK_STS_IOERR;
649 	}
650 }
651 
652 /* Helper for scsi_io_completion() when "reprep" action required. */
653 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
654 				      struct request_queue *q)
655 {
656 	/* A new command will be prepared and issued. */
657 	scsi_mq_requeue_cmd(cmd);
658 }
659 
660 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
661 {
662 	struct request *req = cmd->request;
663 	unsigned long wait_for;
664 
665 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
666 		return false;
667 
668 	wait_for = (cmd->allowed + 1) * req->timeout;
669 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
670 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
671 			    wait_for/HZ);
672 		return true;
673 	}
674 	return false;
675 }
676 
677 /* Helper for scsi_io_completion() when special action required. */
678 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
679 {
680 	struct request_queue *q = cmd->device->request_queue;
681 	struct request *req = cmd->request;
682 	int level = 0;
683 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
684 	      ACTION_DELAYED_RETRY} action;
685 	struct scsi_sense_hdr sshdr;
686 	bool sense_valid;
687 	bool sense_current = true;      /* false implies "deferred sense" */
688 	blk_status_t blk_stat;
689 
690 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
691 	if (sense_valid)
692 		sense_current = !scsi_sense_is_deferred(&sshdr);
693 
694 	blk_stat = scsi_result_to_blk_status(cmd, result);
695 
696 	if (host_byte(result) == DID_RESET) {
697 		/* Third party bus reset or reset for error recovery
698 		 * reasons.  Just retry the command and see what
699 		 * happens.
700 		 */
701 		action = ACTION_RETRY;
702 	} else if (sense_valid && sense_current) {
703 		switch (sshdr.sense_key) {
704 		case UNIT_ATTENTION:
705 			if (cmd->device->removable) {
706 				/* Detected disc change.  Set a bit
707 				 * and quietly refuse further access.
708 				 */
709 				cmd->device->changed = 1;
710 				action = ACTION_FAIL;
711 			} else {
712 				/* Must have been a power glitch, or a
713 				 * bus reset.  Could not have been a
714 				 * media change, so we just retry the
715 				 * command and see what happens.
716 				 */
717 				action = ACTION_RETRY;
718 			}
719 			break;
720 		case ILLEGAL_REQUEST:
721 			/* If we had an ILLEGAL REQUEST returned, then
722 			 * we may have performed an unsupported
723 			 * command.  The only thing this should be
724 			 * would be a ten byte read where only a six
725 			 * byte read was supported.  Also, on a system
726 			 * where READ CAPACITY failed, we may have
727 			 * read past the end of the disk.
728 			 */
729 			if ((cmd->device->use_10_for_rw &&
730 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
731 			    (cmd->cmnd[0] == READ_10 ||
732 			     cmd->cmnd[0] == WRITE_10)) {
733 				/* This will issue a new 6-byte command. */
734 				cmd->device->use_10_for_rw = 0;
735 				action = ACTION_REPREP;
736 			} else if (sshdr.asc == 0x10) /* DIX */ {
737 				action = ACTION_FAIL;
738 				blk_stat = BLK_STS_PROTECTION;
739 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
740 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
741 				action = ACTION_FAIL;
742 				blk_stat = BLK_STS_TARGET;
743 			} else
744 				action = ACTION_FAIL;
745 			break;
746 		case ABORTED_COMMAND:
747 			action = ACTION_FAIL;
748 			if (sshdr.asc == 0x10) /* DIF */
749 				blk_stat = BLK_STS_PROTECTION;
750 			break;
751 		case NOT_READY:
752 			/* If the device is in the process of becoming
753 			 * ready, or has a temporary blockage, retry.
754 			 */
755 			if (sshdr.asc == 0x04) {
756 				switch (sshdr.ascq) {
757 				case 0x01: /* becoming ready */
758 				case 0x04: /* format in progress */
759 				case 0x05: /* rebuild in progress */
760 				case 0x06: /* recalculation in progress */
761 				case 0x07: /* operation in progress */
762 				case 0x08: /* Long write in progress */
763 				case 0x09: /* self test in progress */
764 				case 0x14: /* space allocation in progress */
765 				case 0x1a: /* start stop unit in progress */
766 				case 0x1b: /* sanitize in progress */
767 				case 0x1d: /* configuration in progress */
768 				case 0x24: /* depopulation in progress */
769 					action = ACTION_DELAYED_RETRY;
770 					break;
771 				case 0x0a: /* ALUA state transition */
772 					blk_stat = BLK_STS_AGAIN;
773 					fallthrough;
774 				default:
775 					action = ACTION_FAIL;
776 					break;
777 				}
778 			} else
779 				action = ACTION_FAIL;
780 			break;
781 		case VOLUME_OVERFLOW:
782 			/* See SSC3rXX or current. */
783 			action = ACTION_FAIL;
784 			break;
785 		case DATA_PROTECT:
786 			action = ACTION_FAIL;
787 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
788 			    (sshdr.asc == 0x55 &&
789 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
790 				/* Insufficient zone resources */
791 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
792 			}
793 			break;
794 		default:
795 			action = ACTION_FAIL;
796 			break;
797 		}
798 	} else
799 		action = ACTION_FAIL;
800 
801 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
802 		action = ACTION_FAIL;
803 
804 	switch (action) {
805 	case ACTION_FAIL:
806 		/* Give up and fail the remainder of the request */
807 		if (!(req->rq_flags & RQF_QUIET)) {
808 			static DEFINE_RATELIMIT_STATE(_rs,
809 					DEFAULT_RATELIMIT_INTERVAL,
810 					DEFAULT_RATELIMIT_BURST);
811 
812 			if (unlikely(scsi_logging_level))
813 				level =
814 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
815 						    SCSI_LOG_MLCOMPLETE_BITS);
816 
817 			/*
818 			 * if logging is enabled the failure will be printed
819 			 * in scsi_log_completion(), so avoid duplicate messages
820 			 */
821 			if (!level && __ratelimit(&_rs)) {
822 				scsi_print_result(cmd, NULL, FAILED);
823 				if (driver_byte(result) == DRIVER_SENSE)
824 					scsi_print_sense(cmd);
825 				scsi_print_command(cmd);
826 			}
827 		}
828 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
829 			return;
830 		fallthrough;
831 	case ACTION_REPREP:
832 		scsi_io_completion_reprep(cmd, q);
833 		break;
834 	case ACTION_RETRY:
835 		/* Retry the same command immediately */
836 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
837 		break;
838 	case ACTION_DELAYED_RETRY:
839 		/* Retry the same command after a delay */
840 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
841 		break;
842 	}
843 }
844 
845 /*
846  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
847  * new result that may suppress further error checking. Also modifies
848  * *blk_statp in some cases.
849  */
850 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
851 					blk_status_t *blk_statp)
852 {
853 	bool sense_valid;
854 	bool sense_current = true;	/* false implies "deferred sense" */
855 	struct request *req = cmd->request;
856 	struct scsi_sense_hdr sshdr;
857 
858 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
859 	if (sense_valid)
860 		sense_current = !scsi_sense_is_deferred(&sshdr);
861 
862 	if (blk_rq_is_passthrough(req)) {
863 		if (sense_valid) {
864 			/*
865 			 * SG_IO wants current and deferred errors
866 			 */
867 			scsi_req(req)->sense_len =
868 				min(8 + cmd->sense_buffer[7],
869 				    SCSI_SENSE_BUFFERSIZE);
870 		}
871 		if (sense_current)
872 			*blk_statp = scsi_result_to_blk_status(cmd, result);
873 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
874 		/*
875 		 * Flush commands do not transfers any data, and thus cannot use
876 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
877 		 * This sets *blk_statp explicitly for the problem case.
878 		 */
879 		*blk_statp = scsi_result_to_blk_status(cmd, result);
880 	}
881 	/*
882 	 * Recovered errors need reporting, but they're always treated as
883 	 * success, so fiddle the result code here.  For passthrough requests
884 	 * we already took a copy of the original into sreq->result which
885 	 * is what gets returned to the user
886 	 */
887 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
888 		bool do_print = true;
889 		/*
890 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
891 		 * skip print since caller wants ATA registers. Only occurs
892 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
893 		 */
894 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
895 			do_print = false;
896 		else if (req->rq_flags & RQF_QUIET)
897 			do_print = false;
898 		if (do_print)
899 			scsi_print_sense(cmd);
900 		result = 0;
901 		/* for passthrough, *blk_statp may be set */
902 		*blk_statp = BLK_STS_OK;
903 	}
904 	/*
905 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
906 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
907 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
908 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
909 	 * intermediate statuses (both obsolete in SAM-4) as good.
910 	 */
911 	if (status_byte(result) && scsi_status_is_good(result)) {
912 		result = 0;
913 		*blk_statp = BLK_STS_OK;
914 	}
915 	return result;
916 }
917 
918 /**
919  * scsi_io_completion - Completion processing for SCSI commands.
920  * @cmd:	command that is finished.
921  * @good_bytes:	number of processed bytes.
922  *
923  * We will finish off the specified number of sectors. If we are done, the
924  * command block will be released and the queue function will be goosed. If we
925  * are not done then we have to figure out what to do next:
926  *
927  *   a) We can call scsi_io_completion_reprep().  The request will be
928  *	unprepared and put back on the queue.  Then a new command will
929  *	be created for it.  This should be used if we made forward
930  *	progress, or if we want to switch from READ(10) to READ(6) for
931  *	example.
932  *
933  *   b) We can call scsi_io_completion_action().  The request will be
934  *	put back on the queue and retried using the same command as
935  *	before, possibly after a delay.
936  *
937  *   c) We can call scsi_end_request() with blk_stat other than
938  *	BLK_STS_OK, to fail the remainder of the request.
939  */
940 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
941 {
942 	int result = cmd->result;
943 	struct request_queue *q = cmd->device->request_queue;
944 	struct request *req = cmd->request;
945 	blk_status_t blk_stat = BLK_STS_OK;
946 
947 	if (unlikely(result))	/* a nz result may or may not be an error */
948 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
949 
950 	if (unlikely(blk_rq_is_passthrough(req))) {
951 		/*
952 		 * scsi_result_to_blk_status may have reset the host_byte
953 		 */
954 		scsi_req(req)->result = cmd->result;
955 	}
956 
957 	/*
958 	 * Next deal with any sectors which we were able to correctly
959 	 * handle.
960 	 */
961 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
962 		"%u sectors total, %d bytes done.\n",
963 		blk_rq_sectors(req), good_bytes));
964 
965 	/*
966 	 * Failed, zero length commands always need to drop down
967 	 * to retry code. Fast path should return in this block.
968 	 */
969 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
970 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
971 			return; /* no bytes remaining */
972 	}
973 
974 	/* Kill remainder if no retries. */
975 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
976 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
977 			WARN_ONCE(true,
978 			    "Bytes remaining after failed, no-retry command");
979 		return;
980 	}
981 
982 	/*
983 	 * If there had been no error, but we have leftover bytes in the
984 	 * requeues just queue the command up again.
985 	 */
986 	if (likely(result == 0))
987 		scsi_io_completion_reprep(cmd, q);
988 	else
989 		scsi_io_completion_action(cmd, result);
990 }
991 
992 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
993 		struct request *rq)
994 {
995 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
996 	       !op_is_write(req_op(rq)) &&
997 	       sdev->host->hostt->dma_need_drain(rq);
998 }
999 
1000 /**
1001  * scsi_alloc_sgtables - allocate S/G tables for a command
1002  * @cmd:  command descriptor we wish to initialize
1003  *
1004  * Returns:
1005  * * BLK_STS_OK       - on success
1006  * * BLK_STS_RESOURCE - if the failure is retryable
1007  * * BLK_STS_IOERR    - if the failure is fatal
1008  */
1009 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1010 {
1011 	struct scsi_device *sdev = cmd->device;
1012 	struct request *rq = cmd->request;
1013 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1014 	struct scatterlist *last_sg = NULL;
1015 	blk_status_t ret;
1016 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1017 	int count;
1018 
1019 	if (WARN_ON_ONCE(!nr_segs))
1020 		return BLK_STS_IOERR;
1021 
1022 	/*
1023 	 * Make sure there is space for the drain.  The driver must adjust
1024 	 * max_hw_segments to be prepared for this.
1025 	 */
1026 	if (need_drain)
1027 		nr_segs++;
1028 
1029 	/*
1030 	 * If sg table allocation fails, requeue request later.
1031 	 */
1032 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1033 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1034 		return BLK_STS_RESOURCE;
1035 
1036 	/*
1037 	 * Next, walk the list, and fill in the addresses and sizes of
1038 	 * each segment.
1039 	 */
1040 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1041 
1042 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1043 		unsigned int pad_len =
1044 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1045 
1046 		last_sg->length += pad_len;
1047 		cmd->extra_len += pad_len;
1048 	}
1049 
1050 	if (need_drain) {
1051 		sg_unmark_end(last_sg);
1052 		last_sg = sg_next(last_sg);
1053 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1054 		sg_mark_end(last_sg);
1055 
1056 		cmd->extra_len += sdev->dma_drain_len;
1057 		count++;
1058 	}
1059 
1060 	BUG_ON(count > cmd->sdb.table.nents);
1061 	cmd->sdb.table.nents = count;
1062 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1063 
1064 	if (blk_integrity_rq(rq)) {
1065 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1066 		int ivecs;
1067 
1068 		if (WARN_ON_ONCE(!prot_sdb)) {
1069 			/*
1070 			 * This can happen if someone (e.g. multipath)
1071 			 * queues a command to a device on an adapter
1072 			 * that does not support DIX.
1073 			 */
1074 			ret = BLK_STS_IOERR;
1075 			goto out_free_sgtables;
1076 		}
1077 
1078 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1079 
1080 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1081 				prot_sdb->table.sgl,
1082 				SCSI_INLINE_PROT_SG_CNT)) {
1083 			ret = BLK_STS_RESOURCE;
1084 			goto out_free_sgtables;
1085 		}
1086 
1087 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1088 						prot_sdb->table.sgl);
1089 		BUG_ON(count > ivecs);
1090 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1091 
1092 		cmd->prot_sdb = prot_sdb;
1093 		cmd->prot_sdb->table.nents = count;
1094 	}
1095 
1096 	return BLK_STS_OK;
1097 out_free_sgtables:
1098 	scsi_free_sgtables(cmd);
1099 	return ret;
1100 }
1101 EXPORT_SYMBOL(scsi_alloc_sgtables);
1102 
1103 /**
1104  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1105  * @rq: Request associated with the SCSI command to be initialized.
1106  *
1107  * This function initializes the members of struct scsi_cmnd that must be
1108  * initialized before request processing starts and that won't be
1109  * reinitialized if a SCSI command is requeued.
1110  *
1111  * Called from inside blk_get_request() for pass-through requests and from
1112  * inside scsi_init_command() for filesystem requests.
1113  */
1114 static void scsi_initialize_rq(struct request *rq)
1115 {
1116 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1117 
1118 	scsi_req_init(&cmd->req);
1119 	init_rcu_head(&cmd->rcu);
1120 	cmd->jiffies_at_alloc = jiffies;
1121 	cmd->retries = 0;
1122 }
1123 
1124 /*
1125  * Only called when the request isn't completed by SCSI, and not freed by
1126  * SCSI
1127  */
1128 static void scsi_cleanup_rq(struct request *rq)
1129 {
1130 	if (rq->rq_flags & RQF_DONTPREP) {
1131 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1132 		rq->rq_flags &= ~RQF_DONTPREP;
1133 	}
1134 }
1135 
1136 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1137 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1138 {
1139 	void *buf = cmd->sense_buffer;
1140 	void *prot = cmd->prot_sdb;
1141 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1142 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1143 	unsigned long jiffies_at_alloc;
1144 	int retries, to_clear;
1145 	bool in_flight;
1146 
1147 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1148 		flags |= SCMD_INITIALIZED;
1149 		scsi_initialize_rq(rq);
1150 	}
1151 
1152 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1153 	retries = cmd->retries;
1154 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1155 	/*
1156 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1157 	 * the driver-private command data if the LLD does not supply a
1158 	 * function to initialize that data.
1159 	 */
1160 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1161 	if (!dev->host->hostt->init_cmd_priv)
1162 		to_clear += dev->host->hostt->cmd_size;
1163 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1164 
1165 	cmd->device = dev;
1166 	cmd->sense_buffer = buf;
1167 	cmd->prot_sdb = prot;
1168 	cmd->flags = flags;
1169 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1170 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1171 	cmd->retries = retries;
1172 	if (in_flight)
1173 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1174 
1175 }
1176 
1177 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1178 		struct request *req)
1179 {
1180 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1181 
1182 	/*
1183 	 * Passthrough requests may transfer data, in which case they must
1184 	 * a bio attached to them.  Or they might contain a SCSI command
1185 	 * that does not transfer data, in which case they may optionally
1186 	 * submit a request without an attached bio.
1187 	 */
1188 	if (req->bio) {
1189 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1190 		if (unlikely(ret != BLK_STS_OK))
1191 			return ret;
1192 	} else {
1193 		BUG_ON(blk_rq_bytes(req));
1194 
1195 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1196 	}
1197 
1198 	cmd->cmd_len = scsi_req(req)->cmd_len;
1199 	if (cmd->cmd_len == 0)
1200 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
1201 	cmd->cmnd = scsi_req(req)->cmd;
1202 	cmd->transfersize = blk_rq_bytes(req);
1203 	cmd->allowed = scsi_req(req)->retries;
1204 	return BLK_STS_OK;
1205 }
1206 
1207 static blk_status_t
1208 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1209 {
1210 	switch (sdev->sdev_state) {
1211 	case SDEV_CREATED:
1212 		return BLK_STS_OK;
1213 	case SDEV_OFFLINE:
1214 	case SDEV_TRANSPORT_OFFLINE:
1215 		/*
1216 		 * If the device is offline we refuse to process any
1217 		 * commands.  The device must be brought online
1218 		 * before trying any recovery commands.
1219 		 */
1220 		if (!sdev->offline_already) {
1221 			sdev->offline_already = true;
1222 			sdev_printk(KERN_ERR, sdev,
1223 				    "rejecting I/O to offline device\n");
1224 		}
1225 		return BLK_STS_IOERR;
1226 	case SDEV_DEL:
1227 		/*
1228 		 * If the device is fully deleted, we refuse to
1229 		 * process any commands as well.
1230 		 */
1231 		sdev_printk(KERN_ERR, sdev,
1232 			    "rejecting I/O to dead device\n");
1233 		return BLK_STS_IOERR;
1234 	case SDEV_BLOCK:
1235 	case SDEV_CREATED_BLOCK:
1236 		return BLK_STS_RESOURCE;
1237 	case SDEV_QUIESCE:
1238 		/*
1239 		 * If the device is blocked we only accept power management
1240 		 * commands.
1241 		 */
1242 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1243 			return BLK_STS_RESOURCE;
1244 		return BLK_STS_OK;
1245 	default:
1246 		/*
1247 		 * For any other not fully online state we only allow
1248 		 * power management commands.
1249 		 */
1250 		if (req && !(req->rq_flags & RQF_PM))
1251 			return BLK_STS_IOERR;
1252 		return BLK_STS_OK;
1253 	}
1254 }
1255 
1256 /*
1257  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1258  * return 0.
1259  *
1260  * Called with the queue_lock held.
1261  */
1262 static inline int scsi_dev_queue_ready(struct request_queue *q,
1263 				  struct scsi_device *sdev)
1264 {
1265 	unsigned int busy;
1266 
1267 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1268 	if (atomic_read(&sdev->device_blocked)) {
1269 		if (busy)
1270 			goto out_dec;
1271 
1272 		/*
1273 		 * unblock after device_blocked iterates to zero
1274 		 */
1275 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1276 			goto out_dec;
1277 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1278 				   "unblocking device at zero depth\n"));
1279 	}
1280 
1281 	if (busy >= sdev->queue_depth)
1282 		goto out_dec;
1283 
1284 	return 1;
1285 out_dec:
1286 	atomic_dec(&sdev->device_busy);
1287 	return 0;
1288 }
1289 
1290 /*
1291  * scsi_target_queue_ready: checks if there we can send commands to target
1292  * @sdev: scsi device on starget to check.
1293  */
1294 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1295 					   struct scsi_device *sdev)
1296 {
1297 	struct scsi_target *starget = scsi_target(sdev);
1298 	unsigned int busy;
1299 
1300 	if (starget->single_lun) {
1301 		spin_lock_irq(shost->host_lock);
1302 		if (starget->starget_sdev_user &&
1303 		    starget->starget_sdev_user != sdev) {
1304 			spin_unlock_irq(shost->host_lock);
1305 			return 0;
1306 		}
1307 		starget->starget_sdev_user = sdev;
1308 		spin_unlock_irq(shost->host_lock);
1309 	}
1310 
1311 	if (starget->can_queue <= 0)
1312 		return 1;
1313 
1314 	busy = atomic_inc_return(&starget->target_busy) - 1;
1315 	if (atomic_read(&starget->target_blocked) > 0) {
1316 		if (busy)
1317 			goto starved;
1318 
1319 		/*
1320 		 * unblock after target_blocked iterates to zero
1321 		 */
1322 		if (atomic_dec_return(&starget->target_blocked) > 0)
1323 			goto out_dec;
1324 
1325 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1326 				 "unblocking target at zero depth\n"));
1327 	}
1328 
1329 	if (busy >= starget->can_queue)
1330 		goto starved;
1331 
1332 	return 1;
1333 
1334 starved:
1335 	spin_lock_irq(shost->host_lock);
1336 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1337 	spin_unlock_irq(shost->host_lock);
1338 out_dec:
1339 	if (starget->can_queue > 0)
1340 		atomic_dec(&starget->target_busy);
1341 	return 0;
1342 }
1343 
1344 /*
1345  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1346  * return 0. We must end up running the queue again whenever 0 is
1347  * returned, else IO can hang.
1348  */
1349 static inline int scsi_host_queue_ready(struct request_queue *q,
1350 				   struct Scsi_Host *shost,
1351 				   struct scsi_device *sdev,
1352 				   struct scsi_cmnd *cmd)
1353 {
1354 	if (scsi_host_in_recovery(shost))
1355 		return 0;
1356 
1357 	if (atomic_read(&shost->host_blocked) > 0) {
1358 		if (scsi_host_busy(shost) > 0)
1359 			goto starved;
1360 
1361 		/*
1362 		 * unblock after host_blocked iterates to zero
1363 		 */
1364 		if (atomic_dec_return(&shost->host_blocked) > 0)
1365 			goto out_dec;
1366 
1367 		SCSI_LOG_MLQUEUE(3,
1368 			shost_printk(KERN_INFO, shost,
1369 				     "unblocking host at zero depth\n"));
1370 	}
1371 
1372 	if (shost->host_self_blocked)
1373 		goto starved;
1374 
1375 	/* We're OK to process the command, so we can't be starved */
1376 	if (!list_empty(&sdev->starved_entry)) {
1377 		spin_lock_irq(shost->host_lock);
1378 		if (!list_empty(&sdev->starved_entry))
1379 			list_del_init(&sdev->starved_entry);
1380 		spin_unlock_irq(shost->host_lock);
1381 	}
1382 
1383 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1384 
1385 	return 1;
1386 
1387 starved:
1388 	spin_lock_irq(shost->host_lock);
1389 	if (list_empty(&sdev->starved_entry))
1390 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1391 	spin_unlock_irq(shost->host_lock);
1392 out_dec:
1393 	scsi_dec_host_busy(shost, cmd);
1394 	return 0;
1395 }
1396 
1397 /*
1398  * Busy state exporting function for request stacking drivers.
1399  *
1400  * For efficiency, no lock is taken to check the busy state of
1401  * shost/starget/sdev, since the returned value is not guaranteed and
1402  * may be changed after request stacking drivers call the function,
1403  * regardless of taking lock or not.
1404  *
1405  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1406  * needs to return 'not busy'. Otherwise, request stacking drivers
1407  * may hold requests forever.
1408  */
1409 static bool scsi_mq_lld_busy(struct request_queue *q)
1410 {
1411 	struct scsi_device *sdev = q->queuedata;
1412 	struct Scsi_Host *shost;
1413 
1414 	if (blk_queue_dying(q))
1415 		return false;
1416 
1417 	shost = sdev->host;
1418 
1419 	/*
1420 	 * Ignore host/starget busy state.
1421 	 * Since block layer does not have a concept of fairness across
1422 	 * multiple queues, congestion of host/starget needs to be handled
1423 	 * in SCSI layer.
1424 	 */
1425 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1426 		return true;
1427 
1428 	return false;
1429 }
1430 
1431 static void scsi_softirq_done(struct request *rq)
1432 {
1433 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1434 	int disposition;
1435 
1436 	INIT_LIST_HEAD(&cmd->eh_entry);
1437 
1438 	atomic_inc(&cmd->device->iodone_cnt);
1439 	if (cmd->result)
1440 		atomic_inc(&cmd->device->ioerr_cnt);
1441 
1442 	disposition = scsi_decide_disposition(cmd);
1443 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1444 		disposition = SUCCESS;
1445 
1446 	scsi_log_completion(cmd, disposition);
1447 
1448 	switch (disposition) {
1449 	case SUCCESS:
1450 		scsi_finish_command(cmd);
1451 		break;
1452 	case NEEDS_RETRY:
1453 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1454 		break;
1455 	case ADD_TO_MLQUEUE:
1456 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1457 		break;
1458 	default:
1459 		scsi_eh_scmd_add(cmd);
1460 		break;
1461 	}
1462 }
1463 
1464 /**
1465  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1466  * @cmd: command block we are dispatching.
1467  *
1468  * Return: nonzero return request was rejected and device's queue needs to be
1469  * plugged.
1470  */
1471 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1472 {
1473 	struct Scsi_Host *host = cmd->device->host;
1474 	int rtn = 0;
1475 
1476 	atomic_inc(&cmd->device->iorequest_cnt);
1477 
1478 	/* check if the device is still usable */
1479 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1480 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1481 		 * returns an immediate error upwards, and signals
1482 		 * that the device is no longer present */
1483 		cmd->result = DID_NO_CONNECT << 16;
1484 		goto done;
1485 	}
1486 
1487 	/* Check to see if the scsi lld made this device blocked. */
1488 	if (unlikely(scsi_device_blocked(cmd->device))) {
1489 		/*
1490 		 * in blocked state, the command is just put back on
1491 		 * the device queue.  The suspend state has already
1492 		 * blocked the queue so future requests should not
1493 		 * occur until the device transitions out of the
1494 		 * suspend state.
1495 		 */
1496 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1497 			"queuecommand : device blocked\n"));
1498 		return SCSI_MLQUEUE_DEVICE_BUSY;
1499 	}
1500 
1501 	/* Store the LUN value in cmnd, if needed. */
1502 	if (cmd->device->lun_in_cdb)
1503 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1504 			       (cmd->device->lun << 5 & 0xe0);
1505 
1506 	scsi_log_send(cmd);
1507 
1508 	/*
1509 	 * Before we queue this command, check if the command
1510 	 * length exceeds what the host adapter can handle.
1511 	 */
1512 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1513 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1514 			       "queuecommand : command too long. "
1515 			       "cdb_size=%d host->max_cmd_len=%d\n",
1516 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1517 		cmd->result = (DID_ABORT << 16);
1518 		goto done;
1519 	}
1520 
1521 	if (unlikely(host->shost_state == SHOST_DEL)) {
1522 		cmd->result = (DID_NO_CONNECT << 16);
1523 		goto done;
1524 
1525 	}
1526 
1527 	trace_scsi_dispatch_cmd_start(cmd);
1528 	rtn = host->hostt->queuecommand(host, cmd);
1529 	if (rtn) {
1530 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1531 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1532 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1533 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1534 
1535 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1536 			"queuecommand : request rejected\n"));
1537 	}
1538 
1539 	return rtn;
1540  done:
1541 	cmd->scsi_done(cmd);
1542 	return 0;
1543 }
1544 
1545 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1546 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1547 {
1548 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1549 		sizeof(struct scatterlist);
1550 }
1551 
1552 static blk_status_t scsi_prepare_cmd(struct request *req)
1553 {
1554 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1555 	struct scsi_device *sdev = req->q->queuedata;
1556 	struct Scsi_Host *shost = sdev->host;
1557 	struct scatterlist *sg;
1558 
1559 	scsi_init_command(sdev, cmd);
1560 
1561 	cmd->request = req;
1562 	cmd->tag = req->tag;
1563 	cmd->prot_op = SCSI_PROT_NORMAL;
1564 	if (blk_rq_bytes(req))
1565 		cmd->sc_data_direction = rq_dma_dir(req);
1566 	else
1567 		cmd->sc_data_direction = DMA_NONE;
1568 
1569 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1570 	cmd->sdb.table.sgl = sg;
1571 
1572 	if (scsi_host_get_prot(shost)) {
1573 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1574 
1575 		cmd->prot_sdb->table.sgl =
1576 			(struct scatterlist *)(cmd->prot_sdb + 1);
1577 	}
1578 
1579 	/*
1580 	 * Special handling for passthrough commands, which don't go to the ULP
1581 	 * at all:
1582 	 */
1583 	if (blk_rq_is_scsi(req))
1584 		return scsi_setup_scsi_cmnd(sdev, req);
1585 
1586 	if (sdev->handler && sdev->handler->prep_fn) {
1587 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1588 
1589 		if (ret != BLK_STS_OK)
1590 			return ret;
1591 	}
1592 
1593 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1594 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1595 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1596 }
1597 
1598 static void scsi_mq_done(struct scsi_cmnd *cmd)
1599 {
1600 	if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1601 		return;
1602 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1603 		return;
1604 	trace_scsi_dispatch_cmd_done(cmd);
1605 	blk_mq_complete_request(cmd->request);
1606 }
1607 
1608 static void scsi_mq_put_budget(struct request_queue *q)
1609 {
1610 	struct scsi_device *sdev = q->queuedata;
1611 
1612 	atomic_dec(&sdev->device_busy);
1613 }
1614 
1615 static bool scsi_mq_get_budget(struct request_queue *q)
1616 {
1617 	struct scsi_device *sdev = q->queuedata;
1618 
1619 	if (scsi_dev_queue_ready(q, sdev))
1620 		return true;
1621 
1622 	atomic_inc(&sdev->restarts);
1623 
1624 	/*
1625 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1626 	 * .restarts must be incremented before .device_busy is read because the
1627 	 * code in scsi_run_queue_async() depends on the order of these operations.
1628 	 */
1629 	smp_mb__after_atomic();
1630 
1631 	/*
1632 	 * If all in-flight requests originated from this LUN are completed
1633 	 * before reading .device_busy, sdev->device_busy will be observed as
1634 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1635 	 * soon. Otherwise, completion of one of these requests will observe
1636 	 * the .restarts flag, and the request queue will be run for handling
1637 	 * this request, see scsi_end_request().
1638 	 */
1639 	if (unlikely(atomic_read(&sdev->device_busy) == 0 &&
1640 				!scsi_device_blocked(sdev)))
1641 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1642 	return false;
1643 }
1644 
1645 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1646 			 const struct blk_mq_queue_data *bd)
1647 {
1648 	struct request *req = bd->rq;
1649 	struct request_queue *q = req->q;
1650 	struct scsi_device *sdev = q->queuedata;
1651 	struct Scsi_Host *shost = sdev->host;
1652 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1653 	blk_status_t ret;
1654 	int reason;
1655 
1656 	/*
1657 	 * If the device is not in running state we will reject some or all
1658 	 * commands.
1659 	 */
1660 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1661 		ret = scsi_device_state_check(sdev, req);
1662 		if (ret != BLK_STS_OK)
1663 			goto out_put_budget;
1664 	}
1665 
1666 	ret = BLK_STS_RESOURCE;
1667 	if (!scsi_target_queue_ready(shost, sdev))
1668 		goto out_put_budget;
1669 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1670 		goto out_dec_target_busy;
1671 
1672 	if (!(req->rq_flags & RQF_DONTPREP)) {
1673 		ret = scsi_prepare_cmd(req);
1674 		if (ret != BLK_STS_OK)
1675 			goto out_dec_host_busy;
1676 		req->rq_flags |= RQF_DONTPREP;
1677 	} else {
1678 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1679 	}
1680 
1681 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1682 	if (sdev->simple_tags)
1683 		cmd->flags |= SCMD_TAGGED;
1684 	if (bd->last)
1685 		cmd->flags |= SCMD_LAST;
1686 
1687 	scsi_set_resid(cmd, 0);
1688 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1689 	cmd->scsi_done = scsi_mq_done;
1690 
1691 	blk_mq_start_request(req);
1692 	reason = scsi_dispatch_cmd(cmd);
1693 	if (reason) {
1694 		scsi_set_blocked(cmd, reason);
1695 		ret = BLK_STS_RESOURCE;
1696 		goto out_dec_host_busy;
1697 	}
1698 
1699 	return BLK_STS_OK;
1700 
1701 out_dec_host_busy:
1702 	scsi_dec_host_busy(shost, cmd);
1703 out_dec_target_busy:
1704 	if (scsi_target(sdev)->can_queue > 0)
1705 		atomic_dec(&scsi_target(sdev)->target_busy);
1706 out_put_budget:
1707 	scsi_mq_put_budget(q);
1708 	switch (ret) {
1709 	case BLK_STS_OK:
1710 		break;
1711 	case BLK_STS_RESOURCE:
1712 	case BLK_STS_ZONE_RESOURCE:
1713 		if (scsi_device_blocked(sdev))
1714 			ret = BLK_STS_DEV_RESOURCE;
1715 		break;
1716 	case BLK_STS_AGAIN:
1717 		scsi_req(req)->result = DID_BUS_BUSY << 16;
1718 		if (req->rq_flags & RQF_DONTPREP)
1719 			scsi_mq_uninit_cmd(cmd);
1720 		break;
1721 	default:
1722 		if (unlikely(!scsi_device_online(sdev)))
1723 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1724 		else
1725 			scsi_req(req)->result = DID_ERROR << 16;
1726 		/*
1727 		 * Make sure to release all allocated resources when
1728 		 * we hit an error, as we will never see this command
1729 		 * again.
1730 		 */
1731 		if (req->rq_flags & RQF_DONTPREP)
1732 			scsi_mq_uninit_cmd(cmd);
1733 		scsi_run_queue_async(sdev);
1734 		break;
1735 	}
1736 	return ret;
1737 }
1738 
1739 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1740 		bool reserved)
1741 {
1742 	if (reserved)
1743 		return BLK_EH_RESET_TIMER;
1744 	return scsi_times_out(req);
1745 }
1746 
1747 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1748 				unsigned int hctx_idx, unsigned int numa_node)
1749 {
1750 	struct Scsi_Host *shost = set->driver_data;
1751 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1752 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1753 	struct scatterlist *sg;
1754 	int ret = 0;
1755 
1756 	if (unchecked_isa_dma)
1757 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1758 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1759 						    GFP_KERNEL, numa_node);
1760 	if (!cmd->sense_buffer)
1761 		return -ENOMEM;
1762 	cmd->req.sense = cmd->sense_buffer;
1763 
1764 	if (scsi_host_get_prot(shost)) {
1765 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1766 			shost->hostt->cmd_size;
1767 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1768 	}
1769 
1770 	if (shost->hostt->init_cmd_priv) {
1771 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1772 		if (ret < 0)
1773 			scsi_free_sense_buffer(unchecked_isa_dma,
1774 					       cmd->sense_buffer);
1775 	}
1776 
1777 	return ret;
1778 }
1779 
1780 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1781 				 unsigned int hctx_idx)
1782 {
1783 	struct Scsi_Host *shost = set->driver_data;
1784 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1785 
1786 	if (shost->hostt->exit_cmd_priv)
1787 		shost->hostt->exit_cmd_priv(shost, cmd);
1788 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1789 			       cmd->sense_buffer);
1790 }
1791 
1792 static int scsi_map_queues(struct blk_mq_tag_set *set)
1793 {
1794 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1795 
1796 	if (shost->hostt->map_queues)
1797 		return shost->hostt->map_queues(shost);
1798 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1799 }
1800 
1801 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1802 {
1803 	struct device *dev = shost->dma_dev;
1804 
1805 	/*
1806 	 * this limit is imposed by hardware restrictions
1807 	 */
1808 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1809 					SG_MAX_SEGMENTS));
1810 
1811 	if (scsi_host_prot_dma(shost)) {
1812 		shost->sg_prot_tablesize =
1813 			min_not_zero(shost->sg_prot_tablesize,
1814 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1815 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1816 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1817 	}
1818 
1819 	if (dev->dma_mask) {
1820 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1821 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1822 	}
1823 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1824 	if (shost->unchecked_isa_dma)
1825 		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1826 	blk_queue_segment_boundary(q, shost->dma_boundary);
1827 	dma_set_seg_boundary(dev, shost->dma_boundary);
1828 
1829 	blk_queue_max_segment_size(q, shost->max_segment_size);
1830 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1831 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1832 
1833 	/*
1834 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1835 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1836 	 * which is set by the platform.
1837 	 *
1838 	 * Devices that require a bigger alignment can increase it later.
1839 	 */
1840 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1841 }
1842 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1843 
1844 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1845 	.get_budget	= scsi_mq_get_budget,
1846 	.put_budget	= scsi_mq_put_budget,
1847 	.queue_rq	= scsi_queue_rq,
1848 	.complete	= scsi_softirq_done,
1849 	.timeout	= scsi_timeout,
1850 #ifdef CONFIG_BLK_DEBUG_FS
1851 	.show_rq	= scsi_show_rq,
1852 #endif
1853 	.init_request	= scsi_mq_init_request,
1854 	.exit_request	= scsi_mq_exit_request,
1855 	.initialize_rq_fn = scsi_initialize_rq,
1856 	.cleanup_rq	= scsi_cleanup_rq,
1857 	.busy		= scsi_mq_lld_busy,
1858 	.map_queues	= scsi_map_queues,
1859 };
1860 
1861 
1862 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1863 {
1864 	struct request_queue *q = hctx->queue;
1865 	struct scsi_device *sdev = q->queuedata;
1866 	struct Scsi_Host *shost = sdev->host;
1867 
1868 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1869 }
1870 
1871 static const struct blk_mq_ops scsi_mq_ops = {
1872 	.get_budget	= scsi_mq_get_budget,
1873 	.put_budget	= scsi_mq_put_budget,
1874 	.queue_rq	= scsi_queue_rq,
1875 	.commit_rqs	= scsi_commit_rqs,
1876 	.complete	= scsi_softirq_done,
1877 	.timeout	= scsi_timeout,
1878 #ifdef CONFIG_BLK_DEBUG_FS
1879 	.show_rq	= scsi_show_rq,
1880 #endif
1881 	.init_request	= scsi_mq_init_request,
1882 	.exit_request	= scsi_mq_exit_request,
1883 	.initialize_rq_fn = scsi_initialize_rq,
1884 	.cleanup_rq	= scsi_cleanup_rq,
1885 	.busy		= scsi_mq_lld_busy,
1886 	.map_queues	= scsi_map_queues,
1887 };
1888 
1889 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1890 {
1891 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1892 	if (IS_ERR(sdev->request_queue))
1893 		return NULL;
1894 
1895 	sdev->request_queue->queuedata = sdev;
1896 	__scsi_init_queue(sdev->host, sdev->request_queue);
1897 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1898 	return sdev->request_queue;
1899 }
1900 
1901 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1902 {
1903 	unsigned int cmd_size, sgl_size;
1904 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1905 
1906 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1907 				scsi_mq_inline_sgl_size(shost));
1908 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1909 	if (scsi_host_get_prot(shost))
1910 		cmd_size += sizeof(struct scsi_data_buffer) +
1911 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1912 
1913 	memset(tag_set, 0, sizeof(*tag_set));
1914 	if (shost->hostt->commit_rqs)
1915 		tag_set->ops = &scsi_mq_ops;
1916 	else
1917 		tag_set->ops = &scsi_mq_ops_no_commit;
1918 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1919 	tag_set->queue_depth = shost->can_queue;
1920 	tag_set->cmd_size = cmd_size;
1921 	tag_set->numa_node = NUMA_NO_NODE;
1922 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1923 	tag_set->flags |=
1924 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1925 	tag_set->driver_data = shost;
1926 	if (shost->host_tagset)
1927 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1928 
1929 	return blk_mq_alloc_tag_set(tag_set);
1930 }
1931 
1932 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1933 {
1934 	blk_mq_free_tag_set(&shost->tag_set);
1935 }
1936 
1937 /**
1938  * scsi_device_from_queue - return sdev associated with a request_queue
1939  * @q: The request queue to return the sdev from
1940  *
1941  * Return the sdev associated with a request queue or NULL if the
1942  * request_queue does not reference a SCSI device.
1943  */
1944 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1945 {
1946 	struct scsi_device *sdev = NULL;
1947 
1948 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1949 	    q->mq_ops == &scsi_mq_ops)
1950 		sdev = q->queuedata;
1951 	if (!sdev || !get_device(&sdev->sdev_gendev))
1952 		sdev = NULL;
1953 
1954 	return sdev;
1955 }
1956 
1957 /**
1958  * scsi_block_requests - Utility function used by low-level drivers to prevent
1959  * further commands from being queued to the device.
1960  * @shost:  host in question
1961  *
1962  * There is no timer nor any other means by which the requests get unblocked
1963  * other than the low-level driver calling scsi_unblock_requests().
1964  */
1965 void scsi_block_requests(struct Scsi_Host *shost)
1966 {
1967 	shost->host_self_blocked = 1;
1968 }
1969 EXPORT_SYMBOL(scsi_block_requests);
1970 
1971 /**
1972  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1973  * further commands to be queued to the device.
1974  * @shost:  host in question
1975  *
1976  * There is no timer nor any other means by which the requests get unblocked
1977  * other than the low-level driver calling scsi_unblock_requests(). This is done
1978  * as an API function so that changes to the internals of the scsi mid-layer
1979  * won't require wholesale changes to drivers that use this feature.
1980  */
1981 void scsi_unblock_requests(struct Scsi_Host *shost)
1982 {
1983 	shost->host_self_blocked = 0;
1984 	scsi_run_host_queues(shost);
1985 }
1986 EXPORT_SYMBOL(scsi_unblock_requests);
1987 
1988 void scsi_exit_queue(void)
1989 {
1990 	kmem_cache_destroy(scsi_sense_cache);
1991 	kmem_cache_destroy(scsi_sense_isadma_cache);
1992 }
1993 
1994 /**
1995  *	scsi_mode_select - issue a mode select
1996  *	@sdev:	SCSI device to be queried
1997  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1998  *	@sp:	Save page bit (0 == don't save, 1 == save)
1999  *	@modepage: mode page being requested
2000  *	@buffer: request buffer (may not be smaller than eight bytes)
2001  *	@len:	length of request buffer.
2002  *	@timeout: command timeout
2003  *	@retries: number of retries before failing
2004  *	@data: returns a structure abstracting the mode header data
2005  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2006  *		must be SCSI_SENSE_BUFFERSIZE big.
2007  *
2008  *	Returns zero if successful; negative error number or scsi
2009  *	status on error
2010  *
2011  */
2012 int
2013 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2014 		 unsigned char *buffer, int len, int timeout, int retries,
2015 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2016 {
2017 	unsigned char cmd[10];
2018 	unsigned char *real_buffer;
2019 	int ret;
2020 
2021 	memset(cmd, 0, sizeof(cmd));
2022 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2023 
2024 	if (sdev->use_10_for_ms) {
2025 		if (len > 65535)
2026 			return -EINVAL;
2027 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2028 		if (!real_buffer)
2029 			return -ENOMEM;
2030 		memcpy(real_buffer + 8, buffer, len);
2031 		len += 8;
2032 		real_buffer[0] = 0;
2033 		real_buffer[1] = 0;
2034 		real_buffer[2] = data->medium_type;
2035 		real_buffer[3] = data->device_specific;
2036 		real_buffer[4] = data->longlba ? 0x01 : 0;
2037 		real_buffer[5] = 0;
2038 		real_buffer[6] = data->block_descriptor_length >> 8;
2039 		real_buffer[7] = data->block_descriptor_length;
2040 
2041 		cmd[0] = MODE_SELECT_10;
2042 		cmd[7] = len >> 8;
2043 		cmd[8] = len;
2044 	} else {
2045 		if (len > 255 || data->block_descriptor_length > 255 ||
2046 		    data->longlba)
2047 			return -EINVAL;
2048 
2049 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2050 		if (!real_buffer)
2051 			return -ENOMEM;
2052 		memcpy(real_buffer + 4, buffer, len);
2053 		len += 4;
2054 		real_buffer[0] = 0;
2055 		real_buffer[1] = data->medium_type;
2056 		real_buffer[2] = data->device_specific;
2057 		real_buffer[3] = data->block_descriptor_length;
2058 
2059 		cmd[0] = MODE_SELECT;
2060 		cmd[4] = len;
2061 	}
2062 
2063 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2064 			       sshdr, timeout, retries, NULL);
2065 	kfree(real_buffer);
2066 	return ret;
2067 }
2068 EXPORT_SYMBOL_GPL(scsi_mode_select);
2069 
2070 /**
2071  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2072  *	@sdev:	SCSI device to be queried
2073  *	@dbd:	set if mode sense will allow block descriptors to be returned
2074  *	@modepage: mode page being requested
2075  *	@buffer: request buffer (may not be smaller than eight bytes)
2076  *	@len:	length of request buffer.
2077  *	@timeout: command timeout
2078  *	@retries: number of retries before failing
2079  *	@data: returns a structure abstracting the mode header data
2080  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2081  *		must be SCSI_SENSE_BUFFERSIZE big.
2082  *
2083  *	Returns zero if unsuccessful, or the header offset (either 4
2084  *	or 8 depending on whether a six or ten byte command was
2085  *	issued) if successful.
2086  */
2087 int
2088 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2089 		  unsigned char *buffer, int len, int timeout, int retries,
2090 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2091 {
2092 	unsigned char cmd[12];
2093 	int use_10_for_ms;
2094 	int header_length;
2095 	int result, retry_count = retries;
2096 	struct scsi_sense_hdr my_sshdr;
2097 
2098 	memset(data, 0, sizeof(*data));
2099 	memset(&cmd[0], 0, 12);
2100 
2101 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2102 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2103 	cmd[2] = modepage;
2104 
2105 	/* caller might not be interested in sense, but we need it */
2106 	if (!sshdr)
2107 		sshdr = &my_sshdr;
2108 
2109  retry:
2110 	use_10_for_ms = sdev->use_10_for_ms;
2111 
2112 	if (use_10_for_ms) {
2113 		if (len < 8)
2114 			len = 8;
2115 
2116 		cmd[0] = MODE_SENSE_10;
2117 		cmd[8] = len;
2118 		header_length = 8;
2119 	} else {
2120 		if (len < 4)
2121 			len = 4;
2122 
2123 		cmd[0] = MODE_SENSE;
2124 		cmd[4] = len;
2125 		header_length = 4;
2126 	}
2127 
2128 	memset(buffer, 0, len);
2129 
2130 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2131 				  sshdr, timeout, retries, NULL);
2132 
2133 	/* This code looks awful: what it's doing is making sure an
2134 	 * ILLEGAL REQUEST sense return identifies the actual command
2135 	 * byte as the problem.  MODE_SENSE commands can return
2136 	 * ILLEGAL REQUEST if the code page isn't supported */
2137 
2138 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2139 	    driver_byte(result) == DRIVER_SENSE) {
2140 		if (scsi_sense_valid(sshdr)) {
2141 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2142 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2143 				/*
2144 				 * Invalid command operation code
2145 				 */
2146 				sdev->use_10_for_ms = 0;
2147 				goto retry;
2148 			}
2149 		}
2150 	}
2151 
2152 	if (scsi_status_is_good(result)) {
2153 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2154 			     (modepage == 6 || modepage == 8))) {
2155 			/* Initio breakage? */
2156 			header_length = 0;
2157 			data->length = 13;
2158 			data->medium_type = 0;
2159 			data->device_specific = 0;
2160 			data->longlba = 0;
2161 			data->block_descriptor_length = 0;
2162 		} else if (use_10_for_ms) {
2163 			data->length = buffer[0]*256 + buffer[1] + 2;
2164 			data->medium_type = buffer[2];
2165 			data->device_specific = buffer[3];
2166 			data->longlba = buffer[4] & 0x01;
2167 			data->block_descriptor_length = buffer[6]*256
2168 				+ buffer[7];
2169 		} else {
2170 			data->length = buffer[0] + 1;
2171 			data->medium_type = buffer[1];
2172 			data->device_specific = buffer[2];
2173 			data->block_descriptor_length = buffer[3];
2174 		}
2175 		data->header_length = header_length;
2176 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2177 		   scsi_sense_valid(sshdr) &&
2178 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2179 		retry_count--;
2180 		goto retry;
2181 	}
2182 
2183 	return result;
2184 }
2185 EXPORT_SYMBOL(scsi_mode_sense);
2186 
2187 /**
2188  *	scsi_test_unit_ready - test if unit is ready
2189  *	@sdev:	scsi device to change the state of.
2190  *	@timeout: command timeout
2191  *	@retries: number of retries before failing
2192  *	@sshdr: outpout pointer for decoded sense information.
2193  *
2194  *	Returns zero if unsuccessful or an error if TUR failed.  For
2195  *	removable media, UNIT_ATTENTION sets ->changed flag.
2196  **/
2197 int
2198 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2199 		     struct scsi_sense_hdr *sshdr)
2200 {
2201 	char cmd[] = {
2202 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2203 	};
2204 	int result;
2205 
2206 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2207 	do {
2208 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2209 					  timeout, 1, NULL);
2210 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2211 		    sshdr->sense_key == UNIT_ATTENTION)
2212 			sdev->changed = 1;
2213 	} while (scsi_sense_valid(sshdr) &&
2214 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2215 
2216 	return result;
2217 }
2218 EXPORT_SYMBOL(scsi_test_unit_ready);
2219 
2220 /**
2221  *	scsi_device_set_state - Take the given device through the device state model.
2222  *	@sdev:	scsi device to change the state of.
2223  *	@state:	state to change to.
2224  *
2225  *	Returns zero if successful or an error if the requested
2226  *	transition is illegal.
2227  */
2228 int
2229 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2230 {
2231 	enum scsi_device_state oldstate = sdev->sdev_state;
2232 
2233 	if (state == oldstate)
2234 		return 0;
2235 
2236 	switch (state) {
2237 	case SDEV_CREATED:
2238 		switch (oldstate) {
2239 		case SDEV_CREATED_BLOCK:
2240 			break;
2241 		default:
2242 			goto illegal;
2243 		}
2244 		break;
2245 
2246 	case SDEV_RUNNING:
2247 		switch (oldstate) {
2248 		case SDEV_CREATED:
2249 		case SDEV_OFFLINE:
2250 		case SDEV_TRANSPORT_OFFLINE:
2251 		case SDEV_QUIESCE:
2252 		case SDEV_BLOCK:
2253 			break;
2254 		default:
2255 			goto illegal;
2256 		}
2257 		break;
2258 
2259 	case SDEV_QUIESCE:
2260 		switch (oldstate) {
2261 		case SDEV_RUNNING:
2262 		case SDEV_OFFLINE:
2263 		case SDEV_TRANSPORT_OFFLINE:
2264 			break;
2265 		default:
2266 			goto illegal;
2267 		}
2268 		break;
2269 
2270 	case SDEV_OFFLINE:
2271 	case SDEV_TRANSPORT_OFFLINE:
2272 		switch (oldstate) {
2273 		case SDEV_CREATED:
2274 		case SDEV_RUNNING:
2275 		case SDEV_QUIESCE:
2276 		case SDEV_BLOCK:
2277 			break;
2278 		default:
2279 			goto illegal;
2280 		}
2281 		break;
2282 
2283 	case SDEV_BLOCK:
2284 		switch (oldstate) {
2285 		case SDEV_RUNNING:
2286 		case SDEV_CREATED_BLOCK:
2287 		case SDEV_QUIESCE:
2288 		case SDEV_OFFLINE:
2289 			break;
2290 		default:
2291 			goto illegal;
2292 		}
2293 		break;
2294 
2295 	case SDEV_CREATED_BLOCK:
2296 		switch (oldstate) {
2297 		case SDEV_CREATED:
2298 			break;
2299 		default:
2300 			goto illegal;
2301 		}
2302 		break;
2303 
2304 	case SDEV_CANCEL:
2305 		switch (oldstate) {
2306 		case SDEV_CREATED:
2307 		case SDEV_RUNNING:
2308 		case SDEV_QUIESCE:
2309 		case SDEV_OFFLINE:
2310 		case SDEV_TRANSPORT_OFFLINE:
2311 			break;
2312 		default:
2313 			goto illegal;
2314 		}
2315 		break;
2316 
2317 	case SDEV_DEL:
2318 		switch (oldstate) {
2319 		case SDEV_CREATED:
2320 		case SDEV_RUNNING:
2321 		case SDEV_OFFLINE:
2322 		case SDEV_TRANSPORT_OFFLINE:
2323 		case SDEV_CANCEL:
2324 		case SDEV_BLOCK:
2325 		case SDEV_CREATED_BLOCK:
2326 			break;
2327 		default:
2328 			goto illegal;
2329 		}
2330 		break;
2331 
2332 	}
2333 	sdev->offline_already = false;
2334 	sdev->sdev_state = state;
2335 	return 0;
2336 
2337  illegal:
2338 	SCSI_LOG_ERROR_RECOVERY(1,
2339 				sdev_printk(KERN_ERR, sdev,
2340 					    "Illegal state transition %s->%s",
2341 					    scsi_device_state_name(oldstate),
2342 					    scsi_device_state_name(state))
2343 				);
2344 	return -EINVAL;
2345 }
2346 EXPORT_SYMBOL(scsi_device_set_state);
2347 
2348 /**
2349  *	scsi_evt_emit - emit a single SCSI device uevent
2350  *	@sdev: associated SCSI device
2351  *	@evt: event to emit
2352  *
2353  *	Send a single uevent (scsi_event) to the associated scsi_device.
2354  */
2355 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2356 {
2357 	int idx = 0;
2358 	char *envp[3];
2359 
2360 	switch (evt->evt_type) {
2361 	case SDEV_EVT_MEDIA_CHANGE:
2362 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2363 		break;
2364 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2365 		scsi_rescan_device(&sdev->sdev_gendev);
2366 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2367 		break;
2368 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2369 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2370 		break;
2371 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2372 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2373 		break;
2374 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2375 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2376 		break;
2377 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2378 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2379 		break;
2380 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2381 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2382 		break;
2383 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2384 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2385 		break;
2386 	default:
2387 		/* do nothing */
2388 		break;
2389 	}
2390 
2391 	envp[idx++] = NULL;
2392 
2393 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2394 }
2395 
2396 /**
2397  *	scsi_evt_thread - send a uevent for each scsi event
2398  *	@work: work struct for scsi_device
2399  *
2400  *	Dispatch queued events to their associated scsi_device kobjects
2401  *	as uevents.
2402  */
2403 void scsi_evt_thread(struct work_struct *work)
2404 {
2405 	struct scsi_device *sdev;
2406 	enum scsi_device_event evt_type;
2407 	LIST_HEAD(event_list);
2408 
2409 	sdev = container_of(work, struct scsi_device, event_work);
2410 
2411 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2412 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2413 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2414 
2415 	while (1) {
2416 		struct scsi_event *evt;
2417 		struct list_head *this, *tmp;
2418 		unsigned long flags;
2419 
2420 		spin_lock_irqsave(&sdev->list_lock, flags);
2421 		list_splice_init(&sdev->event_list, &event_list);
2422 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2423 
2424 		if (list_empty(&event_list))
2425 			break;
2426 
2427 		list_for_each_safe(this, tmp, &event_list) {
2428 			evt = list_entry(this, struct scsi_event, node);
2429 			list_del(&evt->node);
2430 			scsi_evt_emit(sdev, evt);
2431 			kfree(evt);
2432 		}
2433 	}
2434 }
2435 
2436 /**
2437  * 	sdev_evt_send - send asserted event to uevent thread
2438  *	@sdev: scsi_device event occurred on
2439  *	@evt: event to send
2440  *
2441  *	Assert scsi device event asynchronously.
2442  */
2443 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2444 {
2445 	unsigned long flags;
2446 
2447 #if 0
2448 	/* FIXME: currently this check eliminates all media change events
2449 	 * for polled devices.  Need to update to discriminate between AN
2450 	 * and polled events */
2451 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2452 		kfree(evt);
2453 		return;
2454 	}
2455 #endif
2456 
2457 	spin_lock_irqsave(&sdev->list_lock, flags);
2458 	list_add_tail(&evt->node, &sdev->event_list);
2459 	schedule_work(&sdev->event_work);
2460 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2461 }
2462 EXPORT_SYMBOL_GPL(sdev_evt_send);
2463 
2464 /**
2465  * 	sdev_evt_alloc - allocate a new scsi event
2466  *	@evt_type: type of event to allocate
2467  *	@gfpflags: GFP flags for allocation
2468  *
2469  *	Allocates and returns a new scsi_event.
2470  */
2471 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2472 				  gfp_t gfpflags)
2473 {
2474 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2475 	if (!evt)
2476 		return NULL;
2477 
2478 	evt->evt_type = evt_type;
2479 	INIT_LIST_HEAD(&evt->node);
2480 
2481 	/* evt_type-specific initialization, if any */
2482 	switch (evt_type) {
2483 	case SDEV_EVT_MEDIA_CHANGE:
2484 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2485 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2486 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2487 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2488 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2489 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2490 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2491 	default:
2492 		/* do nothing */
2493 		break;
2494 	}
2495 
2496 	return evt;
2497 }
2498 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2499 
2500 /**
2501  * 	sdev_evt_send_simple - send asserted event to uevent thread
2502  *	@sdev: scsi_device event occurred on
2503  *	@evt_type: type of event to send
2504  *	@gfpflags: GFP flags for allocation
2505  *
2506  *	Assert scsi device event asynchronously, given an event type.
2507  */
2508 void sdev_evt_send_simple(struct scsi_device *sdev,
2509 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2510 {
2511 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2512 	if (!evt) {
2513 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2514 			    evt_type);
2515 		return;
2516 	}
2517 
2518 	sdev_evt_send(sdev, evt);
2519 }
2520 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2521 
2522 /**
2523  *	scsi_device_quiesce - Block all commands except power management.
2524  *	@sdev:	scsi device to quiesce.
2525  *
2526  *	This works by trying to transition to the SDEV_QUIESCE state
2527  *	(which must be a legal transition).  When the device is in this
2528  *	state, only power management requests will be accepted, all others will
2529  *	be deferred.
2530  *
2531  *	Must be called with user context, may sleep.
2532  *
2533  *	Returns zero if unsuccessful or an error if not.
2534  */
2535 int
2536 scsi_device_quiesce(struct scsi_device *sdev)
2537 {
2538 	struct request_queue *q = sdev->request_queue;
2539 	int err;
2540 
2541 	/*
2542 	 * It is allowed to call scsi_device_quiesce() multiple times from
2543 	 * the same context but concurrent scsi_device_quiesce() calls are
2544 	 * not allowed.
2545 	 */
2546 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2547 
2548 	if (sdev->quiesced_by == current)
2549 		return 0;
2550 
2551 	blk_set_pm_only(q);
2552 
2553 	blk_mq_freeze_queue(q);
2554 	/*
2555 	 * Ensure that the effect of blk_set_pm_only() will be visible
2556 	 * for percpu_ref_tryget() callers that occur after the queue
2557 	 * unfreeze even if the queue was already frozen before this function
2558 	 * was called. See also https://lwn.net/Articles/573497/.
2559 	 */
2560 	synchronize_rcu();
2561 	blk_mq_unfreeze_queue(q);
2562 
2563 	mutex_lock(&sdev->state_mutex);
2564 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2565 	if (err == 0)
2566 		sdev->quiesced_by = current;
2567 	else
2568 		blk_clear_pm_only(q);
2569 	mutex_unlock(&sdev->state_mutex);
2570 
2571 	return err;
2572 }
2573 EXPORT_SYMBOL(scsi_device_quiesce);
2574 
2575 /**
2576  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2577  *	@sdev:	scsi device to resume.
2578  *
2579  *	Moves the device from quiesced back to running and restarts the
2580  *	queues.
2581  *
2582  *	Must be called with user context, may sleep.
2583  */
2584 void scsi_device_resume(struct scsi_device *sdev)
2585 {
2586 	/* check if the device state was mutated prior to resume, and if
2587 	 * so assume the state is being managed elsewhere (for example
2588 	 * device deleted during suspend)
2589 	 */
2590 	mutex_lock(&sdev->state_mutex);
2591 	if (sdev->sdev_state == SDEV_QUIESCE)
2592 		scsi_device_set_state(sdev, SDEV_RUNNING);
2593 	if (sdev->quiesced_by) {
2594 		sdev->quiesced_by = NULL;
2595 		blk_clear_pm_only(sdev->request_queue);
2596 	}
2597 	mutex_unlock(&sdev->state_mutex);
2598 }
2599 EXPORT_SYMBOL(scsi_device_resume);
2600 
2601 static void
2602 device_quiesce_fn(struct scsi_device *sdev, void *data)
2603 {
2604 	scsi_device_quiesce(sdev);
2605 }
2606 
2607 void
2608 scsi_target_quiesce(struct scsi_target *starget)
2609 {
2610 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2611 }
2612 EXPORT_SYMBOL(scsi_target_quiesce);
2613 
2614 static void
2615 device_resume_fn(struct scsi_device *sdev, void *data)
2616 {
2617 	scsi_device_resume(sdev);
2618 }
2619 
2620 void
2621 scsi_target_resume(struct scsi_target *starget)
2622 {
2623 	starget_for_each_device(starget, NULL, device_resume_fn);
2624 }
2625 EXPORT_SYMBOL(scsi_target_resume);
2626 
2627 /**
2628  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2629  * @sdev: device to block
2630  *
2631  * Pause SCSI command processing on the specified device. Does not sleep.
2632  *
2633  * Returns zero if successful or a negative error code upon failure.
2634  *
2635  * Notes:
2636  * This routine transitions the device to the SDEV_BLOCK state (which must be
2637  * a legal transition). When the device is in this state, command processing
2638  * is paused until the device leaves the SDEV_BLOCK state. See also
2639  * scsi_internal_device_unblock_nowait().
2640  */
2641 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2642 {
2643 	struct request_queue *q = sdev->request_queue;
2644 	int err = 0;
2645 
2646 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2647 	if (err) {
2648 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2649 
2650 		if (err)
2651 			return err;
2652 	}
2653 
2654 	/*
2655 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2656 	 * block layer from calling the midlayer with this device's
2657 	 * request queue.
2658 	 */
2659 	blk_mq_quiesce_queue_nowait(q);
2660 	return 0;
2661 }
2662 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2663 
2664 /**
2665  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2666  * @sdev: device to block
2667  *
2668  * Pause SCSI command processing on the specified device and wait until all
2669  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2670  *
2671  * Returns zero if successful or a negative error code upon failure.
2672  *
2673  * Note:
2674  * This routine transitions the device to the SDEV_BLOCK state (which must be
2675  * a legal transition). When the device is in this state, command processing
2676  * is paused until the device leaves the SDEV_BLOCK state. See also
2677  * scsi_internal_device_unblock().
2678  */
2679 static int scsi_internal_device_block(struct scsi_device *sdev)
2680 {
2681 	struct request_queue *q = sdev->request_queue;
2682 	int err;
2683 
2684 	mutex_lock(&sdev->state_mutex);
2685 	err = scsi_internal_device_block_nowait(sdev);
2686 	if (err == 0)
2687 		blk_mq_quiesce_queue(q);
2688 	mutex_unlock(&sdev->state_mutex);
2689 
2690 	return err;
2691 }
2692 
2693 void scsi_start_queue(struct scsi_device *sdev)
2694 {
2695 	struct request_queue *q = sdev->request_queue;
2696 
2697 	blk_mq_unquiesce_queue(q);
2698 }
2699 
2700 /**
2701  * scsi_internal_device_unblock_nowait - resume a device after a block request
2702  * @sdev:	device to resume
2703  * @new_state:	state to set the device to after unblocking
2704  *
2705  * Restart the device queue for a previously suspended SCSI device. Does not
2706  * sleep.
2707  *
2708  * Returns zero if successful or a negative error code upon failure.
2709  *
2710  * Notes:
2711  * This routine transitions the device to the SDEV_RUNNING state or to one of
2712  * the offline states (which must be a legal transition) allowing the midlayer
2713  * to goose the queue for this device.
2714  */
2715 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2716 					enum scsi_device_state new_state)
2717 {
2718 	switch (new_state) {
2719 	case SDEV_RUNNING:
2720 	case SDEV_TRANSPORT_OFFLINE:
2721 		break;
2722 	default:
2723 		return -EINVAL;
2724 	}
2725 
2726 	/*
2727 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2728 	 * offlined states and goose the device queue if successful.
2729 	 */
2730 	switch (sdev->sdev_state) {
2731 	case SDEV_BLOCK:
2732 	case SDEV_TRANSPORT_OFFLINE:
2733 		sdev->sdev_state = new_state;
2734 		break;
2735 	case SDEV_CREATED_BLOCK:
2736 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2737 		    new_state == SDEV_OFFLINE)
2738 			sdev->sdev_state = new_state;
2739 		else
2740 			sdev->sdev_state = SDEV_CREATED;
2741 		break;
2742 	case SDEV_CANCEL:
2743 	case SDEV_OFFLINE:
2744 		break;
2745 	default:
2746 		return -EINVAL;
2747 	}
2748 	scsi_start_queue(sdev);
2749 
2750 	return 0;
2751 }
2752 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2753 
2754 /**
2755  * scsi_internal_device_unblock - resume a device after a block request
2756  * @sdev:	device to resume
2757  * @new_state:	state to set the device to after unblocking
2758  *
2759  * Restart the device queue for a previously suspended SCSI device. May sleep.
2760  *
2761  * Returns zero if successful or a negative error code upon failure.
2762  *
2763  * Notes:
2764  * This routine transitions the device to the SDEV_RUNNING state or to one of
2765  * the offline states (which must be a legal transition) allowing the midlayer
2766  * to goose the queue for this device.
2767  */
2768 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2769 					enum scsi_device_state new_state)
2770 {
2771 	int ret;
2772 
2773 	mutex_lock(&sdev->state_mutex);
2774 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2775 	mutex_unlock(&sdev->state_mutex);
2776 
2777 	return ret;
2778 }
2779 
2780 static void
2781 device_block(struct scsi_device *sdev, void *data)
2782 {
2783 	int ret;
2784 
2785 	ret = scsi_internal_device_block(sdev);
2786 
2787 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2788 		  dev_name(&sdev->sdev_gendev), ret);
2789 }
2790 
2791 static int
2792 target_block(struct device *dev, void *data)
2793 {
2794 	if (scsi_is_target_device(dev))
2795 		starget_for_each_device(to_scsi_target(dev), NULL,
2796 					device_block);
2797 	return 0;
2798 }
2799 
2800 void
2801 scsi_target_block(struct device *dev)
2802 {
2803 	if (scsi_is_target_device(dev))
2804 		starget_for_each_device(to_scsi_target(dev), NULL,
2805 					device_block);
2806 	else
2807 		device_for_each_child(dev, NULL, target_block);
2808 }
2809 EXPORT_SYMBOL_GPL(scsi_target_block);
2810 
2811 static void
2812 device_unblock(struct scsi_device *sdev, void *data)
2813 {
2814 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2815 }
2816 
2817 static int
2818 target_unblock(struct device *dev, void *data)
2819 {
2820 	if (scsi_is_target_device(dev))
2821 		starget_for_each_device(to_scsi_target(dev), data,
2822 					device_unblock);
2823 	return 0;
2824 }
2825 
2826 void
2827 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2828 {
2829 	if (scsi_is_target_device(dev))
2830 		starget_for_each_device(to_scsi_target(dev), &new_state,
2831 					device_unblock);
2832 	else
2833 		device_for_each_child(dev, &new_state, target_unblock);
2834 }
2835 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2836 
2837 int
2838 scsi_host_block(struct Scsi_Host *shost)
2839 {
2840 	struct scsi_device *sdev;
2841 	int ret = 0;
2842 
2843 	/*
2844 	 * Call scsi_internal_device_block_nowait so we can avoid
2845 	 * calling synchronize_rcu() for each LUN.
2846 	 */
2847 	shost_for_each_device(sdev, shost) {
2848 		mutex_lock(&sdev->state_mutex);
2849 		ret = scsi_internal_device_block_nowait(sdev);
2850 		mutex_unlock(&sdev->state_mutex);
2851 		if (ret) {
2852 			scsi_device_put(sdev);
2853 			break;
2854 		}
2855 	}
2856 
2857 	/*
2858 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2859 	 * calling synchronize_rcu() once is enough.
2860 	 */
2861 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2862 
2863 	if (!ret)
2864 		synchronize_rcu();
2865 
2866 	return ret;
2867 }
2868 EXPORT_SYMBOL_GPL(scsi_host_block);
2869 
2870 int
2871 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2872 {
2873 	struct scsi_device *sdev;
2874 	int ret = 0;
2875 
2876 	shost_for_each_device(sdev, shost) {
2877 		ret = scsi_internal_device_unblock(sdev, new_state);
2878 		if (ret) {
2879 			scsi_device_put(sdev);
2880 			break;
2881 		}
2882 	}
2883 	return ret;
2884 }
2885 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2886 
2887 /**
2888  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2889  * @sgl:	scatter-gather list
2890  * @sg_count:	number of segments in sg
2891  * @offset:	offset in bytes into sg, on return offset into the mapped area
2892  * @len:	bytes to map, on return number of bytes mapped
2893  *
2894  * Returns virtual address of the start of the mapped page
2895  */
2896 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2897 			  size_t *offset, size_t *len)
2898 {
2899 	int i;
2900 	size_t sg_len = 0, len_complete = 0;
2901 	struct scatterlist *sg;
2902 	struct page *page;
2903 
2904 	WARN_ON(!irqs_disabled());
2905 
2906 	for_each_sg(sgl, sg, sg_count, i) {
2907 		len_complete = sg_len; /* Complete sg-entries */
2908 		sg_len += sg->length;
2909 		if (sg_len > *offset)
2910 			break;
2911 	}
2912 
2913 	if (unlikely(i == sg_count)) {
2914 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2915 			"elements %d\n",
2916 		       __func__, sg_len, *offset, sg_count);
2917 		WARN_ON(1);
2918 		return NULL;
2919 	}
2920 
2921 	/* Offset starting from the beginning of first page in this sg-entry */
2922 	*offset = *offset - len_complete + sg->offset;
2923 
2924 	/* Assumption: contiguous pages can be accessed as "page + i" */
2925 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2926 	*offset &= ~PAGE_MASK;
2927 
2928 	/* Bytes in this sg-entry from *offset to the end of the page */
2929 	sg_len = PAGE_SIZE - *offset;
2930 	if (*len > sg_len)
2931 		*len = sg_len;
2932 
2933 	return kmap_atomic(page);
2934 }
2935 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2936 
2937 /**
2938  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2939  * @virt:	virtual address to be unmapped
2940  */
2941 void scsi_kunmap_atomic_sg(void *virt)
2942 {
2943 	kunmap_atomic(virt);
2944 }
2945 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2946 
2947 void sdev_disable_disk_events(struct scsi_device *sdev)
2948 {
2949 	atomic_inc(&sdev->disk_events_disable_depth);
2950 }
2951 EXPORT_SYMBOL(sdev_disable_disk_events);
2952 
2953 void sdev_enable_disk_events(struct scsi_device *sdev)
2954 {
2955 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2956 		return;
2957 	atomic_dec(&sdev->disk_events_disable_depth);
2958 }
2959 EXPORT_SYMBOL(sdev_enable_disk_events);
2960 
2961 static unsigned char designator_prio(const unsigned char *d)
2962 {
2963 	if (d[1] & 0x30)
2964 		/* not associated with LUN */
2965 		return 0;
2966 
2967 	if (d[3] == 0)
2968 		/* invalid length */
2969 		return 0;
2970 
2971 	/*
2972 	 * Order of preference for lun descriptor:
2973 	 * - SCSI name string
2974 	 * - NAA IEEE Registered Extended
2975 	 * - EUI-64 based 16-byte
2976 	 * - EUI-64 based 12-byte
2977 	 * - NAA IEEE Registered
2978 	 * - NAA IEEE Extended
2979 	 * - EUI-64 based 8-byte
2980 	 * - SCSI name string (truncated)
2981 	 * - T10 Vendor ID
2982 	 * as longer descriptors reduce the likelyhood
2983 	 * of identification clashes.
2984 	 */
2985 
2986 	switch (d[1] & 0xf) {
2987 	case 8:
2988 		/* SCSI name string, variable-length UTF-8 */
2989 		return 9;
2990 	case 3:
2991 		switch (d[4] >> 4) {
2992 		case 6:
2993 			/* NAA registered extended */
2994 			return 8;
2995 		case 5:
2996 			/* NAA registered */
2997 			return 5;
2998 		case 4:
2999 			/* NAA extended */
3000 			return 4;
3001 		case 3:
3002 			/* NAA locally assigned */
3003 			return 1;
3004 		default:
3005 			break;
3006 		}
3007 		break;
3008 	case 2:
3009 		switch (d[3]) {
3010 		case 16:
3011 			/* EUI64-based, 16 byte */
3012 			return 7;
3013 		case 12:
3014 			/* EUI64-based, 12 byte */
3015 			return 6;
3016 		case 8:
3017 			/* EUI64-based, 8 byte */
3018 			return 3;
3019 		default:
3020 			break;
3021 		}
3022 		break;
3023 	case 1:
3024 		/* T10 vendor ID */
3025 		return 1;
3026 	default:
3027 		break;
3028 	}
3029 
3030 	return 0;
3031 }
3032 
3033 /**
3034  * scsi_vpd_lun_id - return a unique device identification
3035  * @sdev: SCSI device
3036  * @id:   buffer for the identification
3037  * @id_len:  length of the buffer
3038  *
3039  * Copies a unique device identification into @id based
3040  * on the information in the VPD page 0x83 of the device.
3041  * The string will be formatted as a SCSI name string.
3042  *
3043  * Returns the length of the identification or error on failure.
3044  * If the identifier is longer than the supplied buffer the actual
3045  * identifier length is returned and the buffer is not zero-padded.
3046  */
3047 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3048 {
3049 	u8 cur_id_prio = 0;
3050 	u8 cur_id_size = 0;
3051 	const unsigned char *d, *cur_id_str;
3052 	const struct scsi_vpd *vpd_pg83;
3053 	int id_size = -EINVAL;
3054 
3055 	rcu_read_lock();
3056 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3057 	if (!vpd_pg83) {
3058 		rcu_read_unlock();
3059 		return -ENXIO;
3060 	}
3061 
3062 	/* The id string must be at least 20 bytes + terminating NULL byte */
3063 	if (id_len < 21) {
3064 		rcu_read_unlock();
3065 		return -EINVAL;
3066 	}
3067 
3068 	memset(id, 0, id_len);
3069 	for (d = vpd_pg83->data + 4;
3070 	     d < vpd_pg83->data + vpd_pg83->len;
3071 	     d += d[3] + 4) {
3072 		u8 prio = designator_prio(d);
3073 
3074 		if (prio == 0 || cur_id_prio > prio)
3075 			continue;
3076 
3077 		switch (d[1] & 0xf) {
3078 		case 0x1:
3079 			/* T10 Vendor ID */
3080 			if (cur_id_size > d[3])
3081 				break;
3082 			cur_id_prio = prio;
3083 			cur_id_size = d[3];
3084 			if (cur_id_size + 4 > id_len)
3085 				cur_id_size = id_len - 4;
3086 			cur_id_str = d + 4;
3087 			id_size = snprintf(id, id_len, "t10.%*pE",
3088 					   cur_id_size, cur_id_str);
3089 			break;
3090 		case 0x2:
3091 			/* EUI-64 */
3092 			cur_id_prio = prio;
3093 			cur_id_size = d[3];
3094 			cur_id_str = d + 4;
3095 			switch (cur_id_size) {
3096 			case 8:
3097 				id_size = snprintf(id, id_len,
3098 						   "eui.%8phN",
3099 						   cur_id_str);
3100 				break;
3101 			case 12:
3102 				id_size = snprintf(id, id_len,
3103 						   "eui.%12phN",
3104 						   cur_id_str);
3105 				break;
3106 			case 16:
3107 				id_size = snprintf(id, id_len,
3108 						   "eui.%16phN",
3109 						   cur_id_str);
3110 				break;
3111 			default:
3112 				break;
3113 			}
3114 			break;
3115 		case 0x3:
3116 			/* NAA */
3117 			cur_id_prio = prio;
3118 			cur_id_size = d[3];
3119 			cur_id_str = d + 4;
3120 			switch (cur_id_size) {
3121 			case 8:
3122 				id_size = snprintf(id, id_len,
3123 						   "naa.%8phN",
3124 						   cur_id_str);
3125 				break;
3126 			case 16:
3127 				id_size = snprintf(id, id_len,
3128 						   "naa.%16phN",
3129 						   cur_id_str);
3130 				break;
3131 			default:
3132 				break;
3133 			}
3134 			break;
3135 		case 0x8:
3136 			/* SCSI name string */
3137 			if (cur_id_size > d[3])
3138 				break;
3139 			/* Prefer others for truncated descriptor */
3140 			if (d[3] > id_len) {
3141 				prio = 2;
3142 				if (cur_id_prio > prio)
3143 					break;
3144 			}
3145 			cur_id_prio = prio;
3146 			cur_id_size = id_size = d[3];
3147 			cur_id_str = d + 4;
3148 			if (cur_id_size >= id_len)
3149 				cur_id_size = id_len - 1;
3150 			memcpy(id, cur_id_str, cur_id_size);
3151 			break;
3152 		default:
3153 			break;
3154 		}
3155 	}
3156 	rcu_read_unlock();
3157 
3158 	return id_size;
3159 }
3160 EXPORT_SYMBOL(scsi_vpd_lun_id);
3161 
3162 /*
3163  * scsi_vpd_tpg_id - return a target port group identifier
3164  * @sdev: SCSI device
3165  *
3166  * Returns the Target Port Group identifier from the information
3167  * froom VPD page 0x83 of the device.
3168  *
3169  * Returns the identifier or error on failure.
3170  */
3171 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3172 {
3173 	const unsigned char *d;
3174 	const struct scsi_vpd *vpd_pg83;
3175 	int group_id = -EAGAIN, rel_port = -1;
3176 
3177 	rcu_read_lock();
3178 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3179 	if (!vpd_pg83) {
3180 		rcu_read_unlock();
3181 		return -ENXIO;
3182 	}
3183 
3184 	d = vpd_pg83->data + 4;
3185 	while (d < vpd_pg83->data + vpd_pg83->len) {
3186 		switch (d[1] & 0xf) {
3187 		case 0x4:
3188 			/* Relative target port */
3189 			rel_port = get_unaligned_be16(&d[6]);
3190 			break;
3191 		case 0x5:
3192 			/* Target port group */
3193 			group_id = get_unaligned_be16(&d[6]);
3194 			break;
3195 		default:
3196 			break;
3197 		}
3198 		d += d[3] + 4;
3199 	}
3200 	rcu_read_unlock();
3201 
3202 	if (group_id >= 0 && rel_id && rel_port != -1)
3203 		*rel_id = rel_port;
3204 
3205 	return group_id;
3206 }
3207 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3208