1 /* 2 * Copyright (C) 1999 Eric Youngdale 3 * Copyright (C) 2014 Christoph Hellwig 4 * 5 * SCSI queueing library. 6 * Initial versions: Eric Youngdale (eric@andante.org). 7 * Based upon conversations with large numbers 8 * of people at Linux Expo. 9 */ 10 11 #include <linux/bio.h> 12 #include <linux/bitops.h> 13 #include <linux/blkdev.h> 14 #include <linux/completion.h> 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 #include <linux/blk-mq.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_driver.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 34 #include <scsi/scsi_dh.h> 35 36 #include <trace/events/scsi.h> 37 38 #include "scsi_debugfs.h" 39 #include "scsi_priv.h" 40 #include "scsi_logging.h" 41 42 static struct kmem_cache *scsi_sdb_cache; 43 static struct kmem_cache *scsi_sense_cache; 44 static struct kmem_cache *scsi_sense_isadma_cache; 45 static DEFINE_MUTEX(scsi_sense_cache_mutex); 46 47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 48 49 static inline struct kmem_cache * 50 scsi_select_sense_cache(bool unchecked_isa_dma) 51 { 52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 53 } 54 55 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 56 unsigned char *sense_buffer) 57 { 58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 59 sense_buffer); 60 } 61 62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 63 gfp_t gfp_mask, int numa_node) 64 { 65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 66 gfp_mask, numa_node); 67 } 68 69 int scsi_init_sense_cache(struct Scsi_Host *shost) 70 { 71 struct kmem_cache *cache; 72 int ret = 0; 73 74 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 75 if (cache) 76 return 0; 77 78 mutex_lock(&scsi_sense_cache_mutex); 79 if (shost->unchecked_isa_dma) { 80 scsi_sense_isadma_cache = 81 kmem_cache_create("scsi_sense_cache(DMA)", 82 SCSI_SENSE_BUFFERSIZE, 0, 83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 84 if (!scsi_sense_isadma_cache) 85 ret = -ENOMEM; 86 } else { 87 scsi_sense_cache = 88 kmem_cache_create_usercopy("scsi_sense_cache", 89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 90 0, SCSI_SENSE_BUFFERSIZE, NULL); 91 if (!scsi_sense_cache) 92 ret = -ENOMEM; 93 } 94 95 mutex_unlock(&scsi_sense_cache_mutex); 96 return ret; 97 } 98 99 /* 100 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 101 * not change behaviour from the previous unplug mechanism, experimentation 102 * may prove this needs changing. 103 */ 104 #define SCSI_QUEUE_DELAY 3 105 106 static void 107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 108 { 109 struct Scsi_Host *host = cmd->device->host; 110 struct scsi_device *device = cmd->device; 111 struct scsi_target *starget = scsi_target(device); 112 113 /* 114 * Set the appropriate busy bit for the device/host. 115 * 116 * If the host/device isn't busy, assume that something actually 117 * completed, and that we should be able to queue a command now. 118 * 119 * Note that the prior mid-layer assumption that any host could 120 * always queue at least one command is now broken. The mid-layer 121 * will implement a user specifiable stall (see 122 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 123 * if a command is requeued with no other commands outstanding 124 * either for the device or for the host. 125 */ 126 switch (reason) { 127 case SCSI_MLQUEUE_HOST_BUSY: 128 atomic_set(&host->host_blocked, host->max_host_blocked); 129 break; 130 case SCSI_MLQUEUE_DEVICE_BUSY: 131 case SCSI_MLQUEUE_EH_RETRY: 132 atomic_set(&device->device_blocked, 133 device->max_device_blocked); 134 break; 135 case SCSI_MLQUEUE_TARGET_BUSY: 136 atomic_set(&starget->target_blocked, 137 starget->max_target_blocked); 138 break; 139 } 140 } 141 142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 143 { 144 struct scsi_device *sdev = cmd->device; 145 146 if (cmd->request->rq_flags & RQF_DONTPREP) { 147 cmd->request->rq_flags &= ~RQF_DONTPREP; 148 scsi_mq_uninit_cmd(cmd); 149 } else { 150 WARN_ON_ONCE(true); 151 } 152 blk_mq_requeue_request(cmd->request, true); 153 put_device(&sdev->sdev_gendev); 154 } 155 156 /** 157 * __scsi_queue_insert - private queue insertion 158 * @cmd: The SCSI command being requeued 159 * @reason: The reason for the requeue 160 * @unbusy: Whether the queue should be unbusied 161 * 162 * This is a private queue insertion. The public interface 163 * scsi_queue_insert() always assumes the queue should be unbusied 164 * because it's always called before the completion. This function is 165 * for a requeue after completion, which should only occur in this 166 * file. 167 */ 168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 169 { 170 struct scsi_device *device = cmd->device; 171 struct request_queue *q = device->request_queue; 172 unsigned long flags; 173 174 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 175 "Inserting command %p into mlqueue\n", cmd)); 176 177 scsi_set_blocked(cmd, reason); 178 179 /* 180 * Decrement the counters, since these commands are no longer 181 * active on the host/device. 182 */ 183 if (unbusy) 184 scsi_device_unbusy(device); 185 186 /* 187 * Requeue this command. It will go before all other commands 188 * that are already in the queue. Schedule requeue work under 189 * lock such that the kblockd_schedule_work() call happens 190 * before blk_cleanup_queue() finishes. 191 */ 192 cmd->result = 0; 193 if (q->mq_ops) { 194 /* 195 * Before a SCSI command is dispatched, 196 * get_device(&sdev->sdev_gendev) is called and the host, 197 * target and device busy counters are increased. Since 198 * requeuing a request causes these actions to be repeated and 199 * since scsi_device_unbusy() has already been called, 200 * put_device(&device->sdev_gendev) must still be called. Call 201 * put_device() after blk_mq_requeue_request() to avoid that 202 * removal of the SCSI device can start before requeueing has 203 * happened. 204 */ 205 blk_mq_requeue_request(cmd->request, true); 206 put_device(&device->sdev_gendev); 207 return; 208 } 209 spin_lock_irqsave(q->queue_lock, flags); 210 blk_requeue_request(q, cmd->request); 211 kblockd_schedule_work(&device->requeue_work); 212 spin_unlock_irqrestore(q->queue_lock, flags); 213 } 214 215 /* 216 * Function: scsi_queue_insert() 217 * 218 * Purpose: Insert a command in the midlevel queue. 219 * 220 * Arguments: cmd - command that we are adding to queue. 221 * reason - why we are inserting command to queue. 222 * 223 * Lock status: Assumed that lock is not held upon entry. 224 * 225 * Returns: Nothing. 226 * 227 * Notes: We do this for one of two cases. Either the host is busy 228 * and it cannot accept any more commands for the time being, 229 * or the device returned QUEUE_FULL and can accept no more 230 * commands. 231 * Notes: This could be called either from an interrupt context or a 232 * normal process context. 233 */ 234 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 235 { 236 __scsi_queue_insert(cmd, reason, true); 237 } 238 239 240 /** 241 * scsi_execute - insert request and wait for the result 242 * @sdev: scsi device 243 * @cmd: scsi command 244 * @data_direction: data direction 245 * @buffer: data buffer 246 * @bufflen: len of buffer 247 * @sense: optional sense buffer 248 * @sshdr: optional decoded sense header 249 * @timeout: request timeout in seconds 250 * @retries: number of times to retry request 251 * @flags: flags for ->cmd_flags 252 * @rq_flags: flags for ->rq_flags 253 * @resid: optional residual length 254 * 255 * Returns the scsi_cmnd result field if a command was executed, or a negative 256 * Linux error code if we didn't get that far. 257 */ 258 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 259 int data_direction, void *buffer, unsigned bufflen, 260 unsigned char *sense, struct scsi_sense_hdr *sshdr, 261 int timeout, int retries, u64 flags, req_flags_t rq_flags, 262 int *resid) 263 { 264 struct request *req; 265 struct scsi_request *rq; 266 int ret = DRIVER_ERROR << 24; 267 268 req = blk_get_request(sdev->request_queue, 269 data_direction == DMA_TO_DEVICE ? 270 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 271 if (IS_ERR(req)) 272 return ret; 273 rq = scsi_req(req); 274 275 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 276 buffer, bufflen, GFP_NOIO)) 277 goto out; 278 279 rq->cmd_len = COMMAND_SIZE(cmd[0]); 280 memcpy(rq->cmd, cmd, rq->cmd_len); 281 rq->retries = retries; 282 req->timeout = timeout; 283 req->cmd_flags |= flags; 284 req->rq_flags |= rq_flags | RQF_QUIET; 285 286 /* 287 * head injection *required* here otherwise quiesce won't work 288 */ 289 blk_execute_rq(req->q, NULL, req, 1); 290 291 /* 292 * Some devices (USB mass-storage in particular) may transfer 293 * garbage data together with a residue indicating that the data 294 * is invalid. Prevent the garbage from being misinterpreted 295 * and prevent security leaks by zeroing out the excess data. 296 */ 297 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 298 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 299 300 if (resid) 301 *resid = rq->resid_len; 302 if (sense && rq->sense_len) 303 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 304 if (sshdr) 305 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 306 ret = rq->result; 307 out: 308 blk_put_request(req); 309 310 return ret; 311 } 312 EXPORT_SYMBOL(scsi_execute); 313 314 /* 315 * Function: scsi_init_cmd_errh() 316 * 317 * Purpose: Initialize cmd fields related to error handling. 318 * 319 * Arguments: cmd - command that is ready to be queued. 320 * 321 * Notes: This function has the job of initializing a number of 322 * fields related to error handling. Typically this will 323 * be called once for each command, as required. 324 */ 325 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 326 { 327 cmd->serial_number = 0; 328 scsi_set_resid(cmd, 0); 329 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 330 if (cmd->cmd_len == 0) 331 cmd->cmd_len = scsi_command_size(cmd->cmnd); 332 } 333 334 /* 335 * Decrement the host_busy counter and wake up the error handler if necessary. 336 * Avoid as follows that the error handler is not woken up if shost->host_busy 337 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 338 * with an RCU read lock in this function to ensure that this function in its 339 * entirety either finishes before scsi_eh_scmd_add() increases the 340 * host_failed counter or that it notices the shost state change made by 341 * scsi_eh_scmd_add(). 342 */ 343 static void scsi_dec_host_busy(struct Scsi_Host *shost) 344 { 345 unsigned long flags; 346 347 rcu_read_lock(); 348 atomic_dec(&shost->host_busy); 349 if (unlikely(scsi_host_in_recovery(shost))) { 350 spin_lock_irqsave(shost->host_lock, flags); 351 if (shost->host_failed || shost->host_eh_scheduled) 352 scsi_eh_wakeup(shost); 353 spin_unlock_irqrestore(shost->host_lock, flags); 354 } 355 rcu_read_unlock(); 356 } 357 358 void scsi_device_unbusy(struct scsi_device *sdev) 359 { 360 struct Scsi_Host *shost = sdev->host; 361 struct scsi_target *starget = scsi_target(sdev); 362 363 scsi_dec_host_busy(shost); 364 365 if (starget->can_queue > 0) 366 atomic_dec(&starget->target_busy); 367 368 atomic_dec(&sdev->device_busy); 369 } 370 371 static void scsi_kick_queue(struct request_queue *q) 372 { 373 if (q->mq_ops) 374 blk_mq_start_hw_queues(q); 375 else 376 blk_run_queue(q); 377 } 378 379 /* 380 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 381 * and call blk_run_queue for all the scsi_devices on the target - 382 * including current_sdev first. 383 * 384 * Called with *no* scsi locks held. 385 */ 386 static void scsi_single_lun_run(struct scsi_device *current_sdev) 387 { 388 struct Scsi_Host *shost = current_sdev->host; 389 struct scsi_device *sdev, *tmp; 390 struct scsi_target *starget = scsi_target(current_sdev); 391 unsigned long flags; 392 393 spin_lock_irqsave(shost->host_lock, flags); 394 starget->starget_sdev_user = NULL; 395 spin_unlock_irqrestore(shost->host_lock, flags); 396 397 /* 398 * Call blk_run_queue for all LUNs on the target, starting with 399 * current_sdev. We race with others (to set starget_sdev_user), 400 * but in most cases, we will be first. Ideally, each LU on the 401 * target would get some limited time or requests on the target. 402 */ 403 scsi_kick_queue(current_sdev->request_queue); 404 405 spin_lock_irqsave(shost->host_lock, flags); 406 if (starget->starget_sdev_user) 407 goto out; 408 list_for_each_entry_safe(sdev, tmp, &starget->devices, 409 same_target_siblings) { 410 if (sdev == current_sdev) 411 continue; 412 if (scsi_device_get(sdev)) 413 continue; 414 415 spin_unlock_irqrestore(shost->host_lock, flags); 416 scsi_kick_queue(sdev->request_queue); 417 spin_lock_irqsave(shost->host_lock, flags); 418 419 scsi_device_put(sdev); 420 } 421 out: 422 spin_unlock_irqrestore(shost->host_lock, flags); 423 } 424 425 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 426 { 427 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 428 return true; 429 if (atomic_read(&sdev->device_blocked) > 0) 430 return true; 431 return false; 432 } 433 434 static inline bool scsi_target_is_busy(struct scsi_target *starget) 435 { 436 if (starget->can_queue > 0) { 437 if (atomic_read(&starget->target_busy) >= starget->can_queue) 438 return true; 439 if (atomic_read(&starget->target_blocked) > 0) 440 return true; 441 } 442 return false; 443 } 444 445 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 446 { 447 if (shost->can_queue > 0 && 448 atomic_read(&shost->host_busy) >= shost->can_queue) 449 return true; 450 if (atomic_read(&shost->host_blocked) > 0) 451 return true; 452 if (shost->host_self_blocked) 453 return true; 454 return false; 455 } 456 457 static void scsi_starved_list_run(struct Scsi_Host *shost) 458 { 459 LIST_HEAD(starved_list); 460 struct scsi_device *sdev; 461 unsigned long flags; 462 463 spin_lock_irqsave(shost->host_lock, flags); 464 list_splice_init(&shost->starved_list, &starved_list); 465 466 while (!list_empty(&starved_list)) { 467 struct request_queue *slq; 468 469 /* 470 * As long as shost is accepting commands and we have 471 * starved queues, call blk_run_queue. scsi_request_fn 472 * drops the queue_lock and can add us back to the 473 * starved_list. 474 * 475 * host_lock protects the starved_list and starved_entry. 476 * scsi_request_fn must get the host_lock before checking 477 * or modifying starved_list or starved_entry. 478 */ 479 if (scsi_host_is_busy(shost)) 480 break; 481 482 sdev = list_entry(starved_list.next, 483 struct scsi_device, starved_entry); 484 list_del_init(&sdev->starved_entry); 485 if (scsi_target_is_busy(scsi_target(sdev))) { 486 list_move_tail(&sdev->starved_entry, 487 &shost->starved_list); 488 continue; 489 } 490 491 /* 492 * Once we drop the host lock, a racing scsi_remove_device() 493 * call may remove the sdev from the starved list and destroy 494 * it and the queue. Mitigate by taking a reference to the 495 * queue and never touching the sdev again after we drop the 496 * host lock. Note: if __scsi_remove_device() invokes 497 * blk_cleanup_queue() before the queue is run from this 498 * function then blk_run_queue() will return immediately since 499 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 500 */ 501 slq = sdev->request_queue; 502 if (!blk_get_queue(slq)) 503 continue; 504 spin_unlock_irqrestore(shost->host_lock, flags); 505 506 scsi_kick_queue(slq); 507 blk_put_queue(slq); 508 509 spin_lock_irqsave(shost->host_lock, flags); 510 } 511 /* put any unprocessed entries back */ 512 list_splice(&starved_list, &shost->starved_list); 513 spin_unlock_irqrestore(shost->host_lock, flags); 514 } 515 516 /* 517 * Function: scsi_run_queue() 518 * 519 * Purpose: Select a proper request queue to serve next 520 * 521 * Arguments: q - last request's queue 522 * 523 * Returns: Nothing 524 * 525 * Notes: The previous command was completely finished, start 526 * a new one if possible. 527 */ 528 static void scsi_run_queue(struct request_queue *q) 529 { 530 struct scsi_device *sdev = q->queuedata; 531 532 if (scsi_target(sdev)->single_lun) 533 scsi_single_lun_run(sdev); 534 if (!list_empty(&sdev->host->starved_list)) 535 scsi_starved_list_run(sdev->host); 536 537 if (q->mq_ops) 538 blk_mq_run_hw_queues(q, false); 539 else 540 blk_run_queue(q); 541 } 542 543 void scsi_requeue_run_queue(struct work_struct *work) 544 { 545 struct scsi_device *sdev; 546 struct request_queue *q; 547 548 sdev = container_of(work, struct scsi_device, requeue_work); 549 q = sdev->request_queue; 550 scsi_run_queue(q); 551 } 552 553 /* 554 * Function: scsi_requeue_command() 555 * 556 * Purpose: Handle post-processing of completed commands. 557 * 558 * Arguments: q - queue to operate on 559 * cmd - command that may need to be requeued. 560 * 561 * Returns: Nothing 562 * 563 * Notes: After command completion, there may be blocks left 564 * over which weren't finished by the previous command 565 * this can be for a number of reasons - the main one is 566 * I/O errors in the middle of the request, in which case 567 * we need to request the blocks that come after the bad 568 * sector. 569 * Notes: Upon return, cmd is a stale pointer. 570 */ 571 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 572 { 573 struct scsi_device *sdev = cmd->device; 574 struct request *req = cmd->request; 575 unsigned long flags; 576 577 spin_lock_irqsave(q->queue_lock, flags); 578 blk_unprep_request(req); 579 req->special = NULL; 580 scsi_put_command(cmd); 581 blk_requeue_request(q, req); 582 spin_unlock_irqrestore(q->queue_lock, flags); 583 584 scsi_run_queue(q); 585 586 put_device(&sdev->sdev_gendev); 587 } 588 589 void scsi_run_host_queues(struct Scsi_Host *shost) 590 { 591 struct scsi_device *sdev; 592 593 shost_for_each_device(sdev, shost) 594 scsi_run_queue(sdev->request_queue); 595 } 596 597 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 598 { 599 if (!blk_rq_is_passthrough(cmd->request)) { 600 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 601 602 if (drv->uninit_command) 603 drv->uninit_command(cmd); 604 } 605 } 606 607 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 608 { 609 struct scsi_data_buffer *sdb; 610 611 if (cmd->sdb.table.nents) 612 sg_free_table_chained(&cmd->sdb.table, true); 613 if (cmd->request->next_rq) { 614 sdb = cmd->request->next_rq->special; 615 if (sdb) 616 sg_free_table_chained(&sdb->table, true); 617 } 618 if (scsi_prot_sg_count(cmd)) 619 sg_free_table_chained(&cmd->prot_sdb->table, true); 620 } 621 622 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 623 { 624 scsi_mq_free_sgtables(cmd); 625 scsi_uninit_cmd(cmd); 626 scsi_del_cmd_from_list(cmd); 627 } 628 629 /* 630 * Function: scsi_release_buffers() 631 * 632 * Purpose: Free resources allocate for a scsi_command. 633 * 634 * Arguments: cmd - command that we are bailing. 635 * 636 * Lock status: Assumed that no lock is held upon entry. 637 * 638 * Returns: Nothing 639 * 640 * Notes: In the event that an upper level driver rejects a 641 * command, we must release resources allocated during 642 * the __init_io() function. Primarily this would involve 643 * the scatter-gather table. 644 */ 645 static void scsi_release_buffers(struct scsi_cmnd *cmd) 646 { 647 if (cmd->sdb.table.nents) 648 sg_free_table_chained(&cmd->sdb.table, false); 649 650 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 651 652 if (scsi_prot_sg_count(cmd)) 653 sg_free_table_chained(&cmd->prot_sdb->table, false); 654 } 655 656 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd) 657 { 658 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special; 659 660 sg_free_table_chained(&bidi_sdb->table, false); 661 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 662 cmd->request->next_rq->special = NULL; 663 } 664 665 static bool scsi_end_request(struct request *req, blk_status_t error, 666 unsigned int bytes, unsigned int bidi_bytes) 667 { 668 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 669 struct scsi_device *sdev = cmd->device; 670 struct request_queue *q = sdev->request_queue; 671 672 if (blk_update_request(req, error, bytes)) 673 return true; 674 675 /* Bidi request must be completed as a whole */ 676 if (unlikely(bidi_bytes) && 677 blk_update_request(req->next_rq, error, bidi_bytes)) 678 return true; 679 680 if (blk_queue_add_random(q)) 681 add_disk_randomness(req->rq_disk); 682 683 if (!blk_rq_is_scsi(req)) { 684 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 685 cmd->flags &= ~SCMD_INITIALIZED; 686 destroy_rcu_head(&cmd->rcu); 687 } 688 689 if (req->mq_ctx) { 690 /* 691 * In the MQ case the command gets freed by __blk_mq_end_request, 692 * so we have to do all cleanup that depends on it earlier. 693 * 694 * We also can't kick the queues from irq context, so we 695 * will have to defer it to a workqueue. 696 */ 697 scsi_mq_uninit_cmd(cmd); 698 699 __blk_mq_end_request(req, error); 700 701 if (scsi_target(sdev)->single_lun || 702 !list_empty(&sdev->host->starved_list)) 703 kblockd_schedule_work(&sdev->requeue_work); 704 else 705 blk_mq_run_hw_queues(q, true); 706 } else { 707 unsigned long flags; 708 709 if (bidi_bytes) 710 scsi_release_bidi_buffers(cmd); 711 scsi_release_buffers(cmd); 712 scsi_put_command(cmd); 713 714 spin_lock_irqsave(q->queue_lock, flags); 715 blk_finish_request(req, error); 716 spin_unlock_irqrestore(q->queue_lock, flags); 717 718 scsi_run_queue(q); 719 } 720 721 put_device(&sdev->sdev_gendev); 722 return false; 723 } 724 725 /** 726 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 727 * @cmd: SCSI command 728 * @result: scsi error code 729 * 730 * Translate a SCSI result code into a blk_status_t value. May reset the host 731 * byte of @cmd->result. 732 */ 733 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 734 { 735 switch (host_byte(result)) { 736 case DID_OK: 737 /* 738 * Also check the other bytes than the status byte in result 739 * to handle the case when a SCSI LLD sets result to 740 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 741 */ 742 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 743 return BLK_STS_OK; 744 return BLK_STS_IOERR; 745 case DID_TRANSPORT_FAILFAST: 746 return BLK_STS_TRANSPORT; 747 case DID_TARGET_FAILURE: 748 set_host_byte(cmd, DID_OK); 749 return BLK_STS_TARGET; 750 case DID_NEXUS_FAILURE: 751 return BLK_STS_NEXUS; 752 case DID_ALLOC_FAILURE: 753 set_host_byte(cmd, DID_OK); 754 return BLK_STS_NOSPC; 755 case DID_MEDIUM_ERROR: 756 set_host_byte(cmd, DID_OK); 757 return BLK_STS_MEDIUM; 758 default: 759 return BLK_STS_IOERR; 760 } 761 } 762 763 /* 764 * Function: scsi_io_completion() 765 * 766 * Purpose: Completion processing for block device I/O requests. 767 * 768 * Arguments: cmd - command that is finished. 769 * 770 * Lock status: Assumed that no lock is held upon entry. 771 * 772 * Returns: Nothing 773 * 774 * Notes: We will finish off the specified number of sectors. If we 775 * are done, the command block will be released and the queue 776 * function will be goosed. If we are not done then we have to 777 * figure out what to do next: 778 * 779 * a) We can call scsi_requeue_command(). The request 780 * will be unprepared and put back on the queue. Then 781 * a new command will be created for it. This should 782 * be used if we made forward progress, or if we want 783 * to switch from READ(10) to READ(6) for example. 784 * 785 * b) We can call __scsi_queue_insert(). The request will 786 * be put back on the queue and retried using the same 787 * command as before, possibly after a delay. 788 * 789 * c) We can call scsi_end_request() with -EIO to fail 790 * the remainder of the request. 791 */ 792 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 793 { 794 int result = cmd->result; 795 struct request_queue *q = cmd->device->request_queue; 796 struct request *req = cmd->request; 797 blk_status_t error = BLK_STS_OK; 798 struct scsi_sense_hdr sshdr; 799 bool sense_valid = false; 800 int sense_deferred = 0, level = 0; 801 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 802 ACTION_DELAYED_RETRY} action; 803 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 804 805 if (result) { 806 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 807 if (sense_valid) 808 sense_deferred = scsi_sense_is_deferred(&sshdr); 809 } 810 811 if (blk_rq_is_passthrough(req)) { 812 if (result) { 813 if (sense_valid) { 814 /* 815 * SG_IO wants current and deferred errors 816 */ 817 scsi_req(req)->sense_len = 818 min(8 + cmd->sense_buffer[7], 819 SCSI_SENSE_BUFFERSIZE); 820 } 821 if (!sense_deferred) 822 error = scsi_result_to_blk_status(cmd, result); 823 } 824 /* 825 * scsi_result_to_blk_status may have reset the host_byte 826 */ 827 scsi_req(req)->result = cmd->result; 828 scsi_req(req)->resid_len = scsi_get_resid(cmd); 829 830 if (scsi_bidi_cmnd(cmd)) { 831 /* 832 * Bidi commands Must be complete as a whole, 833 * both sides at once. 834 */ 835 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid; 836 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req), 837 blk_rq_bytes(req->next_rq))) 838 BUG(); 839 return; 840 } 841 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) { 842 /* 843 * Flush commands do not transfers any data, and thus cannot use 844 * good_bytes != blk_rq_bytes(req) as the signal for an error. 845 * This sets the error explicitly for the problem case. 846 */ 847 error = scsi_result_to_blk_status(cmd, result); 848 } 849 850 /* no bidi support for !blk_rq_is_passthrough yet */ 851 BUG_ON(blk_bidi_rq(req)); 852 853 /* 854 * Next deal with any sectors which we were able to correctly 855 * handle. 856 */ 857 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 858 "%u sectors total, %d bytes done.\n", 859 blk_rq_sectors(req), good_bytes)); 860 861 /* 862 * Recovered errors need reporting, but they're always treated as 863 * success, so fiddle the result code here. For passthrough requests 864 * we already took a copy of the original into sreq->result which 865 * is what gets returned to the user 866 */ 867 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 868 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 869 * print since caller wants ATA registers. Only occurs on 870 * SCSI ATA PASS_THROUGH commands when CK_COND=1 871 */ 872 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 873 ; 874 else if (!(req->rq_flags & RQF_QUIET)) 875 scsi_print_sense(cmd); 876 result = 0; 877 /* for passthrough error may be set */ 878 error = BLK_STS_OK; 879 } 880 /* 881 * Another corner case: the SCSI status byte is non-zero but 'good'. 882 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 883 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 884 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 885 * intermediate statuses (both obsolete in SAM-4) as good. 886 */ 887 if (status_byte(result) && scsi_status_is_good(result)) { 888 result = 0; 889 error = BLK_STS_OK; 890 } 891 892 /* 893 * special case: failed zero length commands always need to 894 * drop down into the retry code. Otherwise, if we finished 895 * all bytes in the request we are done now. 896 */ 897 if (!(blk_rq_bytes(req) == 0 && error) && 898 !scsi_end_request(req, error, good_bytes, 0)) 899 return; 900 901 /* 902 * Kill remainder if no retrys. 903 */ 904 if (error && scsi_noretry_cmd(cmd)) { 905 if (scsi_end_request(req, error, blk_rq_bytes(req), 0)) 906 BUG(); 907 return; 908 } 909 910 /* 911 * If there had been no error, but we have leftover bytes in the 912 * requeues just queue the command up again. 913 */ 914 if (result == 0) 915 goto requeue; 916 917 error = scsi_result_to_blk_status(cmd, result); 918 919 if (host_byte(result) == DID_RESET) { 920 /* Third party bus reset or reset for error recovery 921 * reasons. Just retry the command and see what 922 * happens. 923 */ 924 action = ACTION_RETRY; 925 } else if (sense_valid && !sense_deferred) { 926 switch (sshdr.sense_key) { 927 case UNIT_ATTENTION: 928 if (cmd->device->removable) { 929 /* Detected disc change. Set a bit 930 * and quietly refuse further access. 931 */ 932 cmd->device->changed = 1; 933 action = ACTION_FAIL; 934 } else { 935 /* Must have been a power glitch, or a 936 * bus reset. Could not have been a 937 * media change, so we just retry the 938 * command and see what happens. 939 */ 940 action = ACTION_RETRY; 941 } 942 break; 943 case ILLEGAL_REQUEST: 944 /* If we had an ILLEGAL REQUEST returned, then 945 * we may have performed an unsupported 946 * command. The only thing this should be 947 * would be a ten byte read where only a six 948 * byte read was supported. Also, on a system 949 * where READ CAPACITY failed, we may have 950 * read past the end of the disk. 951 */ 952 if ((cmd->device->use_10_for_rw && 953 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 954 (cmd->cmnd[0] == READ_10 || 955 cmd->cmnd[0] == WRITE_10)) { 956 /* This will issue a new 6-byte command. */ 957 cmd->device->use_10_for_rw = 0; 958 action = ACTION_REPREP; 959 } else if (sshdr.asc == 0x10) /* DIX */ { 960 action = ACTION_FAIL; 961 error = BLK_STS_PROTECTION; 962 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 963 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 964 action = ACTION_FAIL; 965 error = BLK_STS_TARGET; 966 } else 967 action = ACTION_FAIL; 968 break; 969 case ABORTED_COMMAND: 970 action = ACTION_FAIL; 971 if (sshdr.asc == 0x10) /* DIF */ 972 error = BLK_STS_PROTECTION; 973 break; 974 case NOT_READY: 975 /* If the device is in the process of becoming 976 * ready, or has a temporary blockage, retry. 977 */ 978 if (sshdr.asc == 0x04) { 979 switch (sshdr.ascq) { 980 case 0x01: /* becoming ready */ 981 case 0x04: /* format in progress */ 982 case 0x05: /* rebuild in progress */ 983 case 0x06: /* recalculation in progress */ 984 case 0x07: /* operation in progress */ 985 case 0x08: /* Long write in progress */ 986 case 0x09: /* self test in progress */ 987 case 0x14: /* space allocation in progress */ 988 case 0x1a: /* start stop unit in progress */ 989 case 0x1b: /* sanitize in progress */ 990 case 0x1d: /* configuration in progress */ 991 case 0x24: /* depopulation in progress */ 992 action = ACTION_DELAYED_RETRY; 993 break; 994 default: 995 action = ACTION_FAIL; 996 break; 997 } 998 } else 999 action = ACTION_FAIL; 1000 break; 1001 case VOLUME_OVERFLOW: 1002 /* See SSC3rXX or current. */ 1003 action = ACTION_FAIL; 1004 break; 1005 default: 1006 action = ACTION_FAIL; 1007 break; 1008 } 1009 } else 1010 action = ACTION_FAIL; 1011 1012 if (action != ACTION_FAIL && 1013 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 1014 action = ACTION_FAIL; 1015 1016 switch (action) { 1017 case ACTION_FAIL: 1018 /* Give up and fail the remainder of the request */ 1019 if (!(req->rq_flags & RQF_QUIET)) { 1020 static DEFINE_RATELIMIT_STATE(_rs, 1021 DEFAULT_RATELIMIT_INTERVAL, 1022 DEFAULT_RATELIMIT_BURST); 1023 1024 if (unlikely(scsi_logging_level)) 1025 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 1026 SCSI_LOG_MLCOMPLETE_BITS); 1027 1028 /* 1029 * if logging is enabled the failure will be printed 1030 * in scsi_log_completion(), so avoid duplicate messages 1031 */ 1032 if (!level && __ratelimit(&_rs)) { 1033 scsi_print_result(cmd, NULL, FAILED); 1034 if (driver_byte(result) & DRIVER_SENSE) 1035 scsi_print_sense(cmd); 1036 scsi_print_command(cmd); 1037 } 1038 } 1039 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0)) 1040 return; 1041 /*FALLTHRU*/ 1042 case ACTION_REPREP: 1043 requeue: 1044 /* Unprep the request and put it back at the head of the queue. 1045 * A new command will be prepared and issued. 1046 */ 1047 if (q->mq_ops) { 1048 scsi_mq_requeue_cmd(cmd); 1049 } else { 1050 scsi_release_buffers(cmd); 1051 scsi_requeue_command(q, cmd); 1052 } 1053 break; 1054 case ACTION_RETRY: 1055 /* Retry the same command immediately */ 1056 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 1057 break; 1058 case ACTION_DELAYED_RETRY: 1059 /* Retry the same command after a delay */ 1060 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 1061 break; 1062 } 1063 } 1064 1065 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb) 1066 { 1067 int count; 1068 1069 /* 1070 * If sg table allocation fails, requeue request later. 1071 */ 1072 if (unlikely(sg_alloc_table_chained(&sdb->table, 1073 blk_rq_nr_phys_segments(req), sdb->table.sgl))) 1074 return BLKPREP_DEFER; 1075 1076 /* 1077 * Next, walk the list, and fill in the addresses and sizes of 1078 * each segment. 1079 */ 1080 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1081 BUG_ON(count > sdb->table.nents); 1082 sdb->table.nents = count; 1083 sdb->length = blk_rq_payload_bytes(req); 1084 return BLKPREP_OK; 1085 } 1086 1087 /* 1088 * Function: scsi_init_io() 1089 * 1090 * Purpose: SCSI I/O initialize function. 1091 * 1092 * Arguments: cmd - Command descriptor we wish to initialize 1093 * 1094 * Returns: 0 on success 1095 * BLKPREP_DEFER if the failure is retryable 1096 * BLKPREP_KILL if the failure is fatal 1097 */ 1098 int scsi_init_io(struct scsi_cmnd *cmd) 1099 { 1100 struct scsi_device *sdev = cmd->device; 1101 struct request *rq = cmd->request; 1102 bool is_mq = (rq->mq_ctx != NULL); 1103 int error = BLKPREP_KILL; 1104 1105 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1106 goto err_exit; 1107 1108 error = scsi_init_sgtable(rq, &cmd->sdb); 1109 if (error) 1110 goto err_exit; 1111 1112 if (blk_bidi_rq(rq)) { 1113 if (!rq->q->mq_ops) { 1114 struct scsi_data_buffer *bidi_sdb = 1115 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC); 1116 if (!bidi_sdb) { 1117 error = BLKPREP_DEFER; 1118 goto err_exit; 1119 } 1120 1121 rq->next_rq->special = bidi_sdb; 1122 } 1123 1124 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special); 1125 if (error) 1126 goto err_exit; 1127 } 1128 1129 if (blk_integrity_rq(rq)) { 1130 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1131 int ivecs, count; 1132 1133 if (prot_sdb == NULL) { 1134 /* 1135 * This can happen if someone (e.g. multipath) 1136 * queues a command to a device on an adapter 1137 * that does not support DIX. 1138 */ 1139 WARN_ON_ONCE(1); 1140 error = BLKPREP_KILL; 1141 goto err_exit; 1142 } 1143 1144 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1145 1146 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1147 prot_sdb->table.sgl)) { 1148 error = BLKPREP_DEFER; 1149 goto err_exit; 1150 } 1151 1152 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1153 prot_sdb->table.sgl); 1154 BUG_ON(unlikely(count > ivecs)); 1155 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1156 1157 cmd->prot_sdb = prot_sdb; 1158 cmd->prot_sdb->table.nents = count; 1159 } 1160 1161 return BLKPREP_OK; 1162 err_exit: 1163 if (is_mq) { 1164 scsi_mq_free_sgtables(cmd); 1165 } else { 1166 scsi_release_buffers(cmd); 1167 cmd->request->special = NULL; 1168 scsi_put_command(cmd); 1169 put_device(&sdev->sdev_gendev); 1170 } 1171 return error; 1172 } 1173 EXPORT_SYMBOL(scsi_init_io); 1174 1175 /** 1176 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1177 * @rq: Request associated with the SCSI command to be initialized. 1178 * 1179 * This function initializes the members of struct scsi_cmnd that must be 1180 * initialized before request processing starts and that won't be 1181 * reinitialized if a SCSI command is requeued. 1182 * 1183 * Called from inside blk_get_request() for pass-through requests and from 1184 * inside scsi_init_command() for filesystem requests. 1185 */ 1186 static void scsi_initialize_rq(struct request *rq) 1187 { 1188 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1189 1190 scsi_req_init(&cmd->req); 1191 init_rcu_head(&cmd->rcu); 1192 cmd->jiffies_at_alloc = jiffies; 1193 cmd->retries = 0; 1194 } 1195 1196 /* Add a command to the list used by the aacraid and dpt_i2o drivers */ 1197 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd) 1198 { 1199 struct scsi_device *sdev = cmd->device; 1200 struct Scsi_Host *shost = sdev->host; 1201 unsigned long flags; 1202 1203 if (shost->use_cmd_list) { 1204 spin_lock_irqsave(&sdev->list_lock, flags); 1205 list_add_tail(&cmd->list, &sdev->cmd_list); 1206 spin_unlock_irqrestore(&sdev->list_lock, flags); 1207 } 1208 } 1209 1210 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */ 1211 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd) 1212 { 1213 struct scsi_device *sdev = cmd->device; 1214 struct Scsi_Host *shost = sdev->host; 1215 unsigned long flags; 1216 1217 if (shost->use_cmd_list) { 1218 spin_lock_irqsave(&sdev->list_lock, flags); 1219 BUG_ON(list_empty(&cmd->list)); 1220 list_del_init(&cmd->list); 1221 spin_unlock_irqrestore(&sdev->list_lock, flags); 1222 } 1223 } 1224 1225 /* Called after a request has been started. */ 1226 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1227 { 1228 void *buf = cmd->sense_buffer; 1229 void *prot = cmd->prot_sdb; 1230 struct request *rq = blk_mq_rq_from_pdu(cmd); 1231 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1232 unsigned long jiffies_at_alloc; 1233 int retries; 1234 1235 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1236 flags |= SCMD_INITIALIZED; 1237 scsi_initialize_rq(rq); 1238 } 1239 1240 jiffies_at_alloc = cmd->jiffies_at_alloc; 1241 retries = cmd->retries; 1242 /* zero out the cmd, except for the embedded scsi_request */ 1243 memset((char *)cmd + sizeof(cmd->req), 0, 1244 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1245 1246 cmd->device = dev; 1247 cmd->sense_buffer = buf; 1248 cmd->prot_sdb = prot; 1249 cmd->flags = flags; 1250 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1251 cmd->jiffies_at_alloc = jiffies_at_alloc; 1252 cmd->retries = retries; 1253 1254 scsi_add_cmd_to_list(cmd); 1255 } 1256 1257 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req) 1258 { 1259 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1260 1261 /* 1262 * Passthrough requests may transfer data, in which case they must 1263 * a bio attached to them. Or they might contain a SCSI command 1264 * that does not transfer data, in which case they may optionally 1265 * submit a request without an attached bio. 1266 */ 1267 if (req->bio) { 1268 int ret = scsi_init_io(cmd); 1269 if (unlikely(ret)) 1270 return ret; 1271 } else { 1272 BUG_ON(blk_rq_bytes(req)); 1273 1274 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1275 } 1276 1277 cmd->cmd_len = scsi_req(req)->cmd_len; 1278 cmd->cmnd = scsi_req(req)->cmd; 1279 cmd->transfersize = blk_rq_bytes(req); 1280 cmd->allowed = scsi_req(req)->retries; 1281 return BLKPREP_OK; 1282 } 1283 1284 /* 1285 * Setup a normal block command. These are simple request from filesystems 1286 * that still need to be translated to SCSI CDBs from the ULD. 1287 */ 1288 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1289 { 1290 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1291 1292 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1293 int ret = sdev->handler->prep_fn(sdev, req); 1294 if (ret != BLKPREP_OK) 1295 return ret; 1296 } 1297 1298 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1299 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1300 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1301 } 1302 1303 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req) 1304 { 1305 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1306 1307 if (!blk_rq_bytes(req)) 1308 cmd->sc_data_direction = DMA_NONE; 1309 else if (rq_data_dir(req) == WRITE) 1310 cmd->sc_data_direction = DMA_TO_DEVICE; 1311 else 1312 cmd->sc_data_direction = DMA_FROM_DEVICE; 1313 1314 if (blk_rq_is_scsi(req)) 1315 return scsi_setup_scsi_cmnd(sdev, req); 1316 else 1317 return scsi_setup_fs_cmnd(sdev, req); 1318 } 1319 1320 static int 1321 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1322 { 1323 int ret = BLKPREP_OK; 1324 1325 /* 1326 * If the device is not in running state we will reject some 1327 * or all commands. 1328 */ 1329 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1330 switch (sdev->sdev_state) { 1331 case SDEV_OFFLINE: 1332 case SDEV_TRANSPORT_OFFLINE: 1333 /* 1334 * If the device is offline we refuse to process any 1335 * commands. The device must be brought online 1336 * before trying any recovery commands. 1337 */ 1338 sdev_printk(KERN_ERR, sdev, 1339 "rejecting I/O to offline device\n"); 1340 ret = BLKPREP_KILL; 1341 break; 1342 case SDEV_DEL: 1343 /* 1344 * If the device is fully deleted, we refuse to 1345 * process any commands as well. 1346 */ 1347 sdev_printk(KERN_ERR, sdev, 1348 "rejecting I/O to dead device\n"); 1349 ret = BLKPREP_KILL; 1350 break; 1351 case SDEV_BLOCK: 1352 case SDEV_CREATED_BLOCK: 1353 ret = BLKPREP_DEFER; 1354 break; 1355 case SDEV_QUIESCE: 1356 /* 1357 * If the devices is blocked we defer normal commands. 1358 */ 1359 if (req && !(req->rq_flags & RQF_PREEMPT)) 1360 ret = BLKPREP_DEFER; 1361 break; 1362 default: 1363 /* 1364 * For any other not fully online state we only allow 1365 * special commands. In particular any user initiated 1366 * command is not allowed. 1367 */ 1368 if (req && !(req->rq_flags & RQF_PREEMPT)) 1369 ret = BLKPREP_KILL; 1370 break; 1371 } 1372 } 1373 return ret; 1374 } 1375 1376 static int 1377 scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1378 { 1379 struct scsi_device *sdev = q->queuedata; 1380 1381 switch (ret) { 1382 case BLKPREP_KILL: 1383 case BLKPREP_INVALID: 1384 scsi_req(req)->result = DID_NO_CONNECT << 16; 1385 /* release the command and kill it */ 1386 if (req->special) { 1387 struct scsi_cmnd *cmd = req->special; 1388 scsi_release_buffers(cmd); 1389 scsi_put_command(cmd); 1390 put_device(&sdev->sdev_gendev); 1391 req->special = NULL; 1392 } 1393 break; 1394 case BLKPREP_DEFER: 1395 /* 1396 * If we defer, the blk_peek_request() returns NULL, but the 1397 * queue must be restarted, so we schedule a callback to happen 1398 * shortly. 1399 */ 1400 if (atomic_read(&sdev->device_busy) == 0) 1401 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1402 break; 1403 default: 1404 req->rq_flags |= RQF_DONTPREP; 1405 } 1406 1407 return ret; 1408 } 1409 1410 static int scsi_prep_fn(struct request_queue *q, struct request *req) 1411 { 1412 struct scsi_device *sdev = q->queuedata; 1413 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1414 int ret; 1415 1416 ret = scsi_prep_state_check(sdev, req); 1417 if (ret != BLKPREP_OK) 1418 goto out; 1419 1420 if (!req->special) { 1421 /* Bail if we can't get a reference to the device */ 1422 if (unlikely(!get_device(&sdev->sdev_gendev))) { 1423 ret = BLKPREP_DEFER; 1424 goto out; 1425 } 1426 1427 scsi_init_command(sdev, cmd); 1428 req->special = cmd; 1429 } 1430 1431 cmd->tag = req->tag; 1432 cmd->request = req; 1433 cmd->prot_op = SCSI_PROT_NORMAL; 1434 1435 ret = scsi_setup_cmnd(sdev, req); 1436 out: 1437 return scsi_prep_return(q, req, ret); 1438 } 1439 1440 static void scsi_unprep_fn(struct request_queue *q, struct request *req) 1441 { 1442 scsi_uninit_cmd(blk_mq_rq_to_pdu(req)); 1443 } 1444 1445 /* 1446 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1447 * return 0. 1448 * 1449 * Called with the queue_lock held. 1450 */ 1451 static inline int scsi_dev_queue_ready(struct request_queue *q, 1452 struct scsi_device *sdev) 1453 { 1454 unsigned int busy; 1455 1456 busy = atomic_inc_return(&sdev->device_busy) - 1; 1457 if (atomic_read(&sdev->device_blocked)) { 1458 if (busy) 1459 goto out_dec; 1460 1461 /* 1462 * unblock after device_blocked iterates to zero 1463 */ 1464 if (atomic_dec_return(&sdev->device_blocked) > 0) { 1465 /* 1466 * For the MQ case we take care of this in the caller. 1467 */ 1468 if (!q->mq_ops) 1469 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1470 goto out_dec; 1471 } 1472 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1473 "unblocking device at zero depth\n")); 1474 } 1475 1476 if (busy >= sdev->queue_depth) 1477 goto out_dec; 1478 1479 return 1; 1480 out_dec: 1481 atomic_dec(&sdev->device_busy); 1482 return 0; 1483 } 1484 1485 /* 1486 * scsi_target_queue_ready: checks if there we can send commands to target 1487 * @sdev: scsi device on starget to check. 1488 */ 1489 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1490 struct scsi_device *sdev) 1491 { 1492 struct scsi_target *starget = scsi_target(sdev); 1493 unsigned int busy; 1494 1495 if (starget->single_lun) { 1496 spin_lock_irq(shost->host_lock); 1497 if (starget->starget_sdev_user && 1498 starget->starget_sdev_user != sdev) { 1499 spin_unlock_irq(shost->host_lock); 1500 return 0; 1501 } 1502 starget->starget_sdev_user = sdev; 1503 spin_unlock_irq(shost->host_lock); 1504 } 1505 1506 if (starget->can_queue <= 0) 1507 return 1; 1508 1509 busy = atomic_inc_return(&starget->target_busy) - 1; 1510 if (atomic_read(&starget->target_blocked) > 0) { 1511 if (busy) 1512 goto starved; 1513 1514 /* 1515 * unblock after target_blocked iterates to zero 1516 */ 1517 if (atomic_dec_return(&starget->target_blocked) > 0) 1518 goto out_dec; 1519 1520 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1521 "unblocking target at zero depth\n")); 1522 } 1523 1524 if (busy >= starget->can_queue) 1525 goto starved; 1526 1527 return 1; 1528 1529 starved: 1530 spin_lock_irq(shost->host_lock); 1531 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1532 spin_unlock_irq(shost->host_lock); 1533 out_dec: 1534 if (starget->can_queue > 0) 1535 atomic_dec(&starget->target_busy); 1536 return 0; 1537 } 1538 1539 /* 1540 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1541 * return 0. We must end up running the queue again whenever 0 is 1542 * returned, else IO can hang. 1543 */ 1544 static inline int scsi_host_queue_ready(struct request_queue *q, 1545 struct Scsi_Host *shost, 1546 struct scsi_device *sdev) 1547 { 1548 unsigned int busy; 1549 1550 if (scsi_host_in_recovery(shost)) 1551 return 0; 1552 1553 busy = atomic_inc_return(&shost->host_busy) - 1; 1554 if (atomic_read(&shost->host_blocked) > 0) { 1555 if (busy) 1556 goto starved; 1557 1558 /* 1559 * unblock after host_blocked iterates to zero 1560 */ 1561 if (atomic_dec_return(&shost->host_blocked) > 0) 1562 goto out_dec; 1563 1564 SCSI_LOG_MLQUEUE(3, 1565 shost_printk(KERN_INFO, shost, 1566 "unblocking host at zero depth\n")); 1567 } 1568 1569 if (shost->can_queue > 0 && busy >= shost->can_queue) 1570 goto starved; 1571 if (shost->host_self_blocked) 1572 goto starved; 1573 1574 /* We're OK to process the command, so we can't be starved */ 1575 if (!list_empty(&sdev->starved_entry)) { 1576 spin_lock_irq(shost->host_lock); 1577 if (!list_empty(&sdev->starved_entry)) 1578 list_del_init(&sdev->starved_entry); 1579 spin_unlock_irq(shost->host_lock); 1580 } 1581 1582 return 1; 1583 1584 starved: 1585 spin_lock_irq(shost->host_lock); 1586 if (list_empty(&sdev->starved_entry)) 1587 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1588 spin_unlock_irq(shost->host_lock); 1589 out_dec: 1590 scsi_dec_host_busy(shost); 1591 return 0; 1592 } 1593 1594 /* 1595 * Busy state exporting function for request stacking drivers. 1596 * 1597 * For efficiency, no lock is taken to check the busy state of 1598 * shost/starget/sdev, since the returned value is not guaranteed and 1599 * may be changed after request stacking drivers call the function, 1600 * regardless of taking lock or not. 1601 * 1602 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1603 * needs to return 'not busy'. Otherwise, request stacking drivers 1604 * may hold requests forever. 1605 */ 1606 static int scsi_lld_busy(struct request_queue *q) 1607 { 1608 struct scsi_device *sdev = q->queuedata; 1609 struct Scsi_Host *shost; 1610 1611 if (blk_queue_dying(q)) 1612 return 0; 1613 1614 shost = sdev->host; 1615 1616 /* 1617 * Ignore host/starget busy state. 1618 * Since block layer does not have a concept of fairness across 1619 * multiple queues, congestion of host/starget needs to be handled 1620 * in SCSI layer. 1621 */ 1622 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1623 return 1; 1624 1625 return 0; 1626 } 1627 1628 /* 1629 * Kill a request for a dead device 1630 */ 1631 static void scsi_kill_request(struct request *req, struct request_queue *q) 1632 { 1633 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1634 struct scsi_device *sdev; 1635 struct scsi_target *starget; 1636 struct Scsi_Host *shost; 1637 1638 blk_start_request(req); 1639 1640 scmd_printk(KERN_INFO, cmd, "killing request\n"); 1641 1642 sdev = cmd->device; 1643 starget = scsi_target(sdev); 1644 shost = sdev->host; 1645 scsi_init_cmd_errh(cmd); 1646 cmd->result = DID_NO_CONNECT << 16; 1647 atomic_inc(&cmd->device->iorequest_cnt); 1648 1649 /* 1650 * SCSI request completion path will do scsi_device_unbusy(), 1651 * bump busy counts. To bump the counters, we need to dance 1652 * with the locks as normal issue path does. 1653 */ 1654 atomic_inc(&sdev->device_busy); 1655 atomic_inc(&shost->host_busy); 1656 if (starget->can_queue > 0) 1657 atomic_inc(&starget->target_busy); 1658 1659 blk_complete_request(req); 1660 } 1661 1662 static void scsi_softirq_done(struct request *rq) 1663 { 1664 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1665 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1666 int disposition; 1667 1668 INIT_LIST_HEAD(&cmd->eh_entry); 1669 1670 atomic_inc(&cmd->device->iodone_cnt); 1671 if (cmd->result) 1672 atomic_inc(&cmd->device->ioerr_cnt); 1673 1674 disposition = scsi_decide_disposition(cmd); 1675 if (disposition != SUCCESS && 1676 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1677 sdev_printk(KERN_ERR, cmd->device, 1678 "timing out command, waited %lus\n", 1679 wait_for/HZ); 1680 disposition = SUCCESS; 1681 } 1682 1683 scsi_log_completion(cmd, disposition); 1684 1685 switch (disposition) { 1686 case SUCCESS: 1687 scsi_finish_command(cmd); 1688 break; 1689 case NEEDS_RETRY: 1690 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1691 break; 1692 case ADD_TO_MLQUEUE: 1693 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1694 break; 1695 default: 1696 scsi_eh_scmd_add(cmd); 1697 break; 1698 } 1699 } 1700 1701 /** 1702 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1703 * @cmd: command block we are dispatching. 1704 * 1705 * Return: nonzero return request was rejected and device's queue needs to be 1706 * plugged. 1707 */ 1708 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1709 { 1710 struct Scsi_Host *host = cmd->device->host; 1711 int rtn = 0; 1712 1713 atomic_inc(&cmd->device->iorequest_cnt); 1714 1715 /* check if the device is still usable */ 1716 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1717 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1718 * returns an immediate error upwards, and signals 1719 * that the device is no longer present */ 1720 cmd->result = DID_NO_CONNECT << 16; 1721 goto done; 1722 } 1723 1724 /* Check to see if the scsi lld made this device blocked. */ 1725 if (unlikely(scsi_device_blocked(cmd->device))) { 1726 /* 1727 * in blocked state, the command is just put back on 1728 * the device queue. The suspend state has already 1729 * blocked the queue so future requests should not 1730 * occur until the device transitions out of the 1731 * suspend state. 1732 */ 1733 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1734 "queuecommand : device blocked\n")); 1735 return SCSI_MLQUEUE_DEVICE_BUSY; 1736 } 1737 1738 /* Store the LUN value in cmnd, if needed. */ 1739 if (cmd->device->lun_in_cdb) 1740 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1741 (cmd->device->lun << 5 & 0xe0); 1742 1743 scsi_log_send(cmd); 1744 1745 /* 1746 * Before we queue this command, check if the command 1747 * length exceeds what the host adapter can handle. 1748 */ 1749 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1750 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1751 "queuecommand : command too long. " 1752 "cdb_size=%d host->max_cmd_len=%d\n", 1753 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1754 cmd->result = (DID_ABORT << 16); 1755 goto done; 1756 } 1757 1758 if (unlikely(host->shost_state == SHOST_DEL)) { 1759 cmd->result = (DID_NO_CONNECT << 16); 1760 goto done; 1761 1762 } 1763 1764 trace_scsi_dispatch_cmd_start(cmd); 1765 rtn = host->hostt->queuecommand(host, cmd); 1766 if (rtn) { 1767 trace_scsi_dispatch_cmd_error(cmd, rtn); 1768 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1769 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1770 rtn = SCSI_MLQUEUE_HOST_BUSY; 1771 1772 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1773 "queuecommand : request rejected\n")); 1774 } 1775 1776 return rtn; 1777 done: 1778 cmd->scsi_done(cmd); 1779 return 0; 1780 } 1781 1782 /** 1783 * scsi_done - Invoke completion on finished SCSI command. 1784 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives 1785 * ownership back to SCSI Core -- i.e. the LLDD has finished with it. 1786 * 1787 * Description: This function is the mid-level's (SCSI Core) interrupt routine, 1788 * which regains ownership of the SCSI command (de facto) from a LLDD, and 1789 * calls blk_complete_request() for further processing. 1790 * 1791 * This function is interrupt context safe. 1792 */ 1793 static void scsi_done(struct scsi_cmnd *cmd) 1794 { 1795 trace_scsi_dispatch_cmd_done(cmd); 1796 blk_complete_request(cmd->request); 1797 } 1798 1799 /* 1800 * Function: scsi_request_fn() 1801 * 1802 * Purpose: Main strategy routine for SCSI. 1803 * 1804 * Arguments: q - Pointer to actual queue. 1805 * 1806 * Returns: Nothing 1807 * 1808 * Lock status: request queue lock assumed to be held when called. 1809 * 1810 * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order 1811 * protection for ZBC disks. 1812 */ 1813 static void scsi_request_fn(struct request_queue *q) 1814 __releases(q->queue_lock) 1815 __acquires(q->queue_lock) 1816 { 1817 struct scsi_device *sdev = q->queuedata; 1818 struct Scsi_Host *shost; 1819 struct scsi_cmnd *cmd; 1820 struct request *req; 1821 1822 /* 1823 * To start with, we keep looping until the queue is empty, or until 1824 * the host is no longer able to accept any more requests. 1825 */ 1826 shost = sdev->host; 1827 for (;;) { 1828 int rtn; 1829 /* 1830 * get next queueable request. We do this early to make sure 1831 * that the request is fully prepared even if we cannot 1832 * accept it. 1833 */ 1834 req = blk_peek_request(q); 1835 if (!req) 1836 break; 1837 1838 if (unlikely(!scsi_device_online(sdev))) { 1839 sdev_printk(KERN_ERR, sdev, 1840 "rejecting I/O to offline device\n"); 1841 scsi_kill_request(req, q); 1842 continue; 1843 } 1844 1845 if (!scsi_dev_queue_ready(q, sdev)) 1846 break; 1847 1848 /* 1849 * Remove the request from the request list. 1850 */ 1851 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1852 blk_start_request(req); 1853 1854 spin_unlock_irq(q->queue_lock); 1855 cmd = blk_mq_rq_to_pdu(req); 1856 if (cmd != req->special) { 1857 printk(KERN_CRIT "impossible request in %s.\n" 1858 "please mail a stack trace to " 1859 "linux-scsi@vger.kernel.org\n", 1860 __func__); 1861 blk_dump_rq_flags(req, "foo"); 1862 BUG(); 1863 } 1864 1865 /* 1866 * We hit this when the driver is using a host wide 1867 * tag map. For device level tag maps the queue_depth check 1868 * in the device ready fn would prevent us from trying 1869 * to allocate a tag. Since the map is a shared host resource 1870 * we add the dev to the starved list so it eventually gets 1871 * a run when a tag is freed. 1872 */ 1873 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) { 1874 spin_lock_irq(shost->host_lock); 1875 if (list_empty(&sdev->starved_entry)) 1876 list_add_tail(&sdev->starved_entry, 1877 &shost->starved_list); 1878 spin_unlock_irq(shost->host_lock); 1879 goto not_ready; 1880 } 1881 1882 if (!scsi_target_queue_ready(shost, sdev)) 1883 goto not_ready; 1884 1885 if (!scsi_host_queue_ready(q, shost, sdev)) 1886 goto host_not_ready; 1887 1888 if (sdev->simple_tags) 1889 cmd->flags |= SCMD_TAGGED; 1890 else 1891 cmd->flags &= ~SCMD_TAGGED; 1892 1893 /* 1894 * Finally, initialize any error handling parameters, and set up 1895 * the timers for timeouts. 1896 */ 1897 scsi_init_cmd_errh(cmd); 1898 1899 /* 1900 * Dispatch the command to the low-level driver. 1901 */ 1902 cmd->scsi_done = scsi_done; 1903 rtn = scsi_dispatch_cmd(cmd); 1904 if (rtn) { 1905 scsi_queue_insert(cmd, rtn); 1906 spin_lock_irq(q->queue_lock); 1907 goto out_delay; 1908 } 1909 spin_lock_irq(q->queue_lock); 1910 } 1911 1912 return; 1913 1914 host_not_ready: 1915 if (scsi_target(sdev)->can_queue > 0) 1916 atomic_dec(&scsi_target(sdev)->target_busy); 1917 not_ready: 1918 /* 1919 * lock q, handle tag, requeue req, and decrement device_busy. We 1920 * must return with queue_lock held. 1921 * 1922 * Decrementing device_busy without checking it is OK, as all such 1923 * cases (host limits or settings) should run the queue at some 1924 * later time. 1925 */ 1926 spin_lock_irq(q->queue_lock); 1927 blk_requeue_request(q, req); 1928 atomic_dec(&sdev->device_busy); 1929 out_delay: 1930 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev)) 1931 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1932 } 1933 1934 static inline blk_status_t prep_to_mq(int ret) 1935 { 1936 switch (ret) { 1937 case BLKPREP_OK: 1938 return BLK_STS_OK; 1939 case BLKPREP_DEFER: 1940 return BLK_STS_RESOURCE; 1941 default: 1942 return BLK_STS_IOERR; 1943 } 1944 } 1945 1946 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1947 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost) 1948 { 1949 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) * 1950 sizeof(struct scatterlist); 1951 } 1952 1953 static int scsi_mq_prep_fn(struct request *req) 1954 { 1955 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1956 struct scsi_device *sdev = req->q->queuedata; 1957 struct Scsi_Host *shost = sdev->host; 1958 struct scatterlist *sg; 1959 1960 scsi_init_command(sdev, cmd); 1961 1962 req->special = cmd; 1963 1964 cmd->request = req; 1965 1966 cmd->tag = req->tag; 1967 cmd->prot_op = SCSI_PROT_NORMAL; 1968 1969 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1970 cmd->sdb.table.sgl = sg; 1971 1972 if (scsi_host_get_prot(shost)) { 1973 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1974 1975 cmd->prot_sdb->table.sgl = 1976 (struct scatterlist *)(cmd->prot_sdb + 1); 1977 } 1978 1979 if (blk_bidi_rq(req)) { 1980 struct request *next_rq = req->next_rq; 1981 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq); 1982 1983 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer)); 1984 bidi_sdb->table.sgl = 1985 (struct scatterlist *)(bidi_sdb + 1); 1986 1987 next_rq->special = bidi_sdb; 1988 } 1989 1990 blk_mq_start_request(req); 1991 1992 return scsi_setup_cmnd(sdev, req); 1993 } 1994 1995 static void scsi_mq_done(struct scsi_cmnd *cmd) 1996 { 1997 trace_scsi_dispatch_cmd_done(cmd); 1998 blk_mq_complete_request(cmd->request); 1999 } 2000 2001 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx) 2002 { 2003 struct request_queue *q = hctx->queue; 2004 struct scsi_device *sdev = q->queuedata; 2005 2006 atomic_dec(&sdev->device_busy); 2007 put_device(&sdev->sdev_gendev); 2008 } 2009 2010 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx) 2011 { 2012 struct request_queue *q = hctx->queue; 2013 struct scsi_device *sdev = q->queuedata; 2014 2015 if (!get_device(&sdev->sdev_gendev)) 2016 goto out; 2017 if (!scsi_dev_queue_ready(q, sdev)) 2018 goto out_put_device; 2019 2020 return true; 2021 2022 out_put_device: 2023 put_device(&sdev->sdev_gendev); 2024 out: 2025 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev)) 2026 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 2027 return false; 2028 } 2029 2030 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 2031 const struct blk_mq_queue_data *bd) 2032 { 2033 struct request *req = bd->rq; 2034 struct request_queue *q = req->q; 2035 struct scsi_device *sdev = q->queuedata; 2036 struct Scsi_Host *shost = sdev->host; 2037 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 2038 blk_status_t ret; 2039 int reason; 2040 2041 ret = prep_to_mq(scsi_prep_state_check(sdev, req)); 2042 if (ret != BLK_STS_OK) 2043 goto out_put_budget; 2044 2045 ret = BLK_STS_RESOURCE; 2046 if (!scsi_target_queue_ready(shost, sdev)) 2047 goto out_put_budget; 2048 if (!scsi_host_queue_ready(q, shost, sdev)) 2049 goto out_dec_target_busy; 2050 2051 if (!(req->rq_flags & RQF_DONTPREP)) { 2052 ret = prep_to_mq(scsi_mq_prep_fn(req)); 2053 if (ret != BLK_STS_OK) 2054 goto out_dec_host_busy; 2055 req->rq_flags |= RQF_DONTPREP; 2056 } else { 2057 blk_mq_start_request(req); 2058 } 2059 2060 if (sdev->simple_tags) 2061 cmd->flags |= SCMD_TAGGED; 2062 else 2063 cmd->flags &= ~SCMD_TAGGED; 2064 2065 scsi_init_cmd_errh(cmd); 2066 cmd->scsi_done = scsi_mq_done; 2067 2068 reason = scsi_dispatch_cmd(cmd); 2069 if (reason) { 2070 scsi_set_blocked(cmd, reason); 2071 ret = BLK_STS_RESOURCE; 2072 goto out_dec_host_busy; 2073 } 2074 2075 return BLK_STS_OK; 2076 2077 out_dec_host_busy: 2078 scsi_dec_host_busy(shost); 2079 out_dec_target_busy: 2080 if (scsi_target(sdev)->can_queue > 0) 2081 atomic_dec(&scsi_target(sdev)->target_busy); 2082 out_put_budget: 2083 scsi_mq_put_budget(hctx); 2084 switch (ret) { 2085 case BLK_STS_OK: 2086 break; 2087 case BLK_STS_RESOURCE: 2088 if (atomic_read(&sdev->device_busy) || 2089 scsi_device_blocked(sdev)) 2090 ret = BLK_STS_DEV_RESOURCE; 2091 break; 2092 default: 2093 /* 2094 * Make sure to release all allocated ressources when 2095 * we hit an error, as we will never see this command 2096 * again. 2097 */ 2098 if (req->rq_flags & RQF_DONTPREP) 2099 scsi_mq_uninit_cmd(cmd); 2100 break; 2101 } 2102 return ret; 2103 } 2104 2105 static enum blk_eh_timer_return scsi_timeout(struct request *req, 2106 bool reserved) 2107 { 2108 if (reserved) 2109 return BLK_EH_RESET_TIMER; 2110 return scsi_times_out(req); 2111 } 2112 2113 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2114 unsigned int hctx_idx, unsigned int numa_node) 2115 { 2116 struct Scsi_Host *shost = set->driver_data; 2117 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 2118 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2119 struct scatterlist *sg; 2120 2121 if (unchecked_isa_dma) 2122 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 2123 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 2124 GFP_KERNEL, numa_node); 2125 if (!cmd->sense_buffer) 2126 return -ENOMEM; 2127 cmd->req.sense = cmd->sense_buffer; 2128 2129 if (scsi_host_get_prot(shost)) { 2130 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 2131 shost->hostt->cmd_size; 2132 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost); 2133 } 2134 2135 return 0; 2136 } 2137 2138 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 2139 unsigned int hctx_idx) 2140 { 2141 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2142 2143 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 2144 cmd->sense_buffer); 2145 } 2146 2147 static int scsi_map_queues(struct blk_mq_tag_set *set) 2148 { 2149 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 2150 2151 if (shost->hostt->map_queues) 2152 return shost->hostt->map_queues(shost); 2153 return blk_mq_map_queues(set); 2154 } 2155 2156 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 2157 { 2158 struct device *dev = shost->dma_dev; 2159 2160 /* 2161 * this limit is imposed by hardware restrictions 2162 */ 2163 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 2164 SG_MAX_SEGMENTS)); 2165 2166 if (scsi_host_prot_dma(shost)) { 2167 shost->sg_prot_tablesize = 2168 min_not_zero(shost->sg_prot_tablesize, 2169 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 2170 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 2171 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 2172 } 2173 2174 blk_queue_max_hw_sectors(q, shost->max_sectors); 2175 if (shost->unchecked_isa_dma) 2176 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 2177 blk_queue_segment_boundary(q, shost->dma_boundary); 2178 dma_set_seg_boundary(dev, shost->dma_boundary); 2179 2180 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 2181 2182 if (!shost->use_clustering) 2183 q->limits.cluster = 0; 2184 2185 /* 2186 * Set a reasonable default alignment: The larger of 32-byte (dword), 2187 * which is a common minimum for HBAs, and the minimum DMA alignment, 2188 * which is set by the platform. 2189 * 2190 * Devices that require a bigger alignment can increase it later. 2191 */ 2192 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 2193 } 2194 EXPORT_SYMBOL_GPL(__scsi_init_queue); 2195 2196 static int scsi_old_init_rq(struct request_queue *q, struct request *rq, 2197 gfp_t gfp) 2198 { 2199 struct Scsi_Host *shost = q->rq_alloc_data; 2200 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 2201 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2202 2203 memset(cmd, 0, sizeof(*cmd)); 2204 2205 if (unchecked_isa_dma) 2206 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 2207 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp, 2208 NUMA_NO_NODE); 2209 if (!cmd->sense_buffer) 2210 goto fail; 2211 cmd->req.sense = cmd->sense_buffer; 2212 2213 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) { 2214 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp); 2215 if (!cmd->prot_sdb) 2216 goto fail_free_sense; 2217 } 2218 2219 return 0; 2220 2221 fail_free_sense: 2222 scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer); 2223 fail: 2224 return -ENOMEM; 2225 } 2226 2227 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq) 2228 { 2229 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2230 2231 if (cmd->prot_sdb) 2232 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb); 2233 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 2234 cmd->sense_buffer); 2235 } 2236 2237 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev) 2238 { 2239 struct Scsi_Host *shost = sdev->host; 2240 struct request_queue *q; 2241 2242 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL); 2243 if (!q) 2244 return NULL; 2245 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 2246 q->rq_alloc_data = shost; 2247 q->request_fn = scsi_request_fn; 2248 q->init_rq_fn = scsi_old_init_rq; 2249 q->exit_rq_fn = scsi_old_exit_rq; 2250 q->initialize_rq_fn = scsi_initialize_rq; 2251 2252 if (blk_init_allocated_queue(q) < 0) { 2253 blk_cleanup_queue(q); 2254 return NULL; 2255 } 2256 2257 __scsi_init_queue(shost, q); 2258 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q); 2259 blk_queue_prep_rq(q, scsi_prep_fn); 2260 blk_queue_unprep_rq(q, scsi_unprep_fn); 2261 blk_queue_softirq_done(q, scsi_softirq_done); 2262 blk_queue_rq_timed_out(q, scsi_times_out); 2263 blk_queue_lld_busy(q, scsi_lld_busy); 2264 return q; 2265 } 2266 2267 static const struct blk_mq_ops scsi_mq_ops = { 2268 .get_budget = scsi_mq_get_budget, 2269 .put_budget = scsi_mq_put_budget, 2270 .queue_rq = scsi_queue_rq, 2271 .complete = scsi_softirq_done, 2272 .timeout = scsi_timeout, 2273 #ifdef CONFIG_BLK_DEBUG_FS 2274 .show_rq = scsi_show_rq, 2275 #endif 2276 .init_request = scsi_mq_init_request, 2277 .exit_request = scsi_mq_exit_request, 2278 .initialize_rq_fn = scsi_initialize_rq, 2279 .map_queues = scsi_map_queues, 2280 }; 2281 2282 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 2283 { 2284 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 2285 if (IS_ERR(sdev->request_queue)) 2286 return NULL; 2287 2288 sdev->request_queue->queuedata = sdev; 2289 __scsi_init_queue(sdev->host, sdev->request_queue); 2290 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 2291 return sdev->request_queue; 2292 } 2293 2294 int scsi_mq_setup_tags(struct Scsi_Host *shost) 2295 { 2296 unsigned int cmd_size, sgl_size; 2297 2298 sgl_size = scsi_mq_sgl_size(shost); 2299 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 2300 if (scsi_host_get_prot(shost)) 2301 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size; 2302 2303 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 2304 shost->tag_set.ops = &scsi_mq_ops; 2305 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 2306 shost->tag_set.queue_depth = shost->can_queue; 2307 shost->tag_set.cmd_size = cmd_size; 2308 shost->tag_set.numa_node = NUMA_NO_NODE; 2309 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2310 shost->tag_set.flags |= 2311 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 2312 shost->tag_set.driver_data = shost; 2313 2314 return blk_mq_alloc_tag_set(&shost->tag_set); 2315 } 2316 2317 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 2318 { 2319 blk_mq_free_tag_set(&shost->tag_set); 2320 } 2321 2322 /** 2323 * scsi_device_from_queue - return sdev associated with a request_queue 2324 * @q: The request queue to return the sdev from 2325 * 2326 * Return the sdev associated with a request queue or NULL if the 2327 * request_queue does not reference a SCSI device. 2328 */ 2329 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2330 { 2331 struct scsi_device *sdev = NULL; 2332 2333 if (q->mq_ops) { 2334 if (q->mq_ops == &scsi_mq_ops) 2335 sdev = q->queuedata; 2336 } else if (q->request_fn == scsi_request_fn) 2337 sdev = q->queuedata; 2338 if (!sdev || !get_device(&sdev->sdev_gendev)) 2339 sdev = NULL; 2340 2341 return sdev; 2342 } 2343 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2344 2345 /* 2346 * Function: scsi_block_requests() 2347 * 2348 * Purpose: Utility function used by low-level drivers to prevent further 2349 * commands from being queued to the device. 2350 * 2351 * Arguments: shost - Host in question 2352 * 2353 * Returns: Nothing 2354 * 2355 * Lock status: No locks are assumed held. 2356 * 2357 * Notes: There is no timer nor any other means by which the requests 2358 * get unblocked other than the low-level driver calling 2359 * scsi_unblock_requests(). 2360 */ 2361 void scsi_block_requests(struct Scsi_Host *shost) 2362 { 2363 shost->host_self_blocked = 1; 2364 } 2365 EXPORT_SYMBOL(scsi_block_requests); 2366 2367 /* 2368 * Function: scsi_unblock_requests() 2369 * 2370 * Purpose: Utility function used by low-level drivers to allow further 2371 * commands from being queued to the device. 2372 * 2373 * Arguments: shost - Host in question 2374 * 2375 * Returns: Nothing 2376 * 2377 * Lock status: No locks are assumed held. 2378 * 2379 * Notes: There is no timer nor any other means by which the requests 2380 * get unblocked other than the low-level driver calling 2381 * scsi_unblock_requests(). 2382 * 2383 * This is done as an API function so that changes to the 2384 * internals of the scsi mid-layer won't require wholesale 2385 * changes to drivers that use this feature. 2386 */ 2387 void scsi_unblock_requests(struct Scsi_Host *shost) 2388 { 2389 shost->host_self_blocked = 0; 2390 scsi_run_host_queues(shost); 2391 } 2392 EXPORT_SYMBOL(scsi_unblock_requests); 2393 2394 int __init scsi_init_queue(void) 2395 { 2396 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 2397 sizeof(struct scsi_data_buffer), 2398 0, 0, NULL); 2399 if (!scsi_sdb_cache) { 2400 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 2401 return -ENOMEM; 2402 } 2403 2404 return 0; 2405 } 2406 2407 void scsi_exit_queue(void) 2408 { 2409 kmem_cache_destroy(scsi_sense_cache); 2410 kmem_cache_destroy(scsi_sense_isadma_cache); 2411 kmem_cache_destroy(scsi_sdb_cache); 2412 } 2413 2414 /** 2415 * scsi_mode_select - issue a mode select 2416 * @sdev: SCSI device to be queried 2417 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2418 * @sp: Save page bit (0 == don't save, 1 == save) 2419 * @modepage: mode page being requested 2420 * @buffer: request buffer (may not be smaller than eight bytes) 2421 * @len: length of request buffer. 2422 * @timeout: command timeout 2423 * @retries: number of retries before failing 2424 * @data: returns a structure abstracting the mode header data 2425 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2426 * must be SCSI_SENSE_BUFFERSIZE big. 2427 * 2428 * Returns zero if successful; negative error number or scsi 2429 * status on error 2430 * 2431 */ 2432 int 2433 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2434 unsigned char *buffer, int len, int timeout, int retries, 2435 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2436 { 2437 unsigned char cmd[10]; 2438 unsigned char *real_buffer; 2439 int ret; 2440 2441 memset(cmd, 0, sizeof(cmd)); 2442 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2443 2444 if (sdev->use_10_for_ms) { 2445 if (len > 65535) 2446 return -EINVAL; 2447 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2448 if (!real_buffer) 2449 return -ENOMEM; 2450 memcpy(real_buffer + 8, buffer, len); 2451 len += 8; 2452 real_buffer[0] = 0; 2453 real_buffer[1] = 0; 2454 real_buffer[2] = data->medium_type; 2455 real_buffer[3] = data->device_specific; 2456 real_buffer[4] = data->longlba ? 0x01 : 0; 2457 real_buffer[5] = 0; 2458 real_buffer[6] = data->block_descriptor_length >> 8; 2459 real_buffer[7] = data->block_descriptor_length; 2460 2461 cmd[0] = MODE_SELECT_10; 2462 cmd[7] = len >> 8; 2463 cmd[8] = len; 2464 } else { 2465 if (len > 255 || data->block_descriptor_length > 255 || 2466 data->longlba) 2467 return -EINVAL; 2468 2469 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2470 if (!real_buffer) 2471 return -ENOMEM; 2472 memcpy(real_buffer + 4, buffer, len); 2473 len += 4; 2474 real_buffer[0] = 0; 2475 real_buffer[1] = data->medium_type; 2476 real_buffer[2] = data->device_specific; 2477 real_buffer[3] = data->block_descriptor_length; 2478 2479 2480 cmd[0] = MODE_SELECT; 2481 cmd[4] = len; 2482 } 2483 2484 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2485 sshdr, timeout, retries, NULL); 2486 kfree(real_buffer); 2487 return ret; 2488 } 2489 EXPORT_SYMBOL_GPL(scsi_mode_select); 2490 2491 /** 2492 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2493 * @sdev: SCSI device to be queried 2494 * @dbd: set if mode sense will allow block descriptors to be returned 2495 * @modepage: mode page being requested 2496 * @buffer: request buffer (may not be smaller than eight bytes) 2497 * @len: length of request buffer. 2498 * @timeout: command timeout 2499 * @retries: number of retries before failing 2500 * @data: returns a structure abstracting the mode header data 2501 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2502 * must be SCSI_SENSE_BUFFERSIZE big. 2503 * 2504 * Returns zero if unsuccessful, or the header offset (either 4 2505 * or 8 depending on whether a six or ten byte command was 2506 * issued) if successful. 2507 */ 2508 int 2509 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2510 unsigned char *buffer, int len, int timeout, int retries, 2511 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2512 { 2513 unsigned char cmd[12]; 2514 int use_10_for_ms; 2515 int header_length; 2516 int result, retry_count = retries; 2517 struct scsi_sense_hdr my_sshdr; 2518 2519 memset(data, 0, sizeof(*data)); 2520 memset(&cmd[0], 0, 12); 2521 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2522 cmd[2] = modepage; 2523 2524 /* caller might not be interested in sense, but we need it */ 2525 if (!sshdr) 2526 sshdr = &my_sshdr; 2527 2528 retry: 2529 use_10_for_ms = sdev->use_10_for_ms; 2530 2531 if (use_10_for_ms) { 2532 if (len < 8) 2533 len = 8; 2534 2535 cmd[0] = MODE_SENSE_10; 2536 cmd[8] = len; 2537 header_length = 8; 2538 } else { 2539 if (len < 4) 2540 len = 4; 2541 2542 cmd[0] = MODE_SENSE; 2543 cmd[4] = len; 2544 header_length = 4; 2545 } 2546 2547 memset(buffer, 0, len); 2548 2549 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2550 sshdr, timeout, retries, NULL); 2551 2552 /* This code looks awful: what it's doing is making sure an 2553 * ILLEGAL REQUEST sense return identifies the actual command 2554 * byte as the problem. MODE_SENSE commands can return 2555 * ILLEGAL REQUEST if the code page isn't supported */ 2556 2557 if (use_10_for_ms && !scsi_status_is_good(result) && 2558 (driver_byte(result) & DRIVER_SENSE)) { 2559 if (scsi_sense_valid(sshdr)) { 2560 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2561 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2562 /* 2563 * Invalid command operation code 2564 */ 2565 sdev->use_10_for_ms = 0; 2566 goto retry; 2567 } 2568 } 2569 } 2570 2571 if(scsi_status_is_good(result)) { 2572 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2573 (modepage == 6 || modepage == 8))) { 2574 /* Initio breakage? */ 2575 header_length = 0; 2576 data->length = 13; 2577 data->medium_type = 0; 2578 data->device_specific = 0; 2579 data->longlba = 0; 2580 data->block_descriptor_length = 0; 2581 } else if(use_10_for_ms) { 2582 data->length = buffer[0]*256 + buffer[1] + 2; 2583 data->medium_type = buffer[2]; 2584 data->device_specific = buffer[3]; 2585 data->longlba = buffer[4] & 0x01; 2586 data->block_descriptor_length = buffer[6]*256 2587 + buffer[7]; 2588 } else { 2589 data->length = buffer[0] + 1; 2590 data->medium_type = buffer[1]; 2591 data->device_specific = buffer[2]; 2592 data->block_descriptor_length = buffer[3]; 2593 } 2594 data->header_length = header_length; 2595 } else if ((status_byte(result) == CHECK_CONDITION) && 2596 scsi_sense_valid(sshdr) && 2597 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2598 retry_count--; 2599 goto retry; 2600 } 2601 2602 return result; 2603 } 2604 EXPORT_SYMBOL(scsi_mode_sense); 2605 2606 /** 2607 * scsi_test_unit_ready - test if unit is ready 2608 * @sdev: scsi device to change the state of. 2609 * @timeout: command timeout 2610 * @retries: number of retries before failing 2611 * @sshdr: outpout pointer for decoded sense information. 2612 * 2613 * Returns zero if unsuccessful or an error if TUR failed. For 2614 * removable media, UNIT_ATTENTION sets ->changed flag. 2615 **/ 2616 int 2617 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2618 struct scsi_sense_hdr *sshdr) 2619 { 2620 char cmd[] = { 2621 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2622 }; 2623 int result; 2624 2625 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2626 do { 2627 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2628 timeout, 1, NULL); 2629 if (sdev->removable && scsi_sense_valid(sshdr) && 2630 sshdr->sense_key == UNIT_ATTENTION) 2631 sdev->changed = 1; 2632 } while (scsi_sense_valid(sshdr) && 2633 sshdr->sense_key == UNIT_ATTENTION && --retries); 2634 2635 return result; 2636 } 2637 EXPORT_SYMBOL(scsi_test_unit_ready); 2638 2639 /** 2640 * scsi_device_set_state - Take the given device through the device state model. 2641 * @sdev: scsi device to change the state of. 2642 * @state: state to change to. 2643 * 2644 * Returns zero if successful or an error if the requested 2645 * transition is illegal. 2646 */ 2647 int 2648 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2649 { 2650 enum scsi_device_state oldstate = sdev->sdev_state; 2651 2652 if (state == oldstate) 2653 return 0; 2654 2655 switch (state) { 2656 case SDEV_CREATED: 2657 switch (oldstate) { 2658 case SDEV_CREATED_BLOCK: 2659 break; 2660 default: 2661 goto illegal; 2662 } 2663 break; 2664 2665 case SDEV_RUNNING: 2666 switch (oldstate) { 2667 case SDEV_CREATED: 2668 case SDEV_OFFLINE: 2669 case SDEV_TRANSPORT_OFFLINE: 2670 case SDEV_QUIESCE: 2671 case SDEV_BLOCK: 2672 break; 2673 default: 2674 goto illegal; 2675 } 2676 break; 2677 2678 case SDEV_QUIESCE: 2679 switch (oldstate) { 2680 case SDEV_RUNNING: 2681 case SDEV_OFFLINE: 2682 case SDEV_TRANSPORT_OFFLINE: 2683 break; 2684 default: 2685 goto illegal; 2686 } 2687 break; 2688 2689 case SDEV_OFFLINE: 2690 case SDEV_TRANSPORT_OFFLINE: 2691 switch (oldstate) { 2692 case SDEV_CREATED: 2693 case SDEV_RUNNING: 2694 case SDEV_QUIESCE: 2695 case SDEV_BLOCK: 2696 break; 2697 default: 2698 goto illegal; 2699 } 2700 break; 2701 2702 case SDEV_BLOCK: 2703 switch (oldstate) { 2704 case SDEV_RUNNING: 2705 case SDEV_CREATED_BLOCK: 2706 break; 2707 default: 2708 goto illegal; 2709 } 2710 break; 2711 2712 case SDEV_CREATED_BLOCK: 2713 switch (oldstate) { 2714 case SDEV_CREATED: 2715 break; 2716 default: 2717 goto illegal; 2718 } 2719 break; 2720 2721 case SDEV_CANCEL: 2722 switch (oldstate) { 2723 case SDEV_CREATED: 2724 case SDEV_RUNNING: 2725 case SDEV_QUIESCE: 2726 case SDEV_OFFLINE: 2727 case SDEV_TRANSPORT_OFFLINE: 2728 break; 2729 default: 2730 goto illegal; 2731 } 2732 break; 2733 2734 case SDEV_DEL: 2735 switch (oldstate) { 2736 case SDEV_CREATED: 2737 case SDEV_RUNNING: 2738 case SDEV_OFFLINE: 2739 case SDEV_TRANSPORT_OFFLINE: 2740 case SDEV_CANCEL: 2741 case SDEV_BLOCK: 2742 case SDEV_CREATED_BLOCK: 2743 break; 2744 default: 2745 goto illegal; 2746 } 2747 break; 2748 2749 } 2750 sdev->sdev_state = state; 2751 return 0; 2752 2753 illegal: 2754 SCSI_LOG_ERROR_RECOVERY(1, 2755 sdev_printk(KERN_ERR, sdev, 2756 "Illegal state transition %s->%s", 2757 scsi_device_state_name(oldstate), 2758 scsi_device_state_name(state)) 2759 ); 2760 return -EINVAL; 2761 } 2762 EXPORT_SYMBOL(scsi_device_set_state); 2763 2764 /** 2765 * sdev_evt_emit - emit a single SCSI device uevent 2766 * @sdev: associated SCSI device 2767 * @evt: event to emit 2768 * 2769 * Send a single uevent (scsi_event) to the associated scsi_device. 2770 */ 2771 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2772 { 2773 int idx = 0; 2774 char *envp[3]; 2775 2776 switch (evt->evt_type) { 2777 case SDEV_EVT_MEDIA_CHANGE: 2778 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2779 break; 2780 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2781 scsi_rescan_device(&sdev->sdev_gendev); 2782 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2783 break; 2784 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2785 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2786 break; 2787 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2788 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2789 break; 2790 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2791 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2792 break; 2793 case SDEV_EVT_LUN_CHANGE_REPORTED: 2794 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2795 break; 2796 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2797 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2798 break; 2799 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2800 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2801 break; 2802 default: 2803 /* do nothing */ 2804 break; 2805 } 2806 2807 envp[idx++] = NULL; 2808 2809 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2810 } 2811 2812 /** 2813 * sdev_evt_thread - send a uevent for each scsi event 2814 * @work: work struct for scsi_device 2815 * 2816 * Dispatch queued events to their associated scsi_device kobjects 2817 * as uevents. 2818 */ 2819 void scsi_evt_thread(struct work_struct *work) 2820 { 2821 struct scsi_device *sdev; 2822 enum scsi_device_event evt_type; 2823 LIST_HEAD(event_list); 2824 2825 sdev = container_of(work, struct scsi_device, event_work); 2826 2827 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2828 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2829 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2830 2831 while (1) { 2832 struct scsi_event *evt; 2833 struct list_head *this, *tmp; 2834 unsigned long flags; 2835 2836 spin_lock_irqsave(&sdev->list_lock, flags); 2837 list_splice_init(&sdev->event_list, &event_list); 2838 spin_unlock_irqrestore(&sdev->list_lock, flags); 2839 2840 if (list_empty(&event_list)) 2841 break; 2842 2843 list_for_each_safe(this, tmp, &event_list) { 2844 evt = list_entry(this, struct scsi_event, node); 2845 list_del(&evt->node); 2846 scsi_evt_emit(sdev, evt); 2847 kfree(evt); 2848 } 2849 } 2850 } 2851 2852 /** 2853 * sdev_evt_send - send asserted event to uevent thread 2854 * @sdev: scsi_device event occurred on 2855 * @evt: event to send 2856 * 2857 * Assert scsi device event asynchronously. 2858 */ 2859 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2860 { 2861 unsigned long flags; 2862 2863 #if 0 2864 /* FIXME: currently this check eliminates all media change events 2865 * for polled devices. Need to update to discriminate between AN 2866 * and polled events */ 2867 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2868 kfree(evt); 2869 return; 2870 } 2871 #endif 2872 2873 spin_lock_irqsave(&sdev->list_lock, flags); 2874 list_add_tail(&evt->node, &sdev->event_list); 2875 schedule_work(&sdev->event_work); 2876 spin_unlock_irqrestore(&sdev->list_lock, flags); 2877 } 2878 EXPORT_SYMBOL_GPL(sdev_evt_send); 2879 2880 /** 2881 * sdev_evt_alloc - allocate a new scsi event 2882 * @evt_type: type of event to allocate 2883 * @gfpflags: GFP flags for allocation 2884 * 2885 * Allocates and returns a new scsi_event. 2886 */ 2887 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2888 gfp_t gfpflags) 2889 { 2890 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2891 if (!evt) 2892 return NULL; 2893 2894 evt->evt_type = evt_type; 2895 INIT_LIST_HEAD(&evt->node); 2896 2897 /* evt_type-specific initialization, if any */ 2898 switch (evt_type) { 2899 case SDEV_EVT_MEDIA_CHANGE: 2900 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2901 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2902 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2903 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2904 case SDEV_EVT_LUN_CHANGE_REPORTED: 2905 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2906 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2907 default: 2908 /* do nothing */ 2909 break; 2910 } 2911 2912 return evt; 2913 } 2914 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2915 2916 /** 2917 * sdev_evt_send_simple - send asserted event to uevent thread 2918 * @sdev: scsi_device event occurred on 2919 * @evt_type: type of event to send 2920 * @gfpflags: GFP flags for allocation 2921 * 2922 * Assert scsi device event asynchronously, given an event type. 2923 */ 2924 void sdev_evt_send_simple(struct scsi_device *sdev, 2925 enum scsi_device_event evt_type, gfp_t gfpflags) 2926 { 2927 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2928 if (!evt) { 2929 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2930 evt_type); 2931 return; 2932 } 2933 2934 sdev_evt_send(sdev, evt); 2935 } 2936 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2937 2938 /** 2939 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn() 2940 * @sdev: SCSI device to count the number of scsi_request_fn() callers for. 2941 */ 2942 static int scsi_request_fn_active(struct scsi_device *sdev) 2943 { 2944 struct request_queue *q = sdev->request_queue; 2945 int request_fn_active; 2946 2947 WARN_ON_ONCE(sdev->host->use_blk_mq); 2948 2949 spin_lock_irq(q->queue_lock); 2950 request_fn_active = q->request_fn_active; 2951 spin_unlock_irq(q->queue_lock); 2952 2953 return request_fn_active; 2954 } 2955 2956 /** 2957 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls 2958 * @sdev: SCSI device pointer. 2959 * 2960 * Wait until the ongoing shost->hostt->queuecommand() calls that are 2961 * invoked from scsi_request_fn() have finished. 2962 */ 2963 static void scsi_wait_for_queuecommand(struct scsi_device *sdev) 2964 { 2965 WARN_ON_ONCE(sdev->host->use_blk_mq); 2966 2967 while (scsi_request_fn_active(sdev)) 2968 msleep(20); 2969 } 2970 2971 /** 2972 * scsi_device_quiesce - Block user issued commands. 2973 * @sdev: scsi device to quiesce. 2974 * 2975 * This works by trying to transition to the SDEV_QUIESCE state 2976 * (which must be a legal transition). When the device is in this 2977 * state, only special requests will be accepted, all others will 2978 * be deferred. Since special requests may also be requeued requests, 2979 * a successful return doesn't guarantee the device will be 2980 * totally quiescent. 2981 * 2982 * Must be called with user context, may sleep. 2983 * 2984 * Returns zero if unsuccessful or an error if not. 2985 */ 2986 int 2987 scsi_device_quiesce(struct scsi_device *sdev) 2988 { 2989 struct request_queue *q = sdev->request_queue; 2990 int err; 2991 2992 /* 2993 * It is allowed to call scsi_device_quiesce() multiple times from 2994 * the same context but concurrent scsi_device_quiesce() calls are 2995 * not allowed. 2996 */ 2997 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2998 2999 blk_set_preempt_only(q); 3000 3001 blk_mq_freeze_queue(q); 3002 /* 3003 * Ensure that the effect of blk_set_preempt_only() will be visible 3004 * for percpu_ref_tryget() callers that occur after the queue 3005 * unfreeze even if the queue was already frozen before this function 3006 * was called. See also https://lwn.net/Articles/573497/. 3007 */ 3008 synchronize_rcu(); 3009 blk_mq_unfreeze_queue(q); 3010 3011 mutex_lock(&sdev->state_mutex); 3012 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 3013 if (err == 0) 3014 sdev->quiesced_by = current; 3015 else 3016 blk_clear_preempt_only(q); 3017 mutex_unlock(&sdev->state_mutex); 3018 3019 return err; 3020 } 3021 EXPORT_SYMBOL(scsi_device_quiesce); 3022 3023 /** 3024 * scsi_device_resume - Restart user issued commands to a quiesced device. 3025 * @sdev: scsi device to resume. 3026 * 3027 * Moves the device from quiesced back to running and restarts the 3028 * queues. 3029 * 3030 * Must be called with user context, may sleep. 3031 */ 3032 void scsi_device_resume(struct scsi_device *sdev) 3033 { 3034 /* check if the device state was mutated prior to resume, and if 3035 * so assume the state is being managed elsewhere (for example 3036 * device deleted during suspend) 3037 */ 3038 mutex_lock(&sdev->state_mutex); 3039 WARN_ON_ONCE(!sdev->quiesced_by); 3040 sdev->quiesced_by = NULL; 3041 blk_clear_preempt_only(sdev->request_queue); 3042 if (sdev->sdev_state == SDEV_QUIESCE) 3043 scsi_device_set_state(sdev, SDEV_RUNNING); 3044 mutex_unlock(&sdev->state_mutex); 3045 } 3046 EXPORT_SYMBOL(scsi_device_resume); 3047 3048 static void 3049 device_quiesce_fn(struct scsi_device *sdev, void *data) 3050 { 3051 scsi_device_quiesce(sdev); 3052 } 3053 3054 void 3055 scsi_target_quiesce(struct scsi_target *starget) 3056 { 3057 starget_for_each_device(starget, NULL, device_quiesce_fn); 3058 } 3059 EXPORT_SYMBOL(scsi_target_quiesce); 3060 3061 static void 3062 device_resume_fn(struct scsi_device *sdev, void *data) 3063 { 3064 scsi_device_resume(sdev); 3065 } 3066 3067 void 3068 scsi_target_resume(struct scsi_target *starget) 3069 { 3070 starget_for_each_device(starget, NULL, device_resume_fn); 3071 } 3072 EXPORT_SYMBOL(scsi_target_resume); 3073 3074 /** 3075 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 3076 * @sdev: device to block 3077 * 3078 * Pause SCSI command processing on the specified device. Does not sleep. 3079 * 3080 * Returns zero if successful or a negative error code upon failure. 3081 * 3082 * Notes: 3083 * This routine transitions the device to the SDEV_BLOCK state (which must be 3084 * a legal transition). When the device is in this state, command processing 3085 * is paused until the device leaves the SDEV_BLOCK state. See also 3086 * scsi_internal_device_unblock_nowait(). 3087 */ 3088 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 3089 { 3090 struct request_queue *q = sdev->request_queue; 3091 unsigned long flags; 3092 int err = 0; 3093 3094 err = scsi_device_set_state(sdev, SDEV_BLOCK); 3095 if (err) { 3096 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 3097 3098 if (err) 3099 return err; 3100 } 3101 3102 /* 3103 * The device has transitioned to SDEV_BLOCK. Stop the 3104 * block layer from calling the midlayer with this device's 3105 * request queue. 3106 */ 3107 if (q->mq_ops) { 3108 blk_mq_quiesce_queue_nowait(q); 3109 } else { 3110 spin_lock_irqsave(q->queue_lock, flags); 3111 blk_stop_queue(q); 3112 spin_unlock_irqrestore(q->queue_lock, flags); 3113 } 3114 3115 return 0; 3116 } 3117 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 3118 3119 /** 3120 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 3121 * @sdev: device to block 3122 * 3123 * Pause SCSI command processing on the specified device and wait until all 3124 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 3125 * 3126 * Returns zero if successful or a negative error code upon failure. 3127 * 3128 * Note: 3129 * This routine transitions the device to the SDEV_BLOCK state (which must be 3130 * a legal transition). When the device is in this state, command processing 3131 * is paused until the device leaves the SDEV_BLOCK state. See also 3132 * scsi_internal_device_unblock(). 3133 * 3134 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after 3135 * scsi_internal_device_block() has blocked a SCSI device and also 3136 * remove the rport mutex lock and unlock calls from srp_queuecommand(). 3137 */ 3138 static int scsi_internal_device_block(struct scsi_device *sdev) 3139 { 3140 struct request_queue *q = sdev->request_queue; 3141 int err; 3142 3143 mutex_lock(&sdev->state_mutex); 3144 err = scsi_internal_device_block_nowait(sdev); 3145 if (err == 0) { 3146 if (q->mq_ops) 3147 blk_mq_quiesce_queue(q); 3148 else 3149 scsi_wait_for_queuecommand(sdev); 3150 } 3151 mutex_unlock(&sdev->state_mutex); 3152 3153 return err; 3154 } 3155 3156 void scsi_start_queue(struct scsi_device *sdev) 3157 { 3158 struct request_queue *q = sdev->request_queue; 3159 unsigned long flags; 3160 3161 if (q->mq_ops) { 3162 blk_mq_unquiesce_queue(q); 3163 } else { 3164 spin_lock_irqsave(q->queue_lock, flags); 3165 blk_start_queue(q); 3166 spin_unlock_irqrestore(q->queue_lock, flags); 3167 } 3168 } 3169 3170 /** 3171 * scsi_internal_device_unblock_nowait - resume a device after a block request 3172 * @sdev: device to resume 3173 * @new_state: state to set the device to after unblocking 3174 * 3175 * Restart the device queue for a previously suspended SCSI device. Does not 3176 * sleep. 3177 * 3178 * Returns zero if successful or a negative error code upon failure. 3179 * 3180 * Notes: 3181 * This routine transitions the device to the SDEV_RUNNING state or to one of 3182 * the offline states (which must be a legal transition) allowing the midlayer 3183 * to goose the queue for this device. 3184 */ 3185 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 3186 enum scsi_device_state new_state) 3187 { 3188 /* 3189 * Try to transition the scsi device to SDEV_RUNNING or one of the 3190 * offlined states and goose the device queue if successful. 3191 */ 3192 switch (sdev->sdev_state) { 3193 case SDEV_BLOCK: 3194 case SDEV_TRANSPORT_OFFLINE: 3195 sdev->sdev_state = new_state; 3196 break; 3197 case SDEV_CREATED_BLOCK: 3198 if (new_state == SDEV_TRANSPORT_OFFLINE || 3199 new_state == SDEV_OFFLINE) 3200 sdev->sdev_state = new_state; 3201 else 3202 sdev->sdev_state = SDEV_CREATED; 3203 break; 3204 case SDEV_CANCEL: 3205 case SDEV_OFFLINE: 3206 break; 3207 default: 3208 return -EINVAL; 3209 } 3210 scsi_start_queue(sdev); 3211 3212 return 0; 3213 } 3214 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 3215 3216 /** 3217 * scsi_internal_device_unblock - resume a device after a block request 3218 * @sdev: device to resume 3219 * @new_state: state to set the device to after unblocking 3220 * 3221 * Restart the device queue for a previously suspended SCSI device. May sleep. 3222 * 3223 * Returns zero if successful or a negative error code upon failure. 3224 * 3225 * Notes: 3226 * This routine transitions the device to the SDEV_RUNNING state or to one of 3227 * the offline states (which must be a legal transition) allowing the midlayer 3228 * to goose the queue for this device. 3229 */ 3230 static int scsi_internal_device_unblock(struct scsi_device *sdev, 3231 enum scsi_device_state new_state) 3232 { 3233 int ret; 3234 3235 mutex_lock(&sdev->state_mutex); 3236 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 3237 mutex_unlock(&sdev->state_mutex); 3238 3239 return ret; 3240 } 3241 3242 static void 3243 device_block(struct scsi_device *sdev, void *data) 3244 { 3245 scsi_internal_device_block(sdev); 3246 } 3247 3248 static int 3249 target_block(struct device *dev, void *data) 3250 { 3251 if (scsi_is_target_device(dev)) 3252 starget_for_each_device(to_scsi_target(dev), NULL, 3253 device_block); 3254 return 0; 3255 } 3256 3257 void 3258 scsi_target_block(struct device *dev) 3259 { 3260 if (scsi_is_target_device(dev)) 3261 starget_for_each_device(to_scsi_target(dev), NULL, 3262 device_block); 3263 else 3264 device_for_each_child(dev, NULL, target_block); 3265 } 3266 EXPORT_SYMBOL_GPL(scsi_target_block); 3267 3268 static void 3269 device_unblock(struct scsi_device *sdev, void *data) 3270 { 3271 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 3272 } 3273 3274 static int 3275 target_unblock(struct device *dev, void *data) 3276 { 3277 if (scsi_is_target_device(dev)) 3278 starget_for_each_device(to_scsi_target(dev), data, 3279 device_unblock); 3280 return 0; 3281 } 3282 3283 void 3284 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 3285 { 3286 if (scsi_is_target_device(dev)) 3287 starget_for_each_device(to_scsi_target(dev), &new_state, 3288 device_unblock); 3289 else 3290 device_for_each_child(dev, &new_state, target_unblock); 3291 } 3292 EXPORT_SYMBOL_GPL(scsi_target_unblock); 3293 3294 /** 3295 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 3296 * @sgl: scatter-gather list 3297 * @sg_count: number of segments in sg 3298 * @offset: offset in bytes into sg, on return offset into the mapped area 3299 * @len: bytes to map, on return number of bytes mapped 3300 * 3301 * Returns virtual address of the start of the mapped page 3302 */ 3303 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3304 size_t *offset, size_t *len) 3305 { 3306 int i; 3307 size_t sg_len = 0, len_complete = 0; 3308 struct scatterlist *sg; 3309 struct page *page; 3310 3311 WARN_ON(!irqs_disabled()); 3312 3313 for_each_sg(sgl, sg, sg_count, i) { 3314 len_complete = sg_len; /* Complete sg-entries */ 3315 sg_len += sg->length; 3316 if (sg_len > *offset) 3317 break; 3318 } 3319 3320 if (unlikely(i == sg_count)) { 3321 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3322 "elements %d\n", 3323 __func__, sg_len, *offset, sg_count); 3324 WARN_ON(1); 3325 return NULL; 3326 } 3327 3328 /* Offset starting from the beginning of first page in this sg-entry */ 3329 *offset = *offset - len_complete + sg->offset; 3330 3331 /* Assumption: contiguous pages can be accessed as "page + i" */ 3332 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3333 *offset &= ~PAGE_MASK; 3334 3335 /* Bytes in this sg-entry from *offset to the end of the page */ 3336 sg_len = PAGE_SIZE - *offset; 3337 if (*len > sg_len) 3338 *len = sg_len; 3339 3340 return kmap_atomic(page); 3341 } 3342 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3343 3344 /** 3345 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3346 * @virt: virtual address to be unmapped 3347 */ 3348 void scsi_kunmap_atomic_sg(void *virt) 3349 { 3350 kunmap_atomic(virt); 3351 } 3352 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3353 3354 void sdev_disable_disk_events(struct scsi_device *sdev) 3355 { 3356 atomic_inc(&sdev->disk_events_disable_depth); 3357 } 3358 EXPORT_SYMBOL(sdev_disable_disk_events); 3359 3360 void sdev_enable_disk_events(struct scsi_device *sdev) 3361 { 3362 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3363 return; 3364 atomic_dec(&sdev->disk_events_disable_depth); 3365 } 3366 EXPORT_SYMBOL(sdev_enable_disk_events); 3367 3368 /** 3369 * scsi_vpd_lun_id - return a unique device identification 3370 * @sdev: SCSI device 3371 * @id: buffer for the identification 3372 * @id_len: length of the buffer 3373 * 3374 * Copies a unique device identification into @id based 3375 * on the information in the VPD page 0x83 of the device. 3376 * The string will be formatted as a SCSI name string. 3377 * 3378 * Returns the length of the identification or error on failure. 3379 * If the identifier is longer than the supplied buffer the actual 3380 * identifier length is returned and the buffer is not zero-padded. 3381 */ 3382 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3383 { 3384 u8 cur_id_type = 0xff; 3385 u8 cur_id_size = 0; 3386 const unsigned char *d, *cur_id_str; 3387 const struct scsi_vpd *vpd_pg83; 3388 int id_size = -EINVAL; 3389 3390 rcu_read_lock(); 3391 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3392 if (!vpd_pg83) { 3393 rcu_read_unlock(); 3394 return -ENXIO; 3395 } 3396 3397 /* 3398 * Look for the correct descriptor. 3399 * Order of preference for lun descriptor: 3400 * - SCSI name string 3401 * - NAA IEEE Registered Extended 3402 * - EUI-64 based 16-byte 3403 * - EUI-64 based 12-byte 3404 * - NAA IEEE Registered 3405 * - NAA IEEE Extended 3406 * - T10 Vendor ID 3407 * as longer descriptors reduce the likelyhood 3408 * of identification clashes. 3409 */ 3410 3411 /* The id string must be at least 20 bytes + terminating NULL byte */ 3412 if (id_len < 21) { 3413 rcu_read_unlock(); 3414 return -EINVAL; 3415 } 3416 3417 memset(id, 0, id_len); 3418 d = vpd_pg83->data + 4; 3419 while (d < vpd_pg83->data + vpd_pg83->len) { 3420 /* Skip designators not referring to the LUN */ 3421 if ((d[1] & 0x30) != 0x00) 3422 goto next_desig; 3423 3424 switch (d[1] & 0xf) { 3425 case 0x1: 3426 /* T10 Vendor ID */ 3427 if (cur_id_size > d[3]) 3428 break; 3429 /* Prefer anything */ 3430 if (cur_id_type > 0x01 && cur_id_type != 0xff) 3431 break; 3432 cur_id_size = d[3]; 3433 if (cur_id_size + 4 > id_len) 3434 cur_id_size = id_len - 4; 3435 cur_id_str = d + 4; 3436 cur_id_type = d[1] & 0xf; 3437 id_size = snprintf(id, id_len, "t10.%*pE", 3438 cur_id_size, cur_id_str); 3439 break; 3440 case 0x2: 3441 /* EUI-64 */ 3442 if (cur_id_size > d[3]) 3443 break; 3444 /* Prefer NAA IEEE Registered Extended */ 3445 if (cur_id_type == 0x3 && 3446 cur_id_size == d[3]) 3447 break; 3448 cur_id_size = d[3]; 3449 cur_id_str = d + 4; 3450 cur_id_type = d[1] & 0xf; 3451 switch (cur_id_size) { 3452 case 8: 3453 id_size = snprintf(id, id_len, 3454 "eui.%8phN", 3455 cur_id_str); 3456 break; 3457 case 12: 3458 id_size = snprintf(id, id_len, 3459 "eui.%12phN", 3460 cur_id_str); 3461 break; 3462 case 16: 3463 id_size = snprintf(id, id_len, 3464 "eui.%16phN", 3465 cur_id_str); 3466 break; 3467 default: 3468 cur_id_size = 0; 3469 break; 3470 } 3471 break; 3472 case 0x3: 3473 /* NAA */ 3474 if (cur_id_size > d[3]) 3475 break; 3476 cur_id_size = d[3]; 3477 cur_id_str = d + 4; 3478 cur_id_type = d[1] & 0xf; 3479 switch (cur_id_size) { 3480 case 8: 3481 id_size = snprintf(id, id_len, 3482 "naa.%8phN", 3483 cur_id_str); 3484 break; 3485 case 16: 3486 id_size = snprintf(id, id_len, 3487 "naa.%16phN", 3488 cur_id_str); 3489 break; 3490 default: 3491 cur_id_size = 0; 3492 break; 3493 } 3494 break; 3495 case 0x8: 3496 /* SCSI name string */ 3497 if (cur_id_size + 4 > d[3]) 3498 break; 3499 /* Prefer others for truncated descriptor */ 3500 if (cur_id_size && d[3] > id_len) 3501 break; 3502 cur_id_size = id_size = d[3]; 3503 cur_id_str = d + 4; 3504 cur_id_type = d[1] & 0xf; 3505 if (cur_id_size >= id_len) 3506 cur_id_size = id_len - 1; 3507 memcpy(id, cur_id_str, cur_id_size); 3508 /* Decrease priority for truncated descriptor */ 3509 if (cur_id_size != id_size) 3510 cur_id_size = 6; 3511 break; 3512 default: 3513 break; 3514 } 3515 next_desig: 3516 d += d[3] + 4; 3517 } 3518 rcu_read_unlock(); 3519 3520 return id_size; 3521 } 3522 EXPORT_SYMBOL(scsi_vpd_lun_id); 3523 3524 /* 3525 * scsi_vpd_tpg_id - return a target port group identifier 3526 * @sdev: SCSI device 3527 * 3528 * Returns the Target Port Group identifier from the information 3529 * froom VPD page 0x83 of the device. 3530 * 3531 * Returns the identifier or error on failure. 3532 */ 3533 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3534 { 3535 const unsigned char *d; 3536 const struct scsi_vpd *vpd_pg83; 3537 int group_id = -EAGAIN, rel_port = -1; 3538 3539 rcu_read_lock(); 3540 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3541 if (!vpd_pg83) { 3542 rcu_read_unlock(); 3543 return -ENXIO; 3544 } 3545 3546 d = vpd_pg83->data + 4; 3547 while (d < vpd_pg83->data + vpd_pg83->len) { 3548 switch (d[1] & 0xf) { 3549 case 0x4: 3550 /* Relative target port */ 3551 rel_port = get_unaligned_be16(&d[6]); 3552 break; 3553 case 0x5: 3554 /* Target port group */ 3555 group_id = get_unaligned_be16(&d[6]); 3556 break; 3557 default: 3558 break; 3559 } 3560 d += d[3] + 4; 3561 } 3562 rcu_read_unlock(); 3563 3564 if (group_id >= 0 && rel_id && rel_port != -1) 3565 *rel_id = rel_port; 3566 3567 return group_id; 3568 } 3569 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3570