xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 3932b9ca)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 
34 #include <trace/events/scsi.h>
35 
36 #include "scsi_priv.h"
37 #include "scsi_logging.h"
38 
39 
40 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
41 #define SG_MEMPOOL_SIZE		2
42 
43 struct scsi_host_sg_pool {
44 	size_t		size;
45 	char		*name;
46 	struct kmem_cache	*slab;
47 	mempool_t	*pool;
48 };
49 
50 #define SP(x) { x, "sgpool-" __stringify(x) }
51 #if (SCSI_MAX_SG_SEGMENTS < 32)
52 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
53 #endif
54 static struct scsi_host_sg_pool scsi_sg_pools[] = {
55 	SP(8),
56 	SP(16),
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
58 	SP(32),
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
60 	SP(64),
61 #if (SCSI_MAX_SG_SEGMENTS > 128)
62 	SP(128),
63 #if (SCSI_MAX_SG_SEGMENTS > 256)
64 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
65 #endif
66 #endif
67 #endif
68 #endif
69 	SP(SCSI_MAX_SG_SEGMENTS)
70 };
71 #undef SP
72 
73 struct kmem_cache *scsi_sdb_cache;
74 
75 /*
76  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
77  * not change behaviour from the previous unplug mechanism, experimentation
78  * may prove this needs changing.
79  */
80 #define SCSI_QUEUE_DELAY	3
81 
82 static void
83 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
84 {
85 	struct Scsi_Host *host = cmd->device->host;
86 	struct scsi_device *device = cmd->device;
87 	struct scsi_target *starget = scsi_target(device);
88 
89 	/*
90 	 * Set the appropriate busy bit for the device/host.
91 	 *
92 	 * If the host/device isn't busy, assume that something actually
93 	 * completed, and that we should be able to queue a command now.
94 	 *
95 	 * Note that the prior mid-layer assumption that any host could
96 	 * always queue at least one command is now broken.  The mid-layer
97 	 * will implement a user specifiable stall (see
98 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
99 	 * if a command is requeued with no other commands outstanding
100 	 * either for the device or for the host.
101 	 */
102 	switch (reason) {
103 	case SCSI_MLQUEUE_HOST_BUSY:
104 		atomic_set(&host->host_blocked, host->max_host_blocked);
105 		break;
106 	case SCSI_MLQUEUE_DEVICE_BUSY:
107 	case SCSI_MLQUEUE_EH_RETRY:
108 		atomic_set(&device->device_blocked,
109 			   device->max_device_blocked);
110 		break;
111 	case SCSI_MLQUEUE_TARGET_BUSY:
112 		atomic_set(&starget->target_blocked,
113 			   starget->max_target_blocked);
114 		break;
115 	}
116 }
117 
118 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
119 {
120 	struct scsi_device *sdev = cmd->device;
121 	struct request_queue *q = cmd->request->q;
122 
123 	blk_mq_requeue_request(cmd->request);
124 	blk_mq_kick_requeue_list(q);
125 	put_device(&sdev->sdev_gendev);
126 }
127 
128 /**
129  * __scsi_queue_insert - private queue insertion
130  * @cmd: The SCSI command being requeued
131  * @reason:  The reason for the requeue
132  * @unbusy: Whether the queue should be unbusied
133  *
134  * This is a private queue insertion.  The public interface
135  * scsi_queue_insert() always assumes the queue should be unbusied
136  * because it's always called before the completion.  This function is
137  * for a requeue after completion, which should only occur in this
138  * file.
139  */
140 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
141 {
142 	struct scsi_device *device = cmd->device;
143 	struct request_queue *q = device->request_queue;
144 	unsigned long flags;
145 
146 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147 		"Inserting command %p into mlqueue\n", cmd));
148 
149 	scsi_set_blocked(cmd, reason);
150 
151 	/*
152 	 * Decrement the counters, since these commands are no longer
153 	 * active on the host/device.
154 	 */
155 	if (unbusy)
156 		scsi_device_unbusy(device);
157 
158 	/*
159 	 * Requeue this command.  It will go before all other commands
160 	 * that are already in the queue. Schedule requeue work under
161 	 * lock such that the kblockd_schedule_work() call happens
162 	 * before blk_cleanup_queue() finishes.
163 	 */
164 	cmd->result = 0;
165 	if (q->mq_ops) {
166 		scsi_mq_requeue_cmd(cmd);
167 		return;
168 	}
169 	spin_lock_irqsave(q->queue_lock, flags);
170 	blk_requeue_request(q, cmd->request);
171 	kblockd_schedule_work(&device->requeue_work);
172 	spin_unlock_irqrestore(q->queue_lock, flags);
173 }
174 
175 /*
176  * Function:    scsi_queue_insert()
177  *
178  * Purpose:     Insert a command in the midlevel queue.
179  *
180  * Arguments:   cmd    - command that we are adding to queue.
181  *              reason - why we are inserting command to queue.
182  *
183  * Lock status: Assumed that lock is not held upon entry.
184  *
185  * Returns:     Nothing.
186  *
187  * Notes:       We do this for one of two cases.  Either the host is busy
188  *              and it cannot accept any more commands for the time being,
189  *              or the device returned QUEUE_FULL and can accept no more
190  *              commands.
191  * Notes:       This could be called either from an interrupt context or a
192  *              normal process context.
193  */
194 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
195 {
196 	__scsi_queue_insert(cmd, reason, 1);
197 }
198 /**
199  * scsi_execute - insert request and wait for the result
200  * @sdev:	scsi device
201  * @cmd:	scsi command
202  * @data_direction: data direction
203  * @buffer:	data buffer
204  * @bufflen:	len of buffer
205  * @sense:	optional sense buffer
206  * @timeout:	request timeout in seconds
207  * @retries:	number of times to retry request
208  * @flags:	or into request flags;
209  * @resid:	optional residual length
210  *
211  * returns the req->errors value which is the scsi_cmnd result
212  * field.
213  */
214 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
215 		 int data_direction, void *buffer, unsigned bufflen,
216 		 unsigned char *sense, int timeout, int retries, u64 flags,
217 		 int *resid)
218 {
219 	struct request *req;
220 	int write = (data_direction == DMA_TO_DEVICE);
221 	int ret = DRIVER_ERROR << 24;
222 
223 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
224 	if (!req)
225 		return ret;
226 	blk_rq_set_block_pc(req);
227 
228 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
229 					buffer, bufflen, __GFP_WAIT))
230 		goto out;
231 
232 	req->cmd_len = COMMAND_SIZE(cmd[0]);
233 	memcpy(req->cmd, cmd, req->cmd_len);
234 	req->sense = sense;
235 	req->sense_len = 0;
236 	req->retries = retries;
237 	req->timeout = timeout;
238 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
239 
240 	/*
241 	 * head injection *required* here otherwise quiesce won't work
242 	 */
243 	blk_execute_rq(req->q, NULL, req, 1);
244 
245 	/*
246 	 * Some devices (USB mass-storage in particular) may transfer
247 	 * garbage data together with a residue indicating that the data
248 	 * is invalid.  Prevent the garbage from being misinterpreted
249 	 * and prevent security leaks by zeroing out the excess data.
250 	 */
251 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
252 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
253 
254 	if (resid)
255 		*resid = req->resid_len;
256 	ret = req->errors;
257  out:
258 	blk_put_request(req);
259 
260 	return ret;
261 }
262 EXPORT_SYMBOL(scsi_execute);
263 
264 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
265 		     int data_direction, void *buffer, unsigned bufflen,
266 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
267 		     int *resid, u64 flags)
268 {
269 	char *sense = NULL;
270 	int result;
271 
272 	if (sshdr) {
273 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
274 		if (!sense)
275 			return DRIVER_ERROR << 24;
276 	}
277 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
278 			      sense, timeout, retries, flags, resid);
279 	if (sshdr)
280 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
281 
282 	kfree(sense);
283 	return result;
284 }
285 EXPORT_SYMBOL(scsi_execute_req_flags);
286 
287 /*
288  * Function:    scsi_init_cmd_errh()
289  *
290  * Purpose:     Initialize cmd fields related to error handling.
291  *
292  * Arguments:   cmd	- command that is ready to be queued.
293  *
294  * Notes:       This function has the job of initializing a number of
295  *              fields related to error handling.   Typically this will
296  *              be called once for each command, as required.
297  */
298 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
299 {
300 	cmd->serial_number = 0;
301 	scsi_set_resid(cmd, 0);
302 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
303 	if (cmd->cmd_len == 0)
304 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
305 }
306 
307 void scsi_device_unbusy(struct scsi_device *sdev)
308 {
309 	struct Scsi_Host *shost = sdev->host;
310 	struct scsi_target *starget = scsi_target(sdev);
311 	unsigned long flags;
312 
313 	atomic_dec(&shost->host_busy);
314 	if (starget->can_queue > 0)
315 		atomic_dec(&starget->target_busy);
316 
317 	if (unlikely(scsi_host_in_recovery(shost) &&
318 		     (shost->host_failed || shost->host_eh_scheduled))) {
319 		spin_lock_irqsave(shost->host_lock, flags);
320 		scsi_eh_wakeup(shost);
321 		spin_unlock_irqrestore(shost->host_lock, flags);
322 	}
323 
324 	atomic_dec(&sdev->device_busy);
325 }
326 
327 static void scsi_kick_queue(struct request_queue *q)
328 {
329 	if (q->mq_ops)
330 		blk_mq_start_hw_queues(q);
331 	else
332 		blk_run_queue(q);
333 }
334 
335 /*
336  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
337  * and call blk_run_queue for all the scsi_devices on the target -
338  * including current_sdev first.
339  *
340  * Called with *no* scsi locks held.
341  */
342 static void scsi_single_lun_run(struct scsi_device *current_sdev)
343 {
344 	struct Scsi_Host *shost = current_sdev->host;
345 	struct scsi_device *sdev, *tmp;
346 	struct scsi_target *starget = scsi_target(current_sdev);
347 	unsigned long flags;
348 
349 	spin_lock_irqsave(shost->host_lock, flags);
350 	starget->starget_sdev_user = NULL;
351 	spin_unlock_irqrestore(shost->host_lock, flags);
352 
353 	/*
354 	 * Call blk_run_queue for all LUNs on the target, starting with
355 	 * current_sdev. We race with others (to set starget_sdev_user),
356 	 * but in most cases, we will be first. Ideally, each LU on the
357 	 * target would get some limited time or requests on the target.
358 	 */
359 	scsi_kick_queue(current_sdev->request_queue);
360 
361 	spin_lock_irqsave(shost->host_lock, flags);
362 	if (starget->starget_sdev_user)
363 		goto out;
364 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
365 			same_target_siblings) {
366 		if (sdev == current_sdev)
367 			continue;
368 		if (scsi_device_get(sdev))
369 			continue;
370 
371 		spin_unlock_irqrestore(shost->host_lock, flags);
372 		scsi_kick_queue(sdev->request_queue);
373 		spin_lock_irqsave(shost->host_lock, flags);
374 
375 		scsi_device_put(sdev);
376 	}
377  out:
378 	spin_unlock_irqrestore(shost->host_lock, flags);
379 }
380 
381 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
382 {
383 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
384 		return true;
385 	if (atomic_read(&sdev->device_blocked) > 0)
386 		return true;
387 	return false;
388 }
389 
390 static inline bool scsi_target_is_busy(struct scsi_target *starget)
391 {
392 	if (starget->can_queue > 0) {
393 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
394 			return true;
395 		if (atomic_read(&starget->target_blocked) > 0)
396 			return true;
397 	}
398 	return false;
399 }
400 
401 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
402 {
403 	if (shost->can_queue > 0 &&
404 	    atomic_read(&shost->host_busy) >= shost->can_queue)
405 		return true;
406 	if (atomic_read(&shost->host_blocked) > 0)
407 		return true;
408 	if (shost->host_self_blocked)
409 		return true;
410 	return false;
411 }
412 
413 static void scsi_starved_list_run(struct Scsi_Host *shost)
414 {
415 	LIST_HEAD(starved_list);
416 	struct scsi_device *sdev;
417 	unsigned long flags;
418 
419 	spin_lock_irqsave(shost->host_lock, flags);
420 	list_splice_init(&shost->starved_list, &starved_list);
421 
422 	while (!list_empty(&starved_list)) {
423 		struct request_queue *slq;
424 
425 		/*
426 		 * As long as shost is accepting commands and we have
427 		 * starved queues, call blk_run_queue. scsi_request_fn
428 		 * drops the queue_lock and can add us back to the
429 		 * starved_list.
430 		 *
431 		 * host_lock protects the starved_list and starved_entry.
432 		 * scsi_request_fn must get the host_lock before checking
433 		 * or modifying starved_list or starved_entry.
434 		 */
435 		if (scsi_host_is_busy(shost))
436 			break;
437 
438 		sdev = list_entry(starved_list.next,
439 				  struct scsi_device, starved_entry);
440 		list_del_init(&sdev->starved_entry);
441 		if (scsi_target_is_busy(scsi_target(sdev))) {
442 			list_move_tail(&sdev->starved_entry,
443 				       &shost->starved_list);
444 			continue;
445 		}
446 
447 		/*
448 		 * Once we drop the host lock, a racing scsi_remove_device()
449 		 * call may remove the sdev from the starved list and destroy
450 		 * it and the queue.  Mitigate by taking a reference to the
451 		 * queue and never touching the sdev again after we drop the
452 		 * host lock.  Note: if __scsi_remove_device() invokes
453 		 * blk_cleanup_queue() before the queue is run from this
454 		 * function then blk_run_queue() will return immediately since
455 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
456 		 */
457 		slq = sdev->request_queue;
458 		if (!blk_get_queue(slq))
459 			continue;
460 		spin_unlock_irqrestore(shost->host_lock, flags);
461 
462 		scsi_kick_queue(slq);
463 		blk_put_queue(slq);
464 
465 		spin_lock_irqsave(shost->host_lock, flags);
466 	}
467 	/* put any unprocessed entries back */
468 	list_splice(&starved_list, &shost->starved_list);
469 	spin_unlock_irqrestore(shost->host_lock, flags);
470 }
471 
472 /*
473  * Function:   scsi_run_queue()
474  *
475  * Purpose:    Select a proper request queue to serve next
476  *
477  * Arguments:  q       - last request's queue
478  *
479  * Returns:     Nothing
480  *
481  * Notes:      The previous command was completely finished, start
482  *             a new one if possible.
483  */
484 static void scsi_run_queue(struct request_queue *q)
485 {
486 	struct scsi_device *sdev = q->queuedata;
487 
488 	if (scsi_target(sdev)->single_lun)
489 		scsi_single_lun_run(sdev);
490 	if (!list_empty(&sdev->host->starved_list))
491 		scsi_starved_list_run(sdev->host);
492 
493 	if (q->mq_ops)
494 		blk_mq_start_stopped_hw_queues(q, false);
495 	else
496 		blk_run_queue(q);
497 }
498 
499 void scsi_requeue_run_queue(struct work_struct *work)
500 {
501 	struct scsi_device *sdev;
502 	struct request_queue *q;
503 
504 	sdev = container_of(work, struct scsi_device, requeue_work);
505 	q = sdev->request_queue;
506 	scsi_run_queue(q);
507 }
508 
509 /*
510  * Function:	scsi_requeue_command()
511  *
512  * Purpose:	Handle post-processing of completed commands.
513  *
514  * Arguments:	q	- queue to operate on
515  *		cmd	- command that may need to be requeued.
516  *
517  * Returns:	Nothing
518  *
519  * Notes:	After command completion, there may be blocks left
520  *		over which weren't finished by the previous command
521  *		this can be for a number of reasons - the main one is
522  *		I/O errors in the middle of the request, in which case
523  *		we need to request the blocks that come after the bad
524  *		sector.
525  * Notes:	Upon return, cmd is a stale pointer.
526  */
527 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
528 {
529 	struct scsi_device *sdev = cmd->device;
530 	struct request *req = cmd->request;
531 	unsigned long flags;
532 
533 	spin_lock_irqsave(q->queue_lock, flags);
534 	blk_unprep_request(req);
535 	req->special = NULL;
536 	scsi_put_command(cmd);
537 	blk_requeue_request(q, req);
538 	spin_unlock_irqrestore(q->queue_lock, flags);
539 
540 	scsi_run_queue(q);
541 
542 	put_device(&sdev->sdev_gendev);
543 }
544 
545 void scsi_next_command(struct scsi_cmnd *cmd)
546 {
547 	struct scsi_device *sdev = cmd->device;
548 	struct request_queue *q = sdev->request_queue;
549 
550 	scsi_put_command(cmd);
551 	scsi_run_queue(q);
552 
553 	put_device(&sdev->sdev_gendev);
554 }
555 
556 void scsi_run_host_queues(struct Scsi_Host *shost)
557 {
558 	struct scsi_device *sdev;
559 
560 	shost_for_each_device(sdev, shost)
561 		scsi_run_queue(sdev->request_queue);
562 }
563 
564 static inline unsigned int scsi_sgtable_index(unsigned short nents)
565 {
566 	unsigned int index;
567 
568 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
569 
570 	if (nents <= 8)
571 		index = 0;
572 	else
573 		index = get_count_order(nents) - 3;
574 
575 	return index;
576 }
577 
578 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
579 {
580 	struct scsi_host_sg_pool *sgp;
581 
582 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
583 	mempool_free(sgl, sgp->pool);
584 }
585 
586 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
587 {
588 	struct scsi_host_sg_pool *sgp;
589 
590 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
591 	return mempool_alloc(sgp->pool, gfp_mask);
592 }
593 
594 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
595 {
596 	if (mq && sdb->table.nents <= SCSI_MAX_SG_SEGMENTS)
597 		return;
598 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
599 }
600 
601 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
602 			      gfp_t gfp_mask, bool mq)
603 {
604 	struct scatterlist *first_chunk = NULL;
605 	int ret;
606 
607 	BUG_ON(!nents);
608 
609 	if (mq) {
610 		if (nents <= SCSI_MAX_SG_SEGMENTS) {
611 			sdb->table.nents = nents;
612 			sg_init_table(sdb->table.sgl, sdb->table.nents);
613 			return 0;
614 		}
615 		first_chunk = sdb->table.sgl;
616 	}
617 
618 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
619 			       first_chunk, gfp_mask, scsi_sg_alloc);
620 	if (unlikely(ret))
621 		scsi_free_sgtable(sdb, mq);
622 	return ret;
623 }
624 
625 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
626 {
627 	if (cmd->request->cmd_type == REQ_TYPE_FS) {
628 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
629 
630 		if (drv->uninit_command)
631 			drv->uninit_command(cmd);
632 	}
633 }
634 
635 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
636 {
637 	if (cmd->sdb.table.nents)
638 		scsi_free_sgtable(&cmd->sdb, true);
639 	if (cmd->request->next_rq && cmd->request->next_rq->special)
640 		scsi_free_sgtable(cmd->request->next_rq->special, true);
641 	if (scsi_prot_sg_count(cmd))
642 		scsi_free_sgtable(cmd->prot_sdb, true);
643 }
644 
645 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
646 {
647 	struct scsi_device *sdev = cmd->device;
648 	unsigned long flags;
649 
650 	BUG_ON(list_empty(&cmd->list));
651 
652 	scsi_mq_free_sgtables(cmd);
653 	scsi_uninit_cmd(cmd);
654 
655 	spin_lock_irqsave(&sdev->list_lock, flags);
656 	list_del_init(&cmd->list);
657 	spin_unlock_irqrestore(&sdev->list_lock, flags);
658 }
659 
660 /*
661  * Function:    scsi_release_buffers()
662  *
663  * Purpose:     Free resources allocate for a scsi_command.
664  *
665  * Arguments:   cmd	- command that we are bailing.
666  *
667  * Lock status: Assumed that no lock is held upon entry.
668  *
669  * Returns:     Nothing
670  *
671  * Notes:       In the event that an upper level driver rejects a
672  *		command, we must release resources allocated during
673  *		the __init_io() function.  Primarily this would involve
674  *		the scatter-gather table.
675  */
676 static void scsi_release_buffers(struct scsi_cmnd *cmd)
677 {
678 	if (cmd->sdb.table.nents)
679 		scsi_free_sgtable(&cmd->sdb, false);
680 
681 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
682 
683 	if (scsi_prot_sg_count(cmd))
684 		scsi_free_sgtable(cmd->prot_sdb, false);
685 }
686 
687 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
688 {
689 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
690 
691 	scsi_free_sgtable(bidi_sdb, false);
692 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
693 	cmd->request->next_rq->special = NULL;
694 }
695 
696 static bool scsi_end_request(struct request *req, int error,
697 		unsigned int bytes, unsigned int bidi_bytes)
698 {
699 	struct scsi_cmnd *cmd = req->special;
700 	struct scsi_device *sdev = cmd->device;
701 	struct request_queue *q = sdev->request_queue;
702 
703 	if (blk_update_request(req, error, bytes))
704 		return true;
705 
706 	/* Bidi request must be completed as a whole */
707 	if (unlikely(bidi_bytes) &&
708 	    blk_update_request(req->next_rq, error, bidi_bytes))
709 		return true;
710 
711 	if (blk_queue_add_random(q))
712 		add_disk_randomness(req->rq_disk);
713 
714 	if (req->mq_ctx) {
715 		/*
716 		 * In the MQ case the command gets freed by __blk_mq_end_io,
717 		 * so we have to do all cleanup that depends on it earlier.
718 		 *
719 		 * We also can't kick the queues from irq context, so we
720 		 * will have to defer it to a workqueue.
721 		 */
722 		scsi_mq_uninit_cmd(cmd);
723 
724 		__blk_mq_end_io(req, error);
725 
726 		if (scsi_target(sdev)->single_lun ||
727 		    !list_empty(&sdev->host->starved_list))
728 			kblockd_schedule_work(&sdev->requeue_work);
729 		else
730 			blk_mq_start_stopped_hw_queues(q, true);
731 
732 		put_device(&sdev->sdev_gendev);
733 	} else {
734 		unsigned long flags;
735 
736 		if (bidi_bytes)
737 			scsi_release_bidi_buffers(cmd);
738 
739 		spin_lock_irqsave(q->queue_lock, flags);
740 		blk_finish_request(req, error);
741 		spin_unlock_irqrestore(q->queue_lock, flags);
742 
743 		scsi_release_buffers(cmd);
744 		scsi_next_command(cmd);
745 	}
746 
747 	return false;
748 }
749 
750 /**
751  * __scsi_error_from_host_byte - translate SCSI error code into errno
752  * @cmd:	SCSI command (unused)
753  * @result:	scsi error code
754  *
755  * Translate SCSI error code into standard UNIX errno.
756  * Return values:
757  * -ENOLINK	temporary transport failure
758  * -EREMOTEIO	permanent target failure, do not retry
759  * -EBADE	permanent nexus failure, retry on other path
760  * -ENOSPC	No write space available
761  * -ENODATA	Medium error
762  * -EIO		unspecified I/O error
763  */
764 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
765 {
766 	int error = 0;
767 
768 	switch(host_byte(result)) {
769 	case DID_TRANSPORT_FAILFAST:
770 		error = -ENOLINK;
771 		break;
772 	case DID_TARGET_FAILURE:
773 		set_host_byte(cmd, DID_OK);
774 		error = -EREMOTEIO;
775 		break;
776 	case DID_NEXUS_FAILURE:
777 		set_host_byte(cmd, DID_OK);
778 		error = -EBADE;
779 		break;
780 	case DID_ALLOC_FAILURE:
781 		set_host_byte(cmd, DID_OK);
782 		error = -ENOSPC;
783 		break;
784 	case DID_MEDIUM_ERROR:
785 		set_host_byte(cmd, DID_OK);
786 		error = -ENODATA;
787 		break;
788 	default:
789 		error = -EIO;
790 		break;
791 	}
792 
793 	return error;
794 }
795 
796 /*
797  * Function:    scsi_io_completion()
798  *
799  * Purpose:     Completion processing for block device I/O requests.
800  *
801  * Arguments:   cmd   - command that is finished.
802  *
803  * Lock status: Assumed that no lock is held upon entry.
804  *
805  * Returns:     Nothing
806  *
807  * Notes:       We will finish off the specified number of sectors.  If we
808  *		are done, the command block will be released and the queue
809  *		function will be goosed.  If we are not done then we have to
810  *		figure out what to do next:
811  *
812  *		a) We can call scsi_requeue_command().  The request
813  *		   will be unprepared and put back on the queue.  Then
814  *		   a new command will be created for it.  This should
815  *		   be used if we made forward progress, or if we want
816  *		   to switch from READ(10) to READ(6) for example.
817  *
818  *		b) We can call __scsi_queue_insert().  The request will
819  *		   be put back on the queue and retried using the same
820  *		   command as before, possibly after a delay.
821  *
822  *		c) We can call scsi_end_request() with -EIO to fail
823  *		   the remainder of the request.
824  */
825 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
826 {
827 	int result = cmd->result;
828 	struct request_queue *q = cmd->device->request_queue;
829 	struct request *req = cmd->request;
830 	int error = 0;
831 	struct scsi_sense_hdr sshdr;
832 	int sense_valid = 0;
833 	int sense_deferred = 0;
834 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
835 	      ACTION_DELAYED_RETRY} action;
836 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
837 
838 	if (result) {
839 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
840 		if (sense_valid)
841 			sense_deferred = scsi_sense_is_deferred(&sshdr);
842 	}
843 
844 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
845 		if (result) {
846 			if (sense_valid && req->sense) {
847 				/*
848 				 * SG_IO wants current and deferred errors
849 				 */
850 				int len = 8 + cmd->sense_buffer[7];
851 
852 				if (len > SCSI_SENSE_BUFFERSIZE)
853 					len = SCSI_SENSE_BUFFERSIZE;
854 				memcpy(req->sense, cmd->sense_buffer,  len);
855 				req->sense_len = len;
856 			}
857 			if (!sense_deferred)
858 				error = __scsi_error_from_host_byte(cmd, result);
859 		}
860 		/*
861 		 * __scsi_error_from_host_byte may have reset the host_byte
862 		 */
863 		req->errors = cmd->result;
864 
865 		req->resid_len = scsi_get_resid(cmd);
866 
867 		if (scsi_bidi_cmnd(cmd)) {
868 			/*
869 			 * Bidi commands Must be complete as a whole,
870 			 * both sides at once.
871 			 */
872 			req->next_rq->resid_len = scsi_in(cmd)->resid;
873 			if (scsi_end_request(req, 0, blk_rq_bytes(req),
874 					blk_rq_bytes(req->next_rq)))
875 				BUG();
876 			return;
877 		}
878 	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
879 		/*
880 		 * Certain non BLOCK_PC requests are commands that don't
881 		 * actually transfer anything (FLUSH), so cannot use
882 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
883 		 * This sets the error explicitly for the problem case.
884 		 */
885 		error = __scsi_error_from_host_byte(cmd, result);
886 	}
887 
888 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
889 	BUG_ON(blk_bidi_rq(req));
890 
891 	/*
892 	 * Next deal with any sectors which we were able to correctly
893 	 * handle.
894 	 */
895 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
896 		"%u sectors total, %d bytes done.\n",
897 		blk_rq_sectors(req), good_bytes));
898 
899 	/*
900 	 * Recovered errors need reporting, but they're always treated
901 	 * as success, so fiddle the result code here.  For BLOCK_PC
902 	 * we already took a copy of the original into rq->errors which
903 	 * is what gets returned to the user
904 	 */
905 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
906 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
907 		 * print since caller wants ATA registers. Only occurs on
908 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
909 		 */
910 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
911 			;
912 		else if (!(req->cmd_flags & REQ_QUIET))
913 			scsi_print_sense("", cmd);
914 		result = 0;
915 		/* BLOCK_PC may have set error */
916 		error = 0;
917 	}
918 
919 	/*
920 	 * If we finished all bytes in the request we are done now.
921 	 */
922 	if (!scsi_end_request(req, error, good_bytes, 0))
923 		return;
924 
925 	/*
926 	 * Kill remainder if no retrys.
927 	 */
928 	if (error && scsi_noretry_cmd(cmd)) {
929 		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
930 			BUG();
931 		return;
932 	}
933 
934 	/*
935 	 * If there had been no error, but we have leftover bytes in the
936 	 * requeues just queue the command up again.
937 	 */
938 	if (result == 0)
939 		goto requeue;
940 
941 	error = __scsi_error_from_host_byte(cmd, result);
942 
943 	if (host_byte(result) == DID_RESET) {
944 		/* Third party bus reset or reset for error recovery
945 		 * reasons.  Just retry the command and see what
946 		 * happens.
947 		 */
948 		action = ACTION_RETRY;
949 	} else if (sense_valid && !sense_deferred) {
950 		switch (sshdr.sense_key) {
951 		case UNIT_ATTENTION:
952 			if (cmd->device->removable) {
953 				/* Detected disc change.  Set a bit
954 				 * and quietly refuse further access.
955 				 */
956 				cmd->device->changed = 1;
957 				action = ACTION_FAIL;
958 			} else {
959 				/* Must have been a power glitch, or a
960 				 * bus reset.  Could not have been a
961 				 * media change, so we just retry the
962 				 * command and see what happens.
963 				 */
964 				action = ACTION_RETRY;
965 			}
966 			break;
967 		case ILLEGAL_REQUEST:
968 			/* If we had an ILLEGAL REQUEST returned, then
969 			 * we may have performed an unsupported
970 			 * command.  The only thing this should be
971 			 * would be a ten byte read where only a six
972 			 * byte read was supported.  Also, on a system
973 			 * where READ CAPACITY failed, we may have
974 			 * read past the end of the disk.
975 			 */
976 			if ((cmd->device->use_10_for_rw &&
977 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
978 			    (cmd->cmnd[0] == READ_10 ||
979 			     cmd->cmnd[0] == WRITE_10)) {
980 				/* This will issue a new 6-byte command. */
981 				cmd->device->use_10_for_rw = 0;
982 				action = ACTION_REPREP;
983 			} else if (sshdr.asc == 0x10) /* DIX */ {
984 				action = ACTION_FAIL;
985 				error = -EILSEQ;
986 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
987 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
988 				action = ACTION_FAIL;
989 				error = -EREMOTEIO;
990 			} else
991 				action = ACTION_FAIL;
992 			break;
993 		case ABORTED_COMMAND:
994 			action = ACTION_FAIL;
995 			if (sshdr.asc == 0x10) /* DIF */
996 				error = -EILSEQ;
997 			break;
998 		case NOT_READY:
999 			/* If the device is in the process of becoming
1000 			 * ready, or has a temporary blockage, retry.
1001 			 */
1002 			if (sshdr.asc == 0x04) {
1003 				switch (sshdr.ascq) {
1004 				case 0x01: /* becoming ready */
1005 				case 0x04: /* format in progress */
1006 				case 0x05: /* rebuild in progress */
1007 				case 0x06: /* recalculation in progress */
1008 				case 0x07: /* operation in progress */
1009 				case 0x08: /* Long write in progress */
1010 				case 0x09: /* self test in progress */
1011 				case 0x14: /* space allocation in progress */
1012 					action = ACTION_DELAYED_RETRY;
1013 					break;
1014 				default:
1015 					action = ACTION_FAIL;
1016 					break;
1017 				}
1018 			} else
1019 				action = ACTION_FAIL;
1020 			break;
1021 		case VOLUME_OVERFLOW:
1022 			/* See SSC3rXX or current. */
1023 			action = ACTION_FAIL;
1024 			break;
1025 		default:
1026 			action = ACTION_FAIL;
1027 			break;
1028 		}
1029 	} else
1030 		action = ACTION_FAIL;
1031 
1032 	if (action != ACTION_FAIL &&
1033 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1034 		action = ACTION_FAIL;
1035 
1036 	switch (action) {
1037 	case ACTION_FAIL:
1038 		/* Give up and fail the remainder of the request */
1039 		if (!(req->cmd_flags & REQ_QUIET)) {
1040 			scsi_print_result(cmd);
1041 			if (driver_byte(result) & DRIVER_SENSE)
1042 				scsi_print_sense("", cmd);
1043 			scsi_print_command(cmd);
1044 		}
1045 		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1046 			return;
1047 		/*FALLTHRU*/
1048 	case ACTION_REPREP:
1049 	requeue:
1050 		/* Unprep the request and put it back at the head of the queue.
1051 		 * A new command will be prepared and issued.
1052 		 */
1053 		if (q->mq_ops) {
1054 			cmd->request->cmd_flags &= ~REQ_DONTPREP;
1055 			scsi_mq_uninit_cmd(cmd);
1056 			scsi_mq_requeue_cmd(cmd);
1057 		} else {
1058 			scsi_release_buffers(cmd);
1059 			scsi_requeue_command(q, cmd);
1060 		}
1061 		break;
1062 	case ACTION_RETRY:
1063 		/* Retry the same command immediately */
1064 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1065 		break;
1066 	case ACTION_DELAYED_RETRY:
1067 		/* Retry the same command after a delay */
1068 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1069 		break;
1070 	}
1071 }
1072 
1073 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1074 			     gfp_t gfp_mask)
1075 {
1076 	int count;
1077 
1078 	/*
1079 	 * If sg table allocation fails, requeue request later.
1080 	 */
1081 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1082 					gfp_mask, req->mq_ctx != NULL)))
1083 		return BLKPREP_DEFER;
1084 
1085 	/*
1086 	 * Next, walk the list, and fill in the addresses and sizes of
1087 	 * each segment.
1088 	 */
1089 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1090 	BUG_ON(count > sdb->table.nents);
1091 	sdb->table.nents = count;
1092 	sdb->length = blk_rq_bytes(req);
1093 	return BLKPREP_OK;
1094 }
1095 
1096 /*
1097  * Function:    scsi_init_io()
1098  *
1099  * Purpose:     SCSI I/O initialize function.
1100  *
1101  * Arguments:   cmd   - Command descriptor we wish to initialize
1102  *
1103  * Returns:     0 on success
1104  *		BLKPREP_DEFER if the failure is retryable
1105  *		BLKPREP_KILL if the failure is fatal
1106  */
1107 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1108 {
1109 	struct scsi_device *sdev = cmd->device;
1110 	struct request *rq = cmd->request;
1111 	bool is_mq = (rq->mq_ctx != NULL);
1112 	int error;
1113 
1114 	BUG_ON(!rq->nr_phys_segments);
1115 
1116 	error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1117 	if (error)
1118 		goto err_exit;
1119 
1120 	if (blk_bidi_rq(rq)) {
1121 		if (!rq->q->mq_ops) {
1122 			struct scsi_data_buffer *bidi_sdb =
1123 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1124 			if (!bidi_sdb) {
1125 				error = BLKPREP_DEFER;
1126 				goto err_exit;
1127 			}
1128 
1129 			rq->next_rq->special = bidi_sdb;
1130 		}
1131 
1132 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special,
1133 					  GFP_ATOMIC);
1134 		if (error)
1135 			goto err_exit;
1136 	}
1137 
1138 	if (blk_integrity_rq(rq)) {
1139 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1140 		int ivecs, count;
1141 
1142 		BUG_ON(prot_sdb == NULL);
1143 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1144 
1145 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask, is_mq)) {
1146 			error = BLKPREP_DEFER;
1147 			goto err_exit;
1148 		}
1149 
1150 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1151 						prot_sdb->table.sgl);
1152 		BUG_ON(unlikely(count > ivecs));
1153 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1154 
1155 		cmd->prot_sdb = prot_sdb;
1156 		cmd->prot_sdb->table.nents = count;
1157 	}
1158 
1159 	return BLKPREP_OK;
1160 err_exit:
1161 	if (is_mq) {
1162 		scsi_mq_free_sgtables(cmd);
1163 	} else {
1164 		scsi_release_buffers(cmd);
1165 		cmd->request->special = NULL;
1166 		scsi_put_command(cmd);
1167 		put_device(&sdev->sdev_gendev);
1168 	}
1169 	return error;
1170 }
1171 EXPORT_SYMBOL(scsi_init_io);
1172 
1173 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1174 		struct request *req)
1175 {
1176 	struct scsi_cmnd *cmd;
1177 
1178 	if (!req->special) {
1179 		/* Bail if we can't get a reference to the device */
1180 		if (!get_device(&sdev->sdev_gendev))
1181 			return NULL;
1182 
1183 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1184 		if (unlikely(!cmd)) {
1185 			put_device(&sdev->sdev_gendev);
1186 			return NULL;
1187 		}
1188 		req->special = cmd;
1189 	} else {
1190 		cmd = req->special;
1191 	}
1192 
1193 	/* pull a tag out of the request if we have one */
1194 	cmd->tag = req->tag;
1195 	cmd->request = req;
1196 
1197 	cmd->cmnd = req->cmd;
1198 	cmd->prot_op = SCSI_PROT_NORMAL;
1199 
1200 	return cmd;
1201 }
1202 
1203 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1204 {
1205 	struct scsi_cmnd *cmd = req->special;
1206 
1207 	/*
1208 	 * BLOCK_PC requests may transfer data, in which case they must
1209 	 * a bio attached to them.  Or they might contain a SCSI command
1210 	 * that does not transfer data, in which case they may optionally
1211 	 * submit a request without an attached bio.
1212 	 */
1213 	if (req->bio) {
1214 		int ret = scsi_init_io(cmd, GFP_ATOMIC);
1215 		if (unlikely(ret))
1216 			return ret;
1217 	} else {
1218 		BUG_ON(blk_rq_bytes(req));
1219 
1220 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1221 	}
1222 
1223 	cmd->cmd_len = req->cmd_len;
1224 	cmd->transfersize = blk_rq_bytes(req);
1225 	cmd->allowed = req->retries;
1226 	return BLKPREP_OK;
1227 }
1228 
1229 /*
1230  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1231  * that still need to be translated to SCSI CDBs from the ULD.
1232  */
1233 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1234 {
1235 	struct scsi_cmnd *cmd = req->special;
1236 
1237 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1238 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1239 		int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1240 		if (ret != BLKPREP_OK)
1241 			return ret;
1242 	}
1243 
1244 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1245 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1246 }
1247 
1248 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1249 {
1250 	struct scsi_cmnd *cmd = req->special;
1251 
1252 	if (!blk_rq_bytes(req))
1253 		cmd->sc_data_direction = DMA_NONE;
1254 	else if (rq_data_dir(req) == WRITE)
1255 		cmd->sc_data_direction = DMA_TO_DEVICE;
1256 	else
1257 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1258 
1259 	switch (req->cmd_type) {
1260 	case REQ_TYPE_FS:
1261 		return scsi_setup_fs_cmnd(sdev, req);
1262 	case REQ_TYPE_BLOCK_PC:
1263 		return scsi_setup_blk_pc_cmnd(sdev, req);
1264 	default:
1265 		return BLKPREP_KILL;
1266 	}
1267 }
1268 
1269 static int
1270 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1271 {
1272 	int ret = BLKPREP_OK;
1273 
1274 	/*
1275 	 * If the device is not in running state we will reject some
1276 	 * or all commands.
1277 	 */
1278 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1279 		switch (sdev->sdev_state) {
1280 		case SDEV_OFFLINE:
1281 		case SDEV_TRANSPORT_OFFLINE:
1282 			/*
1283 			 * If the device is offline we refuse to process any
1284 			 * commands.  The device must be brought online
1285 			 * before trying any recovery commands.
1286 			 */
1287 			sdev_printk(KERN_ERR, sdev,
1288 				    "rejecting I/O to offline device\n");
1289 			ret = BLKPREP_KILL;
1290 			break;
1291 		case SDEV_DEL:
1292 			/*
1293 			 * If the device is fully deleted, we refuse to
1294 			 * process any commands as well.
1295 			 */
1296 			sdev_printk(KERN_ERR, sdev,
1297 				    "rejecting I/O to dead device\n");
1298 			ret = BLKPREP_KILL;
1299 			break;
1300 		case SDEV_QUIESCE:
1301 		case SDEV_BLOCK:
1302 		case SDEV_CREATED_BLOCK:
1303 			/*
1304 			 * If the devices is blocked we defer normal commands.
1305 			 */
1306 			if (!(req->cmd_flags & REQ_PREEMPT))
1307 				ret = BLKPREP_DEFER;
1308 			break;
1309 		default:
1310 			/*
1311 			 * For any other not fully online state we only allow
1312 			 * special commands.  In particular any user initiated
1313 			 * command is not allowed.
1314 			 */
1315 			if (!(req->cmd_flags & REQ_PREEMPT))
1316 				ret = BLKPREP_KILL;
1317 			break;
1318 		}
1319 	}
1320 	return ret;
1321 }
1322 
1323 static int
1324 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1325 {
1326 	struct scsi_device *sdev = q->queuedata;
1327 
1328 	switch (ret) {
1329 	case BLKPREP_KILL:
1330 		req->errors = DID_NO_CONNECT << 16;
1331 		/* release the command and kill it */
1332 		if (req->special) {
1333 			struct scsi_cmnd *cmd = req->special;
1334 			scsi_release_buffers(cmd);
1335 			scsi_put_command(cmd);
1336 			put_device(&sdev->sdev_gendev);
1337 			req->special = NULL;
1338 		}
1339 		break;
1340 	case BLKPREP_DEFER:
1341 		/*
1342 		 * If we defer, the blk_peek_request() returns NULL, but the
1343 		 * queue must be restarted, so we schedule a callback to happen
1344 		 * shortly.
1345 		 */
1346 		if (atomic_read(&sdev->device_busy) == 0)
1347 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1348 		break;
1349 	default:
1350 		req->cmd_flags |= REQ_DONTPREP;
1351 	}
1352 
1353 	return ret;
1354 }
1355 
1356 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1357 {
1358 	struct scsi_device *sdev = q->queuedata;
1359 	struct scsi_cmnd *cmd;
1360 	int ret;
1361 
1362 	ret = scsi_prep_state_check(sdev, req);
1363 	if (ret != BLKPREP_OK)
1364 		goto out;
1365 
1366 	cmd = scsi_get_cmd_from_req(sdev, req);
1367 	if (unlikely(!cmd)) {
1368 		ret = BLKPREP_DEFER;
1369 		goto out;
1370 	}
1371 
1372 	ret = scsi_setup_cmnd(sdev, req);
1373 out:
1374 	return scsi_prep_return(q, req, ret);
1375 }
1376 
1377 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1378 {
1379 	scsi_uninit_cmd(req->special);
1380 }
1381 
1382 /*
1383  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1384  * return 0.
1385  *
1386  * Called with the queue_lock held.
1387  */
1388 static inline int scsi_dev_queue_ready(struct request_queue *q,
1389 				  struct scsi_device *sdev)
1390 {
1391 	unsigned int busy;
1392 
1393 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1394 	if (atomic_read(&sdev->device_blocked)) {
1395 		if (busy)
1396 			goto out_dec;
1397 
1398 		/*
1399 		 * unblock after device_blocked iterates to zero
1400 		 */
1401 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1402 			/*
1403 			 * For the MQ case we take care of this in the caller.
1404 			 */
1405 			if (!q->mq_ops)
1406 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1407 			goto out_dec;
1408 		}
1409 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1410 				   "unblocking device at zero depth\n"));
1411 	}
1412 
1413 	if (busy >= sdev->queue_depth)
1414 		goto out_dec;
1415 
1416 	return 1;
1417 out_dec:
1418 	atomic_dec(&sdev->device_busy);
1419 	return 0;
1420 }
1421 
1422 /*
1423  * scsi_target_queue_ready: checks if there we can send commands to target
1424  * @sdev: scsi device on starget to check.
1425  */
1426 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1427 					   struct scsi_device *sdev)
1428 {
1429 	struct scsi_target *starget = scsi_target(sdev);
1430 	unsigned int busy;
1431 
1432 	if (starget->single_lun) {
1433 		spin_lock_irq(shost->host_lock);
1434 		if (starget->starget_sdev_user &&
1435 		    starget->starget_sdev_user != sdev) {
1436 			spin_unlock_irq(shost->host_lock);
1437 			return 0;
1438 		}
1439 		starget->starget_sdev_user = sdev;
1440 		spin_unlock_irq(shost->host_lock);
1441 	}
1442 
1443 	if (starget->can_queue <= 0)
1444 		return 1;
1445 
1446 	busy = atomic_inc_return(&starget->target_busy) - 1;
1447 	if (atomic_read(&starget->target_blocked) > 0) {
1448 		if (busy)
1449 			goto starved;
1450 
1451 		/*
1452 		 * unblock after target_blocked iterates to zero
1453 		 */
1454 		if (atomic_dec_return(&starget->target_blocked) > 0)
1455 			goto out_dec;
1456 
1457 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1458 				 "unblocking target at zero depth\n"));
1459 	}
1460 
1461 	if (busy >= starget->can_queue)
1462 		goto starved;
1463 
1464 	return 1;
1465 
1466 starved:
1467 	spin_lock_irq(shost->host_lock);
1468 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1469 	spin_unlock_irq(shost->host_lock);
1470 out_dec:
1471 	if (starget->can_queue > 0)
1472 		atomic_dec(&starget->target_busy);
1473 	return 0;
1474 }
1475 
1476 /*
1477  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1478  * return 0. We must end up running the queue again whenever 0 is
1479  * returned, else IO can hang.
1480  */
1481 static inline int scsi_host_queue_ready(struct request_queue *q,
1482 				   struct Scsi_Host *shost,
1483 				   struct scsi_device *sdev)
1484 {
1485 	unsigned int busy;
1486 
1487 	if (scsi_host_in_recovery(shost))
1488 		return 0;
1489 
1490 	busy = atomic_inc_return(&shost->host_busy) - 1;
1491 	if (atomic_read(&shost->host_blocked) > 0) {
1492 		if (busy)
1493 			goto starved;
1494 
1495 		/*
1496 		 * unblock after host_blocked iterates to zero
1497 		 */
1498 		if (atomic_dec_return(&shost->host_blocked) > 0)
1499 			goto out_dec;
1500 
1501 		SCSI_LOG_MLQUEUE(3,
1502 			shost_printk(KERN_INFO, shost,
1503 				     "unblocking host at zero depth\n"));
1504 	}
1505 
1506 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1507 		goto starved;
1508 	if (shost->host_self_blocked)
1509 		goto starved;
1510 
1511 	/* We're OK to process the command, so we can't be starved */
1512 	if (!list_empty(&sdev->starved_entry)) {
1513 		spin_lock_irq(shost->host_lock);
1514 		if (!list_empty(&sdev->starved_entry))
1515 			list_del_init(&sdev->starved_entry);
1516 		spin_unlock_irq(shost->host_lock);
1517 	}
1518 
1519 	return 1;
1520 
1521 starved:
1522 	spin_lock_irq(shost->host_lock);
1523 	if (list_empty(&sdev->starved_entry))
1524 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1525 	spin_unlock_irq(shost->host_lock);
1526 out_dec:
1527 	atomic_dec(&shost->host_busy);
1528 	return 0;
1529 }
1530 
1531 /*
1532  * Busy state exporting function for request stacking drivers.
1533  *
1534  * For efficiency, no lock is taken to check the busy state of
1535  * shost/starget/sdev, since the returned value is not guaranteed and
1536  * may be changed after request stacking drivers call the function,
1537  * regardless of taking lock or not.
1538  *
1539  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1540  * needs to return 'not busy'. Otherwise, request stacking drivers
1541  * may hold requests forever.
1542  */
1543 static int scsi_lld_busy(struct request_queue *q)
1544 {
1545 	struct scsi_device *sdev = q->queuedata;
1546 	struct Scsi_Host *shost;
1547 
1548 	if (blk_queue_dying(q))
1549 		return 0;
1550 
1551 	shost = sdev->host;
1552 
1553 	/*
1554 	 * Ignore host/starget busy state.
1555 	 * Since block layer does not have a concept of fairness across
1556 	 * multiple queues, congestion of host/starget needs to be handled
1557 	 * in SCSI layer.
1558 	 */
1559 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1560 		return 1;
1561 
1562 	return 0;
1563 }
1564 
1565 /*
1566  * Kill a request for a dead device
1567  */
1568 static void scsi_kill_request(struct request *req, struct request_queue *q)
1569 {
1570 	struct scsi_cmnd *cmd = req->special;
1571 	struct scsi_device *sdev;
1572 	struct scsi_target *starget;
1573 	struct Scsi_Host *shost;
1574 
1575 	blk_start_request(req);
1576 
1577 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1578 
1579 	sdev = cmd->device;
1580 	starget = scsi_target(sdev);
1581 	shost = sdev->host;
1582 	scsi_init_cmd_errh(cmd);
1583 	cmd->result = DID_NO_CONNECT << 16;
1584 	atomic_inc(&cmd->device->iorequest_cnt);
1585 
1586 	/*
1587 	 * SCSI request completion path will do scsi_device_unbusy(),
1588 	 * bump busy counts.  To bump the counters, we need to dance
1589 	 * with the locks as normal issue path does.
1590 	 */
1591 	atomic_inc(&sdev->device_busy);
1592 	atomic_inc(&shost->host_busy);
1593 	if (starget->can_queue > 0)
1594 		atomic_inc(&starget->target_busy);
1595 
1596 	blk_complete_request(req);
1597 }
1598 
1599 static void scsi_softirq_done(struct request *rq)
1600 {
1601 	struct scsi_cmnd *cmd = rq->special;
1602 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1603 	int disposition;
1604 
1605 	INIT_LIST_HEAD(&cmd->eh_entry);
1606 
1607 	atomic_inc(&cmd->device->iodone_cnt);
1608 	if (cmd->result)
1609 		atomic_inc(&cmd->device->ioerr_cnt);
1610 
1611 	disposition = scsi_decide_disposition(cmd);
1612 	if (disposition != SUCCESS &&
1613 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1614 		sdev_printk(KERN_ERR, cmd->device,
1615 			    "timing out command, waited %lus\n",
1616 			    wait_for/HZ);
1617 		disposition = SUCCESS;
1618 	}
1619 
1620 	scsi_log_completion(cmd, disposition);
1621 
1622 	switch (disposition) {
1623 		case SUCCESS:
1624 			scsi_finish_command(cmd);
1625 			break;
1626 		case NEEDS_RETRY:
1627 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1628 			break;
1629 		case ADD_TO_MLQUEUE:
1630 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1631 			break;
1632 		default:
1633 			if (!scsi_eh_scmd_add(cmd, 0))
1634 				scsi_finish_command(cmd);
1635 	}
1636 }
1637 
1638 /**
1639  * scsi_done - Invoke completion on finished SCSI command.
1640  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1641  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1642  *
1643  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1644  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1645  * calls blk_complete_request() for further processing.
1646  *
1647  * This function is interrupt context safe.
1648  */
1649 static void scsi_done(struct scsi_cmnd *cmd)
1650 {
1651 	trace_scsi_dispatch_cmd_done(cmd);
1652 	blk_complete_request(cmd->request);
1653 }
1654 
1655 /*
1656  * Function:    scsi_request_fn()
1657  *
1658  * Purpose:     Main strategy routine for SCSI.
1659  *
1660  * Arguments:   q       - Pointer to actual queue.
1661  *
1662  * Returns:     Nothing
1663  *
1664  * Lock status: IO request lock assumed to be held when called.
1665  */
1666 static void scsi_request_fn(struct request_queue *q)
1667 	__releases(q->queue_lock)
1668 	__acquires(q->queue_lock)
1669 {
1670 	struct scsi_device *sdev = q->queuedata;
1671 	struct Scsi_Host *shost;
1672 	struct scsi_cmnd *cmd;
1673 	struct request *req;
1674 
1675 	/*
1676 	 * To start with, we keep looping until the queue is empty, or until
1677 	 * the host is no longer able to accept any more requests.
1678 	 */
1679 	shost = sdev->host;
1680 	for (;;) {
1681 		int rtn;
1682 		/*
1683 		 * get next queueable request.  We do this early to make sure
1684 		 * that the request is fully prepared even if we cannot
1685 		 * accept it.
1686 		 */
1687 		req = blk_peek_request(q);
1688 		if (!req)
1689 			break;
1690 
1691 		if (unlikely(!scsi_device_online(sdev))) {
1692 			sdev_printk(KERN_ERR, sdev,
1693 				    "rejecting I/O to offline device\n");
1694 			scsi_kill_request(req, q);
1695 			continue;
1696 		}
1697 
1698 		if (!scsi_dev_queue_ready(q, sdev))
1699 			break;
1700 
1701 		/*
1702 		 * Remove the request from the request list.
1703 		 */
1704 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1705 			blk_start_request(req);
1706 
1707 		spin_unlock_irq(q->queue_lock);
1708 		cmd = req->special;
1709 		if (unlikely(cmd == NULL)) {
1710 			printk(KERN_CRIT "impossible request in %s.\n"
1711 					 "please mail a stack trace to "
1712 					 "linux-scsi@vger.kernel.org\n",
1713 					 __func__);
1714 			blk_dump_rq_flags(req, "foo");
1715 			BUG();
1716 		}
1717 
1718 		/*
1719 		 * We hit this when the driver is using a host wide
1720 		 * tag map. For device level tag maps the queue_depth check
1721 		 * in the device ready fn would prevent us from trying
1722 		 * to allocate a tag. Since the map is a shared host resource
1723 		 * we add the dev to the starved list so it eventually gets
1724 		 * a run when a tag is freed.
1725 		 */
1726 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1727 			spin_lock_irq(shost->host_lock);
1728 			if (list_empty(&sdev->starved_entry))
1729 				list_add_tail(&sdev->starved_entry,
1730 					      &shost->starved_list);
1731 			spin_unlock_irq(shost->host_lock);
1732 			goto not_ready;
1733 		}
1734 
1735 		if (!scsi_target_queue_ready(shost, sdev))
1736 			goto not_ready;
1737 
1738 		if (!scsi_host_queue_ready(q, shost, sdev))
1739 			goto host_not_ready;
1740 
1741 		/*
1742 		 * Finally, initialize any error handling parameters, and set up
1743 		 * the timers for timeouts.
1744 		 */
1745 		scsi_init_cmd_errh(cmd);
1746 
1747 		/*
1748 		 * Dispatch the command to the low-level driver.
1749 		 */
1750 		cmd->scsi_done = scsi_done;
1751 		rtn = scsi_dispatch_cmd(cmd);
1752 		if (rtn) {
1753 			scsi_queue_insert(cmd, rtn);
1754 			spin_lock_irq(q->queue_lock);
1755 			goto out_delay;
1756 		}
1757 		spin_lock_irq(q->queue_lock);
1758 	}
1759 
1760 	return;
1761 
1762  host_not_ready:
1763 	if (scsi_target(sdev)->can_queue > 0)
1764 		atomic_dec(&scsi_target(sdev)->target_busy);
1765  not_ready:
1766 	/*
1767 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1768 	 * must return with queue_lock held.
1769 	 *
1770 	 * Decrementing device_busy without checking it is OK, as all such
1771 	 * cases (host limits or settings) should run the queue at some
1772 	 * later time.
1773 	 */
1774 	spin_lock_irq(q->queue_lock);
1775 	blk_requeue_request(q, req);
1776 	atomic_dec(&sdev->device_busy);
1777 out_delay:
1778 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1779 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1780 }
1781 
1782 static inline int prep_to_mq(int ret)
1783 {
1784 	switch (ret) {
1785 	case BLKPREP_OK:
1786 		return 0;
1787 	case BLKPREP_DEFER:
1788 		return BLK_MQ_RQ_QUEUE_BUSY;
1789 	default:
1790 		return BLK_MQ_RQ_QUEUE_ERROR;
1791 	}
1792 }
1793 
1794 static int scsi_mq_prep_fn(struct request *req)
1795 {
1796 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1797 	struct scsi_device *sdev = req->q->queuedata;
1798 	struct Scsi_Host *shost = sdev->host;
1799 	unsigned char *sense_buf = cmd->sense_buffer;
1800 	struct scatterlist *sg;
1801 
1802 	memset(cmd, 0, sizeof(struct scsi_cmnd));
1803 
1804 	req->special = cmd;
1805 
1806 	cmd->request = req;
1807 	cmd->device = sdev;
1808 	cmd->sense_buffer = sense_buf;
1809 
1810 	cmd->tag = req->tag;
1811 
1812 	cmd->cmnd = req->cmd;
1813 	cmd->prot_op = SCSI_PROT_NORMAL;
1814 
1815 	INIT_LIST_HEAD(&cmd->list);
1816 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1817 	cmd->jiffies_at_alloc = jiffies;
1818 
1819 	/*
1820 	 * XXX: cmd_list lookups are only used by two drivers, try to get
1821 	 * rid of this list in common code.
1822 	 */
1823 	spin_lock_irq(&sdev->list_lock);
1824 	list_add_tail(&cmd->list, &sdev->cmd_list);
1825 	spin_unlock_irq(&sdev->list_lock);
1826 
1827 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1828 	cmd->sdb.table.sgl = sg;
1829 
1830 	if (scsi_host_get_prot(shost)) {
1831 		cmd->prot_sdb = (void *)sg +
1832 			shost->sg_tablesize * sizeof(struct scatterlist);
1833 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1834 
1835 		cmd->prot_sdb->table.sgl =
1836 			(struct scatterlist *)(cmd->prot_sdb + 1);
1837 	}
1838 
1839 	if (blk_bidi_rq(req)) {
1840 		struct request *next_rq = req->next_rq;
1841 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1842 
1843 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1844 		bidi_sdb->table.sgl =
1845 			(struct scatterlist *)(bidi_sdb + 1);
1846 
1847 		next_rq->special = bidi_sdb;
1848 	}
1849 
1850 	return scsi_setup_cmnd(sdev, req);
1851 }
1852 
1853 static void scsi_mq_done(struct scsi_cmnd *cmd)
1854 {
1855 	trace_scsi_dispatch_cmd_done(cmd);
1856 	blk_mq_complete_request(cmd->request);
1857 }
1858 
1859 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx, struct request *req)
1860 {
1861 	struct request_queue *q = req->q;
1862 	struct scsi_device *sdev = q->queuedata;
1863 	struct Scsi_Host *shost = sdev->host;
1864 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1865 	int ret;
1866 	int reason;
1867 
1868 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1869 	if (ret)
1870 		goto out;
1871 
1872 	ret = BLK_MQ_RQ_QUEUE_BUSY;
1873 	if (!get_device(&sdev->sdev_gendev))
1874 		goto out;
1875 
1876 	if (!scsi_dev_queue_ready(q, sdev))
1877 		goto out_put_device;
1878 	if (!scsi_target_queue_ready(shost, sdev))
1879 		goto out_dec_device_busy;
1880 	if (!scsi_host_queue_ready(q, shost, sdev))
1881 		goto out_dec_target_busy;
1882 
1883 	if (!(req->cmd_flags & REQ_DONTPREP)) {
1884 		ret = prep_to_mq(scsi_mq_prep_fn(req));
1885 		if (ret)
1886 			goto out_dec_host_busy;
1887 		req->cmd_flags |= REQ_DONTPREP;
1888 	}
1889 
1890 	scsi_init_cmd_errh(cmd);
1891 	cmd->scsi_done = scsi_mq_done;
1892 
1893 	reason = scsi_dispatch_cmd(cmd);
1894 	if (reason) {
1895 		scsi_set_blocked(cmd, reason);
1896 		ret = BLK_MQ_RQ_QUEUE_BUSY;
1897 		goto out_dec_host_busy;
1898 	}
1899 
1900 	return BLK_MQ_RQ_QUEUE_OK;
1901 
1902 out_dec_host_busy:
1903 	atomic_dec(&shost->host_busy);
1904 out_dec_target_busy:
1905 	if (scsi_target(sdev)->can_queue > 0)
1906 		atomic_dec(&scsi_target(sdev)->target_busy);
1907 out_dec_device_busy:
1908 	atomic_dec(&sdev->device_busy);
1909 out_put_device:
1910 	put_device(&sdev->sdev_gendev);
1911 out:
1912 	switch (ret) {
1913 	case BLK_MQ_RQ_QUEUE_BUSY:
1914 		blk_mq_stop_hw_queue(hctx);
1915 		if (atomic_read(&sdev->device_busy) == 0 &&
1916 		    !scsi_device_blocked(sdev))
1917 			blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1918 		break;
1919 	case BLK_MQ_RQ_QUEUE_ERROR:
1920 		/*
1921 		 * Make sure to release all allocated ressources when
1922 		 * we hit an error, as we will never see this command
1923 		 * again.
1924 		 */
1925 		if (req->cmd_flags & REQ_DONTPREP)
1926 			scsi_mq_uninit_cmd(cmd);
1927 		break;
1928 	default:
1929 		break;
1930 	}
1931 	return ret;
1932 }
1933 
1934 static int scsi_init_request(void *data, struct request *rq,
1935 		unsigned int hctx_idx, unsigned int request_idx,
1936 		unsigned int numa_node)
1937 {
1938 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1939 
1940 	cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1941 			numa_node);
1942 	if (!cmd->sense_buffer)
1943 		return -ENOMEM;
1944 	return 0;
1945 }
1946 
1947 static void scsi_exit_request(void *data, struct request *rq,
1948 		unsigned int hctx_idx, unsigned int request_idx)
1949 {
1950 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1951 
1952 	kfree(cmd->sense_buffer);
1953 }
1954 
1955 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1956 {
1957 	struct device *host_dev;
1958 	u64 bounce_limit = 0xffffffff;
1959 
1960 	if (shost->unchecked_isa_dma)
1961 		return BLK_BOUNCE_ISA;
1962 	/*
1963 	 * Platforms with virtual-DMA translation
1964 	 * hardware have no practical limit.
1965 	 */
1966 	if (!PCI_DMA_BUS_IS_PHYS)
1967 		return BLK_BOUNCE_ANY;
1968 
1969 	host_dev = scsi_get_device(shost);
1970 	if (host_dev && host_dev->dma_mask)
1971 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1972 
1973 	return bounce_limit;
1974 }
1975 
1976 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1977 {
1978 	struct device *dev = shost->dma_dev;
1979 
1980 	/*
1981 	 * this limit is imposed by hardware restrictions
1982 	 */
1983 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1984 					SCSI_MAX_SG_CHAIN_SEGMENTS));
1985 
1986 	if (scsi_host_prot_dma(shost)) {
1987 		shost->sg_prot_tablesize =
1988 			min_not_zero(shost->sg_prot_tablesize,
1989 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1990 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1991 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1992 	}
1993 
1994 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1995 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1996 	blk_queue_segment_boundary(q, shost->dma_boundary);
1997 	dma_set_seg_boundary(dev, shost->dma_boundary);
1998 
1999 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2000 
2001 	if (!shost->use_clustering)
2002 		q->limits.cluster = 0;
2003 
2004 	/*
2005 	 * set a reasonable default alignment on word boundaries: the
2006 	 * host and device may alter it using
2007 	 * blk_queue_update_dma_alignment() later.
2008 	 */
2009 	blk_queue_dma_alignment(q, 0x03);
2010 }
2011 
2012 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2013 					 request_fn_proc *request_fn)
2014 {
2015 	struct request_queue *q;
2016 
2017 	q = blk_init_queue(request_fn, NULL);
2018 	if (!q)
2019 		return NULL;
2020 	__scsi_init_queue(shost, q);
2021 	return q;
2022 }
2023 EXPORT_SYMBOL(__scsi_alloc_queue);
2024 
2025 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2026 {
2027 	struct request_queue *q;
2028 
2029 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2030 	if (!q)
2031 		return NULL;
2032 
2033 	blk_queue_prep_rq(q, scsi_prep_fn);
2034 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2035 	blk_queue_softirq_done(q, scsi_softirq_done);
2036 	blk_queue_rq_timed_out(q, scsi_times_out);
2037 	blk_queue_lld_busy(q, scsi_lld_busy);
2038 	return q;
2039 }
2040 
2041 static struct blk_mq_ops scsi_mq_ops = {
2042 	.map_queue	= blk_mq_map_queue,
2043 	.queue_rq	= scsi_queue_rq,
2044 	.complete	= scsi_softirq_done,
2045 	.timeout	= scsi_times_out,
2046 	.init_request	= scsi_init_request,
2047 	.exit_request	= scsi_exit_request,
2048 };
2049 
2050 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2051 {
2052 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2053 	if (IS_ERR(sdev->request_queue))
2054 		return NULL;
2055 
2056 	sdev->request_queue->queuedata = sdev;
2057 	__scsi_init_queue(sdev->host, sdev->request_queue);
2058 	return sdev->request_queue;
2059 }
2060 
2061 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2062 {
2063 	unsigned int cmd_size, sgl_size, tbl_size;
2064 
2065 	tbl_size = shost->sg_tablesize;
2066 	if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2067 		tbl_size = SCSI_MAX_SG_SEGMENTS;
2068 	sgl_size = tbl_size * sizeof(struct scatterlist);
2069 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2070 	if (scsi_host_get_prot(shost))
2071 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2072 
2073 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2074 	shost->tag_set.ops = &scsi_mq_ops;
2075 	shost->tag_set.nr_hw_queues = 1;
2076 	shost->tag_set.queue_depth = shost->can_queue;
2077 	shost->tag_set.cmd_size = cmd_size;
2078 	shost->tag_set.numa_node = NUMA_NO_NODE;
2079 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2080 	shost->tag_set.driver_data = shost;
2081 
2082 	return blk_mq_alloc_tag_set(&shost->tag_set);
2083 }
2084 
2085 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2086 {
2087 	blk_mq_free_tag_set(&shost->tag_set);
2088 }
2089 
2090 /*
2091  * Function:    scsi_block_requests()
2092  *
2093  * Purpose:     Utility function used by low-level drivers to prevent further
2094  *		commands from being queued to the device.
2095  *
2096  * Arguments:   shost       - Host in question
2097  *
2098  * Returns:     Nothing
2099  *
2100  * Lock status: No locks are assumed held.
2101  *
2102  * Notes:       There is no timer nor any other means by which the requests
2103  *		get unblocked other than the low-level driver calling
2104  *		scsi_unblock_requests().
2105  */
2106 void scsi_block_requests(struct Scsi_Host *shost)
2107 {
2108 	shost->host_self_blocked = 1;
2109 }
2110 EXPORT_SYMBOL(scsi_block_requests);
2111 
2112 /*
2113  * Function:    scsi_unblock_requests()
2114  *
2115  * Purpose:     Utility function used by low-level drivers to allow further
2116  *		commands from being queued to the device.
2117  *
2118  * Arguments:   shost       - Host in question
2119  *
2120  * Returns:     Nothing
2121  *
2122  * Lock status: No locks are assumed held.
2123  *
2124  * Notes:       There is no timer nor any other means by which the requests
2125  *		get unblocked other than the low-level driver calling
2126  *		scsi_unblock_requests().
2127  *
2128  *		This is done as an API function so that changes to the
2129  *		internals of the scsi mid-layer won't require wholesale
2130  *		changes to drivers that use this feature.
2131  */
2132 void scsi_unblock_requests(struct Scsi_Host *shost)
2133 {
2134 	shost->host_self_blocked = 0;
2135 	scsi_run_host_queues(shost);
2136 }
2137 EXPORT_SYMBOL(scsi_unblock_requests);
2138 
2139 int __init scsi_init_queue(void)
2140 {
2141 	int i;
2142 
2143 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2144 					   sizeof(struct scsi_data_buffer),
2145 					   0, 0, NULL);
2146 	if (!scsi_sdb_cache) {
2147 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2148 		return -ENOMEM;
2149 	}
2150 
2151 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2152 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2153 		int size = sgp->size * sizeof(struct scatterlist);
2154 
2155 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
2156 				SLAB_HWCACHE_ALIGN, NULL);
2157 		if (!sgp->slab) {
2158 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2159 					sgp->name);
2160 			goto cleanup_sdb;
2161 		}
2162 
2163 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2164 						     sgp->slab);
2165 		if (!sgp->pool) {
2166 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2167 					sgp->name);
2168 			goto cleanup_sdb;
2169 		}
2170 	}
2171 
2172 	return 0;
2173 
2174 cleanup_sdb:
2175 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2176 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2177 		if (sgp->pool)
2178 			mempool_destroy(sgp->pool);
2179 		if (sgp->slab)
2180 			kmem_cache_destroy(sgp->slab);
2181 	}
2182 	kmem_cache_destroy(scsi_sdb_cache);
2183 
2184 	return -ENOMEM;
2185 }
2186 
2187 void scsi_exit_queue(void)
2188 {
2189 	int i;
2190 
2191 	kmem_cache_destroy(scsi_sdb_cache);
2192 
2193 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2194 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2195 		mempool_destroy(sgp->pool);
2196 		kmem_cache_destroy(sgp->slab);
2197 	}
2198 }
2199 
2200 /**
2201  *	scsi_mode_select - issue a mode select
2202  *	@sdev:	SCSI device to be queried
2203  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2204  *	@sp:	Save page bit (0 == don't save, 1 == save)
2205  *	@modepage: mode page being requested
2206  *	@buffer: request buffer (may not be smaller than eight bytes)
2207  *	@len:	length of request buffer.
2208  *	@timeout: command timeout
2209  *	@retries: number of retries before failing
2210  *	@data: returns a structure abstracting the mode header data
2211  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2212  *		must be SCSI_SENSE_BUFFERSIZE big.
2213  *
2214  *	Returns zero if successful; negative error number or scsi
2215  *	status on error
2216  *
2217  */
2218 int
2219 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2220 		 unsigned char *buffer, int len, int timeout, int retries,
2221 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2222 {
2223 	unsigned char cmd[10];
2224 	unsigned char *real_buffer;
2225 	int ret;
2226 
2227 	memset(cmd, 0, sizeof(cmd));
2228 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2229 
2230 	if (sdev->use_10_for_ms) {
2231 		if (len > 65535)
2232 			return -EINVAL;
2233 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2234 		if (!real_buffer)
2235 			return -ENOMEM;
2236 		memcpy(real_buffer + 8, buffer, len);
2237 		len += 8;
2238 		real_buffer[0] = 0;
2239 		real_buffer[1] = 0;
2240 		real_buffer[2] = data->medium_type;
2241 		real_buffer[3] = data->device_specific;
2242 		real_buffer[4] = data->longlba ? 0x01 : 0;
2243 		real_buffer[5] = 0;
2244 		real_buffer[6] = data->block_descriptor_length >> 8;
2245 		real_buffer[7] = data->block_descriptor_length;
2246 
2247 		cmd[0] = MODE_SELECT_10;
2248 		cmd[7] = len >> 8;
2249 		cmd[8] = len;
2250 	} else {
2251 		if (len > 255 || data->block_descriptor_length > 255 ||
2252 		    data->longlba)
2253 			return -EINVAL;
2254 
2255 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2256 		if (!real_buffer)
2257 			return -ENOMEM;
2258 		memcpy(real_buffer + 4, buffer, len);
2259 		len += 4;
2260 		real_buffer[0] = 0;
2261 		real_buffer[1] = data->medium_type;
2262 		real_buffer[2] = data->device_specific;
2263 		real_buffer[3] = data->block_descriptor_length;
2264 
2265 
2266 		cmd[0] = MODE_SELECT;
2267 		cmd[4] = len;
2268 	}
2269 
2270 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2271 			       sshdr, timeout, retries, NULL);
2272 	kfree(real_buffer);
2273 	return ret;
2274 }
2275 EXPORT_SYMBOL_GPL(scsi_mode_select);
2276 
2277 /**
2278  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2279  *	@sdev:	SCSI device to be queried
2280  *	@dbd:	set if mode sense will allow block descriptors to be returned
2281  *	@modepage: mode page being requested
2282  *	@buffer: request buffer (may not be smaller than eight bytes)
2283  *	@len:	length of request buffer.
2284  *	@timeout: command timeout
2285  *	@retries: number of retries before failing
2286  *	@data: returns a structure abstracting the mode header data
2287  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2288  *		must be SCSI_SENSE_BUFFERSIZE big.
2289  *
2290  *	Returns zero if unsuccessful, or the header offset (either 4
2291  *	or 8 depending on whether a six or ten byte command was
2292  *	issued) if successful.
2293  */
2294 int
2295 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2296 		  unsigned char *buffer, int len, int timeout, int retries,
2297 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2298 {
2299 	unsigned char cmd[12];
2300 	int use_10_for_ms;
2301 	int header_length;
2302 	int result;
2303 	struct scsi_sense_hdr my_sshdr;
2304 
2305 	memset(data, 0, sizeof(*data));
2306 	memset(&cmd[0], 0, 12);
2307 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2308 	cmd[2] = modepage;
2309 
2310 	/* caller might not be interested in sense, but we need it */
2311 	if (!sshdr)
2312 		sshdr = &my_sshdr;
2313 
2314  retry:
2315 	use_10_for_ms = sdev->use_10_for_ms;
2316 
2317 	if (use_10_for_ms) {
2318 		if (len < 8)
2319 			len = 8;
2320 
2321 		cmd[0] = MODE_SENSE_10;
2322 		cmd[8] = len;
2323 		header_length = 8;
2324 	} else {
2325 		if (len < 4)
2326 			len = 4;
2327 
2328 		cmd[0] = MODE_SENSE;
2329 		cmd[4] = len;
2330 		header_length = 4;
2331 	}
2332 
2333 	memset(buffer, 0, len);
2334 
2335 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2336 				  sshdr, timeout, retries, NULL);
2337 
2338 	/* This code looks awful: what it's doing is making sure an
2339 	 * ILLEGAL REQUEST sense return identifies the actual command
2340 	 * byte as the problem.  MODE_SENSE commands can return
2341 	 * ILLEGAL REQUEST if the code page isn't supported */
2342 
2343 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2344 	    (driver_byte(result) & DRIVER_SENSE)) {
2345 		if (scsi_sense_valid(sshdr)) {
2346 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2347 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2348 				/*
2349 				 * Invalid command operation code
2350 				 */
2351 				sdev->use_10_for_ms = 0;
2352 				goto retry;
2353 			}
2354 		}
2355 	}
2356 
2357 	if(scsi_status_is_good(result)) {
2358 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2359 			     (modepage == 6 || modepage == 8))) {
2360 			/* Initio breakage? */
2361 			header_length = 0;
2362 			data->length = 13;
2363 			data->medium_type = 0;
2364 			data->device_specific = 0;
2365 			data->longlba = 0;
2366 			data->block_descriptor_length = 0;
2367 		} else if(use_10_for_ms) {
2368 			data->length = buffer[0]*256 + buffer[1] + 2;
2369 			data->medium_type = buffer[2];
2370 			data->device_specific = buffer[3];
2371 			data->longlba = buffer[4] & 0x01;
2372 			data->block_descriptor_length = buffer[6]*256
2373 				+ buffer[7];
2374 		} else {
2375 			data->length = buffer[0] + 1;
2376 			data->medium_type = buffer[1];
2377 			data->device_specific = buffer[2];
2378 			data->block_descriptor_length = buffer[3];
2379 		}
2380 		data->header_length = header_length;
2381 	}
2382 
2383 	return result;
2384 }
2385 EXPORT_SYMBOL(scsi_mode_sense);
2386 
2387 /**
2388  *	scsi_test_unit_ready - test if unit is ready
2389  *	@sdev:	scsi device to change the state of.
2390  *	@timeout: command timeout
2391  *	@retries: number of retries before failing
2392  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2393  *		returning sense. Make sure that this is cleared before passing
2394  *		in.
2395  *
2396  *	Returns zero if unsuccessful or an error if TUR failed.  For
2397  *	removable media, UNIT_ATTENTION sets ->changed flag.
2398  **/
2399 int
2400 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2401 		     struct scsi_sense_hdr *sshdr_external)
2402 {
2403 	char cmd[] = {
2404 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2405 	};
2406 	struct scsi_sense_hdr *sshdr;
2407 	int result;
2408 
2409 	if (!sshdr_external)
2410 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2411 	else
2412 		sshdr = sshdr_external;
2413 
2414 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2415 	do {
2416 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2417 					  timeout, retries, NULL);
2418 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2419 		    sshdr->sense_key == UNIT_ATTENTION)
2420 			sdev->changed = 1;
2421 	} while (scsi_sense_valid(sshdr) &&
2422 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2423 
2424 	if (!sshdr_external)
2425 		kfree(sshdr);
2426 	return result;
2427 }
2428 EXPORT_SYMBOL(scsi_test_unit_ready);
2429 
2430 /**
2431  *	scsi_device_set_state - Take the given device through the device state model.
2432  *	@sdev:	scsi device to change the state of.
2433  *	@state:	state to change to.
2434  *
2435  *	Returns zero if unsuccessful or an error if the requested
2436  *	transition is illegal.
2437  */
2438 int
2439 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2440 {
2441 	enum scsi_device_state oldstate = sdev->sdev_state;
2442 
2443 	if (state == oldstate)
2444 		return 0;
2445 
2446 	switch (state) {
2447 	case SDEV_CREATED:
2448 		switch (oldstate) {
2449 		case SDEV_CREATED_BLOCK:
2450 			break;
2451 		default:
2452 			goto illegal;
2453 		}
2454 		break;
2455 
2456 	case SDEV_RUNNING:
2457 		switch (oldstate) {
2458 		case SDEV_CREATED:
2459 		case SDEV_OFFLINE:
2460 		case SDEV_TRANSPORT_OFFLINE:
2461 		case SDEV_QUIESCE:
2462 		case SDEV_BLOCK:
2463 			break;
2464 		default:
2465 			goto illegal;
2466 		}
2467 		break;
2468 
2469 	case SDEV_QUIESCE:
2470 		switch (oldstate) {
2471 		case SDEV_RUNNING:
2472 		case SDEV_OFFLINE:
2473 		case SDEV_TRANSPORT_OFFLINE:
2474 			break;
2475 		default:
2476 			goto illegal;
2477 		}
2478 		break;
2479 
2480 	case SDEV_OFFLINE:
2481 	case SDEV_TRANSPORT_OFFLINE:
2482 		switch (oldstate) {
2483 		case SDEV_CREATED:
2484 		case SDEV_RUNNING:
2485 		case SDEV_QUIESCE:
2486 		case SDEV_BLOCK:
2487 			break;
2488 		default:
2489 			goto illegal;
2490 		}
2491 		break;
2492 
2493 	case SDEV_BLOCK:
2494 		switch (oldstate) {
2495 		case SDEV_RUNNING:
2496 		case SDEV_CREATED_BLOCK:
2497 			break;
2498 		default:
2499 			goto illegal;
2500 		}
2501 		break;
2502 
2503 	case SDEV_CREATED_BLOCK:
2504 		switch (oldstate) {
2505 		case SDEV_CREATED:
2506 			break;
2507 		default:
2508 			goto illegal;
2509 		}
2510 		break;
2511 
2512 	case SDEV_CANCEL:
2513 		switch (oldstate) {
2514 		case SDEV_CREATED:
2515 		case SDEV_RUNNING:
2516 		case SDEV_QUIESCE:
2517 		case SDEV_OFFLINE:
2518 		case SDEV_TRANSPORT_OFFLINE:
2519 		case SDEV_BLOCK:
2520 			break;
2521 		default:
2522 			goto illegal;
2523 		}
2524 		break;
2525 
2526 	case SDEV_DEL:
2527 		switch (oldstate) {
2528 		case SDEV_CREATED:
2529 		case SDEV_RUNNING:
2530 		case SDEV_OFFLINE:
2531 		case SDEV_TRANSPORT_OFFLINE:
2532 		case SDEV_CANCEL:
2533 		case SDEV_CREATED_BLOCK:
2534 			break;
2535 		default:
2536 			goto illegal;
2537 		}
2538 		break;
2539 
2540 	}
2541 	sdev->sdev_state = state;
2542 	return 0;
2543 
2544  illegal:
2545 	SCSI_LOG_ERROR_RECOVERY(1,
2546 				sdev_printk(KERN_ERR, sdev,
2547 					    "Illegal state transition %s->%s",
2548 					    scsi_device_state_name(oldstate),
2549 					    scsi_device_state_name(state))
2550 				);
2551 	return -EINVAL;
2552 }
2553 EXPORT_SYMBOL(scsi_device_set_state);
2554 
2555 /**
2556  * 	sdev_evt_emit - emit a single SCSI device uevent
2557  *	@sdev: associated SCSI device
2558  *	@evt: event to emit
2559  *
2560  *	Send a single uevent (scsi_event) to the associated scsi_device.
2561  */
2562 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2563 {
2564 	int idx = 0;
2565 	char *envp[3];
2566 
2567 	switch (evt->evt_type) {
2568 	case SDEV_EVT_MEDIA_CHANGE:
2569 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2570 		break;
2571 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2572 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2573 		break;
2574 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2575 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2576 		break;
2577 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2578 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2579 		break;
2580 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2581 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2582 		break;
2583 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2584 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2585 		break;
2586 	default:
2587 		/* do nothing */
2588 		break;
2589 	}
2590 
2591 	envp[idx++] = NULL;
2592 
2593 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2594 }
2595 
2596 /**
2597  * 	sdev_evt_thread - send a uevent for each scsi event
2598  *	@work: work struct for scsi_device
2599  *
2600  *	Dispatch queued events to their associated scsi_device kobjects
2601  *	as uevents.
2602  */
2603 void scsi_evt_thread(struct work_struct *work)
2604 {
2605 	struct scsi_device *sdev;
2606 	enum scsi_device_event evt_type;
2607 	LIST_HEAD(event_list);
2608 
2609 	sdev = container_of(work, struct scsi_device, event_work);
2610 
2611 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2612 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2613 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2614 
2615 	while (1) {
2616 		struct scsi_event *evt;
2617 		struct list_head *this, *tmp;
2618 		unsigned long flags;
2619 
2620 		spin_lock_irqsave(&sdev->list_lock, flags);
2621 		list_splice_init(&sdev->event_list, &event_list);
2622 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2623 
2624 		if (list_empty(&event_list))
2625 			break;
2626 
2627 		list_for_each_safe(this, tmp, &event_list) {
2628 			evt = list_entry(this, struct scsi_event, node);
2629 			list_del(&evt->node);
2630 			scsi_evt_emit(sdev, evt);
2631 			kfree(evt);
2632 		}
2633 	}
2634 }
2635 
2636 /**
2637  * 	sdev_evt_send - send asserted event to uevent thread
2638  *	@sdev: scsi_device event occurred on
2639  *	@evt: event to send
2640  *
2641  *	Assert scsi device event asynchronously.
2642  */
2643 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2644 {
2645 	unsigned long flags;
2646 
2647 #if 0
2648 	/* FIXME: currently this check eliminates all media change events
2649 	 * for polled devices.  Need to update to discriminate between AN
2650 	 * and polled events */
2651 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2652 		kfree(evt);
2653 		return;
2654 	}
2655 #endif
2656 
2657 	spin_lock_irqsave(&sdev->list_lock, flags);
2658 	list_add_tail(&evt->node, &sdev->event_list);
2659 	schedule_work(&sdev->event_work);
2660 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2661 }
2662 EXPORT_SYMBOL_GPL(sdev_evt_send);
2663 
2664 /**
2665  * 	sdev_evt_alloc - allocate a new scsi event
2666  *	@evt_type: type of event to allocate
2667  *	@gfpflags: GFP flags for allocation
2668  *
2669  *	Allocates and returns a new scsi_event.
2670  */
2671 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2672 				  gfp_t gfpflags)
2673 {
2674 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2675 	if (!evt)
2676 		return NULL;
2677 
2678 	evt->evt_type = evt_type;
2679 	INIT_LIST_HEAD(&evt->node);
2680 
2681 	/* evt_type-specific initialization, if any */
2682 	switch (evt_type) {
2683 	case SDEV_EVT_MEDIA_CHANGE:
2684 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2685 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2686 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2687 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2688 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2689 	default:
2690 		/* do nothing */
2691 		break;
2692 	}
2693 
2694 	return evt;
2695 }
2696 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2697 
2698 /**
2699  * 	sdev_evt_send_simple - send asserted event to uevent thread
2700  *	@sdev: scsi_device event occurred on
2701  *	@evt_type: type of event to send
2702  *	@gfpflags: GFP flags for allocation
2703  *
2704  *	Assert scsi device event asynchronously, given an event type.
2705  */
2706 void sdev_evt_send_simple(struct scsi_device *sdev,
2707 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2708 {
2709 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2710 	if (!evt) {
2711 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2712 			    evt_type);
2713 		return;
2714 	}
2715 
2716 	sdev_evt_send(sdev, evt);
2717 }
2718 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2719 
2720 /**
2721  *	scsi_device_quiesce - Block user issued commands.
2722  *	@sdev:	scsi device to quiesce.
2723  *
2724  *	This works by trying to transition to the SDEV_QUIESCE state
2725  *	(which must be a legal transition).  When the device is in this
2726  *	state, only special requests will be accepted, all others will
2727  *	be deferred.  Since special requests may also be requeued requests,
2728  *	a successful return doesn't guarantee the device will be
2729  *	totally quiescent.
2730  *
2731  *	Must be called with user context, may sleep.
2732  *
2733  *	Returns zero if unsuccessful or an error if not.
2734  */
2735 int
2736 scsi_device_quiesce(struct scsi_device *sdev)
2737 {
2738 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2739 	if (err)
2740 		return err;
2741 
2742 	scsi_run_queue(sdev->request_queue);
2743 	while (atomic_read(&sdev->device_busy)) {
2744 		msleep_interruptible(200);
2745 		scsi_run_queue(sdev->request_queue);
2746 	}
2747 	return 0;
2748 }
2749 EXPORT_SYMBOL(scsi_device_quiesce);
2750 
2751 /**
2752  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2753  *	@sdev:	scsi device to resume.
2754  *
2755  *	Moves the device from quiesced back to running and restarts the
2756  *	queues.
2757  *
2758  *	Must be called with user context, may sleep.
2759  */
2760 void scsi_device_resume(struct scsi_device *sdev)
2761 {
2762 	/* check if the device state was mutated prior to resume, and if
2763 	 * so assume the state is being managed elsewhere (for example
2764 	 * device deleted during suspend)
2765 	 */
2766 	if (sdev->sdev_state != SDEV_QUIESCE ||
2767 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2768 		return;
2769 	scsi_run_queue(sdev->request_queue);
2770 }
2771 EXPORT_SYMBOL(scsi_device_resume);
2772 
2773 static void
2774 device_quiesce_fn(struct scsi_device *sdev, void *data)
2775 {
2776 	scsi_device_quiesce(sdev);
2777 }
2778 
2779 void
2780 scsi_target_quiesce(struct scsi_target *starget)
2781 {
2782 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2783 }
2784 EXPORT_SYMBOL(scsi_target_quiesce);
2785 
2786 static void
2787 device_resume_fn(struct scsi_device *sdev, void *data)
2788 {
2789 	scsi_device_resume(sdev);
2790 }
2791 
2792 void
2793 scsi_target_resume(struct scsi_target *starget)
2794 {
2795 	starget_for_each_device(starget, NULL, device_resume_fn);
2796 }
2797 EXPORT_SYMBOL(scsi_target_resume);
2798 
2799 /**
2800  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2801  * @sdev:	device to block
2802  *
2803  * Block request made by scsi lld's to temporarily stop all
2804  * scsi commands on the specified device.  Called from interrupt
2805  * or normal process context.
2806  *
2807  * Returns zero if successful or error if not
2808  *
2809  * Notes:
2810  *	This routine transitions the device to the SDEV_BLOCK state
2811  *	(which must be a legal transition).  When the device is in this
2812  *	state, all commands are deferred until the scsi lld reenables
2813  *	the device with scsi_device_unblock or device_block_tmo fires.
2814  */
2815 int
2816 scsi_internal_device_block(struct scsi_device *sdev)
2817 {
2818 	struct request_queue *q = sdev->request_queue;
2819 	unsigned long flags;
2820 	int err = 0;
2821 
2822 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2823 	if (err) {
2824 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2825 
2826 		if (err)
2827 			return err;
2828 	}
2829 
2830 	/*
2831 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2832 	 * block layer from calling the midlayer with this device's
2833 	 * request queue.
2834 	 */
2835 	if (q->mq_ops) {
2836 		blk_mq_stop_hw_queues(q);
2837 	} else {
2838 		spin_lock_irqsave(q->queue_lock, flags);
2839 		blk_stop_queue(q);
2840 		spin_unlock_irqrestore(q->queue_lock, flags);
2841 	}
2842 
2843 	return 0;
2844 }
2845 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2846 
2847 /**
2848  * scsi_internal_device_unblock - resume a device after a block request
2849  * @sdev:	device to resume
2850  * @new_state:	state to set devices to after unblocking
2851  *
2852  * Called by scsi lld's or the midlayer to restart the device queue
2853  * for the previously suspended scsi device.  Called from interrupt or
2854  * normal process context.
2855  *
2856  * Returns zero if successful or error if not.
2857  *
2858  * Notes:
2859  *	This routine transitions the device to the SDEV_RUNNING state
2860  *	or to one of the offline states (which must be a legal transition)
2861  *	allowing the midlayer to goose the queue for this device.
2862  */
2863 int
2864 scsi_internal_device_unblock(struct scsi_device *sdev,
2865 			     enum scsi_device_state new_state)
2866 {
2867 	struct request_queue *q = sdev->request_queue;
2868 	unsigned long flags;
2869 
2870 	/*
2871 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2872 	 * offlined states and goose the device queue if successful.
2873 	 */
2874 	if ((sdev->sdev_state == SDEV_BLOCK) ||
2875 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2876 		sdev->sdev_state = new_state;
2877 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2878 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2879 		    new_state == SDEV_OFFLINE)
2880 			sdev->sdev_state = new_state;
2881 		else
2882 			sdev->sdev_state = SDEV_CREATED;
2883 	} else if (sdev->sdev_state != SDEV_CANCEL &&
2884 		 sdev->sdev_state != SDEV_OFFLINE)
2885 		return -EINVAL;
2886 
2887 	if (q->mq_ops) {
2888 		blk_mq_start_stopped_hw_queues(q, false);
2889 	} else {
2890 		spin_lock_irqsave(q->queue_lock, flags);
2891 		blk_start_queue(q);
2892 		spin_unlock_irqrestore(q->queue_lock, flags);
2893 	}
2894 
2895 	return 0;
2896 }
2897 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2898 
2899 static void
2900 device_block(struct scsi_device *sdev, void *data)
2901 {
2902 	scsi_internal_device_block(sdev);
2903 }
2904 
2905 static int
2906 target_block(struct device *dev, void *data)
2907 {
2908 	if (scsi_is_target_device(dev))
2909 		starget_for_each_device(to_scsi_target(dev), NULL,
2910 					device_block);
2911 	return 0;
2912 }
2913 
2914 void
2915 scsi_target_block(struct device *dev)
2916 {
2917 	if (scsi_is_target_device(dev))
2918 		starget_for_each_device(to_scsi_target(dev), NULL,
2919 					device_block);
2920 	else
2921 		device_for_each_child(dev, NULL, target_block);
2922 }
2923 EXPORT_SYMBOL_GPL(scsi_target_block);
2924 
2925 static void
2926 device_unblock(struct scsi_device *sdev, void *data)
2927 {
2928 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2929 }
2930 
2931 static int
2932 target_unblock(struct device *dev, void *data)
2933 {
2934 	if (scsi_is_target_device(dev))
2935 		starget_for_each_device(to_scsi_target(dev), data,
2936 					device_unblock);
2937 	return 0;
2938 }
2939 
2940 void
2941 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2942 {
2943 	if (scsi_is_target_device(dev))
2944 		starget_for_each_device(to_scsi_target(dev), &new_state,
2945 					device_unblock);
2946 	else
2947 		device_for_each_child(dev, &new_state, target_unblock);
2948 }
2949 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2950 
2951 /**
2952  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2953  * @sgl:	scatter-gather list
2954  * @sg_count:	number of segments in sg
2955  * @offset:	offset in bytes into sg, on return offset into the mapped area
2956  * @len:	bytes to map, on return number of bytes mapped
2957  *
2958  * Returns virtual address of the start of the mapped page
2959  */
2960 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2961 			  size_t *offset, size_t *len)
2962 {
2963 	int i;
2964 	size_t sg_len = 0, len_complete = 0;
2965 	struct scatterlist *sg;
2966 	struct page *page;
2967 
2968 	WARN_ON(!irqs_disabled());
2969 
2970 	for_each_sg(sgl, sg, sg_count, i) {
2971 		len_complete = sg_len; /* Complete sg-entries */
2972 		sg_len += sg->length;
2973 		if (sg_len > *offset)
2974 			break;
2975 	}
2976 
2977 	if (unlikely(i == sg_count)) {
2978 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2979 			"elements %d\n",
2980 		       __func__, sg_len, *offset, sg_count);
2981 		WARN_ON(1);
2982 		return NULL;
2983 	}
2984 
2985 	/* Offset starting from the beginning of first page in this sg-entry */
2986 	*offset = *offset - len_complete + sg->offset;
2987 
2988 	/* Assumption: contiguous pages can be accessed as "page + i" */
2989 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2990 	*offset &= ~PAGE_MASK;
2991 
2992 	/* Bytes in this sg-entry from *offset to the end of the page */
2993 	sg_len = PAGE_SIZE - *offset;
2994 	if (*len > sg_len)
2995 		*len = sg_len;
2996 
2997 	return kmap_atomic(page);
2998 }
2999 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3000 
3001 /**
3002  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3003  * @virt:	virtual address to be unmapped
3004  */
3005 void scsi_kunmap_atomic_sg(void *virt)
3006 {
3007 	kunmap_atomic(virt);
3008 }
3009 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3010 
3011 void sdev_disable_disk_events(struct scsi_device *sdev)
3012 {
3013 	atomic_inc(&sdev->disk_events_disable_depth);
3014 }
3015 EXPORT_SYMBOL(sdev_disable_disk_events);
3016 
3017 void sdev_enable_disk_events(struct scsi_device *sdev)
3018 {
3019 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3020 		return;
3021 	atomic_dec(&sdev->disk_events_disable_depth);
3022 }
3023 EXPORT_SYMBOL(sdev_enable_disk_events);
3024