1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/ratelimit.h> 25 #include <asm/unaligned.h> 26 27 #include <scsi/scsi.h> 28 #include <scsi/scsi_cmnd.h> 29 #include <scsi/scsi_dbg.h> 30 #include <scsi/scsi_device.h> 31 #include <scsi/scsi_driver.h> 32 #include <scsi/scsi_eh.h> 33 #include <scsi/scsi_host.h> 34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 35 #include <scsi/scsi_dh.h> 36 37 #include <trace/events/scsi.h> 38 39 #include "scsi_debugfs.h" 40 #include "scsi_priv.h" 41 #include "scsi_logging.h" 42 43 /* 44 * Size of integrity metadata is usually small, 1 inline sg should 45 * cover normal cases. 46 */ 47 #ifdef CONFIG_ARCH_NO_SG_CHAIN 48 #define SCSI_INLINE_PROT_SG_CNT 0 49 #define SCSI_INLINE_SG_CNT 0 50 #else 51 #define SCSI_INLINE_PROT_SG_CNT 1 52 #define SCSI_INLINE_SG_CNT 2 53 #endif 54 55 static struct kmem_cache *scsi_sense_cache; 56 static struct kmem_cache *scsi_sense_isadma_cache; 57 static DEFINE_MUTEX(scsi_sense_cache_mutex); 58 59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 60 61 static inline struct kmem_cache * 62 scsi_select_sense_cache(bool unchecked_isa_dma) 63 { 64 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 65 } 66 67 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 68 unsigned char *sense_buffer) 69 { 70 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 71 sense_buffer); 72 } 73 74 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 75 gfp_t gfp_mask, int numa_node) 76 { 77 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 78 gfp_mask, numa_node); 79 } 80 81 int scsi_init_sense_cache(struct Scsi_Host *shost) 82 { 83 struct kmem_cache *cache; 84 int ret = 0; 85 86 mutex_lock(&scsi_sense_cache_mutex); 87 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 88 if (cache) 89 goto exit; 90 91 if (shost->unchecked_isa_dma) { 92 scsi_sense_isadma_cache = 93 kmem_cache_create("scsi_sense_cache(DMA)", 94 SCSI_SENSE_BUFFERSIZE, 0, 95 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 96 if (!scsi_sense_isadma_cache) 97 ret = -ENOMEM; 98 } else { 99 scsi_sense_cache = 100 kmem_cache_create_usercopy("scsi_sense_cache", 101 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 102 0, SCSI_SENSE_BUFFERSIZE, NULL); 103 if (!scsi_sense_cache) 104 ret = -ENOMEM; 105 } 106 exit: 107 mutex_unlock(&scsi_sense_cache_mutex); 108 return ret; 109 } 110 111 /* 112 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 113 * not change behaviour from the previous unplug mechanism, experimentation 114 * may prove this needs changing. 115 */ 116 #define SCSI_QUEUE_DELAY 3 117 118 static void 119 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 120 { 121 struct Scsi_Host *host = cmd->device->host; 122 struct scsi_device *device = cmd->device; 123 struct scsi_target *starget = scsi_target(device); 124 125 /* 126 * Set the appropriate busy bit for the device/host. 127 * 128 * If the host/device isn't busy, assume that something actually 129 * completed, and that we should be able to queue a command now. 130 * 131 * Note that the prior mid-layer assumption that any host could 132 * always queue at least one command is now broken. The mid-layer 133 * will implement a user specifiable stall (see 134 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 135 * if a command is requeued with no other commands outstanding 136 * either for the device or for the host. 137 */ 138 switch (reason) { 139 case SCSI_MLQUEUE_HOST_BUSY: 140 atomic_set(&host->host_blocked, host->max_host_blocked); 141 break; 142 case SCSI_MLQUEUE_DEVICE_BUSY: 143 case SCSI_MLQUEUE_EH_RETRY: 144 atomic_set(&device->device_blocked, 145 device->max_device_blocked); 146 break; 147 case SCSI_MLQUEUE_TARGET_BUSY: 148 atomic_set(&starget->target_blocked, 149 starget->max_target_blocked); 150 break; 151 } 152 } 153 154 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 155 { 156 if (cmd->request->rq_flags & RQF_DONTPREP) { 157 cmd->request->rq_flags &= ~RQF_DONTPREP; 158 scsi_mq_uninit_cmd(cmd); 159 } else { 160 WARN_ON_ONCE(true); 161 } 162 blk_mq_requeue_request(cmd->request, true); 163 } 164 165 /** 166 * __scsi_queue_insert - private queue insertion 167 * @cmd: The SCSI command being requeued 168 * @reason: The reason for the requeue 169 * @unbusy: Whether the queue should be unbusied 170 * 171 * This is a private queue insertion. The public interface 172 * scsi_queue_insert() always assumes the queue should be unbusied 173 * because it's always called before the completion. This function is 174 * for a requeue after completion, which should only occur in this 175 * file. 176 */ 177 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 178 { 179 struct scsi_device *device = cmd->device; 180 181 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 182 "Inserting command %p into mlqueue\n", cmd)); 183 184 scsi_set_blocked(cmd, reason); 185 186 /* 187 * Decrement the counters, since these commands are no longer 188 * active on the host/device. 189 */ 190 if (unbusy) 191 scsi_device_unbusy(device, cmd); 192 193 /* 194 * Requeue this command. It will go before all other commands 195 * that are already in the queue. Schedule requeue work under 196 * lock such that the kblockd_schedule_work() call happens 197 * before blk_cleanup_queue() finishes. 198 */ 199 cmd->result = 0; 200 201 blk_mq_requeue_request(cmd->request, true); 202 } 203 204 /** 205 * scsi_queue_insert - Reinsert a command in the queue. 206 * @cmd: command that we are adding to queue. 207 * @reason: why we are inserting command to queue. 208 * 209 * We do this for one of two cases. Either the host is busy and it cannot accept 210 * any more commands for the time being, or the device returned QUEUE_FULL and 211 * can accept no more commands. 212 * 213 * Context: This could be called either from an interrupt context or a normal 214 * process context. 215 */ 216 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 217 { 218 __scsi_queue_insert(cmd, reason, true); 219 } 220 221 222 /** 223 * __scsi_execute - insert request and wait for the result 224 * @sdev: scsi device 225 * @cmd: scsi command 226 * @data_direction: data direction 227 * @buffer: data buffer 228 * @bufflen: len of buffer 229 * @sense: optional sense buffer 230 * @sshdr: optional decoded sense header 231 * @timeout: request timeout in seconds 232 * @retries: number of times to retry request 233 * @flags: flags for ->cmd_flags 234 * @rq_flags: flags for ->rq_flags 235 * @resid: optional residual length 236 * 237 * Returns the scsi_cmnd result field if a command was executed, or a negative 238 * Linux error code if we didn't get that far. 239 */ 240 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 241 int data_direction, void *buffer, unsigned bufflen, 242 unsigned char *sense, struct scsi_sense_hdr *sshdr, 243 int timeout, int retries, u64 flags, req_flags_t rq_flags, 244 int *resid) 245 { 246 struct request *req; 247 struct scsi_request *rq; 248 int ret = DRIVER_ERROR << 24; 249 250 req = blk_get_request(sdev->request_queue, 251 data_direction == DMA_TO_DEVICE ? 252 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 253 if (IS_ERR(req)) 254 return ret; 255 rq = scsi_req(req); 256 257 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 258 buffer, bufflen, GFP_NOIO)) 259 goto out; 260 261 rq->cmd_len = COMMAND_SIZE(cmd[0]); 262 memcpy(rq->cmd, cmd, rq->cmd_len); 263 rq->retries = retries; 264 req->timeout = timeout; 265 req->cmd_flags |= flags; 266 req->rq_flags |= rq_flags | RQF_QUIET; 267 268 /* 269 * head injection *required* here otherwise quiesce won't work 270 */ 271 blk_execute_rq(req->q, NULL, req, 1); 272 273 /* 274 * Some devices (USB mass-storage in particular) may transfer 275 * garbage data together with a residue indicating that the data 276 * is invalid. Prevent the garbage from being misinterpreted 277 * and prevent security leaks by zeroing out the excess data. 278 */ 279 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 280 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 281 282 if (resid) 283 *resid = rq->resid_len; 284 if (sense && rq->sense_len) 285 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 286 if (sshdr) 287 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 288 ret = rq->result; 289 out: 290 blk_put_request(req); 291 292 return ret; 293 } 294 EXPORT_SYMBOL(__scsi_execute); 295 296 /* 297 * Wake up the error handler if necessary. Avoid as follows that the error 298 * handler is not woken up if host in-flight requests number == 299 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 300 * with an RCU read lock in this function to ensure that this function in 301 * its entirety either finishes before scsi_eh_scmd_add() increases the 302 * host_failed counter or that it notices the shost state change made by 303 * scsi_eh_scmd_add(). 304 */ 305 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 306 { 307 unsigned long flags; 308 309 rcu_read_lock(); 310 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 311 if (unlikely(scsi_host_in_recovery(shost))) { 312 spin_lock_irqsave(shost->host_lock, flags); 313 if (shost->host_failed || shost->host_eh_scheduled) 314 scsi_eh_wakeup(shost); 315 spin_unlock_irqrestore(shost->host_lock, flags); 316 } 317 rcu_read_unlock(); 318 } 319 320 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 321 { 322 struct Scsi_Host *shost = sdev->host; 323 struct scsi_target *starget = scsi_target(sdev); 324 325 scsi_dec_host_busy(shost, cmd); 326 327 if (starget->can_queue > 0) 328 atomic_dec(&starget->target_busy); 329 330 atomic_dec(&sdev->device_busy); 331 } 332 333 static void scsi_kick_queue(struct request_queue *q) 334 { 335 blk_mq_run_hw_queues(q, false); 336 } 337 338 /* 339 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 340 * and call blk_run_queue for all the scsi_devices on the target - 341 * including current_sdev first. 342 * 343 * Called with *no* scsi locks held. 344 */ 345 static void scsi_single_lun_run(struct scsi_device *current_sdev) 346 { 347 struct Scsi_Host *shost = current_sdev->host; 348 struct scsi_device *sdev, *tmp; 349 struct scsi_target *starget = scsi_target(current_sdev); 350 unsigned long flags; 351 352 spin_lock_irqsave(shost->host_lock, flags); 353 starget->starget_sdev_user = NULL; 354 spin_unlock_irqrestore(shost->host_lock, flags); 355 356 /* 357 * Call blk_run_queue for all LUNs on the target, starting with 358 * current_sdev. We race with others (to set starget_sdev_user), 359 * but in most cases, we will be first. Ideally, each LU on the 360 * target would get some limited time or requests on the target. 361 */ 362 scsi_kick_queue(current_sdev->request_queue); 363 364 spin_lock_irqsave(shost->host_lock, flags); 365 if (starget->starget_sdev_user) 366 goto out; 367 list_for_each_entry_safe(sdev, tmp, &starget->devices, 368 same_target_siblings) { 369 if (sdev == current_sdev) 370 continue; 371 if (scsi_device_get(sdev)) 372 continue; 373 374 spin_unlock_irqrestore(shost->host_lock, flags); 375 scsi_kick_queue(sdev->request_queue); 376 spin_lock_irqsave(shost->host_lock, flags); 377 378 scsi_device_put(sdev); 379 } 380 out: 381 spin_unlock_irqrestore(shost->host_lock, flags); 382 } 383 384 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 385 { 386 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 387 return true; 388 if (atomic_read(&sdev->device_blocked) > 0) 389 return true; 390 return false; 391 } 392 393 static inline bool scsi_target_is_busy(struct scsi_target *starget) 394 { 395 if (starget->can_queue > 0) { 396 if (atomic_read(&starget->target_busy) >= starget->can_queue) 397 return true; 398 if (atomic_read(&starget->target_blocked) > 0) 399 return true; 400 } 401 return false; 402 } 403 404 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 405 { 406 if (atomic_read(&shost->host_blocked) > 0) 407 return true; 408 if (shost->host_self_blocked) 409 return true; 410 return false; 411 } 412 413 static void scsi_starved_list_run(struct Scsi_Host *shost) 414 { 415 LIST_HEAD(starved_list); 416 struct scsi_device *sdev; 417 unsigned long flags; 418 419 spin_lock_irqsave(shost->host_lock, flags); 420 list_splice_init(&shost->starved_list, &starved_list); 421 422 while (!list_empty(&starved_list)) { 423 struct request_queue *slq; 424 425 /* 426 * As long as shost is accepting commands and we have 427 * starved queues, call blk_run_queue. scsi_request_fn 428 * drops the queue_lock and can add us back to the 429 * starved_list. 430 * 431 * host_lock protects the starved_list and starved_entry. 432 * scsi_request_fn must get the host_lock before checking 433 * or modifying starved_list or starved_entry. 434 */ 435 if (scsi_host_is_busy(shost)) 436 break; 437 438 sdev = list_entry(starved_list.next, 439 struct scsi_device, starved_entry); 440 list_del_init(&sdev->starved_entry); 441 if (scsi_target_is_busy(scsi_target(sdev))) { 442 list_move_tail(&sdev->starved_entry, 443 &shost->starved_list); 444 continue; 445 } 446 447 /* 448 * Once we drop the host lock, a racing scsi_remove_device() 449 * call may remove the sdev from the starved list and destroy 450 * it and the queue. Mitigate by taking a reference to the 451 * queue and never touching the sdev again after we drop the 452 * host lock. Note: if __scsi_remove_device() invokes 453 * blk_cleanup_queue() before the queue is run from this 454 * function then blk_run_queue() will return immediately since 455 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 456 */ 457 slq = sdev->request_queue; 458 if (!blk_get_queue(slq)) 459 continue; 460 spin_unlock_irqrestore(shost->host_lock, flags); 461 462 scsi_kick_queue(slq); 463 blk_put_queue(slq); 464 465 spin_lock_irqsave(shost->host_lock, flags); 466 } 467 /* put any unprocessed entries back */ 468 list_splice(&starved_list, &shost->starved_list); 469 spin_unlock_irqrestore(shost->host_lock, flags); 470 } 471 472 /** 473 * scsi_run_queue - Select a proper request queue to serve next. 474 * @q: last request's queue 475 * 476 * The previous command was completely finished, start a new one if possible. 477 */ 478 static void scsi_run_queue(struct request_queue *q) 479 { 480 struct scsi_device *sdev = q->queuedata; 481 482 if (scsi_target(sdev)->single_lun) 483 scsi_single_lun_run(sdev); 484 if (!list_empty(&sdev->host->starved_list)) 485 scsi_starved_list_run(sdev->host); 486 487 blk_mq_run_hw_queues(q, false); 488 } 489 490 void scsi_requeue_run_queue(struct work_struct *work) 491 { 492 struct scsi_device *sdev; 493 struct request_queue *q; 494 495 sdev = container_of(work, struct scsi_device, requeue_work); 496 q = sdev->request_queue; 497 scsi_run_queue(q); 498 } 499 500 void scsi_run_host_queues(struct Scsi_Host *shost) 501 { 502 struct scsi_device *sdev; 503 504 shost_for_each_device(sdev, shost) 505 scsi_run_queue(sdev->request_queue); 506 } 507 508 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 509 { 510 if (!blk_rq_is_passthrough(cmd->request)) { 511 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 512 513 if (drv->uninit_command) 514 drv->uninit_command(cmd); 515 } 516 } 517 518 void scsi_free_sgtables(struct scsi_cmnd *cmd) 519 { 520 if (cmd->sdb.table.nents) 521 sg_free_table_chained(&cmd->sdb.table, 522 SCSI_INLINE_SG_CNT); 523 if (scsi_prot_sg_count(cmd)) 524 sg_free_table_chained(&cmd->prot_sdb->table, 525 SCSI_INLINE_PROT_SG_CNT); 526 } 527 EXPORT_SYMBOL_GPL(scsi_free_sgtables); 528 529 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 530 { 531 scsi_free_sgtables(cmd); 532 scsi_uninit_cmd(cmd); 533 } 534 535 static void scsi_run_queue_async(struct scsi_device *sdev) 536 { 537 if (scsi_target(sdev)->single_lun || 538 !list_empty(&sdev->host->starved_list)) { 539 kblockd_schedule_work(&sdev->requeue_work); 540 } else { 541 /* 542 * smp_mb() present in sbitmap_queue_clear() or implied in 543 * .end_io is for ordering writing .device_busy in 544 * scsi_device_unbusy() and reading sdev->restarts. 545 */ 546 int old = atomic_read(&sdev->restarts); 547 548 /* 549 * ->restarts has to be kept as non-zero if new budget 550 * contention occurs. 551 * 552 * No need to run queue when either another re-run 553 * queue wins in updating ->restarts or a new budget 554 * contention occurs. 555 */ 556 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 557 blk_mq_run_hw_queues(sdev->request_queue, true); 558 } 559 } 560 561 /* Returns false when no more bytes to process, true if there are more */ 562 static bool scsi_end_request(struct request *req, blk_status_t error, 563 unsigned int bytes) 564 { 565 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 566 struct scsi_device *sdev = cmd->device; 567 struct request_queue *q = sdev->request_queue; 568 569 if (blk_update_request(req, error, bytes)) 570 return true; 571 572 if (blk_queue_add_random(q)) 573 add_disk_randomness(req->rq_disk); 574 575 if (!blk_rq_is_scsi(req)) { 576 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 577 cmd->flags &= ~SCMD_INITIALIZED; 578 } 579 580 /* 581 * Calling rcu_barrier() is not necessary here because the 582 * SCSI error handler guarantees that the function called by 583 * call_rcu() has been called before scsi_end_request() is 584 * called. 585 */ 586 destroy_rcu_head(&cmd->rcu); 587 588 /* 589 * In the MQ case the command gets freed by __blk_mq_end_request, 590 * so we have to do all cleanup that depends on it earlier. 591 * 592 * We also can't kick the queues from irq context, so we 593 * will have to defer it to a workqueue. 594 */ 595 scsi_mq_uninit_cmd(cmd); 596 597 /* 598 * queue is still alive, so grab the ref for preventing it 599 * from being cleaned up during running queue. 600 */ 601 percpu_ref_get(&q->q_usage_counter); 602 603 __blk_mq_end_request(req, error); 604 605 scsi_run_queue_async(sdev); 606 607 percpu_ref_put(&q->q_usage_counter); 608 return false; 609 } 610 611 /** 612 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 613 * @cmd: SCSI command 614 * @result: scsi error code 615 * 616 * Translate a SCSI result code into a blk_status_t value. May reset the host 617 * byte of @cmd->result. 618 */ 619 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 620 { 621 switch (host_byte(result)) { 622 case DID_OK: 623 /* 624 * Also check the other bytes than the status byte in result 625 * to handle the case when a SCSI LLD sets result to 626 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 627 */ 628 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 629 return BLK_STS_OK; 630 return BLK_STS_IOERR; 631 case DID_TRANSPORT_FAILFAST: 632 return BLK_STS_TRANSPORT; 633 case DID_TARGET_FAILURE: 634 set_host_byte(cmd, DID_OK); 635 return BLK_STS_TARGET; 636 case DID_NEXUS_FAILURE: 637 set_host_byte(cmd, DID_OK); 638 return BLK_STS_NEXUS; 639 case DID_ALLOC_FAILURE: 640 set_host_byte(cmd, DID_OK); 641 return BLK_STS_NOSPC; 642 case DID_MEDIUM_ERROR: 643 set_host_byte(cmd, DID_OK); 644 return BLK_STS_MEDIUM; 645 default: 646 return BLK_STS_IOERR; 647 } 648 } 649 650 /* Helper for scsi_io_completion() when "reprep" action required. */ 651 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 652 struct request_queue *q) 653 { 654 /* A new command will be prepared and issued. */ 655 scsi_mq_requeue_cmd(cmd); 656 } 657 658 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 659 { 660 struct request *req = cmd->request; 661 unsigned long wait_for; 662 663 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 664 return false; 665 666 wait_for = (cmd->allowed + 1) * req->timeout; 667 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 668 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 669 wait_for/HZ); 670 return true; 671 } 672 return false; 673 } 674 675 /* Helper for scsi_io_completion() when special action required. */ 676 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 677 { 678 struct request_queue *q = cmd->device->request_queue; 679 struct request *req = cmd->request; 680 int level = 0; 681 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 682 ACTION_DELAYED_RETRY} action; 683 struct scsi_sense_hdr sshdr; 684 bool sense_valid; 685 bool sense_current = true; /* false implies "deferred sense" */ 686 blk_status_t blk_stat; 687 688 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 689 if (sense_valid) 690 sense_current = !scsi_sense_is_deferred(&sshdr); 691 692 blk_stat = scsi_result_to_blk_status(cmd, result); 693 694 if (host_byte(result) == DID_RESET) { 695 /* Third party bus reset or reset for error recovery 696 * reasons. Just retry the command and see what 697 * happens. 698 */ 699 action = ACTION_RETRY; 700 } else if (sense_valid && sense_current) { 701 switch (sshdr.sense_key) { 702 case UNIT_ATTENTION: 703 if (cmd->device->removable) { 704 /* Detected disc change. Set a bit 705 * and quietly refuse further access. 706 */ 707 cmd->device->changed = 1; 708 action = ACTION_FAIL; 709 } else { 710 /* Must have been a power glitch, or a 711 * bus reset. Could not have been a 712 * media change, so we just retry the 713 * command and see what happens. 714 */ 715 action = ACTION_RETRY; 716 } 717 break; 718 case ILLEGAL_REQUEST: 719 /* If we had an ILLEGAL REQUEST returned, then 720 * we may have performed an unsupported 721 * command. The only thing this should be 722 * would be a ten byte read where only a six 723 * byte read was supported. Also, on a system 724 * where READ CAPACITY failed, we may have 725 * read past the end of the disk. 726 */ 727 if ((cmd->device->use_10_for_rw && 728 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 729 (cmd->cmnd[0] == READ_10 || 730 cmd->cmnd[0] == WRITE_10)) { 731 /* This will issue a new 6-byte command. */ 732 cmd->device->use_10_for_rw = 0; 733 action = ACTION_REPREP; 734 } else if (sshdr.asc == 0x10) /* DIX */ { 735 action = ACTION_FAIL; 736 blk_stat = BLK_STS_PROTECTION; 737 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 738 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 739 action = ACTION_FAIL; 740 blk_stat = BLK_STS_TARGET; 741 } else 742 action = ACTION_FAIL; 743 break; 744 case ABORTED_COMMAND: 745 action = ACTION_FAIL; 746 if (sshdr.asc == 0x10) /* DIF */ 747 blk_stat = BLK_STS_PROTECTION; 748 break; 749 case NOT_READY: 750 /* If the device is in the process of becoming 751 * ready, or has a temporary blockage, retry. 752 */ 753 if (sshdr.asc == 0x04) { 754 switch (sshdr.ascq) { 755 case 0x01: /* becoming ready */ 756 case 0x04: /* format in progress */ 757 case 0x05: /* rebuild in progress */ 758 case 0x06: /* recalculation in progress */ 759 case 0x07: /* operation in progress */ 760 case 0x08: /* Long write in progress */ 761 case 0x09: /* self test in progress */ 762 case 0x14: /* space allocation in progress */ 763 case 0x1a: /* start stop unit in progress */ 764 case 0x1b: /* sanitize in progress */ 765 case 0x1d: /* configuration in progress */ 766 case 0x24: /* depopulation in progress */ 767 action = ACTION_DELAYED_RETRY; 768 break; 769 default: 770 action = ACTION_FAIL; 771 break; 772 } 773 } else 774 action = ACTION_FAIL; 775 break; 776 case VOLUME_OVERFLOW: 777 /* See SSC3rXX or current. */ 778 action = ACTION_FAIL; 779 break; 780 case DATA_PROTECT: 781 action = ACTION_FAIL; 782 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) || 783 (sshdr.asc == 0x55 && 784 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) { 785 /* Insufficient zone resources */ 786 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE; 787 } 788 break; 789 default: 790 action = ACTION_FAIL; 791 break; 792 } 793 } else 794 action = ACTION_FAIL; 795 796 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 797 action = ACTION_FAIL; 798 799 switch (action) { 800 case ACTION_FAIL: 801 /* Give up and fail the remainder of the request */ 802 if (!(req->rq_flags & RQF_QUIET)) { 803 static DEFINE_RATELIMIT_STATE(_rs, 804 DEFAULT_RATELIMIT_INTERVAL, 805 DEFAULT_RATELIMIT_BURST); 806 807 if (unlikely(scsi_logging_level)) 808 level = 809 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 810 SCSI_LOG_MLCOMPLETE_BITS); 811 812 /* 813 * if logging is enabled the failure will be printed 814 * in scsi_log_completion(), so avoid duplicate messages 815 */ 816 if (!level && __ratelimit(&_rs)) { 817 scsi_print_result(cmd, NULL, FAILED); 818 if (driver_byte(result) == DRIVER_SENSE) 819 scsi_print_sense(cmd); 820 scsi_print_command(cmd); 821 } 822 } 823 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req))) 824 return; 825 fallthrough; 826 case ACTION_REPREP: 827 scsi_io_completion_reprep(cmd, q); 828 break; 829 case ACTION_RETRY: 830 /* Retry the same command immediately */ 831 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 832 break; 833 case ACTION_DELAYED_RETRY: 834 /* Retry the same command after a delay */ 835 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 836 break; 837 } 838 } 839 840 /* 841 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 842 * new result that may suppress further error checking. Also modifies 843 * *blk_statp in some cases. 844 */ 845 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 846 blk_status_t *blk_statp) 847 { 848 bool sense_valid; 849 bool sense_current = true; /* false implies "deferred sense" */ 850 struct request *req = cmd->request; 851 struct scsi_sense_hdr sshdr; 852 853 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 854 if (sense_valid) 855 sense_current = !scsi_sense_is_deferred(&sshdr); 856 857 if (blk_rq_is_passthrough(req)) { 858 if (sense_valid) { 859 /* 860 * SG_IO wants current and deferred errors 861 */ 862 scsi_req(req)->sense_len = 863 min(8 + cmd->sense_buffer[7], 864 SCSI_SENSE_BUFFERSIZE); 865 } 866 if (sense_current) 867 *blk_statp = scsi_result_to_blk_status(cmd, result); 868 } else if (blk_rq_bytes(req) == 0 && sense_current) { 869 /* 870 * Flush commands do not transfers any data, and thus cannot use 871 * good_bytes != blk_rq_bytes(req) as the signal for an error. 872 * This sets *blk_statp explicitly for the problem case. 873 */ 874 *blk_statp = scsi_result_to_blk_status(cmd, result); 875 } 876 /* 877 * Recovered errors need reporting, but they're always treated as 878 * success, so fiddle the result code here. For passthrough requests 879 * we already took a copy of the original into sreq->result which 880 * is what gets returned to the user 881 */ 882 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 883 bool do_print = true; 884 /* 885 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 886 * skip print since caller wants ATA registers. Only occurs 887 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 888 */ 889 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 890 do_print = false; 891 else if (req->rq_flags & RQF_QUIET) 892 do_print = false; 893 if (do_print) 894 scsi_print_sense(cmd); 895 result = 0; 896 /* for passthrough, *blk_statp may be set */ 897 *blk_statp = BLK_STS_OK; 898 } 899 /* 900 * Another corner case: the SCSI status byte is non-zero but 'good'. 901 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 902 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 903 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 904 * intermediate statuses (both obsolete in SAM-4) as good. 905 */ 906 if (status_byte(result) && scsi_status_is_good(result)) { 907 result = 0; 908 *blk_statp = BLK_STS_OK; 909 } 910 return result; 911 } 912 913 /** 914 * scsi_io_completion - Completion processing for SCSI commands. 915 * @cmd: command that is finished. 916 * @good_bytes: number of processed bytes. 917 * 918 * We will finish off the specified number of sectors. If we are done, the 919 * command block will be released and the queue function will be goosed. If we 920 * are not done then we have to figure out what to do next: 921 * 922 * a) We can call scsi_io_completion_reprep(). The request will be 923 * unprepared and put back on the queue. Then a new command will 924 * be created for it. This should be used if we made forward 925 * progress, or if we want to switch from READ(10) to READ(6) for 926 * example. 927 * 928 * b) We can call scsi_io_completion_action(). The request will be 929 * put back on the queue and retried using the same command as 930 * before, possibly after a delay. 931 * 932 * c) We can call scsi_end_request() with blk_stat other than 933 * BLK_STS_OK, to fail the remainder of the request. 934 */ 935 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 936 { 937 int result = cmd->result; 938 struct request_queue *q = cmd->device->request_queue; 939 struct request *req = cmd->request; 940 blk_status_t blk_stat = BLK_STS_OK; 941 942 if (unlikely(result)) /* a nz result may or may not be an error */ 943 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 944 945 if (unlikely(blk_rq_is_passthrough(req))) { 946 /* 947 * scsi_result_to_blk_status may have reset the host_byte 948 */ 949 scsi_req(req)->result = cmd->result; 950 } 951 952 /* 953 * Next deal with any sectors which we were able to correctly 954 * handle. 955 */ 956 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 957 "%u sectors total, %d bytes done.\n", 958 blk_rq_sectors(req), good_bytes)); 959 960 /* 961 * Failed, zero length commands always need to drop down 962 * to retry code. Fast path should return in this block. 963 */ 964 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 965 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 966 return; /* no bytes remaining */ 967 } 968 969 /* Kill remainder if no retries. */ 970 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 971 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 972 WARN_ONCE(true, 973 "Bytes remaining after failed, no-retry command"); 974 return; 975 } 976 977 /* 978 * If there had been no error, but we have leftover bytes in the 979 * requeues just queue the command up again. 980 */ 981 if (likely(result == 0)) 982 scsi_io_completion_reprep(cmd, q); 983 else 984 scsi_io_completion_action(cmd, result); 985 } 986 987 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 988 struct request *rq) 989 { 990 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 991 !op_is_write(req_op(rq)) && 992 sdev->host->hostt->dma_need_drain(rq); 993 } 994 995 /** 996 * scsi_alloc_sgtables - allocate S/G tables for a command 997 * @cmd: command descriptor we wish to initialize 998 * 999 * Returns: 1000 * * BLK_STS_OK - on success 1001 * * BLK_STS_RESOURCE - if the failure is retryable 1002 * * BLK_STS_IOERR - if the failure is fatal 1003 */ 1004 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd) 1005 { 1006 struct scsi_device *sdev = cmd->device; 1007 struct request *rq = cmd->request; 1008 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 1009 struct scatterlist *last_sg = NULL; 1010 blk_status_t ret; 1011 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 1012 int count; 1013 1014 if (WARN_ON_ONCE(!nr_segs)) 1015 return BLK_STS_IOERR; 1016 1017 /* 1018 * Make sure there is space for the drain. The driver must adjust 1019 * max_hw_segments to be prepared for this. 1020 */ 1021 if (need_drain) 1022 nr_segs++; 1023 1024 /* 1025 * If sg table allocation fails, requeue request later. 1026 */ 1027 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1028 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1029 return BLK_STS_RESOURCE; 1030 1031 /* 1032 * Next, walk the list, and fill in the addresses and sizes of 1033 * each segment. 1034 */ 1035 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1036 1037 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) { 1038 unsigned int pad_len = 1039 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1040 1041 last_sg->length += pad_len; 1042 cmd->extra_len += pad_len; 1043 } 1044 1045 if (need_drain) { 1046 sg_unmark_end(last_sg); 1047 last_sg = sg_next(last_sg); 1048 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1049 sg_mark_end(last_sg); 1050 1051 cmd->extra_len += sdev->dma_drain_len; 1052 count++; 1053 } 1054 1055 BUG_ON(count > cmd->sdb.table.nents); 1056 cmd->sdb.table.nents = count; 1057 cmd->sdb.length = blk_rq_payload_bytes(rq); 1058 1059 if (blk_integrity_rq(rq)) { 1060 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1061 int ivecs; 1062 1063 if (WARN_ON_ONCE(!prot_sdb)) { 1064 /* 1065 * This can happen if someone (e.g. multipath) 1066 * queues a command to a device on an adapter 1067 * that does not support DIX. 1068 */ 1069 ret = BLK_STS_IOERR; 1070 goto out_free_sgtables; 1071 } 1072 1073 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1074 1075 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1076 prot_sdb->table.sgl, 1077 SCSI_INLINE_PROT_SG_CNT)) { 1078 ret = BLK_STS_RESOURCE; 1079 goto out_free_sgtables; 1080 } 1081 1082 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1083 prot_sdb->table.sgl); 1084 BUG_ON(count > ivecs); 1085 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1086 1087 cmd->prot_sdb = prot_sdb; 1088 cmd->prot_sdb->table.nents = count; 1089 } 1090 1091 return BLK_STS_OK; 1092 out_free_sgtables: 1093 scsi_free_sgtables(cmd); 1094 return ret; 1095 } 1096 EXPORT_SYMBOL(scsi_alloc_sgtables); 1097 1098 /** 1099 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1100 * @rq: Request associated with the SCSI command to be initialized. 1101 * 1102 * This function initializes the members of struct scsi_cmnd that must be 1103 * initialized before request processing starts and that won't be 1104 * reinitialized if a SCSI command is requeued. 1105 * 1106 * Called from inside blk_get_request() for pass-through requests and from 1107 * inside scsi_init_command() for filesystem requests. 1108 */ 1109 static void scsi_initialize_rq(struct request *rq) 1110 { 1111 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1112 1113 scsi_req_init(&cmd->req); 1114 init_rcu_head(&cmd->rcu); 1115 cmd->jiffies_at_alloc = jiffies; 1116 cmd->retries = 0; 1117 } 1118 1119 /* 1120 * Only called when the request isn't completed by SCSI, and not freed by 1121 * SCSI 1122 */ 1123 static void scsi_cleanup_rq(struct request *rq) 1124 { 1125 if (rq->rq_flags & RQF_DONTPREP) { 1126 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1127 rq->rq_flags &= ~RQF_DONTPREP; 1128 } 1129 } 1130 1131 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1132 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1133 { 1134 void *buf = cmd->sense_buffer; 1135 void *prot = cmd->prot_sdb; 1136 struct request *rq = blk_mq_rq_from_pdu(cmd); 1137 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1138 unsigned long jiffies_at_alloc; 1139 int retries, to_clear; 1140 bool in_flight; 1141 1142 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1143 flags |= SCMD_INITIALIZED; 1144 scsi_initialize_rq(rq); 1145 } 1146 1147 jiffies_at_alloc = cmd->jiffies_at_alloc; 1148 retries = cmd->retries; 1149 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1150 /* 1151 * Zero out the cmd, except for the embedded scsi_request. Only clear 1152 * the driver-private command data if the LLD does not supply a 1153 * function to initialize that data. 1154 */ 1155 to_clear = sizeof(*cmd) - sizeof(cmd->req); 1156 if (!dev->host->hostt->init_cmd_priv) 1157 to_clear += dev->host->hostt->cmd_size; 1158 memset((char *)cmd + sizeof(cmd->req), 0, to_clear); 1159 1160 cmd->device = dev; 1161 cmd->sense_buffer = buf; 1162 cmd->prot_sdb = prot; 1163 cmd->flags = flags; 1164 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1165 cmd->jiffies_at_alloc = jiffies_at_alloc; 1166 cmd->retries = retries; 1167 if (in_flight) 1168 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1169 1170 } 1171 1172 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1173 struct request *req) 1174 { 1175 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1176 1177 /* 1178 * Passthrough requests may transfer data, in which case they must 1179 * a bio attached to them. Or they might contain a SCSI command 1180 * that does not transfer data, in which case they may optionally 1181 * submit a request without an attached bio. 1182 */ 1183 if (req->bio) { 1184 blk_status_t ret = scsi_alloc_sgtables(cmd); 1185 if (unlikely(ret != BLK_STS_OK)) 1186 return ret; 1187 } else { 1188 BUG_ON(blk_rq_bytes(req)); 1189 1190 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1191 } 1192 1193 cmd->cmd_len = scsi_req(req)->cmd_len; 1194 if (cmd->cmd_len == 0) 1195 cmd->cmd_len = scsi_command_size(cmd->cmnd); 1196 cmd->cmnd = scsi_req(req)->cmd; 1197 cmd->transfersize = blk_rq_bytes(req); 1198 cmd->allowed = scsi_req(req)->retries; 1199 return BLK_STS_OK; 1200 } 1201 1202 static blk_status_t 1203 scsi_device_state_check(struct scsi_device *sdev, struct request *req) 1204 { 1205 switch (sdev->sdev_state) { 1206 case SDEV_OFFLINE: 1207 case SDEV_TRANSPORT_OFFLINE: 1208 /* 1209 * If the device is offline we refuse to process any 1210 * commands. The device must be brought online 1211 * before trying any recovery commands. 1212 */ 1213 if (!sdev->offline_already) { 1214 sdev->offline_already = true; 1215 sdev_printk(KERN_ERR, sdev, 1216 "rejecting I/O to offline device\n"); 1217 } 1218 return BLK_STS_IOERR; 1219 case SDEV_DEL: 1220 /* 1221 * If the device is fully deleted, we refuse to 1222 * process any commands as well. 1223 */ 1224 sdev_printk(KERN_ERR, sdev, 1225 "rejecting I/O to dead device\n"); 1226 return BLK_STS_IOERR; 1227 case SDEV_BLOCK: 1228 case SDEV_CREATED_BLOCK: 1229 return BLK_STS_RESOURCE; 1230 case SDEV_QUIESCE: 1231 /* 1232 * If the devices is blocked we defer normal commands. 1233 */ 1234 if (req && !(req->rq_flags & RQF_PREEMPT)) 1235 return BLK_STS_RESOURCE; 1236 return BLK_STS_OK; 1237 default: 1238 /* 1239 * For any other not fully online state we only allow 1240 * special commands. In particular any user initiated 1241 * command is not allowed. 1242 */ 1243 if (req && !(req->rq_flags & RQF_PREEMPT)) 1244 return BLK_STS_IOERR; 1245 return BLK_STS_OK; 1246 } 1247 } 1248 1249 /* 1250 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1251 * return 0. 1252 * 1253 * Called with the queue_lock held. 1254 */ 1255 static inline int scsi_dev_queue_ready(struct request_queue *q, 1256 struct scsi_device *sdev) 1257 { 1258 unsigned int busy; 1259 1260 busy = atomic_inc_return(&sdev->device_busy) - 1; 1261 if (atomic_read(&sdev->device_blocked)) { 1262 if (busy) 1263 goto out_dec; 1264 1265 /* 1266 * unblock after device_blocked iterates to zero 1267 */ 1268 if (atomic_dec_return(&sdev->device_blocked) > 0) 1269 goto out_dec; 1270 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1271 "unblocking device at zero depth\n")); 1272 } 1273 1274 if (busy >= sdev->queue_depth) 1275 goto out_dec; 1276 1277 return 1; 1278 out_dec: 1279 atomic_dec(&sdev->device_busy); 1280 return 0; 1281 } 1282 1283 /* 1284 * scsi_target_queue_ready: checks if there we can send commands to target 1285 * @sdev: scsi device on starget to check. 1286 */ 1287 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1288 struct scsi_device *sdev) 1289 { 1290 struct scsi_target *starget = scsi_target(sdev); 1291 unsigned int busy; 1292 1293 if (starget->single_lun) { 1294 spin_lock_irq(shost->host_lock); 1295 if (starget->starget_sdev_user && 1296 starget->starget_sdev_user != sdev) { 1297 spin_unlock_irq(shost->host_lock); 1298 return 0; 1299 } 1300 starget->starget_sdev_user = sdev; 1301 spin_unlock_irq(shost->host_lock); 1302 } 1303 1304 if (starget->can_queue <= 0) 1305 return 1; 1306 1307 busy = atomic_inc_return(&starget->target_busy) - 1; 1308 if (atomic_read(&starget->target_blocked) > 0) { 1309 if (busy) 1310 goto starved; 1311 1312 /* 1313 * unblock after target_blocked iterates to zero 1314 */ 1315 if (atomic_dec_return(&starget->target_blocked) > 0) 1316 goto out_dec; 1317 1318 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1319 "unblocking target at zero depth\n")); 1320 } 1321 1322 if (busy >= starget->can_queue) 1323 goto starved; 1324 1325 return 1; 1326 1327 starved: 1328 spin_lock_irq(shost->host_lock); 1329 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1330 spin_unlock_irq(shost->host_lock); 1331 out_dec: 1332 if (starget->can_queue > 0) 1333 atomic_dec(&starget->target_busy); 1334 return 0; 1335 } 1336 1337 /* 1338 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1339 * return 0. We must end up running the queue again whenever 0 is 1340 * returned, else IO can hang. 1341 */ 1342 static inline int scsi_host_queue_ready(struct request_queue *q, 1343 struct Scsi_Host *shost, 1344 struct scsi_device *sdev, 1345 struct scsi_cmnd *cmd) 1346 { 1347 if (scsi_host_in_recovery(shost)) 1348 return 0; 1349 1350 if (atomic_read(&shost->host_blocked) > 0) { 1351 if (scsi_host_busy(shost) > 0) 1352 goto starved; 1353 1354 /* 1355 * unblock after host_blocked iterates to zero 1356 */ 1357 if (atomic_dec_return(&shost->host_blocked) > 0) 1358 goto out_dec; 1359 1360 SCSI_LOG_MLQUEUE(3, 1361 shost_printk(KERN_INFO, shost, 1362 "unblocking host at zero depth\n")); 1363 } 1364 1365 if (shost->host_self_blocked) 1366 goto starved; 1367 1368 /* We're OK to process the command, so we can't be starved */ 1369 if (!list_empty(&sdev->starved_entry)) { 1370 spin_lock_irq(shost->host_lock); 1371 if (!list_empty(&sdev->starved_entry)) 1372 list_del_init(&sdev->starved_entry); 1373 spin_unlock_irq(shost->host_lock); 1374 } 1375 1376 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1377 1378 return 1; 1379 1380 starved: 1381 spin_lock_irq(shost->host_lock); 1382 if (list_empty(&sdev->starved_entry)) 1383 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1384 spin_unlock_irq(shost->host_lock); 1385 out_dec: 1386 scsi_dec_host_busy(shost, cmd); 1387 return 0; 1388 } 1389 1390 /* 1391 * Busy state exporting function for request stacking drivers. 1392 * 1393 * For efficiency, no lock is taken to check the busy state of 1394 * shost/starget/sdev, since the returned value is not guaranteed and 1395 * may be changed after request stacking drivers call the function, 1396 * regardless of taking lock or not. 1397 * 1398 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1399 * needs to return 'not busy'. Otherwise, request stacking drivers 1400 * may hold requests forever. 1401 */ 1402 static bool scsi_mq_lld_busy(struct request_queue *q) 1403 { 1404 struct scsi_device *sdev = q->queuedata; 1405 struct Scsi_Host *shost; 1406 1407 if (blk_queue_dying(q)) 1408 return false; 1409 1410 shost = sdev->host; 1411 1412 /* 1413 * Ignore host/starget busy state. 1414 * Since block layer does not have a concept of fairness across 1415 * multiple queues, congestion of host/starget needs to be handled 1416 * in SCSI layer. 1417 */ 1418 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1419 return true; 1420 1421 return false; 1422 } 1423 1424 static void scsi_softirq_done(struct request *rq) 1425 { 1426 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1427 int disposition; 1428 1429 INIT_LIST_HEAD(&cmd->eh_entry); 1430 1431 atomic_inc(&cmd->device->iodone_cnt); 1432 if (cmd->result) 1433 atomic_inc(&cmd->device->ioerr_cnt); 1434 1435 disposition = scsi_decide_disposition(cmd); 1436 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1437 disposition = SUCCESS; 1438 1439 scsi_log_completion(cmd, disposition); 1440 1441 switch (disposition) { 1442 case SUCCESS: 1443 scsi_finish_command(cmd); 1444 break; 1445 case NEEDS_RETRY: 1446 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1447 break; 1448 case ADD_TO_MLQUEUE: 1449 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1450 break; 1451 default: 1452 scsi_eh_scmd_add(cmd); 1453 break; 1454 } 1455 } 1456 1457 /** 1458 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1459 * @cmd: command block we are dispatching. 1460 * 1461 * Return: nonzero return request was rejected and device's queue needs to be 1462 * plugged. 1463 */ 1464 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1465 { 1466 struct Scsi_Host *host = cmd->device->host; 1467 int rtn = 0; 1468 1469 atomic_inc(&cmd->device->iorequest_cnt); 1470 1471 /* check if the device is still usable */ 1472 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1473 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1474 * returns an immediate error upwards, and signals 1475 * that the device is no longer present */ 1476 cmd->result = DID_NO_CONNECT << 16; 1477 goto done; 1478 } 1479 1480 /* Check to see if the scsi lld made this device blocked. */ 1481 if (unlikely(scsi_device_blocked(cmd->device))) { 1482 /* 1483 * in blocked state, the command is just put back on 1484 * the device queue. The suspend state has already 1485 * blocked the queue so future requests should not 1486 * occur until the device transitions out of the 1487 * suspend state. 1488 */ 1489 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1490 "queuecommand : device blocked\n")); 1491 return SCSI_MLQUEUE_DEVICE_BUSY; 1492 } 1493 1494 /* Store the LUN value in cmnd, if needed. */ 1495 if (cmd->device->lun_in_cdb) 1496 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1497 (cmd->device->lun << 5 & 0xe0); 1498 1499 scsi_log_send(cmd); 1500 1501 /* 1502 * Before we queue this command, check if the command 1503 * length exceeds what the host adapter can handle. 1504 */ 1505 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1506 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1507 "queuecommand : command too long. " 1508 "cdb_size=%d host->max_cmd_len=%d\n", 1509 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1510 cmd->result = (DID_ABORT << 16); 1511 goto done; 1512 } 1513 1514 if (unlikely(host->shost_state == SHOST_DEL)) { 1515 cmd->result = (DID_NO_CONNECT << 16); 1516 goto done; 1517 1518 } 1519 1520 trace_scsi_dispatch_cmd_start(cmd); 1521 rtn = host->hostt->queuecommand(host, cmd); 1522 if (rtn) { 1523 trace_scsi_dispatch_cmd_error(cmd, rtn); 1524 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1525 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1526 rtn = SCSI_MLQUEUE_HOST_BUSY; 1527 1528 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1529 "queuecommand : request rejected\n")); 1530 } 1531 1532 return rtn; 1533 done: 1534 cmd->scsi_done(cmd); 1535 return 0; 1536 } 1537 1538 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1539 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1540 { 1541 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1542 sizeof(struct scatterlist); 1543 } 1544 1545 static blk_status_t scsi_prepare_cmd(struct request *req) 1546 { 1547 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1548 struct scsi_device *sdev = req->q->queuedata; 1549 struct Scsi_Host *shost = sdev->host; 1550 struct scatterlist *sg; 1551 1552 scsi_init_command(sdev, cmd); 1553 1554 cmd->request = req; 1555 cmd->tag = req->tag; 1556 cmd->prot_op = SCSI_PROT_NORMAL; 1557 if (blk_rq_bytes(req)) 1558 cmd->sc_data_direction = rq_dma_dir(req); 1559 else 1560 cmd->sc_data_direction = DMA_NONE; 1561 1562 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1563 cmd->sdb.table.sgl = sg; 1564 1565 if (scsi_host_get_prot(shost)) { 1566 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1567 1568 cmd->prot_sdb->table.sgl = 1569 (struct scatterlist *)(cmd->prot_sdb + 1); 1570 } 1571 1572 /* 1573 * Special handling for passthrough commands, which don't go to the ULP 1574 * at all: 1575 */ 1576 if (blk_rq_is_scsi(req)) 1577 return scsi_setup_scsi_cmnd(sdev, req); 1578 1579 if (sdev->handler && sdev->handler->prep_fn) { 1580 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1581 1582 if (ret != BLK_STS_OK) 1583 return ret; 1584 } 1585 1586 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1587 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1588 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1589 } 1590 1591 static void scsi_mq_done(struct scsi_cmnd *cmd) 1592 { 1593 if (unlikely(blk_should_fake_timeout(cmd->request->q))) 1594 return; 1595 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1596 return; 1597 trace_scsi_dispatch_cmd_done(cmd); 1598 blk_mq_complete_request(cmd->request); 1599 } 1600 1601 static void scsi_mq_put_budget(struct request_queue *q) 1602 { 1603 struct scsi_device *sdev = q->queuedata; 1604 1605 atomic_dec(&sdev->device_busy); 1606 } 1607 1608 static bool scsi_mq_get_budget(struct request_queue *q) 1609 { 1610 struct scsi_device *sdev = q->queuedata; 1611 1612 if (scsi_dev_queue_ready(q, sdev)) 1613 return true; 1614 1615 atomic_inc(&sdev->restarts); 1616 1617 /* 1618 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1619 * .restarts must be incremented before .device_busy is read because the 1620 * code in scsi_run_queue_async() depends on the order of these operations. 1621 */ 1622 smp_mb__after_atomic(); 1623 1624 /* 1625 * If all in-flight requests originated from this LUN are completed 1626 * before reading .device_busy, sdev->device_busy will be observed as 1627 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1628 * soon. Otherwise, completion of one of these requests will observe 1629 * the .restarts flag, and the request queue will be run for handling 1630 * this request, see scsi_end_request(). 1631 */ 1632 if (unlikely(atomic_read(&sdev->device_busy) == 0 && 1633 !scsi_device_blocked(sdev))) 1634 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1635 return false; 1636 } 1637 1638 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1639 const struct blk_mq_queue_data *bd) 1640 { 1641 struct request *req = bd->rq; 1642 struct request_queue *q = req->q; 1643 struct scsi_device *sdev = q->queuedata; 1644 struct Scsi_Host *shost = sdev->host; 1645 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1646 blk_status_t ret; 1647 int reason; 1648 1649 /* 1650 * If the device is not in running state we will reject some or all 1651 * commands. 1652 */ 1653 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1654 ret = scsi_device_state_check(sdev, req); 1655 if (ret != BLK_STS_OK) 1656 goto out_put_budget; 1657 } 1658 1659 ret = BLK_STS_RESOURCE; 1660 if (!scsi_target_queue_ready(shost, sdev)) 1661 goto out_put_budget; 1662 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1663 goto out_dec_target_busy; 1664 1665 if (!(req->rq_flags & RQF_DONTPREP)) { 1666 ret = scsi_prepare_cmd(req); 1667 if (ret != BLK_STS_OK) 1668 goto out_dec_host_busy; 1669 req->rq_flags |= RQF_DONTPREP; 1670 } else { 1671 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1672 } 1673 1674 cmd->flags &= SCMD_PRESERVED_FLAGS; 1675 if (sdev->simple_tags) 1676 cmd->flags |= SCMD_TAGGED; 1677 if (bd->last) 1678 cmd->flags |= SCMD_LAST; 1679 1680 scsi_set_resid(cmd, 0); 1681 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1682 cmd->scsi_done = scsi_mq_done; 1683 1684 blk_mq_start_request(req); 1685 reason = scsi_dispatch_cmd(cmd); 1686 if (reason) { 1687 scsi_set_blocked(cmd, reason); 1688 ret = BLK_STS_RESOURCE; 1689 goto out_dec_host_busy; 1690 } 1691 1692 return BLK_STS_OK; 1693 1694 out_dec_host_busy: 1695 scsi_dec_host_busy(shost, cmd); 1696 out_dec_target_busy: 1697 if (scsi_target(sdev)->can_queue > 0) 1698 atomic_dec(&scsi_target(sdev)->target_busy); 1699 out_put_budget: 1700 scsi_mq_put_budget(q); 1701 switch (ret) { 1702 case BLK_STS_OK: 1703 break; 1704 case BLK_STS_RESOURCE: 1705 case BLK_STS_ZONE_RESOURCE: 1706 if (scsi_device_blocked(sdev)) 1707 ret = BLK_STS_DEV_RESOURCE; 1708 break; 1709 default: 1710 if (unlikely(!scsi_device_online(sdev))) 1711 scsi_req(req)->result = DID_NO_CONNECT << 16; 1712 else 1713 scsi_req(req)->result = DID_ERROR << 16; 1714 /* 1715 * Make sure to release all allocated resources when 1716 * we hit an error, as we will never see this command 1717 * again. 1718 */ 1719 if (req->rq_flags & RQF_DONTPREP) 1720 scsi_mq_uninit_cmd(cmd); 1721 scsi_run_queue_async(sdev); 1722 break; 1723 } 1724 return ret; 1725 } 1726 1727 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1728 bool reserved) 1729 { 1730 if (reserved) 1731 return BLK_EH_RESET_TIMER; 1732 return scsi_times_out(req); 1733 } 1734 1735 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1736 unsigned int hctx_idx, unsigned int numa_node) 1737 { 1738 struct Scsi_Host *shost = set->driver_data; 1739 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 1740 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1741 struct scatterlist *sg; 1742 int ret = 0; 1743 1744 if (unchecked_isa_dma) 1745 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 1746 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 1747 GFP_KERNEL, numa_node); 1748 if (!cmd->sense_buffer) 1749 return -ENOMEM; 1750 cmd->req.sense = cmd->sense_buffer; 1751 1752 if (scsi_host_get_prot(shost)) { 1753 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1754 shost->hostt->cmd_size; 1755 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1756 } 1757 1758 if (shost->hostt->init_cmd_priv) { 1759 ret = shost->hostt->init_cmd_priv(shost, cmd); 1760 if (ret < 0) 1761 scsi_free_sense_buffer(unchecked_isa_dma, 1762 cmd->sense_buffer); 1763 } 1764 1765 return ret; 1766 } 1767 1768 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1769 unsigned int hctx_idx) 1770 { 1771 struct Scsi_Host *shost = set->driver_data; 1772 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1773 1774 if (shost->hostt->exit_cmd_priv) 1775 shost->hostt->exit_cmd_priv(shost, cmd); 1776 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 1777 cmd->sense_buffer); 1778 } 1779 1780 static int scsi_map_queues(struct blk_mq_tag_set *set) 1781 { 1782 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1783 1784 if (shost->hostt->map_queues) 1785 return shost->hostt->map_queues(shost); 1786 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1787 } 1788 1789 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1790 { 1791 struct device *dev = shost->dma_dev; 1792 1793 /* 1794 * this limit is imposed by hardware restrictions 1795 */ 1796 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1797 SG_MAX_SEGMENTS)); 1798 1799 if (scsi_host_prot_dma(shost)) { 1800 shost->sg_prot_tablesize = 1801 min_not_zero(shost->sg_prot_tablesize, 1802 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1803 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1804 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1805 } 1806 1807 if (dev->dma_mask) { 1808 shost->max_sectors = min_t(unsigned int, shost->max_sectors, 1809 dma_max_mapping_size(dev) >> SECTOR_SHIFT); 1810 } 1811 blk_queue_max_hw_sectors(q, shost->max_sectors); 1812 if (shost->unchecked_isa_dma) 1813 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 1814 blk_queue_segment_boundary(q, shost->dma_boundary); 1815 dma_set_seg_boundary(dev, shost->dma_boundary); 1816 1817 blk_queue_max_segment_size(q, shost->max_segment_size); 1818 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1819 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1820 1821 /* 1822 * Set a reasonable default alignment: The larger of 32-byte (dword), 1823 * which is a common minimum for HBAs, and the minimum DMA alignment, 1824 * which is set by the platform. 1825 * 1826 * Devices that require a bigger alignment can increase it later. 1827 */ 1828 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1829 } 1830 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1831 1832 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1833 .get_budget = scsi_mq_get_budget, 1834 .put_budget = scsi_mq_put_budget, 1835 .queue_rq = scsi_queue_rq, 1836 .complete = scsi_softirq_done, 1837 .timeout = scsi_timeout, 1838 #ifdef CONFIG_BLK_DEBUG_FS 1839 .show_rq = scsi_show_rq, 1840 #endif 1841 .init_request = scsi_mq_init_request, 1842 .exit_request = scsi_mq_exit_request, 1843 .initialize_rq_fn = scsi_initialize_rq, 1844 .cleanup_rq = scsi_cleanup_rq, 1845 .busy = scsi_mq_lld_busy, 1846 .map_queues = scsi_map_queues, 1847 }; 1848 1849 1850 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1851 { 1852 struct request_queue *q = hctx->queue; 1853 struct scsi_device *sdev = q->queuedata; 1854 struct Scsi_Host *shost = sdev->host; 1855 1856 shost->hostt->commit_rqs(shost, hctx->queue_num); 1857 } 1858 1859 static const struct blk_mq_ops scsi_mq_ops = { 1860 .get_budget = scsi_mq_get_budget, 1861 .put_budget = scsi_mq_put_budget, 1862 .queue_rq = scsi_queue_rq, 1863 .commit_rqs = scsi_commit_rqs, 1864 .complete = scsi_softirq_done, 1865 .timeout = scsi_timeout, 1866 #ifdef CONFIG_BLK_DEBUG_FS 1867 .show_rq = scsi_show_rq, 1868 #endif 1869 .init_request = scsi_mq_init_request, 1870 .exit_request = scsi_mq_exit_request, 1871 .initialize_rq_fn = scsi_initialize_rq, 1872 .cleanup_rq = scsi_cleanup_rq, 1873 .busy = scsi_mq_lld_busy, 1874 .map_queues = scsi_map_queues, 1875 }; 1876 1877 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 1878 { 1879 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 1880 if (IS_ERR(sdev->request_queue)) 1881 return NULL; 1882 1883 sdev->request_queue->queuedata = sdev; 1884 __scsi_init_queue(sdev->host, sdev->request_queue); 1885 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 1886 return sdev->request_queue; 1887 } 1888 1889 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1890 { 1891 unsigned int cmd_size, sgl_size; 1892 struct blk_mq_tag_set *tag_set = &shost->tag_set; 1893 1894 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1895 scsi_mq_inline_sgl_size(shost)); 1896 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1897 if (scsi_host_get_prot(shost)) 1898 cmd_size += sizeof(struct scsi_data_buffer) + 1899 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1900 1901 memset(tag_set, 0, sizeof(*tag_set)); 1902 if (shost->hostt->commit_rqs) 1903 tag_set->ops = &scsi_mq_ops; 1904 else 1905 tag_set->ops = &scsi_mq_ops_no_commit; 1906 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 1907 tag_set->queue_depth = shost->can_queue; 1908 tag_set->cmd_size = cmd_size; 1909 tag_set->numa_node = NUMA_NO_NODE; 1910 tag_set->flags = BLK_MQ_F_SHOULD_MERGE; 1911 tag_set->flags |= 1912 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1913 tag_set->driver_data = shost; 1914 if (shost->host_tagset) 1915 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1916 1917 return blk_mq_alloc_tag_set(tag_set); 1918 } 1919 1920 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1921 { 1922 blk_mq_free_tag_set(&shost->tag_set); 1923 } 1924 1925 /** 1926 * scsi_device_from_queue - return sdev associated with a request_queue 1927 * @q: The request queue to return the sdev from 1928 * 1929 * Return the sdev associated with a request queue or NULL if the 1930 * request_queue does not reference a SCSI device. 1931 */ 1932 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1933 { 1934 struct scsi_device *sdev = NULL; 1935 1936 if (q->mq_ops == &scsi_mq_ops_no_commit || 1937 q->mq_ops == &scsi_mq_ops) 1938 sdev = q->queuedata; 1939 if (!sdev || !get_device(&sdev->sdev_gendev)) 1940 sdev = NULL; 1941 1942 return sdev; 1943 } 1944 1945 /** 1946 * scsi_block_requests - Utility function used by low-level drivers to prevent 1947 * further commands from being queued to the device. 1948 * @shost: host in question 1949 * 1950 * There is no timer nor any other means by which the requests get unblocked 1951 * other than the low-level driver calling scsi_unblock_requests(). 1952 */ 1953 void scsi_block_requests(struct Scsi_Host *shost) 1954 { 1955 shost->host_self_blocked = 1; 1956 } 1957 EXPORT_SYMBOL(scsi_block_requests); 1958 1959 /** 1960 * scsi_unblock_requests - Utility function used by low-level drivers to allow 1961 * further commands to be queued to the device. 1962 * @shost: host in question 1963 * 1964 * There is no timer nor any other means by which the requests get unblocked 1965 * other than the low-level driver calling scsi_unblock_requests(). This is done 1966 * as an API function so that changes to the internals of the scsi mid-layer 1967 * won't require wholesale changes to drivers that use this feature. 1968 */ 1969 void scsi_unblock_requests(struct Scsi_Host *shost) 1970 { 1971 shost->host_self_blocked = 0; 1972 scsi_run_host_queues(shost); 1973 } 1974 EXPORT_SYMBOL(scsi_unblock_requests); 1975 1976 void scsi_exit_queue(void) 1977 { 1978 kmem_cache_destroy(scsi_sense_cache); 1979 kmem_cache_destroy(scsi_sense_isadma_cache); 1980 } 1981 1982 /** 1983 * scsi_mode_select - issue a mode select 1984 * @sdev: SCSI device to be queried 1985 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1986 * @sp: Save page bit (0 == don't save, 1 == save) 1987 * @modepage: mode page being requested 1988 * @buffer: request buffer (may not be smaller than eight bytes) 1989 * @len: length of request buffer. 1990 * @timeout: command timeout 1991 * @retries: number of retries before failing 1992 * @data: returns a structure abstracting the mode header data 1993 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1994 * must be SCSI_SENSE_BUFFERSIZE big. 1995 * 1996 * Returns zero if successful; negative error number or scsi 1997 * status on error 1998 * 1999 */ 2000 int 2001 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2002 unsigned char *buffer, int len, int timeout, int retries, 2003 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2004 { 2005 unsigned char cmd[10]; 2006 unsigned char *real_buffer; 2007 int ret; 2008 2009 memset(cmd, 0, sizeof(cmd)); 2010 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2011 2012 if (sdev->use_10_for_ms) { 2013 if (len > 65535) 2014 return -EINVAL; 2015 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2016 if (!real_buffer) 2017 return -ENOMEM; 2018 memcpy(real_buffer + 8, buffer, len); 2019 len += 8; 2020 real_buffer[0] = 0; 2021 real_buffer[1] = 0; 2022 real_buffer[2] = data->medium_type; 2023 real_buffer[3] = data->device_specific; 2024 real_buffer[4] = data->longlba ? 0x01 : 0; 2025 real_buffer[5] = 0; 2026 real_buffer[6] = data->block_descriptor_length >> 8; 2027 real_buffer[7] = data->block_descriptor_length; 2028 2029 cmd[0] = MODE_SELECT_10; 2030 cmd[7] = len >> 8; 2031 cmd[8] = len; 2032 } else { 2033 if (len > 255 || data->block_descriptor_length > 255 || 2034 data->longlba) 2035 return -EINVAL; 2036 2037 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2038 if (!real_buffer) 2039 return -ENOMEM; 2040 memcpy(real_buffer + 4, buffer, len); 2041 len += 4; 2042 real_buffer[0] = 0; 2043 real_buffer[1] = data->medium_type; 2044 real_buffer[2] = data->device_specific; 2045 real_buffer[3] = data->block_descriptor_length; 2046 2047 cmd[0] = MODE_SELECT; 2048 cmd[4] = len; 2049 } 2050 2051 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2052 sshdr, timeout, retries, NULL); 2053 kfree(real_buffer); 2054 return ret; 2055 } 2056 EXPORT_SYMBOL_GPL(scsi_mode_select); 2057 2058 /** 2059 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2060 * @sdev: SCSI device to be queried 2061 * @dbd: set if mode sense will allow block descriptors to be returned 2062 * @modepage: mode page being requested 2063 * @buffer: request buffer (may not be smaller than eight bytes) 2064 * @len: length of request buffer. 2065 * @timeout: command timeout 2066 * @retries: number of retries before failing 2067 * @data: returns a structure abstracting the mode header data 2068 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2069 * must be SCSI_SENSE_BUFFERSIZE big. 2070 * 2071 * Returns zero if unsuccessful, or the header offset (either 4 2072 * or 8 depending on whether a six or ten byte command was 2073 * issued) if successful. 2074 */ 2075 int 2076 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2077 unsigned char *buffer, int len, int timeout, int retries, 2078 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2079 { 2080 unsigned char cmd[12]; 2081 int use_10_for_ms; 2082 int header_length; 2083 int result, retry_count = retries; 2084 struct scsi_sense_hdr my_sshdr; 2085 2086 memset(data, 0, sizeof(*data)); 2087 memset(&cmd[0], 0, 12); 2088 2089 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2090 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2091 cmd[2] = modepage; 2092 2093 /* caller might not be interested in sense, but we need it */ 2094 if (!sshdr) 2095 sshdr = &my_sshdr; 2096 2097 retry: 2098 use_10_for_ms = sdev->use_10_for_ms; 2099 2100 if (use_10_for_ms) { 2101 if (len < 8) 2102 len = 8; 2103 2104 cmd[0] = MODE_SENSE_10; 2105 cmd[8] = len; 2106 header_length = 8; 2107 } else { 2108 if (len < 4) 2109 len = 4; 2110 2111 cmd[0] = MODE_SENSE; 2112 cmd[4] = len; 2113 header_length = 4; 2114 } 2115 2116 memset(buffer, 0, len); 2117 2118 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2119 sshdr, timeout, retries, NULL); 2120 2121 /* This code looks awful: what it's doing is making sure an 2122 * ILLEGAL REQUEST sense return identifies the actual command 2123 * byte as the problem. MODE_SENSE commands can return 2124 * ILLEGAL REQUEST if the code page isn't supported */ 2125 2126 if (use_10_for_ms && !scsi_status_is_good(result) && 2127 driver_byte(result) == DRIVER_SENSE) { 2128 if (scsi_sense_valid(sshdr)) { 2129 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2130 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2131 /* 2132 * Invalid command operation code 2133 */ 2134 sdev->use_10_for_ms = 0; 2135 goto retry; 2136 } 2137 } 2138 } 2139 2140 if (scsi_status_is_good(result)) { 2141 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2142 (modepage == 6 || modepage == 8))) { 2143 /* Initio breakage? */ 2144 header_length = 0; 2145 data->length = 13; 2146 data->medium_type = 0; 2147 data->device_specific = 0; 2148 data->longlba = 0; 2149 data->block_descriptor_length = 0; 2150 } else if (use_10_for_ms) { 2151 data->length = buffer[0]*256 + buffer[1] + 2; 2152 data->medium_type = buffer[2]; 2153 data->device_specific = buffer[3]; 2154 data->longlba = buffer[4] & 0x01; 2155 data->block_descriptor_length = buffer[6]*256 2156 + buffer[7]; 2157 } else { 2158 data->length = buffer[0] + 1; 2159 data->medium_type = buffer[1]; 2160 data->device_specific = buffer[2]; 2161 data->block_descriptor_length = buffer[3]; 2162 } 2163 data->header_length = header_length; 2164 } else if ((status_byte(result) == CHECK_CONDITION) && 2165 scsi_sense_valid(sshdr) && 2166 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2167 retry_count--; 2168 goto retry; 2169 } 2170 2171 return result; 2172 } 2173 EXPORT_SYMBOL(scsi_mode_sense); 2174 2175 /** 2176 * scsi_test_unit_ready - test if unit is ready 2177 * @sdev: scsi device to change the state of. 2178 * @timeout: command timeout 2179 * @retries: number of retries before failing 2180 * @sshdr: outpout pointer for decoded sense information. 2181 * 2182 * Returns zero if unsuccessful or an error if TUR failed. For 2183 * removable media, UNIT_ATTENTION sets ->changed flag. 2184 **/ 2185 int 2186 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2187 struct scsi_sense_hdr *sshdr) 2188 { 2189 char cmd[] = { 2190 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2191 }; 2192 int result; 2193 2194 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2195 do { 2196 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2197 timeout, 1, NULL); 2198 if (sdev->removable && scsi_sense_valid(sshdr) && 2199 sshdr->sense_key == UNIT_ATTENTION) 2200 sdev->changed = 1; 2201 } while (scsi_sense_valid(sshdr) && 2202 sshdr->sense_key == UNIT_ATTENTION && --retries); 2203 2204 return result; 2205 } 2206 EXPORT_SYMBOL(scsi_test_unit_ready); 2207 2208 /** 2209 * scsi_device_set_state - Take the given device through the device state model. 2210 * @sdev: scsi device to change the state of. 2211 * @state: state to change to. 2212 * 2213 * Returns zero if successful or an error if the requested 2214 * transition is illegal. 2215 */ 2216 int 2217 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2218 { 2219 enum scsi_device_state oldstate = sdev->sdev_state; 2220 2221 if (state == oldstate) 2222 return 0; 2223 2224 switch (state) { 2225 case SDEV_CREATED: 2226 switch (oldstate) { 2227 case SDEV_CREATED_BLOCK: 2228 break; 2229 default: 2230 goto illegal; 2231 } 2232 break; 2233 2234 case SDEV_RUNNING: 2235 switch (oldstate) { 2236 case SDEV_CREATED: 2237 case SDEV_OFFLINE: 2238 case SDEV_TRANSPORT_OFFLINE: 2239 case SDEV_QUIESCE: 2240 case SDEV_BLOCK: 2241 break; 2242 default: 2243 goto illegal; 2244 } 2245 break; 2246 2247 case SDEV_QUIESCE: 2248 switch (oldstate) { 2249 case SDEV_RUNNING: 2250 case SDEV_OFFLINE: 2251 case SDEV_TRANSPORT_OFFLINE: 2252 break; 2253 default: 2254 goto illegal; 2255 } 2256 break; 2257 2258 case SDEV_OFFLINE: 2259 case SDEV_TRANSPORT_OFFLINE: 2260 switch (oldstate) { 2261 case SDEV_CREATED: 2262 case SDEV_RUNNING: 2263 case SDEV_QUIESCE: 2264 case SDEV_BLOCK: 2265 break; 2266 default: 2267 goto illegal; 2268 } 2269 break; 2270 2271 case SDEV_BLOCK: 2272 switch (oldstate) { 2273 case SDEV_RUNNING: 2274 case SDEV_CREATED_BLOCK: 2275 case SDEV_QUIESCE: 2276 case SDEV_OFFLINE: 2277 break; 2278 default: 2279 goto illegal; 2280 } 2281 break; 2282 2283 case SDEV_CREATED_BLOCK: 2284 switch (oldstate) { 2285 case SDEV_CREATED: 2286 break; 2287 default: 2288 goto illegal; 2289 } 2290 break; 2291 2292 case SDEV_CANCEL: 2293 switch (oldstate) { 2294 case SDEV_CREATED: 2295 case SDEV_RUNNING: 2296 case SDEV_QUIESCE: 2297 case SDEV_OFFLINE: 2298 case SDEV_TRANSPORT_OFFLINE: 2299 break; 2300 default: 2301 goto illegal; 2302 } 2303 break; 2304 2305 case SDEV_DEL: 2306 switch (oldstate) { 2307 case SDEV_CREATED: 2308 case SDEV_RUNNING: 2309 case SDEV_OFFLINE: 2310 case SDEV_TRANSPORT_OFFLINE: 2311 case SDEV_CANCEL: 2312 case SDEV_BLOCK: 2313 case SDEV_CREATED_BLOCK: 2314 break; 2315 default: 2316 goto illegal; 2317 } 2318 break; 2319 2320 } 2321 sdev->offline_already = false; 2322 sdev->sdev_state = state; 2323 return 0; 2324 2325 illegal: 2326 SCSI_LOG_ERROR_RECOVERY(1, 2327 sdev_printk(KERN_ERR, sdev, 2328 "Illegal state transition %s->%s", 2329 scsi_device_state_name(oldstate), 2330 scsi_device_state_name(state)) 2331 ); 2332 return -EINVAL; 2333 } 2334 EXPORT_SYMBOL(scsi_device_set_state); 2335 2336 /** 2337 * sdev_evt_emit - emit a single SCSI device uevent 2338 * @sdev: associated SCSI device 2339 * @evt: event to emit 2340 * 2341 * Send a single uevent (scsi_event) to the associated scsi_device. 2342 */ 2343 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2344 { 2345 int idx = 0; 2346 char *envp[3]; 2347 2348 switch (evt->evt_type) { 2349 case SDEV_EVT_MEDIA_CHANGE: 2350 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2351 break; 2352 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2353 scsi_rescan_device(&sdev->sdev_gendev); 2354 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2355 break; 2356 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2357 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2358 break; 2359 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2360 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2361 break; 2362 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2363 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2364 break; 2365 case SDEV_EVT_LUN_CHANGE_REPORTED: 2366 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2367 break; 2368 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2369 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2370 break; 2371 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2372 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2373 break; 2374 default: 2375 /* do nothing */ 2376 break; 2377 } 2378 2379 envp[idx++] = NULL; 2380 2381 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2382 } 2383 2384 /** 2385 * sdev_evt_thread - send a uevent for each scsi event 2386 * @work: work struct for scsi_device 2387 * 2388 * Dispatch queued events to their associated scsi_device kobjects 2389 * as uevents. 2390 */ 2391 void scsi_evt_thread(struct work_struct *work) 2392 { 2393 struct scsi_device *sdev; 2394 enum scsi_device_event evt_type; 2395 LIST_HEAD(event_list); 2396 2397 sdev = container_of(work, struct scsi_device, event_work); 2398 2399 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2400 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2401 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2402 2403 while (1) { 2404 struct scsi_event *evt; 2405 struct list_head *this, *tmp; 2406 unsigned long flags; 2407 2408 spin_lock_irqsave(&sdev->list_lock, flags); 2409 list_splice_init(&sdev->event_list, &event_list); 2410 spin_unlock_irqrestore(&sdev->list_lock, flags); 2411 2412 if (list_empty(&event_list)) 2413 break; 2414 2415 list_for_each_safe(this, tmp, &event_list) { 2416 evt = list_entry(this, struct scsi_event, node); 2417 list_del(&evt->node); 2418 scsi_evt_emit(sdev, evt); 2419 kfree(evt); 2420 } 2421 } 2422 } 2423 2424 /** 2425 * sdev_evt_send - send asserted event to uevent thread 2426 * @sdev: scsi_device event occurred on 2427 * @evt: event to send 2428 * 2429 * Assert scsi device event asynchronously. 2430 */ 2431 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2432 { 2433 unsigned long flags; 2434 2435 #if 0 2436 /* FIXME: currently this check eliminates all media change events 2437 * for polled devices. Need to update to discriminate between AN 2438 * and polled events */ 2439 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2440 kfree(evt); 2441 return; 2442 } 2443 #endif 2444 2445 spin_lock_irqsave(&sdev->list_lock, flags); 2446 list_add_tail(&evt->node, &sdev->event_list); 2447 schedule_work(&sdev->event_work); 2448 spin_unlock_irqrestore(&sdev->list_lock, flags); 2449 } 2450 EXPORT_SYMBOL_GPL(sdev_evt_send); 2451 2452 /** 2453 * sdev_evt_alloc - allocate a new scsi event 2454 * @evt_type: type of event to allocate 2455 * @gfpflags: GFP flags for allocation 2456 * 2457 * Allocates and returns a new scsi_event. 2458 */ 2459 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2460 gfp_t gfpflags) 2461 { 2462 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2463 if (!evt) 2464 return NULL; 2465 2466 evt->evt_type = evt_type; 2467 INIT_LIST_HEAD(&evt->node); 2468 2469 /* evt_type-specific initialization, if any */ 2470 switch (evt_type) { 2471 case SDEV_EVT_MEDIA_CHANGE: 2472 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2473 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2474 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2475 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2476 case SDEV_EVT_LUN_CHANGE_REPORTED: 2477 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2478 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2479 default: 2480 /* do nothing */ 2481 break; 2482 } 2483 2484 return evt; 2485 } 2486 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2487 2488 /** 2489 * sdev_evt_send_simple - send asserted event to uevent thread 2490 * @sdev: scsi_device event occurred on 2491 * @evt_type: type of event to send 2492 * @gfpflags: GFP flags for allocation 2493 * 2494 * Assert scsi device event asynchronously, given an event type. 2495 */ 2496 void sdev_evt_send_simple(struct scsi_device *sdev, 2497 enum scsi_device_event evt_type, gfp_t gfpflags) 2498 { 2499 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2500 if (!evt) { 2501 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2502 evt_type); 2503 return; 2504 } 2505 2506 sdev_evt_send(sdev, evt); 2507 } 2508 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2509 2510 /** 2511 * scsi_device_quiesce - Block user issued commands. 2512 * @sdev: scsi device to quiesce. 2513 * 2514 * This works by trying to transition to the SDEV_QUIESCE state 2515 * (which must be a legal transition). When the device is in this 2516 * state, only special requests will be accepted, all others will 2517 * be deferred. Since special requests may also be requeued requests, 2518 * a successful return doesn't guarantee the device will be 2519 * totally quiescent. 2520 * 2521 * Must be called with user context, may sleep. 2522 * 2523 * Returns zero if unsuccessful or an error if not. 2524 */ 2525 int 2526 scsi_device_quiesce(struct scsi_device *sdev) 2527 { 2528 struct request_queue *q = sdev->request_queue; 2529 int err; 2530 2531 /* 2532 * It is allowed to call scsi_device_quiesce() multiple times from 2533 * the same context but concurrent scsi_device_quiesce() calls are 2534 * not allowed. 2535 */ 2536 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2537 2538 if (sdev->quiesced_by == current) 2539 return 0; 2540 2541 blk_set_pm_only(q); 2542 2543 blk_mq_freeze_queue(q); 2544 /* 2545 * Ensure that the effect of blk_set_pm_only() will be visible 2546 * for percpu_ref_tryget() callers that occur after the queue 2547 * unfreeze even if the queue was already frozen before this function 2548 * was called. See also https://lwn.net/Articles/573497/. 2549 */ 2550 synchronize_rcu(); 2551 blk_mq_unfreeze_queue(q); 2552 2553 mutex_lock(&sdev->state_mutex); 2554 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2555 if (err == 0) 2556 sdev->quiesced_by = current; 2557 else 2558 blk_clear_pm_only(q); 2559 mutex_unlock(&sdev->state_mutex); 2560 2561 return err; 2562 } 2563 EXPORT_SYMBOL(scsi_device_quiesce); 2564 2565 /** 2566 * scsi_device_resume - Restart user issued commands to a quiesced device. 2567 * @sdev: scsi device to resume. 2568 * 2569 * Moves the device from quiesced back to running and restarts the 2570 * queues. 2571 * 2572 * Must be called with user context, may sleep. 2573 */ 2574 void scsi_device_resume(struct scsi_device *sdev) 2575 { 2576 /* check if the device state was mutated prior to resume, and if 2577 * so assume the state is being managed elsewhere (for example 2578 * device deleted during suspend) 2579 */ 2580 mutex_lock(&sdev->state_mutex); 2581 if (sdev->quiesced_by) { 2582 sdev->quiesced_by = NULL; 2583 blk_clear_pm_only(sdev->request_queue); 2584 } 2585 if (sdev->sdev_state == SDEV_QUIESCE) 2586 scsi_device_set_state(sdev, SDEV_RUNNING); 2587 mutex_unlock(&sdev->state_mutex); 2588 } 2589 EXPORT_SYMBOL(scsi_device_resume); 2590 2591 static void 2592 device_quiesce_fn(struct scsi_device *sdev, void *data) 2593 { 2594 scsi_device_quiesce(sdev); 2595 } 2596 2597 void 2598 scsi_target_quiesce(struct scsi_target *starget) 2599 { 2600 starget_for_each_device(starget, NULL, device_quiesce_fn); 2601 } 2602 EXPORT_SYMBOL(scsi_target_quiesce); 2603 2604 static void 2605 device_resume_fn(struct scsi_device *sdev, void *data) 2606 { 2607 scsi_device_resume(sdev); 2608 } 2609 2610 void 2611 scsi_target_resume(struct scsi_target *starget) 2612 { 2613 starget_for_each_device(starget, NULL, device_resume_fn); 2614 } 2615 EXPORT_SYMBOL(scsi_target_resume); 2616 2617 /** 2618 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2619 * @sdev: device to block 2620 * 2621 * Pause SCSI command processing on the specified device. Does not sleep. 2622 * 2623 * Returns zero if successful or a negative error code upon failure. 2624 * 2625 * Notes: 2626 * This routine transitions the device to the SDEV_BLOCK state (which must be 2627 * a legal transition). When the device is in this state, command processing 2628 * is paused until the device leaves the SDEV_BLOCK state. See also 2629 * scsi_internal_device_unblock_nowait(). 2630 */ 2631 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2632 { 2633 struct request_queue *q = sdev->request_queue; 2634 int err = 0; 2635 2636 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2637 if (err) { 2638 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2639 2640 if (err) 2641 return err; 2642 } 2643 2644 /* 2645 * The device has transitioned to SDEV_BLOCK. Stop the 2646 * block layer from calling the midlayer with this device's 2647 * request queue. 2648 */ 2649 blk_mq_quiesce_queue_nowait(q); 2650 return 0; 2651 } 2652 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2653 2654 /** 2655 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2656 * @sdev: device to block 2657 * 2658 * Pause SCSI command processing on the specified device and wait until all 2659 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2660 * 2661 * Returns zero if successful or a negative error code upon failure. 2662 * 2663 * Note: 2664 * This routine transitions the device to the SDEV_BLOCK state (which must be 2665 * a legal transition). When the device is in this state, command processing 2666 * is paused until the device leaves the SDEV_BLOCK state. See also 2667 * scsi_internal_device_unblock(). 2668 */ 2669 static int scsi_internal_device_block(struct scsi_device *sdev) 2670 { 2671 struct request_queue *q = sdev->request_queue; 2672 int err; 2673 2674 mutex_lock(&sdev->state_mutex); 2675 err = scsi_internal_device_block_nowait(sdev); 2676 if (err == 0) 2677 blk_mq_quiesce_queue(q); 2678 mutex_unlock(&sdev->state_mutex); 2679 2680 return err; 2681 } 2682 2683 void scsi_start_queue(struct scsi_device *sdev) 2684 { 2685 struct request_queue *q = sdev->request_queue; 2686 2687 blk_mq_unquiesce_queue(q); 2688 } 2689 2690 /** 2691 * scsi_internal_device_unblock_nowait - resume a device after a block request 2692 * @sdev: device to resume 2693 * @new_state: state to set the device to after unblocking 2694 * 2695 * Restart the device queue for a previously suspended SCSI device. Does not 2696 * sleep. 2697 * 2698 * Returns zero if successful or a negative error code upon failure. 2699 * 2700 * Notes: 2701 * This routine transitions the device to the SDEV_RUNNING state or to one of 2702 * the offline states (which must be a legal transition) allowing the midlayer 2703 * to goose the queue for this device. 2704 */ 2705 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2706 enum scsi_device_state new_state) 2707 { 2708 switch (new_state) { 2709 case SDEV_RUNNING: 2710 case SDEV_TRANSPORT_OFFLINE: 2711 break; 2712 default: 2713 return -EINVAL; 2714 } 2715 2716 /* 2717 * Try to transition the scsi device to SDEV_RUNNING or one of the 2718 * offlined states and goose the device queue if successful. 2719 */ 2720 switch (sdev->sdev_state) { 2721 case SDEV_BLOCK: 2722 case SDEV_TRANSPORT_OFFLINE: 2723 sdev->sdev_state = new_state; 2724 break; 2725 case SDEV_CREATED_BLOCK: 2726 if (new_state == SDEV_TRANSPORT_OFFLINE || 2727 new_state == SDEV_OFFLINE) 2728 sdev->sdev_state = new_state; 2729 else 2730 sdev->sdev_state = SDEV_CREATED; 2731 break; 2732 case SDEV_CANCEL: 2733 case SDEV_OFFLINE: 2734 break; 2735 default: 2736 return -EINVAL; 2737 } 2738 scsi_start_queue(sdev); 2739 2740 return 0; 2741 } 2742 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2743 2744 /** 2745 * scsi_internal_device_unblock - resume a device after a block request 2746 * @sdev: device to resume 2747 * @new_state: state to set the device to after unblocking 2748 * 2749 * Restart the device queue for a previously suspended SCSI device. May sleep. 2750 * 2751 * Returns zero if successful or a negative error code upon failure. 2752 * 2753 * Notes: 2754 * This routine transitions the device to the SDEV_RUNNING state or to one of 2755 * the offline states (which must be a legal transition) allowing the midlayer 2756 * to goose the queue for this device. 2757 */ 2758 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2759 enum scsi_device_state new_state) 2760 { 2761 int ret; 2762 2763 mutex_lock(&sdev->state_mutex); 2764 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2765 mutex_unlock(&sdev->state_mutex); 2766 2767 return ret; 2768 } 2769 2770 static void 2771 device_block(struct scsi_device *sdev, void *data) 2772 { 2773 int ret; 2774 2775 ret = scsi_internal_device_block(sdev); 2776 2777 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n", 2778 dev_name(&sdev->sdev_gendev), ret); 2779 } 2780 2781 static int 2782 target_block(struct device *dev, void *data) 2783 { 2784 if (scsi_is_target_device(dev)) 2785 starget_for_each_device(to_scsi_target(dev), NULL, 2786 device_block); 2787 return 0; 2788 } 2789 2790 void 2791 scsi_target_block(struct device *dev) 2792 { 2793 if (scsi_is_target_device(dev)) 2794 starget_for_each_device(to_scsi_target(dev), NULL, 2795 device_block); 2796 else 2797 device_for_each_child(dev, NULL, target_block); 2798 } 2799 EXPORT_SYMBOL_GPL(scsi_target_block); 2800 2801 static void 2802 device_unblock(struct scsi_device *sdev, void *data) 2803 { 2804 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2805 } 2806 2807 static int 2808 target_unblock(struct device *dev, void *data) 2809 { 2810 if (scsi_is_target_device(dev)) 2811 starget_for_each_device(to_scsi_target(dev), data, 2812 device_unblock); 2813 return 0; 2814 } 2815 2816 void 2817 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2818 { 2819 if (scsi_is_target_device(dev)) 2820 starget_for_each_device(to_scsi_target(dev), &new_state, 2821 device_unblock); 2822 else 2823 device_for_each_child(dev, &new_state, target_unblock); 2824 } 2825 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2826 2827 int 2828 scsi_host_block(struct Scsi_Host *shost) 2829 { 2830 struct scsi_device *sdev; 2831 int ret = 0; 2832 2833 /* 2834 * Call scsi_internal_device_block_nowait so we can avoid 2835 * calling synchronize_rcu() for each LUN. 2836 */ 2837 shost_for_each_device(sdev, shost) { 2838 mutex_lock(&sdev->state_mutex); 2839 ret = scsi_internal_device_block_nowait(sdev); 2840 mutex_unlock(&sdev->state_mutex); 2841 if (ret) { 2842 scsi_device_put(sdev); 2843 break; 2844 } 2845 } 2846 2847 /* 2848 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so 2849 * calling synchronize_rcu() once is enough. 2850 */ 2851 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING); 2852 2853 if (!ret) 2854 synchronize_rcu(); 2855 2856 return ret; 2857 } 2858 EXPORT_SYMBOL_GPL(scsi_host_block); 2859 2860 int 2861 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 2862 { 2863 struct scsi_device *sdev; 2864 int ret = 0; 2865 2866 shost_for_each_device(sdev, shost) { 2867 ret = scsi_internal_device_unblock(sdev, new_state); 2868 if (ret) { 2869 scsi_device_put(sdev); 2870 break; 2871 } 2872 } 2873 return ret; 2874 } 2875 EXPORT_SYMBOL_GPL(scsi_host_unblock); 2876 2877 /** 2878 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2879 * @sgl: scatter-gather list 2880 * @sg_count: number of segments in sg 2881 * @offset: offset in bytes into sg, on return offset into the mapped area 2882 * @len: bytes to map, on return number of bytes mapped 2883 * 2884 * Returns virtual address of the start of the mapped page 2885 */ 2886 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2887 size_t *offset, size_t *len) 2888 { 2889 int i; 2890 size_t sg_len = 0, len_complete = 0; 2891 struct scatterlist *sg; 2892 struct page *page; 2893 2894 WARN_ON(!irqs_disabled()); 2895 2896 for_each_sg(sgl, sg, sg_count, i) { 2897 len_complete = sg_len; /* Complete sg-entries */ 2898 sg_len += sg->length; 2899 if (sg_len > *offset) 2900 break; 2901 } 2902 2903 if (unlikely(i == sg_count)) { 2904 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2905 "elements %d\n", 2906 __func__, sg_len, *offset, sg_count); 2907 WARN_ON(1); 2908 return NULL; 2909 } 2910 2911 /* Offset starting from the beginning of first page in this sg-entry */ 2912 *offset = *offset - len_complete + sg->offset; 2913 2914 /* Assumption: contiguous pages can be accessed as "page + i" */ 2915 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2916 *offset &= ~PAGE_MASK; 2917 2918 /* Bytes in this sg-entry from *offset to the end of the page */ 2919 sg_len = PAGE_SIZE - *offset; 2920 if (*len > sg_len) 2921 *len = sg_len; 2922 2923 return kmap_atomic(page); 2924 } 2925 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2926 2927 /** 2928 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2929 * @virt: virtual address to be unmapped 2930 */ 2931 void scsi_kunmap_atomic_sg(void *virt) 2932 { 2933 kunmap_atomic(virt); 2934 } 2935 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2936 2937 void sdev_disable_disk_events(struct scsi_device *sdev) 2938 { 2939 atomic_inc(&sdev->disk_events_disable_depth); 2940 } 2941 EXPORT_SYMBOL(sdev_disable_disk_events); 2942 2943 void sdev_enable_disk_events(struct scsi_device *sdev) 2944 { 2945 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2946 return; 2947 atomic_dec(&sdev->disk_events_disable_depth); 2948 } 2949 EXPORT_SYMBOL(sdev_enable_disk_events); 2950 2951 /** 2952 * scsi_vpd_lun_id - return a unique device identification 2953 * @sdev: SCSI device 2954 * @id: buffer for the identification 2955 * @id_len: length of the buffer 2956 * 2957 * Copies a unique device identification into @id based 2958 * on the information in the VPD page 0x83 of the device. 2959 * The string will be formatted as a SCSI name string. 2960 * 2961 * Returns the length of the identification or error on failure. 2962 * If the identifier is longer than the supplied buffer the actual 2963 * identifier length is returned and the buffer is not zero-padded. 2964 */ 2965 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 2966 { 2967 u8 cur_id_type = 0xff; 2968 u8 cur_id_size = 0; 2969 const unsigned char *d, *cur_id_str; 2970 const struct scsi_vpd *vpd_pg83; 2971 int id_size = -EINVAL; 2972 2973 rcu_read_lock(); 2974 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 2975 if (!vpd_pg83) { 2976 rcu_read_unlock(); 2977 return -ENXIO; 2978 } 2979 2980 /* 2981 * Look for the correct descriptor. 2982 * Order of preference for lun descriptor: 2983 * - SCSI name string 2984 * - NAA IEEE Registered Extended 2985 * - EUI-64 based 16-byte 2986 * - EUI-64 based 12-byte 2987 * - NAA IEEE Registered 2988 * - NAA IEEE Extended 2989 * - T10 Vendor ID 2990 * as longer descriptors reduce the likelyhood 2991 * of identification clashes. 2992 */ 2993 2994 /* The id string must be at least 20 bytes + terminating NULL byte */ 2995 if (id_len < 21) { 2996 rcu_read_unlock(); 2997 return -EINVAL; 2998 } 2999 3000 memset(id, 0, id_len); 3001 d = vpd_pg83->data + 4; 3002 while (d < vpd_pg83->data + vpd_pg83->len) { 3003 /* Skip designators not referring to the LUN */ 3004 if ((d[1] & 0x30) != 0x00) 3005 goto next_desig; 3006 3007 switch (d[1] & 0xf) { 3008 case 0x1: 3009 /* T10 Vendor ID */ 3010 if (cur_id_size > d[3]) 3011 break; 3012 /* Prefer anything */ 3013 if (cur_id_type > 0x01 && cur_id_type != 0xff) 3014 break; 3015 cur_id_size = d[3]; 3016 if (cur_id_size + 4 > id_len) 3017 cur_id_size = id_len - 4; 3018 cur_id_str = d + 4; 3019 cur_id_type = d[1] & 0xf; 3020 id_size = snprintf(id, id_len, "t10.%*pE", 3021 cur_id_size, cur_id_str); 3022 break; 3023 case 0x2: 3024 /* EUI-64 */ 3025 if (cur_id_size > d[3]) 3026 break; 3027 /* Prefer NAA IEEE Registered Extended */ 3028 if (cur_id_type == 0x3 && 3029 cur_id_size == d[3]) 3030 break; 3031 cur_id_size = d[3]; 3032 cur_id_str = d + 4; 3033 cur_id_type = d[1] & 0xf; 3034 switch (cur_id_size) { 3035 case 8: 3036 id_size = snprintf(id, id_len, 3037 "eui.%8phN", 3038 cur_id_str); 3039 break; 3040 case 12: 3041 id_size = snprintf(id, id_len, 3042 "eui.%12phN", 3043 cur_id_str); 3044 break; 3045 case 16: 3046 id_size = snprintf(id, id_len, 3047 "eui.%16phN", 3048 cur_id_str); 3049 break; 3050 default: 3051 cur_id_size = 0; 3052 break; 3053 } 3054 break; 3055 case 0x3: 3056 /* NAA */ 3057 if (cur_id_size > d[3]) 3058 break; 3059 cur_id_size = d[3]; 3060 cur_id_str = d + 4; 3061 cur_id_type = d[1] & 0xf; 3062 switch (cur_id_size) { 3063 case 8: 3064 id_size = snprintf(id, id_len, 3065 "naa.%8phN", 3066 cur_id_str); 3067 break; 3068 case 16: 3069 id_size = snprintf(id, id_len, 3070 "naa.%16phN", 3071 cur_id_str); 3072 break; 3073 default: 3074 cur_id_size = 0; 3075 break; 3076 } 3077 break; 3078 case 0x8: 3079 /* SCSI name string */ 3080 if (cur_id_size + 4 > d[3]) 3081 break; 3082 /* Prefer others for truncated descriptor */ 3083 if (cur_id_size && d[3] > id_len) 3084 break; 3085 cur_id_size = id_size = d[3]; 3086 cur_id_str = d + 4; 3087 cur_id_type = d[1] & 0xf; 3088 if (cur_id_size >= id_len) 3089 cur_id_size = id_len - 1; 3090 memcpy(id, cur_id_str, cur_id_size); 3091 /* Decrease priority for truncated descriptor */ 3092 if (cur_id_size != id_size) 3093 cur_id_size = 6; 3094 break; 3095 default: 3096 break; 3097 } 3098 next_desig: 3099 d += d[3] + 4; 3100 } 3101 rcu_read_unlock(); 3102 3103 return id_size; 3104 } 3105 EXPORT_SYMBOL(scsi_vpd_lun_id); 3106 3107 /* 3108 * scsi_vpd_tpg_id - return a target port group identifier 3109 * @sdev: SCSI device 3110 * 3111 * Returns the Target Port Group identifier from the information 3112 * froom VPD page 0x83 of the device. 3113 * 3114 * Returns the identifier or error on failure. 3115 */ 3116 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3117 { 3118 const unsigned char *d; 3119 const struct scsi_vpd *vpd_pg83; 3120 int group_id = -EAGAIN, rel_port = -1; 3121 3122 rcu_read_lock(); 3123 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3124 if (!vpd_pg83) { 3125 rcu_read_unlock(); 3126 return -ENXIO; 3127 } 3128 3129 d = vpd_pg83->data + 4; 3130 while (d < vpd_pg83->data + vpd_pg83->len) { 3131 switch (d[1] & 0xf) { 3132 case 0x4: 3133 /* Relative target port */ 3134 rel_port = get_unaligned_be16(&d[6]); 3135 break; 3136 case 0x5: 3137 /* Target port group */ 3138 group_id = get_unaligned_be16(&d[6]); 3139 break; 3140 default: 3141 break; 3142 } 3143 d += d[3] + 4; 3144 } 3145 rcu_read_unlock(); 3146 3147 if (group_id >= 0 && rel_id && rel_port != -1) 3148 *rel_id = rel_port; 3149 3150 return group_id; 3151 } 3152 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3153