xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 30e99f05)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sense_cache;
56 static DEFINE_MUTEX(scsi_sense_cache_mutex);
57 
58 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
59 
60 int scsi_init_sense_cache(struct Scsi_Host *shost)
61 {
62 	int ret = 0;
63 
64 	mutex_lock(&scsi_sense_cache_mutex);
65 	if (!scsi_sense_cache) {
66 		scsi_sense_cache =
67 			kmem_cache_create_usercopy("scsi_sense_cache",
68 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
69 				0, SCSI_SENSE_BUFFERSIZE, NULL);
70 		if (!scsi_sense_cache)
71 			ret = -ENOMEM;
72 	}
73 	mutex_unlock(&scsi_sense_cache_mutex);
74 	return ret;
75 }
76 
77 /*
78  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
79  * not change behaviour from the previous unplug mechanism, experimentation
80  * may prove this needs changing.
81  */
82 #define SCSI_QUEUE_DELAY	3
83 
84 static void
85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
86 {
87 	struct Scsi_Host *host = cmd->device->host;
88 	struct scsi_device *device = cmd->device;
89 	struct scsi_target *starget = scsi_target(device);
90 
91 	/*
92 	 * Set the appropriate busy bit for the device/host.
93 	 *
94 	 * If the host/device isn't busy, assume that something actually
95 	 * completed, and that we should be able to queue a command now.
96 	 *
97 	 * Note that the prior mid-layer assumption that any host could
98 	 * always queue at least one command is now broken.  The mid-layer
99 	 * will implement a user specifiable stall (see
100 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
101 	 * if a command is requeued with no other commands outstanding
102 	 * either for the device or for the host.
103 	 */
104 	switch (reason) {
105 	case SCSI_MLQUEUE_HOST_BUSY:
106 		atomic_set(&host->host_blocked, host->max_host_blocked);
107 		break;
108 	case SCSI_MLQUEUE_DEVICE_BUSY:
109 	case SCSI_MLQUEUE_EH_RETRY:
110 		atomic_set(&device->device_blocked,
111 			   device->max_device_blocked);
112 		break;
113 	case SCSI_MLQUEUE_TARGET_BUSY:
114 		atomic_set(&starget->target_blocked,
115 			   starget->max_target_blocked);
116 		break;
117 	}
118 }
119 
120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
121 {
122 	struct request *rq = scsi_cmd_to_rq(cmd);
123 
124 	if (rq->rq_flags & RQF_DONTPREP) {
125 		rq->rq_flags &= ~RQF_DONTPREP;
126 		scsi_mq_uninit_cmd(cmd);
127 	} else {
128 		WARN_ON_ONCE(true);
129 	}
130 	blk_mq_requeue_request(rq, true);
131 }
132 
133 /**
134  * __scsi_queue_insert - private queue insertion
135  * @cmd: The SCSI command being requeued
136  * @reason:  The reason for the requeue
137  * @unbusy: Whether the queue should be unbusied
138  *
139  * This is a private queue insertion.  The public interface
140  * scsi_queue_insert() always assumes the queue should be unbusied
141  * because it's always called before the completion.  This function is
142  * for a requeue after completion, which should only occur in this
143  * file.
144  */
145 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
146 {
147 	struct scsi_device *device = cmd->device;
148 
149 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
150 		"Inserting command %p into mlqueue\n", cmd));
151 
152 	scsi_set_blocked(cmd, reason);
153 
154 	/*
155 	 * Decrement the counters, since these commands are no longer
156 	 * active on the host/device.
157 	 */
158 	if (unbusy)
159 		scsi_device_unbusy(device, cmd);
160 
161 	/*
162 	 * Requeue this command.  It will go before all other commands
163 	 * that are already in the queue. Schedule requeue work under
164 	 * lock such that the kblockd_schedule_work() call happens
165 	 * before blk_cleanup_queue() finishes.
166 	 */
167 	cmd->result = 0;
168 
169 	blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
170 }
171 
172 /**
173  * scsi_queue_insert - Reinsert a command in the queue.
174  * @cmd:    command that we are adding to queue.
175  * @reason: why we are inserting command to queue.
176  *
177  * We do this for one of two cases. Either the host is busy and it cannot accept
178  * any more commands for the time being, or the device returned QUEUE_FULL and
179  * can accept no more commands.
180  *
181  * Context: This could be called either from an interrupt context or a normal
182  * process context.
183  */
184 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
185 {
186 	__scsi_queue_insert(cmd, reason, true);
187 }
188 
189 
190 /**
191  * __scsi_execute - insert request and wait for the result
192  * @sdev:	scsi device
193  * @cmd:	scsi command
194  * @data_direction: data direction
195  * @buffer:	data buffer
196  * @bufflen:	len of buffer
197  * @sense:	optional sense buffer
198  * @sshdr:	optional decoded sense header
199  * @timeout:	request timeout in HZ
200  * @retries:	number of times to retry request
201  * @flags:	flags for ->cmd_flags
202  * @rq_flags:	flags for ->rq_flags
203  * @resid:	optional residual length
204  *
205  * Returns the scsi_cmnd result field if a command was executed, or a negative
206  * Linux error code if we didn't get that far.
207  */
208 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 		 int data_direction, void *buffer, unsigned bufflen,
210 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
211 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
212 		 int *resid)
213 {
214 	struct request *req;
215 	struct scsi_request *rq;
216 	int ret;
217 
218 	req = blk_get_request(sdev->request_queue,
219 			data_direction == DMA_TO_DEVICE ?
220 			REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
221 			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
222 	if (IS_ERR(req))
223 		return PTR_ERR(req);
224 
225 	rq = scsi_req(req);
226 
227 	if (bufflen) {
228 		ret = blk_rq_map_kern(sdev->request_queue, req,
229 				      buffer, bufflen, GFP_NOIO);
230 		if (ret)
231 			goto out;
232 	}
233 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
234 	memcpy(rq->cmd, cmd, rq->cmd_len);
235 	rq->retries = retries;
236 	req->timeout = timeout;
237 	req->cmd_flags |= flags;
238 	req->rq_flags |= rq_flags | RQF_QUIET;
239 
240 	/*
241 	 * head injection *required* here otherwise quiesce won't work
242 	 */
243 	blk_execute_rq(NULL, req, 1);
244 
245 	/*
246 	 * Some devices (USB mass-storage in particular) may transfer
247 	 * garbage data together with a residue indicating that the data
248 	 * is invalid.  Prevent the garbage from being misinterpreted
249 	 * and prevent security leaks by zeroing out the excess data.
250 	 */
251 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
252 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
253 
254 	if (resid)
255 		*resid = rq->resid_len;
256 	if (sense && rq->sense_len)
257 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
258 	if (sshdr)
259 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
260 	ret = rq->result;
261  out:
262 	blk_put_request(req);
263 
264 	return ret;
265 }
266 EXPORT_SYMBOL(__scsi_execute);
267 
268 /*
269  * Wake up the error handler if necessary. Avoid as follows that the error
270  * handler is not woken up if host in-flight requests number ==
271  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
272  * with an RCU read lock in this function to ensure that this function in
273  * its entirety either finishes before scsi_eh_scmd_add() increases the
274  * host_failed counter or that it notices the shost state change made by
275  * scsi_eh_scmd_add().
276  */
277 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
278 {
279 	unsigned long flags;
280 
281 	rcu_read_lock();
282 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
283 	if (unlikely(scsi_host_in_recovery(shost))) {
284 		spin_lock_irqsave(shost->host_lock, flags);
285 		if (shost->host_failed || shost->host_eh_scheduled)
286 			scsi_eh_wakeup(shost);
287 		spin_unlock_irqrestore(shost->host_lock, flags);
288 	}
289 	rcu_read_unlock();
290 }
291 
292 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
293 {
294 	struct Scsi_Host *shost = sdev->host;
295 	struct scsi_target *starget = scsi_target(sdev);
296 
297 	scsi_dec_host_busy(shost, cmd);
298 
299 	if (starget->can_queue > 0)
300 		atomic_dec(&starget->target_busy);
301 
302 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
303 	cmd->budget_token = -1;
304 }
305 
306 static void scsi_kick_queue(struct request_queue *q)
307 {
308 	blk_mq_run_hw_queues(q, false);
309 }
310 
311 /*
312  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
313  * and call blk_run_queue for all the scsi_devices on the target -
314  * including current_sdev first.
315  *
316  * Called with *no* scsi locks held.
317  */
318 static void scsi_single_lun_run(struct scsi_device *current_sdev)
319 {
320 	struct Scsi_Host *shost = current_sdev->host;
321 	struct scsi_device *sdev, *tmp;
322 	struct scsi_target *starget = scsi_target(current_sdev);
323 	unsigned long flags;
324 
325 	spin_lock_irqsave(shost->host_lock, flags);
326 	starget->starget_sdev_user = NULL;
327 	spin_unlock_irqrestore(shost->host_lock, flags);
328 
329 	/*
330 	 * Call blk_run_queue for all LUNs on the target, starting with
331 	 * current_sdev. We race with others (to set starget_sdev_user),
332 	 * but in most cases, we will be first. Ideally, each LU on the
333 	 * target would get some limited time or requests on the target.
334 	 */
335 	scsi_kick_queue(current_sdev->request_queue);
336 
337 	spin_lock_irqsave(shost->host_lock, flags);
338 	if (starget->starget_sdev_user)
339 		goto out;
340 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
341 			same_target_siblings) {
342 		if (sdev == current_sdev)
343 			continue;
344 		if (scsi_device_get(sdev))
345 			continue;
346 
347 		spin_unlock_irqrestore(shost->host_lock, flags);
348 		scsi_kick_queue(sdev->request_queue);
349 		spin_lock_irqsave(shost->host_lock, flags);
350 
351 		scsi_device_put(sdev);
352 	}
353  out:
354 	spin_unlock_irqrestore(shost->host_lock, flags);
355 }
356 
357 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
358 {
359 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
360 		return true;
361 	if (atomic_read(&sdev->device_blocked) > 0)
362 		return true;
363 	return false;
364 }
365 
366 static inline bool scsi_target_is_busy(struct scsi_target *starget)
367 {
368 	if (starget->can_queue > 0) {
369 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
370 			return true;
371 		if (atomic_read(&starget->target_blocked) > 0)
372 			return true;
373 	}
374 	return false;
375 }
376 
377 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
378 {
379 	if (atomic_read(&shost->host_blocked) > 0)
380 		return true;
381 	if (shost->host_self_blocked)
382 		return true;
383 	return false;
384 }
385 
386 static void scsi_starved_list_run(struct Scsi_Host *shost)
387 {
388 	LIST_HEAD(starved_list);
389 	struct scsi_device *sdev;
390 	unsigned long flags;
391 
392 	spin_lock_irqsave(shost->host_lock, flags);
393 	list_splice_init(&shost->starved_list, &starved_list);
394 
395 	while (!list_empty(&starved_list)) {
396 		struct request_queue *slq;
397 
398 		/*
399 		 * As long as shost is accepting commands and we have
400 		 * starved queues, call blk_run_queue. scsi_request_fn
401 		 * drops the queue_lock and can add us back to the
402 		 * starved_list.
403 		 *
404 		 * host_lock protects the starved_list and starved_entry.
405 		 * scsi_request_fn must get the host_lock before checking
406 		 * or modifying starved_list or starved_entry.
407 		 */
408 		if (scsi_host_is_busy(shost))
409 			break;
410 
411 		sdev = list_entry(starved_list.next,
412 				  struct scsi_device, starved_entry);
413 		list_del_init(&sdev->starved_entry);
414 		if (scsi_target_is_busy(scsi_target(sdev))) {
415 			list_move_tail(&sdev->starved_entry,
416 				       &shost->starved_list);
417 			continue;
418 		}
419 
420 		/*
421 		 * Once we drop the host lock, a racing scsi_remove_device()
422 		 * call may remove the sdev from the starved list and destroy
423 		 * it and the queue.  Mitigate by taking a reference to the
424 		 * queue and never touching the sdev again after we drop the
425 		 * host lock.  Note: if __scsi_remove_device() invokes
426 		 * blk_cleanup_queue() before the queue is run from this
427 		 * function then blk_run_queue() will return immediately since
428 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
429 		 */
430 		slq = sdev->request_queue;
431 		if (!blk_get_queue(slq))
432 			continue;
433 		spin_unlock_irqrestore(shost->host_lock, flags);
434 
435 		scsi_kick_queue(slq);
436 		blk_put_queue(slq);
437 
438 		spin_lock_irqsave(shost->host_lock, flags);
439 	}
440 	/* put any unprocessed entries back */
441 	list_splice(&starved_list, &shost->starved_list);
442 	spin_unlock_irqrestore(shost->host_lock, flags);
443 }
444 
445 /**
446  * scsi_run_queue - Select a proper request queue to serve next.
447  * @q:  last request's queue
448  *
449  * The previous command was completely finished, start a new one if possible.
450  */
451 static void scsi_run_queue(struct request_queue *q)
452 {
453 	struct scsi_device *sdev = q->queuedata;
454 
455 	if (scsi_target(sdev)->single_lun)
456 		scsi_single_lun_run(sdev);
457 	if (!list_empty(&sdev->host->starved_list))
458 		scsi_starved_list_run(sdev->host);
459 
460 	blk_mq_run_hw_queues(q, false);
461 }
462 
463 void scsi_requeue_run_queue(struct work_struct *work)
464 {
465 	struct scsi_device *sdev;
466 	struct request_queue *q;
467 
468 	sdev = container_of(work, struct scsi_device, requeue_work);
469 	q = sdev->request_queue;
470 	scsi_run_queue(q);
471 }
472 
473 void scsi_run_host_queues(struct Scsi_Host *shost)
474 {
475 	struct scsi_device *sdev;
476 
477 	shost_for_each_device(sdev, shost)
478 		scsi_run_queue(sdev->request_queue);
479 }
480 
481 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
482 {
483 	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
484 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
485 
486 		if (drv->uninit_command)
487 			drv->uninit_command(cmd);
488 	}
489 }
490 
491 void scsi_free_sgtables(struct scsi_cmnd *cmd)
492 {
493 	if (cmd->sdb.table.nents)
494 		sg_free_table_chained(&cmd->sdb.table,
495 				SCSI_INLINE_SG_CNT);
496 	if (scsi_prot_sg_count(cmd))
497 		sg_free_table_chained(&cmd->prot_sdb->table,
498 				SCSI_INLINE_PROT_SG_CNT);
499 }
500 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
501 
502 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
503 {
504 	scsi_free_sgtables(cmd);
505 	scsi_uninit_cmd(cmd);
506 }
507 
508 static void scsi_run_queue_async(struct scsi_device *sdev)
509 {
510 	if (scsi_target(sdev)->single_lun ||
511 	    !list_empty(&sdev->host->starved_list)) {
512 		kblockd_schedule_work(&sdev->requeue_work);
513 	} else {
514 		/*
515 		 * smp_mb() present in sbitmap_queue_clear() or implied in
516 		 * .end_io is for ordering writing .device_busy in
517 		 * scsi_device_unbusy() and reading sdev->restarts.
518 		 */
519 		int old = atomic_read(&sdev->restarts);
520 
521 		/*
522 		 * ->restarts has to be kept as non-zero if new budget
523 		 *  contention occurs.
524 		 *
525 		 *  No need to run queue when either another re-run
526 		 *  queue wins in updating ->restarts or a new budget
527 		 *  contention occurs.
528 		 */
529 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
530 			blk_mq_run_hw_queues(sdev->request_queue, true);
531 	}
532 }
533 
534 /* Returns false when no more bytes to process, true if there are more */
535 static bool scsi_end_request(struct request *req, blk_status_t error,
536 		unsigned int bytes)
537 {
538 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
539 	struct scsi_device *sdev = cmd->device;
540 	struct request_queue *q = sdev->request_queue;
541 
542 	if (blk_update_request(req, error, bytes))
543 		return true;
544 
545 	if (blk_queue_add_random(q))
546 		add_disk_randomness(req->rq_disk);
547 
548 	if (!blk_rq_is_passthrough(req)) {
549 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
550 		cmd->flags &= ~SCMD_INITIALIZED;
551 	}
552 
553 	/*
554 	 * Calling rcu_barrier() is not necessary here because the
555 	 * SCSI error handler guarantees that the function called by
556 	 * call_rcu() has been called before scsi_end_request() is
557 	 * called.
558 	 */
559 	destroy_rcu_head(&cmd->rcu);
560 
561 	/*
562 	 * In the MQ case the command gets freed by __blk_mq_end_request,
563 	 * so we have to do all cleanup that depends on it earlier.
564 	 *
565 	 * We also can't kick the queues from irq context, so we
566 	 * will have to defer it to a workqueue.
567 	 */
568 	scsi_mq_uninit_cmd(cmd);
569 
570 	/*
571 	 * queue is still alive, so grab the ref for preventing it
572 	 * from being cleaned up during running queue.
573 	 */
574 	percpu_ref_get(&q->q_usage_counter);
575 
576 	__blk_mq_end_request(req, error);
577 
578 	scsi_run_queue_async(sdev);
579 
580 	percpu_ref_put(&q->q_usage_counter);
581 	return false;
582 }
583 
584 /**
585  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
586  * @cmd:	SCSI command
587  * @result:	scsi error code
588  *
589  * Translate a SCSI result code into a blk_status_t value. May reset the host
590  * byte of @cmd->result.
591  */
592 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
593 {
594 	switch (host_byte(result)) {
595 	case DID_OK:
596 		if (scsi_status_is_good(result))
597 			return BLK_STS_OK;
598 		return BLK_STS_IOERR;
599 	case DID_TRANSPORT_FAILFAST:
600 	case DID_TRANSPORT_MARGINAL:
601 		return BLK_STS_TRANSPORT;
602 	case DID_TARGET_FAILURE:
603 		set_host_byte(cmd, DID_OK);
604 		return BLK_STS_TARGET;
605 	case DID_NEXUS_FAILURE:
606 		set_host_byte(cmd, DID_OK);
607 		return BLK_STS_NEXUS;
608 	case DID_ALLOC_FAILURE:
609 		set_host_byte(cmd, DID_OK);
610 		return BLK_STS_NOSPC;
611 	case DID_MEDIUM_ERROR:
612 		set_host_byte(cmd, DID_OK);
613 		return BLK_STS_MEDIUM;
614 	default:
615 		return BLK_STS_IOERR;
616 	}
617 }
618 
619 /* Helper for scsi_io_completion() when "reprep" action required. */
620 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
621 				      struct request_queue *q)
622 {
623 	/* A new command will be prepared and issued. */
624 	scsi_mq_requeue_cmd(cmd);
625 }
626 
627 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
628 {
629 	struct request *req = scsi_cmd_to_rq(cmd);
630 	unsigned long wait_for;
631 
632 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
633 		return false;
634 
635 	wait_for = (cmd->allowed + 1) * req->timeout;
636 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
637 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
638 			    wait_for/HZ);
639 		return true;
640 	}
641 	return false;
642 }
643 
644 /* Helper for scsi_io_completion() when special action required. */
645 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
646 {
647 	struct request_queue *q = cmd->device->request_queue;
648 	struct request *req = scsi_cmd_to_rq(cmd);
649 	int level = 0;
650 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
651 	      ACTION_DELAYED_RETRY} action;
652 	struct scsi_sense_hdr sshdr;
653 	bool sense_valid;
654 	bool sense_current = true;      /* false implies "deferred sense" */
655 	blk_status_t blk_stat;
656 
657 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
658 	if (sense_valid)
659 		sense_current = !scsi_sense_is_deferred(&sshdr);
660 
661 	blk_stat = scsi_result_to_blk_status(cmd, result);
662 
663 	if (host_byte(result) == DID_RESET) {
664 		/* Third party bus reset or reset for error recovery
665 		 * reasons.  Just retry the command and see what
666 		 * happens.
667 		 */
668 		action = ACTION_RETRY;
669 	} else if (sense_valid && sense_current) {
670 		switch (sshdr.sense_key) {
671 		case UNIT_ATTENTION:
672 			if (cmd->device->removable) {
673 				/* Detected disc change.  Set a bit
674 				 * and quietly refuse further access.
675 				 */
676 				cmd->device->changed = 1;
677 				action = ACTION_FAIL;
678 			} else {
679 				/* Must have been a power glitch, or a
680 				 * bus reset.  Could not have been a
681 				 * media change, so we just retry the
682 				 * command and see what happens.
683 				 */
684 				action = ACTION_RETRY;
685 			}
686 			break;
687 		case ILLEGAL_REQUEST:
688 			/* If we had an ILLEGAL REQUEST returned, then
689 			 * we may have performed an unsupported
690 			 * command.  The only thing this should be
691 			 * would be a ten byte read where only a six
692 			 * byte read was supported.  Also, on a system
693 			 * where READ CAPACITY failed, we may have
694 			 * read past the end of the disk.
695 			 */
696 			if ((cmd->device->use_10_for_rw &&
697 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
698 			    (cmd->cmnd[0] == READ_10 ||
699 			     cmd->cmnd[0] == WRITE_10)) {
700 				/* This will issue a new 6-byte command. */
701 				cmd->device->use_10_for_rw = 0;
702 				action = ACTION_REPREP;
703 			} else if (sshdr.asc == 0x10) /* DIX */ {
704 				action = ACTION_FAIL;
705 				blk_stat = BLK_STS_PROTECTION;
706 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
707 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
708 				action = ACTION_FAIL;
709 				blk_stat = BLK_STS_TARGET;
710 			} else
711 				action = ACTION_FAIL;
712 			break;
713 		case ABORTED_COMMAND:
714 			action = ACTION_FAIL;
715 			if (sshdr.asc == 0x10) /* DIF */
716 				blk_stat = BLK_STS_PROTECTION;
717 			break;
718 		case NOT_READY:
719 			/* If the device is in the process of becoming
720 			 * ready, or has a temporary blockage, retry.
721 			 */
722 			if (sshdr.asc == 0x04) {
723 				switch (sshdr.ascq) {
724 				case 0x01: /* becoming ready */
725 				case 0x04: /* format in progress */
726 				case 0x05: /* rebuild in progress */
727 				case 0x06: /* recalculation in progress */
728 				case 0x07: /* operation in progress */
729 				case 0x08: /* Long write in progress */
730 				case 0x09: /* self test in progress */
731 				case 0x11: /* notify (enable spinup) required */
732 				case 0x14: /* space allocation in progress */
733 				case 0x1a: /* start stop unit in progress */
734 				case 0x1b: /* sanitize in progress */
735 				case 0x1d: /* configuration in progress */
736 				case 0x24: /* depopulation in progress */
737 					action = ACTION_DELAYED_RETRY;
738 					break;
739 				case 0x0a: /* ALUA state transition */
740 					blk_stat = BLK_STS_AGAIN;
741 					fallthrough;
742 				default:
743 					action = ACTION_FAIL;
744 					break;
745 				}
746 			} else
747 				action = ACTION_FAIL;
748 			break;
749 		case VOLUME_OVERFLOW:
750 			/* See SSC3rXX or current. */
751 			action = ACTION_FAIL;
752 			break;
753 		case DATA_PROTECT:
754 			action = ACTION_FAIL;
755 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
756 			    (sshdr.asc == 0x55 &&
757 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
758 				/* Insufficient zone resources */
759 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
760 			}
761 			break;
762 		default:
763 			action = ACTION_FAIL;
764 			break;
765 		}
766 	} else
767 		action = ACTION_FAIL;
768 
769 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
770 		action = ACTION_FAIL;
771 
772 	switch (action) {
773 	case ACTION_FAIL:
774 		/* Give up and fail the remainder of the request */
775 		if (!(req->rq_flags & RQF_QUIET)) {
776 			static DEFINE_RATELIMIT_STATE(_rs,
777 					DEFAULT_RATELIMIT_INTERVAL,
778 					DEFAULT_RATELIMIT_BURST);
779 
780 			if (unlikely(scsi_logging_level))
781 				level =
782 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
783 						    SCSI_LOG_MLCOMPLETE_BITS);
784 
785 			/*
786 			 * if logging is enabled the failure will be printed
787 			 * in scsi_log_completion(), so avoid duplicate messages
788 			 */
789 			if (!level && __ratelimit(&_rs)) {
790 				scsi_print_result(cmd, NULL, FAILED);
791 				if (sense_valid)
792 					scsi_print_sense(cmd);
793 				scsi_print_command(cmd);
794 			}
795 		}
796 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
797 			return;
798 		fallthrough;
799 	case ACTION_REPREP:
800 		scsi_io_completion_reprep(cmd, q);
801 		break;
802 	case ACTION_RETRY:
803 		/* Retry the same command immediately */
804 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
805 		break;
806 	case ACTION_DELAYED_RETRY:
807 		/* Retry the same command after a delay */
808 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
809 		break;
810 	}
811 }
812 
813 /*
814  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
815  * new result that may suppress further error checking. Also modifies
816  * *blk_statp in some cases.
817  */
818 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
819 					blk_status_t *blk_statp)
820 {
821 	bool sense_valid;
822 	bool sense_current = true;	/* false implies "deferred sense" */
823 	struct request *req = scsi_cmd_to_rq(cmd);
824 	struct scsi_sense_hdr sshdr;
825 
826 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
827 	if (sense_valid)
828 		sense_current = !scsi_sense_is_deferred(&sshdr);
829 
830 	if (blk_rq_is_passthrough(req)) {
831 		if (sense_valid) {
832 			/*
833 			 * SG_IO wants current and deferred errors
834 			 */
835 			scsi_req(req)->sense_len =
836 				min(8 + cmd->sense_buffer[7],
837 				    SCSI_SENSE_BUFFERSIZE);
838 		}
839 		if (sense_current)
840 			*blk_statp = scsi_result_to_blk_status(cmd, result);
841 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
842 		/*
843 		 * Flush commands do not transfers any data, and thus cannot use
844 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
845 		 * This sets *blk_statp explicitly for the problem case.
846 		 */
847 		*blk_statp = scsi_result_to_blk_status(cmd, result);
848 	}
849 	/*
850 	 * Recovered errors need reporting, but they're always treated as
851 	 * success, so fiddle the result code here.  For passthrough requests
852 	 * we already took a copy of the original into sreq->result which
853 	 * is what gets returned to the user
854 	 */
855 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
856 		bool do_print = true;
857 		/*
858 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
859 		 * skip print since caller wants ATA registers. Only occurs
860 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
861 		 */
862 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
863 			do_print = false;
864 		else if (req->rq_flags & RQF_QUIET)
865 			do_print = false;
866 		if (do_print)
867 			scsi_print_sense(cmd);
868 		result = 0;
869 		/* for passthrough, *blk_statp may be set */
870 		*blk_statp = BLK_STS_OK;
871 	}
872 	/*
873 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
874 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
875 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
876 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
877 	 * intermediate statuses (both obsolete in SAM-4) as good.
878 	 */
879 	if ((result & 0xff) && scsi_status_is_good(result)) {
880 		result = 0;
881 		*blk_statp = BLK_STS_OK;
882 	}
883 	return result;
884 }
885 
886 /**
887  * scsi_io_completion - Completion processing for SCSI commands.
888  * @cmd:	command that is finished.
889  * @good_bytes:	number of processed bytes.
890  *
891  * We will finish off the specified number of sectors. If we are done, the
892  * command block will be released and the queue function will be goosed. If we
893  * are not done then we have to figure out what to do next:
894  *
895  *   a) We can call scsi_io_completion_reprep().  The request will be
896  *	unprepared and put back on the queue.  Then a new command will
897  *	be created for it.  This should be used if we made forward
898  *	progress, or if we want to switch from READ(10) to READ(6) for
899  *	example.
900  *
901  *   b) We can call scsi_io_completion_action().  The request will be
902  *	put back on the queue and retried using the same command as
903  *	before, possibly after a delay.
904  *
905  *   c) We can call scsi_end_request() with blk_stat other than
906  *	BLK_STS_OK, to fail the remainder of the request.
907  */
908 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
909 {
910 	int result = cmd->result;
911 	struct request_queue *q = cmd->device->request_queue;
912 	struct request *req = scsi_cmd_to_rq(cmd);
913 	blk_status_t blk_stat = BLK_STS_OK;
914 
915 	if (unlikely(result))	/* a nz result may or may not be an error */
916 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
917 
918 	if (unlikely(blk_rq_is_passthrough(req))) {
919 		/*
920 		 * scsi_result_to_blk_status may have reset the host_byte
921 		 */
922 		scsi_req(req)->result = cmd->result;
923 	}
924 
925 	/*
926 	 * Next deal with any sectors which we were able to correctly
927 	 * handle.
928 	 */
929 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
930 		"%u sectors total, %d bytes done.\n",
931 		blk_rq_sectors(req), good_bytes));
932 
933 	/*
934 	 * Failed, zero length commands always need to drop down
935 	 * to retry code. Fast path should return in this block.
936 	 */
937 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
938 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
939 			return; /* no bytes remaining */
940 	}
941 
942 	/* Kill remainder if no retries. */
943 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
944 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
945 			WARN_ONCE(true,
946 			    "Bytes remaining after failed, no-retry command");
947 		return;
948 	}
949 
950 	/*
951 	 * If there had been no error, but we have leftover bytes in the
952 	 * request just queue the command up again.
953 	 */
954 	if (likely(result == 0))
955 		scsi_io_completion_reprep(cmd, q);
956 	else
957 		scsi_io_completion_action(cmd, result);
958 }
959 
960 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
961 		struct request *rq)
962 {
963 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
964 	       !op_is_write(req_op(rq)) &&
965 	       sdev->host->hostt->dma_need_drain(rq);
966 }
967 
968 /**
969  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
970  * @cmd: SCSI command data structure to initialize.
971  *
972  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
973  * for @cmd.
974  *
975  * Returns:
976  * * BLK_STS_OK       - on success
977  * * BLK_STS_RESOURCE - if the failure is retryable
978  * * BLK_STS_IOERR    - if the failure is fatal
979  */
980 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
981 {
982 	struct scsi_device *sdev = cmd->device;
983 	struct request *rq = scsi_cmd_to_rq(cmd);
984 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
985 	struct scatterlist *last_sg = NULL;
986 	blk_status_t ret;
987 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
988 	int count;
989 
990 	if (WARN_ON_ONCE(!nr_segs))
991 		return BLK_STS_IOERR;
992 
993 	/*
994 	 * Make sure there is space for the drain.  The driver must adjust
995 	 * max_hw_segments to be prepared for this.
996 	 */
997 	if (need_drain)
998 		nr_segs++;
999 
1000 	/*
1001 	 * If sg table allocation fails, requeue request later.
1002 	 */
1003 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1004 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1005 		return BLK_STS_RESOURCE;
1006 
1007 	/*
1008 	 * Next, walk the list, and fill in the addresses and sizes of
1009 	 * each segment.
1010 	 */
1011 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1012 
1013 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1014 		unsigned int pad_len =
1015 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1016 
1017 		last_sg->length += pad_len;
1018 		cmd->extra_len += pad_len;
1019 	}
1020 
1021 	if (need_drain) {
1022 		sg_unmark_end(last_sg);
1023 		last_sg = sg_next(last_sg);
1024 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1025 		sg_mark_end(last_sg);
1026 
1027 		cmd->extra_len += sdev->dma_drain_len;
1028 		count++;
1029 	}
1030 
1031 	BUG_ON(count > cmd->sdb.table.nents);
1032 	cmd->sdb.table.nents = count;
1033 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1034 
1035 	if (blk_integrity_rq(rq)) {
1036 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1037 		int ivecs;
1038 
1039 		if (WARN_ON_ONCE(!prot_sdb)) {
1040 			/*
1041 			 * This can happen if someone (e.g. multipath)
1042 			 * queues a command to a device on an adapter
1043 			 * that does not support DIX.
1044 			 */
1045 			ret = BLK_STS_IOERR;
1046 			goto out_free_sgtables;
1047 		}
1048 
1049 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1050 
1051 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1052 				prot_sdb->table.sgl,
1053 				SCSI_INLINE_PROT_SG_CNT)) {
1054 			ret = BLK_STS_RESOURCE;
1055 			goto out_free_sgtables;
1056 		}
1057 
1058 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1059 						prot_sdb->table.sgl);
1060 		BUG_ON(count > ivecs);
1061 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1062 
1063 		cmd->prot_sdb = prot_sdb;
1064 		cmd->prot_sdb->table.nents = count;
1065 	}
1066 
1067 	return BLK_STS_OK;
1068 out_free_sgtables:
1069 	scsi_free_sgtables(cmd);
1070 	return ret;
1071 }
1072 EXPORT_SYMBOL(scsi_alloc_sgtables);
1073 
1074 /**
1075  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1076  * @rq: Request associated with the SCSI command to be initialized.
1077  *
1078  * This function initializes the members of struct scsi_cmnd that must be
1079  * initialized before request processing starts and that won't be
1080  * reinitialized if a SCSI command is requeued.
1081  *
1082  * Called from inside blk_get_request() for pass-through requests and from
1083  * inside scsi_init_command() for filesystem requests.
1084  */
1085 static void scsi_initialize_rq(struct request *rq)
1086 {
1087 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1088 	struct scsi_request *req = &cmd->req;
1089 
1090 	memset(req->__cmd, 0, sizeof(req->__cmd));
1091 	req->cmd = req->__cmd;
1092 	req->cmd_len = BLK_MAX_CDB;
1093 	req->sense_len = 0;
1094 
1095 	init_rcu_head(&cmd->rcu);
1096 	cmd->jiffies_at_alloc = jiffies;
1097 	cmd->retries = 0;
1098 }
1099 
1100 /*
1101  * Only called when the request isn't completed by SCSI, and not freed by
1102  * SCSI
1103  */
1104 static void scsi_cleanup_rq(struct request *rq)
1105 {
1106 	if (rq->rq_flags & RQF_DONTPREP) {
1107 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1108 		rq->rq_flags &= ~RQF_DONTPREP;
1109 	}
1110 }
1111 
1112 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1113 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1114 {
1115 	void *buf = cmd->sense_buffer;
1116 	void *prot = cmd->prot_sdb;
1117 	struct request *rq = scsi_cmd_to_rq(cmd);
1118 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1119 	unsigned long jiffies_at_alloc;
1120 	int retries, to_clear;
1121 	bool in_flight;
1122 	int budget_token = cmd->budget_token;
1123 
1124 	if (!blk_rq_is_passthrough(rq) && !(flags & SCMD_INITIALIZED)) {
1125 		flags |= SCMD_INITIALIZED;
1126 		scsi_initialize_rq(rq);
1127 	}
1128 
1129 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1130 	retries = cmd->retries;
1131 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1132 	/*
1133 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1134 	 * the driver-private command data if the LLD does not supply a
1135 	 * function to initialize that data.
1136 	 */
1137 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1138 	if (!dev->host->hostt->init_cmd_priv)
1139 		to_clear += dev->host->hostt->cmd_size;
1140 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1141 
1142 	cmd->device = dev;
1143 	cmd->sense_buffer = buf;
1144 	cmd->prot_sdb = prot;
1145 	cmd->flags = flags;
1146 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1147 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1148 	cmd->retries = retries;
1149 	if (in_flight)
1150 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1151 	cmd->budget_token = budget_token;
1152 
1153 }
1154 
1155 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1156 		struct request *req)
1157 {
1158 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1159 
1160 	/*
1161 	 * Passthrough requests may transfer data, in which case they must
1162 	 * a bio attached to them.  Or they might contain a SCSI command
1163 	 * that does not transfer data, in which case they may optionally
1164 	 * submit a request without an attached bio.
1165 	 */
1166 	if (req->bio) {
1167 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1168 		if (unlikely(ret != BLK_STS_OK))
1169 			return ret;
1170 	} else {
1171 		BUG_ON(blk_rq_bytes(req));
1172 
1173 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1174 	}
1175 
1176 	cmd->cmd_len = scsi_req(req)->cmd_len;
1177 	if (cmd->cmd_len == 0)
1178 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
1179 	cmd->cmnd = scsi_req(req)->cmd;
1180 	cmd->transfersize = blk_rq_bytes(req);
1181 	cmd->allowed = scsi_req(req)->retries;
1182 	return BLK_STS_OK;
1183 }
1184 
1185 static blk_status_t
1186 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1187 {
1188 	switch (sdev->sdev_state) {
1189 	case SDEV_CREATED:
1190 		return BLK_STS_OK;
1191 	case SDEV_OFFLINE:
1192 	case SDEV_TRANSPORT_OFFLINE:
1193 		/*
1194 		 * If the device is offline we refuse to process any
1195 		 * commands.  The device must be brought online
1196 		 * before trying any recovery commands.
1197 		 */
1198 		if (!sdev->offline_already) {
1199 			sdev->offline_already = true;
1200 			sdev_printk(KERN_ERR, sdev,
1201 				    "rejecting I/O to offline device\n");
1202 		}
1203 		return BLK_STS_IOERR;
1204 	case SDEV_DEL:
1205 		/*
1206 		 * If the device is fully deleted, we refuse to
1207 		 * process any commands as well.
1208 		 */
1209 		sdev_printk(KERN_ERR, sdev,
1210 			    "rejecting I/O to dead device\n");
1211 		return BLK_STS_IOERR;
1212 	case SDEV_BLOCK:
1213 	case SDEV_CREATED_BLOCK:
1214 		return BLK_STS_RESOURCE;
1215 	case SDEV_QUIESCE:
1216 		/*
1217 		 * If the device is blocked we only accept power management
1218 		 * commands.
1219 		 */
1220 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1221 			return BLK_STS_RESOURCE;
1222 		return BLK_STS_OK;
1223 	default:
1224 		/*
1225 		 * For any other not fully online state we only allow
1226 		 * power management commands.
1227 		 */
1228 		if (req && !(req->rq_flags & RQF_PM))
1229 			return BLK_STS_IOERR;
1230 		return BLK_STS_OK;
1231 	}
1232 }
1233 
1234 /*
1235  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1236  * and return the token else return -1.
1237  */
1238 static inline int scsi_dev_queue_ready(struct request_queue *q,
1239 				  struct scsi_device *sdev)
1240 {
1241 	int token;
1242 
1243 	token = sbitmap_get(&sdev->budget_map);
1244 	if (atomic_read(&sdev->device_blocked)) {
1245 		if (token < 0)
1246 			goto out;
1247 
1248 		if (scsi_device_busy(sdev) > 1)
1249 			goto out_dec;
1250 
1251 		/*
1252 		 * unblock after device_blocked iterates to zero
1253 		 */
1254 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1255 			goto out_dec;
1256 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1257 				   "unblocking device at zero depth\n"));
1258 	}
1259 
1260 	return token;
1261 out_dec:
1262 	if (token >= 0)
1263 		sbitmap_put(&sdev->budget_map, token);
1264 out:
1265 	return -1;
1266 }
1267 
1268 /*
1269  * scsi_target_queue_ready: checks if there we can send commands to target
1270  * @sdev: scsi device on starget to check.
1271  */
1272 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1273 					   struct scsi_device *sdev)
1274 {
1275 	struct scsi_target *starget = scsi_target(sdev);
1276 	unsigned int busy;
1277 
1278 	if (starget->single_lun) {
1279 		spin_lock_irq(shost->host_lock);
1280 		if (starget->starget_sdev_user &&
1281 		    starget->starget_sdev_user != sdev) {
1282 			spin_unlock_irq(shost->host_lock);
1283 			return 0;
1284 		}
1285 		starget->starget_sdev_user = sdev;
1286 		spin_unlock_irq(shost->host_lock);
1287 	}
1288 
1289 	if (starget->can_queue <= 0)
1290 		return 1;
1291 
1292 	busy = atomic_inc_return(&starget->target_busy) - 1;
1293 	if (atomic_read(&starget->target_blocked) > 0) {
1294 		if (busy)
1295 			goto starved;
1296 
1297 		/*
1298 		 * unblock after target_blocked iterates to zero
1299 		 */
1300 		if (atomic_dec_return(&starget->target_blocked) > 0)
1301 			goto out_dec;
1302 
1303 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1304 				 "unblocking target at zero depth\n"));
1305 	}
1306 
1307 	if (busy >= starget->can_queue)
1308 		goto starved;
1309 
1310 	return 1;
1311 
1312 starved:
1313 	spin_lock_irq(shost->host_lock);
1314 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1315 	spin_unlock_irq(shost->host_lock);
1316 out_dec:
1317 	if (starget->can_queue > 0)
1318 		atomic_dec(&starget->target_busy);
1319 	return 0;
1320 }
1321 
1322 /*
1323  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1324  * return 0. We must end up running the queue again whenever 0 is
1325  * returned, else IO can hang.
1326  */
1327 static inline int scsi_host_queue_ready(struct request_queue *q,
1328 				   struct Scsi_Host *shost,
1329 				   struct scsi_device *sdev,
1330 				   struct scsi_cmnd *cmd)
1331 {
1332 	if (scsi_host_in_recovery(shost))
1333 		return 0;
1334 
1335 	if (atomic_read(&shost->host_blocked) > 0) {
1336 		if (scsi_host_busy(shost) > 0)
1337 			goto starved;
1338 
1339 		/*
1340 		 * unblock after host_blocked iterates to zero
1341 		 */
1342 		if (atomic_dec_return(&shost->host_blocked) > 0)
1343 			goto out_dec;
1344 
1345 		SCSI_LOG_MLQUEUE(3,
1346 			shost_printk(KERN_INFO, shost,
1347 				     "unblocking host at zero depth\n"));
1348 	}
1349 
1350 	if (shost->host_self_blocked)
1351 		goto starved;
1352 
1353 	/* We're OK to process the command, so we can't be starved */
1354 	if (!list_empty(&sdev->starved_entry)) {
1355 		spin_lock_irq(shost->host_lock);
1356 		if (!list_empty(&sdev->starved_entry))
1357 			list_del_init(&sdev->starved_entry);
1358 		spin_unlock_irq(shost->host_lock);
1359 	}
1360 
1361 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1362 
1363 	return 1;
1364 
1365 starved:
1366 	spin_lock_irq(shost->host_lock);
1367 	if (list_empty(&sdev->starved_entry))
1368 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1369 	spin_unlock_irq(shost->host_lock);
1370 out_dec:
1371 	scsi_dec_host_busy(shost, cmd);
1372 	return 0;
1373 }
1374 
1375 /*
1376  * Busy state exporting function for request stacking drivers.
1377  *
1378  * For efficiency, no lock is taken to check the busy state of
1379  * shost/starget/sdev, since the returned value is not guaranteed and
1380  * may be changed after request stacking drivers call the function,
1381  * regardless of taking lock or not.
1382  *
1383  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1384  * needs to return 'not busy'. Otherwise, request stacking drivers
1385  * may hold requests forever.
1386  */
1387 static bool scsi_mq_lld_busy(struct request_queue *q)
1388 {
1389 	struct scsi_device *sdev = q->queuedata;
1390 	struct Scsi_Host *shost;
1391 
1392 	if (blk_queue_dying(q))
1393 		return false;
1394 
1395 	shost = sdev->host;
1396 
1397 	/*
1398 	 * Ignore host/starget busy state.
1399 	 * Since block layer does not have a concept of fairness across
1400 	 * multiple queues, congestion of host/starget needs to be handled
1401 	 * in SCSI layer.
1402 	 */
1403 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1404 		return true;
1405 
1406 	return false;
1407 }
1408 
1409 /*
1410  * Block layer request completion callback. May be called from interrupt
1411  * context.
1412  */
1413 static void scsi_complete(struct request *rq)
1414 {
1415 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1416 	enum scsi_disposition disposition;
1417 
1418 	INIT_LIST_HEAD(&cmd->eh_entry);
1419 
1420 	atomic_inc(&cmd->device->iodone_cnt);
1421 	if (cmd->result)
1422 		atomic_inc(&cmd->device->ioerr_cnt);
1423 
1424 	disposition = scsi_decide_disposition(cmd);
1425 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1426 		disposition = SUCCESS;
1427 
1428 	scsi_log_completion(cmd, disposition);
1429 
1430 	switch (disposition) {
1431 	case SUCCESS:
1432 		scsi_finish_command(cmd);
1433 		break;
1434 	case NEEDS_RETRY:
1435 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1436 		break;
1437 	case ADD_TO_MLQUEUE:
1438 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1439 		break;
1440 	default:
1441 		scsi_eh_scmd_add(cmd);
1442 		break;
1443 	}
1444 }
1445 
1446 /**
1447  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1448  * @cmd: command block we are dispatching.
1449  *
1450  * Return: nonzero return request was rejected and device's queue needs to be
1451  * plugged.
1452  */
1453 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1454 {
1455 	struct Scsi_Host *host = cmd->device->host;
1456 	int rtn = 0;
1457 
1458 	atomic_inc(&cmd->device->iorequest_cnt);
1459 
1460 	/* check if the device is still usable */
1461 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1462 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1463 		 * returns an immediate error upwards, and signals
1464 		 * that the device is no longer present */
1465 		cmd->result = DID_NO_CONNECT << 16;
1466 		goto done;
1467 	}
1468 
1469 	/* Check to see if the scsi lld made this device blocked. */
1470 	if (unlikely(scsi_device_blocked(cmd->device))) {
1471 		/*
1472 		 * in blocked state, the command is just put back on
1473 		 * the device queue.  The suspend state has already
1474 		 * blocked the queue so future requests should not
1475 		 * occur until the device transitions out of the
1476 		 * suspend state.
1477 		 */
1478 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1479 			"queuecommand : device blocked\n"));
1480 		return SCSI_MLQUEUE_DEVICE_BUSY;
1481 	}
1482 
1483 	/* Store the LUN value in cmnd, if needed. */
1484 	if (cmd->device->lun_in_cdb)
1485 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1486 			       (cmd->device->lun << 5 & 0xe0);
1487 
1488 	scsi_log_send(cmd);
1489 
1490 	/*
1491 	 * Before we queue this command, check if the command
1492 	 * length exceeds what the host adapter can handle.
1493 	 */
1494 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1495 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1496 			       "queuecommand : command too long. "
1497 			       "cdb_size=%d host->max_cmd_len=%d\n",
1498 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1499 		cmd->result = (DID_ABORT << 16);
1500 		goto done;
1501 	}
1502 
1503 	if (unlikely(host->shost_state == SHOST_DEL)) {
1504 		cmd->result = (DID_NO_CONNECT << 16);
1505 		goto done;
1506 
1507 	}
1508 
1509 	trace_scsi_dispatch_cmd_start(cmd);
1510 	rtn = host->hostt->queuecommand(host, cmd);
1511 	if (rtn) {
1512 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1513 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1514 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1515 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1516 
1517 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1518 			"queuecommand : request rejected\n"));
1519 	}
1520 
1521 	return rtn;
1522  done:
1523 	scsi_done(cmd);
1524 	return 0;
1525 }
1526 
1527 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1528 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1529 {
1530 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1531 		sizeof(struct scatterlist);
1532 }
1533 
1534 static blk_status_t scsi_prepare_cmd(struct request *req)
1535 {
1536 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1537 	struct scsi_device *sdev = req->q->queuedata;
1538 	struct Scsi_Host *shost = sdev->host;
1539 	struct scatterlist *sg;
1540 
1541 	scsi_init_command(sdev, cmd);
1542 
1543 	cmd->prot_op = SCSI_PROT_NORMAL;
1544 	if (blk_rq_bytes(req))
1545 		cmd->sc_data_direction = rq_dma_dir(req);
1546 	else
1547 		cmd->sc_data_direction = DMA_NONE;
1548 
1549 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1550 	cmd->sdb.table.sgl = sg;
1551 
1552 	if (scsi_host_get_prot(shost)) {
1553 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1554 
1555 		cmd->prot_sdb->table.sgl =
1556 			(struct scatterlist *)(cmd->prot_sdb + 1);
1557 	}
1558 
1559 	/*
1560 	 * Special handling for passthrough commands, which don't go to the ULP
1561 	 * at all:
1562 	 */
1563 	if (blk_rq_is_passthrough(req))
1564 		return scsi_setup_scsi_cmnd(sdev, req);
1565 
1566 	if (sdev->handler && sdev->handler->prep_fn) {
1567 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1568 
1569 		if (ret != BLK_STS_OK)
1570 			return ret;
1571 	}
1572 
1573 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1574 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1575 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1576 }
1577 
1578 void scsi_done(struct scsi_cmnd *cmd)
1579 {
1580 	switch (cmd->submitter) {
1581 	case SUBMITTED_BY_BLOCK_LAYER:
1582 		break;
1583 	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1584 		return scsi_eh_done(cmd);
1585 	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1586 		return;
1587 	}
1588 
1589 	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1590 		return;
1591 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1592 		return;
1593 	trace_scsi_dispatch_cmd_done(cmd);
1594 	blk_mq_complete_request(scsi_cmd_to_rq(cmd));
1595 }
1596 EXPORT_SYMBOL(scsi_done);
1597 
1598 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1599 {
1600 	struct scsi_device *sdev = q->queuedata;
1601 
1602 	sbitmap_put(&sdev->budget_map, budget_token);
1603 }
1604 
1605 static int scsi_mq_get_budget(struct request_queue *q)
1606 {
1607 	struct scsi_device *sdev = q->queuedata;
1608 	int token = scsi_dev_queue_ready(q, sdev);
1609 
1610 	if (token >= 0)
1611 		return token;
1612 
1613 	atomic_inc(&sdev->restarts);
1614 
1615 	/*
1616 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1617 	 * .restarts must be incremented before .device_busy is read because the
1618 	 * code in scsi_run_queue_async() depends on the order of these operations.
1619 	 */
1620 	smp_mb__after_atomic();
1621 
1622 	/*
1623 	 * If all in-flight requests originated from this LUN are completed
1624 	 * before reading .device_busy, sdev->device_busy will be observed as
1625 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1626 	 * soon. Otherwise, completion of one of these requests will observe
1627 	 * the .restarts flag, and the request queue will be run for handling
1628 	 * this request, see scsi_end_request().
1629 	 */
1630 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1631 				!scsi_device_blocked(sdev)))
1632 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1633 	return -1;
1634 }
1635 
1636 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1637 {
1638 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1639 
1640 	cmd->budget_token = token;
1641 }
1642 
1643 static int scsi_mq_get_rq_budget_token(struct request *req)
1644 {
1645 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1646 
1647 	return cmd->budget_token;
1648 }
1649 
1650 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1651 			 const struct blk_mq_queue_data *bd)
1652 {
1653 	struct request *req = bd->rq;
1654 	struct request_queue *q = req->q;
1655 	struct scsi_device *sdev = q->queuedata;
1656 	struct Scsi_Host *shost = sdev->host;
1657 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1658 	blk_status_t ret;
1659 	int reason;
1660 
1661 	WARN_ON_ONCE(cmd->budget_token < 0);
1662 
1663 	/*
1664 	 * If the device is not in running state we will reject some or all
1665 	 * commands.
1666 	 */
1667 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1668 		ret = scsi_device_state_check(sdev, req);
1669 		if (ret != BLK_STS_OK)
1670 			goto out_put_budget;
1671 	}
1672 
1673 	ret = BLK_STS_RESOURCE;
1674 	if (!scsi_target_queue_ready(shost, sdev))
1675 		goto out_put_budget;
1676 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1677 		goto out_dec_target_busy;
1678 
1679 	if (!(req->rq_flags & RQF_DONTPREP)) {
1680 		ret = scsi_prepare_cmd(req);
1681 		if (ret != BLK_STS_OK)
1682 			goto out_dec_host_busy;
1683 		req->rq_flags |= RQF_DONTPREP;
1684 	} else {
1685 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1686 	}
1687 
1688 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1689 	if (sdev->simple_tags)
1690 		cmd->flags |= SCMD_TAGGED;
1691 	if (bd->last)
1692 		cmd->flags |= SCMD_LAST;
1693 
1694 	scsi_set_resid(cmd, 0);
1695 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1696 	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1697 
1698 	blk_mq_start_request(req);
1699 	reason = scsi_dispatch_cmd(cmd);
1700 	if (reason) {
1701 		scsi_set_blocked(cmd, reason);
1702 		ret = BLK_STS_RESOURCE;
1703 		goto out_dec_host_busy;
1704 	}
1705 
1706 	return BLK_STS_OK;
1707 
1708 out_dec_host_busy:
1709 	scsi_dec_host_busy(shost, cmd);
1710 out_dec_target_busy:
1711 	if (scsi_target(sdev)->can_queue > 0)
1712 		atomic_dec(&scsi_target(sdev)->target_busy);
1713 out_put_budget:
1714 	scsi_mq_put_budget(q, cmd->budget_token);
1715 	cmd->budget_token = -1;
1716 	switch (ret) {
1717 	case BLK_STS_OK:
1718 		break;
1719 	case BLK_STS_RESOURCE:
1720 	case BLK_STS_ZONE_RESOURCE:
1721 		if (scsi_device_blocked(sdev))
1722 			ret = BLK_STS_DEV_RESOURCE;
1723 		break;
1724 	case BLK_STS_AGAIN:
1725 		scsi_req(req)->result = DID_BUS_BUSY << 16;
1726 		if (req->rq_flags & RQF_DONTPREP)
1727 			scsi_mq_uninit_cmd(cmd);
1728 		break;
1729 	default:
1730 		if (unlikely(!scsi_device_online(sdev)))
1731 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1732 		else
1733 			scsi_req(req)->result = DID_ERROR << 16;
1734 		/*
1735 		 * Make sure to release all allocated resources when
1736 		 * we hit an error, as we will never see this command
1737 		 * again.
1738 		 */
1739 		if (req->rq_flags & RQF_DONTPREP)
1740 			scsi_mq_uninit_cmd(cmd);
1741 		scsi_run_queue_async(sdev);
1742 		break;
1743 	}
1744 	return ret;
1745 }
1746 
1747 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1748 		bool reserved)
1749 {
1750 	if (reserved)
1751 		return BLK_EH_RESET_TIMER;
1752 	return scsi_times_out(req);
1753 }
1754 
1755 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1756 				unsigned int hctx_idx, unsigned int numa_node)
1757 {
1758 	struct Scsi_Host *shost = set->driver_data;
1759 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1760 	struct scatterlist *sg;
1761 	int ret = 0;
1762 
1763 	cmd->sense_buffer =
1764 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1765 	if (!cmd->sense_buffer)
1766 		return -ENOMEM;
1767 	cmd->req.sense = cmd->sense_buffer;
1768 
1769 	if (scsi_host_get_prot(shost)) {
1770 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1771 			shost->hostt->cmd_size;
1772 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1773 	}
1774 
1775 	if (shost->hostt->init_cmd_priv) {
1776 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1777 		if (ret < 0)
1778 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1779 	}
1780 
1781 	return ret;
1782 }
1783 
1784 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1785 				 unsigned int hctx_idx)
1786 {
1787 	struct Scsi_Host *shost = set->driver_data;
1788 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1789 
1790 	if (shost->hostt->exit_cmd_priv)
1791 		shost->hostt->exit_cmd_priv(shost, cmd);
1792 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1793 }
1794 
1795 
1796 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx)
1797 {
1798 	struct Scsi_Host *shost = hctx->driver_data;
1799 
1800 	if (shost->hostt->mq_poll)
1801 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1802 
1803 	return 0;
1804 }
1805 
1806 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1807 			  unsigned int hctx_idx)
1808 {
1809 	struct Scsi_Host *shost = data;
1810 
1811 	hctx->driver_data = shost;
1812 	return 0;
1813 }
1814 
1815 static int scsi_map_queues(struct blk_mq_tag_set *set)
1816 {
1817 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1818 
1819 	if (shost->hostt->map_queues)
1820 		return shost->hostt->map_queues(shost);
1821 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1822 }
1823 
1824 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1825 {
1826 	struct device *dev = shost->dma_dev;
1827 
1828 	/*
1829 	 * this limit is imposed by hardware restrictions
1830 	 */
1831 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1832 					SG_MAX_SEGMENTS));
1833 
1834 	if (scsi_host_prot_dma(shost)) {
1835 		shost->sg_prot_tablesize =
1836 			min_not_zero(shost->sg_prot_tablesize,
1837 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1838 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1839 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1840 	}
1841 
1842 	if (dev->dma_mask) {
1843 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1844 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1845 	}
1846 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1847 	blk_queue_segment_boundary(q, shost->dma_boundary);
1848 	dma_set_seg_boundary(dev, shost->dma_boundary);
1849 
1850 	blk_queue_max_segment_size(q, shost->max_segment_size);
1851 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1852 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1853 
1854 	/*
1855 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1856 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1857 	 * which is set by the platform.
1858 	 *
1859 	 * Devices that require a bigger alignment can increase it later.
1860 	 */
1861 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1862 }
1863 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1864 
1865 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1866 	.get_budget	= scsi_mq_get_budget,
1867 	.put_budget	= scsi_mq_put_budget,
1868 	.queue_rq	= scsi_queue_rq,
1869 	.complete	= scsi_complete,
1870 	.timeout	= scsi_timeout,
1871 #ifdef CONFIG_BLK_DEBUG_FS
1872 	.show_rq	= scsi_show_rq,
1873 #endif
1874 	.init_request	= scsi_mq_init_request,
1875 	.exit_request	= scsi_mq_exit_request,
1876 	.initialize_rq_fn = scsi_initialize_rq,
1877 	.cleanup_rq	= scsi_cleanup_rq,
1878 	.busy		= scsi_mq_lld_busy,
1879 	.map_queues	= scsi_map_queues,
1880 	.init_hctx	= scsi_init_hctx,
1881 	.poll		= scsi_mq_poll,
1882 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1883 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1884 };
1885 
1886 
1887 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1888 {
1889 	struct Scsi_Host *shost = hctx->driver_data;
1890 
1891 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1892 }
1893 
1894 static const struct blk_mq_ops scsi_mq_ops = {
1895 	.get_budget	= scsi_mq_get_budget,
1896 	.put_budget	= scsi_mq_put_budget,
1897 	.queue_rq	= scsi_queue_rq,
1898 	.commit_rqs	= scsi_commit_rqs,
1899 	.complete	= scsi_complete,
1900 	.timeout	= scsi_timeout,
1901 #ifdef CONFIG_BLK_DEBUG_FS
1902 	.show_rq	= scsi_show_rq,
1903 #endif
1904 	.init_request	= scsi_mq_init_request,
1905 	.exit_request	= scsi_mq_exit_request,
1906 	.initialize_rq_fn = scsi_initialize_rq,
1907 	.cleanup_rq	= scsi_cleanup_rq,
1908 	.busy		= scsi_mq_lld_busy,
1909 	.map_queues	= scsi_map_queues,
1910 	.init_hctx	= scsi_init_hctx,
1911 	.poll		= scsi_mq_poll,
1912 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1913 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1914 };
1915 
1916 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1917 {
1918 	unsigned int cmd_size, sgl_size;
1919 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1920 
1921 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1922 				scsi_mq_inline_sgl_size(shost));
1923 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1924 	if (scsi_host_get_prot(shost))
1925 		cmd_size += sizeof(struct scsi_data_buffer) +
1926 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1927 
1928 	memset(tag_set, 0, sizeof(*tag_set));
1929 	if (shost->hostt->commit_rqs)
1930 		tag_set->ops = &scsi_mq_ops;
1931 	else
1932 		tag_set->ops = &scsi_mq_ops_no_commit;
1933 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1934 	tag_set->nr_maps = shost->nr_maps ? : 1;
1935 	tag_set->queue_depth = shost->can_queue;
1936 	tag_set->cmd_size = cmd_size;
1937 	tag_set->numa_node = NUMA_NO_NODE;
1938 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1939 	tag_set->flags |=
1940 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1941 	tag_set->driver_data = shost;
1942 	if (shost->host_tagset)
1943 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1944 
1945 	return blk_mq_alloc_tag_set(tag_set);
1946 }
1947 
1948 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1949 {
1950 	blk_mq_free_tag_set(&shost->tag_set);
1951 }
1952 
1953 /**
1954  * scsi_device_from_queue - return sdev associated with a request_queue
1955  * @q: The request queue to return the sdev from
1956  *
1957  * Return the sdev associated with a request queue or NULL if the
1958  * request_queue does not reference a SCSI device.
1959  */
1960 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1961 {
1962 	struct scsi_device *sdev = NULL;
1963 
1964 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1965 	    q->mq_ops == &scsi_mq_ops)
1966 		sdev = q->queuedata;
1967 	if (!sdev || !get_device(&sdev->sdev_gendev))
1968 		sdev = NULL;
1969 
1970 	return sdev;
1971 }
1972 
1973 /**
1974  * scsi_block_requests - Utility function used by low-level drivers to prevent
1975  * further commands from being queued to the device.
1976  * @shost:  host in question
1977  *
1978  * There is no timer nor any other means by which the requests get unblocked
1979  * other than the low-level driver calling scsi_unblock_requests().
1980  */
1981 void scsi_block_requests(struct Scsi_Host *shost)
1982 {
1983 	shost->host_self_blocked = 1;
1984 }
1985 EXPORT_SYMBOL(scsi_block_requests);
1986 
1987 /**
1988  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1989  * further commands to be queued to the device.
1990  * @shost:  host in question
1991  *
1992  * There is no timer nor any other means by which the requests get unblocked
1993  * other than the low-level driver calling scsi_unblock_requests(). This is done
1994  * as an API function so that changes to the internals of the scsi mid-layer
1995  * won't require wholesale changes to drivers that use this feature.
1996  */
1997 void scsi_unblock_requests(struct Scsi_Host *shost)
1998 {
1999 	shost->host_self_blocked = 0;
2000 	scsi_run_host_queues(shost);
2001 }
2002 EXPORT_SYMBOL(scsi_unblock_requests);
2003 
2004 void scsi_exit_queue(void)
2005 {
2006 	kmem_cache_destroy(scsi_sense_cache);
2007 }
2008 
2009 /**
2010  *	scsi_mode_select - issue a mode select
2011  *	@sdev:	SCSI device to be queried
2012  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2013  *	@sp:	Save page bit (0 == don't save, 1 == save)
2014  *	@modepage: mode page being requested
2015  *	@buffer: request buffer (may not be smaller than eight bytes)
2016  *	@len:	length of request buffer.
2017  *	@timeout: command timeout
2018  *	@retries: number of retries before failing
2019  *	@data: returns a structure abstracting the mode header data
2020  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2021  *		must be SCSI_SENSE_BUFFERSIZE big.
2022  *
2023  *	Returns zero if successful; negative error number or scsi
2024  *	status on error
2025  *
2026  */
2027 int
2028 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2029 		 unsigned char *buffer, int len, int timeout, int retries,
2030 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2031 {
2032 	unsigned char cmd[10];
2033 	unsigned char *real_buffer;
2034 	int ret;
2035 
2036 	memset(cmd, 0, sizeof(cmd));
2037 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2038 
2039 	/*
2040 	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2041 	 * and the mode select header cannot fit within the maximumm 255 bytes
2042 	 * of the MODE SELECT(6) command.
2043 	 */
2044 	if (sdev->use_10_for_ms ||
2045 	    len + 4 > 255 ||
2046 	    data->block_descriptor_length > 255) {
2047 		if (len > 65535 - 8)
2048 			return -EINVAL;
2049 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2050 		if (!real_buffer)
2051 			return -ENOMEM;
2052 		memcpy(real_buffer + 8, buffer, len);
2053 		len += 8;
2054 		real_buffer[0] = 0;
2055 		real_buffer[1] = 0;
2056 		real_buffer[2] = data->medium_type;
2057 		real_buffer[3] = data->device_specific;
2058 		real_buffer[4] = data->longlba ? 0x01 : 0;
2059 		real_buffer[5] = 0;
2060 		put_unaligned_be16(data->block_descriptor_length,
2061 				   &real_buffer[6]);
2062 
2063 		cmd[0] = MODE_SELECT_10;
2064 		put_unaligned_be16(len, &cmd[7]);
2065 	} else {
2066 		if (data->longlba)
2067 			return -EINVAL;
2068 
2069 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2070 		if (!real_buffer)
2071 			return -ENOMEM;
2072 		memcpy(real_buffer + 4, buffer, len);
2073 		len += 4;
2074 		real_buffer[0] = 0;
2075 		real_buffer[1] = data->medium_type;
2076 		real_buffer[2] = data->device_specific;
2077 		real_buffer[3] = data->block_descriptor_length;
2078 
2079 		cmd[0] = MODE_SELECT;
2080 		cmd[4] = len;
2081 	}
2082 
2083 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2084 			       sshdr, timeout, retries, NULL);
2085 	kfree(real_buffer);
2086 	return ret;
2087 }
2088 EXPORT_SYMBOL_GPL(scsi_mode_select);
2089 
2090 /**
2091  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2092  *	@sdev:	SCSI device to be queried
2093  *	@dbd:	set to prevent mode sense from returning block descriptors
2094  *	@modepage: mode page being requested
2095  *	@buffer: request buffer (may not be smaller than eight bytes)
2096  *	@len:	length of request buffer.
2097  *	@timeout: command timeout
2098  *	@retries: number of retries before failing
2099  *	@data: returns a structure abstracting the mode header data
2100  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2101  *		must be SCSI_SENSE_BUFFERSIZE big.
2102  *
2103  *	Returns zero if successful, or a negative error number on failure
2104  */
2105 int
2106 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2107 		  unsigned char *buffer, int len, int timeout, int retries,
2108 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2109 {
2110 	unsigned char cmd[12];
2111 	int use_10_for_ms;
2112 	int header_length;
2113 	int result, retry_count = retries;
2114 	struct scsi_sense_hdr my_sshdr;
2115 
2116 	memset(data, 0, sizeof(*data));
2117 	memset(&cmd[0], 0, 12);
2118 
2119 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2120 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2121 	cmd[2] = modepage;
2122 
2123 	/* caller might not be interested in sense, but we need it */
2124 	if (!sshdr)
2125 		sshdr = &my_sshdr;
2126 
2127  retry:
2128 	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2129 
2130 	if (use_10_for_ms) {
2131 		if (len < 8 || len > 65535)
2132 			return -EINVAL;
2133 
2134 		cmd[0] = MODE_SENSE_10;
2135 		put_unaligned_be16(len, &cmd[7]);
2136 		header_length = 8;
2137 	} else {
2138 		if (len < 4)
2139 			return -EINVAL;
2140 
2141 		cmd[0] = MODE_SENSE;
2142 		cmd[4] = len;
2143 		header_length = 4;
2144 	}
2145 
2146 	memset(buffer, 0, len);
2147 
2148 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2149 				  sshdr, timeout, retries, NULL);
2150 	if (result < 0)
2151 		return result;
2152 
2153 	/* This code looks awful: what it's doing is making sure an
2154 	 * ILLEGAL REQUEST sense return identifies the actual command
2155 	 * byte as the problem.  MODE_SENSE commands can return
2156 	 * ILLEGAL REQUEST if the code page isn't supported */
2157 
2158 	if (!scsi_status_is_good(result)) {
2159 		if (scsi_sense_valid(sshdr)) {
2160 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2161 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2162 				/*
2163 				 * Invalid command operation code: retry using
2164 				 * MODE SENSE(6) if this was a MODE SENSE(10)
2165 				 * request, except if the request mode page is
2166 				 * too large for MODE SENSE single byte
2167 				 * allocation length field.
2168 				 */
2169 				if (use_10_for_ms) {
2170 					if (len > 255)
2171 						return -EIO;
2172 					sdev->use_10_for_ms = 0;
2173 					goto retry;
2174 				}
2175 			}
2176 			if (scsi_status_is_check_condition(result) &&
2177 			    sshdr->sense_key == UNIT_ATTENTION &&
2178 			    retry_count) {
2179 				retry_count--;
2180 				goto retry;
2181 			}
2182 		}
2183 		return -EIO;
2184 	}
2185 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2186 		     (modepage == 6 || modepage == 8))) {
2187 		/* Initio breakage? */
2188 		header_length = 0;
2189 		data->length = 13;
2190 		data->medium_type = 0;
2191 		data->device_specific = 0;
2192 		data->longlba = 0;
2193 		data->block_descriptor_length = 0;
2194 	} else if (use_10_for_ms) {
2195 		data->length = get_unaligned_be16(&buffer[0]) + 2;
2196 		data->medium_type = buffer[2];
2197 		data->device_specific = buffer[3];
2198 		data->longlba = buffer[4] & 0x01;
2199 		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2200 	} else {
2201 		data->length = buffer[0] + 1;
2202 		data->medium_type = buffer[1];
2203 		data->device_specific = buffer[2];
2204 		data->block_descriptor_length = buffer[3];
2205 	}
2206 	data->header_length = header_length;
2207 
2208 	return 0;
2209 }
2210 EXPORT_SYMBOL(scsi_mode_sense);
2211 
2212 /**
2213  *	scsi_test_unit_ready - test if unit is ready
2214  *	@sdev:	scsi device to change the state of.
2215  *	@timeout: command timeout
2216  *	@retries: number of retries before failing
2217  *	@sshdr: outpout pointer for decoded sense information.
2218  *
2219  *	Returns zero if unsuccessful or an error if TUR failed.  For
2220  *	removable media, UNIT_ATTENTION sets ->changed flag.
2221  **/
2222 int
2223 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2224 		     struct scsi_sense_hdr *sshdr)
2225 {
2226 	char cmd[] = {
2227 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2228 	};
2229 	int result;
2230 
2231 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2232 	do {
2233 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2234 					  timeout, 1, NULL);
2235 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2236 		    sshdr->sense_key == UNIT_ATTENTION)
2237 			sdev->changed = 1;
2238 	} while (scsi_sense_valid(sshdr) &&
2239 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2240 
2241 	return result;
2242 }
2243 EXPORT_SYMBOL(scsi_test_unit_ready);
2244 
2245 /**
2246  *	scsi_device_set_state - Take the given device through the device state model.
2247  *	@sdev:	scsi device to change the state of.
2248  *	@state:	state to change to.
2249  *
2250  *	Returns zero if successful or an error if the requested
2251  *	transition is illegal.
2252  */
2253 int
2254 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2255 {
2256 	enum scsi_device_state oldstate = sdev->sdev_state;
2257 
2258 	if (state == oldstate)
2259 		return 0;
2260 
2261 	switch (state) {
2262 	case SDEV_CREATED:
2263 		switch (oldstate) {
2264 		case SDEV_CREATED_BLOCK:
2265 			break;
2266 		default:
2267 			goto illegal;
2268 		}
2269 		break;
2270 
2271 	case SDEV_RUNNING:
2272 		switch (oldstate) {
2273 		case SDEV_CREATED:
2274 		case SDEV_OFFLINE:
2275 		case SDEV_TRANSPORT_OFFLINE:
2276 		case SDEV_QUIESCE:
2277 		case SDEV_BLOCK:
2278 			break;
2279 		default:
2280 			goto illegal;
2281 		}
2282 		break;
2283 
2284 	case SDEV_QUIESCE:
2285 		switch (oldstate) {
2286 		case SDEV_RUNNING:
2287 		case SDEV_OFFLINE:
2288 		case SDEV_TRANSPORT_OFFLINE:
2289 			break;
2290 		default:
2291 			goto illegal;
2292 		}
2293 		break;
2294 
2295 	case SDEV_OFFLINE:
2296 	case SDEV_TRANSPORT_OFFLINE:
2297 		switch (oldstate) {
2298 		case SDEV_CREATED:
2299 		case SDEV_RUNNING:
2300 		case SDEV_QUIESCE:
2301 		case SDEV_BLOCK:
2302 			break;
2303 		default:
2304 			goto illegal;
2305 		}
2306 		break;
2307 
2308 	case SDEV_BLOCK:
2309 		switch (oldstate) {
2310 		case SDEV_RUNNING:
2311 		case SDEV_CREATED_BLOCK:
2312 		case SDEV_QUIESCE:
2313 		case SDEV_OFFLINE:
2314 			break;
2315 		default:
2316 			goto illegal;
2317 		}
2318 		break;
2319 
2320 	case SDEV_CREATED_BLOCK:
2321 		switch (oldstate) {
2322 		case SDEV_CREATED:
2323 			break;
2324 		default:
2325 			goto illegal;
2326 		}
2327 		break;
2328 
2329 	case SDEV_CANCEL:
2330 		switch (oldstate) {
2331 		case SDEV_CREATED:
2332 		case SDEV_RUNNING:
2333 		case SDEV_QUIESCE:
2334 		case SDEV_OFFLINE:
2335 		case SDEV_TRANSPORT_OFFLINE:
2336 			break;
2337 		default:
2338 			goto illegal;
2339 		}
2340 		break;
2341 
2342 	case SDEV_DEL:
2343 		switch (oldstate) {
2344 		case SDEV_CREATED:
2345 		case SDEV_RUNNING:
2346 		case SDEV_OFFLINE:
2347 		case SDEV_TRANSPORT_OFFLINE:
2348 		case SDEV_CANCEL:
2349 		case SDEV_BLOCK:
2350 		case SDEV_CREATED_BLOCK:
2351 			break;
2352 		default:
2353 			goto illegal;
2354 		}
2355 		break;
2356 
2357 	}
2358 	sdev->offline_already = false;
2359 	sdev->sdev_state = state;
2360 	return 0;
2361 
2362  illegal:
2363 	SCSI_LOG_ERROR_RECOVERY(1,
2364 				sdev_printk(KERN_ERR, sdev,
2365 					    "Illegal state transition %s->%s",
2366 					    scsi_device_state_name(oldstate),
2367 					    scsi_device_state_name(state))
2368 				);
2369 	return -EINVAL;
2370 }
2371 EXPORT_SYMBOL(scsi_device_set_state);
2372 
2373 /**
2374  *	scsi_evt_emit - emit a single SCSI device uevent
2375  *	@sdev: associated SCSI device
2376  *	@evt: event to emit
2377  *
2378  *	Send a single uevent (scsi_event) to the associated scsi_device.
2379  */
2380 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2381 {
2382 	int idx = 0;
2383 	char *envp[3];
2384 
2385 	switch (evt->evt_type) {
2386 	case SDEV_EVT_MEDIA_CHANGE:
2387 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2388 		break;
2389 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2390 		scsi_rescan_device(&sdev->sdev_gendev);
2391 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2392 		break;
2393 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2394 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2395 		break;
2396 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2397 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2398 		break;
2399 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2400 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2401 		break;
2402 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2403 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2404 		break;
2405 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2406 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2407 		break;
2408 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2409 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2410 		break;
2411 	default:
2412 		/* do nothing */
2413 		break;
2414 	}
2415 
2416 	envp[idx++] = NULL;
2417 
2418 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2419 }
2420 
2421 /**
2422  *	scsi_evt_thread - send a uevent for each scsi event
2423  *	@work: work struct for scsi_device
2424  *
2425  *	Dispatch queued events to their associated scsi_device kobjects
2426  *	as uevents.
2427  */
2428 void scsi_evt_thread(struct work_struct *work)
2429 {
2430 	struct scsi_device *sdev;
2431 	enum scsi_device_event evt_type;
2432 	LIST_HEAD(event_list);
2433 
2434 	sdev = container_of(work, struct scsi_device, event_work);
2435 
2436 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2437 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2438 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2439 
2440 	while (1) {
2441 		struct scsi_event *evt;
2442 		struct list_head *this, *tmp;
2443 		unsigned long flags;
2444 
2445 		spin_lock_irqsave(&sdev->list_lock, flags);
2446 		list_splice_init(&sdev->event_list, &event_list);
2447 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2448 
2449 		if (list_empty(&event_list))
2450 			break;
2451 
2452 		list_for_each_safe(this, tmp, &event_list) {
2453 			evt = list_entry(this, struct scsi_event, node);
2454 			list_del(&evt->node);
2455 			scsi_evt_emit(sdev, evt);
2456 			kfree(evt);
2457 		}
2458 	}
2459 }
2460 
2461 /**
2462  * 	sdev_evt_send - send asserted event to uevent thread
2463  *	@sdev: scsi_device event occurred on
2464  *	@evt: event to send
2465  *
2466  *	Assert scsi device event asynchronously.
2467  */
2468 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2469 {
2470 	unsigned long flags;
2471 
2472 #if 0
2473 	/* FIXME: currently this check eliminates all media change events
2474 	 * for polled devices.  Need to update to discriminate between AN
2475 	 * and polled events */
2476 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2477 		kfree(evt);
2478 		return;
2479 	}
2480 #endif
2481 
2482 	spin_lock_irqsave(&sdev->list_lock, flags);
2483 	list_add_tail(&evt->node, &sdev->event_list);
2484 	schedule_work(&sdev->event_work);
2485 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2486 }
2487 EXPORT_SYMBOL_GPL(sdev_evt_send);
2488 
2489 /**
2490  * 	sdev_evt_alloc - allocate a new scsi event
2491  *	@evt_type: type of event to allocate
2492  *	@gfpflags: GFP flags for allocation
2493  *
2494  *	Allocates and returns a new scsi_event.
2495  */
2496 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2497 				  gfp_t gfpflags)
2498 {
2499 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2500 	if (!evt)
2501 		return NULL;
2502 
2503 	evt->evt_type = evt_type;
2504 	INIT_LIST_HEAD(&evt->node);
2505 
2506 	/* evt_type-specific initialization, if any */
2507 	switch (evt_type) {
2508 	case SDEV_EVT_MEDIA_CHANGE:
2509 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2510 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2511 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2512 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2513 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2514 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2515 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2516 	default:
2517 		/* do nothing */
2518 		break;
2519 	}
2520 
2521 	return evt;
2522 }
2523 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2524 
2525 /**
2526  * 	sdev_evt_send_simple - send asserted event to uevent thread
2527  *	@sdev: scsi_device event occurred on
2528  *	@evt_type: type of event to send
2529  *	@gfpflags: GFP flags for allocation
2530  *
2531  *	Assert scsi device event asynchronously, given an event type.
2532  */
2533 void sdev_evt_send_simple(struct scsi_device *sdev,
2534 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2535 {
2536 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2537 	if (!evt) {
2538 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2539 			    evt_type);
2540 		return;
2541 	}
2542 
2543 	sdev_evt_send(sdev, evt);
2544 }
2545 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2546 
2547 /**
2548  *	scsi_device_quiesce - Block all commands except power management.
2549  *	@sdev:	scsi device to quiesce.
2550  *
2551  *	This works by trying to transition to the SDEV_QUIESCE state
2552  *	(which must be a legal transition).  When the device is in this
2553  *	state, only power management requests will be accepted, all others will
2554  *	be deferred.
2555  *
2556  *	Must be called with user context, may sleep.
2557  *
2558  *	Returns zero if unsuccessful or an error if not.
2559  */
2560 int
2561 scsi_device_quiesce(struct scsi_device *sdev)
2562 {
2563 	struct request_queue *q = sdev->request_queue;
2564 	int err;
2565 
2566 	/*
2567 	 * It is allowed to call scsi_device_quiesce() multiple times from
2568 	 * the same context but concurrent scsi_device_quiesce() calls are
2569 	 * not allowed.
2570 	 */
2571 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2572 
2573 	if (sdev->quiesced_by == current)
2574 		return 0;
2575 
2576 	blk_set_pm_only(q);
2577 
2578 	blk_mq_freeze_queue(q);
2579 	/*
2580 	 * Ensure that the effect of blk_set_pm_only() will be visible
2581 	 * for percpu_ref_tryget() callers that occur after the queue
2582 	 * unfreeze even if the queue was already frozen before this function
2583 	 * was called. See also https://lwn.net/Articles/573497/.
2584 	 */
2585 	synchronize_rcu();
2586 	blk_mq_unfreeze_queue(q);
2587 
2588 	mutex_lock(&sdev->state_mutex);
2589 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2590 	if (err == 0)
2591 		sdev->quiesced_by = current;
2592 	else
2593 		blk_clear_pm_only(q);
2594 	mutex_unlock(&sdev->state_mutex);
2595 
2596 	return err;
2597 }
2598 EXPORT_SYMBOL(scsi_device_quiesce);
2599 
2600 /**
2601  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2602  *	@sdev:	scsi device to resume.
2603  *
2604  *	Moves the device from quiesced back to running and restarts the
2605  *	queues.
2606  *
2607  *	Must be called with user context, may sleep.
2608  */
2609 void scsi_device_resume(struct scsi_device *sdev)
2610 {
2611 	/* check if the device state was mutated prior to resume, and if
2612 	 * so assume the state is being managed elsewhere (for example
2613 	 * device deleted during suspend)
2614 	 */
2615 	mutex_lock(&sdev->state_mutex);
2616 	if (sdev->sdev_state == SDEV_QUIESCE)
2617 		scsi_device_set_state(sdev, SDEV_RUNNING);
2618 	if (sdev->quiesced_by) {
2619 		sdev->quiesced_by = NULL;
2620 		blk_clear_pm_only(sdev->request_queue);
2621 	}
2622 	mutex_unlock(&sdev->state_mutex);
2623 }
2624 EXPORT_SYMBOL(scsi_device_resume);
2625 
2626 static void
2627 device_quiesce_fn(struct scsi_device *sdev, void *data)
2628 {
2629 	scsi_device_quiesce(sdev);
2630 }
2631 
2632 void
2633 scsi_target_quiesce(struct scsi_target *starget)
2634 {
2635 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2636 }
2637 EXPORT_SYMBOL(scsi_target_quiesce);
2638 
2639 static void
2640 device_resume_fn(struct scsi_device *sdev, void *data)
2641 {
2642 	scsi_device_resume(sdev);
2643 }
2644 
2645 void
2646 scsi_target_resume(struct scsi_target *starget)
2647 {
2648 	starget_for_each_device(starget, NULL, device_resume_fn);
2649 }
2650 EXPORT_SYMBOL(scsi_target_resume);
2651 
2652 /**
2653  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2654  * @sdev: device to block
2655  *
2656  * Pause SCSI command processing on the specified device. Does not sleep.
2657  *
2658  * Returns zero if successful or a negative error code upon failure.
2659  *
2660  * Notes:
2661  * This routine transitions the device to the SDEV_BLOCK state (which must be
2662  * a legal transition). When the device is in this state, command processing
2663  * is paused until the device leaves the SDEV_BLOCK state. See also
2664  * scsi_internal_device_unblock_nowait().
2665  */
2666 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2667 {
2668 	struct request_queue *q = sdev->request_queue;
2669 	int err = 0;
2670 
2671 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2672 	if (err) {
2673 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2674 
2675 		if (err)
2676 			return err;
2677 	}
2678 
2679 	/*
2680 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2681 	 * block layer from calling the midlayer with this device's
2682 	 * request queue.
2683 	 */
2684 	blk_mq_quiesce_queue_nowait(q);
2685 	return 0;
2686 }
2687 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2688 
2689 /**
2690  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2691  * @sdev: device to block
2692  *
2693  * Pause SCSI command processing on the specified device and wait until all
2694  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2695  *
2696  * Returns zero if successful or a negative error code upon failure.
2697  *
2698  * Note:
2699  * This routine transitions the device to the SDEV_BLOCK state (which must be
2700  * a legal transition). When the device is in this state, command processing
2701  * is paused until the device leaves the SDEV_BLOCK state. See also
2702  * scsi_internal_device_unblock().
2703  */
2704 static int scsi_internal_device_block(struct scsi_device *sdev)
2705 {
2706 	struct request_queue *q = sdev->request_queue;
2707 	int err;
2708 
2709 	mutex_lock(&sdev->state_mutex);
2710 	err = scsi_internal_device_block_nowait(sdev);
2711 	if (err == 0)
2712 		blk_mq_quiesce_queue(q);
2713 	mutex_unlock(&sdev->state_mutex);
2714 
2715 	return err;
2716 }
2717 
2718 void scsi_start_queue(struct scsi_device *sdev)
2719 {
2720 	struct request_queue *q = sdev->request_queue;
2721 
2722 	blk_mq_unquiesce_queue(q);
2723 }
2724 
2725 /**
2726  * scsi_internal_device_unblock_nowait - resume a device after a block request
2727  * @sdev:	device to resume
2728  * @new_state:	state to set the device to after unblocking
2729  *
2730  * Restart the device queue for a previously suspended SCSI device. Does not
2731  * sleep.
2732  *
2733  * Returns zero if successful or a negative error code upon failure.
2734  *
2735  * Notes:
2736  * This routine transitions the device to the SDEV_RUNNING state or to one of
2737  * the offline states (which must be a legal transition) allowing the midlayer
2738  * to goose the queue for this device.
2739  */
2740 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2741 					enum scsi_device_state new_state)
2742 {
2743 	switch (new_state) {
2744 	case SDEV_RUNNING:
2745 	case SDEV_TRANSPORT_OFFLINE:
2746 		break;
2747 	default:
2748 		return -EINVAL;
2749 	}
2750 
2751 	/*
2752 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2753 	 * offlined states and goose the device queue if successful.
2754 	 */
2755 	switch (sdev->sdev_state) {
2756 	case SDEV_BLOCK:
2757 	case SDEV_TRANSPORT_OFFLINE:
2758 		sdev->sdev_state = new_state;
2759 		break;
2760 	case SDEV_CREATED_BLOCK:
2761 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2762 		    new_state == SDEV_OFFLINE)
2763 			sdev->sdev_state = new_state;
2764 		else
2765 			sdev->sdev_state = SDEV_CREATED;
2766 		break;
2767 	case SDEV_CANCEL:
2768 	case SDEV_OFFLINE:
2769 		break;
2770 	default:
2771 		return -EINVAL;
2772 	}
2773 	scsi_start_queue(sdev);
2774 
2775 	return 0;
2776 }
2777 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2778 
2779 /**
2780  * scsi_internal_device_unblock - resume a device after a block request
2781  * @sdev:	device to resume
2782  * @new_state:	state to set the device to after unblocking
2783  *
2784  * Restart the device queue for a previously suspended SCSI device. May sleep.
2785  *
2786  * Returns zero if successful or a negative error code upon failure.
2787  *
2788  * Notes:
2789  * This routine transitions the device to the SDEV_RUNNING state or to one of
2790  * the offline states (which must be a legal transition) allowing the midlayer
2791  * to goose the queue for this device.
2792  */
2793 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2794 					enum scsi_device_state new_state)
2795 {
2796 	int ret;
2797 
2798 	mutex_lock(&sdev->state_mutex);
2799 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2800 	mutex_unlock(&sdev->state_mutex);
2801 
2802 	return ret;
2803 }
2804 
2805 static void
2806 device_block(struct scsi_device *sdev, void *data)
2807 {
2808 	int ret;
2809 
2810 	ret = scsi_internal_device_block(sdev);
2811 
2812 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2813 		  dev_name(&sdev->sdev_gendev), ret);
2814 }
2815 
2816 static int
2817 target_block(struct device *dev, void *data)
2818 {
2819 	if (scsi_is_target_device(dev))
2820 		starget_for_each_device(to_scsi_target(dev), NULL,
2821 					device_block);
2822 	return 0;
2823 }
2824 
2825 void
2826 scsi_target_block(struct device *dev)
2827 {
2828 	if (scsi_is_target_device(dev))
2829 		starget_for_each_device(to_scsi_target(dev), NULL,
2830 					device_block);
2831 	else
2832 		device_for_each_child(dev, NULL, target_block);
2833 }
2834 EXPORT_SYMBOL_GPL(scsi_target_block);
2835 
2836 static void
2837 device_unblock(struct scsi_device *sdev, void *data)
2838 {
2839 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2840 }
2841 
2842 static int
2843 target_unblock(struct device *dev, void *data)
2844 {
2845 	if (scsi_is_target_device(dev))
2846 		starget_for_each_device(to_scsi_target(dev), data,
2847 					device_unblock);
2848 	return 0;
2849 }
2850 
2851 void
2852 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2853 {
2854 	if (scsi_is_target_device(dev))
2855 		starget_for_each_device(to_scsi_target(dev), &new_state,
2856 					device_unblock);
2857 	else
2858 		device_for_each_child(dev, &new_state, target_unblock);
2859 }
2860 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2861 
2862 int
2863 scsi_host_block(struct Scsi_Host *shost)
2864 {
2865 	struct scsi_device *sdev;
2866 	int ret = 0;
2867 
2868 	/*
2869 	 * Call scsi_internal_device_block_nowait so we can avoid
2870 	 * calling synchronize_rcu() for each LUN.
2871 	 */
2872 	shost_for_each_device(sdev, shost) {
2873 		mutex_lock(&sdev->state_mutex);
2874 		ret = scsi_internal_device_block_nowait(sdev);
2875 		mutex_unlock(&sdev->state_mutex);
2876 		if (ret) {
2877 			scsi_device_put(sdev);
2878 			break;
2879 		}
2880 	}
2881 
2882 	/*
2883 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2884 	 * calling synchronize_rcu() once is enough.
2885 	 */
2886 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2887 
2888 	if (!ret)
2889 		synchronize_rcu();
2890 
2891 	return ret;
2892 }
2893 EXPORT_SYMBOL_GPL(scsi_host_block);
2894 
2895 int
2896 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2897 {
2898 	struct scsi_device *sdev;
2899 	int ret = 0;
2900 
2901 	shost_for_each_device(sdev, shost) {
2902 		ret = scsi_internal_device_unblock(sdev, new_state);
2903 		if (ret) {
2904 			scsi_device_put(sdev);
2905 			break;
2906 		}
2907 	}
2908 	return ret;
2909 }
2910 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2911 
2912 /**
2913  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2914  * @sgl:	scatter-gather list
2915  * @sg_count:	number of segments in sg
2916  * @offset:	offset in bytes into sg, on return offset into the mapped area
2917  * @len:	bytes to map, on return number of bytes mapped
2918  *
2919  * Returns virtual address of the start of the mapped page
2920  */
2921 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2922 			  size_t *offset, size_t *len)
2923 {
2924 	int i;
2925 	size_t sg_len = 0, len_complete = 0;
2926 	struct scatterlist *sg;
2927 	struct page *page;
2928 
2929 	WARN_ON(!irqs_disabled());
2930 
2931 	for_each_sg(sgl, sg, sg_count, i) {
2932 		len_complete = sg_len; /* Complete sg-entries */
2933 		sg_len += sg->length;
2934 		if (sg_len > *offset)
2935 			break;
2936 	}
2937 
2938 	if (unlikely(i == sg_count)) {
2939 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2940 			"elements %d\n",
2941 		       __func__, sg_len, *offset, sg_count);
2942 		WARN_ON(1);
2943 		return NULL;
2944 	}
2945 
2946 	/* Offset starting from the beginning of first page in this sg-entry */
2947 	*offset = *offset - len_complete + sg->offset;
2948 
2949 	/* Assumption: contiguous pages can be accessed as "page + i" */
2950 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2951 	*offset &= ~PAGE_MASK;
2952 
2953 	/* Bytes in this sg-entry from *offset to the end of the page */
2954 	sg_len = PAGE_SIZE - *offset;
2955 	if (*len > sg_len)
2956 		*len = sg_len;
2957 
2958 	return kmap_atomic(page);
2959 }
2960 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2961 
2962 /**
2963  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2964  * @virt:	virtual address to be unmapped
2965  */
2966 void scsi_kunmap_atomic_sg(void *virt)
2967 {
2968 	kunmap_atomic(virt);
2969 }
2970 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2971 
2972 void sdev_disable_disk_events(struct scsi_device *sdev)
2973 {
2974 	atomic_inc(&sdev->disk_events_disable_depth);
2975 }
2976 EXPORT_SYMBOL(sdev_disable_disk_events);
2977 
2978 void sdev_enable_disk_events(struct scsi_device *sdev)
2979 {
2980 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2981 		return;
2982 	atomic_dec(&sdev->disk_events_disable_depth);
2983 }
2984 EXPORT_SYMBOL(sdev_enable_disk_events);
2985 
2986 static unsigned char designator_prio(const unsigned char *d)
2987 {
2988 	if (d[1] & 0x30)
2989 		/* not associated with LUN */
2990 		return 0;
2991 
2992 	if (d[3] == 0)
2993 		/* invalid length */
2994 		return 0;
2995 
2996 	/*
2997 	 * Order of preference for lun descriptor:
2998 	 * - SCSI name string
2999 	 * - NAA IEEE Registered Extended
3000 	 * - EUI-64 based 16-byte
3001 	 * - EUI-64 based 12-byte
3002 	 * - NAA IEEE Registered
3003 	 * - NAA IEEE Extended
3004 	 * - EUI-64 based 8-byte
3005 	 * - SCSI name string (truncated)
3006 	 * - T10 Vendor ID
3007 	 * as longer descriptors reduce the likelyhood
3008 	 * of identification clashes.
3009 	 */
3010 
3011 	switch (d[1] & 0xf) {
3012 	case 8:
3013 		/* SCSI name string, variable-length UTF-8 */
3014 		return 9;
3015 	case 3:
3016 		switch (d[4] >> 4) {
3017 		case 6:
3018 			/* NAA registered extended */
3019 			return 8;
3020 		case 5:
3021 			/* NAA registered */
3022 			return 5;
3023 		case 4:
3024 			/* NAA extended */
3025 			return 4;
3026 		case 3:
3027 			/* NAA locally assigned */
3028 			return 1;
3029 		default:
3030 			break;
3031 		}
3032 		break;
3033 	case 2:
3034 		switch (d[3]) {
3035 		case 16:
3036 			/* EUI64-based, 16 byte */
3037 			return 7;
3038 		case 12:
3039 			/* EUI64-based, 12 byte */
3040 			return 6;
3041 		case 8:
3042 			/* EUI64-based, 8 byte */
3043 			return 3;
3044 		default:
3045 			break;
3046 		}
3047 		break;
3048 	case 1:
3049 		/* T10 vendor ID */
3050 		return 1;
3051 	default:
3052 		break;
3053 	}
3054 
3055 	return 0;
3056 }
3057 
3058 /**
3059  * scsi_vpd_lun_id - return a unique device identification
3060  * @sdev: SCSI device
3061  * @id:   buffer for the identification
3062  * @id_len:  length of the buffer
3063  *
3064  * Copies a unique device identification into @id based
3065  * on the information in the VPD page 0x83 of the device.
3066  * The string will be formatted as a SCSI name string.
3067  *
3068  * Returns the length of the identification or error on failure.
3069  * If the identifier is longer than the supplied buffer the actual
3070  * identifier length is returned and the buffer is not zero-padded.
3071  */
3072 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3073 {
3074 	u8 cur_id_prio = 0;
3075 	u8 cur_id_size = 0;
3076 	const unsigned char *d, *cur_id_str;
3077 	const struct scsi_vpd *vpd_pg83;
3078 	int id_size = -EINVAL;
3079 
3080 	rcu_read_lock();
3081 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3082 	if (!vpd_pg83) {
3083 		rcu_read_unlock();
3084 		return -ENXIO;
3085 	}
3086 
3087 	/* The id string must be at least 20 bytes + terminating NULL byte */
3088 	if (id_len < 21) {
3089 		rcu_read_unlock();
3090 		return -EINVAL;
3091 	}
3092 
3093 	memset(id, 0, id_len);
3094 	for (d = vpd_pg83->data + 4;
3095 	     d < vpd_pg83->data + vpd_pg83->len;
3096 	     d += d[3] + 4) {
3097 		u8 prio = designator_prio(d);
3098 
3099 		if (prio == 0 || cur_id_prio > prio)
3100 			continue;
3101 
3102 		switch (d[1] & 0xf) {
3103 		case 0x1:
3104 			/* T10 Vendor ID */
3105 			if (cur_id_size > d[3])
3106 				break;
3107 			cur_id_prio = prio;
3108 			cur_id_size = d[3];
3109 			if (cur_id_size + 4 > id_len)
3110 				cur_id_size = id_len - 4;
3111 			cur_id_str = d + 4;
3112 			id_size = snprintf(id, id_len, "t10.%*pE",
3113 					   cur_id_size, cur_id_str);
3114 			break;
3115 		case 0x2:
3116 			/* EUI-64 */
3117 			cur_id_prio = prio;
3118 			cur_id_size = d[3];
3119 			cur_id_str = d + 4;
3120 			switch (cur_id_size) {
3121 			case 8:
3122 				id_size = snprintf(id, id_len,
3123 						   "eui.%8phN",
3124 						   cur_id_str);
3125 				break;
3126 			case 12:
3127 				id_size = snprintf(id, id_len,
3128 						   "eui.%12phN",
3129 						   cur_id_str);
3130 				break;
3131 			case 16:
3132 				id_size = snprintf(id, id_len,
3133 						   "eui.%16phN",
3134 						   cur_id_str);
3135 				break;
3136 			default:
3137 				break;
3138 			}
3139 			break;
3140 		case 0x3:
3141 			/* NAA */
3142 			cur_id_prio = prio;
3143 			cur_id_size = d[3];
3144 			cur_id_str = d + 4;
3145 			switch (cur_id_size) {
3146 			case 8:
3147 				id_size = snprintf(id, id_len,
3148 						   "naa.%8phN",
3149 						   cur_id_str);
3150 				break;
3151 			case 16:
3152 				id_size = snprintf(id, id_len,
3153 						   "naa.%16phN",
3154 						   cur_id_str);
3155 				break;
3156 			default:
3157 				break;
3158 			}
3159 			break;
3160 		case 0x8:
3161 			/* SCSI name string */
3162 			if (cur_id_size > d[3])
3163 				break;
3164 			/* Prefer others for truncated descriptor */
3165 			if (d[3] > id_len) {
3166 				prio = 2;
3167 				if (cur_id_prio > prio)
3168 					break;
3169 			}
3170 			cur_id_prio = prio;
3171 			cur_id_size = id_size = d[3];
3172 			cur_id_str = d + 4;
3173 			if (cur_id_size >= id_len)
3174 				cur_id_size = id_len - 1;
3175 			memcpy(id, cur_id_str, cur_id_size);
3176 			break;
3177 		default:
3178 			break;
3179 		}
3180 	}
3181 	rcu_read_unlock();
3182 
3183 	return id_size;
3184 }
3185 EXPORT_SYMBOL(scsi_vpd_lun_id);
3186 
3187 /*
3188  * scsi_vpd_tpg_id - return a target port group identifier
3189  * @sdev: SCSI device
3190  *
3191  * Returns the Target Port Group identifier from the information
3192  * froom VPD page 0x83 of the device.
3193  *
3194  * Returns the identifier or error on failure.
3195  */
3196 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3197 {
3198 	const unsigned char *d;
3199 	const struct scsi_vpd *vpd_pg83;
3200 	int group_id = -EAGAIN, rel_port = -1;
3201 
3202 	rcu_read_lock();
3203 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3204 	if (!vpd_pg83) {
3205 		rcu_read_unlock();
3206 		return -ENXIO;
3207 	}
3208 
3209 	d = vpd_pg83->data + 4;
3210 	while (d < vpd_pg83->data + vpd_pg83->len) {
3211 		switch (d[1] & 0xf) {
3212 		case 0x4:
3213 			/* Relative target port */
3214 			rel_port = get_unaligned_be16(&d[6]);
3215 			break;
3216 		case 0x5:
3217 			/* Target port group */
3218 			group_id = get_unaligned_be16(&d[6]);
3219 			break;
3220 		default:
3221 			break;
3222 		}
3223 		d += d[3] + 4;
3224 	}
3225 	rcu_read_unlock();
3226 
3227 	if (group_id >= 0 && rel_id && rel_port != -1)
3228 		*rel_id = rel_port;
3229 
3230 	return group_id;
3231 }
3232 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3233 
3234 /**
3235  * scsi_build_sense - build sense data for a command
3236  * @scmd:	scsi command for which the sense should be formatted
3237  * @desc:	Sense format (non-zero == descriptor format,
3238  *              0 == fixed format)
3239  * @key:	Sense key
3240  * @asc:	Additional sense code
3241  * @ascq:	Additional sense code qualifier
3242  *
3243  **/
3244 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3245 {
3246 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3247 	scmd->result = SAM_STAT_CHECK_CONDITION;
3248 }
3249 EXPORT_SYMBOL_GPL(scsi_build_sense);
3250