1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/ratelimit.h> 25 #include <asm/unaligned.h> 26 27 #include <scsi/scsi.h> 28 #include <scsi/scsi_cmnd.h> 29 #include <scsi/scsi_dbg.h> 30 #include <scsi/scsi_device.h> 31 #include <scsi/scsi_driver.h> 32 #include <scsi/scsi_eh.h> 33 #include <scsi/scsi_host.h> 34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 35 #include <scsi/scsi_dh.h> 36 37 #include <trace/events/scsi.h> 38 39 #include "scsi_debugfs.h" 40 #include "scsi_priv.h" 41 #include "scsi_logging.h" 42 43 /* 44 * Size of integrity metadata is usually small, 1 inline sg should 45 * cover normal cases. 46 */ 47 #ifdef CONFIG_ARCH_NO_SG_CHAIN 48 #define SCSI_INLINE_PROT_SG_CNT 0 49 #define SCSI_INLINE_SG_CNT 0 50 #else 51 #define SCSI_INLINE_PROT_SG_CNT 1 52 #define SCSI_INLINE_SG_CNT 2 53 #endif 54 55 static struct kmem_cache *scsi_sense_cache; 56 static DEFINE_MUTEX(scsi_sense_cache_mutex); 57 58 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 59 60 int scsi_init_sense_cache(struct Scsi_Host *shost) 61 { 62 int ret = 0; 63 64 mutex_lock(&scsi_sense_cache_mutex); 65 if (!scsi_sense_cache) { 66 scsi_sense_cache = 67 kmem_cache_create_usercopy("scsi_sense_cache", 68 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 69 0, SCSI_SENSE_BUFFERSIZE, NULL); 70 if (!scsi_sense_cache) 71 ret = -ENOMEM; 72 } 73 mutex_unlock(&scsi_sense_cache_mutex); 74 return ret; 75 } 76 77 /* 78 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 79 * not change behaviour from the previous unplug mechanism, experimentation 80 * may prove this needs changing. 81 */ 82 #define SCSI_QUEUE_DELAY 3 83 84 static void 85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 86 { 87 struct Scsi_Host *host = cmd->device->host; 88 struct scsi_device *device = cmd->device; 89 struct scsi_target *starget = scsi_target(device); 90 91 /* 92 * Set the appropriate busy bit for the device/host. 93 * 94 * If the host/device isn't busy, assume that something actually 95 * completed, and that we should be able to queue a command now. 96 * 97 * Note that the prior mid-layer assumption that any host could 98 * always queue at least one command is now broken. The mid-layer 99 * will implement a user specifiable stall (see 100 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 101 * if a command is requeued with no other commands outstanding 102 * either for the device or for the host. 103 */ 104 switch (reason) { 105 case SCSI_MLQUEUE_HOST_BUSY: 106 atomic_set(&host->host_blocked, host->max_host_blocked); 107 break; 108 case SCSI_MLQUEUE_DEVICE_BUSY: 109 case SCSI_MLQUEUE_EH_RETRY: 110 atomic_set(&device->device_blocked, 111 device->max_device_blocked); 112 break; 113 case SCSI_MLQUEUE_TARGET_BUSY: 114 atomic_set(&starget->target_blocked, 115 starget->max_target_blocked); 116 break; 117 } 118 } 119 120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 121 { 122 struct request *rq = scsi_cmd_to_rq(cmd); 123 124 if (rq->rq_flags & RQF_DONTPREP) { 125 rq->rq_flags &= ~RQF_DONTPREP; 126 scsi_mq_uninit_cmd(cmd); 127 } else { 128 WARN_ON_ONCE(true); 129 } 130 blk_mq_requeue_request(rq, true); 131 } 132 133 /** 134 * __scsi_queue_insert - private queue insertion 135 * @cmd: The SCSI command being requeued 136 * @reason: The reason for the requeue 137 * @unbusy: Whether the queue should be unbusied 138 * 139 * This is a private queue insertion. The public interface 140 * scsi_queue_insert() always assumes the queue should be unbusied 141 * because it's always called before the completion. This function is 142 * for a requeue after completion, which should only occur in this 143 * file. 144 */ 145 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 146 { 147 struct scsi_device *device = cmd->device; 148 149 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 150 "Inserting command %p into mlqueue\n", cmd)); 151 152 scsi_set_blocked(cmd, reason); 153 154 /* 155 * Decrement the counters, since these commands are no longer 156 * active on the host/device. 157 */ 158 if (unbusy) 159 scsi_device_unbusy(device, cmd); 160 161 /* 162 * Requeue this command. It will go before all other commands 163 * that are already in the queue. Schedule requeue work under 164 * lock such that the kblockd_schedule_work() call happens 165 * before blk_cleanup_queue() finishes. 166 */ 167 cmd->result = 0; 168 169 blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true); 170 } 171 172 /** 173 * scsi_queue_insert - Reinsert a command in the queue. 174 * @cmd: command that we are adding to queue. 175 * @reason: why we are inserting command to queue. 176 * 177 * We do this for one of two cases. Either the host is busy and it cannot accept 178 * any more commands for the time being, or the device returned QUEUE_FULL and 179 * can accept no more commands. 180 * 181 * Context: This could be called either from an interrupt context or a normal 182 * process context. 183 */ 184 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 185 { 186 __scsi_queue_insert(cmd, reason, true); 187 } 188 189 190 /** 191 * __scsi_execute - insert request and wait for the result 192 * @sdev: scsi device 193 * @cmd: scsi command 194 * @data_direction: data direction 195 * @buffer: data buffer 196 * @bufflen: len of buffer 197 * @sense: optional sense buffer 198 * @sshdr: optional decoded sense header 199 * @timeout: request timeout in HZ 200 * @retries: number of times to retry request 201 * @flags: flags for ->cmd_flags 202 * @rq_flags: flags for ->rq_flags 203 * @resid: optional residual length 204 * 205 * Returns the scsi_cmnd result field if a command was executed, or a negative 206 * Linux error code if we didn't get that far. 207 */ 208 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 209 int data_direction, void *buffer, unsigned bufflen, 210 unsigned char *sense, struct scsi_sense_hdr *sshdr, 211 int timeout, int retries, u64 flags, req_flags_t rq_flags, 212 int *resid) 213 { 214 struct request *req; 215 struct scsi_request *rq; 216 int ret; 217 218 req = blk_get_request(sdev->request_queue, 219 data_direction == DMA_TO_DEVICE ? 220 REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 221 rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0); 222 if (IS_ERR(req)) 223 return PTR_ERR(req); 224 225 rq = scsi_req(req); 226 227 if (bufflen) { 228 ret = blk_rq_map_kern(sdev->request_queue, req, 229 buffer, bufflen, GFP_NOIO); 230 if (ret) 231 goto out; 232 } 233 rq->cmd_len = COMMAND_SIZE(cmd[0]); 234 memcpy(rq->cmd, cmd, rq->cmd_len); 235 rq->retries = retries; 236 req->timeout = timeout; 237 req->cmd_flags |= flags; 238 req->rq_flags |= rq_flags | RQF_QUIET; 239 240 /* 241 * head injection *required* here otherwise quiesce won't work 242 */ 243 blk_execute_rq(NULL, req, 1); 244 245 /* 246 * Some devices (USB mass-storage in particular) may transfer 247 * garbage data together with a residue indicating that the data 248 * is invalid. Prevent the garbage from being misinterpreted 249 * and prevent security leaks by zeroing out the excess data. 250 */ 251 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 252 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 253 254 if (resid) 255 *resid = rq->resid_len; 256 if (sense && rq->sense_len) 257 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 258 if (sshdr) 259 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 260 ret = rq->result; 261 out: 262 blk_put_request(req); 263 264 return ret; 265 } 266 EXPORT_SYMBOL(__scsi_execute); 267 268 /* 269 * Wake up the error handler if necessary. Avoid as follows that the error 270 * handler is not woken up if host in-flight requests number == 271 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 272 * with an RCU read lock in this function to ensure that this function in 273 * its entirety either finishes before scsi_eh_scmd_add() increases the 274 * host_failed counter or that it notices the shost state change made by 275 * scsi_eh_scmd_add(). 276 */ 277 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 278 { 279 unsigned long flags; 280 281 rcu_read_lock(); 282 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 283 if (unlikely(scsi_host_in_recovery(shost))) { 284 spin_lock_irqsave(shost->host_lock, flags); 285 if (shost->host_failed || shost->host_eh_scheduled) 286 scsi_eh_wakeup(shost); 287 spin_unlock_irqrestore(shost->host_lock, flags); 288 } 289 rcu_read_unlock(); 290 } 291 292 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 293 { 294 struct Scsi_Host *shost = sdev->host; 295 struct scsi_target *starget = scsi_target(sdev); 296 297 scsi_dec_host_busy(shost, cmd); 298 299 if (starget->can_queue > 0) 300 atomic_dec(&starget->target_busy); 301 302 sbitmap_put(&sdev->budget_map, cmd->budget_token); 303 cmd->budget_token = -1; 304 } 305 306 static void scsi_kick_queue(struct request_queue *q) 307 { 308 blk_mq_run_hw_queues(q, false); 309 } 310 311 /* 312 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 313 * and call blk_run_queue for all the scsi_devices on the target - 314 * including current_sdev first. 315 * 316 * Called with *no* scsi locks held. 317 */ 318 static void scsi_single_lun_run(struct scsi_device *current_sdev) 319 { 320 struct Scsi_Host *shost = current_sdev->host; 321 struct scsi_device *sdev, *tmp; 322 struct scsi_target *starget = scsi_target(current_sdev); 323 unsigned long flags; 324 325 spin_lock_irqsave(shost->host_lock, flags); 326 starget->starget_sdev_user = NULL; 327 spin_unlock_irqrestore(shost->host_lock, flags); 328 329 /* 330 * Call blk_run_queue for all LUNs on the target, starting with 331 * current_sdev. We race with others (to set starget_sdev_user), 332 * but in most cases, we will be first. Ideally, each LU on the 333 * target would get some limited time or requests on the target. 334 */ 335 scsi_kick_queue(current_sdev->request_queue); 336 337 spin_lock_irqsave(shost->host_lock, flags); 338 if (starget->starget_sdev_user) 339 goto out; 340 list_for_each_entry_safe(sdev, tmp, &starget->devices, 341 same_target_siblings) { 342 if (sdev == current_sdev) 343 continue; 344 if (scsi_device_get(sdev)) 345 continue; 346 347 spin_unlock_irqrestore(shost->host_lock, flags); 348 scsi_kick_queue(sdev->request_queue); 349 spin_lock_irqsave(shost->host_lock, flags); 350 351 scsi_device_put(sdev); 352 } 353 out: 354 spin_unlock_irqrestore(shost->host_lock, flags); 355 } 356 357 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 358 { 359 if (scsi_device_busy(sdev) >= sdev->queue_depth) 360 return true; 361 if (atomic_read(&sdev->device_blocked) > 0) 362 return true; 363 return false; 364 } 365 366 static inline bool scsi_target_is_busy(struct scsi_target *starget) 367 { 368 if (starget->can_queue > 0) { 369 if (atomic_read(&starget->target_busy) >= starget->can_queue) 370 return true; 371 if (atomic_read(&starget->target_blocked) > 0) 372 return true; 373 } 374 return false; 375 } 376 377 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 378 { 379 if (atomic_read(&shost->host_blocked) > 0) 380 return true; 381 if (shost->host_self_blocked) 382 return true; 383 return false; 384 } 385 386 static void scsi_starved_list_run(struct Scsi_Host *shost) 387 { 388 LIST_HEAD(starved_list); 389 struct scsi_device *sdev; 390 unsigned long flags; 391 392 spin_lock_irqsave(shost->host_lock, flags); 393 list_splice_init(&shost->starved_list, &starved_list); 394 395 while (!list_empty(&starved_list)) { 396 struct request_queue *slq; 397 398 /* 399 * As long as shost is accepting commands and we have 400 * starved queues, call blk_run_queue. scsi_request_fn 401 * drops the queue_lock and can add us back to the 402 * starved_list. 403 * 404 * host_lock protects the starved_list and starved_entry. 405 * scsi_request_fn must get the host_lock before checking 406 * or modifying starved_list or starved_entry. 407 */ 408 if (scsi_host_is_busy(shost)) 409 break; 410 411 sdev = list_entry(starved_list.next, 412 struct scsi_device, starved_entry); 413 list_del_init(&sdev->starved_entry); 414 if (scsi_target_is_busy(scsi_target(sdev))) { 415 list_move_tail(&sdev->starved_entry, 416 &shost->starved_list); 417 continue; 418 } 419 420 /* 421 * Once we drop the host lock, a racing scsi_remove_device() 422 * call may remove the sdev from the starved list and destroy 423 * it and the queue. Mitigate by taking a reference to the 424 * queue and never touching the sdev again after we drop the 425 * host lock. Note: if __scsi_remove_device() invokes 426 * blk_cleanup_queue() before the queue is run from this 427 * function then blk_run_queue() will return immediately since 428 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 429 */ 430 slq = sdev->request_queue; 431 if (!blk_get_queue(slq)) 432 continue; 433 spin_unlock_irqrestore(shost->host_lock, flags); 434 435 scsi_kick_queue(slq); 436 blk_put_queue(slq); 437 438 spin_lock_irqsave(shost->host_lock, flags); 439 } 440 /* put any unprocessed entries back */ 441 list_splice(&starved_list, &shost->starved_list); 442 spin_unlock_irqrestore(shost->host_lock, flags); 443 } 444 445 /** 446 * scsi_run_queue - Select a proper request queue to serve next. 447 * @q: last request's queue 448 * 449 * The previous command was completely finished, start a new one if possible. 450 */ 451 static void scsi_run_queue(struct request_queue *q) 452 { 453 struct scsi_device *sdev = q->queuedata; 454 455 if (scsi_target(sdev)->single_lun) 456 scsi_single_lun_run(sdev); 457 if (!list_empty(&sdev->host->starved_list)) 458 scsi_starved_list_run(sdev->host); 459 460 blk_mq_run_hw_queues(q, false); 461 } 462 463 void scsi_requeue_run_queue(struct work_struct *work) 464 { 465 struct scsi_device *sdev; 466 struct request_queue *q; 467 468 sdev = container_of(work, struct scsi_device, requeue_work); 469 q = sdev->request_queue; 470 scsi_run_queue(q); 471 } 472 473 void scsi_run_host_queues(struct Scsi_Host *shost) 474 { 475 struct scsi_device *sdev; 476 477 shost_for_each_device(sdev, shost) 478 scsi_run_queue(sdev->request_queue); 479 } 480 481 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 482 { 483 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) { 484 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 485 486 if (drv->uninit_command) 487 drv->uninit_command(cmd); 488 } 489 } 490 491 void scsi_free_sgtables(struct scsi_cmnd *cmd) 492 { 493 if (cmd->sdb.table.nents) 494 sg_free_table_chained(&cmd->sdb.table, 495 SCSI_INLINE_SG_CNT); 496 if (scsi_prot_sg_count(cmd)) 497 sg_free_table_chained(&cmd->prot_sdb->table, 498 SCSI_INLINE_PROT_SG_CNT); 499 } 500 EXPORT_SYMBOL_GPL(scsi_free_sgtables); 501 502 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 503 { 504 scsi_free_sgtables(cmd); 505 scsi_uninit_cmd(cmd); 506 } 507 508 static void scsi_run_queue_async(struct scsi_device *sdev) 509 { 510 if (scsi_target(sdev)->single_lun || 511 !list_empty(&sdev->host->starved_list)) { 512 kblockd_schedule_work(&sdev->requeue_work); 513 } else { 514 /* 515 * smp_mb() present in sbitmap_queue_clear() or implied in 516 * .end_io is for ordering writing .device_busy in 517 * scsi_device_unbusy() and reading sdev->restarts. 518 */ 519 int old = atomic_read(&sdev->restarts); 520 521 /* 522 * ->restarts has to be kept as non-zero if new budget 523 * contention occurs. 524 * 525 * No need to run queue when either another re-run 526 * queue wins in updating ->restarts or a new budget 527 * contention occurs. 528 */ 529 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 530 blk_mq_run_hw_queues(sdev->request_queue, true); 531 } 532 } 533 534 /* Returns false when no more bytes to process, true if there are more */ 535 static bool scsi_end_request(struct request *req, blk_status_t error, 536 unsigned int bytes) 537 { 538 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 539 struct scsi_device *sdev = cmd->device; 540 struct request_queue *q = sdev->request_queue; 541 542 if (blk_update_request(req, error, bytes)) 543 return true; 544 545 if (blk_queue_add_random(q)) 546 add_disk_randomness(req->rq_disk); 547 548 if (!blk_rq_is_passthrough(req)) { 549 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 550 cmd->flags &= ~SCMD_INITIALIZED; 551 } 552 553 /* 554 * Calling rcu_barrier() is not necessary here because the 555 * SCSI error handler guarantees that the function called by 556 * call_rcu() has been called before scsi_end_request() is 557 * called. 558 */ 559 destroy_rcu_head(&cmd->rcu); 560 561 /* 562 * In the MQ case the command gets freed by __blk_mq_end_request, 563 * so we have to do all cleanup that depends on it earlier. 564 * 565 * We also can't kick the queues from irq context, so we 566 * will have to defer it to a workqueue. 567 */ 568 scsi_mq_uninit_cmd(cmd); 569 570 /* 571 * queue is still alive, so grab the ref for preventing it 572 * from being cleaned up during running queue. 573 */ 574 percpu_ref_get(&q->q_usage_counter); 575 576 __blk_mq_end_request(req, error); 577 578 scsi_run_queue_async(sdev); 579 580 percpu_ref_put(&q->q_usage_counter); 581 return false; 582 } 583 584 /** 585 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 586 * @cmd: SCSI command 587 * @result: scsi error code 588 * 589 * Translate a SCSI result code into a blk_status_t value. May reset the host 590 * byte of @cmd->result. 591 */ 592 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 593 { 594 switch (host_byte(result)) { 595 case DID_OK: 596 if (scsi_status_is_good(result)) 597 return BLK_STS_OK; 598 return BLK_STS_IOERR; 599 case DID_TRANSPORT_FAILFAST: 600 case DID_TRANSPORT_MARGINAL: 601 return BLK_STS_TRANSPORT; 602 case DID_TARGET_FAILURE: 603 set_host_byte(cmd, DID_OK); 604 return BLK_STS_TARGET; 605 case DID_NEXUS_FAILURE: 606 set_host_byte(cmd, DID_OK); 607 return BLK_STS_NEXUS; 608 case DID_ALLOC_FAILURE: 609 set_host_byte(cmd, DID_OK); 610 return BLK_STS_NOSPC; 611 case DID_MEDIUM_ERROR: 612 set_host_byte(cmd, DID_OK); 613 return BLK_STS_MEDIUM; 614 default: 615 return BLK_STS_IOERR; 616 } 617 } 618 619 /* Helper for scsi_io_completion() when "reprep" action required. */ 620 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 621 struct request_queue *q) 622 { 623 /* A new command will be prepared and issued. */ 624 scsi_mq_requeue_cmd(cmd); 625 } 626 627 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 628 { 629 struct request *req = scsi_cmd_to_rq(cmd); 630 unsigned long wait_for; 631 632 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 633 return false; 634 635 wait_for = (cmd->allowed + 1) * req->timeout; 636 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 637 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 638 wait_for/HZ); 639 return true; 640 } 641 return false; 642 } 643 644 /* Helper for scsi_io_completion() when special action required. */ 645 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 646 { 647 struct request_queue *q = cmd->device->request_queue; 648 struct request *req = scsi_cmd_to_rq(cmd); 649 int level = 0; 650 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 651 ACTION_DELAYED_RETRY} action; 652 struct scsi_sense_hdr sshdr; 653 bool sense_valid; 654 bool sense_current = true; /* false implies "deferred sense" */ 655 blk_status_t blk_stat; 656 657 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 658 if (sense_valid) 659 sense_current = !scsi_sense_is_deferred(&sshdr); 660 661 blk_stat = scsi_result_to_blk_status(cmd, result); 662 663 if (host_byte(result) == DID_RESET) { 664 /* Third party bus reset or reset for error recovery 665 * reasons. Just retry the command and see what 666 * happens. 667 */ 668 action = ACTION_RETRY; 669 } else if (sense_valid && sense_current) { 670 switch (sshdr.sense_key) { 671 case UNIT_ATTENTION: 672 if (cmd->device->removable) { 673 /* Detected disc change. Set a bit 674 * and quietly refuse further access. 675 */ 676 cmd->device->changed = 1; 677 action = ACTION_FAIL; 678 } else { 679 /* Must have been a power glitch, or a 680 * bus reset. Could not have been a 681 * media change, so we just retry the 682 * command and see what happens. 683 */ 684 action = ACTION_RETRY; 685 } 686 break; 687 case ILLEGAL_REQUEST: 688 /* If we had an ILLEGAL REQUEST returned, then 689 * we may have performed an unsupported 690 * command. The only thing this should be 691 * would be a ten byte read where only a six 692 * byte read was supported. Also, on a system 693 * where READ CAPACITY failed, we may have 694 * read past the end of the disk. 695 */ 696 if ((cmd->device->use_10_for_rw && 697 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 698 (cmd->cmnd[0] == READ_10 || 699 cmd->cmnd[0] == WRITE_10)) { 700 /* This will issue a new 6-byte command. */ 701 cmd->device->use_10_for_rw = 0; 702 action = ACTION_REPREP; 703 } else if (sshdr.asc == 0x10) /* DIX */ { 704 action = ACTION_FAIL; 705 blk_stat = BLK_STS_PROTECTION; 706 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 707 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 708 action = ACTION_FAIL; 709 blk_stat = BLK_STS_TARGET; 710 } else 711 action = ACTION_FAIL; 712 break; 713 case ABORTED_COMMAND: 714 action = ACTION_FAIL; 715 if (sshdr.asc == 0x10) /* DIF */ 716 blk_stat = BLK_STS_PROTECTION; 717 break; 718 case NOT_READY: 719 /* If the device is in the process of becoming 720 * ready, or has a temporary blockage, retry. 721 */ 722 if (sshdr.asc == 0x04) { 723 switch (sshdr.ascq) { 724 case 0x01: /* becoming ready */ 725 case 0x04: /* format in progress */ 726 case 0x05: /* rebuild in progress */ 727 case 0x06: /* recalculation in progress */ 728 case 0x07: /* operation in progress */ 729 case 0x08: /* Long write in progress */ 730 case 0x09: /* self test in progress */ 731 case 0x11: /* notify (enable spinup) required */ 732 case 0x14: /* space allocation in progress */ 733 case 0x1a: /* start stop unit in progress */ 734 case 0x1b: /* sanitize in progress */ 735 case 0x1d: /* configuration in progress */ 736 case 0x24: /* depopulation in progress */ 737 action = ACTION_DELAYED_RETRY; 738 break; 739 case 0x0a: /* ALUA state transition */ 740 blk_stat = BLK_STS_AGAIN; 741 fallthrough; 742 default: 743 action = ACTION_FAIL; 744 break; 745 } 746 } else 747 action = ACTION_FAIL; 748 break; 749 case VOLUME_OVERFLOW: 750 /* See SSC3rXX or current. */ 751 action = ACTION_FAIL; 752 break; 753 case DATA_PROTECT: 754 action = ACTION_FAIL; 755 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) || 756 (sshdr.asc == 0x55 && 757 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) { 758 /* Insufficient zone resources */ 759 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE; 760 } 761 break; 762 default: 763 action = ACTION_FAIL; 764 break; 765 } 766 } else 767 action = ACTION_FAIL; 768 769 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 770 action = ACTION_FAIL; 771 772 switch (action) { 773 case ACTION_FAIL: 774 /* Give up and fail the remainder of the request */ 775 if (!(req->rq_flags & RQF_QUIET)) { 776 static DEFINE_RATELIMIT_STATE(_rs, 777 DEFAULT_RATELIMIT_INTERVAL, 778 DEFAULT_RATELIMIT_BURST); 779 780 if (unlikely(scsi_logging_level)) 781 level = 782 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 783 SCSI_LOG_MLCOMPLETE_BITS); 784 785 /* 786 * if logging is enabled the failure will be printed 787 * in scsi_log_completion(), so avoid duplicate messages 788 */ 789 if (!level && __ratelimit(&_rs)) { 790 scsi_print_result(cmd, NULL, FAILED); 791 if (sense_valid) 792 scsi_print_sense(cmd); 793 scsi_print_command(cmd); 794 } 795 } 796 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req))) 797 return; 798 fallthrough; 799 case ACTION_REPREP: 800 scsi_io_completion_reprep(cmd, q); 801 break; 802 case ACTION_RETRY: 803 /* Retry the same command immediately */ 804 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 805 break; 806 case ACTION_DELAYED_RETRY: 807 /* Retry the same command after a delay */ 808 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 809 break; 810 } 811 } 812 813 /* 814 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 815 * new result that may suppress further error checking. Also modifies 816 * *blk_statp in some cases. 817 */ 818 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 819 blk_status_t *blk_statp) 820 { 821 bool sense_valid; 822 bool sense_current = true; /* false implies "deferred sense" */ 823 struct request *req = scsi_cmd_to_rq(cmd); 824 struct scsi_sense_hdr sshdr; 825 826 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 827 if (sense_valid) 828 sense_current = !scsi_sense_is_deferred(&sshdr); 829 830 if (blk_rq_is_passthrough(req)) { 831 if (sense_valid) { 832 /* 833 * SG_IO wants current and deferred errors 834 */ 835 scsi_req(req)->sense_len = 836 min(8 + cmd->sense_buffer[7], 837 SCSI_SENSE_BUFFERSIZE); 838 } 839 if (sense_current) 840 *blk_statp = scsi_result_to_blk_status(cmd, result); 841 } else if (blk_rq_bytes(req) == 0 && sense_current) { 842 /* 843 * Flush commands do not transfers any data, and thus cannot use 844 * good_bytes != blk_rq_bytes(req) as the signal for an error. 845 * This sets *blk_statp explicitly for the problem case. 846 */ 847 *blk_statp = scsi_result_to_blk_status(cmd, result); 848 } 849 /* 850 * Recovered errors need reporting, but they're always treated as 851 * success, so fiddle the result code here. For passthrough requests 852 * we already took a copy of the original into sreq->result which 853 * is what gets returned to the user 854 */ 855 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 856 bool do_print = true; 857 /* 858 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 859 * skip print since caller wants ATA registers. Only occurs 860 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 861 */ 862 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 863 do_print = false; 864 else if (req->rq_flags & RQF_QUIET) 865 do_print = false; 866 if (do_print) 867 scsi_print_sense(cmd); 868 result = 0; 869 /* for passthrough, *blk_statp may be set */ 870 *blk_statp = BLK_STS_OK; 871 } 872 /* 873 * Another corner case: the SCSI status byte is non-zero but 'good'. 874 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 875 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 876 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 877 * intermediate statuses (both obsolete in SAM-4) as good. 878 */ 879 if ((result & 0xff) && scsi_status_is_good(result)) { 880 result = 0; 881 *blk_statp = BLK_STS_OK; 882 } 883 return result; 884 } 885 886 /** 887 * scsi_io_completion - Completion processing for SCSI commands. 888 * @cmd: command that is finished. 889 * @good_bytes: number of processed bytes. 890 * 891 * We will finish off the specified number of sectors. If we are done, the 892 * command block will be released and the queue function will be goosed. If we 893 * are not done then we have to figure out what to do next: 894 * 895 * a) We can call scsi_io_completion_reprep(). The request will be 896 * unprepared and put back on the queue. Then a new command will 897 * be created for it. This should be used if we made forward 898 * progress, or if we want to switch from READ(10) to READ(6) for 899 * example. 900 * 901 * b) We can call scsi_io_completion_action(). The request will be 902 * put back on the queue and retried using the same command as 903 * before, possibly after a delay. 904 * 905 * c) We can call scsi_end_request() with blk_stat other than 906 * BLK_STS_OK, to fail the remainder of the request. 907 */ 908 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 909 { 910 int result = cmd->result; 911 struct request_queue *q = cmd->device->request_queue; 912 struct request *req = scsi_cmd_to_rq(cmd); 913 blk_status_t blk_stat = BLK_STS_OK; 914 915 if (unlikely(result)) /* a nz result may or may not be an error */ 916 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 917 918 if (unlikely(blk_rq_is_passthrough(req))) { 919 /* 920 * scsi_result_to_blk_status may have reset the host_byte 921 */ 922 scsi_req(req)->result = cmd->result; 923 } 924 925 /* 926 * Next deal with any sectors which we were able to correctly 927 * handle. 928 */ 929 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 930 "%u sectors total, %d bytes done.\n", 931 blk_rq_sectors(req), good_bytes)); 932 933 /* 934 * Failed, zero length commands always need to drop down 935 * to retry code. Fast path should return in this block. 936 */ 937 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 938 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 939 return; /* no bytes remaining */ 940 } 941 942 /* Kill remainder if no retries. */ 943 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 944 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 945 WARN_ONCE(true, 946 "Bytes remaining after failed, no-retry command"); 947 return; 948 } 949 950 /* 951 * If there had been no error, but we have leftover bytes in the 952 * request just queue the command up again. 953 */ 954 if (likely(result == 0)) 955 scsi_io_completion_reprep(cmd, q); 956 else 957 scsi_io_completion_action(cmd, result); 958 } 959 960 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 961 struct request *rq) 962 { 963 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 964 !op_is_write(req_op(rq)) && 965 sdev->host->hostt->dma_need_drain(rq); 966 } 967 968 /** 969 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists 970 * @cmd: SCSI command data structure to initialize. 971 * 972 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled 973 * for @cmd. 974 * 975 * Returns: 976 * * BLK_STS_OK - on success 977 * * BLK_STS_RESOURCE - if the failure is retryable 978 * * BLK_STS_IOERR - if the failure is fatal 979 */ 980 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd) 981 { 982 struct scsi_device *sdev = cmd->device; 983 struct request *rq = scsi_cmd_to_rq(cmd); 984 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 985 struct scatterlist *last_sg = NULL; 986 blk_status_t ret; 987 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 988 int count; 989 990 if (WARN_ON_ONCE(!nr_segs)) 991 return BLK_STS_IOERR; 992 993 /* 994 * Make sure there is space for the drain. The driver must adjust 995 * max_hw_segments to be prepared for this. 996 */ 997 if (need_drain) 998 nr_segs++; 999 1000 /* 1001 * If sg table allocation fails, requeue request later. 1002 */ 1003 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1004 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1005 return BLK_STS_RESOURCE; 1006 1007 /* 1008 * Next, walk the list, and fill in the addresses and sizes of 1009 * each segment. 1010 */ 1011 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1012 1013 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) { 1014 unsigned int pad_len = 1015 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1016 1017 last_sg->length += pad_len; 1018 cmd->extra_len += pad_len; 1019 } 1020 1021 if (need_drain) { 1022 sg_unmark_end(last_sg); 1023 last_sg = sg_next(last_sg); 1024 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1025 sg_mark_end(last_sg); 1026 1027 cmd->extra_len += sdev->dma_drain_len; 1028 count++; 1029 } 1030 1031 BUG_ON(count > cmd->sdb.table.nents); 1032 cmd->sdb.table.nents = count; 1033 cmd->sdb.length = blk_rq_payload_bytes(rq); 1034 1035 if (blk_integrity_rq(rq)) { 1036 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1037 int ivecs; 1038 1039 if (WARN_ON_ONCE(!prot_sdb)) { 1040 /* 1041 * This can happen if someone (e.g. multipath) 1042 * queues a command to a device on an adapter 1043 * that does not support DIX. 1044 */ 1045 ret = BLK_STS_IOERR; 1046 goto out_free_sgtables; 1047 } 1048 1049 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1050 1051 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1052 prot_sdb->table.sgl, 1053 SCSI_INLINE_PROT_SG_CNT)) { 1054 ret = BLK_STS_RESOURCE; 1055 goto out_free_sgtables; 1056 } 1057 1058 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1059 prot_sdb->table.sgl); 1060 BUG_ON(count > ivecs); 1061 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1062 1063 cmd->prot_sdb = prot_sdb; 1064 cmd->prot_sdb->table.nents = count; 1065 } 1066 1067 return BLK_STS_OK; 1068 out_free_sgtables: 1069 scsi_free_sgtables(cmd); 1070 return ret; 1071 } 1072 EXPORT_SYMBOL(scsi_alloc_sgtables); 1073 1074 /** 1075 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1076 * @rq: Request associated with the SCSI command to be initialized. 1077 * 1078 * This function initializes the members of struct scsi_cmnd that must be 1079 * initialized before request processing starts and that won't be 1080 * reinitialized if a SCSI command is requeued. 1081 * 1082 * Called from inside blk_get_request() for pass-through requests and from 1083 * inside scsi_init_command() for filesystem requests. 1084 */ 1085 static void scsi_initialize_rq(struct request *rq) 1086 { 1087 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1088 struct scsi_request *req = &cmd->req; 1089 1090 memset(req->__cmd, 0, sizeof(req->__cmd)); 1091 req->cmd = req->__cmd; 1092 req->cmd_len = BLK_MAX_CDB; 1093 req->sense_len = 0; 1094 1095 init_rcu_head(&cmd->rcu); 1096 cmd->jiffies_at_alloc = jiffies; 1097 cmd->retries = 0; 1098 } 1099 1100 /* 1101 * Only called when the request isn't completed by SCSI, and not freed by 1102 * SCSI 1103 */ 1104 static void scsi_cleanup_rq(struct request *rq) 1105 { 1106 if (rq->rq_flags & RQF_DONTPREP) { 1107 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1108 rq->rq_flags &= ~RQF_DONTPREP; 1109 } 1110 } 1111 1112 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1113 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1114 { 1115 void *buf = cmd->sense_buffer; 1116 void *prot = cmd->prot_sdb; 1117 struct request *rq = scsi_cmd_to_rq(cmd); 1118 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1119 unsigned long jiffies_at_alloc; 1120 int retries, to_clear; 1121 bool in_flight; 1122 int budget_token = cmd->budget_token; 1123 1124 if (!blk_rq_is_passthrough(rq) && !(flags & SCMD_INITIALIZED)) { 1125 flags |= SCMD_INITIALIZED; 1126 scsi_initialize_rq(rq); 1127 } 1128 1129 jiffies_at_alloc = cmd->jiffies_at_alloc; 1130 retries = cmd->retries; 1131 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1132 /* 1133 * Zero out the cmd, except for the embedded scsi_request. Only clear 1134 * the driver-private command data if the LLD does not supply a 1135 * function to initialize that data. 1136 */ 1137 to_clear = sizeof(*cmd) - sizeof(cmd->req); 1138 if (!dev->host->hostt->init_cmd_priv) 1139 to_clear += dev->host->hostt->cmd_size; 1140 memset((char *)cmd + sizeof(cmd->req), 0, to_clear); 1141 1142 cmd->device = dev; 1143 cmd->sense_buffer = buf; 1144 cmd->prot_sdb = prot; 1145 cmd->flags = flags; 1146 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1147 cmd->jiffies_at_alloc = jiffies_at_alloc; 1148 cmd->retries = retries; 1149 if (in_flight) 1150 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1151 cmd->budget_token = budget_token; 1152 1153 } 1154 1155 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1156 struct request *req) 1157 { 1158 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1159 1160 /* 1161 * Passthrough requests may transfer data, in which case they must 1162 * a bio attached to them. Or they might contain a SCSI command 1163 * that does not transfer data, in which case they may optionally 1164 * submit a request without an attached bio. 1165 */ 1166 if (req->bio) { 1167 blk_status_t ret = scsi_alloc_sgtables(cmd); 1168 if (unlikely(ret != BLK_STS_OK)) 1169 return ret; 1170 } else { 1171 BUG_ON(blk_rq_bytes(req)); 1172 1173 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1174 } 1175 1176 cmd->cmd_len = scsi_req(req)->cmd_len; 1177 if (cmd->cmd_len == 0) 1178 cmd->cmd_len = scsi_command_size(cmd->cmnd); 1179 cmd->cmnd = scsi_req(req)->cmd; 1180 cmd->transfersize = blk_rq_bytes(req); 1181 cmd->allowed = scsi_req(req)->retries; 1182 return BLK_STS_OK; 1183 } 1184 1185 static blk_status_t 1186 scsi_device_state_check(struct scsi_device *sdev, struct request *req) 1187 { 1188 switch (sdev->sdev_state) { 1189 case SDEV_CREATED: 1190 return BLK_STS_OK; 1191 case SDEV_OFFLINE: 1192 case SDEV_TRANSPORT_OFFLINE: 1193 /* 1194 * If the device is offline we refuse to process any 1195 * commands. The device must be brought online 1196 * before trying any recovery commands. 1197 */ 1198 if (!sdev->offline_already) { 1199 sdev->offline_already = true; 1200 sdev_printk(KERN_ERR, sdev, 1201 "rejecting I/O to offline device\n"); 1202 } 1203 return BLK_STS_IOERR; 1204 case SDEV_DEL: 1205 /* 1206 * If the device is fully deleted, we refuse to 1207 * process any commands as well. 1208 */ 1209 sdev_printk(KERN_ERR, sdev, 1210 "rejecting I/O to dead device\n"); 1211 return BLK_STS_IOERR; 1212 case SDEV_BLOCK: 1213 case SDEV_CREATED_BLOCK: 1214 return BLK_STS_RESOURCE; 1215 case SDEV_QUIESCE: 1216 /* 1217 * If the device is blocked we only accept power management 1218 * commands. 1219 */ 1220 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM))) 1221 return BLK_STS_RESOURCE; 1222 return BLK_STS_OK; 1223 default: 1224 /* 1225 * For any other not fully online state we only allow 1226 * power management commands. 1227 */ 1228 if (req && !(req->rq_flags & RQF_PM)) 1229 return BLK_STS_IOERR; 1230 return BLK_STS_OK; 1231 } 1232 } 1233 1234 /* 1235 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token 1236 * and return the token else return -1. 1237 */ 1238 static inline int scsi_dev_queue_ready(struct request_queue *q, 1239 struct scsi_device *sdev) 1240 { 1241 int token; 1242 1243 token = sbitmap_get(&sdev->budget_map); 1244 if (atomic_read(&sdev->device_blocked)) { 1245 if (token < 0) 1246 goto out; 1247 1248 if (scsi_device_busy(sdev) > 1) 1249 goto out_dec; 1250 1251 /* 1252 * unblock after device_blocked iterates to zero 1253 */ 1254 if (atomic_dec_return(&sdev->device_blocked) > 0) 1255 goto out_dec; 1256 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1257 "unblocking device at zero depth\n")); 1258 } 1259 1260 return token; 1261 out_dec: 1262 if (token >= 0) 1263 sbitmap_put(&sdev->budget_map, token); 1264 out: 1265 return -1; 1266 } 1267 1268 /* 1269 * scsi_target_queue_ready: checks if there we can send commands to target 1270 * @sdev: scsi device on starget to check. 1271 */ 1272 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1273 struct scsi_device *sdev) 1274 { 1275 struct scsi_target *starget = scsi_target(sdev); 1276 unsigned int busy; 1277 1278 if (starget->single_lun) { 1279 spin_lock_irq(shost->host_lock); 1280 if (starget->starget_sdev_user && 1281 starget->starget_sdev_user != sdev) { 1282 spin_unlock_irq(shost->host_lock); 1283 return 0; 1284 } 1285 starget->starget_sdev_user = sdev; 1286 spin_unlock_irq(shost->host_lock); 1287 } 1288 1289 if (starget->can_queue <= 0) 1290 return 1; 1291 1292 busy = atomic_inc_return(&starget->target_busy) - 1; 1293 if (atomic_read(&starget->target_blocked) > 0) { 1294 if (busy) 1295 goto starved; 1296 1297 /* 1298 * unblock after target_blocked iterates to zero 1299 */ 1300 if (atomic_dec_return(&starget->target_blocked) > 0) 1301 goto out_dec; 1302 1303 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1304 "unblocking target at zero depth\n")); 1305 } 1306 1307 if (busy >= starget->can_queue) 1308 goto starved; 1309 1310 return 1; 1311 1312 starved: 1313 spin_lock_irq(shost->host_lock); 1314 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1315 spin_unlock_irq(shost->host_lock); 1316 out_dec: 1317 if (starget->can_queue > 0) 1318 atomic_dec(&starget->target_busy); 1319 return 0; 1320 } 1321 1322 /* 1323 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1324 * return 0. We must end up running the queue again whenever 0 is 1325 * returned, else IO can hang. 1326 */ 1327 static inline int scsi_host_queue_ready(struct request_queue *q, 1328 struct Scsi_Host *shost, 1329 struct scsi_device *sdev, 1330 struct scsi_cmnd *cmd) 1331 { 1332 if (scsi_host_in_recovery(shost)) 1333 return 0; 1334 1335 if (atomic_read(&shost->host_blocked) > 0) { 1336 if (scsi_host_busy(shost) > 0) 1337 goto starved; 1338 1339 /* 1340 * unblock after host_blocked iterates to zero 1341 */ 1342 if (atomic_dec_return(&shost->host_blocked) > 0) 1343 goto out_dec; 1344 1345 SCSI_LOG_MLQUEUE(3, 1346 shost_printk(KERN_INFO, shost, 1347 "unblocking host at zero depth\n")); 1348 } 1349 1350 if (shost->host_self_blocked) 1351 goto starved; 1352 1353 /* We're OK to process the command, so we can't be starved */ 1354 if (!list_empty(&sdev->starved_entry)) { 1355 spin_lock_irq(shost->host_lock); 1356 if (!list_empty(&sdev->starved_entry)) 1357 list_del_init(&sdev->starved_entry); 1358 spin_unlock_irq(shost->host_lock); 1359 } 1360 1361 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1362 1363 return 1; 1364 1365 starved: 1366 spin_lock_irq(shost->host_lock); 1367 if (list_empty(&sdev->starved_entry)) 1368 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1369 spin_unlock_irq(shost->host_lock); 1370 out_dec: 1371 scsi_dec_host_busy(shost, cmd); 1372 return 0; 1373 } 1374 1375 /* 1376 * Busy state exporting function for request stacking drivers. 1377 * 1378 * For efficiency, no lock is taken to check the busy state of 1379 * shost/starget/sdev, since the returned value is not guaranteed and 1380 * may be changed after request stacking drivers call the function, 1381 * regardless of taking lock or not. 1382 * 1383 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1384 * needs to return 'not busy'. Otherwise, request stacking drivers 1385 * may hold requests forever. 1386 */ 1387 static bool scsi_mq_lld_busy(struct request_queue *q) 1388 { 1389 struct scsi_device *sdev = q->queuedata; 1390 struct Scsi_Host *shost; 1391 1392 if (blk_queue_dying(q)) 1393 return false; 1394 1395 shost = sdev->host; 1396 1397 /* 1398 * Ignore host/starget busy state. 1399 * Since block layer does not have a concept of fairness across 1400 * multiple queues, congestion of host/starget needs to be handled 1401 * in SCSI layer. 1402 */ 1403 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1404 return true; 1405 1406 return false; 1407 } 1408 1409 /* 1410 * Block layer request completion callback. May be called from interrupt 1411 * context. 1412 */ 1413 static void scsi_complete(struct request *rq) 1414 { 1415 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1416 enum scsi_disposition disposition; 1417 1418 INIT_LIST_HEAD(&cmd->eh_entry); 1419 1420 atomic_inc(&cmd->device->iodone_cnt); 1421 if (cmd->result) 1422 atomic_inc(&cmd->device->ioerr_cnt); 1423 1424 disposition = scsi_decide_disposition(cmd); 1425 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1426 disposition = SUCCESS; 1427 1428 scsi_log_completion(cmd, disposition); 1429 1430 switch (disposition) { 1431 case SUCCESS: 1432 scsi_finish_command(cmd); 1433 break; 1434 case NEEDS_RETRY: 1435 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1436 break; 1437 case ADD_TO_MLQUEUE: 1438 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1439 break; 1440 default: 1441 scsi_eh_scmd_add(cmd); 1442 break; 1443 } 1444 } 1445 1446 /** 1447 * scsi_dispatch_cmd - Dispatch a command to the low-level driver. 1448 * @cmd: command block we are dispatching. 1449 * 1450 * Return: nonzero return request was rejected and device's queue needs to be 1451 * plugged. 1452 */ 1453 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1454 { 1455 struct Scsi_Host *host = cmd->device->host; 1456 int rtn = 0; 1457 1458 atomic_inc(&cmd->device->iorequest_cnt); 1459 1460 /* check if the device is still usable */ 1461 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1462 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1463 * returns an immediate error upwards, and signals 1464 * that the device is no longer present */ 1465 cmd->result = DID_NO_CONNECT << 16; 1466 goto done; 1467 } 1468 1469 /* Check to see if the scsi lld made this device blocked. */ 1470 if (unlikely(scsi_device_blocked(cmd->device))) { 1471 /* 1472 * in blocked state, the command is just put back on 1473 * the device queue. The suspend state has already 1474 * blocked the queue so future requests should not 1475 * occur until the device transitions out of the 1476 * suspend state. 1477 */ 1478 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1479 "queuecommand : device blocked\n")); 1480 return SCSI_MLQUEUE_DEVICE_BUSY; 1481 } 1482 1483 /* Store the LUN value in cmnd, if needed. */ 1484 if (cmd->device->lun_in_cdb) 1485 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1486 (cmd->device->lun << 5 & 0xe0); 1487 1488 scsi_log_send(cmd); 1489 1490 /* 1491 * Before we queue this command, check if the command 1492 * length exceeds what the host adapter can handle. 1493 */ 1494 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1495 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1496 "queuecommand : command too long. " 1497 "cdb_size=%d host->max_cmd_len=%d\n", 1498 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1499 cmd->result = (DID_ABORT << 16); 1500 goto done; 1501 } 1502 1503 if (unlikely(host->shost_state == SHOST_DEL)) { 1504 cmd->result = (DID_NO_CONNECT << 16); 1505 goto done; 1506 1507 } 1508 1509 trace_scsi_dispatch_cmd_start(cmd); 1510 rtn = host->hostt->queuecommand(host, cmd); 1511 if (rtn) { 1512 trace_scsi_dispatch_cmd_error(cmd, rtn); 1513 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1514 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1515 rtn = SCSI_MLQUEUE_HOST_BUSY; 1516 1517 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1518 "queuecommand : request rejected\n")); 1519 } 1520 1521 return rtn; 1522 done: 1523 scsi_done(cmd); 1524 return 0; 1525 } 1526 1527 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1528 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1529 { 1530 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1531 sizeof(struct scatterlist); 1532 } 1533 1534 static blk_status_t scsi_prepare_cmd(struct request *req) 1535 { 1536 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1537 struct scsi_device *sdev = req->q->queuedata; 1538 struct Scsi_Host *shost = sdev->host; 1539 struct scatterlist *sg; 1540 1541 scsi_init_command(sdev, cmd); 1542 1543 cmd->prot_op = SCSI_PROT_NORMAL; 1544 if (blk_rq_bytes(req)) 1545 cmd->sc_data_direction = rq_dma_dir(req); 1546 else 1547 cmd->sc_data_direction = DMA_NONE; 1548 1549 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1550 cmd->sdb.table.sgl = sg; 1551 1552 if (scsi_host_get_prot(shost)) { 1553 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1554 1555 cmd->prot_sdb->table.sgl = 1556 (struct scatterlist *)(cmd->prot_sdb + 1); 1557 } 1558 1559 /* 1560 * Special handling for passthrough commands, which don't go to the ULP 1561 * at all: 1562 */ 1563 if (blk_rq_is_passthrough(req)) 1564 return scsi_setup_scsi_cmnd(sdev, req); 1565 1566 if (sdev->handler && sdev->handler->prep_fn) { 1567 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1568 1569 if (ret != BLK_STS_OK) 1570 return ret; 1571 } 1572 1573 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1574 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1575 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1576 } 1577 1578 void scsi_done(struct scsi_cmnd *cmd) 1579 { 1580 switch (cmd->submitter) { 1581 case SUBMITTED_BY_BLOCK_LAYER: 1582 break; 1583 case SUBMITTED_BY_SCSI_ERROR_HANDLER: 1584 return scsi_eh_done(cmd); 1585 case SUBMITTED_BY_SCSI_RESET_IOCTL: 1586 return; 1587 } 1588 1589 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q))) 1590 return; 1591 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1592 return; 1593 trace_scsi_dispatch_cmd_done(cmd); 1594 blk_mq_complete_request(scsi_cmd_to_rq(cmd)); 1595 } 1596 EXPORT_SYMBOL(scsi_done); 1597 1598 static void scsi_mq_put_budget(struct request_queue *q, int budget_token) 1599 { 1600 struct scsi_device *sdev = q->queuedata; 1601 1602 sbitmap_put(&sdev->budget_map, budget_token); 1603 } 1604 1605 static int scsi_mq_get_budget(struct request_queue *q) 1606 { 1607 struct scsi_device *sdev = q->queuedata; 1608 int token = scsi_dev_queue_ready(q, sdev); 1609 1610 if (token >= 0) 1611 return token; 1612 1613 atomic_inc(&sdev->restarts); 1614 1615 /* 1616 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1617 * .restarts must be incremented before .device_busy is read because the 1618 * code in scsi_run_queue_async() depends on the order of these operations. 1619 */ 1620 smp_mb__after_atomic(); 1621 1622 /* 1623 * If all in-flight requests originated from this LUN are completed 1624 * before reading .device_busy, sdev->device_busy will be observed as 1625 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1626 * soon. Otherwise, completion of one of these requests will observe 1627 * the .restarts flag, and the request queue will be run for handling 1628 * this request, see scsi_end_request(). 1629 */ 1630 if (unlikely(scsi_device_busy(sdev) == 0 && 1631 !scsi_device_blocked(sdev))) 1632 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1633 return -1; 1634 } 1635 1636 static void scsi_mq_set_rq_budget_token(struct request *req, int token) 1637 { 1638 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1639 1640 cmd->budget_token = token; 1641 } 1642 1643 static int scsi_mq_get_rq_budget_token(struct request *req) 1644 { 1645 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1646 1647 return cmd->budget_token; 1648 } 1649 1650 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1651 const struct blk_mq_queue_data *bd) 1652 { 1653 struct request *req = bd->rq; 1654 struct request_queue *q = req->q; 1655 struct scsi_device *sdev = q->queuedata; 1656 struct Scsi_Host *shost = sdev->host; 1657 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1658 blk_status_t ret; 1659 int reason; 1660 1661 WARN_ON_ONCE(cmd->budget_token < 0); 1662 1663 /* 1664 * If the device is not in running state we will reject some or all 1665 * commands. 1666 */ 1667 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1668 ret = scsi_device_state_check(sdev, req); 1669 if (ret != BLK_STS_OK) 1670 goto out_put_budget; 1671 } 1672 1673 ret = BLK_STS_RESOURCE; 1674 if (!scsi_target_queue_ready(shost, sdev)) 1675 goto out_put_budget; 1676 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1677 goto out_dec_target_busy; 1678 1679 if (!(req->rq_flags & RQF_DONTPREP)) { 1680 ret = scsi_prepare_cmd(req); 1681 if (ret != BLK_STS_OK) 1682 goto out_dec_host_busy; 1683 req->rq_flags |= RQF_DONTPREP; 1684 } else { 1685 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1686 } 1687 1688 cmd->flags &= SCMD_PRESERVED_FLAGS; 1689 if (sdev->simple_tags) 1690 cmd->flags |= SCMD_TAGGED; 1691 if (bd->last) 1692 cmd->flags |= SCMD_LAST; 1693 1694 scsi_set_resid(cmd, 0); 1695 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1696 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER; 1697 1698 blk_mq_start_request(req); 1699 reason = scsi_dispatch_cmd(cmd); 1700 if (reason) { 1701 scsi_set_blocked(cmd, reason); 1702 ret = BLK_STS_RESOURCE; 1703 goto out_dec_host_busy; 1704 } 1705 1706 return BLK_STS_OK; 1707 1708 out_dec_host_busy: 1709 scsi_dec_host_busy(shost, cmd); 1710 out_dec_target_busy: 1711 if (scsi_target(sdev)->can_queue > 0) 1712 atomic_dec(&scsi_target(sdev)->target_busy); 1713 out_put_budget: 1714 scsi_mq_put_budget(q, cmd->budget_token); 1715 cmd->budget_token = -1; 1716 switch (ret) { 1717 case BLK_STS_OK: 1718 break; 1719 case BLK_STS_RESOURCE: 1720 case BLK_STS_ZONE_RESOURCE: 1721 if (scsi_device_blocked(sdev)) 1722 ret = BLK_STS_DEV_RESOURCE; 1723 break; 1724 case BLK_STS_AGAIN: 1725 scsi_req(req)->result = DID_BUS_BUSY << 16; 1726 if (req->rq_flags & RQF_DONTPREP) 1727 scsi_mq_uninit_cmd(cmd); 1728 break; 1729 default: 1730 if (unlikely(!scsi_device_online(sdev))) 1731 scsi_req(req)->result = DID_NO_CONNECT << 16; 1732 else 1733 scsi_req(req)->result = DID_ERROR << 16; 1734 /* 1735 * Make sure to release all allocated resources when 1736 * we hit an error, as we will never see this command 1737 * again. 1738 */ 1739 if (req->rq_flags & RQF_DONTPREP) 1740 scsi_mq_uninit_cmd(cmd); 1741 scsi_run_queue_async(sdev); 1742 break; 1743 } 1744 return ret; 1745 } 1746 1747 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1748 bool reserved) 1749 { 1750 if (reserved) 1751 return BLK_EH_RESET_TIMER; 1752 return scsi_times_out(req); 1753 } 1754 1755 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1756 unsigned int hctx_idx, unsigned int numa_node) 1757 { 1758 struct Scsi_Host *shost = set->driver_data; 1759 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1760 struct scatterlist *sg; 1761 int ret = 0; 1762 1763 cmd->sense_buffer = 1764 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node); 1765 if (!cmd->sense_buffer) 1766 return -ENOMEM; 1767 cmd->req.sense = cmd->sense_buffer; 1768 1769 if (scsi_host_get_prot(shost)) { 1770 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1771 shost->hostt->cmd_size; 1772 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1773 } 1774 1775 if (shost->hostt->init_cmd_priv) { 1776 ret = shost->hostt->init_cmd_priv(shost, cmd); 1777 if (ret < 0) 1778 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1779 } 1780 1781 return ret; 1782 } 1783 1784 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1785 unsigned int hctx_idx) 1786 { 1787 struct Scsi_Host *shost = set->driver_data; 1788 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1789 1790 if (shost->hostt->exit_cmd_priv) 1791 shost->hostt->exit_cmd_priv(shost, cmd); 1792 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1793 } 1794 1795 1796 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx) 1797 { 1798 struct Scsi_Host *shost = hctx->driver_data; 1799 1800 if (shost->hostt->mq_poll) 1801 return shost->hostt->mq_poll(shost, hctx->queue_num); 1802 1803 return 0; 1804 } 1805 1806 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1807 unsigned int hctx_idx) 1808 { 1809 struct Scsi_Host *shost = data; 1810 1811 hctx->driver_data = shost; 1812 return 0; 1813 } 1814 1815 static int scsi_map_queues(struct blk_mq_tag_set *set) 1816 { 1817 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1818 1819 if (shost->hostt->map_queues) 1820 return shost->hostt->map_queues(shost); 1821 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1822 } 1823 1824 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1825 { 1826 struct device *dev = shost->dma_dev; 1827 1828 /* 1829 * this limit is imposed by hardware restrictions 1830 */ 1831 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1832 SG_MAX_SEGMENTS)); 1833 1834 if (scsi_host_prot_dma(shost)) { 1835 shost->sg_prot_tablesize = 1836 min_not_zero(shost->sg_prot_tablesize, 1837 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1838 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1839 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1840 } 1841 1842 if (dev->dma_mask) { 1843 shost->max_sectors = min_t(unsigned int, shost->max_sectors, 1844 dma_max_mapping_size(dev) >> SECTOR_SHIFT); 1845 } 1846 blk_queue_max_hw_sectors(q, shost->max_sectors); 1847 blk_queue_segment_boundary(q, shost->dma_boundary); 1848 dma_set_seg_boundary(dev, shost->dma_boundary); 1849 1850 blk_queue_max_segment_size(q, shost->max_segment_size); 1851 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1852 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1853 1854 /* 1855 * Set a reasonable default alignment: The larger of 32-byte (dword), 1856 * which is a common minimum for HBAs, and the minimum DMA alignment, 1857 * which is set by the platform. 1858 * 1859 * Devices that require a bigger alignment can increase it later. 1860 */ 1861 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1862 } 1863 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1864 1865 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1866 .get_budget = scsi_mq_get_budget, 1867 .put_budget = scsi_mq_put_budget, 1868 .queue_rq = scsi_queue_rq, 1869 .complete = scsi_complete, 1870 .timeout = scsi_timeout, 1871 #ifdef CONFIG_BLK_DEBUG_FS 1872 .show_rq = scsi_show_rq, 1873 #endif 1874 .init_request = scsi_mq_init_request, 1875 .exit_request = scsi_mq_exit_request, 1876 .initialize_rq_fn = scsi_initialize_rq, 1877 .cleanup_rq = scsi_cleanup_rq, 1878 .busy = scsi_mq_lld_busy, 1879 .map_queues = scsi_map_queues, 1880 .init_hctx = scsi_init_hctx, 1881 .poll = scsi_mq_poll, 1882 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1883 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1884 }; 1885 1886 1887 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1888 { 1889 struct Scsi_Host *shost = hctx->driver_data; 1890 1891 shost->hostt->commit_rqs(shost, hctx->queue_num); 1892 } 1893 1894 static const struct blk_mq_ops scsi_mq_ops = { 1895 .get_budget = scsi_mq_get_budget, 1896 .put_budget = scsi_mq_put_budget, 1897 .queue_rq = scsi_queue_rq, 1898 .commit_rqs = scsi_commit_rqs, 1899 .complete = scsi_complete, 1900 .timeout = scsi_timeout, 1901 #ifdef CONFIG_BLK_DEBUG_FS 1902 .show_rq = scsi_show_rq, 1903 #endif 1904 .init_request = scsi_mq_init_request, 1905 .exit_request = scsi_mq_exit_request, 1906 .initialize_rq_fn = scsi_initialize_rq, 1907 .cleanup_rq = scsi_cleanup_rq, 1908 .busy = scsi_mq_lld_busy, 1909 .map_queues = scsi_map_queues, 1910 .init_hctx = scsi_init_hctx, 1911 .poll = scsi_mq_poll, 1912 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1913 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1914 }; 1915 1916 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1917 { 1918 unsigned int cmd_size, sgl_size; 1919 struct blk_mq_tag_set *tag_set = &shost->tag_set; 1920 1921 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1922 scsi_mq_inline_sgl_size(shost)); 1923 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1924 if (scsi_host_get_prot(shost)) 1925 cmd_size += sizeof(struct scsi_data_buffer) + 1926 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1927 1928 memset(tag_set, 0, sizeof(*tag_set)); 1929 if (shost->hostt->commit_rqs) 1930 tag_set->ops = &scsi_mq_ops; 1931 else 1932 tag_set->ops = &scsi_mq_ops_no_commit; 1933 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 1934 tag_set->nr_maps = shost->nr_maps ? : 1; 1935 tag_set->queue_depth = shost->can_queue; 1936 tag_set->cmd_size = cmd_size; 1937 tag_set->numa_node = NUMA_NO_NODE; 1938 tag_set->flags = BLK_MQ_F_SHOULD_MERGE; 1939 tag_set->flags |= 1940 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1941 tag_set->driver_data = shost; 1942 if (shost->host_tagset) 1943 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1944 1945 return blk_mq_alloc_tag_set(tag_set); 1946 } 1947 1948 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1949 { 1950 blk_mq_free_tag_set(&shost->tag_set); 1951 } 1952 1953 /** 1954 * scsi_device_from_queue - return sdev associated with a request_queue 1955 * @q: The request queue to return the sdev from 1956 * 1957 * Return the sdev associated with a request queue or NULL if the 1958 * request_queue does not reference a SCSI device. 1959 */ 1960 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1961 { 1962 struct scsi_device *sdev = NULL; 1963 1964 if (q->mq_ops == &scsi_mq_ops_no_commit || 1965 q->mq_ops == &scsi_mq_ops) 1966 sdev = q->queuedata; 1967 if (!sdev || !get_device(&sdev->sdev_gendev)) 1968 sdev = NULL; 1969 1970 return sdev; 1971 } 1972 1973 /** 1974 * scsi_block_requests - Utility function used by low-level drivers to prevent 1975 * further commands from being queued to the device. 1976 * @shost: host in question 1977 * 1978 * There is no timer nor any other means by which the requests get unblocked 1979 * other than the low-level driver calling scsi_unblock_requests(). 1980 */ 1981 void scsi_block_requests(struct Scsi_Host *shost) 1982 { 1983 shost->host_self_blocked = 1; 1984 } 1985 EXPORT_SYMBOL(scsi_block_requests); 1986 1987 /** 1988 * scsi_unblock_requests - Utility function used by low-level drivers to allow 1989 * further commands to be queued to the device. 1990 * @shost: host in question 1991 * 1992 * There is no timer nor any other means by which the requests get unblocked 1993 * other than the low-level driver calling scsi_unblock_requests(). This is done 1994 * as an API function so that changes to the internals of the scsi mid-layer 1995 * won't require wholesale changes to drivers that use this feature. 1996 */ 1997 void scsi_unblock_requests(struct Scsi_Host *shost) 1998 { 1999 shost->host_self_blocked = 0; 2000 scsi_run_host_queues(shost); 2001 } 2002 EXPORT_SYMBOL(scsi_unblock_requests); 2003 2004 void scsi_exit_queue(void) 2005 { 2006 kmem_cache_destroy(scsi_sense_cache); 2007 } 2008 2009 /** 2010 * scsi_mode_select - issue a mode select 2011 * @sdev: SCSI device to be queried 2012 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2013 * @sp: Save page bit (0 == don't save, 1 == save) 2014 * @modepage: mode page being requested 2015 * @buffer: request buffer (may not be smaller than eight bytes) 2016 * @len: length of request buffer. 2017 * @timeout: command timeout 2018 * @retries: number of retries before failing 2019 * @data: returns a structure abstracting the mode header data 2020 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2021 * must be SCSI_SENSE_BUFFERSIZE big. 2022 * 2023 * Returns zero if successful; negative error number or scsi 2024 * status on error 2025 * 2026 */ 2027 int 2028 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2029 unsigned char *buffer, int len, int timeout, int retries, 2030 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2031 { 2032 unsigned char cmd[10]; 2033 unsigned char *real_buffer; 2034 int ret; 2035 2036 memset(cmd, 0, sizeof(cmd)); 2037 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2038 2039 /* 2040 * Use MODE SELECT(10) if the device asked for it or if the mode page 2041 * and the mode select header cannot fit within the maximumm 255 bytes 2042 * of the MODE SELECT(6) command. 2043 */ 2044 if (sdev->use_10_for_ms || 2045 len + 4 > 255 || 2046 data->block_descriptor_length > 255) { 2047 if (len > 65535 - 8) 2048 return -EINVAL; 2049 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2050 if (!real_buffer) 2051 return -ENOMEM; 2052 memcpy(real_buffer + 8, buffer, len); 2053 len += 8; 2054 real_buffer[0] = 0; 2055 real_buffer[1] = 0; 2056 real_buffer[2] = data->medium_type; 2057 real_buffer[3] = data->device_specific; 2058 real_buffer[4] = data->longlba ? 0x01 : 0; 2059 real_buffer[5] = 0; 2060 put_unaligned_be16(data->block_descriptor_length, 2061 &real_buffer[6]); 2062 2063 cmd[0] = MODE_SELECT_10; 2064 put_unaligned_be16(len, &cmd[7]); 2065 } else { 2066 if (data->longlba) 2067 return -EINVAL; 2068 2069 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2070 if (!real_buffer) 2071 return -ENOMEM; 2072 memcpy(real_buffer + 4, buffer, len); 2073 len += 4; 2074 real_buffer[0] = 0; 2075 real_buffer[1] = data->medium_type; 2076 real_buffer[2] = data->device_specific; 2077 real_buffer[3] = data->block_descriptor_length; 2078 2079 cmd[0] = MODE_SELECT; 2080 cmd[4] = len; 2081 } 2082 2083 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2084 sshdr, timeout, retries, NULL); 2085 kfree(real_buffer); 2086 return ret; 2087 } 2088 EXPORT_SYMBOL_GPL(scsi_mode_select); 2089 2090 /** 2091 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2092 * @sdev: SCSI device to be queried 2093 * @dbd: set to prevent mode sense from returning block descriptors 2094 * @modepage: mode page being requested 2095 * @buffer: request buffer (may not be smaller than eight bytes) 2096 * @len: length of request buffer. 2097 * @timeout: command timeout 2098 * @retries: number of retries before failing 2099 * @data: returns a structure abstracting the mode header data 2100 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2101 * must be SCSI_SENSE_BUFFERSIZE big. 2102 * 2103 * Returns zero if successful, or a negative error number on failure 2104 */ 2105 int 2106 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2107 unsigned char *buffer, int len, int timeout, int retries, 2108 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2109 { 2110 unsigned char cmd[12]; 2111 int use_10_for_ms; 2112 int header_length; 2113 int result, retry_count = retries; 2114 struct scsi_sense_hdr my_sshdr; 2115 2116 memset(data, 0, sizeof(*data)); 2117 memset(&cmd[0], 0, 12); 2118 2119 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2120 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2121 cmd[2] = modepage; 2122 2123 /* caller might not be interested in sense, but we need it */ 2124 if (!sshdr) 2125 sshdr = &my_sshdr; 2126 2127 retry: 2128 use_10_for_ms = sdev->use_10_for_ms || len > 255; 2129 2130 if (use_10_for_ms) { 2131 if (len < 8 || len > 65535) 2132 return -EINVAL; 2133 2134 cmd[0] = MODE_SENSE_10; 2135 put_unaligned_be16(len, &cmd[7]); 2136 header_length = 8; 2137 } else { 2138 if (len < 4) 2139 return -EINVAL; 2140 2141 cmd[0] = MODE_SENSE; 2142 cmd[4] = len; 2143 header_length = 4; 2144 } 2145 2146 memset(buffer, 0, len); 2147 2148 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2149 sshdr, timeout, retries, NULL); 2150 if (result < 0) 2151 return result; 2152 2153 /* This code looks awful: what it's doing is making sure an 2154 * ILLEGAL REQUEST sense return identifies the actual command 2155 * byte as the problem. MODE_SENSE commands can return 2156 * ILLEGAL REQUEST if the code page isn't supported */ 2157 2158 if (!scsi_status_is_good(result)) { 2159 if (scsi_sense_valid(sshdr)) { 2160 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2161 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2162 /* 2163 * Invalid command operation code: retry using 2164 * MODE SENSE(6) if this was a MODE SENSE(10) 2165 * request, except if the request mode page is 2166 * too large for MODE SENSE single byte 2167 * allocation length field. 2168 */ 2169 if (use_10_for_ms) { 2170 if (len > 255) 2171 return -EIO; 2172 sdev->use_10_for_ms = 0; 2173 goto retry; 2174 } 2175 } 2176 if (scsi_status_is_check_condition(result) && 2177 sshdr->sense_key == UNIT_ATTENTION && 2178 retry_count) { 2179 retry_count--; 2180 goto retry; 2181 } 2182 } 2183 return -EIO; 2184 } 2185 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2186 (modepage == 6 || modepage == 8))) { 2187 /* Initio breakage? */ 2188 header_length = 0; 2189 data->length = 13; 2190 data->medium_type = 0; 2191 data->device_specific = 0; 2192 data->longlba = 0; 2193 data->block_descriptor_length = 0; 2194 } else if (use_10_for_ms) { 2195 data->length = get_unaligned_be16(&buffer[0]) + 2; 2196 data->medium_type = buffer[2]; 2197 data->device_specific = buffer[3]; 2198 data->longlba = buffer[4] & 0x01; 2199 data->block_descriptor_length = get_unaligned_be16(&buffer[6]); 2200 } else { 2201 data->length = buffer[0] + 1; 2202 data->medium_type = buffer[1]; 2203 data->device_specific = buffer[2]; 2204 data->block_descriptor_length = buffer[3]; 2205 } 2206 data->header_length = header_length; 2207 2208 return 0; 2209 } 2210 EXPORT_SYMBOL(scsi_mode_sense); 2211 2212 /** 2213 * scsi_test_unit_ready - test if unit is ready 2214 * @sdev: scsi device to change the state of. 2215 * @timeout: command timeout 2216 * @retries: number of retries before failing 2217 * @sshdr: outpout pointer for decoded sense information. 2218 * 2219 * Returns zero if unsuccessful or an error if TUR failed. For 2220 * removable media, UNIT_ATTENTION sets ->changed flag. 2221 **/ 2222 int 2223 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2224 struct scsi_sense_hdr *sshdr) 2225 { 2226 char cmd[] = { 2227 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2228 }; 2229 int result; 2230 2231 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2232 do { 2233 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2234 timeout, 1, NULL); 2235 if (sdev->removable && scsi_sense_valid(sshdr) && 2236 sshdr->sense_key == UNIT_ATTENTION) 2237 sdev->changed = 1; 2238 } while (scsi_sense_valid(sshdr) && 2239 sshdr->sense_key == UNIT_ATTENTION && --retries); 2240 2241 return result; 2242 } 2243 EXPORT_SYMBOL(scsi_test_unit_ready); 2244 2245 /** 2246 * scsi_device_set_state - Take the given device through the device state model. 2247 * @sdev: scsi device to change the state of. 2248 * @state: state to change to. 2249 * 2250 * Returns zero if successful or an error if the requested 2251 * transition is illegal. 2252 */ 2253 int 2254 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2255 { 2256 enum scsi_device_state oldstate = sdev->sdev_state; 2257 2258 if (state == oldstate) 2259 return 0; 2260 2261 switch (state) { 2262 case SDEV_CREATED: 2263 switch (oldstate) { 2264 case SDEV_CREATED_BLOCK: 2265 break; 2266 default: 2267 goto illegal; 2268 } 2269 break; 2270 2271 case SDEV_RUNNING: 2272 switch (oldstate) { 2273 case SDEV_CREATED: 2274 case SDEV_OFFLINE: 2275 case SDEV_TRANSPORT_OFFLINE: 2276 case SDEV_QUIESCE: 2277 case SDEV_BLOCK: 2278 break; 2279 default: 2280 goto illegal; 2281 } 2282 break; 2283 2284 case SDEV_QUIESCE: 2285 switch (oldstate) { 2286 case SDEV_RUNNING: 2287 case SDEV_OFFLINE: 2288 case SDEV_TRANSPORT_OFFLINE: 2289 break; 2290 default: 2291 goto illegal; 2292 } 2293 break; 2294 2295 case SDEV_OFFLINE: 2296 case SDEV_TRANSPORT_OFFLINE: 2297 switch (oldstate) { 2298 case SDEV_CREATED: 2299 case SDEV_RUNNING: 2300 case SDEV_QUIESCE: 2301 case SDEV_BLOCK: 2302 break; 2303 default: 2304 goto illegal; 2305 } 2306 break; 2307 2308 case SDEV_BLOCK: 2309 switch (oldstate) { 2310 case SDEV_RUNNING: 2311 case SDEV_CREATED_BLOCK: 2312 case SDEV_QUIESCE: 2313 case SDEV_OFFLINE: 2314 break; 2315 default: 2316 goto illegal; 2317 } 2318 break; 2319 2320 case SDEV_CREATED_BLOCK: 2321 switch (oldstate) { 2322 case SDEV_CREATED: 2323 break; 2324 default: 2325 goto illegal; 2326 } 2327 break; 2328 2329 case SDEV_CANCEL: 2330 switch (oldstate) { 2331 case SDEV_CREATED: 2332 case SDEV_RUNNING: 2333 case SDEV_QUIESCE: 2334 case SDEV_OFFLINE: 2335 case SDEV_TRANSPORT_OFFLINE: 2336 break; 2337 default: 2338 goto illegal; 2339 } 2340 break; 2341 2342 case SDEV_DEL: 2343 switch (oldstate) { 2344 case SDEV_CREATED: 2345 case SDEV_RUNNING: 2346 case SDEV_OFFLINE: 2347 case SDEV_TRANSPORT_OFFLINE: 2348 case SDEV_CANCEL: 2349 case SDEV_BLOCK: 2350 case SDEV_CREATED_BLOCK: 2351 break; 2352 default: 2353 goto illegal; 2354 } 2355 break; 2356 2357 } 2358 sdev->offline_already = false; 2359 sdev->sdev_state = state; 2360 return 0; 2361 2362 illegal: 2363 SCSI_LOG_ERROR_RECOVERY(1, 2364 sdev_printk(KERN_ERR, sdev, 2365 "Illegal state transition %s->%s", 2366 scsi_device_state_name(oldstate), 2367 scsi_device_state_name(state)) 2368 ); 2369 return -EINVAL; 2370 } 2371 EXPORT_SYMBOL(scsi_device_set_state); 2372 2373 /** 2374 * scsi_evt_emit - emit a single SCSI device uevent 2375 * @sdev: associated SCSI device 2376 * @evt: event to emit 2377 * 2378 * Send a single uevent (scsi_event) to the associated scsi_device. 2379 */ 2380 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2381 { 2382 int idx = 0; 2383 char *envp[3]; 2384 2385 switch (evt->evt_type) { 2386 case SDEV_EVT_MEDIA_CHANGE: 2387 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2388 break; 2389 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2390 scsi_rescan_device(&sdev->sdev_gendev); 2391 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2392 break; 2393 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2394 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2395 break; 2396 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2397 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2398 break; 2399 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2400 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2401 break; 2402 case SDEV_EVT_LUN_CHANGE_REPORTED: 2403 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2404 break; 2405 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2406 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2407 break; 2408 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2409 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2410 break; 2411 default: 2412 /* do nothing */ 2413 break; 2414 } 2415 2416 envp[idx++] = NULL; 2417 2418 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2419 } 2420 2421 /** 2422 * scsi_evt_thread - send a uevent for each scsi event 2423 * @work: work struct for scsi_device 2424 * 2425 * Dispatch queued events to their associated scsi_device kobjects 2426 * as uevents. 2427 */ 2428 void scsi_evt_thread(struct work_struct *work) 2429 { 2430 struct scsi_device *sdev; 2431 enum scsi_device_event evt_type; 2432 LIST_HEAD(event_list); 2433 2434 sdev = container_of(work, struct scsi_device, event_work); 2435 2436 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2437 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2438 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2439 2440 while (1) { 2441 struct scsi_event *evt; 2442 struct list_head *this, *tmp; 2443 unsigned long flags; 2444 2445 spin_lock_irqsave(&sdev->list_lock, flags); 2446 list_splice_init(&sdev->event_list, &event_list); 2447 spin_unlock_irqrestore(&sdev->list_lock, flags); 2448 2449 if (list_empty(&event_list)) 2450 break; 2451 2452 list_for_each_safe(this, tmp, &event_list) { 2453 evt = list_entry(this, struct scsi_event, node); 2454 list_del(&evt->node); 2455 scsi_evt_emit(sdev, evt); 2456 kfree(evt); 2457 } 2458 } 2459 } 2460 2461 /** 2462 * sdev_evt_send - send asserted event to uevent thread 2463 * @sdev: scsi_device event occurred on 2464 * @evt: event to send 2465 * 2466 * Assert scsi device event asynchronously. 2467 */ 2468 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2469 { 2470 unsigned long flags; 2471 2472 #if 0 2473 /* FIXME: currently this check eliminates all media change events 2474 * for polled devices. Need to update to discriminate between AN 2475 * and polled events */ 2476 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2477 kfree(evt); 2478 return; 2479 } 2480 #endif 2481 2482 spin_lock_irqsave(&sdev->list_lock, flags); 2483 list_add_tail(&evt->node, &sdev->event_list); 2484 schedule_work(&sdev->event_work); 2485 spin_unlock_irqrestore(&sdev->list_lock, flags); 2486 } 2487 EXPORT_SYMBOL_GPL(sdev_evt_send); 2488 2489 /** 2490 * sdev_evt_alloc - allocate a new scsi event 2491 * @evt_type: type of event to allocate 2492 * @gfpflags: GFP flags for allocation 2493 * 2494 * Allocates and returns a new scsi_event. 2495 */ 2496 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2497 gfp_t gfpflags) 2498 { 2499 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2500 if (!evt) 2501 return NULL; 2502 2503 evt->evt_type = evt_type; 2504 INIT_LIST_HEAD(&evt->node); 2505 2506 /* evt_type-specific initialization, if any */ 2507 switch (evt_type) { 2508 case SDEV_EVT_MEDIA_CHANGE: 2509 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2510 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2511 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2512 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2513 case SDEV_EVT_LUN_CHANGE_REPORTED: 2514 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2515 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2516 default: 2517 /* do nothing */ 2518 break; 2519 } 2520 2521 return evt; 2522 } 2523 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2524 2525 /** 2526 * sdev_evt_send_simple - send asserted event to uevent thread 2527 * @sdev: scsi_device event occurred on 2528 * @evt_type: type of event to send 2529 * @gfpflags: GFP flags for allocation 2530 * 2531 * Assert scsi device event asynchronously, given an event type. 2532 */ 2533 void sdev_evt_send_simple(struct scsi_device *sdev, 2534 enum scsi_device_event evt_type, gfp_t gfpflags) 2535 { 2536 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2537 if (!evt) { 2538 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2539 evt_type); 2540 return; 2541 } 2542 2543 sdev_evt_send(sdev, evt); 2544 } 2545 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2546 2547 /** 2548 * scsi_device_quiesce - Block all commands except power management. 2549 * @sdev: scsi device to quiesce. 2550 * 2551 * This works by trying to transition to the SDEV_QUIESCE state 2552 * (which must be a legal transition). When the device is in this 2553 * state, only power management requests will be accepted, all others will 2554 * be deferred. 2555 * 2556 * Must be called with user context, may sleep. 2557 * 2558 * Returns zero if unsuccessful or an error if not. 2559 */ 2560 int 2561 scsi_device_quiesce(struct scsi_device *sdev) 2562 { 2563 struct request_queue *q = sdev->request_queue; 2564 int err; 2565 2566 /* 2567 * It is allowed to call scsi_device_quiesce() multiple times from 2568 * the same context but concurrent scsi_device_quiesce() calls are 2569 * not allowed. 2570 */ 2571 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2572 2573 if (sdev->quiesced_by == current) 2574 return 0; 2575 2576 blk_set_pm_only(q); 2577 2578 blk_mq_freeze_queue(q); 2579 /* 2580 * Ensure that the effect of blk_set_pm_only() will be visible 2581 * for percpu_ref_tryget() callers that occur after the queue 2582 * unfreeze even if the queue was already frozen before this function 2583 * was called. See also https://lwn.net/Articles/573497/. 2584 */ 2585 synchronize_rcu(); 2586 blk_mq_unfreeze_queue(q); 2587 2588 mutex_lock(&sdev->state_mutex); 2589 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2590 if (err == 0) 2591 sdev->quiesced_by = current; 2592 else 2593 blk_clear_pm_only(q); 2594 mutex_unlock(&sdev->state_mutex); 2595 2596 return err; 2597 } 2598 EXPORT_SYMBOL(scsi_device_quiesce); 2599 2600 /** 2601 * scsi_device_resume - Restart user issued commands to a quiesced device. 2602 * @sdev: scsi device to resume. 2603 * 2604 * Moves the device from quiesced back to running and restarts the 2605 * queues. 2606 * 2607 * Must be called with user context, may sleep. 2608 */ 2609 void scsi_device_resume(struct scsi_device *sdev) 2610 { 2611 /* check if the device state was mutated prior to resume, and if 2612 * so assume the state is being managed elsewhere (for example 2613 * device deleted during suspend) 2614 */ 2615 mutex_lock(&sdev->state_mutex); 2616 if (sdev->sdev_state == SDEV_QUIESCE) 2617 scsi_device_set_state(sdev, SDEV_RUNNING); 2618 if (sdev->quiesced_by) { 2619 sdev->quiesced_by = NULL; 2620 blk_clear_pm_only(sdev->request_queue); 2621 } 2622 mutex_unlock(&sdev->state_mutex); 2623 } 2624 EXPORT_SYMBOL(scsi_device_resume); 2625 2626 static void 2627 device_quiesce_fn(struct scsi_device *sdev, void *data) 2628 { 2629 scsi_device_quiesce(sdev); 2630 } 2631 2632 void 2633 scsi_target_quiesce(struct scsi_target *starget) 2634 { 2635 starget_for_each_device(starget, NULL, device_quiesce_fn); 2636 } 2637 EXPORT_SYMBOL(scsi_target_quiesce); 2638 2639 static void 2640 device_resume_fn(struct scsi_device *sdev, void *data) 2641 { 2642 scsi_device_resume(sdev); 2643 } 2644 2645 void 2646 scsi_target_resume(struct scsi_target *starget) 2647 { 2648 starget_for_each_device(starget, NULL, device_resume_fn); 2649 } 2650 EXPORT_SYMBOL(scsi_target_resume); 2651 2652 /** 2653 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2654 * @sdev: device to block 2655 * 2656 * Pause SCSI command processing on the specified device. Does not sleep. 2657 * 2658 * Returns zero if successful or a negative error code upon failure. 2659 * 2660 * Notes: 2661 * This routine transitions the device to the SDEV_BLOCK state (which must be 2662 * a legal transition). When the device is in this state, command processing 2663 * is paused until the device leaves the SDEV_BLOCK state. See also 2664 * scsi_internal_device_unblock_nowait(). 2665 */ 2666 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2667 { 2668 struct request_queue *q = sdev->request_queue; 2669 int err = 0; 2670 2671 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2672 if (err) { 2673 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2674 2675 if (err) 2676 return err; 2677 } 2678 2679 /* 2680 * The device has transitioned to SDEV_BLOCK. Stop the 2681 * block layer from calling the midlayer with this device's 2682 * request queue. 2683 */ 2684 blk_mq_quiesce_queue_nowait(q); 2685 return 0; 2686 } 2687 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2688 2689 /** 2690 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2691 * @sdev: device to block 2692 * 2693 * Pause SCSI command processing on the specified device and wait until all 2694 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2695 * 2696 * Returns zero if successful or a negative error code upon failure. 2697 * 2698 * Note: 2699 * This routine transitions the device to the SDEV_BLOCK state (which must be 2700 * a legal transition). When the device is in this state, command processing 2701 * is paused until the device leaves the SDEV_BLOCK state. See also 2702 * scsi_internal_device_unblock(). 2703 */ 2704 static int scsi_internal_device_block(struct scsi_device *sdev) 2705 { 2706 struct request_queue *q = sdev->request_queue; 2707 int err; 2708 2709 mutex_lock(&sdev->state_mutex); 2710 err = scsi_internal_device_block_nowait(sdev); 2711 if (err == 0) 2712 blk_mq_quiesce_queue(q); 2713 mutex_unlock(&sdev->state_mutex); 2714 2715 return err; 2716 } 2717 2718 void scsi_start_queue(struct scsi_device *sdev) 2719 { 2720 struct request_queue *q = sdev->request_queue; 2721 2722 blk_mq_unquiesce_queue(q); 2723 } 2724 2725 /** 2726 * scsi_internal_device_unblock_nowait - resume a device after a block request 2727 * @sdev: device to resume 2728 * @new_state: state to set the device to after unblocking 2729 * 2730 * Restart the device queue for a previously suspended SCSI device. Does not 2731 * sleep. 2732 * 2733 * Returns zero if successful or a negative error code upon failure. 2734 * 2735 * Notes: 2736 * This routine transitions the device to the SDEV_RUNNING state or to one of 2737 * the offline states (which must be a legal transition) allowing the midlayer 2738 * to goose the queue for this device. 2739 */ 2740 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2741 enum scsi_device_state new_state) 2742 { 2743 switch (new_state) { 2744 case SDEV_RUNNING: 2745 case SDEV_TRANSPORT_OFFLINE: 2746 break; 2747 default: 2748 return -EINVAL; 2749 } 2750 2751 /* 2752 * Try to transition the scsi device to SDEV_RUNNING or one of the 2753 * offlined states and goose the device queue if successful. 2754 */ 2755 switch (sdev->sdev_state) { 2756 case SDEV_BLOCK: 2757 case SDEV_TRANSPORT_OFFLINE: 2758 sdev->sdev_state = new_state; 2759 break; 2760 case SDEV_CREATED_BLOCK: 2761 if (new_state == SDEV_TRANSPORT_OFFLINE || 2762 new_state == SDEV_OFFLINE) 2763 sdev->sdev_state = new_state; 2764 else 2765 sdev->sdev_state = SDEV_CREATED; 2766 break; 2767 case SDEV_CANCEL: 2768 case SDEV_OFFLINE: 2769 break; 2770 default: 2771 return -EINVAL; 2772 } 2773 scsi_start_queue(sdev); 2774 2775 return 0; 2776 } 2777 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2778 2779 /** 2780 * scsi_internal_device_unblock - resume a device after a block request 2781 * @sdev: device to resume 2782 * @new_state: state to set the device to after unblocking 2783 * 2784 * Restart the device queue for a previously suspended SCSI device. May sleep. 2785 * 2786 * Returns zero if successful or a negative error code upon failure. 2787 * 2788 * Notes: 2789 * This routine transitions the device to the SDEV_RUNNING state or to one of 2790 * the offline states (which must be a legal transition) allowing the midlayer 2791 * to goose the queue for this device. 2792 */ 2793 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2794 enum scsi_device_state new_state) 2795 { 2796 int ret; 2797 2798 mutex_lock(&sdev->state_mutex); 2799 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2800 mutex_unlock(&sdev->state_mutex); 2801 2802 return ret; 2803 } 2804 2805 static void 2806 device_block(struct scsi_device *sdev, void *data) 2807 { 2808 int ret; 2809 2810 ret = scsi_internal_device_block(sdev); 2811 2812 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n", 2813 dev_name(&sdev->sdev_gendev), ret); 2814 } 2815 2816 static int 2817 target_block(struct device *dev, void *data) 2818 { 2819 if (scsi_is_target_device(dev)) 2820 starget_for_each_device(to_scsi_target(dev), NULL, 2821 device_block); 2822 return 0; 2823 } 2824 2825 void 2826 scsi_target_block(struct device *dev) 2827 { 2828 if (scsi_is_target_device(dev)) 2829 starget_for_each_device(to_scsi_target(dev), NULL, 2830 device_block); 2831 else 2832 device_for_each_child(dev, NULL, target_block); 2833 } 2834 EXPORT_SYMBOL_GPL(scsi_target_block); 2835 2836 static void 2837 device_unblock(struct scsi_device *sdev, void *data) 2838 { 2839 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2840 } 2841 2842 static int 2843 target_unblock(struct device *dev, void *data) 2844 { 2845 if (scsi_is_target_device(dev)) 2846 starget_for_each_device(to_scsi_target(dev), data, 2847 device_unblock); 2848 return 0; 2849 } 2850 2851 void 2852 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2853 { 2854 if (scsi_is_target_device(dev)) 2855 starget_for_each_device(to_scsi_target(dev), &new_state, 2856 device_unblock); 2857 else 2858 device_for_each_child(dev, &new_state, target_unblock); 2859 } 2860 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2861 2862 int 2863 scsi_host_block(struct Scsi_Host *shost) 2864 { 2865 struct scsi_device *sdev; 2866 int ret = 0; 2867 2868 /* 2869 * Call scsi_internal_device_block_nowait so we can avoid 2870 * calling synchronize_rcu() for each LUN. 2871 */ 2872 shost_for_each_device(sdev, shost) { 2873 mutex_lock(&sdev->state_mutex); 2874 ret = scsi_internal_device_block_nowait(sdev); 2875 mutex_unlock(&sdev->state_mutex); 2876 if (ret) { 2877 scsi_device_put(sdev); 2878 break; 2879 } 2880 } 2881 2882 /* 2883 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so 2884 * calling synchronize_rcu() once is enough. 2885 */ 2886 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING); 2887 2888 if (!ret) 2889 synchronize_rcu(); 2890 2891 return ret; 2892 } 2893 EXPORT_SYMBOL_GPL(scsi_host_block); 2894 2895 int 2896 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 2897 { 2898 struct scsi_device *sdev; 2899 int ret = 0; 2900 2901 shost_for_each_device(sdev, shost) { 2902 ret = scsi_internal_device_unblock(sdev, new_state); 2903 if (ret) { 2904 scsi_device_put(sdev); 2905 break; 2906 } 2907 } 2908 return ret; 2909 } 2910 EXPORT_SYMBOL_GPL(scsi_host_unblock); 2911 2912 /** 2913 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2914 * @sgl: scatter-gather list 2915 * @sg_count: number of segments in sg 2916 * @offset: offset in bytes into sg, on return offset into the mapped area 2917 * @len: bytes to map, on return number of bytes mapped 2918 * 2919 * Returns virtual address of the start of the mapped page 2920 */ 2921 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2922 size_t *offset, size_t *len) 2923 { 2924 int i; 2925 size_t sg_len = 0, len_complete = 0; 2926 struct scatterlist *sg; 2927 struct page *page; 2928 2929 WARN_ON(!irqs_disabled()); 2930 2931 for_each_sg(sgl, sg, sg_count, i) { 2932 len_complete = sg_len; /* Complete sg-entries */ 2933 sg_len += sg->length; 2934 if (sg_len > *offset) 2935 break; 2936 } 2937 2938 if (unlikely(i == sg_count)) { 2939 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2940 "elements %d\n", 2941 __func__, sg_len, *offset, sg_count); 2942 WARN_ON(1); 2943 return NULL; 2944 } 2945 2946 /* Offset starting from the beginning of first page in this sg-entry */ 2947 *offset = *offset - len_complete + sg->offset; 2948 2949 /* Assumption: contiguous pages can be accessed as "page + i" */ 2950 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2951 *offset &= ~PAGE_MASK; 2952 2953 /* Bytes in this sg-entry from *offset to the end of the page */ 2954 sg_len = PAGE_SIZE - *offset; 2955 if (*len > sg_len) 2956 *len = sg_len; 2957 2958 return kmap_atomic(page); 2959 } 2960 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2961 2962 /** 2963 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2964 * @virt: virtual address to be unmapped 2965 */ 2966 void scsi_kunmap_atomic_sg(void *virt) 2967 { 2968 kunmap_atomic(virt); 2969 } 2970 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2971 2972 void sdev_disable_disk_events(struct scsi_device *sdev) 2973 { 2974 atomic_inc(&sdev->disk_events_disable_depth); 2975 } 2976 EXPORT_SYMBOL(sdev_disable_disk_events); 2977 2978 void sdev_enable_disk_events(struct scsi_device *sdev) 2979 { 2980 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2981 return; 2982 atomic_dec(&sdev->disk_events_disable_depth); 2983 } 2984 EXPORT_SYMBOL(sdev_enable_disk_events); 2985 2986 static unsigned char designator_prio(const unsigned char *d) 2987 { 2988 if (d[1] & 0x30) 2989 /* not associated with LUN */ 2990 return 0; 2991 2992 if (d[3] == 0) 2993 /* invalid length */ 2994 return 0; 2995 2996 /* 2997 * Order of preference for lun descriptor: 2998 * - SCSI name string 2999 * - NAA IEEE Registered Extended 3000 * - EUI-64 based 16-byte 3001 * - EUI-64 based 12-byte 3002 * - NAA IEEE Registered 3003 * - NAA IEEE Extended 3004 * - EUI-64 based 8-byte 3005 * - SCSI name string (truncated) 3006 * - T10 Vendor ID 3007 * as longer descriptors reduce the likelyhood 3008 * of identification clashes. 3009 */ 3010 3011 switch (d[1] & 0xf) { 3012 case 8: 3013 /* SCSI name string, variable-length UTF-8 */ 3014 return 9; 3015 case 3: 3016 switch (d[4] >> 4) { 3017 case 6: 3018 /* NAA registered extended */ 3019 return 8; 3020 case 5: 3021 /* NAA registered */ 3022 return 5; 3023 case 4: 3024 /* NAA extended */ 3025 return 4; 3026 case 3: 3027 /* NAA locally assigned */ 3028 return 1; 3029 default: 3030 break; 3031 } 3032 break; 3033 case 2: 3034 switch (d[3]) { 3035 case 16: 3036 /* EUI64-based, 16 byte */ 3037 return 7; 3038 case 12: 3039 /* EUI64-based, 12 byte */ 3040 return 6; 3041 case 8: 3042 /* EUI64-based, 8 byte */ 3043 return 3; 3044 default: 3045 break; 3046 } 3047 break; 3048 case 1: 3049 /* T10 vendor ID */ 3050 return 1; 3051 default: 3052 break; 3053 } 3054 3055 return 0; 3056 } 3057 3058 /** 3059 * scsi_vpd_lun_id - return a unique device identification 3060 * @sdev: SCSI device 3061 * @id: buffer for the identification 3062 * @id_len: length of the buffer 3063 * 3064 * Copies a unique device identification into @id based 3065 * on the information in the VPD page 0x83 of the device. 3066 * The string will be formatted as a SCSI name string. 3067 * 3068 * Returns the length of the identification or error on failure. 3069 * If the identifier is longer than the supplied buffer the actual 3070 * identifier length is returned and the buffer is not zero-padded. 3071 */ 3072 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3073 { 3074 u8 cur_id_prio = 0; 3075 u8 cur_id_size = 0; 3076 const unsigned char *d, *cur_id_str; 3077 const struct scsi_vpd *vpd_pg83; 3078 int id_size = -EINVAL; 3079 3080 rcu_read_lock(); 3081 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3082 if (!vpd_pg83) { 3083 rcu_read_unlock(); 3084 return -ENXIO; 3085 } 3086 3087 /* The id string must be at least 20 bytes + terminating NULL byte */ 3088 if (id_len < 21) { 3089 rcu_read_unlock(); 3090 return -EINVAL; 3091 } 3092 3093 memset(id, 0, id_len); 3094 for (d = vpd_pg83->data + 4; 3095 d < vpd_pg83->data + vpd_pg83->len; 3096 d += d[3] + 4) { 3097 u8 prio = designator_prio(d); 3098 3099 if (prio == 0 || cur_id_prio > prio) 3100 continue; 3101 3102 switch (d[1] & 0xf) { 3103 case 0x1: 3104 /* T10 Vendor ID */ 3105 if (cur_id_size > d[3]) 3106 break; 3107 cur_id_prio = prio; 3108 cur_id_size = d[3]; 3109 if (cur_id_size + 4 > id_len) 3110 cur_id_size = id_len - 4; 3111 cur_id_str = d + 4; 3112 id_size = snprintf(id, id_len, "t10.%*pE", 3113 cur_id_size, cur_id_str); 3114 break; 3115 case 0x2: 3116 /* EUI-64 */ 3117 cur_id_prio = prio; 3118 cur_id_size = d[3]; 3119 cur_id_str = d + 4; 3120 switch (cur_id_size) { 3121 case 8: 3122 id_size = snprintf(id, id_len, 3123 "eui.%8phN", 3124 cur_id_str); 3125 break; 3126 case 12: 3127 id_size = snprintf(id, id_len, 3128 "eui.%12phN", 3129 cur_id_str); 3130 break; 3131 case 16: 3132 id_size = snprintf(id, id_len, 3133 "eui.%16phN", 3134 cur_id_str); 3135 break; 3136 default: 3137 break; 3138 } 3139 break; 3140 case 0x3: 3141 /* NAA */ 3142 cur_id_prio = prio; 3143 cur_id_size = d[3]; 3144 cur_id_str = d + 4; 3145 switch (cur_id_size) { 3146 case 8: 3147 id_size = snprintf(id, id_len, 3148 "naa.%8phN", 3149 cur_id_str); 3150 break; 3151 case 16: 3152 id_size = snprintf(id, id_len, 3153 "naa.%16phN", 3154 cur_id_str); 3155 break; 3156 default: 3157 break; 3158 } 3159 break; 3160 case 0x8: 3161 /* SCSI name string */ 3162 if (cur_id_size > d[3]) 3163 break; 3164 /* Prefer others for truncated descriptor */ 3165 if (d[3] > id_len) { 3166 prio = 2; 3167 if (cur_id_prio > prio) 3168 break; 3169 } 3170 cur_id_prio = prio; 3171 cur_id_size = id_size = d[3]; 3172 cur_id_str = d + 4; 3173 if (cur_id_size >= id_len) 3174 cur_id_size = id_len - 1; 3175 memcpy(id, cur_id_str, cur_id_size); 3176 break; 3177 default: 3178 break; 3179 } 3180 } 3181 rcu_read_unlock(); 3182 3183 return id_size; 3184 } 3185 EXPORT_SYMBOL(scsi_vpd_lun_id); 3186 3187 /* 3188 * scsi_vpd_tpg_id - return a target port group identifier 3189 * @sdev: SCSI device 3190 * 3191 * Returns the Target Port Group identifier from the information 3192 * froom VPD page 0x83 of the device. 3193 * 3194 * Returns the identifier or error on failure. 3195 */ 3196 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3197 { 3198 const unsigned char *d; 3199 const struct scsi_vpd *vpd_pg83; 3200 int group_id = -EAGAIN, rel_port = -1; 3201 3202 rcu_read_lock(); 3203 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3204 if (!vpd_pg83) { 3205 rcu_read_unlock(); 3206 return -ENXIO; 3207 } 3208 3209 d = vpd_pg83->data + 4; 3210 while (d < vpd_pg83->data + vpd_pg83->len) { 3211 switch (d[1] & 0xf) { 3212 case 0x4: 3213 /* Relative target port */ 3214 rel_port = get_unaligned_be16(&d[6]); 3215 break; 3216 case 0x5: 3217 /* Target port group */ 3218 group_id = get_unaligned_be16(&d[6]); 3219 break; 3220 default: 3221 break; 3222 } 3223 d += d[3] + 4; 3224 } 3225 rcu_read_unlock(); 3226 3227 if (group_id >= 0 && rel_id && rel_port != -1) 3228 *rel_id = rel_port; 3229 3230 return group_id; 3231 } 3232 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3233 3234 /** 3235 * scsi_build_sense - build sense data for a command 3236 * @scmd: scsi command for which the sense should be formatted 3237 * @desc: Sense format (non-zero == descriptor format, 3238 * 0 == fixed format) 3239 * @key: Sense key 3240 * @asc: Additional sense code 3241 * @ascq: Additional sense code qualifier 3242 * 3243 **/ 3244 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq) 3245 { 3246 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq); 3247 scmd->result = SAM_STAT_CHECK_CONDITION; 3248 } 3249 EXPORT_SYMBOL_GPL(scsi_build_sense); 3250