xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 2dd6532e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27 
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37 
38 #include <trace/events/scsi.h>
39 
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43 
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55 
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 	int ret = 0;
64 
65 	mutex_lock(&scsi_sense_cache_mutex);
66 	if (!scsi_sense_cache) {
67 		scsi_sense_cache =
68 			kmem_cache_create_usercopy("scsi_sense_cache",
69 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 				0, SCSI_SENSE_BUFFERSIZE, NULL);
71 		if (!scsi_sense_cache)
72 			ret = -ENOMEM;
73 	}
74 	mutex_unlock(&scsi_sense_cache_mutex);
75 	return ret;
76 }
77 
78 /*
79  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
80  * not change behaviour from the previous unplug mechanism, experimentation
81  * may prove this needs changing.
82  */
83 #define SCSI_QUEUE_DELAY	3
84 
85 static void
86 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
87 {
88 	struct Scsi_Host *host = cmd->device->host;
89 	struct scsi_device *device = cmd->device;
90 	struct scsi_target *starget = scsi_target(device);
91 
92 	/*
93 	 * Set the appropriate busy bit for the device/host.
94 	 *
95 	 * If the host/device isn't busy, assume that something actually
96 	 * completed, and that we should be able to queue a command now.
97 	 *
98 	 * Note that the prior mid-layer assumption that any host could
99 	 * always queue at least one command is now broken.  The mid-layer
100 	 * will implement a user specifiable stall (see
101 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
102 	 * if a command is requeued with no other commands outstanding
103 	 * either for the device or for the host.
104 	 */
105 	switch (reason) {
106 	case SCSI_MLQUEUE_HOST_BUSY:
107 		atomic_set(&host->host_blocked, host->max_host_blocked);
108 		break;
109 	case SCSI_MLQUEUE_DEVICE_BUSY:
110 	case SCSI_MLQUEUE_EH_RETRY:
111 		atomic_set(&device->device_blocked,
112 			   device->max_device_blocked);
113 		break;
114 	case SCSI_MLQUEUE_TARGET_BUSY:
115 		atomic_set(&starget->target_blocked,
116 			   starget->max_target_blocked);
117 		break;
118 	}
119 }
120 
121 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
122 {
123 	struct request *rq = scsi_cmd_to_rq(cmd);
124 
125 	if (rq->rq_flags & RQF_DONTPREP) {
126 		rq->rq_flags &= ~RQF_DONTPREP;
127 		scsi_mq_uninit_cmd(cmd);
128 	} else {
129 		WARN_ON_ONCE(true);
130 	}
131 	blk_mq_requeue_request(rq, true);
132 }
133 
134 /**
135  * __scsi_queue_insert - private queue insertion
136  * @cmd: The SCSI command being requeued
137  * @reason:  The reason for the requeue
138  * @unbusy: Whether the queue should be unbusied
139  *
140  * This is a private queue insertion.  The public interface
141  * scsi_queue_insert() always assumes the queue should be unbusied
142  * because it's always called before the completion.  This function is
143  * for a requeue after completion, which should only occur in this
144  * file.
145  */
146 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
147 {
148 	struct scsi_device *device = cmd->device;
149 
150 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
151 		"Inserting command %p into mlqueue\n", cmd));
152 
153 	scsi_set_blocked(cmd, reason);
154 
155 	/*
156 	 * Decrement the counters, since these commands are no longer
157 	 * active on the host/device.
158 	 */
159 	if (unbusy)
160 		scsi_device_unbusy(device, cmd);
161 
162 	/*
163 	 * Requeue this command.  It will go before all other commands
164 	 * that are already in the queue. Schedule requeue work under
165 	 * lock such that the kblockd_schedule_work() call happens
166 	 * before blk_mq_destroy_queue() finishes.
167 	 */
168 	cmd->result = 0;
169 
170 	blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
171 }
172 
173 /**
174  * scsi_queue_insert - Reinsert a command in the queue.
175  * @cmd:    command that we are adding to queue.
176  * @reason: why we are inserting command to queue.
177  *
178  * We do this for one of two cases. Either the host is busy and it cannot accept
179  * any more commands for the time being, or the device returned QUEUE_FULL and
180  * can accept no more commands.
181  *
182  * Context: This could be called either from an interrupt context or a normal
183  * process context.
184  */
185 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
186 {
187 	__scsi_queue_insert(cmd, reason, true);
188 }
189 
190 
191 /**
192  * __scsi_execute - insert request and wait for the result
193  * @sdev:	scsi device
194  * @cmd:	scsi command
195  * @data_direction: data direction
196  * @buffer:	data buffer
197  * @bufflen:	len of buffer
198  * @sense:	optional sense buffer
199  * @sshdr:	optional decoded sense header
200  * @timeout:	request timeout in HZ
201  * @retries:	number of times to retry request
202  * @flags:	flags for ->cmd_flags
203  * @rq_flags:	flags for ->rq_flags
204  * @resid:	optional residual length
205  *
206  * Returns the scsi_cmnd result field if a command was executed, or a negative
207  * Linux error code if we didn't get that far.
208  */
209 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
210 		 int data_direction, void *buffer, unsigned bufflen,
211 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
212 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
213 		 int *resid)
214 {
215 	struct request *req;
216 	struct scsi_cmnd *scmd;
217 	int ret;
218 
219 	req = scsi_alloc_request(sdev->request_queue,
220 			data_direction == DMA_TO_DEVICE ?
221 			REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
222 			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
223 	if (IS_ERR(req))
224 		return PTR_ERR(req);
225 
226 	if (bufflen) {
227 		ret = blk_rq_map_kern(sdev->request_queue, req,
228 				      buffer, bufflen, GFP_NOIO);
229 		if (ret)
230 			goto out;
231 	}
232 	scmd = blk_mq_rq_to_pdu(req);
233 	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
234 	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
235 	scmd->allowed = retries;
236 	req->timeout = timeout;
237 	req->cmd_flags |= flags;
238 	req->rq_flags |= rq_flags | RQF_QUIET;
239 
240 	/*
241 	 * head injection *required* here otherwise quiesce won't work
242 	 */
243 	blk_execute_rq(req, true);
244 
245 	/*
246 	 * Some devices (USB mass-storage in particular) may transfer
247 	 * garbage data together with a residue indicating that the data
248 	 * is invalid.  Prevent the garbage from being misinterpreted
249 	 * and prevent security leaks by zeroing out the excess data.
250 	 */
251 	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
252 		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
253 
254 	if (resid)
255 		*resid = scmd->resid_len;
256 	if (sense && scmd->sense_len)
257 		memcpy(sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
258 	if (sshdr)
259 		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
260 				     sshdr);
261 	ret = scmd->result;
262  out:
263 	blk_mq_free_request(req);
264 
265 	return ret;
266 }
267 EXPORT_SYMBOL(__scsi_execute);
268 
269 /*
270  * Wake up the error handler if necessary. Avoid as follows that the error
271  * handler is not woken up if host in-flight requests number ==
272  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
273  * with an RCU read lock in this function to ensure that this function in
274  * its entirety either finishes before scsi_eh_scmd_add() increases the
275  * host_failed counter or that it notices the shost state change made by
276  * scsi_eh_scmd_add().
277  */
278 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
279 {
280 	unsigned long flags;
281 
282 	rcu_read_lock();
283 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
284 	if (unlikely(scsi_host_in_recovery(shost))) {
285 		spin_lock_irqsave(shost->host_lock, flags);
286 		if (shost->host_failed || shost->host_eh_scheduled)
287 			scsi_eh_wakeup(shost);
288 		spin_unlock_irqrestore(shost->host_lock, flags);
289 	}
290 	rcu_read_unlock();
291 }
292 
293 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
294 {
295 	struct Scsi_Host *shost = sdev->host;
296 	struct scsi_target *starget = scsi_target(sdev);
297 
298 	scsi_dec_host_busy(shost, cmd);
299 
300 	if (starget->can_queue > 0)
301 		atomic_dec(&starget->target_busy);
302 
303 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
304 	cmd->budget_token = -1;
305 }
306 
307 static void scsi_kick_queue(struct request_queue *q)
308 {
309 	blk_mq_run_hw_queues(q, false);
310 }
311 
312 /*
313  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
314  * and call blk_run_queue for all the scsi_devices on the target -
315  * including current_sdev first.
316  *
317  * Called with *no* scsi locks held.
318  */
319 static void scsi_single_lun_run(struct scsi_device *current_sdev)
320 {
321 	struct Scsi_Host *shost = current_sdev->host;
322 	struct scsi_device *sdev, *tmp;
323 	struct scsi_target *starget = scsi_target(current_sdev);
324 	unsigned long flags;
325 
326 	spin_lock_irqsave(shost->host_lock, flags);
327 	starget->starget_sdev_user = NULL;
328 	spin_unlock_irqrestore(shost->host_lock, flags);
329 
330 	/*
331 	 * Call blk_run_queue for all LUNs on the target, starting with
332 	 * current_sdev. We race with others (to set starget_sdev_user),
333 	 * but in most cases, we will be first. Ideally, each LU on the
334 	 * target would get some limited time or requests on the target.
335 	 */
336 	scsi_kick_queue(current_sdev->request_queue);
337 
338 	spin_lock_irqsave(shost->host_lock, flags);
339 	if (starget->starget_sdev_user)
340 		goto out;
341 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
342 			same_target_siblings) {
343 		if (sdev == current_sdev)
344 			continue;
345 		if (scsi_device_get(sdev))
346 			continue;
347 
348 		spin_unlock_irqrestore(shost->host_lock, flags);
349 		scsi_kick_queue(sdev->request_queue);
350 		spin_lock_irqsave(shost->host_lock, flags);
351 
352 		scsi_device_put(sdev);
353 	}
354  out:
355 	spin_unlock_irqrestore(shost->host_lock, flags);
356 }
357 
358 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
359 {
360 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
361 		return true;
362 	if (atomic_read(&sdev->device_blocked) > 0)
363 		return true;
364 	return false;
365 }
366 
367 static inline bool scsi_target_is_busy(struct scsi_target *starget)
368 {
369 	if (starget->can_queue > 0) {
370 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
371 			return true;
372 		if (atomic_read(&starget->target_blocked) > 0)
373 			return true;
374 	}
375 	return false;
376 }
377 
378 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
379 {
380 	if (atomic_read(&shost->host_blocked) > 0)
381 		return true;
382 	if (shost->host_self_blocked)
383 		return true;
384 	return false;
385 }
386 
387 static void scsi_starved_list_run(struct Scsi_Host *shost)
388 {
389 	LIST_HEAD(starved_list);
390 	struct scsi_device *sdev;
391 	unsigned long flags;
392 
393 	spin_lock_irqsave(shost->host_lock, flags);
394 	list_splice_init(&shost->starved_list, &starved_list);
395 
396 	while (!list_empty(&starved_list)) {
397 		struct request_queue *slq;
398 
399 		/*
400 		 * As long as shost is accepting commands and we have
401 		 * starved queues, call blk_run_queue. scsi_request_fn
402 		 * drops the queue_lock and can add us back to the
403 		 * starved_list.
404 		 *
405 		 * host_lock protects the starved_list and starved_entry.
406 		 * scsi_request_fn must get the host_lock before checking
407 		 * or modifying starved_list or starved_entry.
408 		 */
409 		if (scsi_host_is_busy(shost))
410 			break;
411 
412 		sdev = list_entry(starved_list.next,
413 				  struct scsi_device, starved_entry);
414 		list_del_init(&sdev->starved_entry);
415 		if (scsi_target_is_busy(scsi_target(sdev))) {
416 			list_move_tail(&sdev->starved_entry,
417 				       &shost->starved_list);
418 			continue;
419 		}
420 
421 		/*
422 		 * Once we drop the host lock, a racing scsi_remove_device()
423 		 * call may remove the sdev from the starved list and destroy
424 		 * it and the queue.  Mitigate by taking a reference to the
425 		 * queue and never touching the sdev again after we drop the
426 		 * host lock.  Note: if __scsi_remove_device() invokes
427 		 * blk_mq_destroy_queue() before the queue is run from this
428 		 * function then blk_run_queue() will return immediately since
429 		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
430 		 */
431 		slq = sdev->request_queue;
432 		if (!blk_get_queue(slq))
433 			continue;
434 		spin_unlock_irqrestore(shost->host_lock, flags);
435 
436 		scsi_kick_queue(slq);
437 		blk_put_queue(slq);
438 
439 		spin_lock_irqsave(shost->host_lock, flags);
440 	}
441 	/* put any unprocessed entries back */
442 	list_splice(&starved_list, &shost->starved_list);
443 	spin_unlock_irqrestore(shost->host_lock, flags);
444 }
445 
446 /**
447  * scsi_run_queue - Select a proper request queue to serve next.
448  * @q:  last request's queue
449  *
450  * The previous command was completely finished, start a new one if possible.
451  */
452 static void scsi_run_queue(struct request_queue *q)
453 {
454 	struct scsi_device *sdev = q->queuedata;
455 
456 	if (scsi_target(sdev)->single_lun)
457 		scsi_single_lun_run(sdev);
458 	if (!list_empty(&sdev->host->starved_list))
459 		scsi_starved_list_run(sdev->host);
460 
461 	blk_mq_run_hw_queues(q, false);
462 }
463 
464 void scsi_requeue_run_queue(struct work_struct *work)
465 {
466 	struct scsi_device *sdev;
467 	struct request_queue *q;
468 
469 	sdev = container_of(work, struct scsi_device, requeue_work);
470 	q = sdev->request_queue;
471 	scsi_run_queue(q);
472 }
473 
474 void scsi_run_host_queues(struct Scsi_Host *shost)
475 {
476 	struct scsi_device *sdev;
477 
478 	shost_for_each_device(sdev, shost)
479 		scsi_run_queue(sdev->request_queue);
480 }
481 
482 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
483 {
484 	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
485 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
486 
487 		if (drv->uninit_command)
488 			drv->uninit_command(cmd);
489 	}
490 }
491 
492 void scsi_free_sgtables(struct scsi_cmnd *cmd)
493 {
494 	if (cmd->sdb.table.nents)
495 		sg_free_table_chained(&cmd->sdb.table,
496 				SCSI_INLINE_SG_CNT);
497 	if (scsi_prot_sg_count(cmd))
498 		sg_free_table_chained(&cmd->prot_sdb->table,
499 				SCSI_INLINE_PROT_SG_CNT);
500 }
501 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
502 
503 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
504 {
505 	scsi_free_sgtables(cmd);
506 	scsi_uninit_cmd(cmd);
507 }
508 
509 static void scsi_run_queue_async(struct scsi_device *sdev)
510 {
511 	if (scsi_target(sdev)->single_lun ||
512 	    !list_empty(&sdev->host->starved_list)) {
513 		kblockd_schedule_work(&sdev->requeue_work);
514 	} else {
515 		/*
516 		 * smp_mb() present in sbitmap_queue_clear() or implied in
517 		 * .end_io is for ordering writing .device_busy in
518 		 * scsi_device_unbusy() and reading sdev->restarts.
519 		 */
520 		int old = atomic_read(&sdev->restarts);
521 
522 		/*
523 		 * ->restarts has to be kept as non-zero if new budget
524 		 *  contention occurs.
525 		 *
526 		 *  No need to run queue when either another re-run
527 		 *  queue wins in updating ->restarts or a new budget
528 		 *  contention occurs.
529 		 */
530 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
531 			blk_mq_run_hw_queues(sdev->request_queue, true);
532 	}
533 }
534 
535 /* Returns false when no more bytes to process, true if there are more */
536 static bool scsi_end_request(struct request *req, blk_status_t error,
537 		unsigned int bytes)
538 {
539 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
540 	struct scsi_device *sdev = cmd->device;
541 	struct request_queue *q = sdev->request_queue;
542 
543 	if (blk_update_request(req, error, bytes))
544 		return true;
545 
546 	// XXX:
547 	if (blk_queue_add_random(q))
548 		add_disk_randomness(req->q->disk);
549 
550 	if (!blk_rq_is_passthrough(req)) {
551 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
552 		cmd->flags &= ~SCMD_INITIALIZED;
553 	}
554 
555 	/*
556 	 * Calling rcu_barrier() is not necessary here because the
557 	 * SCSI error handler guarantees that the function called by
558 	 * call_rcu() has been called before scsi_end_request() is
559 	 * called.
560 	 */
561 	destroy_rcu_head(&cmd->rcu);
562 
563 	/*
564 	 * In the MQ case the command gets freed by __blk_mq_end_request,
565 	 * so we have to do all cleanup that depends on it earlier.
566 	 *
567 	 * We also can't kick the queues from irq context, so we
568 	 * will have to defer it to a workqueue.
569 	 */
570 	scsi_mq_uninit_cmd(cmd);
571 
572 	/*
573 	 * queue is still alive, so grab the ref for preventing it
574 	 * from being cleaned up during running queue.
575 	 */
576 	percpu_ref_get(&q->q_usage_counter);
577 
578 	__blk_mq_end_request(req, error);
579 
580 	scsi_run_queue_async(sdev);
581 
582 	percpu_ref_put(&q->q_usage_counter);
583 	return false;
584 }
585 
586 /**
587  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
588  * @cmd:	SCSI command
589  * @result:	scsi error code
590  *
591  * Translate a SCSI result code into a blk_status_t value. May reset the host
592  * byte of @cmd->result.
593  */
594 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
595 {
596 	switch (host_byte(result)) {
597 	case DID_OK:
598 		if (scsi_status_is_good(result))
599 			return BLK_STS_OK;
600 		return BLK_STS_IOERR;
601 	case DID_TRANSPORT_FAILFAST:
602 	case DID_TRANSPORT_MARGINAL:
603 		return BLK_STS_TRANSPORT;
604 	case DID_TARGET_FAILURE:
605 		set_host_byte(cmd, DID_OK);
606 		return BLK_STS_TARGET;
607 	case DID_NEXUS_FAILURE:
608 		set_host_byte(cmd, DID_OK);
609 		return BLK_STS_NEXUS;
610 	case DID_ALLOC_FAILURE:
611 		set_host_byte(cmd, DID_OK);
612 		return BLK_STS_NOSPC;
613 	case DID_MEDIUM_ERROR:
614 		set_host_byte(cmd, DID_OK);
615 		return BLK_STS_MEDIUM;
616 	default:
617 		return BLK_STS_IOERR;
618 	}
619 }
620 
621 /**
622  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
623  * @rq: request to examine
624  *
625  * Description:
626  *     A request could be merge of IOs which require different failure
627  *     handling.  This function determines the number of bytes which
628  *     can be failed from the beginning of the request without
629  *     crossing into area which need to be retried further.
630  *
631  * Return:
632  *     The number of bytes to fail.
633  */
634 static unsigned int scsi_rq_err_bytes(const struct request *rq)
635 {
636 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
637 	unsigned int bytes = 0;
638 	struct bio *bio;
639 
640 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
641 		return blk_rq_bytes(rq);
642 
643 	/*
644 	 * Currently the only 'mixing' which can happen is between
645 	 * different fastfail types.  We can safely fail portions
646 	 * which have all the failfast bits that the first one has -
647 	 * the ones which are at least as eager to fail as the first
648 	 * one.
649 	 */
650 	for (bio = rq->bio; bio; bio = bio->bi_next) {
651 		if ((bio->bi_opf & ff) != ff)
652 			break;
653 		bytes += bio->bi_iter.bi_size;
654 	}
655 
656 	/* this could lead to infinite loop */
657 	BUG_ON(blk_rq_bytes(rq) && !bytes);
658 	return bytes;
659 }
660 
661 /* Helper for scsi_io_completion() when "reprep" action required. */
662 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
663 				      struct request_queue *q)
664 {
665 	/* A new command will be prepared and issued. */
666 	scsi_mq_requeue_cmd(cmd);
667 }
668 
669 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
670 {
671 	struct request *req = scsi_cmd_to_rq(cmd);
672 	unsigned long wait_for;
673 
674 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
675 		return false;
676 
677 	wait_for = (cmd->allowed + 1) * req->timeout;
678 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
679 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
680 			    wait_for/HZ);
681 		return true;
682 	}
683 	return false;
684 }
685 
686 /* Helper for scsi_io_completion() when special action required. */
687 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
688 {
689 	struct request_queue *q = cmd->device->request_queue;
690 	struct request *req = scsi_cmd_to_rq(cmd);
691 	int level = 0;
692 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
693 	      ACTION_DELAYED_RETRY} action;
694 	struct scsi_sense_hdr sshdr;
695 	bool sense_valid;
696 	bool sense_current = true;      /* false implies "deferred sense" */
697 	blk_status_t blk_stat;
698 
699 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
700 	if (sense_valid)
701 		sense_current = !scsi_sense_is_deferred(&sshdr);
702 
703 	blk_stat = scsi_result_to_blk_status(cmd, result);
704 
705 	if (host_byte(result) == DID_RESET) {
706 		/* Third party bus reset or reset for error recovery
707 		 * reasons.  Just retry the command and see what
708 		 * happens.
709 		 */
710 		action = ACTION_RETRY;
711 	} else if (sense_valid && sense_current) {
712 		switch (sshdr.sense_key) {
713 		case UNIT_ATTENTION:
714 			if (cmd->device->removable) {
715 				/* Detected disc change.  Set a bit
716 				 * and quietly refuse further access.
717 				 */
718 				cmd->device->changed = 1;
719 				action = ACTION_FAIL;
720 			} else {
721 				/* Must have been a power glitch, or a
722 				 * bus reset.  Could not have been a
723 				 * media change, so we just retry the
724 				 * command and see what happens.
725 				 */
726 				action = ACTION_RETRY;
727 			}
728 			break;
729 		case ILLEGAL_REQUEST:
730 			/* If we had an ILLEGAL REQUEST returned, then
731 			 * we may have performed an unsupported
732 			 * command.  The only thing this should be
733 			 * would be a ten byte read where only a six
734 			 * byte read was supported.  Also, on a system
735 			 * where READ CAPACITY failed, we may have
736 			 * read past the end of the disk.
737 			 */
738 			if ((cmd->device->use_10_for_rw &&
739 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
740 			    (cmd->cmnd[0] == READ_10 ||
741 			     cmd->cmnd[0] == WRITE_10)) {
742 				/* This will issue a new 6-byte command. */
743 				cmd->device->use_10_for_rw = 0;
744 				action = ACTION_REPREP;
745 			} else if (sshdr.asc == 0x10) /* DIX */ {
746 				action = ACTION_FAIL;
747 				blk_stat = BLK_STS_PROTECTION;
748 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
749 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
750 				action = ACTION_FAIL;
751 				blk_stat = BLK_STS_TARGET;
752 			} else
753 				action = ACTION_FAIL;
754 			break;
755 		case ABORTED_COMMAND:
756 			action = ACTION_FAIL;
757 			if (sshdr.asc == 0x10) /* DIF */
758 				blk_stat = BLK_STS_PROTECTION;
759 			break;
760 		case NOT_READY:
761 			/* If the device is in the process of becoming
762 			 * ready, or has a temporary blockage, retry.
763 			 */
764 			if (sshdr.asc == 0x04) {
765 				switch (sshdr.ascq) {
766 				case 0x01: /* becoming ready */
767 				case 0x04: /* format in progress */
768 				case 0x05: /* rebuild in progress */
769 				case 0x06: /* recalculation in progress */
770 				case 0x07: /* operation in progress */
771 				case 0x08: /* Long write in progress */
772 				case 0x09: /* self test in progress */
773 				case 0x11: /* notify (enable spinup) required */
774 				case 0x14: /* space allocation in progress */
775 				case 0x1a: /* start stop unit in progress */
776 				case 0x1b: /* sanitize in progress */
777 				case 0x1d: /* configuration in progress */
778 				case 0x24: /* depopulation in progress */
779 					action = ACTION_DELAYED_RETRY;
780 					break;
781 				case 0x0a: /* ALUA state transition */
782 					blk_stat = BLK_STS_TRANSPORT;
783 					fallthrough;
784 				default:
785 					action = ACTION_FAIL;
786 					break;
787 				}
788 			} else
789 				action = ACTION_FAIL;
790 			break;
791 		case VOLUME_OVERFLOW:
792 			/* See SSC3rXX or current. */
793 			action = ACTION_FAIL;
794 			break;
795 		case DATA_PROTECT:
796 			action = ACTION_FAIL;
797 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
798 			    (sshdr.asc == 0x55 &&
799 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
800 				/* Insufficient zone resources */
801 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
802 			}
803 			break;
804 		default:
805 			action = ACTION_FAIL;
806 			break;
807 		}
808 	} else
809 		action = ACTION_FAIL;
810 
811 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
812 		action = ACTION_FAIL;
813 
814 	switch (action) {
815 	case ACTION_FAIL:
816 		/* Give up and fail the remainder of the request */
817 		if (!(req->rq_flags & RQF_QUIET)) {
818 			static DEFINE_RATELIMIT_STATE(_rs,
819 					DEFAULT_RATELIMIT_INTERVAL,
820 					DEFAULT_RATELIMIT_BURST);
821 
822 			if (unlikely(scsi_logging_level))
823 				level =
824 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
825 						    SCSI_LOG_MLCOMPLETE_BITS);
826 
827 			/*
828 			 * if logging is enabled the failure will be printed
829 			 * in scsi_log_completion(), so avoid duplicate messages
830 			 */
831 			if (!level && __ratelimit(&_rs)) {
832 				scsi_print_result(cmd, NULL, FAILED);
833 				if (sense_valid)
834 					scsi_print_sense(cmd);
835 				scsi_print_command(cmd);
836 			}
837 		}
838 		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
839 			return;
840 		fallthrough;
841 	case ACTION_REPREP:
842 		scsi_io_completion_reprep(cmd, q);
843 		break;
844 	case ACTION_RETRY:
845 		/* Retry the same command immediately */
846 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
847 		break;
848 	case ACTION_DELAYED_RETRY:
849 		/* Retry the same command after a delay */
850 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
851 		break;
852 	}
853 }
854 
855 /*
856  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
857  * new result that may suppress further error checking. Also modifies
858  * *blk_statp in some cases.
859  */
860 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
861 					blk_status_t *blk_statp)
862 {
863 	bool sense_valid;
864 	bool sense_current = true;	/* false implies "deferred sense" */
865 	struct request *req = scsi_cmd_to_rq(cmd);
866 	struct scsi_sense_hdr sshdr;
867 
868 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
869 	if (sense_valid)
870 		sense_current = !scsi_sense_is_deferred(&sshdr);
871 
872 	if (blk_rq_is_passthrough(req)) {
873 		if (sense_valid) {
874 			/*
875 			 * SG_IO wants current and deferred errors
876 			 */
877 			cmd->sense_len = min(8 + cmd->sense_buffer[7],
878 					     SCSI_SENSE_BUFFERSIZE);
879 		}
880 		if (sense_current)
881 			*blk_statp = scsi_result_to_blk_status(cmd, result);
882 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
883 		/*
884 		 * Flush commands do not transfers any data, and thus cannot use
885 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
886 		 * This sets *blk_statp explicitly for the problem case.
887 		 */
888 		*blk_statp = scsi_result_to_blk_status(cmd, result);
889 	}
890 	/*
891 	 * Recovered errors need reporting, but they're always treated as
892 	 * success, so fiddle the result code here.  For passthrough requests
893 	 * we already took a copy of the original into sreq->result which
894 	 * is what gets returned to the user
895 	 */
896 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
897 		bool do_print = true;
898 		/*
899 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
900 		 * skip print since caller wants ATA registers. Only occurs
901 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
902 		 */
903 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
904 			do_print = false;
905 		else if (req->rq_flags & RQF_QUIET)
906 			do_print = false;
907 		if (do_print)
908 			scsi_print_sense(cmd);
909 		result = 0;
910 		/* for passthrough, *blk_statp may be set */
911 		*blk_statp = BLK_STS_OK;
912 	}
913 	/*
914 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
915 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
916 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
917 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
918 	 * intermediate statuses (both obsolete in SAM-4) as good.
919 	 */
920 	if ((result & 0xff) && scsi_status_is_good(result)) {
921 		result = 0;
922 		*blk_statp = BLK_STS_OK;
923 	}
924 	return result;
925 }
926 
927 /**
928  * scsi_io_completion - Completion processing for SCSI commands.
929  * @cmd:	command that is finished.
930  * @good_bytes:	number of processed bytes.
931  *
932  * We will finish off the specified number of sectors. If we are done, the
933  * command block will be released and the queue function will be goosed. If we
934  * are not done then we have to figure out what to do next:
935  *
936  *   a) We can call scsi_io_completion_reprep().  The request will be
937  *	unprepared and put back on the queue.  Then a new command will
938  *	be created for it.  This should be used if we made forward
939  *	progress, or if we want to switch from READ(10) to READ(6) for
940  *	example.
941  *
942  *   b) We can call scsi_io_completion_action().  The request will be
943  *	put back on the queue and retried using the same command as
944  *	before, possibly after a delay.
945  *
946  *   c) We can call scsi_end_request() with blk_stat other than
947  *	BLK_STS_OK, to fail the remainder of the request.
948  */
949 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
950 {
951 	int result = cmd->result;
952 	struct request_queue *q = cmd->device->request_queue;
953 	struct request *req = scsi_cmd_to_rq(cmd);
954 	blk_status_t blk_stat = BLK_STS_OK;
955 
956 	if (unlikely(result))	/* a nz result may or may not be an error */
957 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
958 
959 	/*
960 	 * Next deal with any sectors which we were able to correctly
961 	 * handle.
962 	 */
963 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
964 		"%u sectors total, %d bytes done.\n",
965 		blk_rq_sectors(req), good_bytes));
966 
967 	/*
968 	 * Failed, zero length commands always need to drop down
969 	 * to retry code. Fast path should return in this block.
970 	 */
971 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
972 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
973 			return; /* no bytes remaining */
974 	}
975 
976 	/* Kill remainder if no retries. */
977 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
978 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
979 			WARN_ONCE(true,
980 			    "Bytes remaining after failed, no-retry command");
981 		return;
982 	}
983 
984 	/*
985 	 * If there had been no error, but we have leftover bytes in the
986 	 * request just queue the command up again.
987 	 */
988 	if (likely(result == 0))
989 		scsi_io_completion_reprep(cmd, q);
990 	else
991 		scsi_io_completion_action(cmd, result);
992 }
993 
994 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
995 		struct request *rq)
996 {
997 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
998 	       !op_is_write(req_op(rq)) &&
999 	       sdev->host->hostt->dma_need_drain(rq);
1000 }
1001 
1002 /**
1003  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1004  * @cmd: SCSI command data structure to initialize.
1005  *
1006  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1007  * for @cmd.
1008  *
1009  * Returns:
1010  * * BLK_STS_OK       - on success
1011  * * BLK_STS_RESOURCE - if the failure is retryable
1012  * * BLK_STS_IOERR    - if the failure is fatal
1013  */
1014 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1015 {
1016 	struct scsi_device *sdev = cmd->device;
1017 	struct request *rq = scsi_cmd_to_rq(cmd);
1018 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1019 	struct scatterlist *last_sg = NULL;
1020 	blk_status_t ret;
1021 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1022 	int count;
1023 
1024 	if (WARN_ON_ONCE(!nr_segs))
1025 		return BLK_STS_IOERR;
1026 
1027 	/*
1028 	 * Make sure there is space for the drain.  The driver must adjust
1029 	 * max_hw_segments to be prepared for this.
1030 	 */
1031 	if (need_drain)
1032 		nr_segs++;
1033 
1034 	/*
1035 	 * If sg table allocation fails, requeue request later.
1036 	 */
1037 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1038 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1039 		return BLK_STS_RESOURCE;
1040 
1041 	/*
1042 	 * Next, walk the list, and fill in the addresses and sizes of
1043 	 * each segment.
1044 	 */
1045 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1046 
1047 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1048 		unsigned int pad_len =
1049 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1050 
1051 		last_sg->length += pad_len;
1052 		cmd->extra_len += pad_len;
1053 	}
1054 
1055 	if (need_drain) {
1056 		sg_unmark_end(last_sg);
1057 		last_sg = sg_next(last_sg);
1058 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1059 		sg_mark_end(last_sg);
1060 
1061 		cmd->extra_len += sdev->dma_drain_len;
1062 		count++;
1063 	}
1064 
1065 	BUG_ON(count > cmd->sdb.table.nents);
1066 	cmd->sdb.table.nents = count;
1067 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1068 
1069 	if (blk_integrity_rq(rq)) {
1070 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1071 		int ivecs;
1072 
1073 		if (WARN_ON_ONCE(!prot_sdb)) {
1074 			/*
1075 			 * This can happen if someone (e.g. multipath)
1076 			 * queues a command to a device on an adapter
1077 			 * that does not support DIX.
1078 			 */
1079 			ret = BLK_STS_IOERR;
1080 			goto out_free_sgtables;
1081 		}
1082 
1083 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1084 
1085 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1086 				prot_sdb->table.sgl,
1087 				SCSI_INLINE_PROT_SG_CNT)) {
1088 			ret = BLK_STS_RESOURCE;
1089 			goto out_free_sgtables;
1090 		}
1091 
1092 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1093 						prot_sdb->table.sgl);
1094 		BUG_ON(count > ivecs);
1095 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1096 
1097 		cmd->prot_sdb = prot_sdb;
1098 		cmd->prot_sdb->table.nents = count;
1099 	}
1100 
1101 	return BLK_STS_OK;
1102 out_free_sgtables:
1103 	scsi_free_sgtables(cmd);
1104 	return ret;
1105 }
1106 EXPORT_SYMBOL(scsi_alloc_sgtables);
1107 
1108 /**
1109  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1110  * @rq: Request associated with the SCSI command to be initialized.
1111  *
1112  * This function initializes the members of struct scsi_cmnd that must be
1113  * initialized before request processing starts and that won't be
1114  * reinitialized if a SCSI command is requeued.
1115  */
1116 static void scsi_initialize_rq(struct request *rq)
1117 {
1118 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1119 
1120 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1121 	cmd->cmd_len = MAX_COMMAND_SIZE;
1122 	cmd->sense_len = 0;
1123 	init_rcu_head(&cmd->rcu);
1124 	cmd->jiffies_at_alloc = jiffies;
1125 	cmd->retries = 0;
1126 }
1127 
1128 struct request *scsi_alloc_request(struct request_queue *q,
1129 		unsigned int op, blk_mq_req_flags_t flags)
1130 {
1131 	struct request *rq;
1132 
1133 	rq = blk_mq_alloc_request(q, op, flags);
1134 	if (!IS_ERR(rq))
1135 		scsi_initialize_rq(rq);
1136 	return rq;
1137 }
1138 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1139 
1140 /*
1141  * Only called when the request isn't completed by SCSI, and not freed by
1142  * SCSI
1143  */
1144 static void scsi_cleanup_rq(struct request *rq)
1145 {
1146 	if (rq->rq_flags & RQF_DONTPREP) {
1147 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1148 		rq->rq_flags &= ~RQF_DONTPREP;
1149 	}
1150 }
1151 
1152 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1153 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1154 {
1155 	struct request *rq = scsi_cmd_to_rq(cmd);
1156 
1157 	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1158 		cmd->flags |= SCMD_INITIALIZED;
1159 		scsi_initialize_rq(rq);
1160 	}
1161 
1162 	cmd->device = dev;
1163 	INIT_LIST_HEAD(&cmd->eh_entry);
1164 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1165 }
1166 
1167 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1168 		struct request *req)
1169 {
1170 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1171 
1172 	/*
1173 	 * Passthrough requests may transfer data, in which case they must
1174 	 * a bio attached to them.  Or they might contain a SCSI command
1175 	 * that does not transfer data, in which case they may optionally
1176 	 * submit a request without an attached bio.
1177 	 */
1178 	if (req->bio) {
1179 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1180 		if (unlikely(ret != BLK_STS_OK))
1181 			return ret;
1182 	} else {
1183 		BUG_ON(blk_rq_bytes(req));
1184 
1185 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1186 	}
1187 
1188 	cmd->transfersize = blk_rq_bytes(req);
1189 	return BLK_STS_OK;
1190 }
1191 
1192 static blk_status_t
1193 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1194 {
1195 	switch (sdev->sdev_state) {
1196 	case SDEV_CREATED:
1197 		return BLK_STS_OK;
1198 	case SDEV_OFFLINE:
1199 	case SDEV_TRANSPORT_OFFLINE:
1200 		/*
1201 		 * If the device is offline we refuse to process any
1202 		 * commands.  The device must be brought online
1203 		 * before trying any recovery commands.
1204 		 */
1205 		if (!sdev->offline_already) {
1206 			sdev->offline_already = true;
1207 			sdev_printk(KERN_ERR, sdev,
1208 				    "rejecting I/O to offline device\n");
1209 		}
1210 		return BLK_STS_IOERR;
1211 	case SDEV_DEL:
1212 		/*
1213 		 * If the device is fully deleted, we refuse to
1214 		 * process any commands as well.
1215 		 */
1216 		sdev_printk(KERN_ERR, sdev,
1217 			    "rejecting I/O to dead device\n");
1218 		return BLK_STS_IOERR;
1219 	case SDEV_BLOCK:
1220 	case SDEV_CREATED_BLOCK:
1221 		return BLK_STS_RESOURCE;
1222 	case SDEV_QUIESCE:
1223 		/*
1224 		 * If the device is blocked we only accept power management
1225 		 * commands.
1226 		 */
1227 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1228 			return BLK_STS_RESOURCE;
1229 		return BLK_STS_OK;
1230 	default:
1231 		/*
1232 		 * For any other not fully online state we only allow
1233 		 * power management commands.
1234 		 */
1235 		if (req && !(req->rq_flags & RQF_PM))
1236 			return BLK_STS_OFFLINE;
1237 		return BLK_STS_OK;
1238 	}
1239 }
1240 
1241 /*
1242  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1243  * and return the token else return -1.
1244  */
1245 static inline int scsi_dev_queue_ready(struct request_queue *q,
1246 				  struct scsi_device *sdev)
1247 {
1248 	int token;
1249 
1250 	token = sbitmap_get(&sdev->budget_map);
1251 	if (atomic_read(&sdev->device_blocked)) {
1252 		if (token < 0)
1253 			goto out;
1254 
1255 		if (scsi_device_busy(sdev) > 1)
1256 			goto out_dec;
1257 
1258 		/*
1259 		 * unblock after device_blocked iterates to zero
1260 		 */
1261 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1262 			goto out_dec;
1263 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1264 				   "unblocking device at zero depth\n"));
1265 	}
1266 
1267 	return token;
1268 out_dec:
1269 	if (token >= 0)
1270 		sbitmap_put(&sdev->budget_map, token);
1271 out:
1272 	return -1;
1273 }
1274 
1275 /*
1276  * scsi_target_queue_ready: checks if there we can send commands to target
1277  * @sdev: scsi device on starget to check.
1278  */
1279 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1280 					   struct scsi_device *sdev)
1281 {
1282 	struct scsi_target *starget = scsi_target(sdev);
1283 	unsigned int busy;
1284 
1285 	if (starget->single_lun) {
1286 		spin_lock_irq(shost->host_lock);
1287 		if (starget->starget_sdev_user &&
1288 		    starget->starget_sdev_user != sdev) {
1289 			spin_unlock_irq(shost->host_lock);
1290 			return 0;
1291 		}
1292 		starget->starget_sdev_user = sdev;
1293 		spin_unlock_irq(shost->host_lock);
1294 	}
1295 
1296 	if (starget->can_queue <= 0)
1297 		return 1;
1298 
1299 	busy = atomic_inc_return(&starget->target_busy) - 1;
1300 	if (atomic_read(&starget->target_blocked) > 0) {
1301 		if (busy)
1302 			goto starved;
1303 
1304 		/*
1305 		 * unblock after target_blocked iterates to zero
1306 		 */
1307 		if (atomic_dec_return(&starget->target_blocked) > 0)
1308 			goto out_dec;
1309 
1310 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1311 				 "unblocking target at zero depth\n"));
1312 	}
1313 
1314 	if (busy >= starget->can_queue)
1315 		goto starved;
1316 
1317 	return 1;
1318 
1319 starved:
1320 	spin_lock_irq(shost->host_lock);
1321 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1322 	spin_unlock_irq(shost->host_lock);
1323 out_dec:
1324 	if (starget->can_queue > 0)
1325 		atomic_dec(&starget->target_busy);
1326 	return 0;
1327 }
1328 
1329 /*
1330  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1331  * return 0. We must end up running the queue again whenever 0 is
1332  * returned, else IO can hang.
1333  */
1334 static inline int scsi_host_queue_ready(struct request_queue *q,
1335 				   struct Scsi_Host *shost,
1336 				   struct scsi_device *sdev,
1337 				   struct scsi_cmnd *cmd)
1338 {
1339 	if (scsi_host_in_recovery(shost))
1340 		return 0;
1341 
1342 	if (atomic_read(&shost->host_blocked) > 0) {
1343 		if (scsi_host_busy(shost) > 0)
1344 			goto starved;
1345 
1346 		/*
1347 		 * unblock after host_blocked iterates to zero
1348 		 */
1349 		if (atomic_dec_return(&shost->host_blocked) > 0)
1350 			goto out_dec;
1351 
1352 		SCSI_LOG_MLQUEUE(3,
1353 			shost_printk(KERN_INFO, shost,
1354 				     "unblocking host at zero depth\n"));
1355 	}
1356 
1357 	if (shost->host_self_blocked)
1358 		goto starved;
1359 
1360 	/* We're OK to process the command, so we can't be starved */
1361 	if (!list_empty(&sdev->starved_entry)) {
1362 		spin_lock_irq(shost->host_lock);
1363 		if (!list_empty(&sdev->starved_entry))
1364 			list_del_init(&sdev->starved_entry);
1365 		spin_unlock_irq(shost->host_lock);
1366 	}
1367 
1368 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1369 
1370 	return 1;
1371 
1372 starved:
1373 	spin_lock_irq(shost->host_lock);
1374 	if (list_empty(&sdev->starved_entry))
1375 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1376 	spin_unlock_irq(shost->host_lock);
1377 out_dec:
1378 	scsi_dec_host_busy(shost, cmd);
1379 	return 0;
1380 }
1381 
1382 /*
1383  * Busy state exporting function for request stacking drivers.
1384  *
1385  * For efficiency, no lock is taken to check the busy state of
1386  * shost/starget/sdev, since the returned value is not guaranteed and
1387  * may be changed after request stacking drivers call the function,
1388  * regardless of taking lock or not.
1389  *
1390  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1391  * needs to return 'not busy'. Otherwise, request stacking drivers
1392  * may hold requests forever.
1393  */
1394 static bool scsi_mq_lld_busy(struct request_queue *q)
1395 {
1396 	struct scsi_device *sdev = q->queuedata;
1397 	struct Scsi_Host *shost;
1398 
1399 	if (blk_queue_dying(q))
1400 		return false;
1401 
1402 	shost = sdev->host;
1403 
1404 	/*
1405 	 * Ignore host/starget busy state.
1406 	 * Since block layer does not have a concept of fairness across
1407 	 * multiple queues, congestion of host/starget needs to be handled
1408 	 * in SCSI layer.
1409 	 */
1410 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1411 		return true;
1412 
1413 	return false;
1414 }
1415 
1416 /*
1417  * Block layer request completion callback. May be called from interrupt
1418  * context.
1419  */
1420 static void scsi_complete(struct request *rq)
1421 {
1422 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1423 	enum scsi_disposition disposition;
1424 
1425 	INIT_LIST_HEAD(&cmd->eh_entry);
1426 
1427 	atomic_inc(&cmd->device->iodone_cnt);
1428 	if (cmd->result)
1429 		atomic_inc(&cmd->device->ioerr_cnt);
1430 
1431 	disposition = scsi_decide_disposition(cmd);
1432 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1433 		disposition = SUCCESS;
1434 
1435 	scsi_log_completion(cmd, disposition);
1436 
1437 	switch (disposition) {
1438 	case SUCCESS:
1439 		scsi_finish_command(cmd);
1440 		break;
1441 	case NEEDS_RETRY:
1442 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1443 		break;
1444 	case ADD_TO_MLQUEUE:
1445 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1446 		break;
1447 	default:
1448 		scsi_eh_scmd_add(cmd);
1449 		break;
1450 	}
1451 }
1452 
1453 /**
1454  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1455  * @cmd: command block we are dispatching.
1456  *
1457  * Return: nonzero return request was rejected and device's queue needs to be
1458  * plugged.
1459  */
1460 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1461 {
1462 	struct Scsi_Host *host = cmd->device->host;
1463 	int rtn = 0;
1464 
1465 	atomic_inc(&cmd->device->iorequest_cnt);
1466 
1467 	/* check if the device is still usable */
1468 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1469 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1470 		 * returns an immediate error upwards, and signals
1471 		 * that the device is no longer present */
1472 		cmd->result = DID_NO_CONNECT << 16;
1473 		goto done;
1474 	}
1475 
1476 	/* Check to see if the scsi lld made this device blocked. */
1477 	if (unlikely(scsi_device_blocked(cmd->device))) {
1478 		/*
1479 		 * in blocked state, the command is just put back on
1480 		 * the device queue.  The suspend state has already
1481 		 * blocked the queue so future requests should not
1482 		 * occur until the device transitions out of the
1483 		 * suspend state.
1484 		 */
1485 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1486 			"queuecommand : device blocked\n"));
1487 		return SCSI_MLQUEUE_DEVICE_BUSY;
1488 	}
1489 
1490 	/* Store the LUN value in cmnd, if needed. */
1491 	if (cmd->device->lun_in_cdb)
1492 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1493 			       (cmd->device->lun << 5 & 0xe0);
1494 
1495 	scsi_log_send(cmd);
1496 
1497 	/*
1498 	 * Before we queue this command, check if the command
1499 	 * length exceeds what the host adapter can handle.
1500 	 */
1501 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1502 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1503 			       "queuecommand : command too long. "
1504 			       "cdb_size=%d host->max_cmd_len=%d\n",
1505 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1506 		cmd->result = (DID_ABORT << 16);
1507 		goto done;
1508 	}
1509 
1510 	if (unlikely(host->shost_state == SHOST_DEL)) {
1511 		cmd->result = (DID_NO_CONNECT << 16);
1512 		goto done;
1513 
1514 	}
1515 
1516 	trace_scsi_dispatch_cmd_start(cmd);
1517 	rtn = host->hostt->queuecommand(host, cmd);
1518 	if (rtn) {
1519 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1520 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1521 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1522 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1523 
1524 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1525 			"queuecommand : request rejected\n"));
1526 	}
1527 
1528 	return rtn;
1529  done:
1530 	scsi_done(cmd);
1531 	return 0;
1532 }
1533 
1534 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1535 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1536 {
1537 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1538 		sizeof(struct scatterlist);
1539 }
1540 
1541 static blk_status_t scsi_prepare_cmd(struct request *req)
1542 {
1543 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1544 	struct scsi_device *sdev = req->q->queuedata;
1545 	struct Scsi_Host *shost = sdev->host;
1546 	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1547 	struct scatterlist *sg;
1548 
1549 	scsi_init_command(sdev, cmd);
1550 
1551 	cmd->eh_eflags = 0;
1552 	cmd->allowed = 0;
1553 	cmd->prot_type = 0;
1554 	cmd->prot_flags = 0;
1555 	cmd->submitter = 0;
1556 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1557 	cmd->underflow = 0;
1558 	cmd->transfersize = 0;
1559 	cmd->host_scribble = NULL;
1560 	cmd->result = 0;
1561 	cmd->extra_len = 0;
1562 	cmd->state = 0;
1563 	if (in_flight)
1564 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1565 
1566 	/*
1567 	 * Only clear the driver-private command data if the LLD does not supply
1568 	 * a function to initialize that data.
1569 	 */
1570 	if (!shost->hostt->init_cmd_priv)
1571 		memset(cmd + 1, 0, shost->hostt->cmd_size);
1572 
1573 	cmd->prot_op = SCSI_PROT_NORMAL;
1574 	if (blk_rq_bytes(req))
1575 		cmd->sc_data_direction = rq_dma_dir(req);
1576 	else
1577 		cmd->sc_data_direction = DMA_NONE;
1578 
1579 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1580 	cmd->sdb.table.sgl = sg;
1581 
1582 	if (scsi_host_get_prot(shost)) {
1583 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1584 
1585 		cmd->prot_sdb->table.sgl =
1586 			(struct scatterlist *)(cmd->prot_sdb + 1);
1587 	}
1588 
1589 	/*
1590 	 * Special handling for passthrough commands, which don't go to the ULP
1591 	 * at all:
1592 	 */
1593 	if (blk_rq_is_passthrough(req))
1594 		return scsi_setup_scsi_cmnd(sdev, req);
1595 
1596 	if (sdev->handler && sdev->handler->prep_fn) {
1597 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1598 
1599 		if (ret != BLK_STS_OK)
1600 			return ret;
1601 	}
1602 
1603 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1604 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1605 }
1606 
1607 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1608 {
1609 	struct request *req = scsi_cmd_to_rq(cmd);
1610 
1611 	switch (cmd->submitter) {
1612 	case SUBMITTED_BY_BLOCK_LAYER:
1613 		break;
1614 	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1615 		return scsi_eh_done(cmd);
1616 	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1617 		return;
1618 	}
1619 
1620 	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1621 		return;
1622 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1623 		return;
1624 	trace_scsi_dispatch_cmd_done(cmd);
1625 
1626 	if (complete_directly)
1627 		blk_mq_complete_request_direct(req, scsi_complete);
1628 	else
1629 		blk_mq_complete_request(req);
1630 }
1631 
1632 void scsi_done(struct scsi_cmnd *cmd)
1633 {
1634 	scsi_done_internal(cmd, false);
1635 }
1636 EXPORT_SYMBOL(scsi_done);
1637 
1638 void scsi_done_direct(struct scsi_cmnd *cmd)
1639 {
1640 	scsi_done_internal(cmd, true);
1641 }
1642 EXPORT_SYMBOL(scsi_done_direct);
1643 
1644 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1645 {
1646 	struct scsi_device *sdev = q->queuedata;
1647 
1648 	sbitmap_put(&sdev->budget_map, budget_token);
1649 }
1650 
1651 static int scsi_mq_get_budget(struct request_queue *q)
1652 {
1653 	struct scsi_device *sdev = q->queuedata;
1654 	int token = scsi_dev_queue_ready(q, sdev);
1655 
1656 	if (token >= 0)
1657 		return token;
1658 
1659 	atomic_inc(&sdev->restarts);
1660 
1661 	/*
1662 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1663 	 * .restarts must be incremented before .device_busy is read because the
1664 	 * code in scsi_run_queue_async() depends on the order of these operations.
1665 	 */
1666 	smp_mb__after_atomic();
1667 
1668 	/*
1669 	 * If all in-flight requests originated from this LUN are completed
1670 	 * before reading .device_busy, sdev->device_busy will be observed as
1671 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1672 	 * soon. Otherwise, completion of one of these requests will observe
1673 	 * the .restarts flag, and the request queue will be run for handling
1674 	 * this request, see scsi_end_request().
1675 	 */
1676 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1677 				!scsi_device_blocked(sdev)))
1678 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1679 	return -1;
1680 }
1681 
1682 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1683 {
1684 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1685 
1686 	cmd->budget_token = token;
1687 }
1688 
1689 static int scsi_mq_get_rq_budget_token(struct request *req)
1690 {
1691 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1692 
1693 	return cmd->budget_token;
1694 }
1695 
1696 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1697 			 const struct blk_mq_queue_data *bd)
1698 {
1699 	struct request *req = bd->rq;
1700 	struct request_queue *q = req->q;
1701 	struct scsi_device *sdev = q->queuedata;
1702 	struct Scsi_Host *shost = sdev->host;
1703 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1704 	blk_status_t ret;
1705 	int reason;
1706 
1707 	WARN_ON_ONCE(cmd->budget_token < 0);
1708 
1709 	/*
1710 	 * If the device is not in running state we will reject some or all
1711 	 * commands.
1712 	 */
1713 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1714 		ret = scsi_device_state_check(sdev, req);
1715 		if (ret != BLK_STS_OK)
1716 			goto out_put_budget;
1717 	}
1718 
1719 	ret = BLK_STS_RESOURCE;
1720 	if (!scsi_target_queue_ready(shost, sdev))
1721 		goto out_put_budget;
1722 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1723 		goto out_dec_target_busy;
1724 
1725 	if (!(req->rq_flags & RQF_DONTPREP)) {
1726 		ret = scsi_prepare_cmd(req);
1727 		if (ret != BLK_STS_OK)
1728 			goto out_dec_host_busy;
1729 		req->rq_flags |= RQF_DONTPREP;
1730 	} else {
1731 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1732 	}
1733 
1734 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1735 	if (sdev->simple_tags)
1736 		cmd->flags |= SCMD_TAGGED;
1737 	if (bd->last)
1738 		cmd->flags |= SCMD_LAST;
1739 
1740 	scsi_set_resid(cmd, 0);
1741 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1742 	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1743 
1744 	blk_mq_start_request(req);
1745 	reason = scsi_dispatch_cmd(cmd);
1746 	if (reason) {
1747 		scsi_set_blocked(cmd, reason);
1748 		ret = BLK_STS_RESOURCE;
1749 		goto out_dec_host_busy;
1750 	}
1751 
1752 	return BLK_STS_OK;
1753 
1754 out_dec_host_busy:
1755 	scsi_dec_host_busy(shost, cmd);
1756 out_dec_target_busy:
1757 	if (scsi_target(sdev)->can_queue > 0)
1758 		atomic_dec(&scsi_target(sdev)->target_busy);
1759 out_put_budget:
1760 	scsi_mq_put_budget(q, cmd->budget_token);
1761 	cmd->budget_token = -1;
1762 	switch (ret) {
1763 	case BLK_STS_OK:
1764 		break;
1765 	case BLK_STS_RESOURCE:
1766 	case BLK_STS_ZONE_RESOURCE:
1767 		if (scsi_device_blocked(sdev))
1768 			ret = BLK_STS_DEV_RESOURCE;
1769 		break;
1770 	case BLK_STS_AGAIN:
1771 		cmd->result = DID_BUS_BUSY << 16;
1772 		if (req->rq_flags & RQF_DONTPREP)
1773 			scsi_mq_uninit_cmd(cmd);
1774 		break;
1775 	default:
1776 		if (unlikely(!scsi_device_online(sdev)))
1777 			cmd->result = DID_NO_CONNECT << 16;
1778 		else
1779 			cmd->result = DID_ERROR << 16;
1780 		/*
1781 		 * Make sure to release all allocated resources when
1782 		 * we hit an error, as we will never see this command
1783 		 * again.
1784 		 */
1785 		if (req->rq_flags & RQF_DONTPREP)
1786 			scsi_mq_uninit_cmd(cmd);
1787 		scsi_run_queue_async(sdev);
1788 		break;
1789 	}
1790 	return ret;
1791 }
1792 
1793 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1794 				unsigned int hctx_idx, unsigned int numa_node)
1795 {
1796 	struct Scsi_Host *shost = set->driver_data;
1797 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1798 	struct scatterlist *sg;
1799 	int ret = 0;
1800 
1801 	cmd->sense_buffer =
1802 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1803 	if (!cmd->sense_buffer)
1804 		return -ENOMEM;
1805 
1806 	if (scsi_host_get_prot(shost)) {
1807 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1808 			shost->hostt->cmd_size;
1809 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1810 	}
1811 
1812 	if (shost->hostt->init_cmd_priv) {
1813 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1814 		if (ret < 0)
1815 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1816 	}
1817 
1818 	return ret;
1819 }
1820 
1821 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1822 				 unsigned int hctx_idx)
1823 {
1824 	struct Scsi_Host *shost = set->driver_data;
1825 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1826 
1827 	if (shost->hostt->exit_cmd_priv)
1828 		shost->hostt->exit_cmd_priv(shost, cmd);
1829 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1830 }
1831 
1832 
1833 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1834 {
1835 	struct Scsi_Host *shost = hctx->driver_data;
1836 
1837 	if (shost->hostt->mq_poll)
1838 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1839 
1840 	return 0;
1841 }
1842 
1843 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1844 			  unsigned int hctx_idx)
1845 {
1846 	struct Scsi_Host *shost = data;
1847 
1848 	hctx->driver_data = shost;
1849 	return 0;
1850 }
1851 
1852 static int scsi_map_queues(struct blk_mq_tag_set *set)
1853 {
1854 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1855 
1856 	if (shost->hostt->map_queues)
1857 		return shost->hostt->map_queues(shost);
1858 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1859 }
1860 
1861 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1862 {
1863 	struct device *dev = shost->dma_dev;
1864 
1865 	/*
1866 	 * this limit is imposed by hardware restrictions
1867 	 */
1868 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1869 					SG_MAX_SEGMENTS));
1870 
1871 	if (scsi_host_prot_dma(shost)) {
1872 		shost->sg_prot_tablesize =
1873 			min_not_zero(shost->sg_prot_tablesize,
1874 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1875 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1876 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1877 	}
1878 
1879 	if (dev->dma_mask) {
1880 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1881 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1882 	}
1883 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1884 	blk_queue_segment_boundary(q, shost->dma_boundary);
1885 	dma_set_seg_boundary(dev, shost->dma_boundary);
1886 
1887 	blk_queue_max_segment_size(q, shost->max_segment_size);
1888 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1889 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1890 
1891 	/*
1892 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1893 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1894 	 * which is set by the platform.
1895 	 *
1896 	 * Devices that require a bigger alignment can increase it later.
1897 	 */
1898 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1899 }
1900 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1901 
1902 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1903 	.get_budget	= scsi_mq_get_budget,
1904 	.put_budget	= scsi_mq_put_budget,
1905 	.queue_rq	= scsi_queue_rq,
1906 	.complete	= scsi_complete,
1907 	.timeout	= scsi_timeout,
1908 #ifdef CONFIG_BLK_DEBUG_FS
1909 	.show_rq	= scsi_show_rq,
1910 #endif
1911 	.init_request	= scsi_mq_init_request,
1912 	.exit_request	= scsi_mq_exit_request,
1913 	.cleanup_rq	= scsi_cleanup_rq,
1914 	.busy		= scsi_mq_lld_busy,
1915 	.map_queues	= scsi_map_queues,
1916 	.init_hctx	= scsi_init_hctx,
1917 	.poll		= scsi_mq_poll,
1918 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1919 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1920 };
1921 
1922 
1923 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1924 {
1925 	struct Scsi_Host *shost = hctx->driver_data;
1926 
1927 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1928 }
1929 
1930 static const struct blk_mq_ops scsi_mq_ops = {
1931 	.get_budget	= scsi_mq_get_budget,
1932 	.put_budget	= scsi_mq_put_budget,
1933 	.queue_rq	= scsi_queue_rq,
1934 	.commit_rqs	= scsi_commit_rqs,
1935 	.complete	= scsi_complete,
1936 	.timeout	= scsi_timeout,
1937 #ifdef CONFIG_BLK_DEBUG_FS
1938 	.show_rq	= scsi_show_rq,
1939 #endif
1940 	.init_request	= scsi_mq_init_request,
1941 	.exit_request	= scsi_mq_exit_request,
1942 	.cleanup_rq	= scsi_cleanup_rq,
1943 	.busy		= scsi_mq_lld_busy,
1944 	.map_queues	= scsi_map_queues,
1945 	.init_hctx	= scsi_init_hctx,
1946 	.poll		= scsi_mq_poll,
1947 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1948 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1949 };
1950 
1951 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1952 {
1953 	unsigned int cmd_size, sgl_size;
1954 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1955 
1956 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1957 				scsi_mq_inline_sgl_size(shost));
1958 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1959 	if (scsi_host_get_prot(shost))
1960 		cmd_size += sizeof(struct scsi_data_buffer) +
1961 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1962 
1963 	memset(tag_set, 0, sizeof(*tag_set));
1964 	if (shost->hostt->commit_rqs)
1965 		tag_set->ops = &scsi_mq_ops;
1966 	else
1967 		tag_set->ops = &scsi_mq_ops_no_commit;
1968 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1969 	tag_set->nr_maps = shost->nr_maps ? : 1;
1970 	tag_set->queue_depth = shost->can_queue;
1971 	tag_set->cmd_size = cmd_size;
1972 	tag_set->numa_node = dev_to_node(shost->dma_dev);
1973 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1974 	tag_set->flags |=
1975 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1976 	tag_set->driver_data = shost;
1977 	if (shost->host_tagset)
1978 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1979 
1980 	return blk_mq_alloc_tag_set(tag_set);
1981 }
1982 
1983 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1984 {
1985 	blk_mq_free_tag_set(&shost->tag_set);
1986 }
1987 
1988 /**
1989  * scsi_device_from_queue - return sdev associated with a request_queue
1990  * @q: The request queue to return the sdev from
1991  *
1992  * Return the sdev associated with a request queue or NULL if the
1993  * request_queue does not reference a SCSI device.
1994  */
1995 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1996 {
1997 	struct scsi_device *sdev = NULL;
1998 
1999 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2000 	    q->mq_ops == &scsi_mq_ops)
2001 		sdev = q->queuedata;
2002 	if (!sdev || !get_device(&sdev->sdev_gendev))
2003 		sdev = NULL;
2004 
2005 	return sdev;
2006 }
2007 /*
2008  * pktcdvd should have been integrated into the SCSI layers, but for historical
2009  * reasons like the old IDE driver it isn't.  This export allows it to safely
2010  * probe if a given device is a SCSI one and only attach to that.
2011  */
2012 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2013 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2014 #endif
2015 
2016 /**
2017  * scsi_block_requests - Utility function used by low-level drivers to prevent
2018  * further commands from being queued to the device.
2019  * @shost:  host in question
2020  *
2021  * There is no timer nor any other means by which the requests get unblocked
2022  * other than the low-level driver calling scsi_unblock_requests().
2023  */
2024 void scsi_block_requests(struct Scsi_Host *shost)
2025 {
2026 	shost->host_self_blocked = 1;
2027 }
2028 EXPORT_SYMBOL(scsi_block_requests);
2029 
2030 /**
2031  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2032  * further commands to be queued to the device.
2033  * @shost:  host in question
2034  *
2035  * There is no timer nor any other means by which the requests get unblocked
2036  * other than the low-level driver calling scsi_unblock_requests(). This is done
2037  * as an API function so that changes to the internals of the scsi mid-layer
2038  * won't require wholesale changes to drivers that use this feature.
2039  */
2040 void scsi_unblock_requests(struct Scsi_Host *shost)
2041 {
2042 	shost->host_self_blocked = 0;
2043 	scsi_run_host_queues(shost);
2044 }
2045 EXPORT_SYMBOL(scsi_unblock_requests);
2046 
2047 void scsi_exit_queue(void)
2048 {
2049 	kmem_cache_destroy(scsi_sense_cache);
2050 }
2051 
2052 /**
2053  *	scsi_mode_select - issue a mode select
2054  *	@sdev:	SCSI device to be queried
2055  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2056  *	@sp:	Save page bit (0 == don't save, 1 == save)
2057  *	@buffer: request buffer (may not be smaller than eight bytes)
2058  *	@len:	length of request buffer.
2059  *	@timeout: command timeout
2060  *	@retries: number of retries before failing
2061  *	@data: returns a structure abstracting the mode header data
2062  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2063  *		must be SCSI_SENSE_BUFFERSIZE big.
2064  *
2065  *	Returns zero if successful; negative error number or scsi
2066  *	status on error
2067  *
2068  */
2069 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2070 		     unsigned char *buffer, int len, int timeout, int retries,
2071 		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2072 {
2073 	unsigned char cmd[10];
2074 	unsigned char *real_buffer;
2075 	int ret;
2076 
2077 	memset(cmd, 0, sizeof(cmd));
2078 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2079 
2080 	/*
2081 	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2082 	 * and the mode select header cannot fit within the maximumm 255 bytes
2083 	 * of the MODE SELECT(6) command.
2084 	 */
2085 	if (sdev->use_10_for_ms ||
2086 	    len + 4 > 255 ||
2087 	    data->block_descriptor_length > 255) {
2088 		if (len > 65535 - 8)
2089 			return -EINVAL;
2090 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2091 		if (!real_buffer)
2092 			return -ENOMEM;
2093 		memcpy(real_buffer + 8, buffer, len);
2094 		len += 8;
2095 		real_buffer[0] = 0;
2096 		real_buffer[1] = 0;
2097 		real_buffer[2] = data->medium_type;
2098 		real_buffer[3] = data->device_specific;
2099 		real_buffer[4] = data->longlba ? 0x01 : 0;
2100 		real_buffer[5] = 0;
2101 		put_unaligned_be16(data->block_descriptor_length,
2102 				   &real_buffer[6]);
2103 
2104 		cmd[0] = MODE_SELECT_10;
2105 		put_unaligned_be16(len, &cmd[7]);
2106 	} else {
2107 		if (data->longlba)
2108 			return -EINVAL;
2109 
2110 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2111 		if (!real_buffer)
2112 			return -ENOMEM;
2113 		memcpy(real_buffer + 4, buffer, len);
2114 		len += 4;
2115 		real_buffer[0] = 0;
2116 		real_buffer[1] = data->medium_type;
2117 		real_buffer[2] = data->device_specific;
2118 		real_buffer[3] = data->block_descriptor_length;
2119 
2120 		cmd[0] = MODE_SELECT;
2121 		cmd[4] = len;
2122 	}
2123 
2124 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2125 			       sshdr, timeout, retries, NULL);
2126 	kfree(real_buffer);
2127 	return ret;
2128 }
2129 EXPORT_SYMBOL_GPL(scsi_mode_select);
2130 
2131 /**
2132  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2133  *	@sdev:	SCSI device to be queried
2134  *	@dbd:	set to prevent mode sense from returning block descriptors
2135  *	@modepage: mode page being requested
2136  *	@buffer: request buffer (may not be smaller than eight bytes)
2137  *	@len:	length of request buffer.
2138  *	@timeout: command timeout
2139  *	@retries: number of retries before failing
2140  *	@data: returns a structure abstracting the mode header data
2141  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2142  *		must be SCSI_SENSE_BUFFERSIZE big.
2143  *
2144  *	Returns zero if successful, or a negative error number on failure
2145  */
2146 int
2147 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2148 		  unsigned char *buffer, int len, int timeout, int retries,
2149 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2150 {
2151 	unsigned char cmd[12];
2152 	int use_10_for_ms;
2153 	int header_length;
2154 	int result, retry_count = retries;
2155 	struct scsi_sense_hdr my_sshdr;
2156 
2157 	memset(data, 0, sizeof(*data));
2158 	memset(&cmd[0], 0, 12);
2159 
2160 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2161 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2162 	cmd[2] = modepage;
2163 
2164 	/* caller might not be interested in sense, but we need it */
2165 	if (!sshdr)
2166 		sshdr = &my_sshdr;
2167 
2168  retry:
2169 	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2170 
2171 	if (use_10_for_ms) {
2172 		if (len < 8 || len > 65535)
2173 			return -EINVAL;
2174 
2175 		cmd[0] = MODE_SENSE_10;
2176 		put_unaligned_be16(len, &cmd[7]);
2177 		header_length = 8;
2178 	} else {
2179 		if (len < 4)
2180 			return -EINVAL;
2181 
2182 		cmd[0] = MODE_SENSE;
2183 		cmd[4] = len;
2184 		header_length = 4;
2185 	}
2186 
2187 	memset(buffer, 0, len);
2188 
2189 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2190 				  sshdr, timeout, retries, NULL);
2191 	if (result < 0)
2192 		return result;
2193 
2194 	/* This code looks awful: what it's doing is making sure an
2195 	 * ILLEGAL REQUEST sense return identifies the actual command
2196 	 * byte as the problem.  MODE_SENSE commands can return
2197 	 * ILLEGAL REQUEST if the code page isn't supported */
2198 
2199 	if (!scsi_status_is_good(result)) {
2200 		if (scsi_sense_valid(sshdr)) {
2201 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2202 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2203 				/*
2204 				 * Invalid command operation code: retry using
2205 				 * MODE SENSE(6) if this was a MODE SENSE(10)
2206 				 * request, except if the request mode page is
2207 				 * too large for MODE SENSE single byte
2208 				 * allocation length field.
2209 				 */
2210 				if (use_10_for_ms) {
2211 					if (len > 255)
2212 						return -EIO;
2213 					sdev->use_10_for_ms = 0;
2214 					goto retry;
2215 				}
2216 			}
2217 			if (scsi_status_is_check_condition(result) &&
2218 			    sshdr->sense_key == UNIT_ATTENTION &&
2219 			    retry_count) {
2220 				retry_count--;
2221 				goto retry;
2222 			}
2223 		}
2224 		return -EIO;
2225 	}
2226 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2227 		     (modepage == 6 || modepage == 8))) {
2228 		/* Initio breakage? */
2229 		header_length = 0;
2230 		data->length = 13;
2231 		data->medium_type = 0;
2232 		data->device_specific = 0;
2233 		data->longlba = 0;
2234 		data->block_descriptor_length = 0;
2235 	} else if (use_10_for_ms) {
2236 		data->length = get_unaligned_be16(&buffer[0]) + 2;
2237 		data->medium_type = buffer[2];
2238 		data->device_specific = buffer[3];
2239 		data->longlba = buffer[4] & 0x01;
2240 		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2241 	} else {
2242 		data->length = buffer[0] + 1;
2243 		data->medium_type = buffer[1];
2244 		data->device_specific = buffer[2];
2245 		data->block_descriptor_length = buffer[3];
2246 	}
2247 	data->header_length = header_length;
2248 
2249 	return 0;
2250 }
2251 EXPORT_SYMBOL(scsi_mode_sense);
2252 
2253 /**
2254  *	scsi_test_unit_ready - test if unit is ready
2255  *	@sdev:	scsi device to change the state of.
2256  *	@timeout: command timeout
2257  *	@retries: number of retries before failing
2258  *	@sshdr: outpout pointer for decoded sense information.
2259  *
2260  *	Returns zero if unsuccessful or an error if TUR failed.  For
2261  *	removable media, UNIT_ATTENTION sets ->changed flag.
2262  **/
2263 int
2264 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2265 		     struct scsi_sense_hdr *sshdr)
2266 {
2267 	char cmd[] = {
2268 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2269 	};
2270 	int result;
2271 
2272 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2273 	do {
2274 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2275 					  timeout, 1, NULL);
2276 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2277 		    sshdr->sense_key == UNIT_ATTENTION)
2278 			sdev->changed = 1;
2279 	} while (scsi_sense_valid(sshdr) &&
2280 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2281 
2282 	return result;
2283 }
2284 EXPORT_SYMBOL(scsi_test_unit_ready);
2285 
2286 /**
2287  *	scsi_device_set_state - Take the given device through the device state model.
2288  *	@sdev:	scsi device to change the state of.
2289  *	@state:	state to change to.
2290  *
2291  *	Returns zero if successful or an error if the requested
2292  *	transition is illegal.
2293  */
2294 int
2295 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2296 {
2297 	enum scsi_device_state oldstate = sdev->sdev_state;
2298 
2299 	if (state == oldstate)
2300 		return 0;
2301 
2302 	switch (state) {
2303 	case SDEV_CREATED:
2304 		switch (oldstate) {
2305 		case SDEV_CREATED_BLOCK:
2306 			break;
2307 		default:
2308 			goto illegal;
2309 		}
2310 		break;
2311 
2312 	case SDEV_RUNNING:
2313 		switch (oldstate) {
2314 		case SDEV_CREATED:
2315 		case SDEV_OFFLINE:
2316 		case SDEV_TRANSPORT_OFFLINE:
2317 		case SDEV_QUIESCE:
2318 		case SDEV_BLOCK:
2319 			break;
2320 		default:
2321 			goto illegal;
2322 		}
2323 		break;
2324 
2325 	case SDEV_QUIESCE:
2326 		switch (oldstate) {
2327 		case SDEV_RUNNING:
2328 		case SDEV_OFFLINE:
2329 		case SDEV_TRANSPORT_OFFLINE:
2330 			break;
2331 		default:
2332 			goto illegal;
2333 		}
2334 		break;
2335 
2336 	case SDEV_OFFLINE:
2337 	case SDEV_TRANSPORT_OFFLINE:
2338 		switch (oldstate) {
2339 		case SDEV_CREATED:
2340 		case SDEV_RUNNING:
2341 		case SDEV_QUIESCE:
2342 		case SDEV_BLOCK:
2343 			break;
2344 		default:
2345 			goto illegal;
2346 		}
2347 		break;
2348 
2349 	case SDEV_BLOCK:
2350 		switch (oldstate) {
2351 		case SDEV_RUNNING:
2352 		case SDEV_CREATED_BLOCK:
2353 		case SDEV_QUIESCE:
2354 		case SDEV_OFFLINE:
2355 			break;
2356 		default:
2357 			goto illegal;
2358 		}
2359 		break;
2360 
2361 	case SDEV_CREATED_BLOCK:
2362 		switch (oldstate) {
2363 		case SDEV_CREATED:
2364 			break;
2365 		default:
2366 			goto illegal;
2367 		}
2368 		break;
2369 
2370 	case SDEV_CANCEL:
2371 		switch (oldstate) {
2372 		case SDEV_CREATED:
2373 		case SDEV_RUNNING:
2374 		case SDEV_QUIESCE:
2375 		case SDEV_OFFLINE:
2376 		case SDEV_TRANSPORT_OFFLINE:
2377 			break;
2378 		default:
2379 			goto illegal;
2380 		}
2381 		break;
2382 
2383 	case SDEV_DEL:
2384 		switch (oldstate) {
2385 		case SDEV_CREATED:
2386 		case SDEV_RUNNING:
2387 		case SDEV_OFFLINE:
2388 		case SDEV_TRANSPORT_OFFLINE:
2389 		case SDEV_CANCEL:
2390 		case SDEV_BLOCK:
2391 		case SDEV_CREATED_BLOCK:
2392 			break;
2393 		default:
2394 			goto illegal;
2395 		}
2396 		break;
2397 
2398 	}
2399 	sdev->offline_already = false;
2400 	sdev->sdev_state = state;
2401 	return 0;
2402 
2403  illegal:
2404 	SCSI_LOG_ERROR_RECOVERY(1,
2405 				sdev_printk(KERN_ERR, sdev,
2406 					    "Illegal state transition %s->%s",
2407 					    scsi_device_state_name(oldstate),
2408 					    scsi_device_state_name(state))
2409 				);
2410 	return -EINVAL;
2411 }
2412 EXPORT_SYMBOL(scsi_device_set_state);
2413 
2414 /**
2415  *	scsi_evt_emit - emit a single SCSI device uevent
2416  *	@sdev: associated SCSI device
2417  *	@evt: event to emit
2418  *
2419  *	Send a single uevent (scsi_event) to the associated scsi_device.
2420  */
2421 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2422 {
2423 	int idx = 0;
2424 	char *envp[3];
2425 
2426 	switch (evt->evt_type) {
2427 	case SDEV_EVT_MEDIA_CHANGE:
2428 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2429 		break;
2430 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2431 		scsi_rescan_device(&sdev->sdev_gendev);
2432 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2433 		break;
2434 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2435 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2436 		break;
2437 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2438 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2439 		break;
2440 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2441 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2442 		break;
2443 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2444 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2445 		break;
2446 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2447 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2448 		break;
2449 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2450 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2451 		break;
2452 	default:
2453 		/* do nothing */
2454 		break;
2455 	}
2456 
2457 	envp[idx++] = NULL;
2458 
2459 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2460 }
2461 
2462 /**
2463  *	scsi_evt_thread - send a uevent for each scsi event
2464  *	@work: work struct for scsi_device
2465  *
2466  *	Dispatch queued events to their associated scsi_device kobjects
2467  *	as uevents.
2468  */
2469 void scsi_evt_thread(struct work_struct *work)
2470 {
2471 	struct scsi_device *sdev;
2472 	enum scsi_device_event evt_type;
2473 	LIST_HEAD(event_list);
2474 
2475 	sdev = container_of(work, struct scsi_device, event_work);
2476 
2477 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2478 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2479 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2480 
2481 	while (1) {
2482 		struct scsi_event *evt;
2483 		struct list_head *this, *tmp;
2484 		unsigned long flags;
2485 
2486 		spin_lock_irqsave(&sdev->list_lock, flags);
2487 		list_splice_init(&sdev->event_list, &event_list);
2488 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2489 
2490 		if (list_empty(&event_list))
2491 			break;
2492 
2493 		list_for_each_safe(this, tmp, &event_list) {
2494 			evt = list_entry(this, struct scsi_event, node);
2495 			list_del(&evt->node);
2496 			scsi_evt_emit(sdev, evt);
2497 			kfree(evt);
2498 		}
2499 	}
2500 }
2501 
2502 /**
2503  * 	sdev_evt_send - send asserted event to uevent thread
2504  *	@sdev: scsi_device event occurred on
2505  *	@evt: event to send
2506  *
2507  *	Assert scsi device event asynchronously.
2508  */
2509 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2510 {
2511 	unsigned long flags;
2512 
2513 #if 0
2514 	/* FIXME: currently this check eliminates all media change events
2515 	 * for polled devices.  Need to update to discriminate between AN
2516 	 * and polled events */
2517 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2518 		kfree(evt);
2519 		return;
2520 	}
2521 #endif
2522 
2523 	spin_lock_irqsave(&sdev->list_lock, flags);
2524 	list_add_tail(&evt->node, &sdev->event_list);
2525 	schedule_work(&sdev->event_work);
2526 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2527 }
2528 EXPORT_SYMBOL_GPL(sdev_evt_send);
2529 
2530 /**
2531  * 	sdev_evt_alloc - allocate a new scsi event
2532  *	@evt_type: type of event to allocate
2533  *	@gfpflags: GFP flags for allocation
2534  *
2535  *	Allocates and returns a new scsi_event.
2536  */
2537 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2538 				  gfp_t gfpflags)
2539 {
2540 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2541 	if (!evt)
2542 		return NULL;
2543 
2544 	evt->evt_type = evt_type;
2545 	INIT_LIST_HEAD(&evt->node);
2546 
2547 	/* evt_type-specific initialization, if any */
2548 	switch (evt_type) {
2549 	case SDEV_EVT_MEDIA_CHANGE:
2550 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2551 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2552 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2553 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2554 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2555 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2556 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2557 	default:
2558 		/* do nothing */
2559 		break;
2560 	}
2561 
2562 	return evt;
2563 }
2564 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2565 
2566 /**
2567  * 	sdev_evt_send_simple - send asserted event to uevent thread
2568  *	@sdev: scsi_device event occurred on
2569  *	@evt_type: type of event to send
2570  *	@gfpflags: GFP flags for allocation
2571  *
2572  *	Assert scsi device event asynchronously, given an event type.
2573  */
2574 void sdev_evt_send_simple(struct scsi_device *sdev,
2575 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2576 {
2577 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2578 	if (!evt) {
2579 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2580 			    evt_type);
2581 		return;
2582 	}
2583 
2584 	sdev_evt_send(sdev, evt);
2585 }
2586 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2587 
2588 /**
2589  *	scsi_device_quiesce - Block all commands except power management.
2590  *	@sdev:	scsi device to quiesce.
2591  *
2592  *	This works by trying to transition to the SDEV_QUIESCE state
2593  *	(which must be a legal transition).  When the device is in this
2594  *	state, only power management requests will be accepted, all others will
2595  *	be deferred.
2596  *
2597  *	Must be called with user context, may sleep.
2598  *
2599  *	Returns zero if unsuccessful or an error if not.
2600  */
2601 int
2602 scsi_device_quiesce(struct scsi_device *sdev)
2603 {
2604 	struct request_queue *q = sdev->request_queue;
2605 	int err;
2606 
2607 	/*
2608 	 * It is allowed to call scsi_device_quiesce() multiple times from
2609 	 * the same context but concurrent scsi_device_quiesce() calls are
2610 	 * not allowed.
2611 	 */
2612 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2613 
2614 	if (sdev->quiesced_by == current)
2615 		return 0;
2616 
2617 	blk_set_pm_only(q);
2618 
2619 	blk_mq_freeze_queue(q);
2620 	/*
2621 	 * Ensure that the effect of blk_set_pm_only() will be visible
2622 	 * for percpu_ref_tryget() callers that occur after the queue
2623 	 * unfreeze even if the queue was already frozen before this function
2624 	 * was called. See also https://lwn.net/Articles/573497/.
2625 	 */
2626 	synchronize_rcu();
2627 	blk_mq_unfreeze_queue(q);
2628 
2629 	mutex_lock(&sdev->state_mutex);
2630 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2631 	if (err == 0)
2632 		sdev->quiesced_by = current;
2633 	else
2634 		blk_clear_pm_only(q);
2635 	mutex_unlock(&sdev->state_mutex);
2636 
2637 	return err;
2638 }
2639 EXPORT_SYMBOL(scsi_device_quiesce);
2640 
2641 /**
2642  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2643  *	@sdev:	scsi device to resume.
2644  *
2645  *	Moves the device from quiesced back to running and restarts the
2646  *	queues.
2647  *
2648  *	Must be called with user context, may sleep.
2649  */
2650 void scsi_device_resume(struct scsi_device *sdev)
2651 {
2652 	/* check if the device state was mutated prior to resume, and if
2653 	 * so assume the state is being managed elsewhere (for example
2654 	 * device deleted during suspend)
2655 	 */
2656 	mutex_lock(&sdev->state_mutex);
2657 	if (sdev->sdev_state == SDEV_QUIESCE)
2658 		scsi_device_set_state(sdev, SDEV_RUNNING);
2659 	if (sdev->quiesced_by) {
2660 		sdev->quiesced_by = NULL;
2661 		blk_clear_pm_only(sdev->request_queue);
2662 	}
2663 	mutex_unlock(&sdev->state_mutex);
2664 }
2665 EXPORT_SYMBOL(scsi_device_resume);
2666 
2667 static void
2668 device_quiesce_fn(struct scsi_device *sdev, void *data)
2669 {
2670 	scsi_device_quiesce(sdev);
2671 }
2672 
2673 void
2674 scsi_target_quiesce(struct scsi_target *starget)
2675 {
2676 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2677 }
2678 EXPORT_SYMBOL(scsi_target_quiesce);
2679 
2680 static void
2681 device_resume_fn(struct scsi_device *sdev, void *data)
2682 {
2683 	scsi_device_resume(sdev);
2684 }
2685 
2686 void
2687 scsi_target_resume(struct scsi_target *starget)
2688 {
2689 	starget_for_each_device(starget, NULL, device_resume_fn);
2690 }
2691 EXPORT_SYMBOL(scsi_target_resume);
2692 
2693 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2694 {
2695 	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2696 		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2697 
2698 	return 0;
2699 }
2700 
2701 void scsi_start_queue(struct scsi_device *sdev)
2702 {
2703 	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2704 		blk_mq_unquiesce_queue(sdev->request_queue);
2705 }
2706 
2707 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
2708 {
2709 	/*
2710 	 * The atomic variable of ->queue_stopped covers that
2711 	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2712 	 *
2713 	 * However, we still need to wait until quiesce is done
2714 	 * in case that queue has been stopped.
2715 	 */
2716 	if (!cmpxchg(&sdev->queue_stopped, 0, 1)) {
2717 		if (nowait)
2718 			blk_mq_quiesce_queue_nowait(sdev->request_queue);
2719 		else
2720 			blk_mq_quiesce_queue(sdev->request_queue);
2721 	} else {
2722 		if (!nowait)
2723 			blk_mq_wait_quiesce_done(sdev->request_queue);
2724 	}
2725 }
2726 
2727 /**
2728  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2729  * @sdev: device to block
2730  *
2731  * Pause SCSI command processing on the specified device. Does not sleep.
2732  *
2733  * Returns zero if successful or a negative error code upon failure.
2734  *
2735  * Notes:
2736  * This routine transitions the device to the SDEV_BLOCK state (which must be
2737  * a legal transition). When the device is in this state, command processing
2738  * is paused until the device leaves the SDEV_BLOCK state. See also
2739  * scsi_internal_device_unblock_nowait().
2740  */
2741 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2742 {
2743 	int ret = __scsi_internal_device_block_nowait(sdev);
2744 
2745 	/*
2746 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2747 	 * block layer from calling the midlayer with this device's
2748 	 * request queue.
2749 	 */
2750 	if (!ret)
2751 		scsi_stop_queue(sdev, true);
2752 	return ret;
2753 }
2754 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2755 
2756 /**
2757  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2758  * @sdev: device to block
2759  *
2760  * Pause SCSI command processing on the specified device and wait until all
2761  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2762  *
2763  * Returns zero if successful or a negative error code upon failure.
2764  *
2765  * Note:
2766  * This routine transitions the device to the SDEV_BLOCK state (which must be
2767  * a legal transition). When the device is in this state, command processing
2768  * is paused until the device leaves the SDEV_BLOCK state. See also
2769  * scsi_internal_device_unblock().
2770  */
2771 static int scsi_internal_device_block(struct scsi_device *sdev)
2772 {
2773 	int err;
2774 
2775 	mutex_lock(&sdev->state_mutex);
2776 	err = __scsi_internal_device_block_nowait(sdev);
2777 	if (err == 0)
2778 		scsi_stop_queue(sdev, false);
2779 	mutex_unlock(&sdev->state_mutex);
2780 
2781 	return err;
2782 }
2783 
2784 /**
2785  * scsi_internal_device_unblock_nowait - resume a device after a block request
2786  * @sdev:	device to resume
2787  * @new_state:	state to set the device to after unblocking
2788  *
2789  * Restart the device queue for a previously suspended SCSI device. Does not
2790  * sleep.
2791  *
2792  * Returns zero if successful or a negative error code upon failure.
2793  *
2794  * Notes:
2795  * This routine transitions the device to the SDEV_RUNNING state or to one of
2796  * the offline states (which must be a legal transition) allowing the midlayer
2797  * to goose the queue for this device.
2798  */
2799 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2800 					enum scsi_device_state new_state)
2801 {
2802 	switch (new_state) {
2803 	case SDEV_RUNNING:
2804 	case SDEV_TRANSPORT_OFFLINE:
2805 		break;
2806 	default:
2807 		return -EINVAL;
2808 	}
2809 
2810 	/*
2811 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2812 	 * offlined states and goose the device queue if successful.
2813 	 */
2814 	switch (sdev->sdev_state) {
2815 	case SDEV_BLOCK:
2816 	case SDEV_TRANSPORT_OFFLINE:
2817 		sdev->sdev_state = new_state;
2818 		break;
2819 	case SDEV_CREATED_BLOCK:
2820 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2821 		    new_state == SDEV_OFFLINE)
2822 			sdev->sdev_state = new_state;
2823 		else
2824 			sdev->sdev_state = SDEV_CREATED;
2825 		break;
2826 	case SDEV_CANCEL:
2827 	case SDEV_OFFLINE:
2828 		break;
2829 	default:
2830 		return -EINVAL;
2831 	}
2832 	scsi_start_queue(sdev);
2833 
2834 	return 0;
2835 }
2836 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2837 
2838 /**
2839  * scsi_internal_device_unblock - resume a device after a block request
2840  * @sdev:	device to resume
2841  * @new_state:	state to set the device to after unblocking
2842  *
2843  * Restart the device queue for a previously suspended SCSI device. May sleep.
2844  *
2845  * Returns zero if successful or a negative error code upon failure.
2846  *
2847  * Notes:
2848  * This routine transitions the device to the SDEV_RUNNING state or to one of
2849  * the offline states (which must be a legal transition) allowing the midlayer
2850  * to goose the queue for this device.
2851  */
2852 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2853 					enum scsi_device_state new_state)
2854 {
2855 	int ret;
2856 
2857 	mutex_lock(&sdev->state_mutex);
2858 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2859 	mutex_unlock(&sdev->state_mutex);
2860 
2861 	return ret;
2862 }
2863 
2864 static void
2865 device_block(struct scsi_device *sdev, void *data)
2866 {
2867 	int ret;
2868 
2869 	ret = scsi_internal_device_block(sdev);
2870 
2871 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2872 		  dev_name(&sdev->sdev_gendev), ret);
2873 }
2874 
2875 static int
2876 target_block(struct device *dev, void *data)
2877 {
2878 	if (scsi_is_target_device(dev))
2879 		starget_for_each_device(to_scsi_target(dev), NULL,
2880 					device_block);
2881 	return 0;
2882 }
2883 
2884 void
2885 scsi_target_block(struct device *dev)
2886 {
2887 	if (scsi_is_target_device(dev))
2888 		starget_for_each_device(to_scsi_target(dev), NULL,
2889 					device_block);
2890 	else
2891 		device_for_each_child(dev, NULL, target_block);
2892 }
2893 EXPORT_SYMBOL_GPL(scsi_target_block);
2894 
2895 static void
2896 device_unblock(struct scsi_device *sdev, void *data)
2897 {
2898 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2899 }
2900 
2901 static int
2902 target_unblock(struct device *dev, void *data)
2903 {
2904 	if (scsi_is_target_device(dev))
2905 		starget_for_each_device(to_scsi_target(dev), data,
2906 					device_unblock);
2907 	return 0;
2908 }
2909 
2910 void
2911 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2912 {
2913 	if (scsi_is_target_device(dev))
2914 		starget_for_each_device(to_scsi_target(dev), &new_state,
2915 					device_unblock);
2916 	else
2917 		device_for_each_child(dev, &new_state, target_unblock);
2918 }
2919 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2920 
2921 int
2922 scsi_host_block(struct Scsi_Host *shost)
2923 {
2924 	struct scsi_device *sdev;
2925 	int ret = 0;
2926 
2927 	/*
2928 	 * Call scsi_internal_device_block_nowait so we can avoid
2929 	 * calling synchronize_rcu() for each LUN.
2930 	 */
2931 	shost_for_each_device(sdev, shost) {
2932 		mutex_lock(&sdev->state_mutex);
2933 		ret = scsi_internal_device_block_nowait(sdev);
2934 		mutex_unlock(&sdev->state_mutex);
2935 		if (ret) {
2936 			scsi_device_put(sdev);
2937 			break;
2938 		}
2939 	}
2940 
2941 	/*
2942 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2943 	 * calling synchronize_rcu() once is enough.
2944 	 */
2945 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2946 
2947 	if (!ret)
2948 		synchronize_rcu();
2949 
2950 	return ret;
2951 }
2952 EXPORT_SYMBOL_GPL(scsi_host_block);
2953 
2954 int
2955 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2956 {
2957 	struct scsi_device *sdev;
2958 	int ret = 0;
2959 
2960 	shost_for_each_device(sdev, shost) {
2961 		ret = scsi_internal_device_unblock(sdev, new_state);
2962 		if (ret) {
2963 			scsi_device_put(sdev);
2964 			break;
2965 		}
2966 	}
2967 	return ret;
2968 }
2969 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2970 
2971 /**
2972  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2973  * @sgl:	scatter-gather list
2974  * @sg_count:	number of segments in sg
2975  * @offset:	offset in bytes into sg, on return offset into the mapped area
2976  * @len:	bytes to map, on return number of bytes mapped
2977  *
2978  * Returns virtual address of the start of the mapped page
2979  */
2980 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2981 			  size_t *offset, size_t *len)
2982 {
2983 	int i;
2984 	size_t sg_len = 0, len_complete = 0;
2985 	struct scatterlist *sg;
2986 	struct page *page;
2987 
2988 	WARN_ON(!irqs_disabled());
2989 
2990 	for_each_sg(sgl, sg, sg_count, i) {
2991 		len_complete = sg_len; /* Complete sg-entries */
2992 		sg_len += sg->length;
2993 		if (sg_len > *offset)
2994 			break;
2995 	}
2996 
2997 	if (unlikely(i == sg_count)) {
2998 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2999 			"elements %d\n",
3000 		       __func__, sg_len, *offset, sg_count);
3001 		WARN_ON(1);
3002 		return NULL;
3003 	}
3004 
3005 	/* Offset starting from the beginning of first page in this sg-entry */
3006 	*offset = *offset - len_complete + sg->offset;
3007 
3008 	/* Assumption: contiguous pages can be accessed as "page + i" */
3009 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3010 	*offset &= ~PAGE_MASK;
3011 
3012 	/* Bytes in this sg-entry from *offset to the end of the page */
3013 	sg_len = PAGE_SIZE - *offset;
3014 	if (*len > sg_len)
3015 		*len = sg_len;
3016 
3017 	return kmap_atomic(page);
3018 }
3019 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3020 
3021 /**
3022  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3023  * @virt:	virtual address to be unmapped
3024  */
3025 void scsi_kunmap_atomic_sg(void *virt)
3026 {
3027 	kunmap_atomic(virt);
3028 }
3029 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3030 
3031 void sdev_disable_disk_events(struct scsi_device *sdev)
3032 {
3033 	atomic_inc(&sdev->disk_events_disable_depth);
3034 }
3035 EXPORT_SYMBOL(sdev_disable_disk_events);
3036 
3037 void sdev_enable_disk_events(struct scsi_device *sdev)
3038 {
3039 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3040 		return;
3041 	atomic_dec(&sdev->disk_events_disable_depth);
3042 }
3043 EXPORT_SYMBOL(sdev_enable_disk_events);
3044 
3045 static unsigned char designator_prio(const unsigned char *d)
3046 {
3047 	if (d[1] & 0x30)
3048 		/* not associated with LUN */
3049 		return 0;
3050 
3051 	if (d[3] == 0)
3052 		/* invalid length */
3053 		return 0;
3054 
3055 	/*
3056 	 * Order of preference for lun descriptor:
3057 	 * - SCSI name string
3058 	 * - NAA IEEE Registered Extended
3059 	 * - EUI-64 based 16-byte
3060 	 * - EUI-64 based 12-byte
3061 	 * - NAA IEEE Registered
3062 	 * - NAA IEEE Extended
3063 	 * - EUI-64 based 8-byte
3064 	 * - SCSI name string (truncated)
3065 	 * - T10 Vendor ID
3066 	 * as longer descriptors reduce the likelyhood
3067 	 * of identification clashes.
3068 	 */
3069 
3070 	switch (d[1] & 0xf) {
3071 	case 8:
3072 		/* SCSI name string, variable-length UTF-8 */
3073 		return 9;
3074 	case 3:
3075 		switch (d[4] >> 4) {
3076 		case 6:
3077 			/* NAA registered extended */
3078 			return 8;
3079 		case 5:
3080 			/* NAA registered */
3081 			return 5;
3082 		case 4:
3083 			/* NAA extended */
3084 			return 4;
3085 		case 3:
3086 			/* NAA locally assigned */
3087 			return 1;
3088 		default:
3089 			break;
3090 		}
3091 		break;
3092 	case 2:
3093 		switch (d[3]) {
3094 		case 16:
3095 			/* EUI64-based, 16 byte */
3096 			return 7;
3097 		case 12:
3098 			/* EUI64-based, 12 byte */
3099 			return 6;
3100 		case 8:
3101 			/* EUI64-based, 8 byte */
3102 			return 3;
3103 		default:
3104 			break;
3105 		}
3106 		break;
3107 	case 1:
3108 		/* T10 vendor ID */
3109 		return 1;
3110 	default:
3111 		break;
3112 	}
3113 
3114 	return 0;
3115 }
3116 
3117 /**
3118  * scsi_vpd_lun_id - return a unique device identification
3119  * @sdev: SCSI device
3120  * @id:   buffer for the identification
3121  * @id_len:  length of the buffer
3122  *
3123  * Copies a unique device identification into @id based
3124  * on the information in the VPD page 0x83 of the device.
3125  * The string will be formatted as a SCSI name string.
3126  *
3127  * Returns the length of the identification or error on failure.
3128  * If the identifier is longer than the supplied buffer the actual
3129  * identifier length is returned and the buffer is not zero-padded.
3130  */
3131 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3132 {
3133 	u8 cur_id_prio = 0;
3134 	u8 cur_id_size = 0;
3135 	const unsigned char *d, *cur_id_str;
3136 	const struct scsi_vpd *vpd_pg83;
3137 	int id_size = -EINVAL;
3138 
3139 	rcu_read_lock();
3140 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3141 	if (!vpd_pg83) {
3142 		rcu_read_unlock();
3143 		return -ENXIO;
3144 	}
3145 
3146 	/* The id string must be at least 20 bytes + terminating NULL byte */
3147 	if (id_len < 21) {
3148 		rcu_read_unlock();
3149 		return -EINVAL;
3150 	}
3151 
3152 	memset(id, 0, id_len);
3153 	for (d = vpd_pg83->data + 4;
3154 	     d < vpd_pg83->data + vpd_pg83->len;
3155 	     d += d[3] + 4) {
3156 		u8 prio = designator_prio(d);
3157 
3158 		if (prio == 0 || cur_id_prio > prio)
3159 			continue;
3160 
3161 		switch (d[1] & 0xf) {
3162 		case 0x1:
3163 			/* T10 Vendor ID */
3164 			if (cur_id_size > d[3])
3165 				break;
3166 			cur_id_prio = prio;
3167 			cur_id_size = d[3];
3168 			if (cur_id_size + 4 > id_len)
3169 				cur_id_size = id_len - 4;
3170 			cur_id_str = d + 4;
3171 			id_size = snprintf(id, id_len, "t10.%*pE",
3172 					   cur_id_size, cur_id_str);
3173 			break;
3174 		case 0x2:
3175 			/* EUI-64 */
3176 			cur_id_prio = prio;
3177 			cur_id_size = d[3];
3178 			cur_id_str = d + 4;
3179 			switch (cur_id_size) {
3180 			case 8:
3181 				id_size = snprintf(id, id_len,
3182 						   "eui.%8phN",
3183 						   cur_id_str);
3184 				break;
3185 			case 12:
3186 				id_size = snprintf(id, id_len,
3187 						   "eui.%12phN",
3188 						   cur_id_str);
3189 				break;
3190 			case 16:
3191 				id_size = snprintf(id, id_len,
3192 						   "eui.%16phN",
3193 						   cur_id_str);
3194 				break;
3195 			default:
3196 				break;
3197 			}
3198 			break;
3199 		case 0x3:
3200 			/* NAA */
3201 			cur_id_prio = prio;
3202 			cur_id_size = d[3];
3203 			cur_id_str = d + 4;
3204 			switch (cur_id_size) {
3205 			case 8:
3206 				id_size = snprintf(id, id_len,
3207 						   "naa.%8phN",
3208 						   cur_id_str);
3209 				break;
3210 			case 16:
3211 				id_size = snprintf(id, id_len,
3212 						   "naa.%16phN",
3213 						   cur_id_str);
3214 				break;
3215 			default:
3216 				break;
3217 			}
3218 			break;
3219 		case 0x8:
3220 			/* SCSI name string */
3221 			if (cur_id_size > d[3])
3222 				break;
3223 			/* Prefer others for truncated descriptor */
3224 			if (d[3] > id_len) {
3225 				prio = 2;
3226 				if (cur_id_prio > prio)
3227 					break;
3228 			}
3229 			cur_id_prio = prio;
3230 			cur_id_size = id_size = d[3];
3231 			cur_id_str = d + 4;
3232 			if (cur_id_size >= id_len)
3233 				cur_id_size = id_len - 1;
3234 			memcpy(id, cur_id_str, cur_id_size);
3235 			break;
3236 		default:
3237 			break;
3238 		}
3239 	}
3240 	rcu_read_unlock();
3241 
3242 	return id_size;
3243 }
3244 EXPORT_SYMBOL(scsi_vpd_lun_id);
3245 
3246 /*
3247  * scsi_vpd_tpg_id - return a target port group identifier
3248  * @sdev: SCSI device
3249  *
3250  * Returns the Target Port Group identifier from the information
3251  * froom VPD page 0x83 of the device.
3252  *
3253  * Returns the identifier or error on failure.
3254  */
3255 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3256 {
3257 	const unsigned char *d;
3258 	const struct scsi_vpd *vpd_pg83;
3259 	int group_id = -EAGAIN, rel_port = -1;
3260 
3261 	rcu_read_lock();
3262 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3263 	if (!vpd_pg83) {
3264 		rcu_read_unlock();
3265 		return -ENXIO;
3266 	}
3267 
3268 	d = vpd_pg83->data + 4;
3269 	while (d < vpd_pg83->data + vpd_pg83->len) {
3270 		switch (d[1] & 0xf) {
3271 		case 0x4:
3272 			/* Relative target port */
3273 			rel_port = get_unaligned_be16(&d[6]);
3274 			break;
3275 		case 0x5:
3276 			/* Target port group */
3277 			group_id = get_unaligned_be16(&d[6]);
3278 			break;
3279 		default:
3280 			break;
3281 		}
3282 		d += d[3] + 4;
3283 	}
3284 	rcu_read_unlock();
3285 
3286 	if (group_id >= 0 && rel_id && rel_port != -1)
3287 		*rel_id = rel_port;
3288 
3289 	return group_id;
3290 }
3291 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3292 
3293 /**
3294  * scsi_build_sense - build sense data for a command
3295  * @scmd:	scsi command for which the sense should be formatted
3296  * @desc:	Sense format (non-zero == descriptor format,
3297  *              0 == fixed format)
3298  * @key:	Sense key
3299  * @asc:	Additional sense code
3300  * @ascq:	Additional sense code qualifier
3301  *
3302  **/
3303 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3304 {
3305 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3306 	scmd->result = SAM_STAT_CHECK_CONDITION;
3307 }
3308 EXPORT_SYMBOL_GPL(scsi_build_sense);
3309