1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/bitops.h> 12 #include <linux/blkdev.h> 13 #include <linux/completion.h> 14 #include <linux/kernel.h> 15 #include <linux/export.h> 16 #include <linux/mempool.h> 17 #include <linux/slab.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 24 #include <scsi/scsi.h> 25 #include <scsi/scsi_cmnd.h> 26 #include <scsi/scsi_dbg.h> 27 #include <scsi/scsi_device.h> 28 #include <scsi/scsi_driver.h> 29 #include <scsi/scsi_eh.h> 30 #include <scsi/scsi_host.h> 31 32 #include "scsi_priv.h" 33 #include "scsi_logging.h" 34 35 36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 37 #define SG_MEMPOOL_SIZE 2 38 39 struct scsi_host_sg_pool { 40 size_t size; 41 char *name; 42 struct kmem_cache *slab; 43 mempool_t *pool; 44 }; 45 46 #define SP(x) { x, "sgpool-" __stringify(x) } 47 #if (SCSI_MAX_SG_SEGMENTS < 32) 48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater) 49 #endif 50 static struct scsi_host_sg_pool scsi_sg_pools[] = { 51 SP(8), 52 SP(16), 53 #if (SCSI_MAX_SG_SEGMENTS > 32) 54 SP(32), 55 #if (SCSI_MAX_SG_SEGMENTS > 64) 56 SP(64), 57 #if (SCSI_MAX_SG_SEGMENTS > 128) 58 SP(128), 59 #if (SCSI_MAX_SG_SEGMENTS > 256) 60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX) 61 #endif 62 #endif 63 #endif 64 #endif 65 SP(SCSI_MAX_SG_SEGMENTS) 66 }; 67 #undef SP 68 69 struct kmem_cache *scsi_sdb_cache; 70 71 #ifdef CONFIG_ACPI 72 #include <acpi/acpi_bus.h> 73 74 static bool acpi_scsi_bus_match(struct device *dev) 75 { 76 return dev->bus == &scsi_bus_type; 77 } 78 79 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus) 80 { 81 bus->match = acpi_scsi_bus_match; 82 return register_acpi_bus_type(bus); 83 } 84 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type); 85 86 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus) 87 { 88 unregister_acpi_bus_type(bus); 89 } 90 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type); 91 #endif 92 93 /* 94 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 95 * not change behaviour from the previous unplug mechanism, experimentation 96 * may prove this needs changing. 97 */ 98 #define SCSI_QUEUE_DELAY 3 99 100 /* 101 * Function: scsi_unprep_request() 102 * 103 * Purpose: Remove all preparation done for a request, including its 104 * associated scsi_cmnd, so that it can be requeued. 105 * 106 * Arguments: req - request to unprepare 107 * 108 * Lock status: Assumed that no locks are held upon entry. 109 * 110 * Returns: Nothing. 111 */ 112 static void scsi_unprep_request(struct request *req) 113 { 114 struct scsi_cmnd *cmd = req->special; 115 116 blk_unprep_request(req); 117 req->special = NULL; 118 119 scsi_put_command(cmd); 120 } 121 122 /** 123 * __scsi_queue_insert - private queue insertion 124 * @cmd: The SCSI command being requeued 125 * @reason: The reason for the requeue 126 * @unbusy: Whether the queue should be unbusied 127 * 128 * This is a private queue insertion. The public interface 129 * scsi_queue_insert() always assumes the queue should be unbusied 130 * because it's always called before the completion. This function is 131 * for a requeue after completion, which should only occur in this 132 * file. 133 */ 134 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 135 { 136 struct Scsi_Host *host = cmd->device->host; 137 struct scsi_device *device = cmd->device; 138 struct scsi_target *starget = scsi_target(device); 139 struct request_queue *q = device->request_queue; 140 unsigned long flags; 141 142 SCSI_LOG_MLQUEUE(1, 143 printk("Inserting command %p into mlqueue\n", cmd)); 144 145 /* 146 * Set the appropriate busy bit for the device/host. 147 * 148 * If the host/device isn't busy, assume that something actually 149 * completed, and that we should be able to queue a command now. 150 * 151 * Note that the prior mid-layer assumption that any host could 152 * always queue at least one command is now broken. The mid-layer 153 * will implement a user specifiable stall (see 154 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 155 * if a command is requeued with no other commands outstanding 156 * either for the device or for the host. 157 */ 158 switch (reason) { 159 case SCSI_MLQUEUE_HOST_BUSY: 160 host->host_blocked = host->max_host_blocked; 161 break; 162 case SCSI_MLQUEUE_DEVICE_BUSY: 163 case SCSI_MLQUEUE_EH_RETRY: 164 device->device_blocked = device->max_device_blocked; 165 break; 166 case SCSI_MLQUEUE_TARGET_BUSY: 167 starget->target_blocked = starget->max_target_blocked; 168 break; 169 } 170 171 /* 172 * Decrement the counters, since these commands are no longer 173 * active on the host/device. 174 */ 175 if (unbusy) 176 scsi_device_unbusy(device); 177 178 /* 179 * Requeue this command. It will go before all other commands 180 * that are already in the queue. Schedule requeue work under 181 * lock such that the kblockd_schedule_work() call happens 182 * before blk_cleanup_queue() finishes. 183 */ 184 spin_lock_irqsave(q->queue_lock, flags); 185 blk_requeue_request(q, cmd->request); 186 kblockd_schedule_work(q, &device->requeue_work); 187 spin_unlock_irqrestore(q->queue_lock, flags); 188 } 189 190 /* 191 * Function: scsi_queue_insert() 192 * 193 * Purpose: Insert a command in the midlevel queue. 194 * 195 * Arguments: cmd - command that we are adding to queue. 196 * reason - why we are inserting command to queue. 197 * 198 * Lock status: Assumed that lock is not held upon entry. 199 * 200 * Returns: Nothing. 201 * 202 * Notes: We do this for one of two cases. Either the host is busy 203 * and it cannot accept any more commands for the time being, 204 * or the device returned QUEUE_FULL and can accept no more 205 * commands. 206 * Notes: This could be called either from an interrupt context or a 207 * normal process context. 208 */ 209 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 210 { 211 __scsi_queue_insert(cmd, reason, 1); 212 } 213 /** 214 * scsi_execute - insert request and wait for the result 215 * @sdev: scsi device 216 * @cmd: scsi command 217 * @data_direction: data direction 218 * @buffer: data buffer 219 * @bufflen: len of buffer 220 * @sense: optional sense buffer 221 * @timeout: request timeout in seconds 222 * @retries: number of times to retry request 223 * @flags: or into request flags; 224 * @resid: optional residual length 225 * 226 * returns the req->errors value which is the scsi_cmnd result 227 * field. 228 */ 229 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 230 int data_direction, void *buffer, unsigned bufflen, 231 unsigned char *sense, int timeout, int retries, int flags, 232 int *resid) 233 { 234 struct request *req; 235 int write = (data_direction == DMA_TO_DEVICE); 236 int ret = DRIVER_ERROR << 24; 237 238 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 239 if (!req) 240 return ret; 241 242 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 243 buffer, bufflen, __GFP_WAIT)) 244 goto out; 245 246 req->cmd_len = COMMAND_SIZE(cmd[0]); 247 memcpy(req->cmd, cmd, req->cmd_len); 248 req->sense = sense; 249 req->sense_len = 0; 250 req->retries = retries; 251 req->timeout = timeout; 252 req->cmd_type = REQ_TYPE_BLOCK_PC; 253 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 254 255 /* 256 * head injection *required* here otherwise quiesce won't work 257 */ 258 blk_execute_rq(req->q, NULL, req, 1); 259 260 /* 261 * Some devices (USB mass-storage in particular) may transfer 262 * garbage data together with a residue indicating that the data 263 * is invalid. Prevent the garbage from being misinterpreted 264 * and prevent security leaks by zeroing out the excess data. 265 */ 266 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen)) 267 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len); 268 269 if (resid) 270 *resid = req->resid_len; 271 ret = req->errors; 272 out: 273 blk_put_request(req); 274 275 return ret; 276 } 277 EXPORT_SYMBOL(scsi_execute); 278 279 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd, 280 int data_direction, void *buffer, unsigned bufflen, 281 struct scsi_sense_hdr *sshdr, int timeout, int retries, 282 int *resid, int flags) 283 { 284 char *sense = NULL; 285 int result; 286 287 if (sshdr) { 288 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 289 if (!sense) 290 return DRIVER_ERROR << 24; 291 } 292 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 293 sense, timeout, retries, flags, resid); 294 if (sshdr) 295 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 296 297 kfree(sense); 298 return result; 299 } 300 EXPORT_SYMBOL(scsi_execute_req_flags); 301 302 /* 303 * Function: scsi_init_cmd_errh() 304 * 305 * Purpose: Initialize cmd fields related to error handling. 306 * 307 * Arguments: cmd - command that is ready to be queued. 308 * 309 * Notes: This function has the job of initializing a number of 310 * fields related to error handling. Typically this will 311 * be called once for each command, as required. 312 */ 313 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 314 { 315 cmd->serial_number = 0; 316 scsi_set_resid(cmd, 0); 317 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 318 if (cmd->cmd_len == 0) 319 cmd->cmd_len = scsi_command_size(cmd->cmnd); 320 } 321 322 void scsi_device_unbusy(struct scsi_device *sdev) 323 { 324 struct Scsi_Host *shost = sdev->host; 325 struct scsi_target *starget = scsi_target(sdev); 326 unsigned long flags; 327 328 spin_lock_irqsave(shost->host_lock, flags); 329 shost->host_busy--; 330 starget->target_busy--; 331 if (unlikely(scsi_host_in_recovery(shost) && 332 (shost->host_failed || shost->host_eh_scheduled))) 333 scsi_eh_wakeup(shost); 334 spin_unlock(shost->host_lock); 335 spin_lock(sdev->request_queue->queue_lock); 336 sdev->device_busy--; 337 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 338 } 339 340 /* 341 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 342 * and call blk_run_queue for all the scsi_devices on the target - 343 * including current_sdev first. 344 * 345 * Called with *no* scsi locks held. 346 */ 347 static void scsi_single_lun_run(struct scsi_device *current_sdev) 348 { 349 struct Scsi_Host *shost = current_sdev->host; 350 struct scsi_device *sdev, *tmp; 351 struct scsi_target *starget = scsi_target(current_sdev); 352 unsigned long flags; 353 354 spin_lock_irqsave(shost->host_lock, flags); 355 starget->starget_sdev_user = NULL; 356 spin_unlock_irqrestore(shost->host_lock, flags); 357 358 /* 359 * Call blk_run_queue for all LUNs on the target, starting with 360 * current_sdev. We race with others (to set starget_sdev_user), 361 * but in most cases, we will be first. Ideally, each LU on the 362 * target would get some limited time or requests on the target. 363 */ 364 blk_run_queue(current_sdev->request_queue); 365 366 spin_lock_irqsave(shost->host_lock, flags); 367 if (starget->starget_sdev_user) 368 goto out; 369 list_for_each_entry_safe(sdev, tmp, &starget->devices, 370 same_target_siblings) { 371 if (sdev == current_sdev) 372 continue; 373 if (scsi_device_get(sdev)) 374 continue; 375 376 spin_unlock_irqrestore(shost->host_lock, flags); 377 blk_run_queue(sdev->request_queue); 378 spin_lock_irqsave(shost->host_lock, flags); 379 380 scsi_device_put(sdev); 381 } 382 out: 383 spin_unlock_irqrestore(shost->host_lock, flags); 384 } 385 386 static inline int scsi_device_is_busy(struct scsi_device *sdev) 387 { 388 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked) 389 return 1; 390 391 return 0; 392 } 393 394 static inline int scsi_target_is_busy(struct scsi_target *starget) 395 { 396 return ((starget->can_queue > 0 && 397 starget->target_busy >= starget->can_queue) || 398 starget->target_blocked); 399 } 400 401 static inline int scsi_host_is_busy(struct Scsi_Host *shost) 402 { 403 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 404 shost->host_blocked || shost->host_self_blocked) 405 return 1; 406 407 return 0; 408 } 409 410 /* 411 * Function: scsi_run_queue() 412 * 413 * Purpose: Select a proper request queue to serve next 414 * 415 * Arguments: q - last request's queue 416 * 417 * Returns: Nothing 418 * 419 * Notes: The previous command was completely finished, start 420 * a new one if possible. 421 */ 422 static void scsi_run_queue(struct request_queue *q) 423 { 424 struct scsi_device *sdev = q->queuedata; 425 struct Scsi_Host *shost; 426 LIST_HEAD(starved_list); 427 unsigned long flags; 428 429 shost = sdev->host; 430 if (scsi_target(sdev)->single_lun) 431 scsi_single_lun_run(sdev); 432 433 spin_lock_irqsave(shost->host_lock, flags); 434 list_splice_init(&shost->starved_list, &starved_list); 435 436 while (!list_empty(&starved_list)) { 437 /* 438 * As long as shost is accepting commands and we have 439 * starved queues, call blk_run_queue. scsi_request_fn 440 * drops the queue_lock and can add us back to the 441 * starved_list. 442 * 443 * host_lock protects the starved_list and starved_entry. 444 * scsi_request_fn must get the host_lock before checking 445 * or modifying starved_list or starved_entry. 446 */ 447 if (scsi_host_is_busy(shost)) 448 break; 449 450 sdev = list_entry(starved_list.next, 451 struct scsi_device, starved_entry); 452 list_del_init(&sdev->starved_entry); 453 if (scsi_target_is_busy(scsi_target(sdev))) { 454 list_move_tail(&sdev->starved_entry, 455 &shost->starved_list); 456 continue; 457 } 458 459 spin_unlock(shost->host_lock); 460 spin_lock(sdev->request_queue->queue_lock); 461 __blk_run_queue(sdev->request_queue); 462 spin_unlock(sdev->request_queue->queue_lock); 463 spin_lock(shost->host_lock); 464 } 465 /* put any unprocessed entries back */ 466 list_splice(&starved_list, &shost->starved_list); 467 spin_unlock_irqrestore(shost->host_lock, flags); 468 469 blk_run_queue(q); 470 } 471 472 void scsi_requeue_run_queue(struct work_struct *work) 473 { 474 struct scsi_device *sdev; 475 struct request_queue *q; 476 477 sdev = container_of(work, struct scsi_device, requeue_work); 478 q = sdev->request_queue; 479 scsi_run_queue(q); 480 } 481 482 /* 483 * Function: scsi_requeue_command() 484 * 485 * Purpose: Handle post-processing of completed commands. 486 * 487 * Arguments: q - queue to operate on 488 * cmd - command that may need to be requeued. 489 * 490 * Returns: Nothing 491 * 492 * Notes: After command completion, there may be blocks left 493 * over which weren't finished by the previous command 494 * this can be for a number of reasons - the main one is 495 * I/O errors in the middle of the request, in which case 496 * we need to request the blocks that come after the bad 497 * sector. 498 * Notes: Upon return, cmd is a stale pointer. 499 */ 500 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 501 { 502 struct scsi_device *sdev = cmd->device; 503 struct request *req = cmd->request; 504 unsigned long flags; 505 506 /* 507 * We need to hold a reference on the device to avoid the queue being 508 * killed after the unlock and before scsi_run_queue is invoked which 509 * may happen because scsi_unprep_request() puts the command which 510 * releases its reference on the device. 511 */ 512 get_device(&sdev->sdev_gendev); 513 514 spin_lock_irqsave(q->queue_lock, flags); 515 scsi_unprep_request(req); 516 blk_requeue_request(q, req); 517 spin_unlock_irqrestore(q->queue_lock, flags); 518 519 scsi_run_queue(q); 520 521 put_device(&sdev->sdev_gendev); 522 } 523 524 void scsi_next_command(struct scsi_cmnd *cmd) 525 { 526 struct scsi_device *sdev = cmd->device; 527 struct request_queue *q = sdev->request_queue; 528 529 /* need to hold a reference on the device before we let go of the cmd */ 530 get_device(&sdev->sdev_gendev); 531 532 scsi_put_command(cmd); 533 scsi_run_queue(q); 534 535 /* ok to remove device now */ 536 put_device(&sdev->sdev_gendev); 537 } 538 539 void scsi_run_host_queues(struct Scsi_Host *shost) 540 { 541 struct scsi_device *sdev; 542 543 shost_for_each_device(sdev, shost) 544 scsi_run_queue(sdev->request_queue); 545 } 546 547 static void __scsi_release_buffers(struct scsi_cmnd *, int); 548 549 /* 550 * Function: scsi_end_request() 551 * 552 * Purpose: Post-processing of completed commands (usually invoked at end 553 * of upper level post-processing and scsi_io_completion). 554 * 555 * Arguments: cmd - command that is complete. 556 * error - 0 if I/O indicates success, < 0 for I/O error. 557 * bytes - number of bytes of completed I/O 558 * requeue - indicates whether we should requeue leftovers. 559 * 560 * Lock status: Assumed that lock is not held upon entry. 561 * 562 * Returns: cmd if requeue required, NULL otherwise. 563 * 564 * Notes: This is called for block device requests in order to 565 * mark some number of sectors as complete. 566 * 567 * We are guaranteeing that the request queue will be goosed 568 * at some point during this call. 569 * Notes: If cmd was requeued, upon return it will be a stale pointer. 570 */ 571 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error, 572 int bytes, int requeue) 573 { 574 struct request_queue *q = cmd->device->request_queue; 575 struct request *req = cmd->request; 576 577 /* 578 * If there are blocks left over at the end, set up the command 579 * to queue the remainder of them. 580 */ 581 if (blk_end_request(req, error, bytes)) { 582 /* kill remainder if no retrys */ 583 if (error && scsi_noretry_cmd(cmd)) 584 blk_end_request_all(req, error); 585 else { 586 if (requeue) { 587 /* 588 * Bleah. Leftovers again. Stick the 589 * leftovers in the front of the 590 * queue, and goose the queue again. 591 */ 592 scsi_release_buffers(cmd); 593 scsi_requeue_command(q, cmd); 594 cmd = NULL; 595 } 596 return cmd; 597 } 598 } 599 600 /* 601 * This will goose the queue request function at the end, so we don't 602 * need to worry about launching another command. 603 */ 604 __scsi_release_buffers(cmd, 0); 605 scsi_next_command(cmd); 606 return NULL; 607 } 608 609 static inline unsigned int scsi_sgtable_index(unsigned short nents) 610 { 611 unsigned int index; 612 613 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS); 614 615 if (nents <= 8) 616 index = 0; 617 else 618 index = get_count_order(nents) - 3; 619 620 return index; 621 } 622 623 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents) 624 { 625 struct scsi_host_sg_pool *sgp; 626 627 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 628 mempool_free(sgl, sgp->pool); 629 } 630 631 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask) 632 { 633 struct scsi_host_sg_pool *sgp; 634 635 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 636 return mempool_alloc(sgp->pool, gfp_mask); 637 } 638 639 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, 640 gfp_t gfp_mask) 641 { 642 int ret; 643 644 BUG_ON(!nents); 645 646 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS, 647 gfp_mask, scsi_sg_alloc); 648 if (unlikely(ret)) 649 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, 650 scsi_sg_free); 651 652 return ret; 653 } 654 655 static void scsi_free_sgtable(struct scsi_data_buffer *sdb) 656 { 657 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free); 658 } 659 660 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check) 661 { 662 663 if (cmd->sdb.table.nents) 664 scsi_free_sgtable(&cmd->sdb); 665 666 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 667 668 if (do_bidi_check && scsi_bidi_cmnd(cmd)) { 669 struct scsi_data_buffer *bidi_sdb = 670 cmd->request->next_rq->special; 671 scsi_free_sgtable(bidi_sdb); 672 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 673 cmd->request->next_rq->special = NULL; 674 } 675 676 if (scsi_prot_sg_count(cmd)) 677 scsi_free_sgtable(cmd->prot_sdb); 678 } 679 680 /* 681 * Function: scsi_release_buffers() 682 * 683 * Purpose: Completion processing for block device I/O requests. 684 * 685 * Arguments: cmd - command that we are bailing. 686 * 687 * Lock status: Assumed that no lock is held upon entry. 688 * 689 * Returns: Nothing 690 * 691 * Notes: In the event that an upper level driver rejects a 692 * command, we must release resources allocated during 693 * the __init_io() function. Primarily this would involve 694 * the scatter-gather table, and potentially any bounce 695 * buffers. 696 */ 697 void scsi_release_buffers(struct scsi_cmnd *cmd) 698 { 699 __scsi_release_buffers(cmd, 1); 700 } 701 EXPORT_SYMBOL(scsi_release_buffers); 702 703 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result) 704 { 705 int error = 0; 706 707 switch(host_byte(result)) { 708 case DID_TRANSPORT_FAILFAST: 709 error = -ENOLINK; 710 break; 711 case DID_TARGET_FAILURE: 712 set_host_byte(cmd, DID_OK); 713 error = -EREMOTEIO; 714 break; 715 case DID_NEXUS_FAILURE: 716 set_host_byte(cmd, DID_OK); 717 error = -EBADE; 718 break; 719 default: 720 error = -EIO; 721 break; 722 } 723 724 return error; 725 } 726 727 /* 728 * Function: scsi_io_completion() 729 * 730 * Purpose: Completion processing for block device I/O requests. 731 * 732 * Arguments: cmd - command that is finished. 733 * 734 * Lock status: Assumed that no lock is held upon entry. 735 * 736 * Returns: Nothing 737 * 738 * Notes: This function is matched in terms of capabilities to 739 * the function that created the scatter-gather list. 740 * In other words, if there are no bounce buffers 741 * (the normal case for most drivers), we don't need 742 * the logic to deal with cleaning up afterwards. 743 * 744 * We must call scsi_end_request(). This will finish off 745 * the specified number of sectors. If we are done, the 746 * command block will be released and the queue function 747 * will be goosed. If we are not done then we have to 748 * figure out what to do next: 749 * 750 * a) We can call scsi_requeue_command(). The request 751 * will be unprepared and put back on the queue. Then 752 * a new command will be created for it. This should 753 * be used if we made forward progress, or if we want 754 * to switch from READ(10) to READ(6) for example. 755 * 756 * b) We can call scsi_queue_insert(). The request will 757 * be put back on the queue and retried using the same 758 * command as before, possibly after a delay. 759 * 760 * c) We can call blk_end_request() with -EIO to fail 761 * the remainder of the request. 762 */ 763 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 764 { 765 int result = cmd->result; 766 struct request_queue *q = cmd->device->request_queue; 767 struct request *req = cmd->request; 768 int error = 0; 769 struct scsi_sense_hdr sshdr; 770 int sense_valid = 0; 771 int sense_deferred = 0; 772 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 773 ACTION_DELAYED_RETRY} action; 774 char *description = NULL; 775 776 if (result) { 777 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 778 if (sense_valid) 779 sense_deferred = scsi_sense_is_deferred(&sshdr); 780 } 781 782 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */ 783 if (result) { 784 if (sense_valid && req->sense) { 785 /* 786 * SG_IO wants current and deferred errors 787 */ 788 int len = 8 + cmd->sense_buffer[7]; 789 790 if (len > SCSI_SENSE_BUFFERSIZE) 791 len = SCSI_SENSE_BUFFERSIZE; 792 memcpy(req->sense, cmd->sense_buffer, len); 793 req->sense_len = len; 794 } 795 if (!sense_deferred) 796 error = __scsi_error_from_host_byte(cmd, result); 797 } 798 /* 799 * __scsi_error_from_host_byte may have reset the host_byte 800 */ 801 req->errors = cmd->result; 802 803 req->resid_len = scsi_get_resid(cmd); 804 805 if (scsi_bidi_cmnd(cmd)) { 806 /* 807 * Bidi commands Must be complete as a whole, 808 * both sides at once. 809 */ 810 req->next_rq->resid_len = scsi_in(cmd)->resid; 811 812 scsi_release_buffers(cmd); 813 blk_end_request_all(req, 0); 814 815 scsi_next_command(cmd); 816 return; 817 } 818 } 819 820 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */ 821 BUG_ON(blk_bidi_rq(req)); 822 823 /* 824 * Next deal with any sectors which we were able to correctly 825 * handle. 826 */ 827 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, " 828 "%d bytes done.\n", 829 blk_rq_sectors(req), good_bytes)); 830 831 /* 832 * Recovered errors need reporting, but they're always treated 833 * as success, so fiddle the result code here. For BLOCK_PC 834 * we already took a copy of the original into rq->errors which 835 * is what gets returned to the user 836 */ 837 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 838 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 839 * print since caller wants ATA registers. Only occurs on 840 * SCSI ATA PASS_THROUGH commands when CK_COND=1 841 */ 842 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 843 ; 844 else if (!(req->cmd_flags & REQ_QUIET)) 845 scsi_print_sense("", cmd); 846 result = 0; 847 /* BLOCK_PC may have set error */ 848 error = 0; 849 } 850 851 /* 852 * A number of bytes were successfully read. If there 853 * are leftovers and there is some kind of error 854 * (result != 0), retry the rest. 855 */ 856 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL) 857 return; 858 859 error = __scsi_error_from_host_byte(cmd, result); 860 861 if (host_byte(result) == DID_RESET) { 862 /* Third party bus reset or reset for error recovery 863 * reasons. Just retry the command and see what 864 * happens. 865 */ 866 action = ACTION_RETRY; 867 } else if (sense_valid && !sense_deferred) { 868 switch (sshdr.sense_key) { 869 case UNIT_ATTENTION: 870 if (cmd->device->removable) { 871 /* Detected disc change. Set a bit 872 * and quietly refuse further access. 873 */ 874 cmd->device->changed = 1; 875 description = "Media Changed"; 876 action = ACTION_FAIL; 877 } else { 878 /* Must have been a power glitch, or a 879 * bus reset. Could not have been a 880 * media change, so we just retry the 881 * command and see what happens. 882 */ 883 action = ACTION_RETRY; 884 } 885 break; 886 case ILLEGAL_REQUEST: 887 /* If we had an ILLEGAL REQUEST returned, then 888 * we may have performed an unsupported 889 * command. The only thing this should be 890 * would be a ten byte read where only a six 891 * byte read was supported. Also, on a system 892 * where READ CAPACITY failed, we may have 893 * read past the end of the disk. 894 */ 895 if ((cmd->device->use_10_for_rw && 896 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 897 (cmd->cmnd[0] == READ_10 || 898 cmd->cmnd[0] == WRITE_10)) { 899 /* This will issue a new 6-byte command. */ 900 cmd->device->use_10_for_rw = 0; 901 action = ACTION_REPREP; 902 } else if (sshdr.asc == 0x10) /* DIX */ { 903 description = "Host Data Integrity Failure"; 904 action = ACTION_FAIL; 905 error = -EILSEQ; 906 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 907 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 908 switch (cmd->cmnd[0]) { 909 case UNMAP: 910 description = "Discard failure"; 911 break; 912 case WRITE_SAME: 913 case WRITE_SAME_16: 914 if (cmd->cmnd[1] & 0x8) 915 description = "Discard failure"; 916 else 917 description = 918 "Write same failure"; 919 break; 920 default: 921 description = "Invalid command failure"; 922 break; 923 } 924 action = ACTION_FAIL; 925 error = -EREMOTEIO; 926 } else 927 action = ACTION_FAIL; 928 break; 929 case ABORTED_COMMAND: 930 action = ACTION_FAIL; 931 if (sshdr.asc == 0x10) { /* DIF */ 932 description = "Target Data Integrity Failure"; 933 error = -EILSEQ; 934 } 935 break; 936 case NOT_READY: 937 /* If the device is in the process of becoming 938 * ready, or has a temporary blockage, retry. 939 */ 940 if (sshdr.asc == 0x04) { 941 switch (sshdr.ascq) { 942 case 0x01: /* becoming ready */ 943 case 0x04: /* format in progress */ 944 case 0x05: /* rebuild in progress */ 945 case 0x06: /* recalculation in progress */ 946 case 0x07: /* operation in progress */ 947 case 0x08: /* Long write in progress */ 948 case 0x09: /* self test in progress */ 949 case 0x14: /* space allocation in progress */ 950 action = ACTION_DELAYED_RETRY; 951 break; 952 default: 953 description = "Device not ready"; 954 action = ACTION_FAIL; 955 break; 956 } 957 } else { 958 description = "Device not ready"; 959 action = ACTION_FAIL; 960 } 961 break; 962 case VOLUME_OVERFLOW: 963 /* See SSC3rXX or current. */ 964 action = ACTION_FAIL; 965 break; 966 default: 967 description = "Unhandled sense code"; 968 action = ACTION_FAIL; 969 break; 970 } 971 } else { 972 description = "Unhandled error code"; 973 action = ACTION_FAIL; 974 } 975 976 switch (action) { 977 case ACTION_FAIL: 978 /* Give up and fail the remainder of the request */ 979 scsi_release_buffers(cmd); 980 if (!(req->cmd_flags & REQ_QUIET)) { 981 if (description) 982 scmd_printk(KERN_INFO, cmd, "%s\n", 983 description); 984 scsi_print_result(cmd); 985 if (driver_byte(result) & DRIVER_SENSE) 986 scsi_print_sense("", cmd); 987 scsi_print_command(cmd); 988 } 989 if (blk_end_request_err(req, error)) 990 scsi_requeue_command(q, cmd); 991 else 992 scsi_next_command(cmd); 993 break; 994 case ACTION_REPREP: 995 /* Unprep the request and put it back at the head of the queue. 996 * A new command will be prepared and issued. 997 */ 998 scsi_release_buffers(cmd); 999 scsi_requeue_command(q, cmd); 1000 break; 1001 case ACTION_RETRY: 1002 /* Retry the same command immediately */ 1003 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 1004 break; 1005 case ACTION_DELAYED_RETRY: 1006 /* Retry the same command after a delay */ 1007 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 1008 break; 1009 } 1010 } 1011 1012 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb, 1013 gfp_t gfp_mask) 1014 { 1015 int count; 1016 1017 /* 1018 * If sg table allocation fails, requeue request later. 1019 */ 1020 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments, 1021 gfp_mask))) { 1022 return BLKPREP_DEFER; 1023 } 1024 1025 req->buffer = NULL; 1026 1027 /* 1028 * Next, walk the list, and fill in the addresses and sizes of 1029 * each segment. 1030 */ 1031 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1032 BUG_ON(count > sdb->table.nents); 1033 sdb->table.nents = count; 1034 sdb->length = blk_rq_bytes(req); 1035 return BLKPREP_OK; 1036 } 1037 1038 /* 1039 * Function: scsi_init_io() 1040 * 1041 * Purpose: SCSI I/O initialize function. 1042 * 1043 * Arguments: cmd - Command descriptor we wish to initialize 1044 * 1045 * Returns: 0 on success 1046 * BLKPREP_DEFER if the failure is retryable 1047 * BLKPREP_KILL if the failure is fatal 1048 */ 1049 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask) 1050 { 1051 struct request *rq = cmd->request; 1052 1053 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask); 1054 if (error) 1055 goto err_exit; 1056 1057 if (blk_bidi_rq(rq)) { 1058 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc( 1059 scsi_sdb_cache, GFP_ATOMIC); 1060 if (!bidi_sdb) { 1061 error = BLKPREP_DEFER; 1062 goto err_exit; 1063 } 1064 1065 rq->next_rq->special = bidi_sdb; 1066 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC); 1067 if (error) 1068 goto err_exit; 1069 } 1070 1071 if (blk_integrity_rq(rq)) { 1072 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1073 int ivecs, count; 1074 1075 BUG_ON(prot_sdb == NULL); 1076 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1077 1078 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) { 1079 error = BLKPREP_DEFER; 1080 goto err_exit; 1081 } 1082 1083 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1084 prot_sdb->table.sgl); 1085 BUG_ON(unlikely(count > ivecs)); 1086 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1087 1088 cmd->prot_sdb = prot_sdb; 1089 cmd->prot_sdb->table.nents = count; 1090 } 1091 1092 return BLKPREP_OK ; 1093 1094 err_exit: 1095 scsi_release_buffers(cmd); 1096 cmd->request->special = NULL; 1097 scsi_put_command(cmd); 1098 return error; 1099 } 1100 EXPORT_SYMBOL(scsi_init_io); 1101 1102 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1103 struct request *req) 1104 { 1105 struct scsi_cmnd *cmd; 1106 1107 if (!req->special) { 1108 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1109 if (unlikely(!cmd)) 1110 return NULL; 1111 req->special = cmd; 1112 } else { 1113 cmd = req->special; 1114 } 1115 1116 /* pull a tag out of the request if we have one */ 1117 cmd->tag = req->tag; 1118 cmd->request = req; 1119 1120 cmd->cmnd = req->cmd; 1121 cmd->prot_op = SCSI_PROT_NORMAL; 1122 1123 return cmd; 1124 } 1125 1126 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1127 { 1128 struct scsi_cmnd *cmd; 1129 int ret = scsi_prep_state_check(sdev, req); 1130 1131 if (ret != BLKPREP_OK) 1132 return ret; 1133 1134 cmd = scsi_get_cmd_from_req(sdev, req); 1135 if (unlikely(!cmd)) 1136 return BLKPREP_DEFER; 1137 1138 /* 1139 * BLOCK_PC requests may transfer data, in which case they must 1140 * a bio attached to them. Or they might contain a SCSI command 1141 * that does not transfer data, in which case they may optionally 1142 * submit a request without an attached bio. 1143 */ 1144 if (req->bio) { 1145 int ret; 1146 1147 BUG_ON(!req->nr_phys_segments); 1148 1149 ret = scsi_init_io(cmd, GFP_ATOMIC); 1150 if (unlikely(ret)) 1151 return ret; 1152 } else { 1153 BUG_ON(blk_rq_bytes(req)); 1154 1155 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1156 req->buffer = NULL; 1157 } 1158 1159 cmd->cmd_len = req->cmd_len; 1160 if (!blk_rq_bytes(req)) 1161 cmd->sc_data_direction = DMA_NONE; 1162 else if (rq_data_dir(req) == WRITE) 1163 cmd->sc_data_direction = DMA_TO_DEVICE; 1164 else 1165 cmd->sc_data_direction = DMA_FROM_DEVICE; 1166 1167 cmd->transfersize = blk_rq_bytes(req); 1168 cmd->allowed = req->retries; 1169 return BLKPREP_OK; 1170 } 1171 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd); 1172 1173 /* 1174 * Setup a REQ_TYPE_FS command. These are simple read/write request 1175 * from filesystems that still need to be translated to SCSI CDBs from 1176 * the ULD. 1177 */ 1178 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1179 { 1180 struct scsi_cmnd *cmd; 1181 int ret = scsi_prep_state_check(sdev, req); 1182 1183 if (ret != BLKPREP_OK) 1184 return ret; 1185 1186 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh 1187 && sdev->scsi_dh_data->scsi_dh->prep_fn)) { 1188 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req); 1189 if (ret != BLKPREP_OK) 1190 return ret; 1191 } 1192 1193 /* 1194 * Filesystem requests must transfer data. 1195 */ 1196 BUG_ON(!req->nr_phys_segments); 1197 1198 cmd = scsi_get_cmd_from_req(sdev, req); 1199 if (unlikely(!cmd)) 1200 return BLKPREP_DEFER; 1201 1202 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1203 return scsi_init_io(cmd, GFP_ATOMIC); 1204 } 1205 EXPORT_SYMBOL(scsi_setup_fs_cmnd); 1206 1207 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1208 { 1209 int ret = BLKPREP_OK; 1210 1211 /* 1212 * If the device is not in running state we will reject some 1213 * or all commands. 1214 */ 1215 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1216 switch (sdev->sdev_state) { 1217 case SDEV_OFFLINE: 1218 case SDEV_TRANSPORT_OFFLINE: 1219 /* 1220 * If the device is offline we refuse to process any 1221 * commands. The device must be brought online 1222 * before trying any recovery commands. 1223 */ 1224 sdev_printk(KERN_ERR, sdev, 1225 "rejecting I/O to offline device\n"); 1226 ret = BLKPREP_KILL; 1227 break; 1228 case SDEV_DEL: 1229 /* 1230 * If the device is fully deleted, we refuse to 1231 * process any commands as well. 1232 */ 1233 sdev_printk(KERN_ERR, sdev, 1234 "rejecting I/O to dead device\n"); 1235 ret = BLKPREP_KILL; 1236 break; 1237 case SDEV_QUIESCE: 1238 case SDEV_BLOCK: 1239 case SDEV_CREATED_BLOCK: 1240 /* 1241 * If the devices is blocked we defer normal commands. 1242 */ 1243 if (!(req->cmd_flags & REQ_PREEMPT)) 1244 ret = BLKPREP_DEFER; 1245 break; 1246 default: 1247 /* 1248 * For any other not fully online state we only allow 1249 * special commands. In particular any user initiated 1250 * command is not allowed. 1251 */ 1252 if (!(req->cmd_flags & REQ_PREEMPT)) 1253 ret = BLKPREP_KILL; 1254 break; 1255 } 1256 } 1257 return ret; 1258 } 1259 EXPORT_SYMBOL(scsi_prep_state_check); 1260 1261 int scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1262 { 1263 struct scsi_device *sdev = q->queuedata; 1264 1265 switch (ret) { 1266 case BLKPREP_KILL: 1267 req->errors = DID_NO_CONNECT << 16; 1268 /* release the command and kill it */ 1269 if (req->special) { 1270 struct scsi_cmnd *cmd = req->special; 1271 scsi_release_buffers(cmd); 1272 scsi_put_command(cmd); 1273 req->special = NULL; 1274 } 1275 break; 1276 case BLKPREP_DEFER: 1277 /* 1278 * If we defer, the blk_peek_request() returns NULL, but the 1279 * queue must be restarted, so we schedule a callback to happen 1280 * shortly. 1281 */ 1282 if (sdev->device_busy == 0) 1283 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1284 break; 1285 default: 1286 req->cmd_flags |= REQ_DONTPREP; 1287 } 1288 1289 return ret; 1290 } 1291 EXPORT_SYMBOL(scsi_prep_return); 1292 1293 int scsi_prep_fn(struct request_queue *q, struct request *req) 1294 { 1295 struct scsi_device *sdev = q->queuedata; 1296 int ret = BLKPREP_KILL; 1297 1298 if (req->cmd_type == REQ_TYPE_BLOCK_PC) 1299 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1300 return scsi_prep_return(q, req, ret); 1301 } 1302 EXPORT_SYMBOL(scsi_prep_fn); 1303 1304 /* 1305 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1306 * return 0. 1307 * 1308 * Called with the queue_lock held. 1309 */ 1310 static inline int scsi_dev_queue_ready(struct request_queue *q, 1311 struct scsi_device *sdev) 1312 { 1313 if (sdev->device_busy == 0 && sdev->device_blocked) { 1314 /* 1315 * unblock after device_blocked iterates to zero 1316 */ 1317 if (--sdev->device_blocked == 0) { 1318 SCSI_LOG_MLQUEUE(3, 1319 sdev_printk(KERN_INFO, sdev, 1320 "unblocking device at zero depth\n")); 1321 } else { 1322 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1323 return 0; 1324 } 1325 } 1326 if (scsi_device_is_busy(sdev)) 1327 return 0; 1328 1329 return 1; 1330 } 1331 1332 1333 /* 1334 * scsi_target_queue_ready: checks if there we can send commands to target 1335 * @sdev: scsi device on starget to check. 1336 * 1337 * Called with the host lock held. 1338 */ 1339 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1340 struct scsi_device *sdev) 1341 { 1342 struct scsi_target *starget = scsi_target(sdev); 1343 1344 if (starget->single_lun) { 1345 if (starget->starget_sdev_user && 1346 starget->starget_sdev_user != sdev) 1347 return 0; 1348 starget->starget_sdev_user = sdev; 1349 } 1350 1351 if (starget->target_busy == 0 && starget->target_blocked) { 1352 /* 1353 * unblock after target_blocked iterates to zero 1354 */ 1355 if (--starget->target_blocked == 0) { 1356 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1357 "unblocking target at zero depth\n")); 1358 } else 1359 return 0; 1360 } 1361 1362 if (scsi_target_is_busy(starget)) { 1363 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1364 return 0; 1365 } 1366 1367 return 1; 1368 } 1369 1370 /* 1371 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1372 * return 0. We must end up running the queue again whenever 0 is 1373 * returned, else IO can hang. 1374 * 1375 * Called with host_lock held. 1376 */ 1377 static inline int scsi_host_queue_ready(struct request_queue *q, 1378 struct Scsi_Host *shost, 1379 struct scsi_device *sdev) 1380 { 1381 if (scsi_host_in_recovery(shost)) 1382 return 0; 1383 if (shost->host_busy == 0 && shost->host_blocked) { 1384 /* 1385 * unblock after host_blocked iterates to zero 1386 */ 1387 if (--shost->host_blocked == 0) { 1388 SCSI_LOG_MLQUEUE(3, 1389 printk("scsi%d unblocking host at zero depth\n", 1390 shost->host_no)); 1391 } else { 1392 return 0; 1393 } 1394 } 1395 if (scsi_host_is_busy(shost)) { 1396 if (list_empty(&sdev->starved_entry)) 1397 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1398 return 0; 1399 } 1400 1401 /* We're OK to process the command, so we can't be starved */ 1402 if (!list_empty(&sdev->starved_entry)) 1403 list_del_init(&sdev->starved_entry); 1404 1405 return 1; 1406 } 1407 1408 /* 1409 * Busy state exporting function for request stacking drivers. 1410 * 1411 * For efficiency, no lock is taken to check the busy state of 1412 * shost/starget/sdev, since the returned value is not guaranteed and 1413 * may be changed after request stacking drivers call the function, 1414 * regardless of taking lock or not. 1415 * 1416 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1417 * needs to return 'not busy'. Otherwise, request stacking drivers 1418 * may hold requests forever. 1419 */ 1420 static int scsi_lld_busy(struct request_queue *q) 1421 { 1422 struct scsi_device *sdev = q->queuedata; 1423 struct Scsi_Host *shost; 1424 1425 if (blk_queue_dying(q)) 1426 return 0; 1427 1428 shost = sdev->host; 1429 1430 /* 1431 * Ignore host/starget busy state. 1432 * Since block layer does not have a concept of fairness across 1433 * multiple queues, congestion of host/starget needs to be handled 1434 * in SCSI layer. 1435 */ 1436 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1437 return 1; 1438 1439 return 0; 1440 } 1441 1442 /* 1443 * Kill a request for a dead device 1444 */ 1445 static void scsi_kill_request(struct request *req, struct request_queue *q) 1446 { 1447 struct scsi_cmnd *cmd = req->special; 1448 struct scsi_device *sdev; 1449 struct scsi_target *starget; 1450 struct Scsi_Host *shost; 1451 1452 blk_start_request(req); 1453 1454 scmd_printk(KERN_INFO, cmd, "killing request\n"); 1455 1456 sdev = cmd->device; 1457 starget = scsi_target(sdev); 1458 shost = sdev->host; 1459 scsi_init_cmd_errh(cmd); 1460 cmd->result = DID_NO_CONNECT << 16; 1461 atomic_inc(&cmd->device->iorequest_cnt); 1462 1463 /* 1464 * SCSI request completion path will do scsi_device_unbusy(), 1465 * bump busy counts. To bump the counters, we need to dance 1466 * with the locks as normal issue path does. 1467 */ 1468 sdev->device_busy++; 1469 spin_unlock(sdev->request_queue->queue_lock); 1470 spin_lock(shost->host_lock); 1471 shost->host_busy++; 1472 starget->target_busy++; 1473 spin_unlock(shost->host_lock); 1474 spin_lock(sdev->request_queue->queue_lock); 1475 1476 blk_complete_request(req); 1477 } 1478 1479 static void scsi_softirq_done(struct request *rq) 1480 { 1481 struct scsi_cmnd *cmd = rq->special; 1482 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1483 int disposition; 1484 1485 INIT_LIST_HEAD(&cmd->eh_entry); 1486 1487 atomic_inc(&cmd->device->iodone_cnt); 1488 if (cmd->result) 1489 atomic_inc(&cmd->device->ioerr_cnt); 1490 1491 disposition = scsi_decide_disposition(cmd); 1492 if (disposition != SUCCESS && 1493 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1494 sdev_printk(KERN_ERR, cmd->device, 1495 "timing out command, waited %lus\n", 1496 wait_for/HZ); 1497 disposition = SUCCESS; 1498 } 1499 1500 scsi_log_completion(cmd, disposition); 1501 1502 switch (disposition) { 1503 case SUCCESS: 1504 scsi_finish_command(cmd); 1505 break; 1506 case NEEDS_RETRY: 1507 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1508 break; 1509 case ADD_TO_MLQUEUE: 1510 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1511 break; 1512 default: 1513 if (!scsi_eh_scmd_add(cmd, 0)) 1514 scsi_finish_command(cmd); 1515 } 1516 } 1517 1518 /* 1519 * Function: scsi_request_fn() 1520 * 1521 * Purpose: Main strategy routine for SCSI. 1522 * 1523 * Arguments: q - Pointer to actual queue. 1524 * 1525 * Returns: Nothing 1526 * 1527 * Lock status: IO request lock assumed to be held when called. 1528 */ 1529 static void scsi_request_fn(struct request_queue *q) 1530 { 1531 struct scsi_device *sdev = q->queuedata; 1532 struct Scsi_Host *shost; 1533 struct scsi_cmnd *cmd; 1534 struct request *req; 1535 1536 if(!get_device(&sdev->sdev_gendev)) 1537 /* We must be tearing the block queue down already */ 1538 return; 1539 1540 /* 1541 * To start with, we keep looping until the queue is empty, or until 1542 * the host is no longer able to accept any more requests. 1543 */ 1544 shost = sdev->host; 1545 for (;;) { 1546 int rtn; 1547 /* 1548 * get next queueable request. We do this early to make sure 1549 * that the request is fully prepared even if we cannot 1550 * accept it. 1551 */ 1552 req = blk_peek_request(q); 1553 if (!req || !scsi_dev_queue_ready(q, sdev)) 1554 break; 1555 1556 if (unlikely(!scsi_device_online(sdev))) { 1557 sdev_printk(KERN_ERR, sdev, 1558 "rejecting I/O to offline device\n"); 1559 scsi_kill_request(req, q); 1560 continue; 1561 } 1562 1563 1564 /* 1565 * Remove the request from the request list. 1566 */ 1567 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1568 blk_start_request(req); 1569 sdev->device_busy++; 1570 1571 spin_unlock(q->queue_lock); 1572 cmd = req->special; 1573 if (unlikely(cmd == NULL)) { 1574 printk(KERN_CRIT "impossible request in %s.\n" 1575 "please mail a stack trace to " 1576 "linux-scsi@vger.kernel.org\n", 1577 __func__); 1578 blk_dump_rq_flags(req, "foo"); 1579 BUG(); 1580 } 1581 spin_lock(shost->host_lock); 1582 1583 /* 1584 * We hit this when the driver is using a host wide 1585 * tag map. For device level tag maps the queue_depth check 1586 * in the device ready fn would prevent us from trying 1587 * to allocate a tag. Since the map is a shared host resource 1588 * we add the dev to the starved list so it eventually gets 1589 * a run when a tag is freed. 1590 */ 1591 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) { 1592 if (list_empty(&sdev->starved_entry)) 1593 list_add_tail(&sdev->starved_entry, 1594 &shost->starved_list); 1595 goto not_ready; 1596 } 1597 1598 if (!scsi_target_queue_ready(shost, sdev)) 1599 goto not_ready; 1600 1601 if (!scsi_host_queue_ready(q, shost, sdev)) 1602 goto not_ready; 1603 1604 scsi_target(sdev)->target_busy++; 1605 shost->host_busy++; 1606 1607 /* 1608 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1609 * take the lock again. 1610 */ 1611 spin_unlock_irq(shost->host_lock); 1612 1613 /* 1614 * Finally, initialize any error handling parameters, and set up 1615 * the timers for timeouts. 1616 */ 1617 scsi_init_cmd_errh(cmd); 1618 1619 /* 1620 * Dispatch the command to the low-level driver. 1621 */ 1622 rtn = scsi_dispatch_cmd(cmd); 1623 spin_lock_irq(q->queue_lock); 1624 if (rtn) 1625 goto out_delay; 1626 } 1627 1628 goto out; 1629 1630 not_ready: 1631 spin_unlock_irq(shost->host_lock); 1632 1633 /* 1634 * lock q, handle tag, requeue req, and decrement device_busy. We 1635 * must return with queue_lock held. 1636 * 1637 * Decrementing device_busy without checking it is OK, as all such 1638 * cases (host limits or settings) should run the queue at some 1639 * later time. 1640 */ 1641 spin_lock_irq(q->queue_lock); 1642 blk_requeue_request(q, req); 1643 sdev->device_busy--; 1644 out_delay: 1645 if (sdev->device_busy == 0) 1646 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1647 out: 1648 /* must be careful here...if we trigger the ->remove() function 1649 * we cannot be holding the q lock */ 1650 spin_unlock_irq(q->queue_lock); 1651 put_device(&sdev->sdev_gendev); 1652 spin_lock_irq(q->queue_lock); 1653 } 1654 1655 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1656 { 1657 struct device *host_dev; 1658 u64 bounce_limit = 0xffffffff; 1659 1660 if (shost->unchecked_isa_dma) 1661 return BLK_BOUNCE_ISA; 1662 /* 1663 * Platforms with virtual-DMA translation 1664 * hardware have no practical limit. 1665 */ 1666 if (!PCI_DMA_BUS_IS_PHYS) 1667 return BLK_BOUNCE_ANY; 1668 1669 host_dev = scsi_get_device(shost); 1670 if (host_dev && host_dev->dma_mask) 1671 bounce_limit = *host_dev->dma_mask; 1672 1673 return bounce_limit; 1674 } 1675 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1676 1677 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1678 request_fn_proc *request_fn) 1679 { 1680 struct request_queue *q; 1681 struct device *dev = shost->dma_dev; 1682 1683 q = blk_init_queue(request_fn, NULL); 1684 if (!q) 1685 return NULL; 1686 1687 /* 1688 * this limit is imposed by hardware restrictions 1689 */ 1690 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1691 SCSI_MAX_SG_CHAIN_SEGMENTS)); 1692 1693 if (scsi_host_prot_dma(shost)) { 1694 shost->sg_prot_tablesize = 1695 min_not_zero(shost->sg_prot_tablesize, 1696 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1697 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1698 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1699 } 1700 1701 blk_queue_max_hw_sectors(q, shost->max_sectors); 1702 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1703 blk_queue_segment_boundary(q, shost->dma_boundary); 1704 dma_set_seg_boundary(dev, shost->dma_boundary); 1705 1706 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 1707 1708 if (!shost->use_clustering) 1709 q->limits.cluster = 0; 1710 1711 /* 1712 * set a reasonable default alignment on word boundaries: the 1713 * host and device may alter it using 1714 * blk_queue_update_dma_alignment() later. 1715 */ 1716 blk_queue_dma_alignment(q, 0x03); 1717 1718 return q; 1719 } 1720 EXPORT_SYMBOL(__scsi_alloc_queue); 1721 1722 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1723 { 1724 struct request_queue *q; 1725 1726 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1727 if (!q) 1728 return NULL; 1729 1730 blk_queue_prep_rq(q, scsi_prep_fn); 1731 blk_queue_softirq_done(q, scsi_softirq_done); 1732 blk_queue_rq_timed_out(q, scsi_times_out); 1733 blk_queue_lld_busy(q, scsi_lld_busy); 1734 return q; 1735 } 1736 1737 /* 1738 * Function: scsi_block_requests() 1739 * 1740 * Purpose: Utility function used by low-level drivers to prevent further 1741 * commands from being queued to the device. 1742 * 1743 * Arguments: shost - Host in question 1744 * 1745 * Returns: Nothing 1746 * 1747 * Lock status: No locks are assumed held. 1748 * 1749 * Notes: There is no timer nor any other means by which the requests 1750 * get unblocked other than the low-level driver calling 1751 * scsi_unblock_requests(). 1752 */ 1753 void scsi_block_requests(struct Scsi_Host *shost) 1754 { 1755 shost->host_self_blocked = 1; 1756 } 1757 EXPORT_SYMBOL(scsi_block_requests); 1758 1759 /* 1760 * Function: scsi_unblock_requests() 1761 * 1762 * Purpose: Utility function used by low-level drivers to allow further 1763 * commands from being queued to the device. 1764 * 1765 * Arguments: shost - Host in question 1766 * 1767 * Returns: Nothing 1768 * 1769 * Lock status: No locks are assumed held. 1770 * 1771 * Notes: There is no timer nor any other means by which the requests 1772 * get unblocked other than the low-level driver calling 1773 * scsi_unblock_requests(). 1774 * 1775 * This is done as an API function so that changes to the 1776 * internals of the scsi mid-layer won't require wholesale 1777 * changes to drivers that use this feature. 1778 */ 1779 void scsi_unblock_requests(struct Scsi_Host *shost) 1780 { 1781 shost->host_self_blocked = 0; 1782 scsi_run_host_queues(shost); 1783 } 1784 EXPORT_SYMBOL(scsi_unblock_requests); 1785 1786 int __init scsi_init_queue(void) 1787 { 1788 int i; 1789 1790 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1791 sizeof(struct scsi_data_buffer), 1792 0, 0, NULL); 1793 if (!scsi_sdb_cache) { 1794 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1795 return -ENOMEM; 1796 } 1797 1798 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1799 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1800 int size = sgp->size * sizeof(struct scatterlist); 1801 1802 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1803 SLAB_HWCACHE_ALIGN, NULL); 1804 if (!sgp->slab) { 1805 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1806 sgp->name); 1807 goto cleanup_sdb; 1808 } 1809 1810 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1811 sgp->slab); 1812 if (!sgp->pool) { 1813 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1814 sgp->name); 1815 goto cleanup_sdb; 1816 } 1817 } 1818 1819 return 0; 1820 1821 cleanup_sdb: 1822 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1823 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1824 if (sgp->pool) 1825 mempool_destroy(sgp->pool); 1826 if (sgp->slab) 1827 kmem_cache_destroy(sgp->slab); 1828 } 1829 kmem_cache_destroy(scsi_sdb_cache); 1830 1831 return -ENOMEM; 1832 } 1833 1834 void scsi_exit_queue(void) 1835 { 1836 int i; 1837 1838 kmem_cache_destroy(scsi_sdb_cache); 1839 1840 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1841 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1842 mempool_destroy(sgp->pool); 1843 kmem_cache_destroy(sgp->slab); 1844 } 1845 } 1846 1847 /** 1848 * scsi_mode_select - issue a mode select 1849 * @sdev: SCSI device to be queried 1850 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1851 * @sp: Save page bit (0 == don't save, 1 == save) 1852 * @modepage: mode page being requested 1853 * @buffer: request buffer (may not be smaller than eight bytes) 1854 * @len: length of request buffer. 1855 * @timeout: command timeout 1856 * @retries: number of retries before failing 1857 * @data: returns a structure abstracting the mode header data 1858 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1859 * must be SCSI_SENSE_BUFFERSIZE big. 1860 * 1861 * Returns zero if successful; negative error number or scsi 1862 * status on error 1863 * 1864 */ 1865 int 1866 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1867 unsigned char *buffer, int len, int timeout, int retries, 1868 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1869 { 1870 unsigned char cmd[10]; 1871 unsigned char *real_buffer; 1872 int ret; 1873 1874 memset(cmd, 0, sizeof(cmd)); 1875 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1876 1877 if (sdev->use_10_for_ms) { 1878 if (len > 65535) 1879 return -EINVAL; 1880 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1881 if (!real_buffer) 1882 return -ENOMEM; 1883 memcpy(real_buffer + 8, buffer, len); 1884 len += 8; 1885 real_buffer[0] = 0; 1886 real_buffer[1] = 0; 1887 real_buffer[2] = data->medium_type; 1888 real_buffer[3] = data->device_specific; 1889 real_buffer[4] = data->longlba ? 0x01 : 0; 1890 real_buffer[5] = 0; 1891 real_buffer[6] = data->block_descriptor_length >> 8; 1892 real_buffer[7] = data->block_descriptor_length; 1893 1894 cmd[0] = MODE_SELECT_10; 1895 cmd[7] = len >> 8; 1896 cmd[8] = len; 1897 } else { 1898 if (len > 255 || data->block_descriptor_length > 255 || 1899 data->longlba) 1900 return -EINVAL; 1901 1902 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1903 if (!real_buffer) 1904 return -ENOMEM; 1905 memcpy(real_buffer + 4, buffer, len); 1906 len += 4; 1907 real_buffer[0] = 0; 1908 real_buffer[1] = data->medium_type; 1909 real_buffer[2] = data->device_specific; 1910 real_buffer[3] = data->block_descriptor_length; 1911 1912 1913 cmd[0] = MODE_SELECT; 1914 cmd[4] = len; 1915 } 1916 1917 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 1918 sshdr, timeout, retries, NULL); 1919 kfree(real_buffer); 1920 return ret; 1921 } 1922 EXPORT_SYMBOL_GPL(scsi_mode_select); 1923 1924 /** 1925 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 1926 * @sdev: SCSI device to be queried 1927 * @dbd: set if mode sense will allow block descriptors to be returned 1928 * @modepage: mode page being requested 1929 * @buffer: request buffer (may not be smaller than eight bytes) 1930 * @len: length of request buffer. 1931 * @timeout: command timeout 1932 * @retries: number of retries before failing 1933 * @data: returns a structure abstracting the mode header data 1934 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1935 * must be SCSI_SENSE_BUFFERSIZE big. 1936 * 1937 * Returns zero if unsuccessful, or the header offset (either 4 1938 * or 8 depending on whether a six or ten byte command was 1939 * issued) if successful. 1940 */ 1941 int 1942 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 1943 unsigned char *buffer, int len, int timeout, int retries, 1944 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1945 { 1946 unsigned char cmd[12]; 1947 int use_10_for_ms; 1948 int header_length; 1949 int result; 1950 struct scsi_sense_hdr my_sshdr; 1951 1952 memset(data, 0, sizeof(*data)); 1953 memset(&cmd[0], 0, 12); 1954 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 1955 cmd[2] = modepage; 1956 1957 /* caller might not be interested in sense, but we need it */ 1958 if (!sshdr) 1959 sshdr = &my_sshdr; 1960 1961 retry: 1962 use_10_for_ms = sdev->use_10_for_ms; 1963 1964 if (use_10_for_ms) { 1965 if (len < 8) 1966 len = 8; 1967 1968 cmd[0] = MODE_SENSE_10; 1969 cmd[8] = len; 1970 header_length = 8; 1971 } else { 1972 if (len < 4) 1973 len = 4; 1974 1975 cmd[0] = MODE_SENSE; 1976 cmd[4] = len; 1977 header_length = 4; 1978 } 1979 1980 memset(buffer, 0, len); 1981 1982 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 1983 sshdr, timeout, retries, NULL); 1984 1985 /* This code looks awful: what it's doing is making sure an 1986 * ILLEGAL REQUEST sense return identifies the actual command 1987 * byte as the problem. MODE_SENSE commands can return 1988 * ILLEGAL REQUEST if the code page isn't supported */ 1989 1990 if (use_10_for_ms && !scsi_status_is_good(result) && 1991 (driver_byte(result) & DRIVER_SENSE)) { 1992 if (scsi_sense_valid(sshdr)) { 1993 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 1994 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 1995 /* 1996 * Invalid command operation code 1997 */ 1998 sdev->use_10_for_ms = 0; 1999 goto retry; 2000 } 2001 } 2002 } 2003 2004 if(scsi_status_is_good(result)) { 2005 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2006 (modepage == 6 || modepage == 8))) { 2007 /* Initio breakage? */ 2008 header_length = 0; 2009 data->length = 13; 2010 data->medium_type = 0; 2011 data->device_specific = 0; 2012 data->longlba = 0; 2013 data->block_descriptor_length = 0; 2014 } else if(use_10_for_ms) { 2015 data->length = buffer[0]*256 + buffer[1] + 2; 2016 data->medium_type = buffer[2]; 2017 data->device_specific = buffer[3]; 2018 data->longlba = buffer[4] & 0x01; 2019 data->block_descriptor_length = buffer[6]*256 2020 + buffer[7]; 2021 } else { 2022 data->length = buffer[0] + 1; 2023 data->medium_type = buffer[1]; 2024 data->device_specific = buffer[2]; 2025 data->block_descriptor_length = buffer[3]; 2026 } 2027 data->header_length = header_length; 2028 } 2029 2030 return result; 2031 } 2032 EXPORT_SYMBOL(scsi_mode_sense); 2033 2034 /** 2035 * scsi_test_unit_ready - test if unit is ready 2036 * @sdev: scsi device to change the state of. 2037 * @timeout: command timeout 2038 * @retries: number of retries before failing 2039 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 2040 * returning sense. Make sure that this is cleared before passing 2041 * in. 2042 * 2043 * Returns zero if unsuccessful or an error if TUR failed. For 2044 * removable media, UNIT_ATTENTION sets ->changed flag. 2045 **/ 2046 int 2047 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2048 struct scsi_sense_hdr *sshdr_external) 2049 { 2050 char cmd[] = { 2051 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2052 }; 2053 struct scsi_sense_hdr *sshdr; 2054 int result; 2055 2056 if (!sshdr_external) 2057 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 2058 else 2059 sshdr = sshdr_external; 2060 2061 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2062 do { 2063 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2064 timeout, retries, NULL); 2065 if (sdev->removable && scsi_sense_valid(sshdr) && 2066 sshdr->sense_key == UNIT_ATTENTION) 2067 sdev->changed = 1; 2068 } while (scsi_sense_valid(sshdr) && 2069 sshdr->sense_key == UNIT_ATTENTION && --retries); 2070 2071 if (!sshdr_external) 2072 kfree(sshdr); 2073 return result; 2074 } 2075 EXPORT_SYMBOL(scsi_test_unit_ready); 2076 2077 /** 2078 * scsi_device_set_state - Take the given device through the device state model. 2079 * @sdev: scsi device to change the state of. 2080 * @state: state to change to. 2081 * 2082 * Returns zero if unsuccessful or an error if the requested 2083 * transition is illegal. 2084 */ 2085 int 2086 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2087 { 2088 enum scsi_device_state oldstate = sdev->sdev_state; 2089 2090 if (state == oldstate) 2091 return 0; 2092 2093 switch (state) { 2094 case SDEV_CREATED: 2095 switch (oldstate) { 2096 case SDEV_CREATED_BLOCK: 2097 break; 2098 default: 2099 goto illegal; 2100 } 2101 break; 2102 2103 case SDEV_RUNNING: 2104 switch (oldstate) { 2105 case SDEV_CREATED: 2106 case SDEV_OFFLINE: 2107 case SDEV_TRANSPORT_OFFLINE: 2108 case SDEV_QUIESCE: 2109 case SDEV_BLOCK: 2110 break; 2111 default: 2112 goto illegal; 2113 } 2114 break; 2115 2116 case SDEV_QUIESCE: 2117 switch (oldstate) { 2118 case SDEV_RUNNING: 2119 case SDEV_OFFLINE: 2120 case SDEV_TRANSPORT_OFFLINE: 2121 break; 2122 default: 2123 goto illegal; 2124 } 2125 break; 2126 2127 case SDEV_OFFLINE: 2128 case SDEV_TRANSPORT_OFFLINE: 2129 switch (oldstate) { 2130 case SDEV_CREATED: 2131 case SDEV_RUNNING: 2132 case SDEV_QUIESCE: 2133 case SDEV_BLOCK: 2134 break; 2135 default: 2136 goto illegal; 2137 } 2138 break; 2139 2140 case SDEV_BLOCK: 2141 switch (oldstate) { 2142 case SDEV_RUNNING: 2143 case SDEV_CREATED_BLOCK: 2144 break; 2145 default: 2146 goto illegal; 2147 } 2148 break; 2149 2150 case SDEV_CREATED_BLOCK: 2151 switch (oldstate) { 2152 case SDEV_CREATED: 2153 break; 2154 default: 2155 goto illegal; 2156 } 2157 break; 2158 2159 case SDEV_CANCEL: 2160 switch (oldstate) { 2161 case SDEV_CREATED: 2162 case SDEV_RUNNING: 2163 case SDEV_QUIESCE: 2164 case SDEV_OFFLINE: 2165 case SDEV_TRANSPORT_OFFLINE: 2166 case SDEV_BLOCK: 2167 break; 2168 default: 2169 goto illegal; 2170 } 2171 break; 2172 2173 case SDEV_DEL: 2174 switch (oldstate) { 2175 case SDEV_CREATED: 2176 case SDEV_RUNNING: 2177 case SDEV_OFFLINE: 2178 case SDEV_TRANSPORT_OFFLINE: 2179 case SDEV_CANCEL: 2180 break; 2181 default: 2182 goto illegal; 2183 } 2184 break; 2185 2186 } 2187 sdev->sdev_state = state; 2188 return 0; 2189 2190 illegal: 2191 SCSI_LOG_ERROR_RECOVERY(1, 2192 sdev_printk(KERN_ERR, sdev, 2193 "Illegal state transition %s->%s\n", 2194 scsi_device_state_name(oldstate), 2195 scsi_device_state_name(state)) 2196 ); 2197 return -EINVAL; 2198 } 2199 EXPORT_SYMBOL(scsi_device_set_state); 2200 2201 /** 2202 * sdev_evt_emit - emit a single SCSI device uevent 2203 * @sdev: associated SCSI device 2204 * @evt: event to emit 2205 * 2206 * Send a single uevent (scsi_event) to the associated scsi_device. 2207 */ 2208 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2209 { 2210 int idx = 0; 2211 char *envp[3]; 2212 2213 switch (evt->evt_type) { 2214 case SDEV_EVT_MEDIA_CHANGE: 2215 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2216 break; 2217 2218 default: 2219 /* do nothing */ 2220 break; 2221 } 2222 2223 envp[idx++] = NULL; 2224 2225 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2226 } 2227 2228 /** 2229 * sdev_evt_thread - send a uevent for each scsi event 2230 * @work: work struct for scsi_device 2231 * 2232 * Dispatch queued events to their associated scsi_device kobjects 2233 * as uevents. 2234 */ 2235 void scsi_evt_thread(struct work_struct *work) 2236 { 2237 struct scsi_device *sdev; 2238 LIST_HEAD(event_list); 2239 2240 sdev = container_of(work, struct scsi_device, event_work); 2241 2242 while (1) { 2243 struct scsi_event *evt; 2244 struct list_head *this, *tmp; 2245 unsigned long flags; 2246 2247 spin_lock_irqsave(&sdev->list_lock, flags); 2248 list_splice_init(&sdev->event_list, &event_list); 2249 spin_unlock_irqrestore(&sdev->list_lock, flags); 2250 2251 if (list_empty(&event_list)) 2252 break; 2253 2254 list_for_each_safe(this, tmp, &event_list) { 2255 evt = list_entry(this, struct scsi_event, node); 2256 list_del(&evt->node); 2257 scsi_evt_emit(sdev, evt); 2258 kfree(evt); 2259 } 2260 } 2261 } 2262 2263 /** 2264 * sdev_evt_send - send asserted event to uevent thread 2265 * @sdev: scsi_device event occurred on 2266 * @evt: event to send 2267 * 2268 * Assert scsi device event asynchronously. 2269 */ 2270 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2271 { 2272 unsigned long flags; 2273 2274 #if 0 2275 /* FIXME: currently this check eliminates all media change events 2276 * for polled devices. Need to update to discriminate between AN 2277 * and polled events */ 2278 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2279 kfree(evt); 2280 return; 2281 } 2282 #endif 2283 2284 spin_lock_irqsave(&sdev->list_lock, flags); 2285 list_add_tail(&evt->node, &sdev->event_list); 2286 schedule_work(&sdev->event_work); 2287 spin_unlock_irqrestore(&sdev->list_lock, flags); 2288 } 2289 EXPORT_SYMBOL_GPL(sdev_evt_send); 2290 2291 /** 2292 * sdev_evt_alloc - allocate a new scsi event 2293 * @evt_type: type of event to allocate 2294 * @gfpflags: GFP flags for allocation 2295 * 2296 * Allocates and returns a new scsi_event. 2297 */ 2298 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2299 gfp_t gfpflags) 2300 { 2301 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2302 if (!evt) 2303 return NULL; 2304 2305 evt->evt_type = evt_type; 2306 INIT_LIST_HEAD(&evt->node); 2307 2308 /* evt_type-specific initialization, if any */ 2309 switch (evt_type) { 2310 case SDEV_EVT_MEDIA_CHANGE: 2311 default: 2312 /* do nothing */ 2313 break; 2314 } 2315 2316 return evt; 2317 } 2318 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2319 2320 /** 2321 * sdev_evt_send_simple - send asserted event to uevent thread 2322 * @sdev: scsi_device event occurred on 2323 * @evt_type: type of event to send 2324 * @gfpflags: GFP flags for allocation 2325 * 2326 * Assert scsi device event asynchronously, given an event type. 2327 */ 2328 void sdev_evt_send_simple(struct scsi_device *sdev, 2329 enum scsi_device_event evt_type, gfp_t gfpflags) 2330 { 2331 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2332 if (!evt) { 2333 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2334 evt_type); 2335 return; 2336 } 2337 2338 sdev_evt_send(sdev, evt); 2339 } 2340 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2341 2342 /** 2343 * scsi_device_quiesce - Block user issued commands. 2344 * @sdev: scsi device to quiesce. 2345 * 2346 * This works by trying to transition to the SDEV_QUIESCE state 2347 * (which must be a legal transition). When the device is in this 2348 * state, only special requests will be accepted, all others will 2349 * be deferred. Since special requests may also be requeued requests, 2350 * a successful return doesn't guarantee the device will be 2351 * totally quiescent. 2352 * 2353 * Must be called with user context, may sleep. 2354 * 2355 * Returns zero if unsuccessful or an error if not. 2356 */ 2357 int 2358 scsi_device_quiesce(struct scsi_device *sdev) 2359 { 2360 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2361 if (err) 2362 return err; 2363 2364 scsi_run_queue(sdev->request_queue); 2365 while (sdev->device_busy) { 2366 msleep_interruptible(200); 2367 scsi_run_queue(sdev->request_queue); 2368 } 2369 return 0; 2370 } 2371 EXPORT_SYMBOL(scsi_device_quiesce); 2372 2373 /** 2374 * scsi_device_resume - Restart user issued commands to a quiesced device. 2375 * @sdev: scsi device to resume. 2376 * 2377 * Moves the device from quiesced back to running and restarts the 2378 * queues. 2379 * 2380 * Must be called with user context, may sleep. 2381 */ 2382 void scsi_device_resume(struct scsi_device *sdev) 2383 { 2384 /* check if the device state was mutated prior to resume, and if 2385 * so assume the state is being managed elsewhere (for example 2386 * device deleted during suspend) 2387 */ 2388 if (sdev->sdev_state != SDEV_QUIESCE || 2389 scsi_device_set_state(sdev, SDEV_RUNNING)) 2390 return; 2391 scsi_run_queue(sdev->request_queue); 2392 } 2393 EXPORT_SYMBOL(scsi_device_resume); 2394 2395 static void 2396 device_quiesce_fn(struct scsi_device *sdev, void *data) 2397 { 2398 scsi_device_quiesce(sdev); 2399 } 2400 2401 void 2402 scsi_target_quiesce(struct scsi_target *starget) 2403 { 2404 starget_for_each_device(starget, NULL, device_quiesce_fn); 2405 } 2406 EXPORT_SYMBOL(scsi_target_quiesce); 2407 2408 static void 2409 device_resume_fn(struct scsi_device *sdev, void *data) 2410 { 2411 scsi_device_resume(sdev); 2412 } 2413 2414 void 2415 scsi_target_resume(struct scsi_target *starget) 2416 { 2417 starget_for_each_device(starget, NULL, device_resume_fn); 2418 } 2419 EXPORT_SYMBOL(scsi_target_resume); 2420 2421 /** 2422 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2423 * @sdev: device to block 2424 * 2425 * Block request made by scsi lld's to temporarily stop all 2426 * scsi commands on the specified device. Called from interrupt 2427 * or normal process context. 2428 * 2429 * Returns zero if successful or error if not 2430 * 2431 * Notes: 2432 * This routine transitions the device to the SDEV_BLOCK state 2433 * (which must be a legal transition). When the device is in this 2434 * state, all commands are deferred until the scsi lld reenables 2435 * the device with scsi_device_unblock or device_block_tmo fires. 2436 */ 2437 int 2438 scsi_internal_device_block(struct scsi_device *sdev) 2439 { 2440 struct request_queue *q = sdev->request_queue; 2441 unsigned long flags; 2442 int err = 0; 2443 2444 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2445 if (err) { 2446 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2447 2448 if (err) 2449 return err; 2450 } 2451 2452 /* 2453 * The device has transitioned to SDEV_BLOCK. Stop the 2454 * block layer from calling the midlayer with this device's 2455 * request queue. 2456 */ 2457 spin_lock_irqsave(q->queue_lock, flags); 2458 blk_stop_queue(q); 2459 spin_unlock_irqrestore(q->queue_lock, flags); 2460 2461 return 0; 2462 } 2463 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2464 2465 /** 2466 * scsi_internal_device_unblock - resume a device after a block request 2467 * @sdev: device to resume 2468 * @new_state: state to set devices to after unblocking 2469 * 2470 * Called by scsi lld's or the midlayer to restart the device queue 2471 * for the previously suspended scsi device. Called from interrupt or 2472 * normal process context. 2473 * 2474 * Returns zero if successful or error if not. 2475 * 2476 * Notes: 2477 * This routine transitions the device to the SDEV_RUNNING state 2478 * or to one of the offline states (which must be a legal transition) 2479 * allowing the midlayer to goose the queue for this device. 2480 */ 2481 int 2482 scsi_internal_device_unblock(struct scsi_device *sdev, 2483 enum scsi_device_state new_state) 2484 { 2485 struct request_queue *q = sdev->request_queue; 2486 unsigned long flags; 2487 2488 /* 2489 * Try to transition the scsi device to SDEV_RUNNING or one of the 2490 * offlined states and goose the device queue if successful. 2491 */ 2492 if ((sdev->sdev_state == SDEV_BLOCK) || 2493 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE)) 2494 sdev->sdev_state = new_state; 2495 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) { 2496 if (new_state == SDEV_TRANSPORT_OFFLINE || 2497 new_state == SDEV_OFFLINE) 2498 sdev->sdev_state = new_state; 2499 else 2500 sdev->sdev_state = SDEV_CREATED; 2501 } else if (sdev->sdev_state != SDEV_CANCEL && 2502 sdev->sdev_state != SDEV_OFFLINE) 2503 return -EINVAL; 2504 2505 spin_lock_irqsave(q->queue_lock, flags); 2506 blk_start_queue(q); 2507 spin_unlock_irqrestore(q->queue_lock, flags); 2508 2509 return 0; 2510 } 2511 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2512 2513 static void 2514 device_block(struct scsi_device *sdev, void *data) 2515 { 2516 scsi_internal_device_block(sdev); 2517 } 2518 2519 static int 2520 target_block(struct device *dev, void *data) 2521 { 2522 if (scsi_is_target_device(dev)) 2523 starget_for_each_device(to_scsi_target(dev), NULL, 2524 device_block); 2525 return 0; 2526 } 2527 2528 void 2529 scsi_target_block(struct device *dev) 2530 { 2531 if (scsi_is_target_device(dev)) 2532 starget_for_each_device(to_scsi_target(dev), NULL, 2533 device_block); 2534 else 2535 device_for_each_child(dev, NULL, target_block); 2536 } 2537 EXPORT_SYMBOL_GPL(scsi_target_block); 2538 2539 static void 2540 device_unblock(struct scsi_device *sdev, void *data) 2541 { 2542 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2543 } 2544 2545 static int 2546 target_unblock(struct device *dev, void *data) 2547 { 2548 if (scsi_is_target_device(dev)) 2549 starget_for_each_device(to_scsi_target(dev), data, 2550 device_unblock); 2551 return 0; 2552 } 2553 2554 void 2555 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2556 { 2557 if (scsi_is_target_device(dev)) 2558 starget_for_each_device(to_scsi_target(dev), &new_state, 2559 device_unblock); 2560 else 2561 device_for_each_child(dev, &new_state, target_unblock); 2562 } 2563 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2564 2565 /** 2566 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2567 * @sgl: scatter-gather list 2568 * @sg_count: number of segments in sg 2569 * @offset: offset in bytes into sg, on return offset into the mapped area 2570 * @len: bytes to map, on return number of bytes mapped 2571 * 2572 * Returns virtual address of the start of the mapped page 2573 */ 2574 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2575 size_t *offset, size_t *len) 2576 { 2577 int i; 2578 size_t sg_len = 0, len_complete = 0; 2579 struct scatterlist *sg; 2580 struct page *page; 2581 2582 WARN_ON(!irqs_disabled()); 2583 2584 for_each_sg(sgl, sg, sg_count, i) { 2585 len_complete = sg_len; /* Complete sg-entries */ 2586 sg_len += sg->length; 2587 if (sg_len > *offset) 2588 break; 2589 } 2590 2591 if (unlikely(i == sg_count)) { 2592 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2593 "elements %d\n", 2594 __func__, sg_len, *offset, sg_count); 2595 WARN_ON(1); 2596 return NULL; 2597 } 2598 2599 /* Offset starting from the beginning of first page in this sg-entry */ 2600 *offset = *offset - len_complete + sg->offset; 2601 2602 /* Assumption: contiguous pages can be accessed as "page + i" */ 2603 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2604 *offset &= ~PAGE_MASK; 2605 2606 /* Bytes in this sg-entry from *offset to the end of the page */ 2607 sg_len = PAGE_SIZE - *offset; 2608 if (*len > sg_len) 2609 *len = sg_len; 2610 2611 return kmap_atomic(page); 2612 } 2613 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2614 2615 /** 2616 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2617 * @virt: virtual address to be unmapped 2618 */ 2619 void scsi_kunmap_atomic_sg(void *virt) 2620 { 2621 kunmap_atomic(virt); 2622 } 2623 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2624 2625 void sdev_disable_disk_events(struct scsi_device *sdev) 2626 { 2627 atomic_inc(&sdev->disk_events_disable_depth); 2628 } 2629 EXPORT_SYMBOL(sdev_disable_disk_events); 2630 2631 void sdev_enable_disk_events(struct scsi_device *sdev) 2632 { 2633 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2634 return; 2635 atomic_dec(&sdev->disk_events_disable_depth); 2636 } 2637 EXPORT_SYMBOL(sdev_enable_disk_events); 2638