xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 249592bf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sense_cache;
56 static DEFINE_MUTEX(scsi_sense_cache_mutex);
57 
58 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
59 
60 int scsi_init_sense_cache(struct Scsi_Host *shost)
61 {
62 	int ret = 0;
63 
64 	mutex_lock(&scsi_sense_cache_mutex);
65 	if (!scsi_sense_cache) {
66 		scsi_sense_cache =
67 			kmem_cache_create_usercopy("scsi_sense_cache",
68 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
69 				0, SCSI_SENSE_BUFFERSIZE, NULL);
70 		if (!scsi_sense_cache)
71 			ret = -ENOMEM;
72 	}
73 	mutex_unlock(&scsi_sense_cache_mutex);
74 	return ret;
75 }
76 
77 /*
78  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
79  * not change behaviour from the previous unplug mechanism, experimentation
80  * may prove this needs changing.
81  */
82 #define SCSI_QUEUE_DELAY	3
83 
84 static void
85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
86 {
87 	struct Scsi_Host *host = cmd->device->host;
88 	struct scsi_device *device = cmd->device;
89 	struct scsi_target *starget = scsi_target(device);
90 
91 	/*
92 	 * Set the appropriate busy bit for the device/host.
93 	 *
94 	 * If the host/device isn't busy, assume that something actually
95 	 * completed, and that we should be able to queue a command now.
96 	 *
97 	 * Note that the prior mid-layer assumption that any host could
98 	 * always queue at least one command is now broken.  The mid-layer
99 	 * will implement a user specifiable stall (see
100 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
101 	 * if a command is requeued with no other commands outstanding
102 	 * either for the device or for the host.
103 	 */
104 	switch (reason) {
105 	case SCSI_MLQUEUE_HOST_BUSY:
106 		atomic_set(&host->host_blocked, host->max_host_blocked);
107 		break;
108 	case SCSI_MLQUEUE_DEVICE_BUSY:
109 	case SCSI_MLQUEUE_EH_RETRY:
110 		atomic_set(&device->device_blocked,
111 			   device->max_device_blocked);
112 		break;
113 	case SCSI_MLQUEUE_TARGET_BUSY:
114 		atomic_set(&starget->target_blocked,
115 			   starget->max_target_blocked);
116 		break;
117 	}
118 }
119 
120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
121 {
122 	if (cmd->request->rq_flags & RQF_DONTPREP) {
123 		cmd->request->rq_flags &= ~RQF_DONTPREP;
124 		scsi_mq_uninit_cmd(cmd);
125 	} else {
126 		WARN_ON_ONCE(true);
127 	}
128 	blk_mq_requeue_request(cmd->request, true);
129 }
130 
131 /**
132  * __scsi_queue_insert - private queue insertion
133  * @cmd: The SCSI command being requeued
134  * @reason:  The reason for the requeue
135  * @unbusy: Whether the queue should be unbusied
136  *
137  * This is a private queue insertion.  The public interface
138  * scsi_queue_insert() always assumes the queue should be unbusied
139  * because it's always called before the completion.  This function is
140  * for a requeue after completion, which should only occur in this
141  * file.
142  */
143 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
144 {
145 	struct scsi_device *device = cmd->device;
146 
147 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
148 		"Inserting command %p into mlqueue\n", cmd));
149 
150 	scsi_set_blocked(cmd, reason);
151 
152 	/*
153 	 * Decrement the counters, since these commands are no longer
154 	 * active on the host/device.
155 	 */
156 	if (unbusy)
157 		scsi_device_unbusy(device, cmd);
158 
159 	/*
160 	 * Requeue this command.  It will go before all other commands
161 	 * that are already in the queue. Schedule requeue work under
162 	 * lock such that the kblockd_schedule_work() call happens
163 	 * before blk_cleanup_queue() finishes.
164 	 */
165 	cmd->result = 0;
166 
167 	blk_mq_requeue_request(cmd->request, true);
168 }
169 
170 /**
171  * scsi_queue_insert - Reinsert a command in the queue.
172  * @cmd:    command that we are adding to queue.
173  * @reason: why we are inserting command to queue.
174  *
175  * We do this for one of two cases. Either the host is busy and it cannot accept
176  * any more commands for the time being, or the device returned QUEUE_FULL and
177  * can accept no more commands.
178  *
179  * Context: This could be called either from an interrupt context or a normal
180  * process context.
181  */
182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184 	__scsi_queue_insert(cmd, reason, true);
185 }
186 
187 
188 /**
189  * __scsi_execute - insert request and wait for the result
190  * @sdev:	scsi device
191  * @cmd:	scsi command
192  * @data_direction: data direction
193  * @buffer:	data buffer
194  * @bufflen:	len of buffer
195  * @sense:	optional sense buffer
196  * @sshdr:	optional decoded sense header
197  * @timeout:	request timeout in seconds
198  * @retries:	number of times to retry request
199  * @flags:	flags for ->cmd_flags
200  * @rq_flags:	flags for ->rq_flags
201  * @resid:	optional residual length
202  *
203  * Returns the scsi_cmnd result field if a command was executed, or a negative
204  * Linux error code if we didn't get that far.
205  */
206 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
207 		 int data_direction, void *buffer, unsigned bufflen,
208 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
209 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
210 		 int *resid)
211 {
212 	struct request *req;
213 	struct scsi_request *rq;
214 	int ret = DRIVER_ERROR << 24;
215 
216 	req = blk_get_request(sdev->request_queue,
217 			data_direction == DMA_TO_DEVICE ?
218 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN,
219 			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
220 	if (IS_ERR(req))
221 		return ret;
222 	rq = scsi_req(req);
223 
224 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
225 					buffer, bufflen, GFP_NOIO))
226 		goto out;
227 
228 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
229 	memcpy(rq->cmd, cmd, rq->cmd_len);
230 	rq->retries = retries;
231 	req->timeout = timeout;
232 	req->cmd_flags |= flags;
233 	req->rq_flags |= rq_flags | RQF_QUIET;
234 
235 	/*
236 	 * head injection *required* here otherwise quiesce won't work
237 	 */
238 	blk_execute_rq(NULL, req, 1);
239 
240 	/*
241 	 * Some devices (USB mass-storage in particular) may transfer
242 	 * garbage data together with a residue indicating that the data
243 	 * is invalid.  Prevent the garbage from being misinterpreted
244 	 * and prevent security leaks by zeroing out the excess data.
245 	 */
246 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
247 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
248 
249 	if (resid)
250 		*resid = rq->resid_len;
251 	if (sense && rq->sense_len)
252 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
253 	if (sshdr)
254 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
255 	ret = rq->result;
256  out:
257 	blk_put_request(req);
258 
259 	return ret;
260 }
261 EXPORT_SYMBOL(__scsi_execute);
262 
263 /*
264  * Wake up the error handler if necessary. Avoid as follows that the error
265  * handler is not woken up if host in-flight requests number ==
266  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
267  * with an RCU read lock in this function to ensure that this function in
268  * its entirety either finishes before scsi_eh_scmd_add() increases the
269  * host_failed counter or that it notices the shost state change made by
270  * scsi_eh_scmd_add().
271  */
272 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
273 {
274 	unsigned long flags;
275 
276 	rcu_read_lock();
277 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
278 	if (unlikely(scsi_host_in_recovery(shost))) {
279 		spin_lock_irqsave(shost->host_lock, flags);
280 		if (shost->host_failed || shost->host_eh_scheduled)
281 			scsi_eh_wakeup(shost);
282 		spin_unlock_irqrestore(shost->host_lock, flags);
283 	}
284 	rcu_read_unlock();
285 }
286 
287 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
288 {
289 	struct Scsi_Host *shost = sdev->host;
290 	struct scsi_target *starget = scsi_target(sdev);
291 
292 	scsi_dec_host_busy(shost, cmd);
293 
294 	if (starget->can_queue > 0)
295 		atomic_dec(&starget->target_busy);
296 
297 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
298 	cmd->budget_token = -1;
299 }
300 
301 static void scsi_kick_queue(struct request_queue *q)
302 {
303 	blk_mq_run_hw_queues(q, false);
304 }
305 
306 /*
307  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
308  * and call blk_run_queue for all the scsi_devices on the target -
309  * including current_sdev first.
310  *
311  * Called with *no* scsi locks held.
312  */
313 static void scsi_single_lun_run(struct scsi_device *current_sdev)
314 {
315 	struct Scsi_Host *shost = current_sdev->host;
316 	struct scsi_device *sdev, *tmp;
317 	struct scsi_target *starget = scsi_target(current_sdev);
318 	unsigned long flags;
319 
320 	spin_lock_irqsave(shost->host_lock, flags);
321 	starget->starget_sdev_user = NULL;
322 	spin_unlock_irqrestore(shost->host_lock, flags);
323 
324 	/*
325 	 * Call blk_run_queue for all LUNs on the target, starting with
326 	 * current_sdev. We race with others (to set starget_sdev_user),
327 	 * but in most cases, we will be first. Ideally, each LU on the
328 	 * target would get some limited time or requests on the target.
329 	 */
330 	scsi_kick_queue(current_sdev->request_queue);
331 
332 	spin_lock_irqsave(shost->host_lock, flags);
333 	if (starget->starget_sdev_user)
334 		goto out;
335 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
336 			same_target_siblings) {
337 		if (sdev == current_sdev)
338 			continue;
339 		if (scsi_device_get(sdev))
340 			continue;
341 
342 		spin_unlock_irqrestore(shost->host_lock, flags);
343 		scsi_kick_queue(sdev->request_queue);
344 		spin_lock_irqsave(shost->host_lock, flags);
345 
346 		scsi_device_put(sdev);
347 	}
348  out:
349 	spin_unlock_irqrestore(shost->host_lock, flags);
350 }
351 
352 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
353 {
354 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
355 		return true;
356 	if (atomic_read(&sdev->device_blocked) > 0)
357 		return true;
358 	return false;
359 }
360 
361 static inline bool scsi_target_is_busy(struct scsi_target *starget)
362 {
363 	if (starget->can_queue > 0) {
364 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
365 			return true;
366 		if (atomic_read(&starget->target_blocked) > 0)
367 			return true;
368 	}
369 	return false;
370 }
371 
372 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
373 {
374 	if (atomic_read(&shost->host_blocked) > 0)
375 		return true;
376 	if (shost->host_self_blocked)
377 		return true;
378 	return false;
379 }
380 
381 static void scsi_starved_list_run(struct Scsi_Host *shost)
382 {
383 	LIST_HEAD(starved_list);
384 	struct scsi_device *sdev;
385 	unsigned long flags;
386 
387 	spin_lock_irqsave(shost->host_lock, flags);
388 	list_splice_init(&shost->starved_list, &starved_list);
389 
390 	while (!list_empty(&starved_list)) {
391 		struct request_queue *slq;
392 
393 		/*
394 		 * As long as shost is accepting commands and we have
395 		 * starved queues, call blk_run_queue. scsi_request_fn
396 		 * drops the queue_lock and can add us back to the
397 		 * starved_list.
398 		 *
399 		 * host_lock protects the starved_list and starved_entry.
400 		 * scsi_request_fn must get the host_lock before checking
401 		 * or modifying starved_list or starved_entry.
402 		 */
403 		if (scsi_host_is_busy(shost))
404 			break;
405 
406 		sdev = list_entry(starved_list.next,
407 				  struct scsi_device, starved_entry);
408 		list_del_init(&sdev->starved_entry);
409 		if (scsi_target_is_busy(scsi_target(sdev))) {
410 			list_move_tail(&sdev->starved_entry,
411 				       &shost->starved_list);
412 			continue;
413 		}
414 
415 		/*
416 		 * Once we drop the host lock, a racing scsi_remove_device()
417 		 * call may remove the sdev from the starved list and destroy
418 		 * it and the queue.  Mitigate by taking a reference to the
419 		 * queue and never touching the sdev again after we drop the
420 		 * host lock.  Note: if __scsi_remove_device() invokes
421 		 * blk_cleanup_queue() before the queue is run from this
422 		 * function then blk_run_queue() will return immediately since
423 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
424 		 */
425 		slq = sdev->request_queue;
426 		if (!blk_get_queue(slq))
427 			continue;
428 		spin_unlock_irqrestore(shost->host_lock, flags);
429 
430 		scsi_kick_queue(slq);
431 		blk_put_queue(slq);
432 
433 		spin_lock_irqsave(shost->host_lock, flags);
434 	}
435 	/* put any unprocessed entries back */
436 	list_splice(&starved_list, &shost->starved_list);
437 	spin_unlock_irqrestore(shost->host_lock, flags);
438 }
439 
440 /**
441  * scsi_run_queue - Select a proper request queue to serve next.
442  * @q:  last request's queue
443  *
444  * The previous command was completely finished, start a new one if possible.
445  */
446 static void scsi_run_queue(struct request_queue *q)
447 {
448 	struct scsi_device *sdev = q->queuedata;
449 
450 	if (scsi_target(sdev)->single_lun)
451 		scsi_single_lun_run(sdev);
452 	if (!list_empty(&sdev->host->starved_list))
453 		scsi_starved_list_run(sdev->host);
454 
455 	blk_mq_run_hw_queues(q, false);
456 }
457 
458 void scsi_requeue_run_queue(struct work_struct *work)
459 {
460 	struct scsi_device *sdev;
461 	struct request_queue *q;
462 
463 	sdev = container_of(work, struct scsi_device, requeue_work);
464 	q = sdev->request_queue;
465 	scsi_run_queue(q);
466 }
467 
468 void scsi_run_host_queues(struct Scsi_Host *shost)
469 {
470 	struct scsi_device *sdev;
471 
472 	shost_for_each_device(sdev, shost)
473 		scsi_run_queue(sdev->request_queue);
474 }
475 
476 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
477 {
478 	if (!blk_rq_is_passthrough(cmd->request)) {
479 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
480 
481 		if (drv->uninit_command)
482 			drv->uninit_command(cmd);
483 	}
484 }
485 
486 void scsi_free_sgtables(struct scsi_cmnd *cmd)
487 {
488 	if (cmd->sdb.table.nents)
489 		sg_free_table_chained(&cmd->sdb.table,
490 				SCSI_INLINE_SG_CNT);
491 	if (scsi_prot_sg_count(cmd))
492 		sg_free_table_chained(&cmd->prot_sdb->table,
493 				SCSI_INLINE_PROT_SG_CNT);
494 }
495 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
496 
497 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
498 {
499 	scsi_free_sgtables(cmd);
500 	scsi_uninit_cmd(cmd);
501 }
502 
503 static void scsi_run_queue_async(struct scsi_device *sdev)
504 {
505 	if (scsi_target(sdev)->single_lun ||
506 	    !list_empty(&sdev->host->starved_list)) {
507 		kblockd_schedule_work(&sdev->requeue_work);
508 	} else {
509 		/*
510 		 * smp_mb() present in sbitmap_queue_clear() or implied in
511 		 * .end_io is for ordering writing .device_busy in
512 		 * scsi_device_unbusy() and reading sdev->restarts.
513 		 */
514 		int old = atomic_read(&sdev->restarts);
515 
516 		/*
517 		 * ->restarts has to be kept as non-zero if new budget
518 		 *  contention occurs.
519 		 *
520 		 *  No need to run queue when either another re-run
521 		 *  queue wins in updating ->restarts or a new budget
522 		 *  contention occurs.
523 		 */
524 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
525 			blk_mq_run_hw_queues(sdev->request_queue, true);
526 	}
527 }
528 
529 /* Returns false when no more bytes to process, true if there are more */
530 static bool scsi_end_request(struct request *req, blk_status_t error,
531 		unsigned int bytes)
532 {
533 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
534 	struct scsi_device *sdev = cmd->device;
535 	struct request_queue *q = sdev->request_queue;
536 
537 	if (blk_update_request(req, error, bytes))
538 		return true;
539 
540 	if (blk_queue_add_random(q))
541 		add_disk_randomness(req->rq_disk);
542 
543 	if (!blk_rq_is_scsi(req)) {
544 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
545 		cmd->flags &= ~SCMD_INITIALIZED;
546 	}
547 
548 	/*
549 	 * Calling rcu_barrier() is not necessary here because the
550 	 * SCSI error handler guarantees that the function called by
551 	 * call_rcu() has been called before scsi_end_request() is
552 	 * called.
553 	 */
554 	destroy_rcu_head(&cmd->rcu);
555 
556 	/*
557 	 * In the MQ case the command gets freed by __blk_mq_end_request,
558 	 * so we have to do all cleanup that depends on it earlier.
559 	 *
560 	 * We also can't kick the queues from irq context, so we
561 	 * will have to defer it to a workqueue.
562 	 */
563 	scsi_mq_uninit_cmd(cmd);
564 
565 	/*
566 	 * queue is still alive, so grab the ref for preventing it
567 	 * from being cleaned up during running queue.
568 	 */
569 	percpu_ref_get(&q->q_usage_counter);
570 
571 	__blk_mq_end_request(req, error);
572 
573 	scsi_run_queue_async(sdev);
574 
575 	percpu_ref_put(&q->q_usage_counter);
576 	return false;
577 }
578 
579 /**
580  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
581  * @cmd:	SCSI command
582  * @result:	scsi error code
583  *
584  * Translate a SCSI result code into a blk_status_t value. May reset the host
585  * byte of @cmd->result.
586  */
587 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
588 {
589 	switch (host_byte(result)) {
590 	case DID_OK:
591 		/*
592 		 * Also check the other bytes than the status byte in result
593 		 * to handle the case when a SCSI LLD sets result to
594 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
595 		 */
596 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
597 			return BLK_STS_OK;
598 		return BLK_STS_IOERR;
599 	case DID_TRANSPORT_FAILFAST:
600 	case DID_TRANSPORT_MARGINAL:
601 		return BLK_STS_TRANSPORT;
602 	case DID_TARGET_FAILURE:
603 		set_host_byte(cmd, DID_OK);
604 		return BLK_STS_TARGET;
605 	case DID_NEXUS_FAILURE:
606 		set_host_byte(cmd, DID_OK);
607 		return BLK_STS_NEXUS;
608 	case DID_ALLOC_FAILURE:
609 		set_host_byte(cmd, DID_OK);
610 		return BLK_STS_NOSPC;
611 	case DID_MEDIUM_ERROR:
612 		set_host_byte(cmd, DID_OK);
613 		return BLK_STS_MEDIUM;
614 	default:
615 		return BLK_STS_IOERR;
616 	}
617 }
618 
619 /* Helper for scsi_io_completion() when "reprep" action required. */
620 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
621 				      struct request_queue *q)
622 {
623 	/* A new command will be prepared and issued. */
624 	scsi_mq_requeue_cmd(cmd);
625 }
626 
627 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
628 {
629 	struct request *req = cmd->request;
630 	unsigned long wait_for;
631 
632 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
633 		return false;
634 
635 	wait_for = (cmd->allowed + 1) * req->timeout;
636 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
637 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
638 			    wait_for/HZ);
639 		return true;
640 	}
641 	return false;
642 }
643 
644 /* Helper for scsi_io_completion() when special action required. */
645 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
646 {
647 	struct request_queue *q = cmd->device->request_queue;
648 	struct request *req = cmd->request;
649 	int level = 0;
650 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
651 	      ACTION_DELAYED_RETRY} action;
652 	struct scsi_sense_hdr sshdr;
653 	bool sense_valid;
654 	bool sense_current = true;      /* false implies "deferred sense" */
655 	blk_status_t blk_stat;
656 
657 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
658 	if (sense_valid)
659 		sense_current = !scsi_sense_is_deferred(&sshdr);
660 
661 	blk_stat = scsi_result_to_blk_status(cmd, result);
662 
663 	if (host_byte(result) == DID_RESET) {
664 		/* Third party bus reset or reset for error recovery
665 		 * reasons.  Just retry the command and see what
666 		 * happens.
667 		 */
668 		action = ACTION_RETRY;
669 	} else if (sense_valid && sense_current) {
670 		switch (sshdr.sense_key) {
671 		case UNIT_ATTENTION:
672 			if (cmd->device->removable) {
673 				/* Detected disc change.  Set a bit
674 				 * and quietly refuse further access.
675 				 */
676 				cmd->device->changed = 1;
677 				action = ACTION_FAIL;
678 			} else {
679 				/* Must have been a power glitch, or a
680 				 * bus reset.  Could not have been a
681 				 * media change, so we just retry the
682 				 * command and see what happens.
683 				 */
684 				action = ACTION_RETRY;
685 			}
686 			break;
687 		case ILLEGAL_REQUEST:
688 			/* If we had an ILLEGAL REQUEST returned, then
689 			 * we may have performed an unsupported
690 			 * command.  The only thing this should be
691 			 * would be a ten byte read where only a six
692 			 * byte read was supported.  Also, on a system
693 			 * where READ CAPACITY failed, we may have
694 			 * read past the end of the disk.
695 			 */
696 			if ((cmd->device->use_10_for_rw &&
697 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
698 			    (cmd->cmnd[0] == READ_10 ||
699 			     cmd->cmnd[0] == WRITE_10)) {
700 				/* This will issue a new 6-byte command. */
701 				cmd->device->use_10_for_rw = 0;
702 				action = ACTION_REPREP;
703 			} else if (sshdr.asc == 0x10) /* DIX */ {
704 				action = ACTION_FAIL;
705 				blk_stat = BLK_STS_PROTECTION;
706 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
707 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
708 				action = ACTION_FAIL;
709 				blk_stat = BLK_STS_TARGET;
710 			} else
711 				action = ACTION_FAIL;
712 			break;
713 		case ABORTED_COMMAND:
714 			action = ACTION_FAIL;
715 			if (sshdr.asc == 0x10) /* DIF */
716 				blk_stat = BLK_STS_PROTECTION;
717 			break;
718 		case NOT_READY:
719 			/* If the device is in the process of becoming
720 			 * ready, or has a temporary blockage, retry.
721 			 */
722 			if (sshdr.asc == 0x04) {
723 				switch (sshdr.ascq) {
724 				case 0x01: /* becoming ready */
725 				case 0x04: /* format in progress */
726 				case 0x05: /* rebuild in progress */
727 				case 0x06: /* recalculation in progress */
728 				case 0x07: /* operation in progress */
729 				case 0x08: /* Long write in progress */
730 				case 0x09: /* self test in progress */
731 				case 0x14: /* space allocation in progress */
732 				case 0x1a: /* start stop unit in progress */
733 				case 0x1b: /* sanitize in progress */
734 				case 0x1d: /* configuration in progress */
735 				case 0x24: /* depopulation in progress */
736 					action = ACTION_DELAYED_RETRY;
737 					break;
738 				case 0x0a: /* ALUA state transition */
739 					blk_stat = BLK_STS_AGAIN;
740 					fallthrough;
741 				default:
742 					action = ACTION_FAIL;
743 					break;
744 				}
745 			} else
746 				action = ACTION_FAIL;
747 			break;
748 		case VOLUME_OVERFLOW:
749 			/* See SSC3rXX or current. */
750 			action = ACTION_FAIL;
751 			break;
752 		case DATA_PROTECT:
753 			action = ACTION_FAIL;
754 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
755 			    (sshdr.asc == 0x55 &&
756 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
757 				/* Insufficient zone resources */
758 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
759 			}
760 			break;
761 		default:
762 			action = ACTION_FAIL;
763 			break;
764 		}
765 	} else
766 		action = ACTION_FAIL;
767 
768 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
769 		action = ACTION_FAIL;
770 
771 	switch (action) {
772 	case ACTION_FAIL:
773 		/* Give up and fail the remainder of the request */
774 		if (!(req->rq_flags & RQF_QUIET)) {
775 			static DEFINE_RATELIMIT_STATE(_rs,
776 					DEFAULT_RATELIMIT_INTERVAL,
777 					DEFAULT_RATELIMIT_BURST);
778 
779 			if (unlikely(scsi_logging_level))
780 				level =
781 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
782 						    SCSI_LOG_MLCOMPLETE_BITS);
783 
784 			/*
785 			 * if logging is enabled the failure will be printed
786 			 * in scsi_log_completion(), so avoid duplicate messages
787 			 */
788 			if (!level && __ratelimit(&_rs)) {
789 				scsi_print_result(cmd, NULL, FAILED);
790 				if (driver_byte(result) == DRIVER_SENSE)
791 					scsi_print_sense(cmd);
792 				scsi_print_command(cmd);
793 			}
794 		}
795 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
796 			return;
797 		fallthrough;
798 	case ACTION_REPREP:
799 		scsi_io_completion_reprep(cmd, q);
800 		break;
801 	case ACTION_RETRY:
802 		/* Retry the same command immediately */
803 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
804 		break;
805 	case ACTION_DELAYED_RETRY:
806 		/* Retry the same command after a delay */
807 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
808 		break;
809 	}
810 }
811 
812 /*
813  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
814  * new result that may suppress further error checking. Also modifies
815  * *blk_statp in some cases.
816  */
817 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
818 					blk_status_t *blk_statp)
819 {
820 	bool sense_valid;
821 	bool sense_current = true;	/* false implies "deferred sense" */
822 	struct request *req = cmd->request;
823 	struct scsi_sense_hdr sshdr;
824 
825 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
826 	if (sense_valid)
827 		sense_current = !scsi_sense_is_deferred(&sshdr);
828 
829 	if (blk_rq_is_passthrough(req)) {
830 		if (sense_valid) {
831 			/*
832 			 * SG_IO wants current and deferred errors
833 			 */
834 			scsi_req(req)->sense_len =
835 				min(8 + cmd->sense_buffer[7],
836 				    SCSI_SENSE_BUFFERSIZE);
837 		}
838 		if (sense_current)
839 			*blk_statp = scsi_result_to_blk_status(cmd, result);
840 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
841 		/*
842 		 * Flush commands do not transfers any data, and thus cannot use
843 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
844 		 * This sets *blk_statp explicitly for the problem case.
845 		 */
846 		*blk_statp = scsi_result_to_blk_status(cmd, result);
847 	}
848 	/*
849 	 * Recovered errors need reporting, but they're always treated as
850 	 * success, so fiddle the result code here.  For passthrough requests
851 	 * we already took a copy of the original into sreq->result which
852 	 * is what gets returned to the user
853 	 */
854 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
855 		bool do_print = true;
856 		/*
857 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
858 		 * skip print since caller wants ATA registers. Only occurs
859 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
860 		 */
861 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
862 			do_print = false;
863 		else if (req->rq_flags & RQF_QUIET)
864 			do_print = false;
865 		if (do_print)
866 			scsi_print_sense(cmd);
867 		result = 0;
868 		/* for passthrough, *blk_statp may be set */
869 		*blk_statp = BLK_STS_OK;
870 	}
871 	/*
872 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
873 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
874 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
875 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
876 	 * intermediate statuses (both obsolete in SAM-4) as good.
877 	 */
878 	if (status_byte(result) && scsi_status_is_good(result)) {
879 		result = 0;
880 		*blk_statp = BLK_STS_OK;
881 	}
882 	return result;
883 }
884 
885 /**
886  * scsi_io_completion - Completion processing for SCSI commands.
887  * @cmd:	command that is finished.
888  * @good_bytes:	number of processed bytes.
889  *
890  * We will finish off the specified number of sectors. If we are done, the
891  * command block will be released and the queue function will be goosed. If we
892  * are not done then we have to figure out what to do next:
893  *
894  *   a) We can call scsi_io_completion_reprep().  The request will be
895  *	unprepared and put back on the queue.  Then a new command will
896  *	be created for it.  This should be used if we made forward
897  *	progress, or if we want to switch from READ(10) to READ(6) for
898  *	example.
899  *
900  *   b) We can call scsi_io_completion_action().  The request will be
901  *	put back on the queue and retried using the same command as
902  *	before, possibly after a delay.
903  *
904  *   c) We can call scsi_end_request() with blk_stat other than
905  *	BLK_STS_OK, to fail the remainder of the request.
906  */
907 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
908 {
909 	int result = cmd->result;
910 	struct request_queue *q = cmd->device->request_queue;
911 	struct request *req = cmd->request;
912 	blk_status_t blk_stat = BLK_STS_OK;
913 
914 	if (unlikely(result))	/* a nz result may or may not be an error */
915 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
916 
917 	if (unlikely(blk_rq_is_passthrough(req))) {
918 		/*
919 		 * scsi_result_to_blk_status may have reset the host_byte
920 		 */
921 		scsi_req(req)->result = cmd->result;
922 	}
923 
924 	/*
925 	 * Next deal with any sectors which we were able to correctly
926 	 * handle.
927 	 */
928 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
929 		"%u sectors total, %d bytes done.\n",
930 		blk_rq_sectors(req), good_bytes));
931 
932 	/*
933 	 * Failed, zero length commands always need to drop down
934 	 * to retry code. Fast path should return in this block.
935 	 */
936 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
937 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
938 			return; /* no bytes remaining */
939 	}
940 
941 	/* Kill remainder if no retries. */
942 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
943 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
944 			WARN_ONCE(true,
945 			    "Bytes remaining after failed, no-retry command");
946 		return;
947 	}
948 
949 	/*
950 	 * If there had been no error, but we have leftover bytes in the
951 	 * requeues just queue the command up again.
952 	 */
953 	if (likely(result == 0))
954 		scsi_io_completion_reprep(cmd, q);
955 	else
956 		scsi_io_completion_action(cmd, result);
957 }
958 
959 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
960 		struct request *rq)
961 {
962 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
963 	       !op_is_write(req_op(rq)) &&
964 	       sdev->host->hostt->dma_need_drain(rq);
965 }
966 
967 /**
968  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
969  * @cmd: SCSI command data structure to initialize.
970  *
971  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
972  * for @cmd.
973  *
974  * Returns:
975  * * BLK_STS_OK       - on success
976  * * BLK_STS_RESOURCE - if the failure is retryable
977  * * BLK_STS_IOERR    - if the failure is fatal
978  */
979 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
980 {
981 	struct scsi_device *sdev = cmd->device;
982 	struct request *rq = cmd->request;
983 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
984 	struct scatterlist *last_sg = NULL;
985 	blk_status_t ret;
986 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
987 	int count;
988 
989 	if (WARN_ON_ONCE(!nr_segs))
990 		return BLK_STS_IOERR;
991 
992 	/*
993 	 * Make sure there is space for the drain.  The driver must adjust
994 	 * max_hw_segments to be prepared for this.
995 	 */
996 	if (need_drain)
997 		nr_segs++;
998 
999 	/*
1000 	 * If sg table allocation fails, requeue request later.
1001 	 */
1002 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1003 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1004 		return BLK_STS_RESOURCE;
1005 
1006 	/*
1007 	 * Next, walk the list, and fill in the addresses and sizes of
1008 	 * each segment.
1009 	 */
1010 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1011 
1012 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1013 		unsigned int pad_len =
1014 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1015 
1016 		last_sg->length += pad_len;
1017 		cmd->extra_len += pad_len;
1018 	}
1019 
1020 	if (need_drain) {
1021 		sg_unmark_end(last_sg);
1022 		last_sg = sg_next(last_sg);
1023 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1024 		sg_mark_end(last_sg);
1025 
1026 		cmd->extra_len += sdev->dma_drain_len;
1027 		count++;
1028 	}
1029 
1030 	BUG_ON(count > cmd->sdb.table.nents);
1031 	cmd->sdb.table.nents = count;
1032 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1033 
1034 	if (blk_integrity_rq(rq)) {
1035 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1036 		int ivecs;
1037 
1038 		if (WARN_ON_ONCE(!prot_sdb)) {
1039 			/*
1040 			 * This can happen if someone (e.g. multipath)
1041 			 * queues a command to a device on an adapter
1042 			 * that does not support DIX.
1043 			 */
1044 			ret = BLK_STS_IOERR;
1045 			goto out_free_sgtables;
1046 		}
1047 
1048 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1049 
1050 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1051 				prot_sdb->table.sgl,
1052 				SCSI_INLINE_PROT_SG_CNT)) {
1053 			ret = BLK_STS_RESOURCE;
1054 			goto out_free_sgtables;
1055 		}
1056 
1057 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1058 						prot_sdb->table.sgl);
1059 		BUG_ON(count > ivecs);
1060 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1061 
1062 		cmd->prot_sdb = prot_sdb;
1063 		cmd->prot_sdb->table.nents = count;
1064 	}
1065 
1066 	return BLK_STS_OK;
1067 out_free_sgtables:
1068 	scsi_free_sgtables(cmd);
1069 	return ret;
1070 }
1071 EXPORT_SYMBOL(scsi_alloc_sgtables);
1072 
1073 /**
1074  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1075  * @rq: Request associated with the SCSI command to be initialized.
1076  *
1077  * This function initializes the members of struct scsi_cmnd that must be
1078  * initialized before request processing starts and that won't be
1079  * reinitialized if a SCSI command is requeued.
1080  *
1081  * Called from inside blk_get_request() for pass-through requests and from
1082  * inside scsi_init_command() for filesystem requests.
1083  */
1084 static void scsi_initialize_rq(struct request *rq)
1085 {
1086 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1087 
1088 	scsi_req_init(&cmd->req);
1089 	init_rcu_head(&cmd->rcu);
1090 	cmd->jiffies_at_alloc = jiffies;
1091 	cmd->retries = 0;
1092 }
1093 
1094 /*
1095  * Only called when the request isn't completed by SCSI, and not freed by
1096  * SCSI
1097  */
1098 static void scsi_cleanup_rq(struct request *rq)
1099 {
1100 	if (rq->rq_flags & RQF_DONTPREP) {
1101 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1102 		rq->rq_flags &= ~RQF_DONTPREP;
1103 	}
1104 }
1105 
1106 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1107 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1108 {
1109 	void *buf = cmd->sense_buffer;
1110 	void *prot = cmd->prot_sdb;
1111 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1112 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1113 	unsigned long jiffies_at_alloc;
1114 	int retries, to_clear;
1115 	bool in_flight;
1116 	int budget_token = cmd->budget_token;
1117 
1118 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1119 		flags |= SCMD_INITIALIZED;
1120 		scsi_initialize_rq(rq);
1121 	}
1122 
1123 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1124 	retries = cmd->retries;
1125 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1126 	/*
1127 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1128 	 * the driver-private command data if the LLD does not supply a
1129 	 * function to initialize that data.
1130 	 */
1131 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1132 	if (!dev->host->hostt->init_cmd_priv)
1133 		to_clear += dev->host->hostt->cmd_size;
1134 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1135 
1136 	cmd->device = dev;
1137 	cmd->sense_buffer = buf;
1138 	cmd->prot_sdb = prot;
1139 	cmd->flags = flags;
1140 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1141 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1142 	cmd->retries = retries;
1143 	if (in_flight)
1144 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1145 	cmd->budget_token = budget_token;
1146 
1147 }
1148 
1149 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1150 		struct request *req)
1151 {
1152 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1153 
1154 	/*
1155 	 * Passthrough requests may transfer data, in which case they must
1156 	 * a bio attached to them.  Or they might contain a SCSI command
1157 	 * that does not transfer data, in which case they may optionally
1158 	 * submit a request without an attached bio.
1159 	 */
1160 	if (req->bio) {
1161 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1162 		if (unlikely(ret != BLK_STS_OK))
1163 			return ret;
1164 	} else {
1165 		BUG_ON(blk_rq_bytes(req));
1166 
1167 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1168 	}
1169 
1170 	cmd->cmd_len = scsi_req(req)->cmd_len;
1171 	if (cmd->cmd_len == 0)
1172 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
1173 	cmd->cmnd = scsi_req(req)->cmd;
1174 	cmd->transfersize = blk_rq_bytes(req);
1175 	cmd->allowed = scsi_req(req)->retries;
1176 	return BLK_STS_OK;
1177 }
1178 
1179 static blk_status_t
1180 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1181 {
1182 	switch (sdev->sdev_state) {
1183 	case SDEV_CREATED:
1184 		return BLK_STS_OK;
1185 	case SDEV_OFFLINE:
1186 	case SDEV_TRANSPORT_OFFLINE:
1187 		/*
1188 		 * If the device is offline we refuse to process any
1189 		 * commands.  The device must be brought online
1190 		 * before trying any recovery commands.
1191 		 */
1192 		if (!sdev->offline_already) {
1193 			sdev->offline_already = true;
1194 			sdev_printk(KERN_ERR, sdev,
1195 				    "rejecting I/O to offline device\n");
1196 		}
1197 		return BLK_STS_IOERR;
1198 	case SDEV_DEL:
1199 		/*
1200 		 * If the device is fully deleted, we refuse to
1201 		 * process any commands as well.
1202 		 */
1203 		sdev_printk(KERN_ERR, sdev,
1204 			    "rejecting I/O to dead device\n");
1205 		return BLK_STS_IOERR;
1206 	case SDEV_BLOCK:
1207 	case SDEV_CREATED_BLOCK:
1208 		return BLK_STS_RESOURCE;
1209 	case SDEV_QUIESCE:
1210 		/*
1211 		 * If the device is blocked we only accept power management
1212 		 * commands.
1213 		 */
1214 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1215 			return BLK_STS_RESOURCE;
1216 		return BLK_STS_OK;
1217 	default:
1218 		/*
1219 		 * For any other not fully online state we only allow
1220 		 * power management commands.
1221 		 */
1222 		if (req && !(req->rq_flags & RQF_PM))
1223 			return BLK_STS_IOERR;
1224 		return BLK_STS_OK;
1225 	}
1226 }
1227 
1228 /*
1229  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1230  * and return the token else return -1.
1231  */
1232 static inline int scsi_dev_queue_ready(struct request_queue *q,
1233 				  struct scsi_device *sdev)
1234 {
1235 	int token;
1236 
1237 	token = sbitmap_get(&sdev->budget_map);
1238 	if (atomic_read(&sdev->device_blocked)) {
1239 		if (token < 0)
1240 			goto out;
1241 
1242 		if (scsi_device_busy(sdev) > 1)
1243 			goto out_dec;
1244 
1245 		/*
1246 		 * unblock after device_blocked iterates to zero
1247 		 */
1248 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1249 			goto out_dec;
1250 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1251 				   "unblocking device at zero depth\n"));
1252 	}
1253 
1254 	return token;
1255 out_dec:
1256 	if (token >= 0)
1257 		sbitmap_put(&sdev->budget_map, token);
1258 out:
1259 	return -1;
1260 }
1261 
1262 /*
1263  * scsi_target_queue_ready: checks if there we can send commands to target
1264  * @sdev: scsi device on starget to check.
1265  */
1266 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1267 					   struct scsi_device *sdev)
1268 {
1269 	struct scsi_target *starget = scsi_target(sdev);
1270 	unsigned int busy;
1271 
1272 	if (starget->single_lun) {
1273 		spin_lock_irq(shost->host_lock);
1274 		if (starget->starget_sdev_user &&
1275 		    starget->starget_sdev_user != sdev) {
1276 			spin_unlock_irq(shost->host_lock);
1277 			return 0;
1278 		}
1279 		starget->starget_sdev_user = sdev;
1280 		spin_unlock_irq(shost->host_lock);
1281 	}
1282 
1283 	if (starget->can_queue <= 0)
1284 		return 1;
1285 
1286 	busy = atomic_inc_return(&starget->target_busy) - 1;
1287 	if (atomic_read(&starget->target_blocked) > 0) {
1288 		if (busy)
1289 			goto starved;
1290 
1291 		/*
1292 		 * unblock after target_blocked iterates to zero
1293 		 */
1294 		if (atomic_dec_return(&starget->target_blocked) > 0)
1295 			goto out_dec;
1296 
1297 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1298 				 "unblocking target at zero depth\n"));
1299 	}
1300 
1301 	if (busy >= starget->can_queue)
1302 		goto starved;
1303 
1304 	return 1;
1305 
1306 starved:
1307 	spin_lock_irq(shost->host_lock);
1308 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1309 	spin_unlock_irq(shost->host_lock);
1310 out_dec:
1311 	if (starget->can_queue > 0)
1312 		atomic_dec(&starget->target_busy);
1313 	return 0;
1314 }
1315 
1316 /*
1317  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1318  * return 0. We must end up running the queue again whenever 0 is
1319  * returned, else IO can hang.
1320  */
1321 static inline int scsi_host_queue_ready(struct request_queue *q,
1322 				   struct Scsi_Host *shost,
1323 				   struct scsi_device *sdev,
1324 				   struct scsi_cmnd *cmd)
1325 {
1326 	if (scsi_host_in_recovery(shost))
1327 		return 0;
1328 
1329 	if (atomic_read(&shost->host_blocked) > 0) {
1330 		if (scsi_host_busy(shost) > 0)
1331 			goto starved;
1332 
1333 		/*
1334 		 * unblock after host_blocked iterates to zero
1335 		 */
1336 		if (atomic_dec_return(&shost->host_blocked) > 0)
1337 			goto out_dec;
1338 
1339 		SCSI_LOG_MLQUEUE(3,
1340 			shost_printk(KERN_INFO, shost,
1341 				     "unblocking host at zero depth\n"));
1342 	}
1343 
1344 	if (shost->host_self_blocked)
1345 		goto starved;
1346 
1347 	/* We're OK to process the command, so we can't be starved */
1348 	if (!list_empty(&sdev->starved_entry)) {
1349 		spin_lock_irq(shost->host_lock);
1350 		if (!list_empty(&sdev->starved_entry))
1351 			list_del_init(&sdev->starved_entry);
1352 		spin_unlock_irq(shost->host_lock);
1353 	}
1354 
1355 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1356 
1357 	return 1;
1358 
1359 starved:
1360 	spin_lock_irq(shost->host_lock);
1361 	if (list_empty(&sdev->starved_entry))
1362 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1363 	spin_unlock_irq(shost->host_lock);
1364 out_dec:
1365 	scsi_dec_host_busy(shost, cmd);
1366 	return 0;
1367 }
1368 
1369 /*
1370  * Busy state exporting function for request stacking drivers.
1371  *
1372  * For efficiency, no lock is taken to check the busy state of
1373  * shost/starget/sdev, since the returned value is not guaranteed and
1374  * may be changed after request stacking drivers call the function,
1375  * regardless of taking lock or not.
1376  *
1377  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1378  * needs to return 'not busy'. Otherwise, request stacking drivers
1379  * may hold requests forever.
1380  */
1381 static bool scsi_mq_lld_busy(struct request_queue *q)
1382 {
1383 	struct scsi_device *sdev = q->queuedata;
1384 	struct Scsi_Host *shost;
1385 
1386 	if (blk_queue_dying(q))
1387 		return false;
1388 
1389 	shost = sdev->host;
1390 
1391 	/*
1392 	 * Ignore host/starget busy state.
1393 	 * Since block layer does not have a concept of fairness across
1394 	 * multiple queues, congestion of host/starget needs to be handled
1395 	 * in SCSI layer.
1396 	 */
1397 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1398 		return true;
1399 
1400 	return false;
1401 }
1402 
1403 /*
1404  * Block layer request completion callback. May be called from interrupt
1405  * context.
1406  */
1407 static void scsi_complete(struct request *rq)
1408 {
1409 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1410 	enum scsi_disposition disposition;
1411 
1412 	INIT_LIST_HEAD(&cmd->eh_entry);
1413 
1414 	atomic_inc(&cmd->device->iodone_cnt);
1415 	if (cmd->result)
1416 		atomic_inc(&cmd->device->ioerr_cnt);
1417 
1418 	disposition = scsi_decide_disposition(cmd);
1419 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1420 		disposition = SUCCESS;
1421 
1422 	scsi_log_completion(cmd, disposition);
1423 
1424 	switch (disposition) {
1425 	case SUCCESS:
1426 		scsi_finish_command(cmd);
1427 		break;
1428 	case NEEDS_RETRY:
1429 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1430 		break;
1431 	case ADD_TO_MLQUEUE:
1432 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1433 		break;
1434 	default:
1435 		scsi_eh_scmd_add(cmd);
1436 		break;
1437 	}
1438 }
1439 
1440 /**
1441  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1442  * @cmd: command block we are dispatching.
1443  *
1444  * Return: nonzero return request was rejected and device's queue needs to be
1445  * plugged.
1446  */
1447 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1448 {
1449 	struct Scsi_Host *host = cmd->device->host;
1450 	int rtn = 0;
1451 
1452 	atomic_inc(&cmd->device->iorequest_cnt);
1453 
1454 	/* check if the device is still usable */
1455 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1456 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1457 		 * returns an immediate error upwards, and signals
1458 		 * that the device is no longer present */
1459 		cmd->result = DID_NO_CONNECT << 16;
1460 		goto done;
1461 	}
1462 
1463 	/* Check to see if the scsi lld made this device blocked. */
1464 	if (unlikely(scsi_device_blocked(cmd->device))) {
1465 		/*
1466 		 * in blocked state, the command is just put back on
1467 		 * the device queue.  The suspend state has already
1468 		 * blocked the queue so future requests should not
1469 		 * occur until the device transitions out of the
1470 		 * suspend state.
1471 		 */
1472 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1473 			"queuecommand : device blocked\n"));
1474 		return SCSI_MLQUEUE_DEVICE_BUSY;
1475 	}
1476 
1477 	/* Store the LUN value in cmnd, if needed. */
1478 	if (cmd->device->lun_in_cdb)
1479 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1480 			       (cmd->device->lun << 5 & 0xe0);
1481 
1482 	scsi_log_send(cmd);
1483 
1484 	/*
1485 	 * Before we queue this command, check if the command
1486 	 * length exceeds what the host adapter can handle.
1487 	 */
1488 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1489 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1490 			       "queuecommand : command too long. "
1491 			       "cdb_size=%d host->max_cmd_len=%d\n",
1492 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1493 		cmd->result = (DID_ABORT << 16);
1494 		goto done;
1495 	}
1496 
1497 	if (unlikely(host->shost_state == SHOST_DEL)) {
1498 		cmd->result = (DID_NO_CONNECT << 16);
1499 		goto done;
1500 
1501 	}
1502 
1503 	trace_scsi_dispatch_cmd_start(cmd);
1504 	rtn = host->hostt->queuecommand(host, cmd);
1505 	if (rtn) {
1506 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1507 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1508 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1509 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1510 
1511 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1512 			"queuecommand : request rejected\n"));
1513 	}
1514 
1515 	return rtn;
1516  done:
1517 	cmd->scsi_done(cmd);
1518 	return 0;
1519 }
1520 
1521 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1522 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1523 {
1524 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1525 		sizeof(struct scatterlist);
1526 }
1527 
1528 static blk_status_t scsi_prepare_cmd(struct request *req)
1529 {
1530 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1531 	struct scsi_device *sdev = req->q->queuedata;
1532 	struct Scsi_Host *shost = sdev->host;
1533 	struct scatterlist *sg;
1534 
1535 	scsi_init_command(sdev, cmd);
1536 
1537 	cmd->request = req;
1538 	cmd->tag = req->tag;
1539 	cmd->prot_op = SCSI_PROT_NORMAL;
1540 	if (blk_rq_bytes(req))
1541 		cmd->sc_data_direction = rq_dma_dir(req);
1542 	else
1543 		cmd->sc_data_direction = DMA_NONE;
1544 
1545 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1546 	cmd->sdb.table.sgl = sg;
1547 
1548 	if (scsi_host_get_prot(shost)) {
1549 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1550 
1551 		cmd->prot_sdb->table.sgl =
1552 			(struct scatterlist *)(cmd->prot_sdb + 1);
1553 	}
1554 
1555 	/*
1556 	 * Special handling for passthrough commands, which don't go to the ULP
1557 	 * at all:
1558 	 */
1559 	if (blk_rq_is_scsi(req))
1560 		return scsi_setup_scsi_cmnd(sdev, req);
1561 
1562 	if (sdev->handler && sdev->handler->prep_fn) {
1563 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1564 
1565 		if (ret != BLK_STS_OK)
1566 			return ret;
1567 	}
1568 
1569 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1570 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1571 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1572 }
1573 
1574 static void scsi_mq_done(struct scsi_cmnd *cmd)
1575 {
1576 	if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1577 		return;
1578 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1579 		return;
1580 	trace_scsi_dispatch_cmd_done(cmd);
1581 	blk_mq_complete_request(cmd->request);
1582 }
1583 
1584 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1585 {
1586 	struct scsi_device *sdev = q->queuedata;
1587 
1588 	sbitmap_put(&sdev->budget_map, budget_token);
1589 }
1590 
1591 static int scsi_mq_get_budget(struct request_queue *q)
1592 {
1593 	struct scsi_device *sdev = q->queuedata;
1594 	int token = scsi_dev_queue_ready(q, sdev);
1595 
1596 	if (token >= 0)
1597 		return token;
1598 
1599 	atomic_inc(&sdev->restarts);
1600 
1601 	/*
1602 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1603 	 * .restarts must be incremented before .device_busy is read because the
1604 	 * code in scsi_run_queue_async() depends on the order of these operations.
1605 	 */
1606 	smp_mb__after_atomic();
1607 
1608 	/*
1609 	 * If all in-flight requests originated from this LUN are completed
1610 	 * before reading .device_busy, sdev->device_busy will be observed as
1611 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1612 	 * soon. Otherwise, completion of one of these requests will observe
1613 	 * the .restarts flag, and the request queue will be run for handling
1614 	 * this request, see scsi_end_request().
1615 	 */
1616 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1617 				!scsi_device_blocked(sdev)))
1618 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1619 	return -1;
1620 }
1621 
1622 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1623 {
1624 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1625 
1626 	cmd->budget_token = token;
1627 }
1628 
1629 static int scsi_mq_get_rq_budget_token(struct request *req)
1630 {
1631 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1632 
1633 	return cmd->budget_token;
1634 }
1635 
1636 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1637 			 const struct blk_mq_queue_data *bd)
1638 {
1639 	struct request *req = bd->rq;
1640 	struct request_queue *q = req->q;
1641 	struct scsi_device *sdev = q->queuedata;
1642 	struct Scsi_Host *shost = sdev->host;
1643 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1644 	blk_status_t ret;
1645 	int reason;
1646 
1647 	WARN_ON_ONCE(cmd->budget_token < 0);
1648 
1649 	/*
1650 	 * If the device is not in running state we will reject some or all
1651 	 * commands.
1652 	 */
1653 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1654 		ret = scsi_device_state_check(sdev, req);
1655 		if (ret != BLK_STS_OK)
1656 			goto out_put_budget;
1657 	}
1658 
1659 	ret = BLK_STS_RESOURCE;
1660 	if (!scsi_target_queue_ready(shost, sdev))
1661 		goto out_put_budget;
1662 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1663 		goto out_dec_target_busy;
1664 
1665 	if (!(req->rq_flags & RQF_DONTPREP)) {
1666 		ret = scsi_prepare_cmd(req);
1667 		if (ret != BLK_STS_OK)
1668 			goto out_dec_host_busy;
1669 		req->rq_flags |= RQF_DONTPREP;
1670 	} else {
1671 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1672 	}
1673 
1674 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1675 	if (sdev->simple_tags)
1676 		cmd->flags |= SCMD_TAGGED;
1677 	if (bd->last)
1678 		cmd->flags |= SCMD_LAST;
1679 
1680 	scsi_set_resid(cmd, 0);
1681 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1682 	cmd->scsi_done = scsi_mq_done;
1683 
1684 	blk_mq_start_request(req);
1685 	reason = scsi_dispatch_cmd(cmd);
1686 	if (reason) {
1687 		scsi_set_blocked(cmd, reason);
1688 		ret = BLK_STS_RESOURCE;
1689 		goto out_dec_host_busy;
1690 	}
1691 
1692 	return BLK_STS_OK;
1693 
1694 out_dec_host_busy:
1695 	scsi_dec_host_busy(shost, cmd);
1696 out_dec_target_busy:
1697 	if (scsi_target(sdev)->can_queue > 0)
1698 		atomic_dec(&scsi_target(sdev)->target_busy);
1699 out_put_budget:
1700 	scsi_mq_put_budget(q, cmd->budget_token);
1701 	cmd->budget_token = -1;
1702 	switch (ret) {
1703 	case BLK_STS_OK:
1704 		break;
1705 	case BLK_STS_RESOURCE:
1706 	case BLK_STS_ZONE_RESOURCE:
1707 		if (scsi_device_blocked(sdev))
1708 			ret = BLK_STS_DEV_RESOURCE;
1709 		break;
1710 	case BLK_STS_AGAIN:
1711 		scsi_req(req)->result = DID_BUS_BUSY << 16;
1712 		if (req->rq_flags & RQF_DONTPREP)
1713 			scsi_mq_uninit_cmd(cmd);
1714 		break;
1715 	default:
1716 		if (unlikely(!scsi_device_online(sdev)))
1717 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1718 		else
1719 			scsi_req(req)->result = DID_ERROR << 16;
1720 		/*
1721 		 * Make sure to release all allocated resources when
1722 		 * we hit an error, as we will never see this command
1723 		 * again.
1724 		 */
1725 		if (req->rq_flags & RQF_DONTPREP)
1726 			scsi_mq_uninit_cmd(cmd);
1727 		scsi_run_queue_async(sdev);
1728 		break;
1729 	}
1730 	return ret;
1731 }
1732 
1733 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1734 		bool reserved)
1735 {
1736 	if (reserved)
1737 		return BLK_EH_RESET_TIMER;
1738 	return scsi_times_out(req);
1739 }
1740 
1741 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1742 				unsigned int hctx_idx, unsigned int numa_node)
1743 {
1744 	struct Scsi_Host *shost = set->driver_data;
1745 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1746 	struct scatterlist *sg;
1747 	int ret = 0;
1748 
1749 	cmd->sense_buffer =
1750 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1751 	if (!cmd->sense_buffer)
1752 		return -ENOMEM;
1753 	cmd->req.sense = cmd->sense_buffer;
1754 
1755 	if (scsi_host_get_prot(shost)) {
1756 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1757 			shost->hostt->cmd_size;
1758 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1759 	}
1760 
1761 	if (shost->hostt->init_cmd_priv) {
1762 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1763 		if (ret < 0)
1764 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1765 	}
1766 
1767 	return ret;
1768 }
1769 
1770 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1771 				 unsigned int hctx_idx)
1772 {
1773 	struct Scsi_Host *shost = set->driver_data;
1774 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1775 
1776 	if (shost->hostt->exit_cmd_priv)
1777 		shost->hostt->exit_cmd_priv(shost, cmd);
1778 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1779 }
1780 
1781 
1782 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx)
1783 {
1784 	struct Scsi_Host *shost = hctx->driver_data;
1785 
1786 	if (shost->hostt->mq_poll)
1787 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1788 
1789 	return 0;
1790 }
1791 
1792 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1793 			  unsigned int hctx_idx)
1794 {
1795 	struct Scsi_Host *shost = data;
1796 
1797 	hctx->driver_data = shost;
1798 	return 0;
1799 }
1800 
1801 static int scsi_map_queues(struct blk_mq_tag_set *set)
1802 {
1803 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1804 
1805 	if (shost->hostt->map_queues)
1806 		return shost->hostt->map_queues(shost);
1807 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1808 }
1809 
1810 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1811 {
1812 	struct device *dev = shost->dma_dev;
1813 
1814 	/*
1815 	 * this limit is imposed by hardware restrictions
1816 	 */
1817 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1818 					SG_MAX_SEGMENTS));
1819 
1820 	if (scsi_host_prot_dma(shost)) {
1821 		shost->sg_prot_tablesize =
1822 			min_not_zero(shost->sg_prot_tablesize,
1823 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1824 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1825 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1826 	}
1827 
1828 	if (dev->dma_mask) {
1829 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1830 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1831 	}
1832 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1833 	blk_queue_segment_boundary(q, shost->dma_boundary);
1834 	dma_set_seg_boundary(dev, shost->dma_boundary);
1835 
1836 	blk_queue_max_segment_size(q, shost->max_segment_size);
1837 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1838 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1839 
1840 	/*
1841 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1842 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1843 	 * which is set by the platform.
1844 	 *
1845 	 * Devices that require a bigger alignment can increase it later.
1846 	 */
1847 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1848 }
1849 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1850 
1851 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1852 	.get_budget	= scsi_mq_get_budget,
1853 	.put_budget	= scsi_mq_put_budget,
1854 	.queue_rq	= scsi_queue_rq,
1855 	.complete	= scsi_complete,
1856 	.timeout	= scsi_timeout,
1857 #ifdef CONFIG_BLK_DEBUG_FS
1858 	.show_rq	= scsi_show_rq,
1859 #endif
1860 	.init_request	= scsi_mq_init_request,
1861 	.exit_request	= scsi_mq_exit_request,
1862 	.initialize_rq_fn = scsi_initialize_rq,
1863 	.cleanup_rq	= scsi_cleanup_rq,
1864 	.busy		= scsi_mq_lld_busy,
1865 	.map_queues	= scsi_map_queues,
1866 	.init_hctx	= scsi_init_hctx,
1867 	.poll		= scsi_mq_poll,
1868 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1869 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1870 };
1871 
1872 
1873 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1874 {
1875 	struct Scsi_Host *shost = hctx->driver_data;
1876 
1877 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1878 }
1879 
1880 static const struct blk_mq_ops scsi_mq_ops = {
1881 	.get_budget	= scsi_mq_get_budget,
1882 	.put_budget	= scsi_mq_put_budget,
1883 	.queue_rq	= scsi_queue_rq,
1884 	.commit_rqs	= scsi_commit_rqs,
1885 	.complete	= scsi_complete,
1886 	.timeout	= scsi_timeout,
1887 #ifdef CONFIG_BLK_DEBUG_FS
1888 	.show_rq	= scsi_show_rq,
1889 #endif
1890 	.init_request	= scsi_mq_init_request,
1891 	.exit_request	= scsi_mq_exit_request,
1892 	.initialize_rq_fn = scsi_initialize_rq,
1893 	.cleanup_rq	= scsi_cleanup_rq,
1894 	.busy		= scsi_mq_lld_busy,
1895 	.map_queues	= scsi_map_queues,
1896 	.init_hctx	= scsi_init_hctx,
1897 	.poll		= scsi_mq_poll,
1898 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1899 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1900 };
1901 
1902 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1903 {
1904 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1905 	if (IS_ERR(sdev->request_queue))
1906 		return NULL;
1907 
1908 	sdev->request_queue->queuedata = sdev;
1909 	__scsi_init_queue(sdev->host, sdev->request_queue);
1910 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1911 	return sdev->request_queue;
1912 }
1913 
1914 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1915 {
1916 	unsigned int cmd_size, sgl_size;
1917 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1918 
1919 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1920 				scsi_mq_inline_sgl_size(shost));
1921 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1922 	if (scsi_host_get_prot(shost))
1923 		cmd_size += sizeof(struct scsi_data_buffer) +
1924 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1925 
1926 	memset(tag_set, 0, sizeof(*tag_set));
1927 	if (shost->hostt->commit_rqs)
1928 		tag_set->ops = &scsi_mq_ops;
1929 	else
1930 		tag_set->ops = &scsi_mq_ops_no_commit;
1931 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1932 	tag_set->nr_maps = shost->nr_maps ? : 1;
1933 	tag_set->queue_depth = shost->can_queue;
1934 	tag_set->cmd_size = cmd_size;
1935 	tag_set->numa_node = NUMA_NO_NODE;
1936 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1937 	tag_set->flags |=
1938 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1939 	tag_set->driver_data = shost;
1940 	if (shost->host_tagset)
1941 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1942 
1943 	return blk_mq_alloc_tag_set(tag_set);
1944 }
1945 
1946 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1947 {
1948 	blk_mq_free_tag_set(&shost->tag_set);
1949 }
1950 
1951 /**
1952  * scsi_device_from_queue - return sdev associated with a request_queue
1953  * @q: The request queue to return the sdev from
1954  *
1955  * Return the sdev associated with a request queue or NULL if the
1956  * request_queue does not reference a SCSI device.
1957  */
1958 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1959 {
1960 	struct scsi_device *sdev = NULL;
1961 
1962 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1963 	    q->mq_ops == &scsi_mq_ops)
1964 		sdev = q->queuedata;
1965 	if (!sdev || !get_device(&sdev->sdev_gendev))
1966 		sdev = NULL;
1967 
1968 	return sdev;
1969 }
1970 
1971 /**
1972  * scsi_block_requests - Utility function used by low-level drivers to prevent
1973  * further commands from being queued to the device.
1974  * @shost:  host in question
1975  *
1976  * There is no timer nor any other means by which the requests get unblocked
1977  * other than the low-level driver calling scsi_unblock_requests().
1978  */
1979 void scsi_block_requests(struct Scsi_Host *shost)
1980 {
1981 	shost->host_self_blocked = 1;
1982 }
1983 EXPORT_SYMBOL(scsi_block_requests);
1984 
1985 /**
1986  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1987  * further commands to be queued to the device.
1988  * @shost:  host in question
1989  *
1990  * There is no timer nor any other means by which the requests get unblocked
1991  * other than the low-level driver calling scsi_unblock_requests(). This is done
1992  * as an API function so that changes to the internals of the scsi mid-layer
1993  * won't require wholesale changes to drivers that use this feature.
1994  */
1995 void scsi_unblock_requests(struct Scsi_Host *shost)
1996 {
1997 	shost->host_self_blocked = 0;
1998 	scsi_run_host_queues(shost);
1999 }
2000 EXPORT_SYMBOL(scsi_unblock_requests);
2001 
2002 void scsi_exit_queue(void)
2003 {
2004 	kmem_cache_destroy(scsi_sense_cache);
2005 }
2006 
2007 /**
2008  *	scsi_mode_select - issue a mode select
2009  *	@sdev:	SCSI device to be queried
2010  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2011  *	@sp:	Save page bit (0 == don't save, 1 == save)
2012  *	@modepage: mode page being requested
2013  *	@buffer: request buffer (may not be smaller than eight bytes)
2014  *	@len:	length of request buffer.
2015  *	@timeout: command timeout
2016  *	@retries: number of retries before failing
2017  *	@data: returns a structure abstracting the mode header data
2018  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2019  *		must be SCSI_SENSE_BUFFERSIZE big.
2020  *
2021  *	Returns zero if successful; negative error number or scsi
2022  *	status on error
2023  *
2024  */
2025 int
2026 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2027 		 unsigned char *buffer, int len, int timeout, int retries,
2028 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2029 {
2030 	unsigned char cmd[10];
2031 	unsigned char *real_buffer;
2032 	int ret;
2033 
2034 	memset(cmd, 0, sizeof(cmd));
2035 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2036 
2037 	if (sdev->use_10_for_ms) {
2038 		if (len > 65535)
2039 			return -EINVAL;
2040 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2041 		if (!real_buffer)
2042 			return -ENOMEM;
2043 		memcpy(real_buffer + 8, buffer, len);
2044 		len += 8;
2045 		real_buffer[0] = 0;
2046 		real_buffer[1] = 0;
2047 		real_buffer[2] = data->medium_type;
2048 		real_buffer[3] = data->device_specific;
2049 		real_buffer[4] = data->longlba ? 0x01 : 0;
2050 		real_buffer[5] = 0;
2051 		real_buffer[6] = data->block_descriptor_length >> 8;
2052 		real_buffer[7] = data->block_descriptor_length;
2053 
2054 		cmd[0] = MODE_SELECT_10;
2055 		cmd[7] = len >> 8;
2056 		cmd[8] = len;
2057 	} else {
2058 		if (len > 255 || data->block_descriptor_length > 255 ||
2059 		    data->longlba)
2060 			return -EINVAL;
2061 
2062 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2063 		if (!real_buffer)
2064 			return -ENOMEM;
2065 		memcpy(real_buffer + 4, buffer, len);
2066 		len += 4;
2067 		real_buffer[0] = 0;
2068 		real_buffer[1] = data->medium_type;
2069 		real_buffer[2] = data->device_specific;
2070 		real_buffer[3] = data->block_descriptor_length;
2071 
2072 		cmd[0] = MODE_SELECT;
2073 		cmd[4] = len;
2074 	}
2075 
2076 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2077 			       sshdr, timeout, retries, NULL);
2078 	kfree(real_buffer);
2079 	return ret;
2080 }
2081 EXPORT_SYMBOL_GPL(scsi_mode_select);
2082 
2083 /**
2084  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2085  *	@sdev:	SCSI device to be queried
2086  *	@dbd:	set if mode sense will allow block descriptors to be returned
2087  *	@modepage: mode page being requested
2088  *	@buffer: request buffer (may not be smaller than eight bytes)
2089  *	@len:	length of request buffer.
2090  *	@timeout: command timeout
2091  *	@retries: number of retries before failing
2092  *	@data: returns a structure abstracting the mode header data
2093  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2094  *		must be SCSI_SENSE_BUFFERSIZE big.
2095  *
2096  *	Returns zero if unsuccessful, or the header offset (either 4
2097  *	or 8 depending on whether a six or ten byte command was
2098  *	issued) if successful.
2099  */
2100 int
2101 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2102 		  unsigned char *buffer, int len, int timeout, int retries,
2103 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2104 {
2105 	unsigned char cmd[12];
2106 	int use_10_for_ms;
2107 	int header_length;
2108 	int result, retry_count = retries;
2109 	struct scsi_sense_hdr my_sshdr;
2110 
2111 	memset(data, 0, sizeof(*data));
2112 	memset(&cmd[0], 0, 12);
2113 
2114 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2115 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2116 	cmd[2] = modepage;
2117 
2118 	/* caller might not be interested in sense, but we need it */
2119 	if (!sshdr)
2120 		sshdr = &my_sshdr;
2121 
2122  retry:
2123 	use_10_for_ms = sdev->use_10_for_ms;
2124 
2125 	if (use_10_for_ms) {
2126 		if (len < 8)
2127 			len = 8;
2128 
2129 		cmd[0] = MODE_SENSE_10;
2130 		cmd[8] = len;
2131 		header_length = 8;
2132 	} else {
2133 		if (len < 4)
2134 			len = 4;
2135 
2136 		cmd[0] = MODE_SENSE;
2137 		cmd[4] = len;
2138 		header_length = 4;
2139 	}
2140 
2141 	memset(buffer, 0, len);
2142 
2143 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2144 				  sshdr, timeout, retries, NULL);
2145 
2146 	/* This code looks awful: what it's doing is making sure an
2147 	 * ILLEGAL REQUEST sense return identifies the actual command
2148 	 * byte as the problem.  MODE_SENSE commands can return
2149 	 * ILLEGAL REQUEST if the code page isn't supported */
2150 
2151 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2152 	    driver_byte(result) == DRIVER_SENSE) {
2153 		if (scsi_sense_valid(sshdr)) {
2154 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2155 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2156 				/*
2157 				 * Invalid command operation code
2158 				 */
2159 				sdev->use_10_for_ms = 0;
2160 				goto retry;
2161 			}
2162 		}
2163 	}
2164 
2165 	if (scsi_status_is_good(result)) {
2166 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2167 			     (modepage == 6 || modepage == 8))) {
2168 			/* Initio breakage? */
2169 			header_length = 0;
2170 			data->length = 13;
2171 			data->medium_type = 0;
2172 			data->device_specific = 0;
2173 			data->longlba = 0;
2174 			data->block_descriptor_length = 0;
2175 		} else if (use_10_for_ms) {
2176 			data->length = buffer[0]*256 + buffer[1] + 2;
2177 			data->medium_type = buffer[2];
2178 			data->device_specific = buffer[3];
2179 			data->longlba = buffer[4] & 0x01;
2180 			data->block_descriptor_length = buffer[6]*256
2181 				+ buffer[7];
2182 		} else {
2183 			data->length = buffer[0] + 1;
2184 			data->medium_type = buffer[1];
2185 			data->device_specific = buffer[2];
2186 			data->block_descriptor_length = buffer[3];
2187 		}
2188 		data->header_length = header_length;
2189 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2190 		   scsi_sense_valid(sshdr) &&
2191 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2192 		retry_count--;
2193 		goto retry;
2194 	}
2195 
2196 	return result;
2197 }
2198 EXPORT_SYMBOL(scsi_mode_sense);
2199 
2200 /**
2201  *	scsi_test_unit_ready - test if unit is ready
2202  *	@sdev:	scsi device to change the state of.
2203  *	@timeout: command timeout
2204  *	@retries: number of retries before failing
2205  *	@sshdr: outpout pointer for decoded sense information.
2206  *
2207  *	Returns zero if unsuccessful or an error if TUR failed.  For
2208  *	removable media, UNIT_ATTENTION sets ->changed flag.
2209  **/
2210 int
2211 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2212 		     struct scsi_sense_hdr *sshdr)
2213 {
2214 	char cmd[] = {
2215 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2216 	};
2217 	int result;
2218 
2219 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2220 	do {
2221 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2222 					  timeout, 1, NULL);
2223 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2224 		    sshdr->sense_key == UNIT_ATTENTION)
2225 			sdev->changed = 1;
2226 	} while (scsi_sense_valid(sshdr) &&
2227 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2228 
2229 	return result;
2230 }
2231 EXPORT_SYMBOL(scsi_test_unit_ready);
2232 
2233 /**
2234  *	scsi_device_set_state - Take the given device through the device state model.
2235  *	@sdev:	scsi device to change the state of.
2236  *	@state:	state to change to.
2237  *
2238  *	Returns zero if successful or an error if the requested
2239  *	transition is illegal.
2240  */
2241 int
2242 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2243 {
2244 	enum scsi_device_state oldstate = sdev->sdev_state;
2245 
2246 	if (state == oldstate)
2247 		return 0;
2248 
2249 	switch (state) {
2250 	case SDEV_CREATED:
2251 		switch (oldstate) {
2252 		case SDEV_CREATED_BLOCK:
2253 			break;
2254 		default:
2255 			goto illegal;
2256 		}
2257 		break;
2258 
2259 	case SDEV_RUNNING:
2260 		switch (oldstate) {
2261 		case SDEV_CREATED:
2262 		case SDEV_OFFLINE:
2263 		case SDEV_TRANSPORT_OFFLINE:
2264 		case SDEV_QUIESCE:
2265 		case SDEV_BLOCK:
2266 			break;
2267 		default:
2268 			goto illegal;
2269 		}
2270 		break;
2271 
2272 	case SDEV_QUIESCE:
2273 		switch (oldstate) {
2274 		case SDEV_RUNNING:
2275 		case SDEV_OFFLINE:
2276 		case SDEV_TRANSPORT_OFFLINE:
2277 			break;
2278 		default:
2279 			goto illegal;
2280 		}
2281 		break;
2282 
2283 	case SDEV_OFFLINE:
2284 	case SDEV_TRANSPORT_OFFLINE:
2285 		switch (oldstate) {
2286 		case SDEV_CREATED:
2287 		case SDEV_RUNNING:
2288 		case SDEV_QUIESCE:
2289 		case SDEV_BLOCK:
2290 			break;
2291 		default:
2292 			goto illegal;
2293 		}
2294 		break;
2295 
2296 	case SDEV_BLOCK:
2297 		switch (oldstate) {
2298 		case SDEV_RUNNING:
2299 		case SDEV_CREATED_BLOCK:
2300 		case SDEV_QUIESCE:
2301 		case SDEV_OFFLINE:
2302 			break;
2303 		default:
2304 			goto illegal;
2305 		}
2306 		break;
2307 
2308 	case SDEV_CREATED_BLOCK:
2309 		switch (oldstate) {
2310 		case SDEV_CREATED:
2311 			break;
2312 		default:
2313 			goto illegal;
2314 		}
2315 		break;
2316 
2317 	case SDEV_CANCEL:
2318 		switch (oldstate) {
2319 		case SDEV_CREATED:
2320 		case SDEV_RUNNING:
2321 		case SDEV_QUIESCE:
2322 		case SDEV_OFFLINE:
2323 		case SDEV_TRANSPORT_OFFLINE:
2324 			break;
2325 		default:
2326 			goto illegal;
2327 		}
2328 		break;
2329 
2330 	case SDEV_DEL:
2331 		switch (oldstate) {
2332 		case SDEV_CREATED:
2333 		case SDEV_RUNNING:
2334 		case SDEV_OFFLINE:
2335 		case SDEV_TRANSPORT_OFFLINE:
2336 		case SDEV_CANCEL:
2337 		case SDEV_BLOCK:
2338 		case SDEV_CREATED_BLOCK:
2339 			break;
2340 		default:
2341 			goto illegal;
2342 		}
2343 		break;
2344 
2345 	}
2346 	sdev->offline_already = false;
2347 	sdev->sdev_state = state;
2348 	return 0;
2349 
2350  illegal:
2351 	SCSI_LOG_ERROR_RECOVERY(1,
2352 				sdev_printk(KERN_ERR, sdev,
2353 					    "Illegal state transition %s->%s",
2354 					    scsi_device_state_name(oldstate),
2355 					    scsi_device_state_name(state))
2356 				);
2357 	return -EINVAL;
2358 }
2359 EXPORT_SYMBOL(scsi_device_set_state);
2360 
2361 /**
2362  *	scsi_evt_emit - emit a single SCSI device uevent
2363  *	@sdev: associated SCSI device
2364  *	@evt: event to emit
2365  *
2366  *	Send a single uevent (scsi_event) to the associated scsi_device.
2367  */
2368 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2369 {
2370 	int idx = 0;
2371 	char *envp[3];
2372 
2373 	switch (evt->evt_type) {
2374 	case SDEV_EVT_MEDIA_CHANGE:
2375 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2376 		break;
2377 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2378 		scsi_rescan_device(&sdev->sdev_gendev);
2379 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2380 		break;
2381 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2382 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2383 		break;
2384 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2385 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2386 		break;
2387 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2388 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2389 		break;
2390 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2391 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2392 		break;
2393 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2394 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2395 		break;
2396 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2397 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2398 		break;
2399 	default:
2400 		/* do nothing */
2401 		break;
2402 	}
2403 
2404 	envp[idx++] = NULL;
2405 
2406 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2407 }
2408 
2409 /**
2410  *	scsi_evt_thread - send a uevent for each scsi event
2411  *	@work: work struct for scsi_device
2412  *
2413  *	Dispatch queued events to their associated scsi_device kobjects
2414  *	as uevents.
2415  */
2416 void scsi_evt_thread(struct work_struct *work)
2417 {
2418 	struct scsi_device *sdev;
2419 	enum scsi_device_event evt_type;
2420 	LIST_HEAD(event_list);
2421 
2422 	sdev = container_of(work, struct scsi_device, event_work);
2423 
2424 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2425 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2426 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2427 
2428 	while (1) {
2429 		struct scsi_event *evt;
2430 		struct list_head *this, *tmp;
2431 		unsigned long flags;
2432 
2433 		spin_lock_irqsave(&sdev->list_lock, flags);
2434 		list_splice_init(&sdev->event_list, &event_list);
2435 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2436 
2437 		if (list_empty(&event_list))
2438 			break;
2439 
2440 		list_for_each_safe(this, tmp, &event_list) {
2441 			evt = list_entry(this, struct scsi_event, node);
2442 			list_del(&evt->node);
2443 			scsi_evt_emit(sdev, evt);
2444 			kfree(evt);
2445 		}
2446 	}
2447 }
2448 
2449 /**
2450  * 	sdev_evt_send - send asserted event to uevent thread
2451  *	@sdev: scsi_device event occurred on
2452  *	@evt: event to send
2453  *
2454  *	Assert scsi device event asynchronously.
2455  */
2456 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2457 {
2458 	unsigned long flags;
2459 
2460 #if 0
2461 	/* FIXME: currently this check eliminates all media change events
2462 	 * for polled devices.  Need to update to discriminate between AN
2463 	 * and polled events */
2464 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2465 		kfree(evt);
2466 		return;
2467 	}
2468 #endif
2469 
2470 	spin_lock_irqsave(&sdev->list_lock, flags);
2471 	list_add_tail(&evt->node, &sdev->event_list);
2472 	schedule_work(&sdev->event_work);
2473 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2474 }
2475 EXPORT_SYMBOL_GPL(sdev_evt_send);
2476 
2477 /**
2478  * 	sdev_evt_alloc - allocate a new scsi event
2479  *	@evt_type: type of event to allocate
2480  *	@gfpflags: GFP flags for allocation
2481  *
2482  *	Allocates and returns a new scsi_event.
2483  */
2484 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2485 				  gfp_t gfpflags)
2486 {
2487 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2488 	if (!evt)
2489 		return NULL;
2490 
2491 	evt->evt_type = evt_type;
2492 	INIT_LIST_HEAD(&evt->node);
2493 
2494 	/* evt_type-specific initialization, if any */
2495 	switch (evt_type) {
2496 	case SDEV_EVT_MEDIA_CHANGE:
2497 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2498 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2499 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2500 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2501 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2502 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2503 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2504 	default:
2505 		/* do nothing */
2506 		break;
2507 	}
2508 
2509 	return evt;
2510 }
2511 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2512 
2513 /**
2514  * 	sdev_evt_send_simple - send asserted event to uevent thread
2515  *	@sdev: scsi_device event occurred on
2516  *	@evt_type: type of event to send
2517  *	@gfpflags: GFP flags for allocation
2518  *
2519  *	Assert scsi device event asynchronously, given an event type.
2520  */
2521 void sdev_evt_send_simple(struct scsi_device *sdev,
2522 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2523 {
2524 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2525 	if (!evt) {
2526 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2527 			    evt_type);
2528 		return;
2529 	}
2530 
2531 	sdev_evt_send(sdev, evt);
2532 }
2533 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2534 
2535 /**
2536  *	scsi_device_quiesce - Block all commands except power management.
2537  *	@sdev:	scsi device to quiesce.
2538  *
2539  *	This works by trying to transition to the SDEV_QUIESCE state
2540  *	(which must be a legal transition).  When the device is in this
2541  *	state, only power management requests will be accepted, all others will
2542  *	be deferred.
2543  *
2544  *	Must be called with user context, may sleep.
2545  *
2546  *	Returns zero if unsuccessful or an error if not.
2547  */
2548 int
2549 scsi_device_quiesce(struct scsi_device *sdev)
2550 {
2551 	struct request_queue *q = sdev->request_queue;
2552 	int err;
2553 
2554 	/*
2555 	 * It is allowed to call scsi_device_quiesce() multiple times from
2556 	 * the same context but concurrent scsi_device_quiesce() calls are
2557 	 * not allowed.
2558 	 */
2559 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2560 
2561 	if (sdev->quiesced_by == current)
2562 		return 0;
2563 
2564 	blk_set_pm_only(q);
2565 
2566 	blk_mq_freeze_queue(q);
2567 	/*
2568 	 * Ensure that the effect of blk_set_pm_only() will be visible
2569 	 * for percpu_ref_tryget() callers that occur after the queue
2570 	 * unfreeze even if the queue was already frozen before this function
2571 	 * was called. See also https://lwn.net/Articles/573497/.
2572 	 */
2573 	synchronize_rcu();
2574 	blk_mq_unfreeze_queue(q);
2575 
2576 	mutex_lock(&sdev->state_mutex);
2577 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2578 	if (err == 0)
2579 		sdev->quiesced_by = current;
2580 	else
2581 		blk_clear_pm_only(q);
2582 	mutex_unlock(&sdev->state_mutex);
2583 
2584 	return err;
2585 }
2586 EXPORT_SYMBOL(scsi_device_quiesce);
2587 
2588 /**
2589  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2590  *	@sdev:	scsi device to resume.
2591  *
2592  *	Moves the device from quiesced back to running and restarts the
2593  *	queues.
2594  *
2595  *	Must be called with user context, may sleep.
2596  */
2597 void scsi_device_resume(struct scsi_device *sdev)
2598 {
2599 	/* check if the device state was mutated prior to resume, and if
2600 	 * so assume the state is being managed elsewhere (for example
2601 	 * device deleted during suspend)
2602 	 */
2603 	mutex_lock(&sdev->state_mutex);
2604 	if (sdev->sdev_state == SDEV_QUIESCE)
2605 		scsi_device_set_state(sdev, SDEV_RUNNING);
2606 	if (sdev->quiesced_by) {
2607 		sdev->quiesced_by = NULL;
2608 		blk_clear_pm_only(sdev->request_queue);
2609 	}
2610 	mutex_unlock(&sdev->state_mutex);
2611 }
2612 EXPORT_SYMBOL(scsi_device_resume);
2613 
2614 static void
2615 device_quiesce_fn(struct scsi_device *sdev, void *data)
2616 {
2617 	scsi_device_quiesce(sdev);
2618 }
2619 
2620 void
2621 scsi_target_quiesce(struct scsi_target *starget)
2622 {
2623 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2624 }
2625 EXPORT_SYMBOL(scsi_target_quiesce);
2626 
2627 static void
2628 device_resume_fn(struct scsi_device *sdev, void *data)
2629 {
2630 	scsi_device_resume(sdev);
2631 }
2632 
2633 void
2634 scsi_target_resume(struct scsi_target *starget)
2635 {
2636 	starget_for_each_device(starget, NULL, device_resume_fn);
2637 }
2638 EXPORT_SYMBOL(scsi_target_resume);
2639 
2640 /**
2641  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2642  * @sdev: device to block
2643  *
2644  * Pause SCSI command processing on the specified device. Does not sleep.
2645  *
2646  * Returns zero if successful or a negative error code upon failure.
2647  *
2648  * Notes:
2649  * This routine transitions the device to the SDEV_BLOCK state (which must be
2650  * a legal transition). When the device is in this state, command processing
2651  * is paused until the device leaves the SDEV_BLOCK state. See also
2652  * scsi_internal_device_unblock_nowait().
2653  */
2654 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2655 {
2656 	struct request_queue *q = sdev->request_queue;
2657 	int err = 0;
2658 
2659 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2660 	if (err) {
2661 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2662 
2663 		if (err)
2664 			return err;
2665 	}
2666 
2667 	/*
2668 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2669 	 * block layer from calling the midlayer with this device's
2670 	 * request queue.
2671 	 */
2672 	blk_mq_quiesce_queue_nowait(q);
2673 	return 0;
2674 }
2675 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2676 
2677 /**
2678  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2679  * @sdev: device to block
2680  *
2681  * Pause SCSI command processing on the specified device and wait until all
2682  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2683  *
2684  * Returns zero if successful or a negative error code upon failure.
2685  *
2686  * Note:
2687  * This routine transitions the device to the SDEV_BLOCK state (which must be
2688  * a legal transition). When the device is in this state, command processing
2689  * is paused until the device leaves the SDEV_BLOCK state. See also
2690  * scsi_internal_device_unblock().
2691  */
2692 static int scsi_internal_device_block(struct scsi_device *sdev)
2693 {
2694 	struct request_queue *q = sdev->request_queue;
2695 	int err;
2696 
2697 	mutex_lock(&sdev->state_mutex);
2698 	err = scsi_internal_device_block_nowait(sdev);
2699 	if (err == 0)
2700 		blk_mq_quiesce_queue(q);
2701 	mutex_unlock(&sdev->state_mutex);
2702 
2703 	return err;
2704 }
2705 
2706 void scsi_start_queue(struct scsi_device *sdev)
2707 {
2708 	struct request_queue *q = sdev->request_queue;
2709 
2710 	blk_mq_unquiesce_queue(q);
2711 }
2712 
2713 /**
2714  * scsi_internal_device_unblock_nowait - resume a device after a block request
2715  * @sdev:	device to resume
2716  * @new_state:	state to set the device to after unblocking
2717  *
2718  * Restart the device queue for a previously suspended SCSI device. Does not
2719  * sleep.
2720  *
2721  * Returns zero if successful or a negative error code upon failure.
2722  *
2723  * Notes:
2724  * This routine transitions the device to the SDEV_RUNNING state or to one of
2725  * the offline states (which must be a legal transition) allowing the midlayer
2726  * to goose the queue for this device.
2727  */
2728 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2729 					enum scsi_device_state new_state)
2730 {
2731 	switch (new_state) {
2732 	case SDEV_RUNNING:
2733 	case SDEV_TRANSPORT_OFFLINE:
2734 		break;
2735 	default:
2736 		return -EINVAL;
2737 	}
2738 
2739 	/*
2740 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2741 	 * offlined states and goose the device queue if successful.
2742 	 */
2743 	switch (sdev->sdev_state) {
2744 	case SDEV_BLOCK:
2745 	case SDEV_TRANSPORT_OFFLINE:
2746 		sdev->sdev_state = new_state;
2747 		break;
2748 	case SDEV_CREATED_BLOCK:
2749 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2750 		    new_state == SDEV_OFFLINE)
2751 			sdev->sdev_state = new_state;
2752 		else
2753 			sdev->sdev_state = SDEV_CREATED;
2754 		break;
2755 	case SDEV_CANCEL:
2756 	case SDEV_OFFLINE:
2757 		break;
2758 	default:
2759 		return -EINVAL;
2760 	}
2761 	scsi_start_queue(sdev);
2762 
2763 	return 0;
2764 }
2765 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2766 
2767 /**
2768  * scsi_internal_device_unblock - resume a device after a block request
2769  * @sdev:	device to resume
2770  * @new_state:	state to set the device to after unblocking
2771  *
2772  * Restart the device queue for a previously suspended SCSI device. May sleep.
2773  *
2774  * Returns zero if successful or a negative error code upon failure.
2775  *
2776  * Notes:
2777  * This routine transitions the device to the SDEV_RUNNING state or to one of
2778  * the offline states (which must be a legal transition) allowing the midlayer
2779  * to goose the queue for this device.
2780  */
2781 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2782 					enum scsi_device_state new_state)
2783 {
2784 	int ret;
2785 
2786 	mutex_lock(&sdev->state_mutex);
2787 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2788 	mutex_unlock(&sdev->state_mutex);
2789 
2790 	return ret;
2791 }
2792 
2793 static void
2794 device_block(struct scsi_device *sdev, void *data)
2795 {
2796 	int ret;
2797 
2798 	ret = scsi_internal_device_block(sdev);
2799 
2800 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2801 		  dev_name(&sdev->sdev_gendev), ret);
2802 }
2803 
2804 static int
2805 target_block(struct device *dev, void *data)
2806 {
2807 	if (scsi_is_target_device(dev))
2808 		starget_for_each_device(to_scsi_target(dev), NULL,
2809 					device_block);
2810 	return 0;
2811 }
2812 
2813 void
2814 scsi_target_block(struct device *dev)
2815 {
2816 	if (scsi_is_target_device(dev))
2817 		starget_for_each_device(to_scsi_target(dev), NULL,
2818 					device_block);
2819 	else
2820 		device_for_each_child(dev, NULL, target_block);
2821 }
2822 EXPORT_SYMBOL_GPL(scsi_target_block);
2823 
2824 static void
2825 device_unblock(struct scsi_device *sdev, void *data)
2826 {
2827 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2828 }
2829 
2830 static int
2831 target_unblock(struct device *dev, void *data)
2832 {
2833 	if (scsi_is_target_device(dev))
2834 		starget_for_each_device(to_scsi_target(dev), data,
2835 					device_unblock);
2836 	return 0;
2837 }
2838 
2839 void
2840 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2841 {
2842 	if (scsi_is_target_device(dev))
2843 		starget_for_each_device(to_scsi_target(dev), &new_state,
2844 					device_unblock);
2845 	else
2846 		device_for_each_child(dev, &new_state, target_unblock);
2847 }
2848 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2849 
2850 int
2851 scsi_host_block(struct Scsi_Host *shost)
2852 {
2853 	struct scsi_device *sdev;
2854 	int ret = 0;
2855 
2856 	/*
2857 	 * Call scsi_internal_device_block_nowait so we can avoid
2858 	 * calling synchronize_rcu() for each LUN.
2859 	 */
2860 	shost_for_each_device(sdev, shost) {
2861 		mutex_lock(&sdev->state_mutex);
2862 		ret = scsi_internal_device_block_nowait(sdev);
2863 		mutex_unlock(&sdev->state_mutex);
2864 		if (ret) {
2865 			scsi_device_put(sdev);
2866 			break;
2867 		}
2868 	}
2869 
2870 	/*
2871 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2872 	 * calling synchronize_rcu() once is enough.
2873 	 */
2874 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2875 
2876 	if (!ret)
2877 		synchronize_rcu();
2878 
2879 	return ret;
2880 }
2881 EXPORT_SYMBOL_GPL(scsi_host_block);
2882 
2883 int
2884 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2885 {
2886 	struct scsi_device *sdev;
2887 	int ret = 0;
2888 
2889 	shost_for_each_device(sdev, shost) {
2890 		ret = scsi_internal_device_unblock(sdev, new_state);
2891 		if (ret) {
2892 			scsi_device_put(sdev);
2893 			break;
2894 		}
2895 	}
2896 	return ret;
2897 }
2898 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2899 
2900 /**
2901  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2902  * @sgl:	scatter-gather list
2903  * @sg_count:	number of segments in sg
2904  * @offset:	offset in bytes into sg, on return offset into the mapped area
2905  * @len:	bytes to map, on return number of bytes mapped
2906  *
2907  * Returns virtual address of the start of the mapped page
2908  */
2909 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2910 			  size_t *offset, size_t *len)
2911 {
2912 	int i;
2913 	size_t sg_len = 0, len_complete = 0;
2914 	struct scatterlist *sg;
2915 	struct page *page;
2916 
2917 	WARN_ON(!irqs_disabled());
2918 
2919 	for_each_sg(sgl, sg, sg_count, i) {
2920 		len_complete = sg_len; /* Complete sg-entries */
2921 		sg_len += sg->length;
2922 		if (sg_len > *offset)
2923 			break;
2924 	}
2925 
2926 	if (unlikely(i == sg_count)) {
2927 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2928 			"elements %d\n",
2929 		       __func__, sg_len, *offset, sg_count);
2930 		WARN_ON(1);
2931 		return NULL;
2932 	}
2933 
2934 	/* Offset starting from the beginning of first page in this sg-entry */
2935 	*offset = *offset - len_complete + sg->offset;
2936 
2937 	/* Assumption: contiguous pages can be accessed as "page + i" */
2938 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2939 	*offset &= ~PAGE_MASK;
2940 
2941 	/* Bytes in this sg-entry from *offset to the end of the page */
2942 	sg_len = PAGE_SIZE - *offset;
2943 	if (*len > sg_len)
2944 		*len = sg_len;
2945 
2946 	return kmap_atomic(page);
2947 }
2948 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2949 
2950 /**
2951  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2952  * @virt:	virtual address to be unmapped
2953  */
2954 void scsi_kunmap_atomic_sg(void *virt)
2955 {
2956 	kunmap_atomic(virt);
2957 }
2958 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2959 
2960 void sdev_disable_disk_events(struct scsi_device *sdev)
2961 {
2962 	atomic_inc(&sdev->disk_events_disable_depth);
2963 }
2964 EXPORT_SYMBOL(sdev_disable_disk_events);
2965 
2966 void sdev_enable_disk_events(struct scsi_device *sdev)
2967 {
2968 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2969 		return;
2970 	atomic_dec(&sdev->disk_events_disable_depth);
2971 }
2972 EXPORT_SYMBOL(sdev_enable_disk_events);
2973 
2974 static unsigned char designator_prio(const unsigned char *d)
2975 {
2976 	if (d[1] & 0x30)
2977 		/* not associated with LUN */
2978 		return 0;
2979 
2980 	if (d[3] == 0)
2981 		/* invalid length */
2982 		return 0;
2983 
2984 	/*
2985 	 * Order of preference for lun descriptor:
2986 	 * - SCSI name string
2987 	 * - NAA IEEE Registered Extended
2988 	 * - EUI-64 based 16-byte
2989 	 * - EUI-64 based 12-byte
2990 	 * - NAA IEEE Registered
2991 	 * - NAA IEEE Extended
2992 	 * - EUI-64 based 8-byte
2993 	 * - SCSI name string (truncated)
2994 	 * - T10 Vendor ID
2995 	 * as longer descriptors reduce the likelyhood
2996 	 * of identification clashes.
2997 	 */
2998 
2999 	switch (d[1] & 0xf) {
3000 	case 8:
3001 		/* SCSI name string, variable-length UTF-8 */
3002 		return 9;
3003 	case 3:
3004 		switch (d[4] >> 4) {
3005 		case 6:
3006 			/* NAA registered extended */
3007 			return 8;
3008 		case 5:
3009 			/* NAA registered */
3010 			return 5;
3011 		case 4:
3012 			/* NAA extended */
3013 			return 4;
3014 		case 3:
3015 			/* NAA locally assigned */
3016 			return 1;
3017 		default:
3018 			break;
3019 		}
3020 		break;
3021 	case 2:
3022 		switch (d[3]) {
3023 		case 16:
3024 			/* EUI64-based, 16 byte */
3025 			return 7;
3026 		case 12:
3027 			/* EUI64-based, 12 byte */
3028 			return 6;
3029 		case 8:
3030 			/* EUI64-based, 8 byte */
3031 			return 3;
3032 		default:
3033 			break;
3034 		}
3035 		break;
3036 	case 1:
3037 		/* T10 vendor ID */
3038 		return 1;
3039 	default:
3040 		break;
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 /**
3047  * scsi_vpd_lun_id - return a unique device identification
3048  * @sdev: SCSI device
3049  * @id:   buffer for the identification
3050  * @id_len:  length of the buffer
3051  *
3052  * Copies a unique device identification into @id based
3053  * on the information in the VPD page 0x83 of the device.
3054  * The string will be formatted as a SCSI name string.
3055  *
3056  * Returns the length of the identification or error on failure.
3057  * If the identifier is longer than the supplied buffer the actual
3058  * identifier length is returned and the buffer is not zero-padded.
3059  */
3060 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3061 {
3062 	u8 cur_id_prio = 0;
3063 	u8 cur_id_size = 0;
3064 	const unsigned char *d, *cur_id_str;
3065 	const struct scsi_vpd *vpd_pg83;
3066 	int id_size = -EINVAL;
3067 
3068 	rcu_read_lock();
3069 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3070 	if (!vpd_pg83) {
3071 		rcu_read_unlock();
3072 		return -ENXIO;
3073 	}
3074 
3075 	/* The id string must be at least 20 bytes + terminating NULL byte */
3076 	if (id_len < 21) {
3077 		rcu_read_unlock();
3078 		return -EINVAL;
3079 	}
3080 
3081 	memset(id, 0, id_len);
3082 	for (d = vpd_pg83->data + 4;
3083 	     d < vpd_pg83->data + vpd_pg83->len;
3084 	     d += d[3] + 4) {
3085 		u8 prio = designator_prio(d);
3086 
3087 		if (prio == 0 || cur_id_prio > prio)
3088 			continue;
3089 
3090 		switch (d[1] & 0xf) {
3091 		case 0x1:
3092 			/* T10 Vendor ID */
3093 			if (cur_id_size > d[3])
3094 				break;
3095 			cur_id_prio = prio;
3096 			cur_id_size = d[3];
3097 			if (cur_id_size + 4 > id_len)
3098 				cur_id_size = id_len - 4;
3099 			cur_id_str = d + 4;
3100 			id_size = snprintf(id, id_len, "t10.%*pE",
3101 					   cur_id_size, cur_id_str);
3102 			break;
3103 		case 0x2:
3104 			/* EUI-64 */
3105 			cur_id_prio = prio;
3106 			cur_id_size = d[3];
3107 			cur_id_str = d + 4;
3108 			switch (cur_id_size) {
3109 			case 8:
3110 				id_size = snprintf(id, id_len,
3111 						   "eui.%8phN",
3112 						   cur_id_str);
3113 				break;
3114 			case 12:
3115 				id_size = snprintf(id, id_len,
3116 						   "eui.%12phN",
3117 						   cur_id_str);
3118 				break;
3119 			case 16:
3120 				id_size = snprintf(id, id_len,
3121 						   "eui.%16phN",
3122 						   cur_id_str);
3123 				break;
3124 			default:
3125 				break;
3126 			}
3127 			break;
3128 		case 0x3:
3129 			/* NAA */
3130 			cur_id_prio = prio;
3131 			cur_id_size = d[3];
3132 			cur_id_str = d + 4;
3133 			switch (cur_id_size) {
3134 			case 8:
3135 				id_size = snprintf(id, id_len,
3136 						   "naa.%8phN",
3137 						   cur_id_str);
3138 				break;
3139 			case 16:
3140 				id_size = snprintf(id, id_len,
3141 						   "naa.%16phN",
3142 						   cur_id_str);
3143 				break;
3144 			default:
3145 				break;
3146 			}
3147 			break;
3148 		case 0x8:
3149 			/* SCSI name string */
3150 			if (cur_id_size > d[3])
3151 				break;
3152 			/* Prefer others for truncated descriptor */
3153 			if (d[3] > id_len) {
3154 				prio = 2;
3155 				if (cur_id_prio > prio)
3156 					break;
3157 			}
3158 			cur_id_prio = prio;
3159 			cur_id_size = id_size = d[3];
3160 			cur_id_str = d + 4;
3161 			if (cur_id_size >= id_len)
3162 				cur_id_size = id_len - 1;
3163 			memcpy(id, cur_id_str, cur_id_size);
3164 			break;
3165 		default:
3166 			break;
3167 		}
3168 	}
3169 	rcu_read_unlock();
3170 
3171 	return id_size;
3172 }
3173 EXPORT_SYMBOL(scsi_vpd_lun_id);
3174 
3175 /*
3176  * scsi_vpd_tpg_id - return a target port group identifier
3177  * @sdev: SCSI device
3178  *
3179  * Returns the Target Port Group identifier from the information
3180  * froom VPD page 0x83 of the device.
3181  *
3182  * Returns the identifier or error on failure.
3183  */
3184 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3185 {
3186 	const unsigned char *d;
3187 	const struct scsi_vpd *vpd_pg83;
3188 	int group_id = -EAGAIN, rel_port = -1;
3189 
3190 	rcu_read_lock();
3191 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3192 	if (!vpd_pg83) {
3193 		rcu_read_unlock();
3194 		return -ENXIO;
3195 	}
3196 
3197 	d = vpd_pg83->data + 4;
3198 	while (d < vpd_pg83->data + vpd_pg83->len) {
3199 		switch (d[1] & 0xf) {
3200 		case 0x4:
3201 			/* Relative target port */
3202 			rel_port = get_unaligned_be16(&d[6]);
3203 			break;
3204 		case 0x5:
3205 			/* Target port group */
3206 			group_id = get_unaligned_be16(&d[6]);
3207 			break;
3208 		default:
3209 			break;
3210 		}
3211 		d += d[3] + 4;
3212 	}
3213 	rcu_read_unlock();
3214 
3215 	if (group_id >= 0 && rel_id && rel_port != -1)
3216 		*rel_id = rel_port;
3217 
3218 	return group_id;
3219 }
3220 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3221