1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/blk-integrity.h> 25 #include <linux/ratelimit.h> 26 #include <asm/unaligned.h> 27 28 #include <scsi/scsi.h> 29 #include <scsi/scsi_cmnd.h> 30 #include <scsi/scsi_dbg.h> 31 #include <scsi/scsi_device.h> 32 #include <scsi/scsi_driver.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 36 #include <scsi/scsi_dh.h> 37 38 #include <trace/events/scsi.h> 39 40 #include "scsi_debugfs.h" 41 #include "scsi_priv.h" 42 #include "scsi_logging.h" 43 44 /* 45 * Size of integrity metadata is usually small, 1 inline sg should 46 * cover normal cases. 47 */ 48 #ifdef CONFIG_ARCH_NO_SG_CHAIN 49 #define SCSI_INLINE_PROT_SG_CNT 0 50 #define SCSI_INLINE_SG_CNT 0 51 #else 52 #define SCSI_INLINE_PROT_SG_CNT 1 53 #define SCSI_INLINE_SG_CNT 2 54 #endif 55 56 static struct kmem_cache *scsi_sense_cache; 57 static DEFINE_MUTEX(scsi_sense_cache_mutex); 58 59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 60 61 int scsi_init_sense_cache(struct Scsi_Host *shost) 62 { 63 int ret = 0; 64 65 mutex_lock(&scsi_sense_cache_mutex); 66 if (!scsi_sense_cache) { 67 scsi_sense_cache = 68 kmem_cache_create_usercopy("scsi_sense_cache", 69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 70 0, SCSI_SENSE_BUFFERSIZE, NULL); 71 if (!scsi_sense_cache) 72 ret = -ENOMEM; 73 } 74 mutex_unlock(&scsi_sense_cache_mutex); 75 return ret; 76 } 77 78 static void 79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 80 { 81 struct Scsi_Host *host = cmd->device->host; 82 struct scsi_device *device = cmd->device; 83 struct scsi_target *starget = scsi_target(device); 84 85 /* 86 * Set the appropriate busy bit for the device/host. 87 * 88 * If the host/device isn't busy, assume that something actually 89 * completed, and that we should be able to queue a command now. 90 * 91 * Note that the prior mid-layer assumption that any host could 92 * always queue at least one command is now broken. The mid-layer 93 * will implement a user specifiable stall (see 94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 95 * if a command is requeued with no other commands outstanding 96 * either for the device or for the host. 97 */ 98 switch (reason) { 99 case SCSI_MLQUEUE_HOST_BUSY: 100 atomic_set(&host->host_blocked, host->max_host_blocked); 101 break; 102 case SCSI_MLQUEUE_DEVICE_BUSY: 103 case SCSI_MLQUEUE_EH_RETRY: 104 atomic_set(&device->device_blocked, 105 device->max_device_blocked); 106 break; 107 case SCSI_MLQUEUE_TARGET_BUSY: 108 atomic_set(&starget->target_blocked, 109 starget->max_target_blocked); 110 break; 111 } 112 } 113 114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs) 115 { 116 struct request *rq = scsi_cmd_to_rq(cmd); 117 118 if (rq->rq_flags & RQF_DONTPREP) { 119 rq->rq_flags &= ~RQF_DONTPREP; 120 scsi_mq_uninit_cmd(cmd); 121 } else { 122 WARN_ON_ONCE(true); 123 } 124 125 if (msecs) { 126 blk_mq_requeue_request(rq, false); 127 blk_mq_delay_kick_requeue_list(rq->q, msecs); 128 } else 129 blk_mq_requeue_request(rq, true); 130 } 131 132 /** 133 * __scsi_queue_insert - private queue insertion 134 * @cmd: The SCSI command being requeued 135 * @reason: The reason for the requeue 136 * @unbusy: Whether the queue should be unbusied 137 * 138 * This is a private queue insertion. The public interface 139 * scsi_queue_insert() always assumes the queue should be unbusied 140 * because it's always called before the completion. This function is 141 * for a requeue after completion, which should only occur in this 142 * file. 143 */ 144 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 145 { 146 struct scsi_device *device = cmd->device; 147 148 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 149 "Inserting command %p into mlqueue\n", cmd)); 150 151 scsi_set_blocked(cmd, reason); 152 153 /* 154 * Decrement the counters, since these commands are no longer 155 * active on the host/device. 156 */ 157 if (unbusy) 158 scsi_device_unbusy(device, cmd); 159 160 /* 161 * Requeue this command. It will go before all other commands 162 * that are already in the queue. Schedule requeue work under 163 * lock such that the kblockd_schedule_work() call happens 164 * before blk_mq_destroy_queue() finishes. 165 */ 166 cmd->result = 0; 167 168 blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true); 169 } 170 171 /** 172 * scsi_queue_insert - Reinsert a command in the queue. 173 * @cmd: command that we are adding to queue. 174 * @reason: why we are inserting command to queue. 175 * 176 * We do this for one of two cases. Either the host is busy and it cannot accept 177 * any more commands for the time being, or the device returned QUEUE_FULL and 178 * can accept no more commands. 179 * 180 * Context: This could be called either from an interrupt context or a normal 181 * process context. 182 */ 183 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 184 { 185 __scsi_queue_insert(cmd, reason, true); 186 } 187 188 /** 189 * scsi_execute_cmd - insert request and wait for the result 190 * @sdev: scsi_device 191 * @cmd: scsi command 192 * @opf: block layer request cmd_flags 193 * @buffer: data buffer 194 * @bufflen: len of buffer 195 * @timeout: request timeout in HZ 196 * @retries: number of times to retry request 197 * @args: Optional args. See struct definition for field descriptions 198 * 199 * Returns the scsi_cmnd result field if a command was executed, or a negative 200 * Linux error code if we didn't get that far. 201 */ 202 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd, 203 blk_opf_t opf, void *buffer, unsigned int bufflen, 204 int timeout, int retries, 205 const struct scsi_exec_args *args) 206 { 207 static const struct scsi_exec_args default_args; 208 struct request *req; 209 struct scsi_cmnd *scmd; 210 int ret; 211 212 if (!args) 213 args = &default_args; 214 else if (WARN_ON_ONCE(args->sense && 215 args->sense_len != SCSI_SENSE_BUFFERSIZE)) 216 return -EINVAL; 217 218 req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags); 219 if (IS_ERR(req)) 220 return PTR_ERR(req); 221 222 if (bufflen) { 223 ret = blk_rq_map_kern(sdev->request_queue, req, 224 buffer, bufflen, GFP_NOIO); 225 if (ret) 226 goto out; 227 } 228 scmd = blk_mq_rq_to_pdu(req); 229 scmd->cmd_len = COMMAND_SIZE(cmd[0]); 230 memcpy(scmd->cmnd, cmd, scmd->cmd_len); 231 scmd->allowed = retries; 232 scmd->flags |= args->scmd_flags; 233 req->timeout = timeout; 234 req->rq_flags |= RQF_QUIET; 235 236 /* 237 * head injection *required* here otherwise quiesce won't work 238 */ 239 blk_execute_rq(req, true); 240 241 /* 242 * Some devices (USB mass-storage in particular) may transfer 243 * garbage data together with a residue indicating that the data 244 * is invalid. Prevent the garbage from being misinterpreted 245 * and prevent security leaks by zeroing out the excess data. 246 */ 247 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen)) 248 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len); 249 250 if (args->resid) 251 *args->resid = scmd->resid_len; 252 if (args->sense) 253 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE); 254 if (args->sshdr) 255 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len, 256 args->sshdr); 257 258 ret = scmd->result; 259 out: 260 blk_mq_free_request(req); 261 262 return ret; 263 } 264 EXPORT_SYMBOL(scsi_execute_cmd); 265 266 /* 267 * Wake up the error handler if necessary. Avoid as follows that the error 268 * handler is not woken up if host in-flight requests number == 269 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 270 * with an RCU read lock in this function to ensure that this function in 271 * its entirety either finishes before scsi_eh_scmd_add() increases the 272 * host_failed counter or that it notices the shost state change made by 273 * scsi_eh_scmd_add(). 274 */ 275 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 276 { 277 unsigned long flags; 278 279 rcu_read_lock(); 280 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 281 if (unlikely(scsi_host_in_recovery(shost))) { 282 spin_lock_irqsave(shost->host_lock, flags); 283 if (shost->host_failed || shost->host_eh_scheduled) 284 scsi_eh_wakeup(shost); 285 spin_unlock_irqrestore(shost->host_lock, flags); 286 } 287 rcu_read_unlock(); 288 } 289 290 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 291 { 292 struct Scsi_Host *shost = sdev->host; 293 struct scsi_target *starget = scsi_target(sdev); 294 295 scsi_dec_host_busy(shost, cmd); 296 297 if (starget->can_queue > 0) 298 atomic_dec(&starget->target_busy); 299 300 sbitmap_put(&sdev->budget_map, cmd->budget_token); 301 cmd->budget_token = -1; 302 } 303 304 static void scsi_kick_queue(struct request_queue *q) 305 { 306 blk_mq_run_hw_queues(q, false); 307 } 308 309 /* 310 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with 311 * interrupts disabled. 312 */ 313 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data) 314 { 315 struct scsi_device *current_sdev = data; 316 317 if (sdev != current_sdev) 318 blk_mq_run_hw_queues(sdev->request_queue, true); 319 } 320 321 /* 322 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 323 * and call blk_run_queue for all the scsi_devices on the target - 324 * including current_sdev first. 325 * 326 * Called with *no* scsi locks held. 327 */ 328 static void scsi_single_lun_run(struct scsi_device *current_sdev) 329 { 330 struct Scsi_Host *shost = current_sdev->host; 331 struct scsi_target *starget = scsi_target(current_sdev); 332 unsigned long flags; 333 334 spin_lock_irqsave(shost->host_lock, flags); 335 starget->starget_sdev_user = NULL; 336 spin_unlock_irqrestore(shost->host_lock, flags); 337 338 /* 339 * Call blk_run_queue for all LUNs on the target, starting with 340 * current_sdev. We race with others (to set starget_sdev_user), 341 * but in most cases, we will be first. Ideally, each LU on the 342 * target would get some limited time or requests on the target. 343 */ 344 scsi_kick_queue(current_sdev->request_queue); 345 346 spin_lock_irqsave(shost->host_lock, flags); 347 if (!starget->starget_sdev_user) 348 __starget_for_each_device(starget, current_sdev, 349 scsi_kick_sdev_queue); 350 spin_unlock_irqrestore(shost->host_lock, flags); 351 } 352 353 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 354 { 355 if (scsi_device_busy(sdev) >= sdev->queue_depth) 356 return true; 357 if (atomic_read(&sdev->device_blocked) > 0) 358 return true; 359 return false; 360 } 361 362 static inline bool scsi_target_is_busy(struct scsi_target *starget) 363 { 364 if (starget->can_queue > 0) { 365 if (atomic_read(&starget->target_busy) >= starget->can_queue) 366 return true; 367 if (atomic_read(&starget->target_blocked) > 0) 368 return true; 369 } 370 return false; 371 } 372 373 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 374 { 375 if (atomic_read(&shost->host_blocked) > 0) 376 return true; 377 if (shost->host_self_blocked) 378 return true; 379 return false; 380 } 381 382 static void scsi_starved_list_run(struct Scsi_Host *shost) 383 { 384 LIST_HEAD(starved_list); 385 struct scsi_device *sdev; 386 unsigned long flags; 387 388 spin_lock_irqsave(shost->host_lock, flags); 389 list_splice_init(&shost->starved_list, &starved_list); 390 391 while (!list_empty(&starved_list)) { 392 struct request_queue *slq; 393 394 /* 395 * As long as shost is accepting commands and we have 396 * starved queues, call blk_run_queue. scsi_request_fn 397 * drops the queue_lock and can add us back to the 398 * starved_list. 399 * 400 * host_lock protects the starved_list and starved_entry. 401 * scsi_request_fn must get the host_lock before checking 402 * or modifying starved_list or starved_entry. 403 */ 404 if (scsi_host_is_busy(shost)) 405 break; 406 407 sdev = list_entry(starved_list.next, 408 struct scsi_device, starved_entry); 409 list_del_init(&sdev->starved_entry); 410 if (scsi_target_is_busy(scsi_target(sdev))) { 411 list_move_tail(&sdev->starved_entry, 412 &shost->starved_list); 413 continue; 414 } 415 416 /* 417 * Once we drop the host lock, a racing scsi_remove_device() 418 * call may remove the sdev from the starved list and destroy 419 * it and the queue. Mitigate by taking a reference to the 420 * queue and never touching the sdev again after we drop the 421 * host lock. Note: if __scsi_remove_device() invokes 422 * blk_mq_destroy_queue() before the queue is run from this 423 * function then blk_run_queue() will return immediately since 424 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING. 425 */ 426 slq = sdev->request_queue; 427 if (!blk_get_queue(slq)) 428 continue; 429 spin_unlock_irqrestore(shost->host_lock, flags); 430 431 scsi_kick_queue(slq); 432 blk_put_queue(slq); 433 434 spin_lock_irqsave(shost->host_lock, flags); 435 } 436 /* put any unprocessed entries back */ 437 list_splice(&starved_list, &shost->starved_list); 438 spin_unlock_irqrestore(shost->host_lock, flags); 439 } 440 441 /** 442 * scsi_run_queue - Select a proper request queue to serve next. 443 * @q: last request's queue 444 * 445 * The previous command was completely finished, start a new one if possible. 446 */ 447 static void scsi_run_queue(struct request_queue *q) 448 { 449 struct scsi_device *sdev = q->queuedata; 450 451 if (scsi_target(sdev)->single_lun) 452 scsi_single_lun_run(sdev); 453 if (!list_empty(&sdev->host->starved_list)) 454 scsi_starved_list_run(sdev->host); 455 456 blk_mq_run_hw_queues(q, false); 457 } 458 459 void scsi_requeue_run_queue(struct work_struct *work) 460 { 461 struct scsi_device *sdev; 462 struct request_queue *q; 463 464 sdev = container_of(work, struct scsi_device, requeue_work); 465 q = sdev->request_queue; 466 scsi_run_queue(q); 467 } 468 469 void scsi_run_host_queues(struct Scsi_Host *shost) 470 { 471 struct scsi_device *sdev; 472 473 shost_for_each_device(sdev, shost) 474 scsi_run_queue(sdev->request_queue); 475 } 476 477 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 478 { 479 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) { 480 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 481 482 if (drv->uninit_command) 483 drv->uninit_command(cmd); 484 } 485 } 486 487 void scsi_free_sgtables(struct scsi_cmnd *cmd) 488 { 489 if (cmd->sdb.table.nents) 490 sg_free_table_chained(&cmd->sdb.table, 491 SCSI_INLINE_SG_CNT); 492 if (scsi_prot_sg_count(cmd)) 493 sg_free_table_chained(&cmd->prot_sdb->table, 494 SCSI_INLINE_PROT_SG_CNT); 495 } 496 EXPORT_SYMBOL_GPL(scsi_free_sgtables); 497 498 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 499 { 500 scsi_free_sgtables(cmd); 501 scsi_uninit_cmd(cmd); 502 } 503 504 static void scsi_run_queue_async(struct scsi_device *sdev) 505 { 506 if (scsi_target(sdev)->single_lun || 507 !list_empty(&sdev->host->starved_list)) { 508 kblockd_schedule_work(&sdev->requeue_work); 509 } else { 510 /* 511 * smp_mb() present in sbitmap_queue_clear() or implied in 512 * .end_io is for ordering writing .device_busy in 513 * scsi_device_unbusy() and reading sdev->restarts. 514 */ 515 int old = atomic_read(&sdev->restarts); 516 517 /* 518 * ->restarts has to be kept as non-zero if new budget 519 * contention occurs. 520 * 521 * No need to run queue when either another re-run 522 * queue wins in updating ->restarts or a new budget 523 * contention occurs. 524 */ 525 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 526 blk_mq_run_hw_queues(sdev->request_queue, true); 527 } 528 } 529 530 /* Returns false when no more bytes to process, true if there are more */ 531 static bool scsi_end_request(struct request *req, blk_status_t error, 532 unsigned int bytes) 533 { 534 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 535 struct scsi_device *sdev = cmd->device; 536 struct request_queue *q = sdev->request_queue; 537 538 if (blk_update_request(req, error, bytes)) 539 return true; 540 541 // XXX: 542 if (blk_queue_add_random(q)) 543 add_disk_randomness(req->q->disk); 544 545 if (!blk_rq_is_passthrough(req)) { 546 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 547 cmd->flags &= ~SCMD_INITIALIZED; 548 } 549 550 /* 551 * Calling rcu_barrier() is not necessary here because the 552 * SCSI error handler guarantees that the function called by 553 * call_rcu() has been called before scsi_end_request() is 554 * called. 555 */ 556 destroy_rcu_head(&cmd->rcu); 557 558 /* 559 * In the MQ case the command gets freed by __blk_mq_end_request, 560 * so we have to do all cleanup that depends on it earlier. 561 * 562 * We also can't kick the queues from irq context, so we 563 * will have to defer it to a workqueue. 564 */ 565 scsi_mq_uninit_cmd(cmd); 566 567 /* 568 * queue is still alive, so grab the ref for preventing it 569 * from being cleaned up during running queue. 570 */ 571 percpu_ref_get(&q->q_usage_counter); 572 573 __blk_mq_end_request(req, error); 574 575 scsi_run_queue_async(sdev); 576 577 percpu_ref_put(&q->q_usage_counter); 578 return false; 579 } 580 581 static inline u8 get_scsi_ml_byte(int result) 582 { 583 return (result >> 8) & 0xff; 584 } 585 586 /** 587 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 588 * @result: scsi error code 589 * 590 * Translate a SCSI result code into a blk_status_t value. 591 */ 592 static blk_status_t scsi_result_to_blk_status(int result) 593 { 594 /* 595 * Check the scsi-ml byte first in case we converted a host or status 596 * byte. 597 */ 598 switch (get_scsi_ml_byte(result)) { 599 case SCSIML_STAT_OK: 600 break; 601 case SCSIML_STAT_RESV_CONFLICT: 602 return BLK_STS_NEXUS; 603 case SCSIML_STAT_NOSPC: 604 return BLK_STS_NOSPC; 605 case SCSIML_STAT_MED_ERROR: 606 return BLK_STS_MEDIUM; 607 case SCSIML_STAT_TGT_FAILURE: 608 return BLK_STS_TARGET; 609 } 610 611 switch (host_byte(result)) { 612 case DID_OK: 613 if (scsi_status_is_good(result)) 614 return BLK_STS_OK; 615 return BLK_STS_IOERR; 616 case DID_TRANSPORT_FAILFAST: 617 case DID_TRANSPORT_MARGINAL: 618 return BLK_STS_TRANSPORT; 619 default: 620 return BLK_STS_IOERR; 621 } 622 } 623 624 /** 625 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary 626 * @rq: request to examine 627 * 628 * Description: 629 * A request could be merge of IOs which require different failure 630 * handling. This function determines the number of bytes which 631 * can be failed from the beginning of the request without 632 * crossing into area which need to be retried further. 633 * 634 * Return: 635 * The number of bytes to fail. 636 */ 637 static unsigned int scsi_rq_err_bytes(const struct request *rq) 638 { 639 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 640 unsigned int bytes = 0; 641 struct bio *bio; 642 643 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 644 return blk_rq_bytes(rq); 645 646 /* 647 * Currently the only 'mixing' which can happen is between 648 * different fastfail types. We can safely fail portions 649 * which have all the failfast bits that the first one has - 650 * the ones which are at least as eager to fail as the first 651 * one. 652 */ 653 for (bio = rq->bio; bio; bio = bio->bi_next) { 654 if ((bio->bi_opf & ff) != ff) 655 break; 656 bytes += bio->bi_iter.bi_size; 657 } 658 659 /* this could lead to infinite loop */ 660 BUG_ON(blk_rq_bytes(rq) && !bytes); 661 return bytes; 662 } 663 664 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 665 { 666 struct request *req = scsi_cmd_to_rq(cmd); 667 unsigned long wait_for; 668 669 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 670 return false; 671 672 wait_for = (cmd->allowed + 1) * req->timeout; 673 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 674 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 675 wait_for/HZ); 676 return true; 677 } 678 return false; 679 } 680 681 /* 682 * When ALUA transition state is returned, reprep the cmd to 683 * use the ALUA handler's transition timeout. Delay the reprep 684 * 1 sec to avoid aggressive retries of the target in that 685 * state. 686 */ 687 #define ALUA_TRANSITION_REPREP_DELAY 1000 688 689 /* Helper for scsi_io_completion() when special action required. */ 690 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 691 { 692 struct request *req = scsi_cmd_to_rq(cmd); 693 int level = 0; 694 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP, 695 ACTION_RETRY, ACTION_DELAYED_RETRY} action; 696 struct scsi_sense_hdr sshdr; 697 bool sense_valid; 698 bool sense_current = true; /* false implies "deferred sense" */ 699 blk_status_t blk_stat; 700 701 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 702 if (sense_valid) 703 sense_current = !scsi_sense_is_deferred(&sshdr); 704 705 blk_stat = scsi_result_to_blk_status(result); 706 707 if (host_byte(result) == DID_RESET) { 708 /* Third party bus reset or reset for error recovery 709 * reasons. Just retry the command and see what 710 * happens. 711 */ 712 action = ACTION_RETRY; 713 } else if (sense_valid && sense_current) { 714 switch (sshdr.sense_key) { 715 case UNIT_ATTENTION: 716 if (cmd->device->removable) { 717 /* Detected disc change. Set a bit 718 * and quietly refuse further access. 719 */ 720 cmd->device->changed = 1; 721 action = ACTION_FAIL; 722 } else { 723 /* Must have been a power glitch, or a 724 * bus reset. Could not have been a 725 * media change, so we just retry the 726 * command and see what happens. 727 */ 728 action = ACTION_RETRY; 729 } 730 break; 731 case ILLEGAL_REQUEST: 732 /* If we had an ILLEGAL REQUEST returned, then 733 * we may have performed an unsupported 734 * command. The only thing this should be 735 * would be a ten byte read where only a six 736 * byte read was supported. Also, on a system 737 * where READ CAPACITY failed, we may have 738 * read past the end of the disk. 739 */ 740 if ((cmd->device->use_10_for_rw && 741 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 742 (cmd->cmnd[0] == READ_10 || 743 cmd->cmnd[0] == WRITE_10)) { 744 /* This will issue a new 6-byte command. */ 745 cmd->device->use_10_for_rw = 0; 746 action = ACTION_REPREP; 747 } else if (sshdr.asc == 0x10) /* DIX */ { 748 action = ACTION_FAIL; 749 blk_stat = BLK_STS_PROTECTION; 750 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 751 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 752 action = ACTION_FAIL; 753 blk_stat = BLK_STS_TARGET; 754 } else 755 action = ACTION_FAIL; 756 break; 757 case ABORTED_COMMAND: 758 action = ACTION_FAIL; 759 if (sshdr.asc == 0x10) /* DIF */ 760 blk_stat = BLK_STS_PROTECTION; 761 break; 762 case NOT_READY: 763 /* If the device is in the process of becoming 764 * ready, or has a temporary blockage, retry. 765 */ 766 if (sshdr.asc == 0x04) { 767 switch (sshdr.ascq) { 768 case 0x01: /* becoming ready */ 769 case 0x04: /* format in progress */ 770 case 0x05: /* rebuild in progress */ 771 case 0x06: /* recalculation in progress */ 772 case 0x07: /* operation in progress */ 773 case 0x08: /* Long write in progress */ 774 case 0x09: /* self test in progress */ 775 case 0x11: /* notify (enable spinup) required */ 776 case 0x14: /* space allocation in progress */ 777 case 0x1a: /* start stop unit in progress */ 778 case 0x1b: /* sanitize in progress */ 779 case 0x1d: /* configuration in progress */ 780 case 0x24: /* depopulation in progress */ 781 action = ACTION_DELAYED_RETRY; 782 break; 783 case 0x0a: /* ALUA state transition */ 784 action = ACTION_DELAYED_REPREP; 785 break; 786 default: 787 action = ACTION_FAIL; 788 break; 789 } 790 } else 791 action = ACTION_FAIL; 792 break; 793 case VOLUME_OVERFLOW: 794 /* See SSC3rXX or current. */ 795 action = ACTION_FAIL; 796 break; 797 case DATA_PROTECT: 798 action = ACTION_FAIL; 799 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) || 800 (sshdr.asc == 0x55 && 801 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) { 802 /* Insufficient zone resources */ 803 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE; 804 } 805 break; 806 default: 807 action = ACTION_FAIL; 808 break; 809 } 810 } else 811 action = ACTION_FAIL; 812 813 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 814 action = ACTION_FAIL; 815 816 switch (action) { 817 case ACTION_FAIL: 818 /* Give up and fail the remainder of the request */ 819 if (!(req->rq_flags & RQF_QUIET)) { 820 static DEFINE_RATELIMIT_STATE(_rs, 821 DEFAULT_RATELIMIT_INTERVAL, 822 DEFAULT_RATELIMIT_BURST); 823 824 if (unlikely(scsi_logging_level)) 825 level = 826 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 827 SCSI_LOG_MLCOMPLETE_BITS); 828 829 /* 830 * if logging is enabled the failure will be printed 831 * in scsi_log_completion(), so avoid duplicate messages 832 */ 833 if (!level && __ratelimit(&_rs)) { 834 scsi_print_result(cmd, NULL, FAILED); 835 if (sense_valid) 836 scsi_print_sense(cmd); 837 scsi_print_command(cmd); 838 } 839 } 840 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req))) 841 return; 842 fallthrough; 843 case ACTION_REPREP: 844 scsi_mq_requeue_cmd(cmd, 0); 845 break; 846 case ACTION_DELAYED_REPREP: 847 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY); 848 break; 849 case ACTION_RETRY: 850 /* Retry the same command immediately */ 851 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 852 break; 853 case ACTION_DELAYED_RETRY: 854 /* Retry the same command after a delay */ 855 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 856 break; 857 } 858 } 859 860 /* 861 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 862 * new result that may suppress further error checking. Also modifies 863 * *blk_statp in some cases. 864 */ 865 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 866 blk_status_t *blk_statp) 867 { 868 bool sense_valid; 869 bool sense_current = true; /* false implies "deferred sense" */ 870 struct request *req = scsi_cmd_to_rq(cmd); 871 struct scsi_sense_hdr sshdr; 872 873 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 874 if (sense_valid) 875 sense_current = !scsi_sense_is_deferred(&sshdr); 876 877 if (blk_rq_is_passthrough(req)) { 878 if (sense_valid) { 879 /* 880 * SG_IO wants current and deferred errors 881 */ 882 cmd->sense_len = min(8 + cmd->sense_buffer[7], 883 SCSI_SENSE_BUFFERSIZE); 884 } 885 if (sense_current) 886 *blk_statp = scsi_result_to_blk_status(result); 887 } else if (blk_rq_bytes(req) == 0 && sense_current) { 888 /* 889 * Flush commands do not transfers any data, and thus cannot use 890 * good_bytes != blk_rq_bytes(req) as the signal for an error. 891 * This sets *blk_statp explicitly for the problem case. 892 */ 893 *blk_statp = scsi_result_to_blk_status(result); 894 } 895 /* 896 * Recovered errors need reporting, but they're always treated as 897 * success, so fiddle the result code here. For passthrough requests 898 * we already took a copy of the original into sreq->result which 899 * is what gets returned to the user 900 */ 901 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 902 bool do_print = true; 903 /* 904 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 905 * skip print since caller wants ATA registers. Only occurs 906 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 907 */ 908 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 909 do_print = false; 910 else if (req->rq_flags & RQF_QUIET) 911 do_print = false; 912 if (do_print) 913 scsi_print_sense(cmd); 914 result = 0; 915 /* for passthrough, *blk_statp may be set */ 916 *blk_statp = BLK_STS_OK; 917 } 918 /* 919 * Another corner case: the SCSI status byte is non-zero but 'good'. 920 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 921 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 922 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 923 * intermediate statuses (both obsolete in SAM-4) as good. 924 */ 925 if ((result & 0xff) && scsi_status_is_good(result)) { 926 result = 0; 927 *blk_statp = BLK_STS_OK; 928 } 929 return result; 930 } 931 932 /** 933 * scsi_io_completion - Completion processing for SCSI commands. 934 * @cmd: command that is finished. 935 * @good_bytes: number of processed bytes. 936 * 937 * We will finish off the specified number of sectors. If we are done, the 938 * command block will be released and the queue function will be goosed. If we 939 * are not done then we have to figure out what to do next: 940 * 941 * a) We can call scsi_mq_requeue_cmd(). The request will be 942 * unprepared and put back on the queue. Then a new command will 943 * be created for it. This should be used if we made forward 944 * progress, or if we want to switch from READ(10) to READ(6) for 945 * example. 946 * 947 * b) We can call scsi_io_completion_action(). The request will be 948 * put back on the queue and retried using the same command as 949 * before, possibly after a delay. 950 * 951 * c) We can call scsi_end_request() with blk_stat other than 952 * BLK_STS_OK, to fail the remainder of the request. 953 */ 954 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 955 { 956 int result = cmd->result; 957 struct request *req = scsi_cmd_to_rq(cmd); 958 blk_status_t blk_stat = BLK_STS_OK; 959 960 if (unlikely(result)) /* a nz result may or may not be an error */ 961 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 962 963 /* 964 * Next deal with any sectors which we were able to correctly 965 * handle. 966 */ 967 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 968 "%u sectors total, %d bytes done.\n", 969 blk_rq_sectors(req), good_bytes)); 970 971 /* 972 * Failed, zero length commands always need to drop down 973 * to retry code. Fast path should return in this block. 974 */ 975 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 976 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 977 return; /* no bytes remaining */ 978 } 979 980 /* Kill remainder if no retries. */ 981 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 982 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 983 WARN_ONCE(true, 984 "Bytes remaining after failed, no-retry command"); 985 return; 986 } 987 988 /* 989 * If there had been no error, but we have leftover bytes in the 990 * request just queue the command up again. 991 */ 992 if (likely(result == 0)) 993 scsi_mq_requeue_cmd(cmd, 0); 994 else 995 scsi_io_completion_action(cmd, result); 996 } 997 998 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 999 struct request *rq) 1000 { 1001 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 1002 !op_is_write(req_op(rq)) && 1003 sdev->host->hostt->dma_need_drain(rq); 1004 } 1005 1006 /** 1007 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists 1008 * @cmd: SCSI command data structure to initialize. 1009 * 1010 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled 1011 * for @cmd. 1012 * 1013 * Returns: 1014 * * BLK_STS_OK - on success 1015 * * BLK_STS_RESOURCE - if the failure is retryable 1016 * * BLK_STS_IOERR - if the failure is fatal 1017 */ 1018 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd) 1019 { 1020 struct scsi_device *sdev = cmd->device; 1021 struct request *rq = scsi_cmd_to_rq(cmd); 1022 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 1023 struct scatterlist *last_sg = NULL; 1024 blk_status_t ret; 1025 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 1026 int count; 1027 1028 if (WARN_ON_ONCE(!nr_segs)) 1029 return BLK_STS_IOERR; 1030 1031 /* 1032 * Make sure there is space for the drain. The driver must adjust 1033 * max_hw_segments to be prepared for this. 1034 */ 1035 if (need_drain) 1036 nr_segs++; 1037 1038 /* 1039 * If sg table allocation fails, requeue request later. 1040 */ 1041 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1042 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1043 return BLK_STS_RESOURCE; 1044 1045 /* 1046 * Next, walk the list, and fill in the addresses and sizes of 1047 * each segment. 1048 */ 1049 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1050 1051 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) { 1052 unsigned int pad_len = 1053 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1054 1055 last_sg->length += pad_len; 1056 cmd->extra_len += pad_len; 1057 } 1058 1059 if (need_drain) { 1060 sg_unmark_end(last_sg); 1061 last_sg = sg_next(last_sg); 1062 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1063 sg_mark_end(last_sg); 1064 1065 cmd->extra_len += sdev->dma_drain_len; 1066 count++; 1067 } 1068 1069 BUG_ON(count > cmd->sdb.table.nents); 1070 cmd->sdb.table.nents = count; 1071 cmd->sdb.length = blk_rq_payload_bytes(rq); 1072 1073 if (blk_integrity_rq(rq)) { 1074 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1075 int ivecs; 1076 1077 if (WARN_ON_ONCE(!prot_sdb)) { 1078 /* 1079 * This can happen if someone (e.g. multipath) 1080 * queues a command to a device on an adapter 1081 * that does not support DIX. 1082 */ 1083 ret = BLK_STS_IOERR; 1084 goto out_free_sgtables; 1085 } 1086 1087 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1088 1089 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1090 prot_sdb->table.sgl, 1091 SCSI_INLINE_PROT_SG_CNT)) { 1092 ret = BLK_STS_RESOURCE; 1093 goto out_free_sgtables; 1094 } 1095 1096 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1097 prot_sdb->table.sgl); 1098 BUG_ON(count > ivecs); 1099 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1100 1101 cmd->prot_sdb = prot_sdb; 1102 cmd->prot_sdb->table.nents = count; 1103 } 1104 1105 return BLK_STS_OK; 1106 out_free_sgtables: 1107 scsi_free_sgtables(cmd); 1108 return ret; 1109 } 1110 EXPORT_SYMBOL(scsi_alloc_sgtables); 1111 1112 /** 1113 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1114 * @rq: Request associated with the SCSI command to be initialized. 1115 * 1116 * This function initializes the members of struct scsi_cmnd that must be 1117 * initialized before request processing starts and that won't be 1118 * reinitialized if a SCSI command is requeued. 1119 */ 1120 static void scsi_initialize_rq(struct request *rq) 1121 { 1122 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1123 1124 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1125 cmd->cmd_len = MAX_COMMAND_SIZE; 1126 cmd->sense_len = 0; 1127 init_rcu_head(&cmd->rcu); 1128 cmd->jiffies_at_alloc = jiffies; 1129 cmd->retries = 0; 1130 } 1131 1132 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf, 1133 blk_mq_req_flags_t flags) 1134 { 1135 struct request *rq; 1136 1137 rq = blk_mq_alloc_request(q, opf, flags); 1138 if (!IS_ERR(rq)) 1139 scsi_initialize_rq(rq); 1140 return rq; 1141 } 1142 EXPORT_SYMBOL_GPL(scsi_alloc_request); 1143 1144 /* 1145 * Only called when the request isn't completed by SCSI, and not freed by 1146 * SCSI 1147 */ 1148 static void scsi_cleanup_rq(struct request *rq) 1149 { 1150 if (rq->rq_flags & RQF_DONTPREP) { 1151 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1152 rq->rq_flags &= ~RQF_DONTPREP; 1153 } 1154 } 1155 1156 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1157 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1158 { 1159 struct request *rq = scsi_cmd_to_rq(cmd); 1160 1161 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) { 1162 cmd->flags |= SCMD_INITIALIZED; 1163 scsi_initialize_rq(rq); 1164 } 1165 1166 cmd->device = dev; 1167 INIT_LIST_HEAD(&cmd->eh_entry); 1168 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1169 } 1170 1171 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1172 struct request *req) 1173 { 1174 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1175 1176 /* 1177 * Passthrough requests may transfer data, in which case they must 1178 * a bio attached to them. Or they might contain a SCSI command 1179 * that does not transfer data, in which case they may optionally 1180 * submit a request without an attached bio. 1181 */ 1182 if (req->bio) { 1183 blk_status_t ret = scsi_alloc_sgtables(cmd); 1184 if (unlikely(ret != BLK_STS_OK)) 1185 return ret; 1186 } else { 1187 BUG_ON(blk_rq_bytes(req)); 1188 1189 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1190 } 1191 1192 cmd->transfersize = blk_rq_bytes(req); 1193 return BLK_STS_OK; 1194 } 1195 1196 static blk_status_t 1197 scsi_device_state_check(struct scsi_device *sdev, struct request *req) 1198 { 1199 switch (sdev->sdev_state) { 1200 case SDEV_CREATED: 1201 return BLK_STS_OK; 1202 case SDEV_OFFLINE: 1203 case SDEV_TRANSPORT_OFFLINE: 1204 /* 1205 * If the device is offline we refuse to process any 1206 * commands. The device must be brought online 1207 * before trying any recovery commands. 1208 */ 1209 if (!sdev->offline_already) { 1210 sdev->offline_already = true; 1211 sdev_printk(KERN_ERR, sdev, 1212 "rejecting I/O to offline device\n"); 1213 } 1214 return BLK_STS_IOERR; 1215 case SDEV_DEL: 1216 /* 1217 * If the device is fully deleted, we refuse to 1218 * process any commands as well. 1219 */ 1220 sdev_printk(KERN_ERR, sdev, 1221 "rejecting I/O to dead device\n"); 1222 return BLK_STS_IOERR; 1223 case SDEV_BLOCK: 1224 case SDEV_CREATED_BLOCK: 1225 return BLK_STS_RESOURCE; 1226 case SDEV_QUIESCE: 1227 /* 1228 * If the device is blocked we only accept power management 1229 * commands. 1230 */ 1231 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM))) 1232 return BLK_STS_RESOURCE; 1233 return BLK_STS_OK; 1234 default: 1235 /* 1236 * For any other not fully online state we only allow 1237 * power management commands. 1238 */ 1239 if (req && !(req->rq_flags & RQF_PM)) 1240 return BLK_STS_OFFLINE; 1241 return BLK_STS_OK; 1242 } 1243 } 1244 1245 /* 1246 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token 1247 * and return the token else return -1. 1248 */ 1249 static inline int scsi_dev_queue_ready(struct request_queue *q, 1250 struct scsi_device *sdev) 1251 { 1252 int token; 1253 1254 token = sbitmap_get(&sdev->budget_map); 1255 if (atomic_read(&sdev->device_blocked)) { 1256 if (token < 0) 1257 goto out; 1258 1259 if (scsi_device_busy(sdev) > 1) 1260 goto out_dec; 1261 1262 /* 1263 * unblock after device_blocked iterates to zero 1264 */ 1265 if (atomic_dec_return(&sdev->device_blocked) > 0) 1266 goto out_dec; 1267 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1268 "unblocking device at zero depth\n")); 1269 } 1270 1271 return token; 1272 out_dec: 1273 if (token >= 0) 1274 sbitmap_put(&sdev->budget_map, token); 1275 out: 1276 return -1; 1277 } 1278 1279 /* 1280 * scsi_target_queue_ready: checks if there we can send commands to target 1281 * @sdev: scsi device on starget to check. 1282 */ 1283 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1284 struct scsi_device *sdev) 1285 { 1286 struct scsi_target *starget = scsi_target(sdev); 1287 unsigned int busy; 1288 1289 if (starget->single_lun) { 1290 spin_lock_irq(shost->host_lock); 1291 if (starget->starget_sdev_user && 1292 starget->starget_sdev_user != sdev) { 1293 spin_unlock_irq(shost->host_lock); 1294 return 0; 1295 } 1296 starget->starget_sdev_user = sdev; 1297 spin_unlock_irq(shost->host_lock); 1298 } 1299 1300 if (starget->can_queue <= 0) 1301 return 1; 1302 1303 busy = atomic_inc_return(&starget->target_busy) - 1; 1304 if (atomic_read(&starget->target_blocked) > 0) { 1305 if (busy) 1306 goto starved; 1307 1308 /* 1309 * unblock after target_blocked iterates to zero 1310 */ 1311 if (atomic_dec_return(&starget->target_blocked) > 0) 1312 goto out_dec; 1313 1314 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1315 "unblocking target at zero depth\n")); 1316 } 1317 1318 if (busy >= starget->can_queue) 1319 goto starved; 1320 1321 return 1; 1322 1323 starved: 1324 spin_lock_irq(shost->host_lock); 1325 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1326 spin_unlock_irq(shost->host_lock); 1327 out_dec: 1328 if (starget->can_queue > 0) 1329 atomic_dec(&starget->target_busy); 1330 return 0; 1331 } 1332 1333 /* 1334 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1335 * return 0. We must end up running the queue again whenever 0 is 1336 * returned, else IO can hang. 1337 */ 1338 static inline int scsi_host_queue_ready(struct request_queue *q, 1339 struct Scsi_Host *shost, 1340 struct scsi_device *sdev, 1341 struct scsi_cmnd *cmd) 1342 { 1343 if (atomic_read(&shost->host_blocked) > 0) { 1344 if (scsi_host_busy(shost) > 0) 1345 goto starved; 1346 1347 /* 1348 * unblock after host_blocked iterates to zero 1349 */ 1350 if (atomic_dec_return(&shost->host_blocked) > 0) 1351 goto out_dec; 1352 1353 SCSI_LOG_MLQUEUE(3, 1354 shost_printk(KERN_INFO, shost, 1355 "unblocking host at zero depth\n")); 1356 } 1357 1358 if (shost->host_self_blocked) 1359 goto starved; 1360 1361 /* We're OK to process the command, so we can't be starved */ 1362 if (!list_empty(&sdev->starved_entry)) { 1363 spin_lock_irq(shost->host_lock); 1364 if (!list_empty(&sdev->starved_entry)) 1365 list_del_init(&sdev->starved_entry); 1366 spin_unlock_irq(shost->host_lock); 1367 } 1368 1369 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1370 1371 return 1; 1372 1373 starved: 1374 spin_lock_irq(shost->host_lock); 1375 if (list_empty(&sdev->starved_entry)) 1376 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1377 spin_unlock_irq(shost->host_lock); 1378 out_dec: 1379 scsi_dec_host_busy(shost, cmd); 1380 return 0; 1381 } 1382 1383 /* 1384 * Busy state exporting function for request stacking drivers. 1385 * 1386 * For efficiency, no lock is taken to check the busy state of 1387 * shost/starget/sdev, since the returned value is not guaranteed and 1388 * may be changed after request stacking drivers call the function, 1389 * regardless of taking lock or not. 1390 * 1391 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1392 * needs to return 'not busy'. Otherwise, request stacking drivers 1393 * may hold requests forever. 1394 */ 1395 static bool scsi_mq_lld_busy(struct request_queue *q) 1396 { 1397 struct scsi_device *sdev = q->queuedata; 1398 struct Scsi_Host *shost; 1399 1400 if (blk_queue_dying(q)) 1401 return false; 1402 1403 shost = sdev->host; 1404 1405 /* 1406 * Ignore host/starget busy state. 1407 * Since block layer does not have a concept of fairness across 1408 * multiple queues, congestion of host/starget needs to be handled 1409 * in SCSI layer. 1410 */ 1411 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1412 return true; 1413 1414 return false; 1415 } 1416 1417 /* 1418 * Block layer request completion callback. May be called from interrupt 1419 * context. 1420 */ 1421 static void scsi_complete(struct request *rq) 1422 { 1423 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1424 enum scsi_disposition disposition; 1425 1426 INIT_LIST_HEAD(&cmd->eh_entry); 1427 1428 atomic_inc(&cmd->device->iodone_cnt); 1429 if (cmd->result) 1430 atomic_inc(&cmd->device->ioerr_cnt); 1431 1432 disposition = scsi_decide_disposition(cmd); 1433 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1434 disposition = SUCCESS; 1435 1436 scsi_log_completion(cmd, disposition); 1437 1438 switch (disposition) { 1439 case SUCCESS: 1440 scsi_finish_command(cmd); 1441 break; 1442 case NEEDS_RETRY: 1443 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1444 break; 1445 case ADD_TO_MLQUEUE: 1446 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1447 break; 1448 default: 1449 scsi_eh_scmd_add(cmd); 1450 break; 1451 } 1452 } 1453 1454 /** 1455 * scsi_dispatch_cmd - Dispatch a command to the low-level driver. 1456 * @cmd: command block we are dispatching. 1457 * 1458 * Return: nonzero return request was rejected and device's queue needs to be 1459 * plugged. 1460 */ 1461 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1462 { 1463 struct Scsi_Host *host = cmd->device->host; 1464 int rtn = 0; 1465 1466 /* check if the device is still usable */ 1467 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1468 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1469 * returns an immediate error upwards, and signals 1470 * that the device is no longer present */ 1471 cmd->result = DID_NO_CONNECT << 16; 1472 goto done; 1473 } 1474 1475 /* Check to see if the scsi lld made this device blocked. */ 1476 if (unlikely(scsi_device_blocked(cmd->device))) { 1477 /* 1478 * in blocked state, the command is just put back on 1479 * the device queue. The suspend state has already 1480 * blocked the queue so future requests should not 1481 * occur until the device transitions out of the 1482 * suspend state. 1483 */ 1484 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1485 "queuecommand : device blocked\n")); 1486 return SCSI_MLQUEUE_DEVICE_BUSY; 1487 } 1488 1489 /* Store the LUN value in cmnd, if needed. */ 1490 if (cmd->device->lun_in_cdb) 1491 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1492 (cmd->device->lun << 5 & 0xe0); 1493 1494 scsi_log_send(cmd); 1495 1496 /* 1497 * Before we queue this command, check if the command 1498 * length exceeds what the host adapter can handle. 1499 */ 1500 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1501 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1502 "queuecommand : command too long. " 1503 "cdb_size=%d host->max_cmd_len=%d\n", 1504 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1505 cmd->result = (DID_ABORT << 16); 1506 goto done; 1507 } 1508 1509 if (unlikely(host->shost_state == SHOST_DEL)) { 1510 cmd->result = (DID_NO_CONNECT << 16); 1511 goto done; 1512 1513 } 1514 1515 trace_scsi_dispatch_cmd_start(cmd); 1516 rtn = host->hostt->queuecommand(host, cmd); 1517 if (rtn) { 1518 trace_scsi_dispatch_cmd_error(cmd, rtn); 1519 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1520 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1521 rtn = SCSI_MLQUEUE_HOST_BUSY; 1522 1523 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1524 "queuecommand : request rejected\n")); 1525 } 1526 1527 return rtn; 1528 done: 1529 scsi_done(cmd); 1530 return 0; 1531 } 1532 1533 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1534 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1535 { 1536 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1537 sizeof(struct scatterlist); 1538 } 1539 1540 static blk_status_t scsi_prepare_cmd(struct request *req) 1541 { 1542 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1543 struct scsi_device *sdev = req->q->queuedata; 1544 struct Scsi_Host *shost = sdev->host; 1545 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1546 struct scatterlist *sg; 1547 1548 scsi_init_command(sdev, cmd); 1549 1550 cmd->eh_eflags = 0; 1551 cmd->prot_type = 0; 1552 cmd->prot_flags = 0; 1553 cmd->submitter = 0; 1554 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1555 cmd->underflow = 0; 1556 cmd->transfersize = 0; 1557 cmd->host_scribble = NULL; 1558 cmd->result = 0; 1559 cmd->extra_len = 0; 1560 cmd->state = 0; 1561 if (in_flight) 1562 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1563 1564 /* 1565 * Only clear the driver-private command data if the LLD does not supply 1566 * a function to initialize that data. 1567 */ 1568 if (!shost->hostt->init_cmd_priv) 1569 memset(cmd + 1, 0, shost->hostt->cmd_size); 1570 1571 cmd->prot_op = SCSI_PROT_NORMAL; 1572 if (blk_rq_bytes(req)) 1573 cmd->sc_data_direction = rq_dma_dir(req); 1574 else 1575 cmd->sc_data_direction = DMA_NONE; 1576 1577 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1578 cmd->sdb.table.sgl = sg; 1579 1580 if (scsi_host_get_prot(shost)) { 1581 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1582 1583 cmd->prot_sdb->table.sgl = 1584 (struct scatterlist *)(cmd->prot_sdb + 1); 1585 } 1586 1587 /* 1588 * Special handling for passthrough commands, which don't go to the ULP 1589 * at all: 1590 */ 1591 if (blk_rq_is_passthrough(req)) 1592 return scsi_setup_scsi_cmnd(sdev, req); 1593 1594 if (sdev->handler && sdev->handler->prep_fn) { 1595 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1596 1597 if (ret != BLK_STS_OK) 1598 return ret; 1599 } 1600 1601 /* Usually overridden by the ULP */ 1602 cmd->allowed = 0; 1603 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1604 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1605 } 1606 1607 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly) 1608 { 1609 struct request *req = scsi_cmd_to_rq(cmd); 1610 1611 switch (cmd->submitter) { 1612 case SUBMITTED_BY_BLOCK_LAYER: 1613 break; 1614 case SUBMITTED_BY_SCSI_ERROR_HANDLER: 1615 return scsi_eh_done(cmd); 1616 case SUBMITTED_BY_SCSI_RESET_IOCTL: 1617 return; 1618 } 1619 1620 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q))) 1621 return; 1622 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1623 return; 1624 trace_scsi_dispatch_cmd_done(cmd); 1625 1626 if (complete_directly) 1627 blk_mq_complete_request_direct(req, scsi_complete); 1628 else 1629 blk_mq_complete_request(req); 1630 } 1631 1632 void scsi_done(struct scsi_cmnd *cmd) 1633 { 1634 scsi_done_internal(cmd, false); 1635 } 1636 EXPORT_SYMBOL(scsi_done); 1637 1638 void scsi_done_direct(struct scsi_cmnd *cmd) 1639 { 1640 scsi_done_internal(cmd, true); 1641 } 1642 EXPORT_SYMBOL(scsi_done_direct); 1643 1644 static void scsi_mq_put_budget(struct request_queue *q, int budget_token) 1645 { 1646 struct scsi_device *sdev = q->queuedata; 1647 1648 sbitmap_put(&sdev->budget_map, budget_token); 1649 } 1650 1651 /* 1652 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 1653 * not change behaviour from the previous unplug mechanism, experimentation 1654 * may prove this needs changing. 1655 */ 1656 #define SCSI_QUEUE_DELAY 3 1657 1658 static int scsi_mq_get_budget(struct request_queue *q) 1659 { 1660 struct scsi_device *sdev = q->queuedata; 1661 int token = scsi_dev_queue_ready(q, sdev); 1662 1663 if (token >= 0) 1664 return token; 1665 1666 atomic_inc(&sdev->restarts); 1667 1668 /* 1669 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1670 * .restarts must be incremented before .device_busy is read because the 1671 * code in scsi_run_queue_async() depends on the order of these operations. 1672 */ 1673 smp_mb__after_atomic(); 1674 1675 /* 1676 * If all in-flight requests originated from this LUN are completed 1677 * before reading .device_busy, sdev->device_busy will be observed as 1678 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1679 * soon. Otherwise, completion of one of these requests will observe 1680 * the .restarts flag, and the request queue will be run for handling 1681 * this request, see scsi_end_request(). 1682 */ 1683 if (unlikely(scsi_device_busy(sdev) == 0 && 1684 !scsi_device_blocked(sdev))) 1685 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1686 return -1; 1687 } 1688 1689 static void scsi_mq_set_rq_budget_token(struct request *req, int token) 1690 { 1691 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1692 1693 cmd->budget_token = token; 1694 } 1695 1696 static int scsi_mq_get_rq_budget_token(struct request *req) 1697 { 1698 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1699 1700 return cmd->budget_token; 1701 } 1702 1703 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1704 const struct blk_mq_queue_data *bd) 1705 { 1706 struct request *req = bd->rq; 1707 struct request_queue *q = req->q; 1708 struct scsi_device *sdev = q->queuedata; 1709 struct Scsi_Host *shost = sdev->host; 1710 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1711 blk_status_t ret; 1712 int reason; 1713 1714 WARN_ON_ONCE(cmd->budget_token < 0); 1715 1716 /* 1717 * If the device is not in running state we will reject some or all 1718 * commands. 1719 */ 1720 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1721 ret = scsi_device_state_check(sdev, req); 1722 if (ret != BLK_STS_OK) 1723 goto out_put_budget; 1724 } 1725 1726 ret = BLK_STS_RESOURCE; 1727 if (!scsi_target_queue_ready(shost, sdev)) 1728 goto out_put_budget; 1729 if (unlikely(scsi_host_in_recovery(shost))) { 1730 if (cmd->flags & SCMD_FAIL_IF_RECOVERING) 1731 ret = BLK_STS_OFFLINE; 1732 goto out_dec_target_busy; 1733 } 1734 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1735 goto out_dec_target_busy; 1736 1737 if (!(req->rq_flags & RQF_DONTPREP)) { 1738 ret = scsi_prepare_cmd(req); 1739 if (ret != BLK_STS_OK) 1740 goto out_dec_host_busy; 1741 req->rq_flags |= RQF_DONTPREP; 1742 } else { 1743 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1744 } 1745 1746 cmd->flags &= SCMD_PRESERVED_FLAGS; 1747 if (sdev->simple_tags) 1748 cmd->flags |= SCMD_TAGGED; 1749 if (bd->last) 1750 cmd->flags |= SCMD_LAST; 1751 1752 scsi_set_resid(cmd, 0); 1753 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1754 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER; 1755 1756 blk_mq_start_request(req); 1757 reason = scsi_dispatch_cmd(cmd); 1758 if (reason) { 1759 scsi_set_blocked(cmd, reason); 1760 ret = BLK_STS_RESOURCE; 1761 goto out_dec_host_busy; 1762 } 1763 1764 atomic_inc(&cmd->device->iorequest_cnt); 1765 return BLK_STS_OK; 1766 1767 out_dec_host_busy: 1768 scsi_dec_host_busy(shost, cmd); 1769 out_dec_target_busy: 1770 if (scsi_target(sdev)->can_queue > 0) 1771 atomic_dec(&scsi_target(sdev)->target_busy); 1772 out_put_budget: 1773 scsi_mq_put_budget(q, cmd->budget_token); 1774 cmd->budget_token = -1; 1775 switch (ret) { 1776 case BLK_STS_OK: 1777 break; 1778 case BLK_STS_RESOURCE: 1779 case BLK_STS_ZONE_RESOURCE: 1780 if (scsi_device_blocked(sdev)) 1781 ret = BLK_STS_DEV_RESOURCE; 1782 break; 1783 case BLK_STS_AGAIN: 1784 cmd->result = DID_BUS_BUSY << 16; 1785 if (req->rq_flags & RQF_DONTPREP) 1786 scsi_mq_uninit_cmd(cmd); 1787 break; 1788 default: 1789 if (unlikely(!scsi_device_online(sdev))) 1790 cmd->result = DID_NO_CONNECT << 16; 1791 else 1792 cmd->result = DID_ERROR << 16; 1793 /* 1794 * Make sure to release all allocated resources when 1795 * we hit an error, as we will never see this command 1796 * again. 1797 */ 1798 if (req->rq_flags & RQF_DONTPREP) 1799 scsi_mq_uninit_cmd(cmd); 1800 scsi_run_queue_async(sdev); 1801 break; 1802 } 1803 return ret; 1804 } 1805 1806 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1807 unsigned int hctx_idx, unsigned int numa_node) 1808 { 1809 struct Scsi_Host *shost = set->driver_data; 1810 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1811 struct scatterlist *sg; 1812 int ret = 0; 1813 1814 cmd->sense_buffer = 1815 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node); 1816 if (!cmd->sense_buffer) 1817 return -ENOMEM; 1818 1819 if (scsi_host_get_prot(shost)) { 1820 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1821 shost->hostt->cmd_size; 1822 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1823 } 1824 1825 if (shost->hostt->init_cmd_priv) { 1826 ret = shost->hostt->init_cmd_priv(shost, cmd); 1827 if (ret < 0) 1828 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1829 } 1830 1831 return ret; 1832 } 1833 1834 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1835 unsigned int hctx_idx) 1836 { 1837 struct Scsi_Host *shost = set->driver_data; 1838 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1839 1840 if (shost->hostt->exit_cmd_priv) 1841 shost->hostt->exit_cmd_priv(shost, cmd); 1842 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1843 } 1844 1845 1846 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1847 { 1848 struct Scsi_Host *shost = hctx->driver_data; 1849 1850 if (shost->hostt->mq_poll) 1851 return shost->hostt->mq_poll(shost, hctx->queue_num); 1852 1853 return 0; 1854 } 1855 1856 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1857 unsigned int hctx_idx) 1858 { 1859 struct Scsi_Host *shost = data; 1860 1861 hctx->driver_data = shost; 1862 return 0; 1863 } 1864 1865 static void scsi_map_queues(struct blk_mq_tag_set *set) 1866 { 1867 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1868 1869 if (shost->hostt->map_queues) 1870 return shost->hostt->map_queues(shost); 1871 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1872 } 1873 1874 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1875 { 1876 struct device *dev = shost->dma_dev; 1877 1878 /* 1879 * this limit is imposed by hardware restrictions 1880 */ 1881 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1882 SG_MAX_SEGMENTS)); 1883 1884 if (scsi_host_prot_dma(shost)) { 1885 shost->sg_prot_tablesize = 1886 min_not_zero(shost->sg_prot_tablesize, 1887 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1888 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1889 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1890 } 1891 1892 blk_queue_max_hw_sectors(q, shost->max_sectors); 1893 blk_queue_segment_boundary(q, shost->dma_boundary); 1894 dma_set_seg_boundary(dev, shost->dma_boundary); 1895 1896 blk_queue_max_segment_size(q, shost->max_segment_size); 1897 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1898 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1899 1900 /* 1901 * Set a reasonable default alignment: The larger of 32-byte (dword), 1902 * which is a common minimum for HBAs, and the minimum DMA alignment, 1903 * which is set by the platform. 1904 * 1905 * Devices that require a bigger alignment can increase it later. 1906 */ 1907 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1908 } 1909 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1910 1911 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1912 .get_budget = scsi_mq_get_budget, 1913 .put_budget = scsi_mq_put_budget, 1914 .queue_rq = scsi_queue_rq, 1915 .complete = scsi_complete, 1916 .timeout = scsi_timeout, 1917 #ifdef CONFIG_BLK_DEBUG_FS 1918 .show_rq = scsi_show_rq, 1919 #endif 1920 .init_request = scsi_mq_init_request, 1921 .exit_request = scsi_mq_exit_request, 1922 .cleanup_rq = scsi_cleanup_rq, 1923 .busy = scsi_mq_lld_busy, 1924 .map_queues = scsi_map_queues, 1925 .init_hctx = scsi_init_hctx, 1926 .poll = scsi_mq_poll, 1927 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1928 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1929 }; 1930 1931 1932 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1933 { 1934 struct Scsi_Host *shost = hctx->driver_data; 1935 1936 shost->hostt->commit_rqs(shost, hctx->queue_num); 1937 } 1938 1939 static const struct blk_mq_ops scsi_mq_ops = { 1940 .get_budget = scsi_mq_get_budget, 1941 .put_budget = scsi_mq_put_budget, 1942 .queue_rq = scsi_queue_rq, 1943 .commit_rqs = scsi_commit_rqs, 1944 .complete = scsi_complete, 1945 .timeout = scsi_timeout, 1946 #ifdef CONFIG_BLK_DEBUG_FS 1947 .show_rq = scsi_show_rq, 1948 #endif 1949 .init_request = scsi_mq_init_request, 1950 .exit_request = scsi_mq_exit_request, 1951 .cleanup_rq = scsi_cleanup_rq, 1952 .busy = scsi_mq_lld_busy, 1953 .map_queues = scsi_map_queues, 1954 .init_hctx = scsi_init_hctx, 1955 .poll = scsi_mq_poll, 1956 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1957 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1958 }; 1959 1960 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1961 { 1962 unsigned int cmd_size, sgl_size; 1963 struct blk_mq_tag_set *tag_set = &shost->tag_set; 1964 1965 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1966 scsi_mq_inline_sgl_size(shost)); 1967 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1968 if (scsi_host_get_prot(shost)) 1969 cmd_size += sizeof(struct scsi_data_buffer) + 1970 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1971 1972 memset(tag_set, 0, sizeof(*tag_set)); 1973 if (shost->hostt->commit_rqs) 1974 tag_set->ops = &scsi_mq_ops; 1975 else 1976 tag_set->ops = &scsi_mq_ops_no_commit; 1977 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 1978 tag_set->nr_maps = shost->nr_maps ? : 1; 1979 tag_set->queue_depth = shost->can_queue; 1980 tag_set->cmd_size = cmd_size; 1981 tag_set->numa_node = dev_to_node(shost->dma_dev); 1982 tag_set->flags = BLK_MQ_F_SHOULD_MERGE; 1983 tag_set->flags |= 1984 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1985 tag_set->driver_data = shost; 1986 if (shost->host_tagset) 1987 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1988 1989 return blk_mq_alloc_tag_set(tag_set); 1990 } 1991 1992 void scsi_mq_free_tags(struct kref *kref) 1993 { 1994 struct Scsi_Host *shost = container_of(kref, typeof(*shost), 1995 tagset_refcnt); 1996 1997 blk_mq_free_tag_set(&shost->tag_set); 1998 complete(&shost->tagset_freed); 1999 } 2000 2001 /** 2002 * scsi_device_from_queue - return sdev associated with a request_queue 2003 * @q: The request queue to return the sdev from 2004 * 2005 * Return the sdev associated with a request queue or NULL if the 2006 * request_queue does not reference a SCSI device. 2007 */ 2008 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2009 { 2010 struct scsi_device *sdev = NULL; 2011 2012 if (q->mq_ops == &scsi_mq_ops_no_commit || 2013 q->mq_ops == &scsi_mq_ops) 2014 sdev = q->queuedata; 2015 if (!sdev || !get_device(&sdev->sdev_gendev)) 2016 sdev = NULL; 2017 2018 return sdev; 2019 } 2020 /* 2021 * pktcdvd should have been integrated into the SCSI layers, but for historical 2022 * reasons like the old IDE driver it isn't. This export allows it to safely 2023 * probe if a given device is a SCSI one and only attach to that. 2024 */ 2025 #ifdef CONFIG_CDROM_PKTCDVD_MODULE 2026 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2027 #endif 2028 2029 /** 2030 * scsi_block_requests - Utility function used by low-level drivers to prevent 2031 * further commands from being queued to the device. 2032 * @shost: host in question 2033 * 2034 * There is no timer nor any other means by which the requests get unblocked 2035 * other than the low-level driver calling scsi_unblock_requests(). 2036 */ 2037 void scsi_block_requests(struct Scsi_Host *shost) 2038 { 2039 shost->host_self_blocked = 1; 2040 } 2041 EXPORT_SYMBOL(scsi_block_requests); 2042 2043 /** 2044 * scsi_unblock_requests - Utility function used by low-level drivers to allow 2045 * further commands to be queued to the device. 2046 * @shost: host in question 2047 * 2048 * There is no timer nor any other means by which the requests get unblocked 2049 * other than the low-level driver calling scsi_unblock_requests(). This is done 2050 * as an API function so that changes to the internals of the scsi mid-layer 2051 * won't require wholesale changes to drivers that use this feature. 2052 */ 2053 void scsi_unblock_requests(struct Scsi_Host *shost) 2054 { 2055 shost->host_self_blocked = 0; 2056 scsi_run_host_queues(shost); 2057 } 2058 EXPORT_SYMBOL(scsi_unblock_requests); 2059 2060 void scsi_exit_queue(void) 2061 { 2062 kmem_cache_destroy(scsi_sense_cache); 2063 } 2064 2065 /** 2066 * scsi_mode_select - issue a mode select 2067 * @sdev: SCSI device to be queried 2068 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2069 * @sp: Save page bit (0 == don't save, 1 == save) 2070 * @buffer: request buffer (may not be smaller than eight bytes) 2071 * @len: length of request buffer. 2072 * @timeout: command timeout 2073 * @retries: number of retries before failing 2074 * @data: returns a structure abstracting the mode header data 2075 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2076 * must be SCSI_SENSE_BUFFERSIZE big. 2077 * 2078 * Returns zero if successful; negative error number or scsi 2079 * status on error 2080 * 2081 */ 2082 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp, 2083 unsigned char *buffer, int len, int timeout, int retries, 2084 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2085 { 2086 unsigned char cmd[10]; 2087 unsigned char *real_buffer; 2088 const struct scsi_exec_args exec_args = { 2089 .sshdr = sshdr, 2090 }; 2091 int ret; 2092 2093 memset(cmd, 0, sizeof(cmd)); 2094 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2095 2096 /* 2097 * Use MODE SELECT(10) if the device asked for it or if the mode page 2098 * and the mode select header cannot fit within the maximumm 255 bytes 2099 * of the MODE SELECT(6) command. 2100 */ 2101 if (sdev->use_10_for_ms || 2102 len + 4 > 255 || 2103 data->block_descriptor_length > 255) { 2104 if (len > 65535 - 8) 2105 return -EINVAL; 2106 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2107 if (!real_buffer) 2108 return -ENOMEM; 2109 memcpy(real_buffer + 8, buffer, len); 2110 len += 8; 2111 real_buffer[0] = 0; 2112 real_buffer[1] = 0; 2113 real_buffer[2] = data->medium_type; 2114 real_buffer[3] = data->device_specific; 2115 real_buffer[4] = data->longlba ? 0x01 : 0; 2116 real_buffer[5] = 0; 2117 put_unaligned_be16(data->block_descriptor_length, 2118 &real_buffer[6]); 2119 2120 cmd[0] = MODE_SELECT_10; 2121 put_unaligned_be16(len, &cmd[7]); 2122 } else { 2123 if (data->longlba) 2124 return -EINVAL; 2125 2126 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2127 if (!real_buffer) 2128 return -ENOMEM; 2129 memcpy(real_buffer + 4, buffer, len); 2130 len += 4; 2131 real_buffer[0] = 0; 2132 real_buffer[1] = data->medium_type; 2133 real_buffer[2] = data->device_specific; 2134 real_buffer[3] = data->block_descriptor_length; 2135 2136 cmd[0] = MODE_SELECT; 2137 cmd[4] = len; 2138 } 2139 2140 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len, 2141 timeout, retries, &exec_args); 2142 kfree(real_buffer); 2143 return ret; 2144 } 2145 EXPORT_SYMBOL_GPL(scsi_mode_select); 2146 2147 /** 2148 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2149 * @sdev: SCSI device to be queried 2150 * @dbd: set to prevent mode sense from returning block descriptors 2151 * @modepage: mode page being requested 2152 * @buffer: request buffer (may not be smaller than eight bytes) 2153 * @len: length of request buffer. 2154 * @timeout: command timeout 2155 * @retries: number of retries before failing 2156 * @data: returns a structure abstracting the mode header data 2157 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2158 * must be SCSI_SENSE_BUFFERSIZE big. 2159 * 2160 * Returns zero if successful, or a negative error number on failure 2161 */ 2162 int 2163 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2164 unsigned char *buffer, int len, int timeout, int retries, 2165 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2166 { 2167 unsigned char cmd[12]; 2168 int use_10_for_ms; 2169 int header_length; 2170 int result, retry_count = retries; 2171 struct scsi_sense_hdr my_sshdr; 2172 const struct scsi_exec_args exec_args = { 2173 /* caller might not be interested in sense, but we need it */ 2174 .sshdr = sshdr ? : &my_sshdr, 2175 }; 2176 2177 memset(data, 0, sizeof(*data)); 2178 memset(&cmd[0], 0, 12); 2179 2180 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2181 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2182 cmd[2] = modepage; 2183 2184 sshdr = exec_args.sshdr; 2185 2186 retry: 2187 use_10_for_ms = sdev->use_10_for_ms || len > 255; 2188 2189 if (use_10_for_ms) { 2190 if (len < 8 || len > 65535) 2191 return -EINVAL; 2192 2193 cmd[0] = MODE_SENSE_10; 2194 put_unaligned_be16(len, &cmd[7]); 2195 header_length = 8; 2196 } else { 2197 if (len < 4) 2198 return -EINVAL; 2199 2200 cmd[0] = MODE_SENSE; 2201 cmd[4] = len; 2202 header_length = 4; 2203 } 2204 2205 memset(buffer, 0, len); 2206 2207 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len, 2208 timeout, retries, &exec_args); 2209 if (result < 0) 2210 return result; 2211 2212 /* This code looks awful: what it's doing is making sure an 2213 * ILLEGAL REQUEST sense return identifies the actual command 2214 * byte as the problem. MODE_SENSE commands can return 2215 * ILLEGAL REQUEST if the code page isn't supported */ 2216 2217 if (!scsi_status_is_good(result)) { 2218 if (scsi_sense_valid(sshdr)) { 2219 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2220 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2221 /* 2222 * Invalid command operation code: retry using 2223 * MODE SENSE(6) if this was a MODE SENSE(10) 2224 * request, except if the request mode page is 2225 * too large for MODE SENSE single byte 2226 * allocation length field. 2227 */ 2228 if (use_10_for_ms) { 2229 if (len > 255) 2230 return -EIO; 2231 sdev->use_10_for_ms = 0; 2232 goto retry; 2233 } 2234 } 2235 if (scsi_status_is_check_condition(result) && 2236 sshdr->sense_key == UNIT_ATTENTION && 2237 retry_count) { 2238 retry_count--; 2239 goto retry; 2240 } 2241 } 2242 return -EIO; 2243 } 2244 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2245 (modepage == 6 || modepage == 8))) { 2246 /* Initio breakage? */ 2247 header_length = 0; 2248 data->length = 13; 2249 data->medium_type = 0; 2250 data->device_specific = 0; 2251 data->longlba = 0; 2252 data->block_descriptor_length = 0; 2253 } else if (use_10_for_ms) { 2254 data->length = get_unaligned_be16(&buffer[0]) + 2; 2255 data->medium_type = buffer[2]; 2256 data->device_specific = buffer[3]; 2257 data->longlba = buffer[4] & 0x01; 2258 data->block_descriptor_length = get_unaligned_be16(&buffer[6]); 2259 } else { 2260 data->length = buffer[0] + 1; 2261 data->medium_type = buffer[1]; 2262 data->device_specific = buffer[2]; 2263 data->block_descriptor_length = buffer[3]; 2264 } 2265 data->header_length = header_length; 2266 2267 return 0; 2268 } 2269 EXPORT_SYMBOL(scsi_mode_sense); 2270 2271 /** 2272 * scsi_test_unit_ready - test if unit is ready 2273 * @sdev: scsi device to change the state of. 2274 * @timeout: command timeout 2275 * @retries: number of retries before failing 2276 * @sshdr: outpout pointer for decoded sense information. 2277 * 2278 * Returns zero if unsuccessful or an error if TUR failed. For 2279 * removable media, UNIT_ATTENTION sets ->changed flag. 2280 **/ 2281 int 2282 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2283 struct scsi_sense_hdr *sshdr) 2284 { 2285 char cmd[] = { 2286 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2287 }; 2288 const struct scsi_exec_args exec_args = { 2289 .sshdr = sshdr, 2290 }; 2291 int result; 2292 2293 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2294 do { 2295 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0, 2296 timeout, 1, &exec_args); 2297 if (sdev->removable && scsi_sense_valid(sshdr) && 2298 sshdr->sense_key == UNIT_ATTENTION) 2299 sdev->changed = 1; 2300 } while (scsi_sense_valid(sshdr) && 2301 sshdr->sense_key == UNIT_ATTENTION && --retries); 2302 2303 return result; 2304 } 2305 EXPORT_SYMBOL(scsi_test_unit_ready); 2306 2307 /** 2308 * scsi_device_set_state - Take the given device through the device state model. 2309 * @sdev: scsi device to change the state of. 2310 * @state: state to change to. 2311 * 2312 * Returns zero if successful or an error if the requested 2313 * transition is illegal. 2314 */ 2315 int 2316 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2317 { 2318 enum scsi_device_state oldstate = sdev->sdev_state; 2319 2320 if (state == oldstate) 2321 return 0; 2322 2323 switch (state) { 2324 case SDEV_CREATED: 2325 switch (oldstate) { 2326 case SDEV_CREATED_BLOCK: 2327 break; 2328 default: 2329 goto illegal; 2330 } 2331 break; 2332 2333 case SDEV_RUNNING: 2334 switch (oldstate) { 2335 case SDEV_CREATED: 2336 case SDEV_OFFLINE: 2337 case SDEV_TRANSPORT_OFFLINE: 2338 case SDEV_QUIESCE: 2339 case SDEV_BLOCK: 2340 break; 2341 default: 2342 goto illegal; 2343 } 2344 break; 2345 2346 case SDEV_QUIESCE: 2347 switch (oldstate) { 2348 case SDEV_RUNNING: 2349 case SDEV_OFFLINE: 2350 case SDEV_TRANSPORT_OFFLINE: 2351 break; 2352 default: 2353 goto illegal; 2354 } 2355 break; 2356 2357 case SDEV_OFFLINE: 2358 case SDEV_TRANSPORT_OFFLINE: 2359 switch (oldstate) { 2360 case SDEV_CREATED: 2361 case SDEV_RUNNING: 2362 case SDEV_QUIESCE: 2363 case SDEV_BLOCK: 2364 break; 2365 default: 2366 goto illegal; 2367 } 2368 break; 2369 2370 case SDEV_BLOCK: 2371 switch (oldstate) { 2372 case SDEV_RUNNING: 2373 case SDEV_CREATED_BLOCK: 2374 case SDEV_QUIESCE: 2375 case SDEV_OFFLINE: 2376 break; 2377 default: 2378 goto illegal; 2379 } 2380 break; 2381 2382 case SDEV_CREATED_BLOCK: 2383 switch (oldstate) { 2384 case SDEV_CREATED: 2385 break; 2386 default: 2387 goto illegal; 2388 } 2389 break; 2390 2391 case SDEV_CANCEL: 2392 switch (oldstate) { 2393 case SDEV_CREATED: 2394 case SDEV_RUNNING: 2395 case SDEV_QUIESCE: 2396 case SDEV_OFFLINE: 2397 case SDEV_TRANSPORT_OFFLINE: 2398 break; 2399 default: 2400 goto illegal; 2401 } 2402 break; 2403 2404 case SDEV_DEL: 2405 switch (oldstate) { 2406 case SDEV_CREATED: 2407 case SDEV_RUNNING: 2408 case SDEV_OFFLINE: 2409 case SDEV_TRANSPORT_OFFLINE: 2410 case SDEV_CANCEL: 2411 case SDEV_BLOCK: 2412 case SDEV_CREATED_BLOCK: 2413 break; 2414 default: 2415 goto illegal; 2416 } 2417 break; 2418 2419 } 2420 sdev->offline_already = false; 2421 sdev->sdev_state = state; 2422 return 0; 2423 2424 illegal: 2425 SCSI_LOG_ERROR_RECOVERY(1, 2426 sdev_printk(KERN_ERR, sdev, 2427 "Illegal state transition %s->%s", 2428 scsi_device_state_name(oldstate), 2429 scsi_device_state_name(state)) 2430 ); 2431 return -EINVAL; 2432 } 2433 EXPORT_SYMBOL(scsi_device_set_state); 2434 2435 /** 2436 * scsi_evt_emit - emit a single SCSI device uevent 2437 * @sdev: associated SCSI device 2438 * @evt: event to emit 2439 * 2440 * Send a single uevent (scsi_event) to the associated scsi_device. 2441 */ 2442 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2443 { 2444 int idx = 0; 2445 char *envp[3]; 2446 2447 switch (evt->evt_type) { 2448 case SDEV_EVT_MEDIA_CHANGE: 2449 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2450 break; 2451 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2452 scsi_rescan_device(&sdev->sdev_gendev); 2453 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2454 break; 2455 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2456 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2457 break; 2458 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2459 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2460 break; 2461 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2462 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2463 break; 2464 case SDEV_EVT_LUN_CHANGE_REPORTED: 2465 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2466 break; 2467 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2468 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2469 break; 2470 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2471 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2472 break; 2473 default: 2474 /* do nothing */ 2475 break; 2476 } 2477 2478 envp[idx++] = NULL; 2479 2480 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2481 } 2482 2483 /** 2484 * scsi_evt_thread - send a uevent for each scsi event 2485 * @work: work struct for scsi_device 2486 * 2487 * Dispatch queued events to their associated scsi_device kobjects 2488 * as uevents. 2489 */ 2490 void scsi_evt_thread(struct work_struct *work) 2491 { 2492 struct scsi_device *sdev; 2493 enum scsi_device_event evt_type; 2494 LIST_HEAD(event_list); 2495 2496 sdev = container_of(work, struct scsi_device, event_work); 2497 2498 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2499 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2500 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2501 2502 while (1) { 2503 struct scsi_event *evt; 2504 struct list_head *this, *tmp; 2505 unsigned long flags; 2506 2507 spin_lock_irqsave(&sdev->list_lock, flags); 2508 list_splice_init(&sdev->event_list, &event_list); 2509 spin_unlock_irqrestore(&sdev->list_lock, flags); 2510 2511 if (list_empty(&event_list)) 2512 break; 2513 2514 list_for_each_safe(this, tmp, &event_list) { 2515 evt = list_entry(this, struct scsi_event, node); 2516 list_del(&evt->node); 2517 scsi_evt_emit(sdev, evt); 2518 kfree(evt); 2519 } 2520 } 2521 } 2522 2523 /** 2524 * sdev_evt_send - send asserted event to uevent thread 2525 * @sdev: scsi_device event occurred on 2526 * @evt: event to send 2527 * 2528 * Assert scsi device event asynchronously. 2529 */ 2530 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2531 { 2532 unsigned long flags; 2533 2534 #if 0 2535 /* FIXME: currently this check eliminates all media change events 2536 * for polled devices. Need to update to discriminate between AN 2537 * and polled events */ 2538 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2539 kfree(evt); 2540 return; 2541 } 2542 #endif 2543 2544 spin_lock_irqsave(&sdev->list_lock, flags); 2545 list_add_tail(&evt->node, &sdev->event_list); 2546 schedule_work(&sdev->event_work); 2547 spin_unlock_irqrestore(&sdev->list_lock, flags); 2548 } 2549 EXPORT_SYMBOL_GPL(sdev_evt_send); 2550 2551 /** 2552 * sdev_evt_alloc - allocate a new scsi event 2553 * @evt_type: type of event to allocate 2554 * @gfpflags: GFP flags for allocation 2555 * 2556 * Allocates and returns a new scsi_event. 2557 */ 2558 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2559 gfp_t gfpflags) 2560 { 2561 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2562 if (!evt) 2563 return NULL; 2564 2565 evt->evt_type = evt_type; 2566 INIT_LIST_HEAD(&evt->node); 2567 2568 /* evt_type-specific initialization, if any */ 2569 switch (evt_type) { 2570 case SDEV_EVT_MEDIA_CHANGE: 2571 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2572 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2573 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2574 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2575 case SDEV_EVT_LUN_CHANGE_REPORTED: 2576 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2577 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2578 default: 2579 /* do nothing */ 2580 break; 2581 } 2582 2583 return evt; 2584 } 2585 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2586 2587 /** 2588 * sdev_evt_send_simple - send asserted event to uevent thread 2589 * @sdev: scsi_device event occurred on 2590 * @evt_type: type of event to send 2591 * @gfpflags: GFP flags for allocation 2592 * 2593 * Assert scsi device event asynchronously, given an event type. 2594 */ 2595 void sdev_evt_send_simple(struct scsi_device *sdev, 2596 enum scsi_device_event evt_type, gfp_t gfpflags) 2597 { 2598 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2599 if (!evt) { 2600 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2601 evt_type); 2602 return; 2603 } 2604 2605 sdev_evt_send(sdev, evt); 2606 } 2607 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2608 2609 /** 2610 * scsi_device_quiesce - Block all commands except power management. 2611 * @sdev: scsi device to quiesce. 2612 * 2613 * This works by trying to transition to the SDEV_QUIESCE state 2614 * (which must be a legal transition). When the device is in this 2615 * state, only power management requests will be accepted, all others will 2616 * be deferred. 2617 * 2618 * Must be called with user context, may sleep. 2619 * 2620 * Returns zero if unsuccessful or an error if not. 2621 */ 2622 int 2623 scsi_device_quiesce(struct scsi_device *sdev) 2624 { 2625 struct request_queue *q = sdev->request_queue; 2626 int err; 2627 2628 /* 2629 * It is allowed to call scsi_device_quiesce() multiple times from 2630 * the same context but concurrent scsi_device_quiesce() calls are 2631 * not allowed. 2632 */ 2633 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2634 2635 if (sdev->quiesced_by == current) 2636 return 0; 2637 2638 blk_set_pm_only(q); 2639 2640 blk_mq_freeze_queue(q); 2641 /* 2642 * Ensure that the effect of blk_set_pm_only() will be visible 2643 * for percpu_ref_tryget() callers that occur after the queue 2644 * unfreeze even if the queue was already frozen before this function 2645 * was called. See also https://lwn.net/Articles/573497/. 2646 */ 2647 synchronize_rcu(); 2648 blk_mq_unfreeze_queue(q); 2649 2650 mutex_lock(&sdev->state_mutex); 2651 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2652 if (err == 0) 2653 sdev->quiesced_by = current; 2654 else 2655 blk_clear_pm_only(q); 2656 mutex_unlock(&sdev->state_mutex); 2657 2658 return err; 2659 } 2660 EXPORT_SYMBOL(scsi_device_quiesce); 2661 2662 /** 2663 * scsi_device_resume - Restart user issued commands to a quiesced device. 2664 * @sdev: scsi device to resume. 2665 * 2666 * Moves the device from quiesced back to running and restarts the 2667 * queues. 2668 * 2669 * Must be called with user context, may sleep. 2670 */ 2671 void scsi_device_resume(struct scsi_device *sdev) 2672 { 2673 /* check if the device state was mutated prior to resume, and if 2674 * so assume the state is being managed elsewhere (for example 2675 * device deleted during suspend) 2676 */ 2677 mutex_lock(&sdev->state_mutex); 2678 if (sdev->sdev_state == SDEV_QUIESCE) 2679 scsi_device_set_state(sdev, SDEV_RUNNING); 2680 if (sdev->quiesced_by) { 2681 sdev->quiesced_by = NULL; 2682 blk_clear_pm_only(sdev->request_queue); 2683 } 2684 mutex_unlock(&sdev->state_mutex); 2685 } 2686 EXPORT_SYMBOL(scsi_device_resume); 2687 2688 static void 2689 device_quiesce_fn(struct scsi_device *sdev, void *data) 2690 { 2691 scsi_device_quiesce(sdev); 2692 } 2693 2694 void 2695 scsi_target_quiesce(struct scsi_target *starget) 2696 { 2697 starget_for_each_device(starget, NULL, device_quiesce_fn); 2698 } 2699 EXPORT_SYMBOL(scsi_target_quiesce); 2700 2701 static void 2702 device_resume_fn(struct scsi_device *sdev, void *data) 2703 { 2704 scsi_device_resume(sdev); 2705 } 2706 2707 void 2708 scsi_target_resume(struct scsi_target *starget) 2709 { 2710 starget_for_each_device(starget, NULL, device_resume_fn); 2711 } 2712 EXPORT_SYMBOL(scsi_target_resume); 2713 2714 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev) 2715 { 2716 if (scsi_device_set_state(sdev, SDEV_BLOCK)) 2717 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2718 2719 return 0; 2720 } 2721 2722 void scsi_start_queue(struct scsi_device *sdev) 2723 { 2724 if (cmpxchg(&sdev->queue_stopped, 1, 0)) 2725 blk_mq_unquiesce_queue(sdev->request_queue); 2726 } 2727 2728 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait) 2729 { 2730 /* 2731 * The atomic variable of ->queue_stopped covers that 2732 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue. 2733 * 2734 * However, we still need to wait until quiesce is done 2735 * in case that queue has been stopped. 2736 */ 2737 if (!cmpxchg(&sdev->queue_stopped, 0, 1)) { 2738 if (nowait) 2739 blk_mq_quiesce_queue_nowait(sdev->request_queue); 2740 else 2741 blk_mq_quiesce_queue(sdev->request_queue); 2742 } else { 2743 if (!nowait) 2744 blk_mq_wait_quiesce_done(sdev->request_queue->tag_set); 2745 } 2746 } 2747 2748 /** 2749 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2750 * @sdev: device to block 2751 * 2752 * Pause SCSI command processing on the specified device. Does not sleep. 2753 * 2754 * Returns zero if successful or a negative error code upon failure. 2755 * 2756 * Notes: 2757 * This routine transitions the device to the SDEV_BLOCK state (which must be 2758 * a legal transition). When the device is in this state, command processing 2759 * is paused until the device leaves the SDEV_BLOCK state. See also 2760 * scsi_internal_device_unblock_nowait(). 2761 */ 2762 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2763 { 2764 int ret = __scsi_internal_device_block_nowait(sdev); 2765 2766 /* 2767 * The device has transitioned to SDEV_BLOCK. Stop the 2768 * block layer from calling the midlayer with this device's 2769 * request queue. 2770 */ 2771 if (!ret) 2772 scsi_stop_queue(sdev, true); 2773 return ret; 2774 } 2775 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2776 2777 /** 2778 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2779 * @sdev: device to block 2780 * 2781 * Pause SCSI command processing on the specified device and wait until all 2782 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2783 * 2784 * Returns zero if successful or a negative error code upon failure. 2785 * 2786 * Note: 2787 * This routine transitions the device to the SDEV_BLOCK state (which must be 2788 * a legal transition). When the device is in this state, command processing 2789 * is paused until the device leaves the SDEV_BLOCK state. See also 2790 * scsi_internal_device_unblock(). 2791 */ 2792 static int scsi_internal_device_block(struct scsi_device *sdev) 2793 { 2794 int err; 2795 2796 mutex_lock(&sdev->state_mutex); 2797 err = __scsi_internal_device_block_nowait(sdev); 2798 if (err == 0) 2799 scsi_stop_queue(sdev, false); 2800 mutex_unlock(&sdev->state_mutex); 2801 2802 return err; 2803 } 2804 2805 /** 2806 * scsi_internal_device_unblock_nowait - resume a device after a block request 2807 * @sdev: device to resume 2808 * @new_state: state to set the device to after unblocking 2809 * 2810 * Restart the device queue for a previously suspended SCSI device. Does not 2811 * sleep. 2812 * 2813 * Returns zero if successful or a negative error code upon failure. 2814 * 2815 * Notes: 2816 * This routine transitions the device to the SDEV_RUNNING state or to one of 2817 * the offline states (which must be a legal transition) allowing the midlayer 2818 * to goose the queue for this device. 2819 */ 2820 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2821 enum scsi_device_state new_state) 2822 { 2823 switch (new_state) { 2824 case SDEV_RUNNING: 2825 case SDEV_TRANSPORT_OFFLINE: 2826 break; 2827 default: 2828 return -EINVAL; 2829 } 2830 2831 /* 2832 * Try to transition the scsi device to SDEV_RUNNING or one of the 2833 * offlined states and goose the device queue if successful. 2834 */ 2835 switch (sdev->sdev_state) { 2836 case SDEV_BLOCK: 2837 case SDEV_TRANSPORT_OFFLINE: 2838 sdev->sdev_state = new_state; 2839 break; 2840 case SDEV_CREATED_BLOCK: 2841 if (new_state == SDEV_TRANSPORT_OFFLINE || 2842 new_state == SDEV_OFFLINE) 2843 sdev->sdev_state = new_state; 2844 else 2845 sdev->sdev_state = SDEV_CREATED; 2846 break; 2847 case SDEV_CANCEL: 2848 case SDEV_OFFLINE: 2849 break; 2850 default: 2851 return -EINVAL; 2852 } 2853 scsi_start_queue(sdev); 2854 2855 return 0; 2856 } 2857 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2858 2859 /** 2860 * scsi_internal_device_unblock - resume a device after a block request 2861 * @sdev: device to resume 2862 * @new_state: state to set the device to after unblocking 2863 * 2864 * Restart the device queue for a previously suspended SCSI device. May sleep. 2865 * 2866 * Returns zero if successful or a negative error code upon failure. 2867 * 2868 * Notes: 2869 * This routine transitions the device to the SDEV_RUNNING state or to one of 2870 * the offline states (which must be a legal transition) allowing the midlayer 2871 * to goose the queue for this device. 2872 */ 2873 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2874 enum scsi_device_state new_state) 2875 { 2876 int ret; 2877 2878 mutex_lock(&sdev->state_mutex); 2879 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2880 mutex_unlock(&sdev->state_mutex); 2881 2882 return ret; 2883 } 2884 2885 static void 2886 device_block(struct scsi_device *sdev, void *data) 2887 { 2888 int ret; 2889 2890 ret = scsi_internal_device_block(sdev); 2891 2892 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n", 2893 dev_name(&sdev->sdev_gendev), ret); 2894 } 2895 2896 static int 2897 target_block(struct device *dev, void *data) 2898 { 2899 if (scsi_is_target_device(dev)) 2900 starget_for_each_device(to_scsi_target(dev), NULL, 2901 device_block); 2902 return 0; 2903 } 2904 2905 void 2906 scsi_target_block(struct device *dev) 2907 { 2908 if (scsi_is_target_device(dev)) 2909 starget_for_each_device(to_scsi_target(dev), NULL, 2910 device_block); 2911 else 2912 device_for_each_child(dev, NULL, target_block); 2913 } 2914 EXPORT_SYMBOL_GPL(scsi_target_block); 2915 2916 static void 2917 device_unblock(struct scsi_device *sdev, void *data) 2918 { 2919 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2920 } 2921 2922 static int 2923 target_unblock(struct device *dev, void *data) 2924 { 2925 if (scsi_is_target_device(dev)) 2926 starget_for_each_device(to_scsi_target(dev), data, 2927 device_unblock); 2928 return 0; 2929 } 2930 2931 void 2932 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2933 { 2934 if (scsi_is_target_device(dev)) 2935 starget_for_each_device(to_scsi_target(dev), &new_state, 2936 device_unblock); 2937 else 2938 device_for_each_child(dev, &new_state, target_unblock); 2939 } 2940 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2941 2942 int 2943 scsi_host_block(struct Scsi_Host *shost) 2944 { 2945 struct scsi_device *sdev; 2946 int ret = 0; 2947 2948 /* 2949 * Call scsi_internal_device_block_nowait so we can avoid 2950 * calling synchronize_rcu() for each LUN. 2951 */ 2952 shost_for_each_device(sdev, shost) { 2953 mutex_lock(&sdev->state_mutex); 2954 ret = scsi_internal_device_block_nowait(sdev); 2955 mutex_unlock(&sdev->state_mutex); 2956 if (ret) { 2957 scsi_device_put(sdev); 2958 break; 2959 } 2960 } 2961 2962 /* 2963 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so 2964 * calling synchronize_rcu() once is enough. 2965 */ 2966 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING); 2967 2968 if (!ret) 2969 synchronize_rcu(); 2970 2971 return ret; 2972 } 2973 EXPORT_SYMBOL_GPL(scsi_host_block); 2974 2975 int 2976 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 2977 { 2978 struct scsi_device *sdev; 2979 int ret = 0; 2980 2981 shost_for_each_device(sdev, shost) { 2982 ret = scsi_internal_device_unblock(sdev, new_state); 2983 if (ret) { 2984 scsi_device_put(sdev); 2985 break; 2986 } 2987 } 2988 return ret; 2989 } 2990 EXPORT_SYMBOL_GPL(scsi_host_unblock); 2991 2992 /** 2993 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2994 * @sgl: scatter-gather list 2995 * @sg_count: number of segments in sg 2996 * @offset: offset in bytes into sg, on return offset into the mapped area 2997 * @len: bytes to map, on return number of bytes mapped 2998 * 2999 * Returns virtual address of the start of the mapped page 3000 */ 3001 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3002 size_t *offset, size_t *len) 3003 { 3004 int i; 3005 size_t sg_len = 0, len_complete = 0; 3006 struct scatterlist *sg; 3007 struct page *page; 3008 3009 WARN_ON(!irqs_disabled()); 3010 3011 for_each_sg(sgl, sg, sg_count, i) { 3012 len_complete = sg_len; /* Complete sg-entries */ 3013 sg_len += sg->length; 3014 if (sg_len > *offset) 3015 break; 3016 } 3017 3018 if (unlikely(i == sg_count)) { 3019 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3020 "elements %d\n", 3021 __func__, sg_len, *offset, sg_count); 3022 WARN_ON(1); 3023 return NULL; 3024 } 3025 3026 /* Offset starting from the beginning of first page in this sg-entry */ 3027 *offset = *offset - len_complete + sg->offset; 3028 3029 /* Assumption: contiguous pages can be accessed as "page + i" */ 3030 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3031 *offset &= ~PAGE_MASK; 3032 3033 /* Bytes in this sg-entry from *offset to the end of the page */ 3034 sg_len = PAGE_SIZE - *offset; 3035 if (*len > sg_len) 3036 *len = sg_len; 3037 3038 return kmap_atomic(page); 3039 } 3040 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3041 3042 /** 3043 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3044 * @virt: virtual address to be unmapped 3045 */ 3046 void scsi_kunmap_atomic_sg(void *virt) 3047 { 3048 kunmap_atomic(virt); 3049 } 3050 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3051 3052 void sdev_disable_disk_events(struct scsi_device *sdev) 3053 { 3054 atomic_inc(&sdev->disk_events_disable_depth); 3055 } 3056 EXPORT_SYMBOL(sdev_disable_disk_events); 3057 3058 void sdev_enable_disk_events(struct scsi_device *sdev) 3059 { 3060 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3061 return; 3062 atomic_dec(&sdev->disk_events_disable_depth); 3063 } 3064 EXPORT_SYMBOL(sdev_enable_disk_events); 3065 3066 static unsigned char designator_prio(const unsigned char *d) 3067 { 3068 if (d[1] & 0x30) 3069 /* not associated with LUN */ 3070 return 0; 3071 3072 if (d[3] == 0) 3073 /* invalid length */ 3074 return 0; 3075 3076 /* 3077 * Order of preference for lun descriptor: 3078 * - SCSI name string 3079 * - NAA IEEE Registered Extended 3080 * - EUI-64 based 16-byte 3081 * - EUI-64 based 12-byte 3082 * - NAA IEEE Registered 3083 * - NAA IEEE Extended 3084 * - EUI-64 based 8-byte 3085 * - SCSI name string (truncated) 3086 * - T10 Vendor ID 3087 * as longer descriptors reduce the likelyhood 3088 * of identification clashes. 3089 */ 3090 3091 switch (d[1] & 0xf) { 3092 case 8: 3093 /* SCSI name string, variable-length UTF-8 */ 3094 return 9; 3095 case 3: 3096 switch (d[4] >> 4) { 3097 case 6: 3098 /* NAA registered extended */ 3099 return 8; 3100 case 5: 3101 /* NAA registered */ 3102 return 5; 3103 case 4: 3104 /* NAA extended */ 3105 return 4; 3106 case 3: 3107 /* NAA locally assigned */ 3108 return 1; 3109 default: 3110 break; 3111 } 3112 break; 3113 case 2: 3114 switch (d[3]) { 3115 case 16: 3116 /* EUI64-based, 16 byte */ 3117 return 7; 3118 case 12: 3119 /* EUI64-based, 12 byte */ 3120 return 6; 3121 case 8: 3122 /* EUI64-based, 8 byte */ 3123 return 3; 3124 default: 3125 break; 3126 } 3127 break; 3128 case 1: 3129 /* T10 vendor ID */ 3130 return 1; 3131 default: 3132 break; 3133 } 3134 3135 return 0; 3136 } 3137 3138 /** 3139 * scsi_vpd_lun_id - return a unique device identification 3140 * @sdev: SCSI device 3141 * @id: buffer for the identification 3142 * @id_len: length of the buffer 3143 * 3144 * Copies a unique device identification into @id based 3145 * on the information in the VPD page 0x83 of the device. 3146 * The string will be formatted as a SCSI name string. 3147 * 3148 * Returns the length of the identification or error on failure. 3149 * If the identifier is longer than the supplied buffer the actual 3150 * identifier length is returned and the buffer is not zero-padded. 3151 */ 3152 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3153 { 3154 u8 cur_id_prio = 0; 3155 u8 cur_id_size = 0; 3156 const unsigned char *d, *cur_id_str; 3157 const struct scsi_vpd *vpd_pg83; 3158 int id_size = -EINVAL; 3159 3160 rcu_read_lock(); 3161 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3162 if (!vpd_pg83) { 3163 rcu_read_unlock(); 3164 return -ENXIO; 3165 } 3166 3167 /* The id string must be at least 20 bytes + terminating NULL byte */ 3168 if (id_len < 21) { 3169 rcu_read_unlock(); 3170 return -EINVAL; 3171 } 3172 3173 memset(id, 0, id_len); 3174 for (d = vpd_pg83->data + 4; 3175 d < vpd_pg83->data + vpd_pg83->len; 3176 d += d[3] + 4) { 3177 u8 prio = designator_prio(d); 3178 3179 if (prio == 0 || cur_id_prio > prio) 3180 continue; 3181 3182 switch (d[1] & 0xf) { 3183 case 0x1: 3184 /* T10 Vendor ID */ 3185 if (cur_id_size > d[3]) 3186 break; 3187 cur_id_prio = prio; 3188 cur_id_size = d[3]; 3189 if (cur_id_size + 4 > id_len) 3190 cur_id_size = id_len - 4; 3191 cur_id_str = d + 4; 3192 id_size = snprintf(id, id_len, "t10.%*pE", 3193 cur_id_size, cur_id_str); 3194 break; 3195 case 0x2: 3196 /* EUI-64 */ 3197 cur_id_prio = prio; 3198 cur_id_size = d[3]; 3199 cur_id_str = d + 4; 3200 switch (cur_id_size) { 3201 case 8: 3202 id_size = snprintf(id, id_len, 3203 "eui.%8phN", 3204 cur_id_str); 3205 break; 3206 case 12: 3207 id_size = snprintf(id, id_len, 3208 "eui.%12phN", 3209 cur_id_str); 3210 break; 3211 case 16: 3212 id_size = snprintf(id, id_len, 3213 "eui.%16phN", 3214 cur_id_str); 3215 break; 3216 default: 3217 break; 3218 } 3219 break; 3220 case 0x3: 3221 /* NAA */ 3222 cur_id_prio = prio; 3223 cur_id_size = d[3]; 3224 cur_id_str = d + 4; 3225 switch (cur_id_size) { 3226 case 8: 3227 id_size = snprintf(id, id_len, 3228 "naa.%8phN", 3229 cur_id_str); 3230 break; 3231 case 16: 3232 id_size = snprintf(id, id_len, 3233 "naa.%16phN", 3234 cur_id_str); 3235 break; 3236 default: 3237 break; 3238 } 3239 break; 3240 case 0x8: 3241 /* SCSI name string */ 3242 if (cur_id_size > d[3]) 3243 break; 3244 /* Prefer others for truncated descriptor */ 3245 if (d[3] > id_len) { 3246 prio = 2; 3247 if (cur_id_prio > prio) 3248 break; 3249 } 3250 cur_id_prio = prio; 3251 cur_id_size = id_size = d[3]; 3252 cur_id_str = d + 4; 3253 if (cur_id_size >= id_len) 3254 cur_id_size = id_len - 1; 3255 memcpy(id, cur_id_str, cur_id_size); 3256 break; 3257 default: 3258 break; 3259 } 3260 } 3261 rcu_read_unlock(); 3262 3263 return id_size; 3264 } 3265 EXPORT_SYMBOL(scsi_vpd_lun_id); 3266 3267 /* 3268 * scsi_vpd_tpg_id - return a target port group identifier 3269 * @sdev: SCSI device 3270 * 3271 * Returns the Target Port Group identifier from the information 3272 * froom VPD page 0x83 of the device. 3273 * 3274 * Returns the identifier or error on failure. 3275 */ 3276 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3277 { 3278 const unsigned char *d; 3279 const struct scsi_vpd *vpd_pg83; 3280 int group_id = -EAGAIN, rel_port = -1; 3281 3282 rcu_read_lock(); 3283 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3284 if (!vpd_pg83) { 3285 rcu_read_unlock(); 3286 return -ENXIO; 3287 } 3288 3289 d = vpd_pg83->data + 4; 3290 while (d < vpd_pg83->data + vpd_pg83->len) { 3291 switch (d[1] & 0xf) { 3292 case 0x4: 3293 /* Relative target port */ 3294 rel_port = get_unaligned_be16(&d[6]); 3295 break; 3296 case 0x5: 3297 /* Target port group */ 3298 group_id = get_unaligned_be16(&d[6]); 3299 break; 3300 default: 3301 break; 3302 } 3303 d += d[3] + 4; 3304 } 3305 rcu_read_unlock(); 3306 3307 if (group_id >= 0 && rel_id && rel_port != -1) 3308 *rel_id = rel_port; 3309 3310 return group_id; 3311 } 3312 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3313 3314 /** 3315 * scsi_build_sense - build sense data for a command 3316 * @scmd: scsi command for which the sense should be formatted 3317 * @desc: Sense format (non-zero == descriptor format, 3318 * 0 == fixed format) 3319 * @key: Sense key 3320 * @asc: Additional sense code 3321 * @ascq: Additional sense code qualifier 3322 * 3323 **/ 3324 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq) 3325 { 3326 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq); 3327 scmd->result = SAM_STAT_CHECK_CONDITION; 3328 } 3329 EXPORT_SYMBOL_GPL(scsi_build_sense); 3330