xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 1dd0dd0b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27 
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37 
38 #include <trace/events/scsi.h>
39 
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43 
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55 
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 	int ret = 0;
64 
65 	mutex_lock(&scsi_sense_cache_mutex);
66 	if (!scsi_sense_cache) {
67 		scsi_sense_cache =
68 			kmem_cache_create_usercopy("scsi_sense_cache",
69 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 				0, SCSI_SENSE_BUFFERSIZE, NULL);
71 		if (!scsi_sense_cache)
72 			ret = -ENOMEM;
73 	}
74 	mutex_unlock(&scsi_sense_cache_mutex);
75 	return ret;
76 }
77 
78 static void
79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81 	struct Scsi_Host *host = cmd->device->host;
82 	struct scsi_device *device = cmd->device;
83 	struct scsi_target *starget = scsi_target(device);
84 
85 	/*
86 	 * Set the appropriate busy bit for the device/host.
87 	 *
88 	 * If the host/device isn't busy, assume that something actually
89 	 * completed, and that we should be able to queue a command now.
90 	 *
91 	 * Note that the prior mid-layer assumption that any host could
92 	 * always queue at least one command is now broken.  The mid-layer
93 	 * will implement a user specifiable stall (see
94 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 	 * if a command is requeued with no other commands outstanding
96 	 * either for the device or for the host.
97 	 */
98 	switch (reason) {
99 	case SCSI_MLQUEUE_HOST_BUSY:
100 		atomic_set(&host->host_blocked, host->max_host_blocked);
101 		break;
102 	case SCSI_MLQUEUE_DEVICE_BUSY:
103 	case SCSI_MLQUEUE_EH_RETRY:
104 		atomic_set(&device->device_blocked,
105 			   device->max_device_blocked);
106 		break;
107 	case SCSI_MLQUEUE_TARGET_BUSY:
108 		atomic_set(&starget->target_blocked,
109 			   starget->max_target_blocked);
110 		break;
111 	}
112 }
113 
114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116 	struct request *rq = scsi_cmd_to_rq(cmd);
117 
118 	if (rq->rq_flags & RQF_DONTPREP) {
119 		rq->rq_flags &= ~RQF_DONTPREP;
120 		scsi_mq_uninit_cmd(cmd);
121 	} else {
122 		WARN_ON_ONCE(true);
123 	}
124 
125 	if (msecs) {
126 		blk_mq_requeue_request(rq, false);
127 		blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 	} else
129 		blk_mq_requeue_request(rq, true);
130 }
131 
132 /**
133  * __scsi_queue_insert - private queue insertion
134  * @cmd: The SCSI command being requeued
135  * @reason:  The reason for the requeue
136  * @unbusy: Whether the queue should be unbusied
137  *
138  * This is a private queue insertion.  The public interface
139  * scsi_queue_insert() always assumes the queue should be unbusied
140  * because it's always called before the completion.  This function is
141  * for a requeue after completion, which should only occur in this
142  * file.
143  */
144 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
145 {
146 	struct scsi_device *device = cmd->device;
147 
148 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
149 		"Inserting command %p into mlqueue\n", cmd));
150 
151 	scsi_set_blocked(cmd, reason);
152 
153 	/*
154 	 * Decrement the counters, since these commands are no longer
155 	 * active on the host/device.
156 	 */
157 	if (unbusy)
158 		scsi_device_unbusy(device, cmd);
159 
160 	/*
161 	 * Requeue this command.  It will go before all other commands
162 	 * that are already in the queue. Schedule requeue work under
163 	 * lock such that the kblockd_schedule_work() call happens
164 	 * before blk_mq_destroy_queue() finishes.
165 	 */
166 	cmd->result = 0;
167 
168 	blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
169 }
170 
171 /**
172  * scsi_queue_insert - Reinsert a command in the queue.
173  * @cmd:    command that we are adding to queue.
174  * @reason: why we are inserting command to queue.
175  *
176  * We do this for one of two cases. Either the host is busy and it cannot accept
177  * any more commands for the time being, or the device returned QUEUE_FULL and
178  * can accept no more commands.
179  *
180  * Context: This could be called either from an interrupt context or a normal
181  * process context.
182  */
183 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
184 {
185 	__scsi_queue_insert(cmd, reason, true);
186 }
187 
188 
189 /**
190  * __scsi_execute - insert request and wait for the result
191  * @sdev:	scsi device
192  * @cmd:	scsi command
193  * @data_direction: data direction
194  * @buffer:	data buffer
195  * @bufflen:	len of buffer
196  * @sense:	optional sense buffer
197  * @sshdr:	optional decoded sense header
198  * @timeout:	request timeout in HZ
199  * @retries:	number of times to retry request
200  * @flags:	flags for ->cmd_flags
201  * @rq_flags:	flags for ->rq_flags
202  * @resid:	optional residual length
203  *
204  * Returns the scsi_cmnd result field if a command was executed, or a negative
205  * Linux error code if we didn't get that far.
206  */
207 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
208 		 int data_direction, void *buffer, unsigned bufflen,
209 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
210 		 int timeout, int retries, blk_opf_t flags,
211 		 req_flags_t rq_flags, int *resid)
212 {
213 	struct request *req;
214 	struct scsi_cmnd *scmd;
215 	int ret;
216 
217 	req = scsi_alloc_request(sdev->request_queue,
218 			data_direction == DMA_TO_DEVICE ?
219 			REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
220 			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
221 	if (IS_ERR(req))
222 		return PTR_ERR(req);
223 
224 	if (bufflen) {
225 		ret = blk_rq_map_kern(sdev->request_queue, req,
226 				      buffer, bufflen, GFP_NOIO);
227 		if (ret)
228 			goto out;
229 	}
230 	scmd = blk_mq_rq_to_pdu(req);
231 	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
232 	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
233 	scmd->allowed = retries;
234 	req->timeout = timeout;
235 	req->cmd_flags |= flags;
236 	req->rq_flags |= rq_flags | RQF_QUIET;
237 
238 	/*
239 	 * head injection *required* here otherwise quiesce won't work
240 	 */
241 	blk_execute_rq(req, true);
242 
243 	/*
244 	 * Some devices (USB mass-storage in particular) may transfer
245 	 * garbage data together with a residue indicating that the data
246 	 * is invalid.  Prevent the garbage from being misinterpreted
247 	 * and prevent security leaks by zeroing out the excess data.
248 	 */
249 	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
250 		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
251 
252 	if (resid)
253 		*resid = scmd->resid_len;
254 	if (sense && scmd->sense_len)
255 		memcpy(sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
256 	if (sshdr)
257 		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
258 				     sshdr);
259 	ret = scmd->result;
260  out:
261 	blk_mq_free_request(req);
262 
263 	return ret;
264 }
265 EXPORT_SYMBOL(__scsi_execute);
266 
267 /*
268  * Wake up the error handler if necessary. Avoid as follows that the error
269  * handler is not woken up if host in-flight requests number ==
270  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
271  * with an RCU read lock in this function to ensure that this function in
272  * its entirety either finishes before scsi_eh_scmd_add() increases the
273  * host_failed counter or that it notices the shost state change made by
274  * scsi_eh_scmd_add().
275  */
276 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
277 {
278 	unsigned long flags;
279 
280 	rcu_read_lock();
281 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
282 	if (unlikely(scsi_host_in_recovery(shost))) {
283 		spin_lock_irqsave(shost->host_lock, flags);
284 		if (shost->host_failed || shost->host_eh_scheduled)
285 			scsi_eh_wakeup(shost);
286 		spin_unlock_irqrestore(shost->host_lock, flags);
287 	}
288 	rcu_read_unlock();
289 }
290 
291 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
292 {
293 	struct Scsi_Host *shost = sdev->host;
294 	struct scsi_target *starget = scsi_target(sdev);
295 
296 	scsi_dec_host_busy(shost, cmd);
297 
298 	if (starget->can_queue > 0)
299 		atomic_dec(&starget->target_busy);
300 
301 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
302 	cmd->budget_token = -1;
303 }
304 
305 static void scsi_kick_queue(struct request_queue *q)
306 {
307 	blk_mq_run_hw_queues(q, false);
308 }
309 
310 /*
311  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
312  * and call blk_run_queue for all the scsi_devices on the target -
313  * including current_sdev first.
314  *
315  * Called with *no* scsi locks held.
316  */
317 static void scsi_single_lun_run(struct scsi_device *current_sdev)
318 {
319 	struct Scsi_Host *shost = current_sdev->host;
320 	struct scsi_device *sdev, *tmp;
321 	struct scsi_target *starget = scsi_target(current_sdev);
322 	unsigned long flags;
323 
324 	spin_lock_irqsave(shost->host_lock, flags);
325 	starget->starget_sdev_user = NULL;
326 	spin_unlock_irqrestore(shost->host_lock, flags);
327 
328 	/*
329 	 * Call blk_run_queue for all LUNs on the target, starting with
330 	 * current_sdev. We race with others (to set starget_sdev_user),
331 	 * but in most cases, we will be first. Ideally, each LU on the
332 	 * target would get some limited time or requests on the target.
333 	 */
334 	scsi_kick_queue(current_sdev->request_queue);
335 
336 	spin_lock_irqsave(shost->host_lock, flags);
337 	if (starget->starget_sdev_user)
338 		goto out;
339 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
340 			same_target_siblings) {
341 		if (sdev == current_sdev)
342 			continue;
343 		if (scsi_device_get(sdev))
344 			continue;
345 
346 		spin_unlock_irqrestore(shost->host_lock, flags);
347 		scsi_kick_queue(sdev->request_queue);
348 		spin_lock_irqsave(shost->host_lock, flags);
349 
350 		scsi_device_put(sdev);
351 	}
352  out:
353 	spin_unlock_irqrestore(shost->host_lock, flags);
354 }
355 
356 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
357 {
358 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
359 		return true;
360 	if (atomic_read(&sdev->device_blocked) > 0)
361 		return true;
362 	return false;
363 }
364 
365 static inline bool scsi_target_is_busy(struct scsi_target *starget)
366 {
367 	if (starget->can_queue > 0) {
368 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
369 			return true;
370 		if (atomic_read(&starget->target_blocked) > 0)
371 			return true;
372 	}
373 	return false;
374 }
375 
376 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
377 {
378 	if (atomic_read(&shost->host_blocked) > 0)
379 		return true;
380 	if (shost->host_self_blocked)
381 		return true;
382 	return false;
383 }
384 
385 static void scsi_starved_list_run(struct Scsi_Host *shost)
386 {
387 	LIST_HEAD(starved_list);
388 	struct scsi_device *sdev;
389 	unsigned long flags;
390 
391 	spin_lock_irqsave(shost->host_lock, flags);
392 	list_splice_init(&shost->starved_list, &starved_list);
393 
394 	while (!list_empty(&starved_list)) {
395 		struct request_queue *slq;
396 
397 		/*
398 		 * As long as shost is accepting commands and we have
399 		 * starved queues, call blk_run_queue. scsi_request_fn
400 		 * drops the queue_lock and can add us back to the
401 		 * starved_list.
402 		 *
403 		 * host_lock protects the starved_list and starved_entry.
404 		 * scsi_request_fn must get the host_lock before checking
405 		 * or modifying starved_list or starved_entry.
406 		 */
407 		if (scsi_host_is_busy(shost))
408 			break;
409 
410 		sdev = list_entry(starved_list.next,
411 				  struct scsi_device, starved_entry);
412 		list_del_init(&sdev->starved_entry);
413 		if (scsi_target_is_busy(scsi_target(sdev))) {
414 			list_move_tail(&sdev->starved_entry,
415 				       &shost->starved_list);
416 			continue;
417 		}
418 
419 		/*
420 		 * Once we drop the host lock, a racing scsi_remove_device()
421 		 * call may remove the sdev from the starved list and destroy
422 		 * it and the queue.  Mitigate by taking a reference to the
423 		 * queue and never touching the sdev again after we drop the
424 		 * host lock.  Note: if __scsi_remove_device() invokes
425 		 * blk_mq_destroy_queue() before the queue is run from this
426 		 * function then blk_run_queue() will return immediately since
427 		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
428 		 */
429 		slq = sdev->request_queue;
430 		if (!blk_get_queue(slq))
431 			continue;
432 		spin_unlock_irqrestore(shost->host_lock, flags);
433 
434 		scsi_kick_queue(slq);
435 		blk_put_queue(slq);
436 
437 		spin_lock_irqsave(shost->host_lock, flags);
438 	}
439 	/* put any unprocessed entries back */
440 	list_splice(&starved_list, &shost->starved_list);
441 	spin_unlock_irqrestore(shost->host_lock, flags);
442 }
443 
444 /**
445  * scsi_run_queue - Select a proper request queue to serve next.
446  * @q:  last request's queue
447  *
448  * The previous command was completely finished, start a new one if possible.
449  */
450 static void scsi_run_queue(struct request_queue *q)
451 {
452 	struct scsi_device *sdev = q->queuedata;
453 
454 	if (scsi_target(sdev)->single_lun)
455 		scsi_single_lun_run(sdev);
456 	if (!list_empty(&sdev->host->starved_list))
457 		scsi_starved_list_run(sdev->host);
458 
459 	blk_mq_run_hw_queues(q, false);
460 }
461 
462 void scsi_requeue_run_queue(struct work_struct *work)
463 {
464 	struct scsi_device *sdev;
465 	struct request_queue *q;
466 
467 	sdev = container_of(work, struct scsi_device, requeue_work);
468 	q = sdev->request_queue;
469 	scsi_run_queue(q);
470 }
471 
472 void scsi_run_host_queues(struct Scsi_Host *shost)
473 {
474 	struct scsi_device *sdev;
475 
476 	shost_for_each_device(sdev, shost)
477 		scsi_run_queue(sdev->request_queue);
478 }
479 
480 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
481 {
482 	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
483 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
484 
485 		if (drv->uninit_command)
486 			drv->uninit_command(cmd);
487 	}
488 }
489 
490 void scsi_free_sgtables(struct scsi_cmnd *cmd)
491 {
492 	if (cmd->sdb.table.nents)
493 		sg_free_table_chained(&cmd->sdb.table,
494 				SCSI_INLINE_SG_CNT);
495 	if (scsi_prot_sg_count(cmd))
496 		sg_free_table_chained(&cmd->prot_sdb->table,
497 				SCSI_INLINE_PROT_SG_CNT);
498 }
499 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
500 
501 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
502 {
503 	scsi_free_sgtables(cmd);
504 	scsi_uninit_cmd(cmd);
505 }
506 
507 static void scsi_run_queue_async(struct scsi_device *sdev)
508 {
509 	if (scsi_target(sdev)->single_lun ||
510 	    !list_empty(&sdev->host->starved_list)) {
511 		kblockd_schedule_work(&sdev->requeue_work);
512 	} else {
513 		/*
514 		 * smp_mb() present in sbitmap_queue_clear() or implied in
515 		 * .end_io is for ordering writing .device_busy in
516 		 * scsi_device_unbusy() and reading sdev->restarts.
517 		 */
518 		int old = atomic_read(&sdev->restarts);
519 
520 		/*
521 		 * ->restarts has to be kept as non-zero if new budget
522 		 *  contention occurs.
523 		 *
524 		 *  No need to run queue when either another re-run
525 		 *  queue wins in updating ->restarts or a new budget
526 		 *  contention occurs.
527 		 */
528 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
529 			blk_mq_run_hw_queues(sdev->request_queue, true);
530 	}
531 }
532 
533 /* Returns false when no more bytes to process, true if there are more */
534 static bool scsi_end_request(struct request *req, blk_status_t error,
535 		unsigned int bytes)
536 {
537 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
538 	struct scsi_device *sdev = cmd->device;
539 	struct request_queue *q = sdev->request_queue;
540 
541 	if (blk_update_request(req, error, bytes))
542 		return true;
543 
544 	// XXX:
545 	if (blk_queue_add_random(q))
546 		add_disk_randomness(req->q->disk);
547 
548 	if (!blk_rq_is_passthrough(req)) {
549 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
550 		cmd->flags &= ~SCMD_INITIALIZED;
551 	}
552 
553 	/*
554 	 * Calling rcu_barrier() is not necessary here because the
555 	 * SCSI error handler guarantees that the function called by
556 	 * call_rcu() has been called before scsi_end_request() is
557 	 * called.
558 	 */
559 	destroy_rcu_head(&cmd->rcu);
560 
561 	/*
562 	 * In the MQ case the command gets freed by __blk_mq_end_request,
563 	 * so we have to do all cleanup that depends on it earlier.
564 	 *
565 	 * We also can't kick the queues from irq context, so we
566 	 * will have to defer it to a workqueue.
567 	 */
568 	scsi_mq_uninit_cmd(cmd);
569 
570 	/*
571 	 * queue is still alive, so grab the ref for preventing it
572 	 * from being cleaned up during running queue.
573 	 */
574 	percpu_ref_get(&q->q_usage_counter);
575 
576 	__blk_mq_end_request(req, error);
577 
578 	scsi_run_queue_async(sdev);
579 
580 	percpu_ref_put(&q->q_usage_counter);
581 	return false;
582 }
583 
584 /**
585  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
586  * @cmd:	SCSI command
587  * @result:	scsi error code
588  *
589  * Translate a SCSI result code into a blk_status_t value. May reset the host
590  * byte of @cmd->result.
591  */
592 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
593 {
594 	switch (host_byte(result)) {
595 	case DID_OK:
596 		if (scsi_status_is_good(result))
597 			return BLK_STS_OK;
598 		return BLK_STS_IOERR;
599 	case DID_TRANSPORT_FAILFAST:
600 	case DID_TRANSPORT_MARGINAL:
601 		return BLK_STS_TRANSPORT;
602 	case DID_TARGET_FAILURE:
603 		set_host_byte(cmd, DID_OK);
604 		return BLK_STS_TARGET;
605 	case DID_NEXUS_FAILURE:
606 		set_host_byte(cmd, DID_OK);
607 		return BLK_STS_NEXUS;
608 	case DID_ALLOC_FAILURE:
609 		set_host_byte(cmd, DID_OK);
610 		return BLK_STS_NOSPC;
611 	case DID_MEDIUM_ERROR:
612 		set_host_byte(cmd, DID_OK);
613 		return BLK_STS_MEDIUM;
614 	default:
615 		return BLK_STS_IOERR;
616 	}
617 }
618 
619 /**
620  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
621  * @rq: request to examine
622  *
623  * Description:
624  *     A request could be merge of IOs which require different failure
625  *     handling.  This function determines the number of bytes which
626  *     can be failed from the beginning of the request without
627  *     crossing into area which need to be retried further.
628  *
629  * Return:
630  *     The number of bytes to fail.
631  */
632 static unsigned int scsi_rq_err_bytes(const struct request *rq)
633 {
634 	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
635 	unsigned int bytes = 0;
636 	struct bio *bio;
637 
638 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
639 		return blk_rq_bytes(rq);
640 
641 	/*
642 	 * Currently the only 'mixing' which can happen is between
643 	 * different fastfail types.  We can safely fail portions
644 	 * which have all the failfast bits that the first one has -
645 	 * the ones which are at least as eager to fail as the first
646 	 * one.
647 	 */
648 	for (bio = rq->bio; bio; bio = bio->bi_next) {
649 		if ((bio->bi_opf & ff) != ff)
650 			break;
651 		bytes += bio->bi_iter.bi_size;
652 	}
653 
654 	/* this could lead to infinite loop */
655 	BUG_ON(blk_rq_bytes(rq) && !bytes);
656 	return bytes;
657 }
658 
659 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
660 {
661 	struct request *req = scsi_cmd_to_rq(cmd);
662 	unsigned long wait_for;
663 
664 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
665 		return false;
666 
667 	wait_for = (cmd->allowed + 1) * req->timeout;
668 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
669 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
670 			    wait_for/HZ);
671 		return true;
672 	}
673 	return false;
674 }
675 
676 /*
677  * When ALUA transition state is returned, reprep the cmd to
678  * use the ALUA handler's transition timeout. Delay the reprep
679  * 1 sec to avoid aggressive retries of the target in that
680  * state.
681  */
682 #define ALUA_TRANSITION_REPREP_DELAY	1000
683 
684 /* Helper for scsi_io_completion() when special action required. */
685 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
686 {
687 	struct request *req = scsi_cmd_to_rq(cmd);
688 	int level = 0;
689 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
690 	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
691 	struct scsi_sense_hdr sshdr;
692 	bool sense_valid;
693 	bool sense_current = true;      /* false implies "deferred sense" */
694 	blk_status_t blk_stat;
695 
696 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
697 	if (sense_valid)
698 		sense_current = !scsi_sense_is_deferred(&sshdr);
699 
700 	blk_stat = scsi_result_to_blk_status(cmd, result);
701 
702 	if (host_byte(result) == DID_RESET) {
703 		/* Third party bus reset or reset for error recovery
704 		 * reasons.  Just retry the command and see what
705 		 * happens.
706 		 */
707 		action = ACTION_RETRY;
708 	} else if (sense_valid && sense_current) {
709 		switch (sshdr.sense_key) {
710 		case UNIT_ATTENTION:
711 			if (cmd->device->removable) {
712 				/* Detected disc change.  Set a bit
713 				 * and quietly refuse further access.
714 				 */
715 				cmd->device->changed = 1;
716 				action = ACTION_FAIL;
717 			} else {
718 				/* Must have been a power glitch, or a
719 				 * bus reset.  Could not have been a
720 				 * media change, so we just retry the
721 				 * command and see what happens.
722 				 */
723 				action = ACTION_RETRY;
724 			}
725 			break;
726 		case ILLEGAL_REQUEST:
727 			/* If we had an ILLEGAL REQUEST returned, then
728 			 * we may have performed an unsupported
729 			 * command.  The only thing this should be
730 			 * would be a ten byte read where only a six
731 			 * byte read was supported.  Also, on a system
732 			 * where READ CAPACITY failed, we may have
733 			 * read past the end of the disk.
734 			 */
735 			if ((cmd->device->use_10_for_rw &&
736 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
737 			    (cmd->cmnd[0] == READ_10 ||
738 			     cmd->cmnd[0] == WRITE_10)) {
739 				/* This will issue a new 6-byte command. */
740 				cmd->device->use_10_for_rw = 0;
741 				action = ACTION_REPREP;
742 			} else if (sshdr.asc == 0x10) /* DIX */ {
743 				action = ACTION_FAIL;
744 				blk_stat = BLK_STS_PROTECTION;
745 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
746 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
747 				action = ACTION_FAIL;
748 				blk_stat = BLK_STS_TARGET;
749 			} else
750 				action = ACTION_FAIL;
751 			break;
752 		case ABORTED_COMMAND:
753 			action = ACTION_FAIL;
754 			if (sshdr.asc == 0x10) /* DIF */
755 				blk_stat = BLK_STS_PROTECTION;
756 			break;
757 		case NOT_READY:
758 			/* If the device is in the process of becoming
759 			 * ready, or has a temporary blockage, retry.
760 			 */
761 			if (sshdr.asc == 0x04) {
762 				switch (sshdr.ascq) {
763 				case 0x01: /* becoming ready */
764 				case 0x04: /* format in progress */
765 				case 0x05: /* rebuild in progress */
766 				case 0x06: /* recalculation in progress */
767 				case 0x07: /* operation in progress */
768 				case 0x08: /* Long write in progress */
769 				case 0x09: /* self test in progress */
770 				case 0x11: /* notify (enable spinup) required */
771 				case 0x14: /* space allocation in progress */
772 				case 0x1a: /* start stop unit in progress */
773 				case 0x1b: /* sanitize in progress */
774 				case 0x1d: /* configuration in progress */
775 				case 0x24: /* depopulation in progress */
776 					action = ACTION_DELAYED_RETRY;
777 					break;
778 				case 0x0a: /* ALUA state transition */
779 					action = ACTION_DELAYED_REPREP;
780 					break;
781 				default:
782 					action = ACTION_FAIL;
783 					break;
784 				}
785 			} else
786 				action = ACTION_FAIL;
787 			break;
788 		case VOLUME_OVERFLOW:
789 			/* See SSC3rXX or current. */
790 			action = ACTION_FAIL;
791 			break;
792 		case DATA_PROTECT:
793 			action = ACTION_FAIL;
794 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
795 			    (sshdr.asc == 0x55 &&
796 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
797 				/* Insufficient zone resources */
798 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
799 			}
800 			break;
801 		default:
802 			action = ACTION_FAIL;
803 			break;
804 		}
805 	} else
806 		action = ACTION_FAIL;
807 
808 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
809 		action = ACTION_FAIL;
810 
811 	switch (action) {
812 	case ACTION_FAIL:
813 		/* Give up and fail the remainder of the request */
814 		if (!(req->rq_flags & RQF_QUIET)) {
815 			static DEFINE_RATELIMIT_STATE(_rs,
816 					DEFAULT_RATELIMIT_INTERVAL,
817 					DEFAULT_RATELIMIT_BURST);
818 
819 			if (unlikely(scsi_logging_level))
820 				level =
821 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
822 						    SCSI_LOG_MLCOMPLETE_BITS);
823 
824 			/*
825 			 * if logging is enabled the failure will be printed
826 			 * in scsi_log_completion(), so avoid duplicate messages
827 			 */
828 			if (!level && __ratelimit(&_rs)) {
829 				scsi_print_result(cmd, NULL, FAILED);
830 				if (sense_valid)
831 					scsi_print_sense(cmd);
832 				scsi_print_command(cmd);
833 			}
834 		}
835 		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
836 			return;
837 		fallthrough;
838 	case ACTION_REPREP:
839 		scsi_mq_requeue_cmd(cmd, 0);
840 		break;
841 	case ACTION_DELAYED_REPREP:
842 		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
843 		break;
844 	case ACTION_RETRY:
845 		/* Retry the same command immediately */
846 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
847 		break;
848 	case ACTION_DELAYED_RETRY:
849 		/* Retry the same command after a delay */
850 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
851 		break;
852 	}
853 }
854 
855 /*
856  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
857  * new result that may suppress further error checking. Also modifies
858  * *blk_statp in some cases.
859  */
860 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
861 					blk_status_t *blk_statp)
862 {
863 	bool sense_valid;
864 	bool sense_current = true;	/* false implies "deferred sense" */
865 	struct request *req = scsi_cmd_to_rq(cmd);
866 	struct scsi_sense_hdr sshdr;
867 
868 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
869 	if (sense_valid)
870 		sense_current = !scsi_sense_is_deferred(&sshdr);
871 
872 	if (blk_rq_is_passthrough(req)) {
873 		if (sense_valid) {
874 			/*
875 			 * SG_IO wants current and deferred errors
876 			 */
877 			cmd->sense_len = min(8 + cmd->sense_buffer[7],
878 					     SCSI_SENSE_BUFFERSIZE);
879 		}
880 		if (sense_current)
881 			*blk_statp = scsi_result_to_blk_status(cmd, result);
882 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
883 		/*
884 		 * Flush commands do not transfers any data, and thus cannot use
885 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
886 		 * This sets *blk_statp explicitly for the problem case.
887 		 */
888 		*blk_statp = scsi_result_to_blk_status(cmd, result);
889 	}
890 	/*
891 	 * Recovered errors need reporting, but they're always treated as
892 	 * success, so fiddle the result code here.  For passthrough requests
893 	 * we already took a copy of the original into sreq->result which
894 	 * is what gets returned to the user
895 	 */
896 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
897 		bool do_print = true;
898 		/*
899 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
900 		 * skip print since caller wants ATA registers. Only occurs
901 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
902 		 */
903 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
904 			do_print = false;
905 		else if (req->rq_flags & RQF_QUIET)
906 			do_print = false;
907 		if (do_print)
908 			scsi_print_sense(cmd);
909 		result = 0;
910 		/* for passthrough, *blk_statp may be set */
911 		*blk_statp = BLK_STS_OK;
912 	}
913 	/*
914 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
915 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
916 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
917 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
918 	 * intermediate statuses (both obsolete in SAM-4) as good.
919 	 */
920 	if ((result & 0xff) && scsi_status_is_good(result)) {
921 		result = 0;
922 		*blk_statp = BLK_STS_OK;
923 	}
924 	return result;
925 }
926 
927 /**
928  * scsi_io_completion - Completion processing for SCSI commands.
929  * @cmd:	command that is finished.
930  * @good_bytes:	number of processed bytes.
931  *
932  * We will finish off the specified number of sectors. If we are done, the
933  * command block will be released and the queue function will be goosed. If we
934  * are not done then we have to figure out what to do next:
935  *
936  *   a) We can call scsi_mq_requeue_cmd().  The request will be
937  *	unprepared and put back on the queue.  Then a new command will
938  *	be created for it.  This should be used if we made forward
939  *	progress, or if we want to switch from READ(10) to READ(6) for
940  *	example.
941  *
942  *   b) We can call scsi_io_completion_action().  The request will be
943  *	put back on the queue and retried using the same command as
944  *	before, possibly after a delay.
945  *
946  *   c) We can call scsi_end_request() with blk_stat other than
947  *	BLK_STS_OK, to fail the remainder of the request.
948  */
949 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
950 {
951 	int result = cmd->result;
952 	struct request *req = scsi_cmd_to_rq(cmd);
953 	blk_status_t blk_stat = BLK_STS_OK;
954 
955 	if (unlikely(result))	/* a nz result may or may not be an error */
956 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
957 
958 	/*
959 	 * Next deal with any sectors which we were able to correctly
960 	 * handle.
961 	 */
962 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
963 		"%u sectors total, %d bytes done.\n",
964 		blk_rq_sectors(req), good_bytes));
965 
966 	/*
967 	 * Failed, zero length commands always need to drop down
968 	 * to retry code. Fast path should return in this block.
969 	 */
970 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
971 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
972 			return; /* no bytes remaining */
973 	}
974 
975 	/* Kill remainder if no retries. */
976 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
977 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
978 			WARN_ONCE(true,
979 			    "Bytes remaining after failed, no-retry command");
980 		return;
981 	}
982 
983 	/*
984 	 * If there had been no error, but we have leftover bytes in the
985 	 * request just queue the command up again.
986 	 */
987 	if (likely(result == 0))
988 		scsi_mq_requeue_cmd(cmd, 0);
989 	else
990 		scsi_io_completion_action(cmd, result);
991 }
992 
993 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
994 		struct request *rq)
995 {
996 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
997 	       !op_is_write(req_op(rq)) &&
998 	       sdev->host->hostt->dma_need_drain(rq);
999 }
1000 
1001 /**
1002  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1003  * @cmd: SCSI command data structure to initialize.
1004  *
1005  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1006  * for @cmd.
1007  *
1008  * Returns:
1009  * * BLK_STS_OK       - on success
1010  * * BLK_STS_RESOURCE - if the failure is retryable
1011  * * BLK_STS_IOERR    - if the failure is fatal
1012  */
1013 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1014 {
1015 	struct scsi_device *sdev = cmd->device;
1016 	struct request *rq = scsi_cmd_to_rq(cmd);
1017 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1018 	struct scatterlist *last_sg = NULL;
1019 	blk_status_t ret;
1020 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1021 	int count;
1022 
1023 	if (WARN_ON_ONCE(!nr_segs))
1024 		return BLK_STS_IOERR;
1025 
1026 	/*
1027 	 * Make sure there is space for the drain.  The driver must adjust
1028 	 * max_hw_segments to be prepared for this.
1029 	 */
1030 	if (need_drain)
1031 		nr_segs++;
1032 
1033 	/*
1034 	 * If sg table allocation fails, requeue request later.
1035 	 */
1036 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1037 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1038 		return BLK_STS_RESOURCE;
1039 
1040 	/*
1041 	 * Next, walk the list, and fill in the addresses and sizes of
1042 	 * each segment.
1043 	 */
1044 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1045 
1046 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1047 		unsigned int pad_len =
1048 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1049 
1050 		last_sg->length += pad_len;
1051 		cmd->extra_len += pad_len;
1052 	}
1053 
1054 	if (need_drain) {
1055 		sg_unmark_end(last_sg);
1056 		last_sg = sg_next(last_sg);
1057 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1058 		sg_mark_end(last_sg);
1059 
1060 		cmd->extra_len += sdev->dma_drain_len;
1061 		count++;
1062 	}
1063 
1064 	BUG_ON(count > cmd->sdb.table.nents);
1065 	cmd->sdb.table.nents = count;
1066 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1067 
1068 	if (blk_integrity_rq(rq)) {
1069 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1070 		int ivecs;
1071 
1072 		if (WARN_ON_ONCE(!prot_sdb)) {
1073 			/*
1074 			 * This can happen if someone (e.g. multipath)
1075 			 * queues a command to a device on an adapter
1076 			 * that does not support DIX.
1077 			 */
1078 			ret = BLK_STS_IOERR;
1079 			goto out_free_sgtables;
1080 		}
1081 
1082 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1083 
1084 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1085 				prot_sdb->table.sgl,
1086 				SCSI_INLINE_PROT_SG_CNT)) {
1087 			ret = BLK_STS_RESOURCE;
1088 			goto out_free_sgtables;
1089 		}
1090 
1091 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1092 						prot_sdb->table.sgl);
1093 		BUG_ON(count > ivecs);
1094 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1095 
1096 		cmd->prot_sdb = prot_sdb;
1097 		cmd->prot_sdb->table.nents = count;
1098 	}
1099 
1100 	return BLK_STS_OK;
1101 out_free_sgtables:
1102 	scsi_free_sgtables(cmd);
1103 	return ret;
1104 }
1105 EXPORT_SYMBOL(scsi_alloc_sgtables);
1106 
1107 /**
1108  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1109  * @rq: Request associated with the SCSI command to be initialized.
1110  *
1111  * This function initializes the members of struct scsi_cmnd that must be
1112  * initialized before request processing starts and that won't be
1113  * reinitialized if a SCSI command is requeued.
1114  */
1115 static void scsi_initialize_rq(struct request *rq)
1116 {
1117 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1118 
1119 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1120 	cmd->cmd_len = MAX_COMMAND_SIZE;
1121 	cmd->sense_len = 0;
1122 	init_rcu_head(&cmd->rcu);
1123 	cmd->jiffies_at_alloc = jiffies;
1124 	cmd->retries = 0;
1125 }
1126 
1127 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1128 				   blk_mq_req_flags_t flags)
1129 {
1130 	struct request *rq;
1131 
1132 	rq = blk_mq_alloc_request(q, opf, flags);
1133 	if (!IS_ERR(rq))
1134 		scsi_initialize_rq(rq);
1135 	return rq;
1136 }
1137 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1138 
1139 /*
1140  * Only called when the request isn't completed by SCSI, and not freed by
1141  * SCSI
1142  */
1143 static void scsi_cleanup_rq(struct request *rq)
1144 {
1145 	if (rq->rq_flags & RQF_DONTPREP) {
1146 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1147 		rq->rq_flags &= ~RQF_DONTPREP;
1148 	}
1149 }
1150 
1151 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1152 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1153 {
1154 	struct request *rq = scsi_cmd_to_rq(cmd);
1155 
1156 	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1157 		cmd->flags |= SCMD_INITIALIZED;
1158 		scsi_initialize_rq(rq);
1159 	}
1160 
1161 	cmd->device = dev;
1162 	INIT_LIST_HEAD(&cmd->eh_entry);
1163 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1164 }
1165 
1166 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1167 		struct request *req)
1168 {
1169 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1170 
1171 	/*
1172 	 * Passthrough requests may transfer data, in which case they must
1173 	 * a bio attached to them.  Or they might contain a SCSI command
1174 	 * that does not transfer data, in which case they may optionally
1175 	 * submit a request without an attached bio.
1176 	 */
1177 	if (req->bio) {
1178 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1179 		if (unlikely(ret != BLK_STS_OK))
1180 			return ret;
1181 	} else {
1182 		BUG_ON(blk_rq_bytes(req));
1183 
1184 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1185 	}
1186 
1187 	cmd->transfersize = blk_rq_bytes(req);
1188 	return BLK_STS_OK;
1189 }
1190 
1191 static blk_status_t
1192 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1193 {
1194 	switch (sdev->sdev_state) {
1195 	case SDEV_CREATED:
1196 		return BLK_STS_OK;
1197 	case SDEV_OFFLINE:
1198 	case SDEV_TRANSPORT_OFFLINE:
1199 		/*
1200 		 * If the device is offline we refuse to process any
1201 		 * commands.  The device must be brought online
1202 		 * before trying any recovery commands.
1203 		 */
1204 		if (!sdev->offline_already) {
1205 			sdev->offline_already = true;
1206 			sdev_printk(KERN_ERR, sdev,
1207 				    "rejecting I/O to offline device\n");
1208 		}
1209 		return BLK_STS_IOERR;
1210 	case SDEV_DEL:
1211 		/*
1212 		 * If the device is fully deleted, we refuse to
1213 		 * process any commands as well.
1214 		 */
1215 		sdev_printk(KERN_ERR, sdev,
1216 			    "rejecting I/O to dead device\n");
1217 		return BLK_STS_IOERR;
1218 	case SDEV_BLOCK:
1219 	case SDEV_CREATED_BLOCK:
1220 		return BLK_STS_RESOURCE;
1221 	case SDEV_QUIESCE:
1222 		/*
1223 		 * If the device is blocked we only accept power management
1224 		 * commands.
1225 		 */
1226 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1227 			return BLK_STS_RESOURCE;
1228 		return BLK_STS_OK;
1229 	default:
1230 		/*
1231 		 * For any other not fully online state we only allow
1232 		 * power management commands.
1233 		 */
1234 		if (req && !(req->rq_flags & RQF_PM))
1235 			return BLK_STS_OFFLINE;
1236 		return BLK_STS_OK;
1237 	}
1238 }
1239 
1240 /*
1241  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1242  * and return the token else return -1.
1243  */
1244 static inline int scsi_dev_queue_ready(struct request_queue *q,
1245 				  struct scsi_device *sdev)
1246 {
1247 	int token;
1248 
1249 	token = sbitmap_get(&sdev->budget_map);
1250 	if (atomic_read(&sdev->device_blocked)) {
1251 		if (token < 0)
1252 			goto out;
1253 
1254 		if (scsi_device_busy(sdev) > 1)
1255 			goto out_dec;
1256 
1257 		/*
1258 		 * unblock after device_blocked iterates to zero
1259 		 */
1260 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1261 			goto out_dec;
1262 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1263 				   "unblocking device at zero depth\n"));
1264 	}
1265 
1266 	return token;
1267 out_dec:
1268 	if (token >= 0)
1269 		sbitmap_put(&sdev->budget_map, token);
1270 out:
1271 	return -1;
1272 }
1273 
1274 /*
1275  * scsi_target_queue_ready: checks if there we can send commands to target
1276  * @sdev: scsi device on starget to check.
1277  */
1278 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1279 					   struct scsi_device *sdev)
1280 {
1281 	struct scsi_target *starget = scsi_target(sdev);
1282 	unsigned int busy;
1283 
1284 	if (starget->single_lun) {
1285 		spin_lock_irq(shost->host_lock);
1286 		if (starget->starget_sdev_user &&
1287 		    starget->starget_sdev_user != sdev) {
1288 			spin_unlock_irq(shost->host_lock);
1289 			return 0;
1290 		}
1291 		starget->starget_sdev_user = sdev;
1292 		spin_unlock_irq(shost->host_lock);
1293 	}
1294 
1295 	if (starget->can_queue <= 0)
1296 		return 1;
1297 
1298 	busy = atomic_inc_return(&starget->target_busy) - 1;
1299 	if (atomic_read(&starget->target_blocked) > 0) {
1300 		if (busy)
1301 			goto starved;
1302 
1303 		/*
1304 		 * unblock after target_blocked iterates to zero
1305 		 */
1306 		if (atomic_dec_return(&starget->target_blocked) > 0)
1307 			goto out_dec;
1308 
1309 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1310 				 "unblocking target at zero depth\n"));
1311 	}
1312 
1313 	if (busy >= starget->can_queue)
1314 		goto starved;
1315 
1316 	return 1;
1317 
1318 starved:
1319 	spin_lock_irq(shost->host_lock);
1320 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1321 	spin_unlock_irq(shost->host_lock);
1322 out_dec:
1323 	if (starget->can_queue > 0)
1324 		atomic_dec(&starget->target_busy);
1325 	return 0;
1326 }
1327 
1328 /*
1329  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1330  * return 0. We must end up running the queue again whenever 0 is
1331  * returned, else IO can hang.
1332  */
1333 static inline int scsi_host_queue_ready(struct request_queue *q,
1334 				   struct Scsi_Host *shost,
1335 				   struct scsi_device *sdev,
1336 				   struct scsi_cmnd *cmd)
1337 {
1338 	if (scsi_host_in_recovery(shost))
1339 		return 0;
1340 
1341 	if (atomic_read(&shost->host_blocked) > 0) {
1342 		if (scsi_host_busy(shost) > 0)
1343 			goto starved;
1344 
1345 		/*
1346 		 * unblock after host_blocked iterates to zero
1347 		 */
1348 		if (atomic_dec_return(&shost->host_blocked) > 0)
1349 			goto out_dec;
1350 
1351 		SCSI_LOG_MLQUEUE(3,
1352 			shost_printk(KERN_INFO, shost,
1353 				     "unblocking host at zero depth\n"));
1354 	}
1355 
1356 	if (shost->host_self_blocked)
1357 		goto starved;
1358 
1359 	/* We're OK to process the command, so we can't be starved */
1360 	if (!list_empty(&sdev->starved_entry)) {
1361 		spin_lock_irq(shost->host_lock);
1362 		if (!list_empty(&sdev->starved_entry))
1363 			list_del_init(&sdev->starved_entry);
1364 		spin_unlock_irq(shost->host_lock);
1365 	}
1366 
1367 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1368 
1369 	return 1;
1370 
1371 starved:
1372 	spin_lock_irq(shost->host_lock);
1373 	if (list_empty(&sdev->starved_entry))
1374 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1375 	spin_unlock_irq(shost->host_lock);
1376 out_dec:
1377 	scsi_dec_host_busy(shost, cmd);
1378 	return 0;
1379 }
1380 
1381 /*
1382  * Busy state exporting function for request stacking drivers.
1383  *
1384  * For efficiency, no lock is taken to check the busy state of
1385  * shost/starget/sdev, since the returned value is not guaranteed and
1386  * may be changed after request stacking drivers call the function,
1387  * regardless of taking lock or not.
1388  *
1389  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1390  * needs to return 'not busy'. Otherwise, request stacking drivers
1391  * may hold requests forever.
1392  */
1393 static bool scsi_mq_lld_busy(struct request_queue *q)
1394 {
1395 	struct scsi_device *sdev = q->queuedata;
1396 	struct Scsi_Host *shost;
1397 
1398 	if (blk_queue_dying(q))
1399 		return false;
1400 
1401 	shost = sdev->host;
1402 
1403 	/*
1404 	 * Ignore host/starget busy state.
1405 	 * Since block layer does not have a concept of fairness across
1406 	 * multiple queues, congestion of host/starget needs to be handled
1407 	 * in SCSI layer.
1408 	 */
1409 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1410 		return true;
1411 
1412 	return false;
1413 }
1414 
1415 /*
1416  * Block layer request completion callback. May be called from interrupt
1417  * context.
1418  */
1419 static void scsi_complete(struct request *rq)
1420 {
1421 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1422 	enum scsi_disposition disposition;
1423 
1424 	INIT_LIST_HEAD(&cmd->eh_entry);
1425 
1426 	atomic_inc(&cmd->device->iodone_cnt);
1427 	if (cmd->result)
1428 		atomic_inc(&cmd->device->ioerr_cnt);
1429 
1430 	disposition = scsi_decide_disposition(cmd);
1431 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1432 		disposition = SUCCESS;
1433 
1434 	scsi_log_completion(cmd, disposition);
1435 
1436 	switch (disposition) {
1437 	case SUCCESS:
1438 		scsi_finish_command(cmd);
1439 		break;
1440 	case NEEDS_RETRY:
1441 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1442 		break;
1443 	case ADD_TO_MLQUEUE:
1444 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1445 		break;
1446 	default:
1447 		scsi_eh_scmd_add(cmd);
1448 		break;
1449 	}
1450 }
1451 
1452 /**
1453  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1454  * @cmd: command block we are dispatching.
1455  *
1456  * Return: nonzero return request was rejected and device's queue needs to be
1457  * plugged.
1458  */
1459 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1460 {
1461 	struct Scsi_Host *host = cmd->device->host;
1462 	int rtn = 0;
1463 
1464 	atomic_inc(&cmd->device->iorequest_cnt);
1465 
1466 	/* check if the device is still usable */
1467 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1468 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1469 		 * returns an immediate error upwards, and signals
1470 		 * that the device is no longer present */
1471 		cmd->result = DID_NO_CONNECT << 16;
1472 		goto done;
1473 	}
1474 
1475 	/* Check to see if the scsi lld made this device blocked. */
1476 	if (unlikely(scsi_device_blocked(cmd->device))) {
1477 		/*
1478 		 * in blocked state, the command is just put back on
1479 		 * the device queue.  The suspend state has already
1480 		 * blocked the queue so future requests should not
1481 		 * occur until the device transitions out of the
1482 		 * suspend state.
1483 		 */
1484 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1485 			"queuecommand : device blocked\n"));
1486 		return SCSI_MLQUEUE_DEVICE_BUSY;
1487 	}
1488 
1489 	/* Store the LUN value in cmnd, if needed. */
1490 	if (cmd->device->lun_in_cdb)
1491 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1492 			       (cmd->device->lun << 5 & 0xe0);
1493 
1494 	scsi_log_send(cmd);
1495 
1496 	/*
1497 	 * Before we queue this command, check if the command
1498 	 * length exceeds what the host adapter can handle.
1499 	 */
1500 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1501 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1502 			       "queuecommand : command too long. "
1503 			       "cdb_size=%d host->max_cmd_len=%d\n",
1504 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1505 		cmd->result = (DID_ABORT << 16);
1506 		goto done;
1507 	}
1508 
1509 	if (unlikely(host->shost_state == SHOST_DEL)) {
1510 		cmd->result = (DID_NO_CONNECT << 16);
1511 		goto done;
1512 
1513 	}
1514 
1515 	trace_scsi_dispatch_cmd_start(cmd);
1516 	rtn = host->hostt->queuecommand(host, cmd);
1517 	if (rtn) {
1518 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1519 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1520 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1521 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1522 
1523 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1524 			"queuecommand : request rejected\n"));
1525 	}
1526 
1527 	return rtn;
1528  done:
1529 	scsi_done(cmd);
1530 	return 0;
1531 }
1532 
1533 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1534 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1535 {
1536 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1537 		sizeof(struct scatterlist);
1538 }
1539 
1540 static blk_status_t scsi_prepare_cmd(struct request *req)
1541 {
1542 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1543 	struct scsi_device *sdev = req->q->queuedata;
1544 	struct Scsi_Host *shost = sdev->host;
1545 	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1546 	struct scatterlist *sg;
1547 
1548 	scsi_init_command(sdev, cmd);
1549 
1550 	cmd->eh_eflags = 0;
1551 	cmd->prot_type = 0;
1552 	cmd->prot_flags = 0;
1553 	cmd->submitter = 0;
1554 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1555 	cmd->underflow = 0;
1556 	cmd->transfersize = 0;
1557 	cmd->host_scribble = NULL;
1558 	cmd->result = 0;
1559 	cmd->extra_len = 0;
1560 	cmd->state = 0;
1561 	if (in_flight)
1562 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1563 
1564 	/*
1565 	 * Only clear the driver-private command data if the LLD does not supply
1566 	 * a function to initialize that data.
1567 	 */
1568 	if (!shost->hostt->init_cmd_priv)
1569 		memset(cmd + 1, 0, shost->hostt->cmd_size);
1570 
1571 	cmd->prot_op = SCSI_PROT_NORMAL;
1572 	if (blk_rq_bytes(req))
1573 		cmd->sc_data_direction = rq_dma_dir(req);
1574 	else
1575 		cmd->sc_data_direction = DMA_NONE;
1576 
1577 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1578 	cmd->sdb.table.sgl = sg;
1579 
1580 	if (scsi_host_get_prot(shost)) {
1581 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1582 
1583 		cmd->prot_sdb->table.sgl =
1584 			(struct scatterlist *)(cmd->prot_sdb + 1);
1585 	}
1586 
1587 	/*
1588 	 * Special handling for passthrough commands, which don't go to the ULP
1589 	 * at all:
1590 	 */
1591 	if (blk_rq_is_passthrough(req))
1592 		return scsi_setup_scsi_cmnd(sdev, req);
1593 
1594 	if (sdev->handler && sdev->handler->prep_fn) {
1595 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1596 
1597 		if (ret != BLK_STS_OK)
1598 			return ret;
1599 	}
1600 
1601 	/* Usually overridden by the ULP */
1602 	cmd->allowed = 0;
1603 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1604 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1605 }
1606 
1607 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1608 {
1609 	struct request *req = scsi_cmd_to_rq(cmd);
1610 
1611 	switch (cmd->submitter) {
1612 	case SUBMITTED_BY_BLOCK_LAYER:
1613 		break;
1614 	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1615 		return scsi_eh_done(cmd);
1616 	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1617 		return;
1618 	}
1619 
1620 	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1621 		return;
1622 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1623 		return;
1624 	trace_scsi_dispatch_cmd_done(cmd);
1625 
1626 	if (complete_directly)
1627 		blk_mq_complete_request_direct(req, scsi_complete);
1628 	else
1629 		blk_mq_complete_request(req);
1630 }
1631 
1632 void scsi_done(struct scsi_cmnd *cmd)
1633 {
1634 	scsi_done_internal(cmd, false);
1635 }
1636 EXPORT_SYMBOL(scsi_done);
1637 
1638 void scsi_done_direct(struct scsi_cmnd *cmd)
1639 {
1640 	scsi_done_internal(cmd, true);
1641 }
1642 EXPORT_SYMBOL(scsi_done_direct);
1643 
1644 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1645 {
1646 	struct scsi_device *sdev = q->queuedata;
1647 
1648 	sbitmap_put(&sdev->budget_map, budget_token);
1649 }
1650 
1651 /*
1652  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1653  * not change behaviour from the previous unplug mechanism, experimentation
1654  * may prove this needs changing.
1655  */
1656 #define SCSI_QUEUE_DELAY 3
1657 
1658 static int scsi_mq_get_budget(struct request_queue *q)
1659 {
1660 	struct scsi_device *sdev = q->queuedata;
1661 	int token = scsi_dev_queue_ready(q, sdev);
1662 
1663 	if (token >= 0)
1664 		return token;
1665 
1666 	atomic_inc(&sdev->restarts);
1667 
1668 	/*
1669 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1670 	 * .restarts must be incremented before .device_busy is read because the
1671 	 * code in scsi_run_queue_async() depends on the order of these operations.
1672 	 */
1673 	smp_mb__after_atomic();
1674 
1675 	/*
1676 	 * If all in-flight requests originated from this LUN are completed
1677 	 * before reading .device_busy, sdev->device_busy will be observed as
1678 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1679 	 * soon. Otherwise, completion of one of these requests will observe
1680 	 * the .restarts flag, and the request queue will be run for handling
1681 	 * this request, see scsi_end_request().
1682 	 */
1683 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1684 				!scsi_device_blocked(sdev)))
1685 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1686 	return -1;
1687 }
1688 
1689 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1690 {
1691 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1692 
1693 	cmd->budget_token = token;
1694 }
1695 
1696 static int scsi_mq_get_rq_budget_token(struct request *req)
1697 {
1698 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1699 
1700 	return cmd->budget_token;
1701 }
1702 
1703 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1704 			 const struct blk_mq_queue_data *bd)
1705 {
1706 	struct request *req = bd->rq;
1707 	struct request_queue *q = req->q;
1708 	struct scsi_device *sdev = q->queuedata;
1709 	struct Scsi_Host *shost = sdev->host;
1710 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1711 	blk_status_t ret;
1712 	int reason;
1713 
1714 	WARN_ON_ONCE(cmd->budget_token < 0);
1715 
1716 	/*
1717 	 * If the device is not in running state we will reject some or all
1718 	 * commands.
1719 	 */
1720 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1721 		ret = scsi_device_state_check(sdev, req);
1722 		if (ret != BLK_STS_OK)
1723 			goto out_put_budget;
1724 	}
1725 
1726 	ret = BLK_STS_RESOURCE;
1727 	if (!scsi_target_queue_ready(shost, sdev))
1728 		goto out_put_budget;
1729 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1730 		goto out_dec_target_busy;
1731 
1732 	if (!(req->rq_flags & RQF_DONTPREP)) {
1733 		ret = scsi_prepare_cmd(req);
1734 		if (ret != BLK_STS_OK)
1735 			goto out_dec_host_busy;
1736 		req->rq_flags |= RQF_DONTPREP;
1737 	} else {
1738 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1739 	}
1740 
1741 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1742 	if (sdev->simple_tags)
1743 		cmd->flags |= SCMD_TAGGED;
1744 	if (bd->last)
1745 		cmd->flags |= SCMD_LAST;
1746 
1747 	scsi_set_resid(cmd, 0);
1748 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1749 	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1750 
1751 	blk_mq_start_request(req);
1752 	reason = scsi_dispatch_cmd(cmd);
1753 	if (reason) {
1754 		scsi_set_blocked(cmd, reason);
1755 		ret = BLK_STS_RESOURCE;
1756 		goto out_dec_host_busy;
1757 	}
1758 
1759 	return BLK_STS_OK;
1760 
1761 out_dec_host_busy:
1762 	scsi_dec_host_busy(shost, cmd);
1763 out_dec_target_busy:
1764 	if (scsi_target(sdev)->can_queue > 0)
1765 		atomic_dec(&scsi_target(sdev)->target_busy);
1766 out_put_budget:
1767 	scsi_mq_put_budget(q, cmd->budget_token);
1768 	cmd->budget_token = -1;
1769 	switch (ret) {
1770 	case BLK_STS_OK:
1771 		break;
1772 	case BLK_STS_RESOURCE:
1773 	case BLK_STS_ZONE_RESOURCE:
1774 		if (scsi_device_blocked(sdev))
1775 			ret = BLK_STS_DEV_RESOURCE;
1776 		break;
1777 	case BLK_STS_AGAIN:
1778 		cmd->result = DID_BUS_BUSY << 16;
1779 		if (req->rq_flags & RQF_DONTPREP)
1780 			scsi_mq_uninit_cmd(cmd);
1781 		break;
1782 	default:
1783 		if (unlikely(!scsi_device_online(sdev)))
1784 			cmd->result = DID_NO_CONNECT << 16;
1785 		else
1786 			cmd->result = DID_ERROR << 16;
1787 		/*
1788 		 * Make sure to release all allocated resources when
1789 		 * we hit an error, as we will never see this command
1790 		 * again.
1791 		 */
1792 		if (req->rq_flags & RQF_DONTPREP)
1793 			scsi_mq_uninit_cmd(cmd);
1794 		scsi_run_queue_async(sdev);
1795 		break;
1796 	}
1797 	return ret;
1798 }
1799 
1800 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1801 				unsigned int hctx_idx, unsigned int numa_node)
1802 {
1803 	struct Scsi_Host *shost = set->driver_data;
1804 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1805 	struct scatterlist *sg;
1806 	int ret = 0;
1807 
1808 	cmd->sense_buffer =
1809 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1810 	if (!cmd->sense_buffer)
1811 		return -ENOMEM;
1812 
1813 	if (scsi_host_get_prot(shost)) {
1814 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1815 			shost->hostt->cmd_size;
1816 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1817 	}
1818 
1819 	if (shost->hostt->init_cmd_priv) {
1820 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1821 		if (ret < 0)
1822 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1823 	}
1824 
1825 	return ret;
1826 }
1827 
1828 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1829 				 unsigned int hctx_idx)
1830 {
1831 	struct Scsi_Host *shost = set->driver_data;
1832 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1833 
1834 	if (shost->hostt->exit_cmd_priv)
1835 		shost->hostt->exit_cmd_priv(shost, cmd);
1836 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1837 }
1838 
1839 
1840 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1841 {
1842 	struct Scsi_Host *shost = hctx->driver_data;
1843 
1844 	if (shost->hostt->mq_poll)
1845 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1846 
1847 	return 0;
1848 }
1849 
1850 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1851 			  unsigned int hctx_idx)
1852 {
1853 	struct Scsi_Host *shost = data;
1854 
1855 	hctx->driver_data = shost;
1856 	return 0;
1857 }
1858 
1859 static int scsi_map_queues(struct blk_mq_tag_set *set)
1860 {
1861 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1862 
1863 	if (shost->hostt->map_queues)
1864 		return shost->hostt->map_queues(shost);
1865 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1866 }
1867 
1868 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1869 {
1870 	struct device *dev = shost->dma_dev;
1871 
1872 	/*
1873 	 * this limit is imposed by hardware restrictions
1874 	 */
1875 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1876 					SG_MAX_SEGMENTS));
1877 
1878 	if (scsi_host_prot_dma(shost)) {
1879 		shost->sg_prot_tablesize =
1880 			min_not_zero(shost->sg_prot_tablesize,
1881 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1882 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1883 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1884 	}
1885 
1886 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1887 	blk_queue_segment_boundary(q, shost->dma_boundary);
1888 	dma_set_seg_boundary(dev, shost->dma_boundary);
1889 
1890 	blk_queue_max_segment_size(q, shost->max_segment_size);
1891 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1892 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1893 
1894 	/*
1895 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1896 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1897 	 * which is set by the platform.
1898 	 *
1899 	 * Devices that require a bigger alignment can increase it later.
1900 	 */
1901 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1902 }
1903 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1904 
1905 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1906 	.get_budget	= scsi_mq_get_budget,
1907 	.put_budget	= scsi_mq_put_budget,
1908 	.queue_rq	= scsi_queue_rq,
1909 	.complete	= scsi_complete,
1910 	.timeout	= scsi_timeout,
1911 #ifdef CONFIG_BLK_DEBUG_FS
1912 	.show_rq	= scsi_show_rq,
1913 #endif
1914 	.init_request	= scsi_mq_init_request,
1915 	.exit_request	= scsi_mq_exit_request,
1916 	.cleanup_rq	= scsi_cleanup_rq,
1917 	.busy		= scsi_mq_lld_busy,
1918 	.map_queues	= scsi_map_queues,
1919 	.init_hctx	= scsi_init_hctx,
1920 	.poll		= scsi_mq_poll,
1921 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1922 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1923 };
1924 
1925 
1926 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1927 {
1928 	struct Scsi_Host *shost = hctx->driver_data;
1929 
1930 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1931 }
1932 
1933 static const struct blk_mq_ops scsi_mq_ops = {
1934 	.get_budget	= scsi_mq_get_budget,
1935 	.put_budget	= scsi_mq_put_budget,
1936 	.queue_rq	= scsi_queue_rq,
1937 	.commit_rqs	= scsi_commit_rqs,
1938 	.complete	= scsi_complete,
1939 	.timeout	= scsi_timeout,
1940 #ifdef CONFIG_BLK_DEBUG_FS
1941 	.show_rq	= scsi_show_rq,
1942 #endif
1943 	.init_request	= scsi_mq_init_request,
1944 	.exit_request	= scsi_mq_exit_request,
1945 	.cleanup_rq	= scsi_cleanup_rq,
1946 	.busy		= scsi_mq_lld_busy,
1947 	.map_queues	= scsi_map_queues,
1948 	.init_hctx	= scsi_init_hctx,
1949 	.poll		= scsi_mq_poll,
1950 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1951 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1952 };
1953 
1954 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1955 {
1956 	unsigned int cmd_size, sgl_size;
1957 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1958 
1959 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1960 				scsi_mq_inline_sgl_size(shost));
1961 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1962 	if (scsi_host_get_prot(shost))
1963 		cmd_size += sizeof(struct scsi_data_buffer) +
1964 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1965 
1966 	memset(tag_set, 0, sizeof(*tag_set));
1967 	if (shost->hostt->commit_rqs)
1968 		tag_set->ops = &scsi_mq_ops;
1969 	else
1970 		tag_set->ops = &scsi_mq_ops_no_commit;
1971 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1972 	tag_set->nr_maps = shost->nr_maps ? : 1;
1973 	tag_set->queue_depth = shost->can_queue;
1974 	tag_set->cmd_size = cmd_size;
1975 	tag_set->numa_node = dev_to_node(shost->dma_dev);
1976 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1977 	tag_set->flags |=
1978 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1979 	tag_set->driver_data = shost;
1980 	if (shost->host_tagset)
1981 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1982 
1983 	return blk_mq_alloc_tag_set(tag_set);
1984 }
1985 
1986 void scsi_mq_free_tags(struct kref *kref)
1987 {
1988 	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
1989 					       tagset_refcnt);
1990 
1991 	blk_mq_free_tag_set(&shost->tag_set);
1992 	complete(&shost->tagset_freed);
1993 }
1994 
1995 /**
1996  * scsi_device_from_queue - return sdev associated with a request_queue
1997  * @q: The request queue to return the sdev from
1998  *
1999  * Return the sdev associated with a request queue or NULL if the
2000  * request_queue does not reference a SCSI device.
2001  */
2002 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2003 {
2004 	struct scsi_device *sdev = NULL;
2005 
2006 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2007 	    q->mq_ops == &scsi_mq_ops)
2008 		sdev = q->queuedata;
2009 	if (!sdev || !get_device(&sdev->sdev_gendev))
2010 		sdev = NULL;
2011 
2012 	return sdev;
2013 }
2014 /*
2015  * pktcdvd should have been integrated into the SCSI layers, but for historical
2016  * reasons like the old IDE driver it isn't.  This export allows it to safely
2017  * probe if a given device is a SCSI one and only attach to that.
2018  */
2019 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2020 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2021 #endif
2022 
2023 /**
2024  * scsi_block_requests - Utility function used by low-level drivers to prevent
2025  * further commands from being queued to the device.
2026  * @shost:  host in question
2027  *
2028  * There is no timer nor any other means by which the requests get unblocked
2029  * other than the low-level driver calling scsi_unblock_requests().
2030  */
2031 void scsi_block_requests(struct Scsi_Host *shost)
2032 {
2033 	shost->host_self_blocked = 1;
2034 }
2035 EXPORT_SYMBOL(scsi_block_requests);
2036 
2037 /**
2038  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2039  * further commands to be queued to the device.
2040  * @shost:  host in question
2041  *
2042  * There is no timer nor any other means by which the requests get unblocked
2043  * other than the low-level driver calling scsi_unblock_requests(). This is done
2044  * as an API function so that changes to the internals of the scsi mid-layer
2045  * won't require wholesale changes to drivers that use this feature.
2046  */
2047 void scsi_unblock_requests(struct Scsi_Host *shost)
2048 {
2049 	shost->host_self_blocked = 0;
2050 	scsi_run_host_queues(shost);
2051 }
2052 EXPORT_SYMBOL(scsi_unblock_requests);
2053 
2054 void scsi_exit_queue(void)
2055 {
2056 	kmem_cache_destroy(scsi_sense_cache);
2057 }
2058 
2059 /**
2060  *	scsi_mode_select - issue a mode select
2061  *	@sdev:	SCSI device to be queried
2062  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2063  *	@sp:	Save page bit (0 == don't save, 1 == save)
2064  *	@buffer: request buffer (may not be smaller than eight bytes)
2065  *	@len:	length of request buffer.
2066  *	@timeout: command timeout
2067  *	@retries: number of retries before failing
2068  *	@data: returns a structure abstracting the mode header data
2069  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2070  *		must be SCSI_SENSE_BUFFERSIZE big.
2071  *
2072  *	Returns zero if successful; negative error number or scsi
2073  *	status on error
2074  *
2075  */
2076 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2077 		     unsigned char *buffer, int len, int timeout, int retries,
2078 		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2079 {
2080 	unsigned char cmd[10];
2081 	unsigned char *real_buffer;
2082 	int ret;
2083 
2084 	memset(cmd, 0, sizeof(cmd));
2085 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2086 
2087 	/*
2088 	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2089 	 * and the mode select header cannot fit within the maximumm 255 bytes
2090 	 * of the MODE SELECT(6) command.
2091 	 */
2092 	if (sdev->use_10_for_ms ||
2093 	    len + 4 > 255 ||
2094 	    data->block_descriptor_length > 255) {
2095 		if (len > 65535 - 8)
2096 			return -EINVAL;
2097 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2098 		if (!real_buffer)
2099 			return -ENOMEM;
2100 		memcpy(real_buffer + 8, buffer, len);
2101 		len += 8;
2102 		real_buffer[0] = 0;
2103 		real_buffer[1] = 0;
2104 		real_buffer[2] = data->medium_type;
2105 		real_buffer[3] = data->device_specific;
2106 		real_buffer[4] = data->longlba ? 0x01 : 0;
2107 		real_buffer[5] = 0;
2108 		put_unaligned_be16(data->block_descriptor_length,
2109 				   &real_buffer[6]);
2110 
2111 		cmd[0] = MODE_SELECT_10;
2112 		put_unaligned_be16(len, &cmd[7]);
2113 	} else {
2114 		if (data->longlba)
2115 			return -EINVAL;
2116 
2117 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2118 		if (!real_buffer)
2119 			return -ENOMEM;
2120 		memcpy(real_buffer + 4, buffer, len);
2121 		len += 4;
2122 		real_buffer[0] = 0;
2123 		real_buffer[1] = data->medium_type;
2124 		real_buffer[2] = data->device_specific;
2125 		real_buffer[3] = data->block_descriptor_length;
2126 
2127 		cmd[0] = MODE_SELECT;
2128 		cmd[4] = len;
2129 	}
2130 
2131 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2132 			       sshdr, timeout, retries, NULL);
2133 	kfree(real_buffer);
2134 	return ret;
2135 }
2136 EXPORT_SYMBOL_GPL(scsi_mode_select);
2137 
2138 /**
2139  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2140  *	@sdev:	SCSI device to be queried
2141  *	@dbd:	set to prevent mode sense from returning block descriptors
2142  *	@modepage: mode page being requested
2143  *	@buffer: request buffer (may not be smaller than eight bytes)
2144  *	@len:	length of request buffer.
2145  *	@timeout: command timeout
2146  *	@retries: number of retries before failing
2147  *	@data: returns a structure abstracting the mode header data
2148  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2149  *		must be SCSI_SENSE_BUFFERSIZE big.
2150  *
2151  *	Returns zero if successful, or a negative error number on failure
2152  */
2153 int
2154 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2155 		  unsigned char *buffer, int len, int timeout, int retries,
2156 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2157 {
2158 	unsigned char cmd[12];
2159 	int use_10_for_ms;
2160 	int header_length;
2161 	int result, retry_count = retries;
2162 	struct scsi_sense_hdr my_sshdr;
2163 
2164 	memset(data, 0, sizeof(*data));
2165 	memset(&cmd[0], 0, 12);
2166 
2167 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2168 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2169 	cmd[2] = modepage;
2170 
2171 	/* caller might not be interested in sense, but we need it */
2172 	if (!sshdr)
2173 		sshdr = &my_sshdr;
2174 
2175  retry:
2176 	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2177 
2178 	if (use_10_for_ms) {
2179 		if (len < 8 || len > 65535)
2180 			return -EINVAL;
2181 
2182 		cmd[0] = MODE_SENSE_10;
2183 		put_unaligned_be16(len, &cmd[7]);
2184 		header_length = 8;
2185 	} else {
2186 		if (len < 4)
2187 			return -EINVAL;
2188 
2189 		cmd[0] = MODE_SENSE;
2190 		cmd[4] = len;
2191 		header_length = 4;
2192 	}
2193 
2194 	memset(buffer, 0, len);
2195 
2196 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2197 				  sshdr, timeout, retries, NULL);
2198 	if (result < 0)
2199 		return result;
2200 
2201 	/* This code looks awful: what it's doing is making sure an
2202 	 * ILLEGAL REQUEST sense return identifies the actual command
2203 	 * byte as the problem.  MODE_SENSE commands can return
2204 	 * ILLEGAL REQUEST if the code page isn't supported */
2205 
2206 	if (!scsi_status_is_good(result)) {
2207 		if (scsi_sense_valid(sshdr)) {
2208 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2209 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2210 				/*
2211 				 * Invalid command operation code: retry using
2212 				 * MODE SENSE(6) if this was a MODE SENSE(10)
2213 				 * request, except if the request mode page is
2214 				 * too large for MODE SENSE single byte
2215 				 * allocation length field.
2216 				 */
2217 				if (use_10_for_ms) {
2218 					if (len > 255)
2219 						return -EIO;
2220 					sdev->use_10_for_ms = 0;
2221 					goto retry;
2222 				}
2223 			}
2224 			if (scsi_status_is_check_condition(result) &&
2225 			    sshdr->sense_key == UNIT_ATTENTION &&
2226 			    retry_count) {
2227 				retry_count--;
2228 				goto retry;
2229 			}
2230 		}
2231 		return -EIO;
2232 	}
2233 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2234 		     (modepage == 6 || modepage == 8))) {
2235 		/* Initio breakage? */
2236 		header_length = 0;
2237 		data->length = 13;
2238 		data->medium_type = 0;
2239 		data->device_specific = 0;
2240 		data->longlba = 0;
2241 		data->block_descriptor_length = 0;
2242 	} else if (use_10_for_ms) {
2243 		data->length = get_unaligned_be16(&buffer[0]) + 2;
2244 		data->medium_type = buffer[2];
2245 		data->device_specific = buffer[3];
2246 		data->longlba = buffer[4] & 0x01;
2247 		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2248 	} else {
2249 		data->length = buffer[0] + 1;
2250 		data->medium_type = buffer[1];
2251 		data->device_specific = buffer[2];
2252 		data->block_descriptor_length = buffer[3];
2253 	}
2254 	data->header_length = header_length;
2255 
2256 	return 0;
2257 }
2258 EXPORT_SYMBOL(scsi_mode_sense);
2259 
2260 /**
2261  *	scsi_test_unit_ready - test if unit is ready
2262  *	@sdev:	scsi device to change the state of.
2263  *	@timeout: command timeout
2264  *	@retries: number of retries before failing
2265  *	@sshdr: outpout pointer for decoded sense information.
2266  *
2267  *	Returns zero if unsuccessful or an error if TUR failed.  For
2268  *	removable media, UNIT_ATTENTION sets ->changed flag.
2269  **/
2270 int
2271 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2272 		     struct scsi_sense_hdr *sshdr)
2273 {
2274 	char cmd[] = {
2275 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2276 	};
2277 	int result;
2278 
2279 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2280 	do {
2281 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2282 					  timeout, 1, NULL);
2283 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2284 		    sshdr->sense_key == UNIT_ATTENTION)
2285 			sdev->changed = 1;
2286 	} while (scsi_sense_valid(sshdr) &&
2287 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2288 
2289 	return result;
2290 }
2291 EXPORT_SYMBOL(scsi_test_unit_ready);
2292 
2293 /**
2294  *	scsi_device_set_state - Take the given device through the device state model.
2295  *	@sdev:	scsi device to change the state of.
2296  *	@state:	state to change to.
2297  *
2298  *	Returns zero if successful or an error if the requested
2299  *	transition is illegal.
2300  */
2301 int
2302 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2303 {
2304 	enum scsi_device_state oldstate = sdev->sdev_state;
2305 
2306 	if (state == oldstate)
2307 		return 0;
2308 
2309 	switch (state) {
2310 	case SDEV_CREATED:
2311 		switch (oldstate) {
2312 		case SDEV_CREATED_BLOCK:
2313 			break;
2314 		default:
2315 			goto illegal;
2316 		}
2317 		break;
2318 
2319 	case SDEV_RUNNING:
2320 		switch (oldstate) {
2321 		case SDEV_CREATED:
2322 		case SDEV_OFFLINE:
2323 		case SDEV_TRANSPORT_OFFLINE:
2324 		case SDEV_QUIESCE:
2325 		case SDEV_BLOCK:
2326 			break;
2327 		default:
2328 			goto illegal;
2329 		}
2330 		break;
2331 
2332 	case SDEV_QUIESCE:
2333 		switch (oldstate) {
2334 		case SDEV_RUNNING:
2335 		case SDEV_OFFLINE:
2336 		case SDEV_TRANSPORT_OFFLINE:
2337 			break;
2338 		default:
2339 			goto illegal;
2340 		}
2341 		break;
2342 
2343 	case SDEV_OFFLINE:
2344 	case SDEV_TRANSPORT_OFFLINE:
2345 		switch (oldstate) {
2346 		case SDEV_CREATED:
2347 		case SDEV_RUNNING:
2348 		case SDEV_QUIESCE:
2349 		case SDEV_BLOCK:
2350 			break;
2351 		default:
2352 			goto illegal;
2353 		}
2354 		break;
2355 
2356 	case SDEV_BLOCK:
2357 		switch (oldstate) {
2358 		case SDEV_RUNNING:
2359 		case SDEV_CREATED_BLOCK:
2360 		case SDEV_QUIESCE:
2361 		case SDEV_OFFLINE:
2362 			break;
2363 		default:
2364 			goto illegal;
2365 		}
2366 		break;
2367 
2368 	case SDEV_CREATED_BLOCK:
2369 		switch (oldstate) {
2370 		case SDEV_CREATED:
2371 			break;
2372 		default:
2373 			goto illegal;
2374 		}
2375 		break;
2376 
2377 	case SDEV_CANCEL:
2378 		switch (oldstate) {
2379 		case SDEV_CREATED:
2380 		case SDEV_RUNNING:
2381 		case SDEV_QUIESCE:
2382 		case SDEV_OFFLINE:
2383 		case SDEV_TRANSPORT_OFFLINE:
2384 			break;
2385 		default:
2386 			goto illegal;
2387 		}
2388 		break;
2389 
2390 	case SDEV_DEL:
2391 		switch (oldstate) {
2392 		case SDEV_CREATED:
2393 		case SDEV_RUNNING:
2394 		case SDEV_OFFLINE:
2395 		case SDEV_TRANSPORT_OFFLINE:
2396 		case SDEV_CANCEL:
2397 		case SDEV_BLOCK:
2398 		case SDEV_CREATED_BLOCK:
2399 			break;
2400 		default:
2401 			goto illegal;
2402 		}
2403 		break;
2404 
2405 	}
2406 	sdev->offline_already = false;
2407 	sdev->sdev_state = state;
2408 	return 0;
2409 
2410  illegal:
2411 	SCSI_LOG_ERROR_RECOVERY(1,
2412 				sdev_printk(KERN_ERR, sdev,
2413 					    "Illegal state transition %s->%s",
2414 					    scsi_device_state_name(oldstate),
2415 					    scsi_device_state_name(state))
2416 				);
2417 	return -EINVAL;
2418 }
2419 EXPORT_SYMBOL(scsi_device_set_state);
2420 
2421 /**
2422  *	scsi_evt_emit - emit a single SCSI device uevent
2423  *	@sdev: associated SCSI device
2424  *	@evt: event to emit
2425  *
2426  *	Send a single uevent (scsi_event) to the associated scsi_device.
2427  */
2428 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2429 {
2430 	int idx = 0;
2431 	char *envp[3];
2432 
2433 	switch (evt->evt_type) {
2434 	case SDEV_EVT_MEDIA_CHANGE:
2435 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2436 		break;
2437 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2438 		scsi_rescan_device(&sdev->sdev_gendev);
2439 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2440 		break;
2441 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2442 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2443 		break;
2444 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2445 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2446 		break;
2447 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2448 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2449 		break;
2450 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2451 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2452 		break;
2453 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2454 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2455 		break;
2456 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2457 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2458 		break;
2459 	default:
2460 		/* do nothing */
2461 		break;
2462 	}
2463 
2464 	envp[idx++] = NULL;
2465 
2466 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2467 }
2468 
2469 /**
2470  *	scsi_evt_thread - send a uevent for each scsi event
2471  *	@work: work struct for scsi_device
2472  *
2473  *	Dispatch queued events to their associated scsi_device kobjects
2474  *	as uevents.
2475  */
2476 void scsi_evt_thread(struct work_struct *work)
2477 {
2478 	struct scsi_device *sdev;
2479 	enum scsi_device_event evt_type;
2480 	LIST_HEAD(event_list);
2481 
2482 	sdev = container_of(work, struct scsi_device, event_work);
2483 
2484 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2485 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2486 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2487 
2488 	while (1) {
2489 		struct scsi_event *evt;
2490 		struct list_head *this, *tmp;
2491 		unsigned long flags;
2492 
2493 		spin_lock_irqsave(&sdev->list_lock, flags);
2494 		list_splice_init(&sdev->event_list, &event_list);
2495 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2496 
2497 		if (list_empty(&event_list))
2498 			break;
2499 
2500 		list_for_each_safe(this, tmp, &event_list) {
2501 			evt = list_entry(this, struct scsi_event, node);
2502 			list_del(&evt->node);
2503 			scsi_evt_emit(sdev, evt);
2504 			kfree(evt);
2505 		}
2506 	}
2507 }
2508 
2509 /**
2510  * 	sdev_evt_send - send asserted event to uevent thread
2511  *	@sdev: scsi_device event occurred on
2512  *	@evt: event to send
2513  *
2514  *	Assert scsi device event asynchronously.
2515  */
2516 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2517 {
2518 	unsigned long flags;
2519 
2520 #if 0
2521 	/* FIXME: currently this check eliminates all media change events
2522 	 * for polled devices.  Need to update to discriminate between AN
2523 	 * and polled events */
2524 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2525 		kfree(evt);
2526 		return;
2527 	}
2528 #endif
2529 
2530 	spin_lock_irqsave(&sdev->list_lock, flags);
2531 	list_add_tail(&evt->node, &sdev->event_list);
2532 	schedule_work(&sdev->event_work);
2533 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2534 }
2535 EXPORT_SYMBOL_GPL(sdev_evt_send);
2536 
2537 /**
2538  * 	sdev_evt_alloc - allocate a new scsi event
2539  *	@evt_type: type of event to allocate
2540  *	@gfpflags: GFP flags for allocation
2541  *
2542  *	Allocates and returns a new scsi_event.
2543  */
2544 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2545 				  gfp_t gfpflags)
2546 {
2547 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2548 	if (!evt)
2549 		return NULL;
2550 
2551 	evt->evt_type = evt_type;
2552 	INIT_LIST_HEAD(&evt->node);
2553 
2554 	/* evt_type-specific initialization, if any */
2555 	switch (evt_type) {
2556 	case SDEV_EVT_MEDIA_CHANGE:
2557 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2558 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2559 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2560 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2561 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2562 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2563 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2564 	default:
2565 		/* do nothing */
2566 		break;
2567 	}
2568 
2569 	return evt;
2570 }
2571 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2572 
2573 /**
2574  * 	sdev_evt_send_simple - send asserted event to uevent thread
2575  *	@sdev: scsi_device event occurred on
2576  *	@evt_type: type of event to send
2577  *	@gfpflags: GFP flags for allocation
2578  *
2579  *	Assert scsi device event asynchronously, given an event type.
2580  */
2581 void sdev_evt_send_simple(struct scsi_device *sdev,
2582 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2583 {
2584 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2585 	if (!evt) {
2586 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2587 			    evt_type);
2588 		return;
2589 	}
2590 
2591 	sdev_evt_send(sdev, evt);
2592 }
2593 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2594 
2595 /**
2596  *	scsi_device_quiesce - Block all commands except power management.
2597  *	@sdev:	scsi device to quiesce.
2598  *
2599  *	This works by trying to transition to the SDEV_QUIESCE state
2600  *	(which must be a legal transition).  When the device is in this
2601  *	state, only power management requests will be accepted, all others will
2602  *	be deferred.
2603  *
2604  *	Must be called with user context, may sleep.
2605  *
2606  *	Returns zero if unsuccessful or an error if not.
2607  */
2608 int
2609 scsi_device_quiesce(struct scsi_device *sdev)
2610 {
2611 	struct request_queue *q = sdev->request_queue;
2612 	int err;
2613 
2614 	/*
2615 	 * It is allowed to call scsi_device_quiesce() multiple times from
2616 	 * the same context but concurrent scsi_device_quiesce() calls are
2617 	 * not allowed.
2618 	 */
2619 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2620 
2621 	if (sdev->quiesced_by == current)
2622 		return 0;
2623 
2624 	blk_set_pm_only(q);
2625 
2626 	blk_mq_freeze_queue(q);
2627 	/*
2628 	 * Ensure that the effect of blk_set_pm_only() will be visible
2629 	 * for percpu_ref_tryget() callers that occur after the queue
2630 	 * unfreeze even if the queue was already frozen before this function
2631 	 * was called. See also https://lwn.net/Articles/573497/.
2632 	 */
2633 	synchronize_rcu();
2634 	blk_mq_unfreeze_queue(q);
2635 
2636 	mutex_lock(&sdev->state_mutex);
2637 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2638 	if (err == 0)
2639 		sdev->quiesced_by = current;
2640 	else
2641 		blk_clear_pm_only(q);
2642 	mutex_unlock(&sdev->state_mutex);
2643 
2644 	return err;
2645 }
2646 EXPORT_SYMBOL(scsi_device_quiesce);
2647 
2648 /**
2649  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2650  *	@sdev:	scsi device to resume.
2651  *
2652  *	Moves the device from quiesced back to running and restarts the
2653  *	queues.
2654  *
2655  *	Must be called with user context, may sleep.
2656  */
2657 void scsi_device_resume(struct scsi_device *sdev)
2658 {
2659 	/* check if the device state was mutated prior to resume, and if
2660 	 * so assume the state is being managed elsewhere (for example
2661 	 * device deleted during suspend)
2662 	 */
2663 	mutex_lock(&sdev->state_mutex);
2664 	if (sdev->sdev_state == SDEV_QUIESCE)
2665 		scsi_device_set_state(sdev, SDEV_RUNNING);
2666 	if (sdev->quiesced_by) {
2667 		sdev->quiesced_by = NULL;
2668 		blk_clear_pm_only(sdev->request_queue);
2669 	}
2670 	mutex_unlock(&sdev->state_mutex);
2671 }
2672 EXPORT_SYMBOL(scsi_device_resume);
2673 
2674 static void
2675 device_quiesce_fn(struct scsi_device *sdev, void *data)
2676 {
2677 	scsi_device_quiesce(sdev);
2678 }
2679 
2680 void
2681 scsi_target_quiesce(struct scsi_target *starget)
2682 {
2683 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2684 }
2685 EXPORT_SYMBOL(scsi_target_quiesce);
2686 
2687 static void
2688 device_resume_fn(struct scsi_device *sdev, void *data)
2689 {
2690 	scsi_device_resume(sdev);
2691 }
2692 
2693 void
2694 scsi_target_resume(struct scsi_target *starget)
2695 {
2696 	starget_for_each_device(starget, NULL, device_resume_fn);
2697 }
2698 EXPORT_SYMBOL(scsi_target_resume);
2699 
2700 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2701 {
2702 	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2703 		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2704 
2705 	return 0;
2706 }
2707 
2708 void scsi_start_queue(struct scsi_device *sdev)
2709 {
2710 	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2711 		blk_mq_unquiesce_queue(sdev->request_queue);
2712 }
2713 
2714 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
2715 {
2716 	/*
2717 	 * The atomic variable of ->queue_stopped covers that
2718 	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2719 	 *
2720 	 * However, we still need to wait until quiesce is done
2721 	 * in case that queue has been stopped.
2722 	 */
2723 	if (!cmpxchg(&sdev->queue_stopped, 0, 1)) {
2724 		if (nowait)
2725 			blk_mq_quiesce_queue_nowait(sdev->request_queue);
2726 		else
2727 			blk_mq_quiesce_queue(sdev->request_queue);
2728 	} else {
2729 		if (!nowait)
2730 			blk_mq_wait_quiesce_done(sdev->request_queue);
2731 	}
2732 }
2733 
2734 /**
2735  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2736  * @sdev: device to block
2737  *
2738  * Pause SCSI command processing on the specified device. Does not sleep.
2739  *
2740  * Returns zero if successful or a negative error code upon failure.
2741  *
2742  * Notes:
2743  * This routine transitions the device to the SDEV_BLOCK state (which must be
2744  * a legal transition). When the device is in this state, command processing
2745  * is paused until the device leaves the SDEV_BLOCK state. See also
2746  * scsi_internal_device_unblock_nowait().
2747  */
2748 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2749 {
2750 	int ret = __scsi_internal_device_block_nowait(sdev);
2751 
2752 	/*
2753 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2754 	 * block layer from calling the midlayer with this device's
2755 	 * request queue.
2756 	 */
2757 	if (!ret)
2758 		scsi_stop_queue(sdev, true);
2759 	return ret;
2760 }
2761 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2762 
2763 /**
2764  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2765  * @sdev: device to block
2766  *
2767  * Pause SCSI command processing on the specified device and wait until all
2768  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2769  *
2770  * Returns zero if successful or a negative error code upon failure.
2771  *
2772  * Note:
2773  * This routine transitions the device to the SDEV_BLOCK state (which must be
2774  * a legal transition). When the device is in this state, command processing
2775  * is paused until the device leaves the SDEV_BLOCK state. See also
2776  * scsi_internal_device_unblock().
2777  */
2778 static int scsi_internal_device_block(struct scsi_device *sdev)
2779 {
2780 	int err;
2781 
2782 	mutex_lock(&sdev->state_mutex);
2783 	err = __scsi_internal_device_block_nowait(sdev);
2784 	if (err == 0)
2785 		scsi_stop_queue(sdev, false);
2786 	mutex_unlock(&sdev->state_mutex);
2787 
2788 	return err;
2789 }
2790 
2791 /**
2792  * scsi_internal_device_unblock_nowait - resume a device after a block request
2793  * @sdev:	device to resume
2794  * @new_state:	state to set the device to after unblocking
2795  *
2796  * Restart the device queue for a previously suspended SCSI device. Does not
2797  * sleep.
2798  *
2799  * Returns zero if successful or a negative error code upon failure.
2800  *
2801  * Notes:
2802  * This routine transitions the device to the SDEV_RUNNING state or to one of
2803  * the offline states (which must be a legal transition) allowing the midlayer
2804  * to goose the queue for this device.
2805  */
2806 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2807 					enum scsi_device_state new_state)
2808 {
2809 	switch (new_state) {
2810 	case SDEV_RUNNING:
2811 	case SDEV_TRANSPORT_OFFLINE:
2812 		break;
2813 	default:
2814 		return -EINVAL;
2815 	}
2816 
2817 	/*
2818 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2819 	 * offlined states and goose the device queue if successful.
2820 	 */
2821 	switch (sdev->sdev_state) {
2822 	case SDEV_BLOCK:
2823 	case SDEV_TRANSPORT_OFFLINE:
2824 		sdev->sdev_state = new_state;
2825 		break;
2826 	case SDEV_CREATED_BLOCK:
2827 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2828 		    new_state == SDEV_OFFLINE)
2829 			sdev->sdev_state = new_state;
2830 		else
2831 			sdev->sdev_state = SDEV_CREATED;
2832 		break;
2833 	case SDEV_CANCEL:
2834 	case SDEV_OFFLINE:
2835 		break;
2836 	default:
2837 		return -EINVAL;
2838 	}
2839 	scsi_start_queue(sdev);
2840 
2841 	return 0;
2842 }
2843 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2844 
2845 /**
2846  * scsi_internal_device_unblock - resume a device after a block request
2847  * @sdev:	device to resume
2848  * @new_state:	state to set the device to after unblocking
2849  *
2850  * Restart the device queue for a previously suspended SCSI device. May sleep.
2851  *
2852  * Returns zero if successful or a negative error code upon failure.
2853  *
2854  * Notes:
2855  * This routine transitions the device to the SDEV_RUNNING state or to one of
2856  * the offline states (which must be a legal transition) allowing the midlayer
2857  * to goose the queue for this device.
2858  */
2859 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2860 					enum scsi_device_state new_state)
2861 {
2862 	int ret;
2863 
2864 	mutex_lock(&sdev->state_mutex);
2865 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2866 	mutex_unlock(&sdev->state_mutex);
2867 
2868 	return ret;
2869 }
2870 
2871 static void
2872 device_block(struct scsi_device *sdev, void *data)
2873 {
2874 	int ret;
2875 
2876 	ret = scsi_internal_device_block(sdev);
2877 
2878 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2879 		  dev_name(&sdev->sdev_gendev), ret);
2880 }
2881 
2882 static int
2883 target_block(struct device *dev, void *data)
2884 {
2885 	if (scsi_is_target_device(dev))
2886 		starget_for_each_device(to_scsi_target(dev), NULL,
2887 					device_block);
2888 	return 0;
2889 }
2890 
2891 void
2892 scsi_target_block(struct device *dev)
2893 {
2894 	if (scsi_is_target_device(dev))
2895 		starget_for_each_device(to_scsi_target(dev), NULL,
2896 					device_block);
2897 	else
2898 		device_for_each_child(dev, NULL, target_block);
2899 }
2900 EXPORT_SYMBOL_GPL(scsi_target_block);
2901 
2902 static void
2903 device_unblock(struct scsi_device *sdev, void *data)
2904 {
2905 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2906 }
2907 
2908 static int
2909 target_unblock(struct device *dev, void *data)
2910 {
2911 	if (scsi_is_target_device(dev))
2912 		starget_for_each_device(to_scsi_target(dev), data,
2913 					device_unblock);
2914 	return 0;
2915 }
2916 
2917 void
2918 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2919 {
2920 	if (scsi_is_target_device(dev))
2921 		starget_for_each_device(to_scsi_target(dev), &new_state,
2922 					device_unblock);
2923 	else
2924 		device_for_each_child(dev, &new_state, target_unblock);
2925 }
2926 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2927 
2928 int
2929 scsi_host_block(struct Scsi_Host *shost)
2930 {
2931 	struct scsi_device *sdev;
2932 	int ret = 0;
2933 
2934 	/*
2935 	 * Call scsi_internal_device_block_nowait so we can avoid
2936 	 * calling synchronize_rcu() for each LUN.
2937 	 */
2938 	shost_for_each_device(sdev, shost) {
2939 		mutex_lock(&sdev->state_mutex);
2940 		ret = scsi_internal_device_block_nowait(sdev);
2941 		mutex_unlock(&sdev->state_mutex);
2942 		if (ret) {
2943 			scsi_device_put(sdev);
2944 			break;
2945 		}
2946 	}
2947 
2948 	/*
2949 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2950 	 * calling synchronize_rcu() once is enough.
2951 	 */
2952 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2953 
2954 	if (!ret)
2955 		synchronize_rcu();
2956 
2957 	return ret;
2958 }
2959 EXPORT_SYMBOL_GPL(scsi_host_block);
2960 
2961 int
2962 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2963 {
2964 	struct scsi_device *sdev;
2965 	int ret = 0;
2966 
2967 	shost_for_each_device(sdev, shost) {
2968 		ret = scsi_internal_device_unblock(sdev, new_state);
2969 		if (ret) {
2970 			scsi_device_put(sdev);
2971 			break;
2972 		}
2973 	}
2974 	return ret;
2975 }
2976 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2977 
2978 /**
2979  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2980  * @sgl:	scatter-gather list
2981  * @sg_count:	number of segments in sg
2982  * @offset:	offset in bytes into sg, on return offset into the mapped area
2983  * @len:	bytes to map, on return number of bytes mapped
2984  *
2985  * Returns virtual address of the start of the mapped page
2986  */
2987 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2988 			  size_t *offset, size_t *len)
2989 {
2990 	int i;
2991 	size_t sg_len = 0, len_complete = 0;
2992 	struct scatterlist *sg;
2993 	struct page *page;
2994 
2995 	WARN_ON(!irqs_disabled());
2996 
2997 	for_each_sg(sgl, sg, sg_count, i) {
2998 		len_complete = sg_len; /* Complete sg-entries */
2999 		sg_len += sg->length;
3000 		if (sg_len > *offset)
3001 			break;
3002 	}
3003 
3004 	if (unlikely(i == sg_count)) {
3005 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3006 			"elements %d\n",
3007 		       __func__, sg_len, *offset, sg_count);
3008 		WARN_ON(1);
3009 		return NULL;
3010 	}
3011 
3012 	/* Offset starting from the beginning of first page in this sg-entry */
3013 	*offset = *offset - len_complete + sg->offset;
3014 
3015 	/* Assumption: contiguous pages can be accessed as "page + i" */
3016 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3017 	*offset &= ~PAGE_MASK;
3018 
3019 	/* Bytes in this sg-entry from *offset to the end of the page */
3020 	sg_len = PAGE_SIZE - *offset;
3021 	if (*len > sg_len)
3022 		*len = sg_len;
3023 
3024 	return kmap_atomic(page);
3025 }
3026 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3027 
3028 /**
3029  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3030  * @virt:	virtual address to be unmapped
3031  */
3032 void scsi_kunmap_atomic_sg(void *virt)
3033 {
3034 	kunmap_atomic(virt);
3035 }
3036 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3037 
3038 void sdev_disable_disk_events(struct scsi_device *sdev)
3039 {
3040 	atomic_inc(&sdev->disk_events_disable_depth);
3041 }
3042 EXPORT_SYMBOL(sdev_disable_disk_events);
3043 
3044 void sdev_enable_disk_events(struct scsi_device *sdev)
3045 {
3046 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3047 		return;
3048 	atomic_dec(&sdev->disk_events_disable_depth);
3049 }
3050 EXPORT_SYMBOL(sdev_enable_disk_events);
3051 
3052 static unsigned char designator_prio(const unsigned char *d)
3053 {
3054 	if (d[1] & 0x30)
3055 		/* not associated with LUN */
3056 		return 0;
3057 
3058 	if (d[3] == 0)
3059 		/* invalid length */
3060 		return 0;
3061 
3062 	/*
3063 	 * Order of preference for lun descriptor:
3064 	 * - SCSI name string
3065 	 * - NAA IEEE Registered Extended
3066 	 * - EUI-64 based 16-byte
3067 	 * - EUI-64 based 12-byte
3068 	 * - NAA IEEE Registered
3069 	 * - NAA IEEE Extended
3070 	 * - EUI-64 based 8-byte
3071 	 * - SCSI name string (truncated)
3072 	 * - T10 Vendor ID
3073 	 * as longer descriptors reduce the likelyhood
3074 	 * of identification clashes.
3075 	 */
3076 
3077 	switch (d[1] & 0xf) {
3078 	case 8:
3079 		/* SCSI name string, variable-length UTF-8 */
3080 		return 9;
3081 	case 3:
3082 		switch (d[4] >> 4) {
3083 		case 6:
3084 			/* NAA registered extended */
3085 			return 8;
3086 		case 5:
3087 			/* NAA registered */
3088 			return 5;
3089 		case 4:
3090 			/* NAA extended */
3091 			return 4;
3092 		case 3:
3093 			/* NAA locally assigned */
3094 			return 1;
3095 		default:
3096 			break;
3097 		}
3098 		break;
3099 	case 2:
3100 		switch (d[3]) {
3101 		case 16:
3102 			/* EUI64-based, 16 byte */
3103 			return 7;
3104 		case 12:
3105 			/* EUI64-based, 12 byte */
3106 			return 6;
3107 		case 8:
3108 			/* EUI64-based, 8 byte */
3109 			return 3;
3110 		default:
3111 			break;
3112 		}
3113 		break;
3114 	case 1:
3115 		/* T10 vendor ID */
3116 		return 1;
3117 	default:
3118 		break;
3119 	}
3120 
3121 	return 0;
3122 }
3123 
3124 /**
3125  * scsi_vpd_lun_id - return a unique device identification
3126  * @sdev: SCSI device
3127  * @id:   buffer for the identification
3128  * @id_len:  length of the buffer
3129  *
3130  * Copies a unique device identification into @id based
3131  * on the information in the VPD page 0x83 of the device.
3132  * The string will be formatted as a SCSI name string.
3133  *
3134  * Returns the length of the identification or error on failure.
3135  * If the identifier is longer than the supplied buffer the actual
3136  * identifier length is returned and the buffer is not zero-padded.
3137  */
3138 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3139 {
3140 	u8 cur_id_prio = 0;
3141 	u8 cur_id_size = 0;
3142 	const unsigned char *d, *cur_id_str;
3143 	const struct scsi_vpd *vpd_pg83;
3144 	int id_size = -EINVAL;
3145 
3146 	rcu_read_lock();
3147 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3148 	if (!vpd_pg83) {
3149 		rcu_read_unlock();
3150 		return -ENXIO;
3151 	}
3152 
3153 	/* The id string must be at least 20 bytes + terminating NULL byte */
3154 	if (id_len < 21) {
3155 		rcu_read_unlock();
3156 		return -EINVAL;
3157 	}
3158 
3159 	memset(id, 0, id_len);
3160 	for (d = vpd_pg83->data + 4;
3161 	     d < vpd_pg83->data + vpd_pg83->len;
3162 	     d += d[3] + 4) {
3163 		u8 prio = designator_prio(d);
3164 
3165 		if (prio == 0 || cur_id_prio > prio)
3166 			continue;
3167 
3168 		switch (d[1] & 0xf) {
3169 		case 0x1:
3170 			/* T10 Vendor ID */
3171 			if (cur_id_size > d[3])
3172 				break;
3173 			cur_id_prio = prio;
3174 			cur_id_size = d[3];
3175 			if (cur_id_size + 4 > id_len)
3176 				cur_id_size = id_len - 4;
3177 			cur_id_str = d + 4;
3178 			id_size = snprintf(id, id_len, "t10.%*pE",
3179 					   cur_id_size, cur_id_str);
3180 			break;
3181 		case 0x2:
3182 			/* EUI-64 */
3183 			cur_id_prio = prio;
3184 			cur_id_size = d[3];
3185 			cur_id_str = d + 4;
3186 			switch (cur_id_size) {
3187 			case 8:
3188 				id_size = snprintf(id, id_len,
3189 						   "eui.%8phN",
3190 						   cur_id_str);
3191 				break;
3192 			case 12:
3193 				id_size = snprintf(id, id_len,
3194 						   "eui.%12phN",
3195 						   cur_id_str);
3196 				break;
3197 			case 16:
3198 				id_size = snprintf(id, id_len,
3199 						   "eui.%16phN",
3200 						   cur_id_str);
3201 				break;
3202 			default:
3203 				break;
3204 			}
3205 			break;
3206 		case 0x3:
3207 			/* NAA */
3208 			cur_id_prio = prio;
3209 			cur_id_size = d[3];
3210 			cur_id_str = d + 4;
3211 			switch (cur_id_size) {
3212 			case 8:
3213 				id_size = snprintf(id, id_len,
3214 						   "naa.%8phN",
3215 						   cur_id_str);
3216 				break;
3217 			case 16:
3218 				id_size = snprintf(id, id_len,
3219 						   "naa.%16phN",
3220 						   cur_id_str);
3221 				break;
3222 			default:
3223 				break;
3224 			}
3225 			break;
3226 		case 0x8:
3227 			/* SCSI name string */
3228 			if (cur_id_size > d[3])
3229 				break;
3230 			/* Prefer others for truncated descriptor */
3231 			if (d[3] > id_len) {
3232 				prio = 2;
3233 				if (cur_id_prio > prio)
3234 					break;
3235 			}
3236 			cur_id_prio = prio;
3237 			cur_id_size = id_size = d[3];
3238 			cur_id_str = d + 4;
3239 			if (cur_id_size >= id_len)
3240 				cur_id_size = id_len - 1;
3241 			memcpy(id, cur_id_str, cur_id_size);
3242 			break;
3243 		default:
3244 			break;
3245 		}
3246 	}
3247 	rcu_read_unlock();
3248 
3249 	return id_size;
3250 }
3251 EXPORT_SYMBOL(scsi_vpd_lun_id);
3252 
3253 /*
3254  * scsi_vpd_tpg_id - return a target port group identifier
3255  * @sdev: SCSI device
3256  *
3257  * Returns the Target Port Group identifier from the information
3258  * froom VPD page 0x83 of the device.
3259  *
3260  * Returns the identifier or error on failure.
3261  */
3262 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3263 {
3264 	const unsigned char *d;
3265 	const struct scsi_vpd *vpd_pg83;
3266 	int group_id = -EAGAIN, rel_port = -1;
3267 
3268 	rcu_read_lock();
3269 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3270 	if (!vpd_pg83) {
3271 		rcu_read_unlock();
3272 		return -ENXIO;
3273 	}
3274 
3275 	d = vpd_pg83->data + 4;
3276 	while (d < vpd_pg83->data + vpd_pg83->len) {
3277 		switch (d[1] & 0xf) {
3278 		case 0x4:
3279 			/* Relative target port */
3280 			rel_port = get_unaligned_be16(&d[6]);
3281 			break;
3282 		case 0x5:
3283 			/* Target port group */
3284 			group_id = get_unaligned_be16(&d[6]);
3285 			break;
3286 		default:
3287 			break;
3288 		}
3289 		d += d[3] + 4;
3290 	}
3291 	rcu_read_unlock();
3292 
3293 	if (group_id >= 0 && rel_id && rel_port != -1)
3294 		*rel_id = rel_port;
3295 
3296 	return group_id;
3297 }
3298 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3299 
3300 /**
3301  * scsi_build_sense - build sense data for a command
3302  * @scmd:	scsi command for which the sense should be formatted
3303  * @desc:	Sense format (non-zero == descriptor format,
3304  *              0 == fixed format)
3305  * @key:	Sense key
3306  * @asc:	Additional sense code
3307  * @ascq:	Additional sense code qualifier
3308  *
3309  **/
3310 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3311 {
3312 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3313 	scmd->result = SAM_STAT_CHECK_CONDITION;
3314 }
3315 EXPORT_SYMBOL_GPL(scsi_build_sense);
3316