xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 1a30fd18)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sense_cache;
56 static DEFINE_MUTEX(scsi_sense_cache_mutex);
57 
58 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
59 
60 int scsi_init_sense_cache(struct Scsi_Host *shost)
61 {
62 	int ret = 0;
63 
64 	mutex_lock(&scsi_sense_cache_mutex);
65 	if (!scsi_sense_cache) {
66 		scsi_sense_cache =
67 			kmem_cache_create_usercopy("scsi_sense_cache",
68 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
69 				0, SCSI_SENSE_BUFFERSIZE, NULL);
70 		if (!scsi_sense_cache)
71 			ret = -ENOMEM;
72 	}
73 	mutex_unlock(&scsi_sense_cache_mutex);
74 	return ret;
75 }
76 
77 /*
78  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
79  * not change behaviour from the previous unplug mechanism, experimentation
80  * may prove this needs changing.
81  */
82 #define SCSI_QUEUE_DELAY	3
83 
84 static void
85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
86 {
87 	struct Scsi_Host *host = cmd->device->host;
88 	struct scsi_device *device = cmd->device;
89 	struct scsi_target *starget = scsi_target(device);
90 
91 	/*
92 	 * Set the appropriate busy bit for the device/host.
93 	 *
94 	 * If the host/device isn't busy, assume that something actually
95 	 * completed, and that we should be able to queue a command now.
96 	 *
97 	 * Note that the prior mid-layer assumption that any host could
98 	 * always queue at least one command is now broken.  The mid-layer
99 	 * will implement a user specifiable stall (see
100 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
101 	 * if a command is requeued with no other commands outstanding
102 	 * either for the device or for the host.
103 	 */
104 	switch (reason) {
105 	case SCSI_MLQUEUE_HOST_BUSY:
106 		atomic_set(&host->host_blocked, host->max_host_blocked);
107 		break;
108 	case SCSI_MLQUEUE_DEVICE_BUSY:
109 	case SCSI_MLQUEUE_EH_RETRY:
110 		atomic_set(&device->device_blocked,
111 			   device->max_device_blocked);
112 		break;
113 	case SCSI_MLQUEUE_TARGET_BUSY:
114 		atomic_set(&starget->target_blocked,
115 			   starget->max_target_blocked);
116 		break;
117 	}
118 }
119 
120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
121 {
122 	struct request *rq = scsi_cmd_to_rq(cmd);
123 
124 	if (rq->rq_flags & RQF_DONTPREP) {
125 		rq->rq_flags &= ~RQF_DONTPREP;
126 		scsi_mq_uninit_cmd(cmd);
127 	} else {
128 		WARN_ON_ONCE(true);
129 	}
130 	blk_mq_requeue_request(rq, true);
131 }
132 
133 /**
134  * __scsi_queue_insert - private queue insertion
135  * @cmd: The SCSI command being requeued
136  * @reason:  The reason for the requeue
137  * @unbusy: Whether the queue should be unbusied
138  *
139  * This is a private queue insertion.  The public interface
140  * scsi_queue_insert() always assumes the queue should be unbusied
141  * because it's always called before the completion.  This function is
142  * for a requeue after completion, which should only occur in this
143  * file.
144  */
145 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
146 {
147 	struct scsi_device *device = cmd->device;
148 
149 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
150 		"Inserting command %p into mlqueue\n", cmd));
151 
152 	scsi_set_blocked(cmd, reason);
153 
154 	/*
155 	 * Decrement the counters, since these commands are no longer
156 	 * active on the host/device.
157 	 */
158 	if (unbusy)
159 		scsi_device_unbusy(device, cmd);
160 
161 	/*
162 	 * Requeue this command.  It will go before all other commands
163 	 * that are already in the queue. Schedule requeue work under
164 	 * lock such that the kblockd_schedule_work() call happens
165 	 * before blk_cleanup_queue() finishes.
166 	 */
167 	cmd->result = 0;
168 
169 	blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
170 }
171 
172 /**
173  * scsi_queue_insert - Reinsert a command in the queue.
174  * @cmd:    command that we are adding to queue.
175  * @reason: why we are inserting command to queue.
176  *
177  * We do this for one of two cases. Either the host is busy and it cannot accept
178  * any more commands for the time being, or the device returned QUEUE_FULL and
179  * can accept no more commands.
180  *
181  * Context: This could be called either from an interrupt context or a normal
182  * process context.
183  */
184 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
185 {
186 	__scsi_queue_insert(cmd, reason, true);
187 }
188 
189 
190 /**
191  * __scsi_execute - insert request and wait for the result
192  * @sdev:	scsi device
193  * @cmd:	scsi command
194  * @data_direction: data direction
195  * @buffer:	data buffer
196  * @bufflen:	len of buffer
197  * @sense:	optional sense buffer
198  * @sshdr:	optional decoded sense header
199  * @timeout:	request timeout in HZ
200  * @retries:	number of times to retry request
201  * @flags:	flags for ->cmd_flags
202  * @rq_flags:	flags for ->rq_flags
203  * @resid:	optional residual length
204  *
205  * Returns the scsi_cmnd result field if a command was executed, or a negative
206  * Linux error code if we didn't get that far.
207  */
208 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 		 int data_direction, void *buffer, unsigned bufflen,
210 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
211 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
212 		 int *resid)
213 {
214 	struct request *req;
215 	struct scsi_request *rq;
216 	int ret;
217 
218 	req = blk_get_request(sdev->request_queue,
219 			data_direction == DMA_TO_DEVICE ?
220 			REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
221 			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
222 	if (IS_ERR(req))
223 		return PTR_ERR(req);
224 
225 	rq = scsi_req(req);
226 
227 	if (bufflen) {
228 		ret = blk_rq_map_kern(sdev->request_queue, req,
229 				      buffer, bufflen, GFP_NOIO);
230 		if (ret)
231 			goto out;
232 	}
233 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
234 	memcpy(rq->cmd, cmd, rq->cmd_len);
235 	rq->retries = retries;
236 	req->timeout = timeout;
237 	req->cmd_flags |= flags;
238 	req->rq_flags |= rq_flags | RQF_QUIET;
239 
240 	/*
241 	 * head injection *required* here otherwise quiesce won't work
242 	 */
243 	blk_execute_rq(NULL, req, 1);
244 
245 	/*
246 	 * Some devices (USB mass-storage in particular) may transfer
247 	 * garbage data together with a residue indicating that the data
248 	 * is invalid.  Prevent the garbage from being misinterpreted
249 	 * and prevent security leaks by zeroing out the excess data.
250 	 */
251 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
252 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
253 
254 	if (resid)
255 		*resid = rq->resid_len;
256 	if (sense && rq->sense_len)
257 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
258 	if (sshdr)
259 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
260 	ret = rq->result;
261  out:
262 	blk_put_request(req);
263 
264 	return ret;
265 }
266 EXPORT_SYMBOL(__scsi_execute);
267 
268 /*
269  * Wake up the error handler if necessary. Avoid as follows that the error
270  * handler is not woken up if host in-flight requests number ==
271  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
272  * with an RCU read lock in this function to ensure that this function in
273  * its entirety either finishes before scsi_eh_scmd_add() increases the
274  * host_failed counter or that it notices the shost state change made by
275  * scsi_eh_scmd_add().
276  */
277 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
278 {
279 	unsigned long flags;
280 
281 	rcu_read_lock();
282 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
283 	if (unlikely(scsi_host_in_recovery(shost))) {
284 		spin_lock_irqsave(shost->host_lock, flags);
285 		if (shost->host_failed || shost->host_eh_scheduled)
286 			scsi_eh_wakeup(shost);
287 		spin_unlock_irqrestore(shost->host_lock, flags);
288 	}
289 	rcu_read_unlock();
290 }
291 
292 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
293 {
294 	struct Scsi_Host *shost = sdev->host;
295 	struct scsi_target *starget = scsi_target(sdev);
296 
297 	scsi_dec_host_busy(shost, cmd);
298 
299 	if (starget->can_queue > 0)
300 		atomic_dec(&starget->target_busy);
301 
302 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
303 	cmd->budget_token = -1;
304 }
305 
306 static void scsi_kick_queue(struct request_queue *q)
307 {
308 	blk_mq_run_hw_queues(q, false);
309 }
310 
311 /*
312  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
313  * and call blk_run_queue for all the scsi_devices on the target -
314  * including current_sdev first.
315  *
316  * Called with *no* scsi locks held.
317  */
318 static void scsi_single_lun_run(struct scsi_device *current_sdev)
319 {
320 	struct Scsi_Host *shost = current_sdev->host;
321 	struct scsi_device *sdev, *tmp;
322 	struct scsi_target *starget = scsi_target(current_sdev);
323 	unsigned long flags;
324 
325 	spin_lock_irqsave(shost->host_lock, flags);
326 	starget->starget_sdev_user = NULL;
327 	spin_unlock_irqrestore(shost->host_lock, flags);
328 
329 	/*
330 	 * Call blk_run_queue for all LUNs on the target, starting with
331 	 * current_sdev. We race with others (to set starget_sdev_user),
332 	 * but in most cases, we will be first. Ideally, each LU on the
333 	 * target would get some limited time or requests on the target.
334 	 */
335 	scsi_kick_queue(current_sdev->request_queue);
336 
337 	spin_lock_irqsave(shost->host_lock, flags);
338 	if (starget->starget_sdev_user)
339 		goto out;
340 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
341 			same_target_siblings) {
342 		if (sdev == current_sdev)
343 			continue;
344 		if (scsi_device_get(sdev))
345 			continue;
346 
347 		spin_unlock_irqrestore(shost->host_lock, flags);
348 		scsi_kick_queue(sdev->request_queue);
349 		spin_lock_irqsave(shost->host_lock, flags);
350 
351 		scsi_device_put(sdev);
352 	}
353  out:
354 	spin_unlock_irqrestore(shost->host_lock, flags);
355 }
356 
357 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
358 {
359 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
360 		return true;
361 	if (atomic_read(&sdev->device_blocked) > 0)
362 		return true;
363 	return false;
364 }
365 
366 static inline bool scsi_target_is_busy(struct scsi_target *starget)
367 {
368 	if (starget->can_queue > 0) {
369 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
370 			return true;
371 		if (atomic_read(&starget->target_blocked) > 0)
372 			return true;
373 	}
374 	return false;
375 }
376 
377 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
378 {
379 	if (atomic_read(&shost->host_blocked) > 0)
380 		return true;
381 	if (shost->host_self_blocked)
382 		return true;
383 	return false;
384 }
385 
386 static void scsi_starved_list_run(struct Scsi_Host *shost)
387 {
388 	LIST_HEAD(starved_list);
389 	struct scsi_device *sdev;
390 	unsigned long flags;
391 
392 	spin_lock_irqsave(shost->host_lock, flags);
393 	list_splice_init(&shost->starved_list, &starved_list);
394 
395 	while (!list_empty(&starved_list)) {
396 		struct request_queue *slq;
397 
398 		/*
399 		 * As long as shost is accepting commands and we have
400 		 * starved queues, call blk_run_queue. scsi_request_fn
401 		 * drops the queue_lock and can add us back to the
402 		 * starved_list.
403 		 *
404 		 * host_lock protects the starved_list and starved_entry.
405 		 * scsi_request_fn must get the host_lock before checking
406 		 * or modifying starved_list or starved_entry.
407 		 */
408 		if (scsi_host_is_busy(shost))
409 			break;
410 
411 		sdev = list_entry(starved_list.next,
412 				  struct scsi_device, starved_entry);
413 		list_del_init(&sdev->starved_entry);
414 		if (scsi_target_is_busy(scsi_target(sdev))) {
415 			list_move_tail(&sdev->starved_entry,
416 				       &shost->starved_list);
417 			continue;
418 		}
419 
420 		/*
421 		 * Once we drop the host lock, a racing scsi_remove_device()
422 		 * call may remove the sdev from the starved list and destroy
423 		 * it and the queue.  Mitigate by taking a reference to the
424 		 * queue and never touching the sdev again after we drop the
425 		 * host lock.  Note: if __scsi_remove_device() invokes
426 		 * blk_cleanup_queue() before the queue is run from this
427 		 * function then blk_run_queue() will return immediately since
428 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
429 		 */
430 		slq = sdev->request_queue;
431 		if (!blk_get_queue(slq))
432 			continue;
433 		spin_unlock_irqrestore(shost->host_lock, flags);
434 
435 		scsi_kick_queue(slq);
436 		blk_put_queue(slq);
437 
438 		spin_lock_irqsave(shost->host_lock, flags);
439 	}
440 	/* put any unprocessed entries back */
441 	list_splice(&starved_list, &shost->starved_list);
442 	spin_unlock_irqrestore(shost->host_lock, flags);
443 }
444 
445 /**
446  * scsi_run_queue - Select a proper request queue to serve next.
447  * @q:  last request's queue
448  *
449  * The previous command was completely finished, start a new one if possible.
450  */
451 static void scsi_run_queue(struct request_queue *q)
452 {
453 	struct scsi_device *sdev = q->queuedata;
454 
455 	if (scsi_target(sdev)->single_lun)
456 		scsi_single_lun_run(sdev);
457 	if (!list_empty(&sdev->host->starved_list))
458 		scsi_starved_list_run(sdev->host);
459 
460 	blk_mq_run_hw_queues(q, false);
461 }
462 
463 void scsi_requeue_run_queue(struct work_struct *work)
464 {
465 	struct scsi_device *sdev;
466 	struct request_queue *q;
467 
468 	sdev = container_of(work, struct scsi_device, requeue_work);
469 	q = sdev->request_queue;
470 	scsi_run_queue(q);
471 }
472 
473 void scsi_run_host_queues(struct Scsi_Host *shost)
474 {
475 	struct scsi_device *sdev;
476 
477 	shost_for_each_device(sdev, shost)
478 		scsi_run_queue(sdev->request_queue);
479 }
480 
481 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
482 {
483 	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
484 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
485 
486 		if (drv->uninit_command)
487 			drv->uninit_command(cmd);
488 	}
489 }
490 
491 void scsi_free_sgtables(struct scsi_cmnd *cmd)
492 {
493 	if (cmd->sdb.table.nents)
494 		sg_free_table_chained(&cmd->sdb.table,
495 				SCSI_INLINE_SG_CNT);
496 	if (scsi_prot_sg_count(cmd))
497 		sg_free_table_chained(&cmd->prot_sdb->table,
498 				SCSI_INLINE_PROT_SG_CNT);
499 }
500 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
501 
502 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
503 {
504 	scsi_free_sgtables(cmd);
505 	scsi_uninit_cmd(cmd);
506 }
507 
508 static void scsi_run_queue_async(struct scsi_device *sdev)
509 {
510 	if (scsi_target(sdev)->single_lun ||
511 	    !list_empty(&sdev->host->starved_list)) {
512 		kblockd_schedule_work(&sdev->requeue_work);
513 	} else {
514 		/*
515 		 * smp_mb() present in sbitmap_queue_clear() or implied in
516 		 * .end_io is for ordering writing .device_busy in
517 		 * scsi_device_unbusy() and reading sdev->restarts.
518 		 */
519 		int old = atomic_read(&sdev->restarts);
520 
521 		/*
522 		 * ->restarts has to be kept as non-zero if new budget
523 		 *  contention occurs.
524 		 *
525 		 *  No need to run queue when either another re-run
526 		 *  queue wins in updating ->restarts or a new budget
527 		 *  contention occurs.
528 		 */
529 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
530 			blk_mq_run_hw_queues(sdev->request_queue, true);
531 	}
532 }
533 
534 /* Returns false when no more bytes to process, true if there are more */
535 static bool scsi_end_request(struct request *req, blk_status_t error,
536 		unsigned int bytes)
537 {
538 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
539 	struct scsi_device *sdev = cmd->device;
540 	struct request_queue *q = sdev->request_queue;
541 
542 	if (blk_update_request(req, error, bytes))
543 		return true;
544 
545 	if (blk_queue_add_random(q))
546 		add_disk_randomness(req->rq_disk);
547 
548 	if (!blk_rq_is_passthrough(req)) {
549 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
550 		cmd->flags &= ~SCMD_INITIALIZED;
551 	}
552 
553 	/*
554 	 * Calling rcu_barrier() is not necessary here because the
555 	 * SCSI error handler guarantees that the function called by
556 	 * call_rcu() has been called before scsi_end_request() is
557 	 * called.
558 	 */
559 	destroy_rcu_head(&cmd->rcu);
560 
561 	/*
562 	 * In the MQ case the command gets freed by __blk_mq_end_request,
563 	 * so we have to do all cleanup that depends on it earlier.
564 	 *
565 	 * We also can't kick the queues from irq context, so we
566 	 * will have to defer it to a workqueue.
567 	 */
568 	scsi_mq_uninit_cmd(cmd);
569 
570 	/*
571 	 * queue is still alive, so grab the ref for preventing it
572 	 * from being cleaned up during running queue.
573 	 */
574 	percpu_ref_get(&q->q_usage_counter);
575 
576 	__blk_mq_end_request(req, error);
577 
578 	scsi_run_queue_async(sdev);
579 
580 	percpu_ref_put(&q->q_usage_counter);
581 	return false;
582 }
583 
584 /**
585  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
586  * @cmd:	SCSI command
587  * @result:	scsi error code
588  *
589  * Translate a SCSI result code into a blk_status_t value. May reset the host
590  * byte of @cmd->result.
591  */
592 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
593 {
594 	switch (host_byte(result)) {
595 	case DID_OK:
596 		if (scsi_status_is_good(result))
597 			return BLK_STS_OK;
598 		return BLK_STS_IOERR;
599 	case DID_TRANSPORT_FAILFAST:
600 	case DID_TRANSPORT_MARGINAL:
601 		return BLK_STS_TRANSPORT;
602 	case DID_TARGET_FAILURE:
603 		set_host_byte(cmd, DID_OK);
604 		return BLK_STS_TARGET;
605 	case DID_NEXUS_FAILURE:
606 		set_host_byte(cmd, DID_OK);
607 		return BLK_STS_NEXUS;
608 	case DID_ALLOC_FAILURE:
609 		set_host_byte(cmd, DID_OK);
610 		return BLK_STS_NOSPC;
611 	case DID_MEDIUM_ERROR:
612 		set_host_byte(cmd, DID_OK);
613 		return BLK_STS_MEDIUM;
614 	default:
615 		return BLK_STS_IOERR;
616 	}
617 }
618 
619 /* Helper for scsi_io_completion() when "reprep" action required. */
620 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
621 				      struct request_queue *q)
622 {
623 	/* A new command will be prepared and issued. */
624 	scsi_mq_requeue_cmd(cmd);
625 }
626 
627 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
628 {
629 	struct request *req = scsi_cmd_to_rq(cmd);
630 	unsigned long wait_for;
631 
632 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
633 		return false;
634 
635 	wait_for = (cmd->allowed + 1) * req->timeout;
636 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
637 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
638 			    wait_for/HZ);
639 		return true;
640 	}
641 	return false;
642 }
643 
644 /* Helper for scsi_io_completion() when special action required. */
645 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
646 {
647 	struct request_queue *q = cmd->device->request_queue;
648 	struct request *req = scsi_cmd_to_rq(cmd);
649 	int level = 0;
650 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
651 	      ACTION_DELAYED_RETRY} action;
652 	struct scsi_sense_hdr sshdr;
653 	bool sense_valid;
654 	bool sense_current = true;      /* false implies "deferred sense" */
655 	blk_status_t blk_stat;
656 
657 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
658 	if (sense_valid)
659 		sense_current = !scsi_sense_is_deferred(&sshdr);
660 
661 	blk_stat = scsi_result_to_blk_status(cmd, result);
662 
663 	if (host_byte(result) == DID_RESET) {
664 		/* Third party bus reset or reset for error recovery
665 		 * reasons.  Just retry the command and see what
666 		 * happens.
667 		 */
668 		action = ACTION_RETRY;
669 	} else if (sense_valid && sense_current) {
670 		switch (sshdr.sense_key) {
671 		case UNIT_ATTENTION:
672 			if (cmd->device->removable) {
673 				/* Detected disc change.  Set a bit
674 				 * and quietly refuse further access.
675 				 */
676 				cmd->device->changed = 1;
677 				action = ACTION_FAIL;
678 			} else {
679 				/* Must have been a power glitch, or a
680 				 * bus reset.  Could not have been a
681 				 * media change, so we just retry the
682 				 * command and see what happens.
683 				 */
684 				action = ACTION_RETRY;
685 			}
686 			break;
687 		case ILLEGAL_REQUEST:
688 			/* If we had an ILLEGAL REQUEST returned, then
689 			 * we may have performed an unsupported
690 			 * command.  The only thing this should be
691 			 * would be a ten byte read where only a six
692 			 * byte read was supported.  Also, on a system
693 			 * where READ CAPACITY failed, we may have
694 			 * read past the end of the disk.
695 			 */
696 			if ((cmd->device->use_10_for_rw &&
697 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
698 			    (cmd->cmnd[0] == READ_10 ||
699 			     cmd->cmnd[0] == WRITE_10)) {
700 				/* This will issue a new 6-byte command. */
701 				cmd->device->use_10_for_rw = 0;
702 				action = ACTION_REPREP;
703 			} else if (sshdr.asc == 0x10) /* DIX */ {
704 				action = ACTION_FAIL;
705 				blk_stat = BLK_STS_PROTECTION;
706 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
707 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
708 				action = ACTION_FAIL;
709 				blk_stat = BLK_STS_TARGET;
710 			} else
711 				action = ACTION_FAIL;
712 			break;
713 		case ABORTED_COMMAND:
714 			action = ACTION_FAIL;
715 			if (sshdr.asc == 0x10) /* DIF */
716 				blk_stat = BLK_STS_PROTECTION;
717 			break;
718 		case NOT_READY:
719 			/* If the device is in the process of becoming
720 			 * ready, or has a temporary blockage, retry.
721 			 */
722 			if (sshdr.asc == 0x04) {
723 				switch (sshdr.ascq) {
724 				case 0x01: /* becoming ready */
725 				case 0x04: /* format in progress */
726 				case 0x05: /* rebuild in progress */
727 				case 0x06: /* recalculation in progress */
728 				case 0x07: /* operation in progress */
729 				case 0x08: /* Long write in progress */
730 				case 0x09: /* self test in progress */
731 				case 0x11: /* notify (enable spinup) required */
732 				case 0x14: /* space allocation in progress */
733 				case 0x1a: /* start stop unit in progress */
734 				case 0x1b: /* sanitize in progress */
735 				case 0x1d: /* configuration in progress */
736 				case 0x24: /* depopulation in progress */
737 					action = ACTION_DELAYED_RETRY;
738 					break;
739 				case 0x0a: /* ALUA state transition */
740 					blk_stat = BLK_STS_AGAIN;
741 					fallthrough;
742 				default:
743 					action = ACTION_FAIL;
744 					break;
745 				}
746 			} else
747 				action = ACTION_FAIL;
748 			break;
749 		case VOLUME_OVERFLOW:
750 			/* See SSC3rXX or current. */
751 			action = ACTION_FAIL;
752 			break;
753 		case DATA_PROTECT:
754 			action = ACTION_FAIL;
755 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
756 			    (sshdr.asc == 0x55 &&
757 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
758 				/* Insufficient zone resources */
759 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
760 			}
761 			break;
762 		default:
763 			action = ACTION_FAIL;
764 			break;
765 		}
766 	} else
767 		action = ACTION_FAIL;
768 
769 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
770 		action = ACTION_FAIL;
771 
772 	switch (action) {
773 	case ACTION_FAIL:
774 		/* Give up and fail the remainder of the request */
775 		if (!(req->rq_flags & RQF_QUIET)) {
776 			static DEFINE_RATELIMIT_STATE(_rs,
777 					DEFAULT_RATELIMIT_INTERVAL,
778 					DEFAULT_RATELIMIT_BURST);
779 
780 			if (unlikely(scsi_logging_level))
781 				level =
782 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
783 						    SCSI_LOG_MLCOMPLETE_BITS);
784 
785 			/*
786 			 * if logging is enabled the failure will be printed
787 			 * in scsi_log_completion(), so avoid duplicate messages
788 			 */
789 			if (!level && __ratelimit(&_rs)) {
790 				scsi_print_result(cmd, NULL, FAILED);
791 				if (sense_valid)
792 					scsi_print_sense(cmd);
793 				scsi_print_command(cmd);
794 			}
795 		}
796 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
797 			return;
798 		fallthrough;
799 	case ACTION_REPREP:
800 		scsi_io_completion_reprep(cmd, q);
801 		break;
802 	case ACTION_RETRY:
803 		/* Retry the same command immediately */
804 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
805 		break;
806 	case ACTION_DELAYED_RETRY:
807 		/* Retry the same command after a delay */
808 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
809 		break;
810 	}
811 }
812 
813 /*
814  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
815  * new result that may suppress further error checking. Also modifies
816  * *blk_statp in some cases.
817  */
818 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
819 					blk_status_t *blk_statp)
820 {
821 	bool sense_valid;
822 	bool sense_current = true;	/* false implies "deferred sense" */
823 	struct request *req = scsi_cmd_to_rq(cmd);
824 	struct scsi_sense_hdr sshdr;
825 
826 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
827 	if (sense_valid)
828 		sense_current = !scsi_sense_is_deferred(&sshdr);
829 
830 	if (blk_rq_is_passthrough(req)) {
831 		if (sense_valid) {
832 			/*
833 			 * SG_IO wants current and deferred errors
834 			 */
835 			scsi_req(req)->sense_len =
836 				min(8 + cmd->sense_buffer[7],
837 				    SCSI_SENSE_BUFFERSIZE);
838 		}
839 		if (sense_current)
840 			*blk_statp = scsi_result_to_blk_status(cmd, result);
841 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
842 		/*
843 		 * Flush commands do not transfers any data, and thus cannot use
844 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
845 		 * This sets *blk_statp explicitly for the problem case.
846 		 */
847 		*blk_statp = scsi_result_to_blk_status(cmd, result);
848 	}
849 	/*
850 	 * Recovered errors need reporting, but they're always treated as
851 	 * success, so fiddle the result code here.  For passthrough requests
852 	 * we already took a copy of the original into sreq->result which
853 	 * is what gets returned to the user
854 	 */
855 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
856 		bool do_print = true;
857 		/*
858 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
859 		 * skip print since caller wants ATA registers. Only occurs
860 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
861 		 */
862 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
863 			do_print = false;
864 		else if (req->rq_flags & RQF_QUIET)
865 			do_print = false;
866 		if (do_print)
867 			scsi_print_sense(cmd);
868 		result = 0;
869 		/* for passthrough, *blk_statp may be set */
870 		*blk_statp = BLK_STS_OK;
871 	}
872 	/*
873 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
874 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
875 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
876 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
877 	 * intermediate statuses (both obsolete in SAM-4) as good.
878 	 */
879 	if ((result & 0xff) && scsi_status_is_good(result)) {
880 		result = 0;
881 		*blk_statp = BLK_STS_OK;
882 	}
883 	return result;
884 }
885 
886 /**
887  * scsi_io_completion - Completion processing for SCSI commands.
888  * @cmd:	command that is finished.
889  * @good_bytes:	number of processed bytes.
890  *
891  * We will finish off the specified number of sectors. If we are done, the
892  * command block will be released and the queue function will be goosed. If we
893  * are not done then we have to figure out what to do next:
894  *
895  *   a) We can call scsi_io_completion_reprep().  The request will be
896  *	unprepared and put back on the queue.  Then a new command will
897  *	be created for it.  This should be used if we made forward
898  *	progress, or if we want to switch from READ(10) to READ(6) for
899  *	example.
900  *
901  *   b) We can call scsi_io_completion_action().  The request will be
902  *	put back on the queue and retried using the same command as
903  *	before, possibly after a delay.
904  *
905  *   c) We can call scsi_end_request() with blk_stat other than
906  *	BLK_STS_OK, to fail the remainder of the request.
907  */
908 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
909 {
910 	int result = cmd->result;
911 	struct request_queue *q = cmd->device->request_queue;
912 	struct request *req = scsi_cmd_to_rq(cmd);
913 	blk_status_t blk_stat = BLK_STS_OK;
914 
915 	if (unlikely(result))	/* a nz result may or may not be an error */
916 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
917 
918 	if (unlikely(blk_rq_is_passthrough(req))) {
919 		/*
920 		 * scsi_result_to_blk_status may have reset the host_byte
921 		 */
922 		scsi_req(req)->result = cmd->result;
923 	}
924 
925 	/*
926 	 * Next deal with any sectors which we were able to correctly
927 	 * handle.
928 	 */
929 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
930 		"%u sectors total, %d bytes done.\n",
931 		blk_rq_sectors(req), good_bytes));
932 
933 	/*
934 	 * Failed, zero length commands always need to drop down
935 	 * to retry code. Fast path should return in this block.
936 	 */
937 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
938 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
939 			return; /* no bytes remaining */
940 	}
941 
942 	/* Kill remainder if no retries. */
943 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
944 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
945 			WARN_ONCE(true,
946 			    "Bytes remaining after failed, no-retry command");
947 		return;
948 	}
949 
950 	/*
951 	 * If there had been no error, but we have leftover bytes in the
952 	 * request just queue the command up again.
953 	 */
954 	if (likely(result == 0))
955 		scsi_io_completion_reprep(cmd, q);
956 	else
957 		scsi_io_completion_action(cmd, result);
958 }
959 
960 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
961 		struct request *rq)
962 {
963 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
964 	       !op_is_write(req_op(rq)) &&
965 	       sdev->host->hostt->dma_need_drain(rq);
966 }
967 
968 /**
969  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
970  * @cmd: SCSI command data structure to initialize.
971  *
972  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
973  * for @cmd.
974  *
975  * Returns:
976  * * BLK_STS_OK       - on success
977  * * BLK_STS_RESOURCE - if the failure is retryable
978  * * BLK_STS_IOERR    - if the failure is fatal
979  */
980 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
981 {
982 	struct scsi_device *sdev = cmd->device;
983 	struct request *rq = scsi_cmd_to_rq(cmd);
984 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
985 	struct scatterlist *last_sg = NULL;
986 	blk_status_t ret;
987 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
988 	int count;
989 
990 	if (WARN_ON_ONCE(!nr_segs))
991 		return BLK_STS_IOERR;
992 
993 	/*
994 	 * Make sure there is space for the drain.  The driver must adjust
995 	 * max_hw_segments to be prepared for this.
996 	 */
997 	if (need_drain)
998 		nr_segs++;
999 
1000 	/*
1001 	 * If sg table allocation fails, requeue request later.
1002 	 */
1003 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1004 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1005 		return BLK_STS_RESOURCE;
1006 
1007 	/*
1008 	 * Next, walk the list, and fill in the addresses and sizes of
1009 	 * each segment.
1010 	 */
1011 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1012 
1013 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1014 		unsigned int pad_len =
1015 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1016 
1017 		last_sg->length += pad_len;
1018 		cmd->extra_len += pad_len;
1019 	}
1020 
1021 	if (need_drain) {
1022 		sg_unmark_end(last_sg);
1023 		last_sg = sg_next(last_sg);
1024 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1025 		sg_mark_end(last_sg);
1026 
1027 		cmd->extra_len += sdev->dma_drain_len;
1028 		count++;
1029 	}
1030 
1031 	BUG_ON(count > cmd->sdb.table.nents);
1032 	cmd->sdb.table.nents = count;
1033 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1034 
1035 	if (blk_integrity_rq(rq)) {
1036 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1037 		int ivecs;
1038 
1039 		if (WARN_ON_ONCE(!prot_sdb)) {
1040 			/*
1041 			 * This can happen if someone (e.g. multipath)
1042 			 * queues a command to a device on an adapter
1043 			 * that does not support DIX.
1044 			 */
1045 			ret = BLK_STS_IOERR;
1046 			goto out_free_sgtables;
1047 		}
1048 
1049 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1050 
1051 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1052 				prot_sdb->table.sgl,
1053 				SCSI_INLINE_PROT_SG_CNT)) {
1054 			ret = BLK_STS_RESOURCE;
1055 			goto out_free_sgtables;
1056 		}
1057 
1058 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1059 						prot_sdb->table.sgl);
1060 		BUG_ON(count > ivecs);
1061 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1062 
1063 		cmd->prot_sdb = prot_sdb;
1064 		cmd->prot_sdb->table.nents = count;
1065 	}
1066 
1067 	return BLK_STS_OK;
1068 out_free_sgtables:
1069 	scsi_free_sgtables(cmd);
1070 	return ret;
1071 }
1072 EXPORT_SYMBOL(scsi_alloc_sgtables);
1073 
1074 /**
1075  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1076  * @rq: Request associated with the SCSI command to be initialized.
1077  *
1078  * This function initializes the members of struct scsi_cmnd that must be
1079  * initialized before request processing starts and that won't be
1080  * reinitialized if a SCSI command is requeued.
1081  *
1082  * Called from inside blk_get_request() for pass-through requests and from
1083  * inside scsi_init_command() for filesystem requests.
1084  */
1085 static void scsi_initialize_rq(struct request *rq)
1086 {
1087 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1088 	struct scsi_request *req = &cmd->req;
1089 
1090 	memset(req->__cmd, 0, sizeof(req->__cmd));
1091 	req->cmd = req->__cmd;
1092 	req->cmd_len = BLK_MAX_CDB;
1093 	req->sense_len = 0;
1094 
1095 	init_rcu_head(&cmd->rcu);
1096 	cmd->jiffies_at_alloc = jiffies;
1097 	cmd->retries = 0;
1098 }
1099 
1100 /*
1101  * Only called when the request isn't completed by SCSI, and not freed by
1102  * SCSI
1103  */
1104 static void scsi_cleanup_rq(struct request *rq)
1105 {
1106 	if (rq->rq_flags & RQF_DONTPREP) {
1107 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1108 		rq->rq_flags &= ~RQF_DONTPREP;
1109 	}
1110 }
1111 
1112 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1113 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1114 {
1115 	void *buf = cmd->sense_buffer;
1116 	void *prot = cmd->prot_sdb;
1117 	struct request *rq = scsi_cmd_to_rq(cmd);
1118 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1119 	unsigned long jiffies_at_alloc;
1120 	int retries, to_clear;
1121 	bool in_flight;
1122 	int budget_token = cmd->budget_token;
1123 
1124 	if (!blk_rq_is_passthrough(rq) && !(flags & SCMD_INITIALIZED)) {
1125 		flags |= SCMD_INITIALIZED;
1126 		scsi_initialize_rq(rq);
1127 	}
1128 
1129 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1130 	retries = cmd->retries;
1131 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1132 	/*
1133 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1134 	 * the driver-private command data if the LLD does not supply a
1135 	 * function to initialize that data.
1136 	 */
1137 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1138 	if (!dev->host->hostt->init_cmd_priv)
1139 		to_clear += dev->host->hostt->cmd_size;
1140 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1141 
1142 	cmd->device = dev;
1143 	cmd->sense_buffer = buf;
1144 	cmd->prot_sdb = prot;
1145 	cmd->flags = flags;
1146 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1147 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1148 	cmd->retries = retries;
1149 	if (in_flight)
1150 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1151 	cmd->budget_token = budget_token;
1152 
1153 }
1154 
1155 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1156 		struct request *req)
1157 {
1158 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1159 
1160 	/*
1161 	 * Passthrough requests may transfer data, in which case they must
1162 	 * a bio attached to them.  Or they might contain a SCSI command
1163 	 * that does not transfer data, in which case they may optionally
1164 	 * submit a request without an attached bio.
1165 	 */
1166 	if (req->bio) {
1167 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1168 		if (unlikely(ret != BLK_STS_OK))
1169 			return ret;
1170 	} else {
1171 		BUG_ON(blk_rq_bytes(req));
1172 
1173 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1174 	}
1175 
1176 	cmd->cmd_len = scsi_req(req)->cmd_len;
1177 	if (cmd->cmd_len == 0)
1178 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
1179 	cmd->cmnd = scsi_req(req)->cmd;
1180 	cmd->transfersize = blk_rq_bytes(req);
1181 	cmd->allowed = scsi_req(req)->retries;
1182 	return BLK_STS_OK;
1183 }
1184 
1185 static blk_status_t
1186 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1187 {
1188 	switch (sdev->sdev_state) {
1189 	case SDEV_CREATED:
1190 		return BLK_STS_OK;
1191 	case SDEV_OFFLINE:
1192 	case SDEV_TRANSPORT_OFFLINE:
1193 		/*
1194 		 * If the device is offline we refuse to process any
1195 		 * commands.  The device must be brought online
1196 		 * before trying any recovery commands.
1197 		 */
1198 		if (!sdev->offline_already) {
1199 			sdev->offline_already = true;
1200 			sdev_printk(KERN_ERR, sdev,
1201 				    "rejecting I/O to offline device\n");
1202 		}
1203 		return BLK_STS_IOERR;
1204 	case SDEV_DEL:
1205 		/*
1206 		 * If the device is fully deleted, we refuse to
1207 		 * process any commands as well.
1208 		 */
1209 		sdev_printk(KERN_ERR, sdev,
1210 			    "rejecting I/O to dead device\n");
1211 		return BLK_STS_IOERR;
1212 	case SDEV_BLOCK:
1213 	case SDEV_CREATED_BLOCK:
1214 		return BLK_STS_RESOURCE;
1215 	case SDEV_QUIESCE:
1216 		/*
1217 		 * If the device is blocked we only accept power management
1218 		 * commands.
1219 		 */
1220 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1221 			return BLK_STS_RESOURCE;
1222 		return BLK_STS_OK;
1223 	default:
1224 		/*
1225 		 * For any other not fully online state we only allow
1226 		 * power management commands.
1227 		 */
1228 		if (req && !(req->rq_flags & RQF_PM))
1229 			return BLK_STS_IOERR;
1230 		return BLK_STS_OK;
1231 	}
1232 }
1233 
1234 /*
1235  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1236  * and return the token else return -1.
1237  */
1238 static inline int scsi_dev_queue_ready(struct request_queue *q,
1239 				  struct scsi_device *sdev)
1240 {
1241 	int token;
1242 
1243 	token = sbitmap_get(&sdev->budget_map);
1244 	if (atomic_read(&sdev->device_blocked)) {
1245 		if (token < 0)
1246 			goto out;
1247 
1248 		if (scsi_device_busy(sdev) > 1)
1249 			goto out_dec;
1250 
1251 		/*
1252 		 * unblock after device_blocked iterates to zero
1253 		 */
1254 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1255 			goto out_dec;
1256 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1257 				   "unblocking device at zero depth\n"));
1258 	}
1259 
1260 	return token;
1261 out_dec:
1262 	if (token >= 0)
1263 		sbitmap_put(&sdev->budget_map, token);
1264 out:
1265 	return -1;
1266 }
1267 
1268 /*
1269  * scsi_target_queue_ready: checks if there we can send commands to target
1270  * @sdev: scsi device on starget to check.
1271  */
1272 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1273 					   struct scsi_device *sdev)
1274 {
1275 	struct scsi_target *starget = scsi_target(sdev);
1276 	unsigned int busy;
1277 
1278 	if (starget->single_lun) {
1279 		spin_lock_irq(shost->host_lock);
1280 		if (starget->starget_sdev_user &&
1281 		    starget->starget_sdev_user != sdev) {
1282 			spin_unlock_irq(shost->host_lock);
1283 			return 0;
1284 		}
1285 		starget->starget_sdev_user = sdev;
1286 		spin_unlock_irq(shost->host_lock);
1287 	}
1288 
1289 	if (starget->can_queue <= 0)
1290 		return 1;
1291 
1292 	busy = atomic_inc_return(&starget->target_busy) - 1;
1293 	if (atomic_read(&starget->target_blocked) > 0) {
1294 		if (busy)
1295 			goto starved;
1296 
1297 		/*
1298 		 * unblock after target_blocked iterates to zero
1299 		 */
1300 		if (atomic_dec_return(&starget->target_blocked) > 0)
1301 			goto out_dec;
1302 
1303 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1304 				 "unblocking target at zero depth\n"));
1305 	}
1306 
1307 	if (busy >= starget->can_queue)
1308 		goto starved;
1309 
1310 	return 1;
1311 
1312 starved:
1313 	spin_lock_irq(shost->host_lock);
1314 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1315 	spin_unlock_irq(shost->host_lock);
1316 out_dec:
1317 	if (starget->can_queue > 0)
1318 		atomic_dec(&starget->target_busy);
1319 	return 0;
1320 }
1321 
1322 /*
1323  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1324  * return 0. We must end up running the queue again whenever 0 is
1325  * returned, else IO can hang.
1326  */
1327 static inline int scsi_host_queue_ready(struct request_queue *q,
1328 				   struct Scsi_Host *shost,
1329 				   struct scsi_device *sdev,
1330 				   struct scsi_cmnd *cmd)
1331 {
1332 	if (scsi_host_in_recovery(shost))
1333 		return 0;
1334 
1335 	if (atomic_read(&shost->host_blocked) > 0) {
1336 		if (scsi_host_busy(shost) > 0)
1337 			goto starved;
1338 
1339 		/*
1340 		 * unblock after host_blocked iterates to zero
1341 		 */
1342 		if (atomic_dec_return(&shost->host_blocked) > 0)
1343 			goto out_dec;
1344 
1345 		SCSI_LOG_MLQUEUE(3,
1346 			shost_printk(KERN_INFO, shost,
1347 				     "unblocking host at zero depth\n"));
1348 	}
1349 
1350 	if (shost->host_self_blocked)
1351 		goto starved;
1352 
1353 	/* We're OK to process the command, so we can't be starved */
1354 	if (!list_empty(&sdev->starved_entry)) {
1355 		spin_lock_irq(shost->host_lock);
1356 		if (!list_empty(&sdev->starved_entry))
1357 			list_del_init(&sdev->starved_entry);
1358 		spin_unlock_irq(shost->host_lock);
1359 	}
1360 
1361 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1362 
1363 	return 1;
1364 
1365 starved:
1366 	spin_lock_irq(shost->host_lock);
1367 	if (list_empty(&sdev->starved_entry))
1368 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1369 	spin_unlock_irq(shost->host_lock);
1370 out_dec:
1371 	scsi_dec_host_busy(shost, cmd);
1372 	return 0;
1373 }
1374 
1375 /*
1376  * Busy state exporting function for request stacking drivers.
1377  *
1378  * For efficiency, no lock is taken to check the busy state of
1379  * shost/starget/sdev, since the returned value is not guaranteed and
1380  * may be changed after request stacking drivers call the function,
1381  * regardless of taking lock or not.
1382  *
1383  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1384  * needs to return 'not busy'. Otherwise, request stacking drivers
1385  * may hold requests forever.
1386  */
1387 static bool scsi_mq_lld_busy(struct request_queue *q)
1388 {
1389 	struct scsi_device *sdev = q->queuedata;
1390 	struct Scsi_Host *shost;
1391 
1392 	if (blk_queue_dying(q))
1393 		return false;
1394 
1395 	shost = sdev->host;
1396 
1397 	/*
1398 	 * Ignore host/starget busy state.
1399 	 * Since block layer does not have a concept of fairness across
1400 	 * multiple queues, congestion of host/starget needs to be handled
1401 	 * in SCSI layer.
1402 	 */
1403 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1404 		return true;
1405 
1406 	return false;
1407 }
1408 
1409 /*
1410  * Block layer request completion callback. May be called from interrupt
1411  * context.
1412  */
1413 static void scsi_complete(struct request *rq)
1414 {
1415 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1416 	enum scsi_disposition disposition;
1417 
1418 	INIT_LIST_HEAD(&cmd->eh_entry);
1419 
1420 	atomic_inc(&cmd->device->iodone_cnt);
1421 	if (cmd->result)
1422 		atomic_inc(&cmd->device->ioerr_cnt);
1423 
1424 	disposition = scsi_decide_disposition(cmd);
1425 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1426 		disposition = SUCCESS;
1427 
1428 	scsi_log_completion(cmd, disposition);
1429 
1430 	switch (disposition) {
1431 	case SUCCESS:
1432 		scsi_finish_command(cmd);
1433 		break;
1434 	case NEEDS_RETRY:
1435 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1436 		break;
1437 	case ADD_TO_MLQUEUE:
1438 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1439 		break;
1440 	default:
1441 		scsi_eh_scmd_add(cmd);
1442 		break;
1443 	}
1444 }
1445 
1446 /**
1447  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1448  * @cmd: command block we are dispatching.
1449  *
1450  * Return: nonzero return request was rejected and device's queue needs to be
1451  * plugged.
1452  */
1453 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1454 {
1455 	struct Scsi_Host *host = cmd->device->host;
1456 	int rtn = 0;
1457 
1458 	atomic_inc(&cmd->device->iorequest_cnt);
1459 
1460 	/* check if the device is still usable */
1461 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1462 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1463 		 * returns an immediate error upwards, and signals
1464 		 * that the device is no longer present */
1465 		cmd->result = DID_NO_CONNECT << 16;
1466 		goto done;
1467 	}
1468 
1469 	/* Check to see if the scsi lld made this device blocked. */
1470 	if (unlikely(scsi_device_blocked(cmd->device))) {
1471 		/*
1472 		 * in blocked state, the command is just put back on
1473 		 * the device queue.  The suspend state has already
1474 		 * blocked the queue so future requests should not
1475 		 * occur until the device transitions out of the
1476 		 * suspend state.
1477 		 */
1478 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1479 			"queuecommand : device blocked\n"));
1480 		return SCSI_MLQUEUE_DEVICE_BUSY;
1481 	}
1482 
1483 	/* Store the LUN value in cmnd, if needed. */
1484 	if (cmd->device->lun_in_cdb)
1485 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1486 			       (cmd->device->lun << 5 & 0xe0);
1487 
1488 	scsi_log_send(cmd);
1489 
1490 	/*
1491 	 * Before we queue this command, check if the command
1492 	 * length exceeds what the host adapter can handle.
1493 	 */
1494 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1495 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1496 			       "queuecommand : command too long. "
1497 			       "cdb_size=%d host->max_cmd_len=%d\n",
1498 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1499 		cmd->result = (DID_ABORT << 16);
1500 		goto done;
1501 	}
1502 
1503 	if (unlikely(host->shost_state == SHOST_DEL)) {
1504 		cmd->result = (DID_NO_CONNECT << 16);
1505 		goto done;
1506 
1507 	}
1508 
1509 	trace_scsi_dispatch_cmd_start(cmd);
1510 	rtn = host->hostt->queuecommand(host, cmd);
1511 	if (rtn) {
1512 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1513 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1514 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1515 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1516 
1517 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1518 			"queuecommand : request rejected\n"));
1519 	}
1520 
1521 	return rtn;
1522  done:
1523 	cmd->scsi_done(cmd);
1524 	return 0;
1525 }
1526 
1527 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1528 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1529 {
1530 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1531 		sizeof(struct scatterlist);
1532 }
1533 
1534 static blk_status_t scsi_prepare_cmd(struct request *req)
1535 {
1536 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1537 	struct scsi_device *sdev = req->q->queuedata;
1538 	struct Scsi_Host *shost = sdev->host;
1539 	struct scatterlist *sg;
1540 
1541 	scsi_init_command(sdev, cmd);
1542 
1543 	cmd->prot_op = SCSI_PROT_NORMAL;
1544 	if (blk_rq_bytes(req))
1545 		cmd->sc_data_direction = rq_dma_dir(req);
1546 	else
1547 		cmd->sc_data_direction = DMA_NONE;
1548 
1549 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1550 	cmd->sdb.table.sgl = sg;
1551 
1552 	if (scsi_host_get_prot(shost)) {
1553 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1554 
1555 		cmd->prot_sdb->table.sgl =
1556 			(struct scatterlist *)(cmd->prot_sdb + 1);
1557 	}
1558 
1559 	/*
1560 	 * Special handling for passthrough commands, which don't go to the ULP
1561 	 * at all:
1562 	 */
1563 	if (blk_rq_is_passthrough(req))
1564 		return scsi_setup_scsi_cmnd(sdev, req);
1565 
1566 	if (sdev->handler && sdev->handler->prep_fn) {
1567 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1568 
1569 		if (ret != BLK_STS_OK)
1570 			return ret;
1571 	}
1572 
1573 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1574 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1575 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1576 }
1577 
1578 void scsi_done(struct scsi_cmnd *cmd)
1579 {
1580 	switch (cmd->submitter) {
1581 	case SUBMITTED_BY_BLOCK_LAYER:
1582 		break;
1583 	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1584 		return scsi_eh_done(cmd);
1585 	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1586 		return;
1587 	}
1588 
1589 	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1590 		return;
1591 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1592 		return;
1593 	trace_scsi_dispatch_cmd_done(cmd);
1594 	blk_mq_complete_request(scsi_cmd_to_rq(cmd));
1595 }
1596 EXPORT_SYMBOL(scsi_done);
1597 
1598 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1599 {
1600 	struct scsi_device *sdev = q->queuedata;
1601 
1602 	sbitmap_put(&sdev->budget_map, budget_token);
1603 }
1604 
1605 static int scsi_mq_get_budget(struct request_queue *q)
1606 {
1607 	struct scsi_device *sdev = q->queuedata;
1608 	int token = scsi_dev_queue_ready(q, sdev);
1609 
1610 	if (token >= 0)
1611 		return token;
1612 
1613 	atomic_inc(&sdev->restarts);
1614 
1615 	/*
1616 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1617 	 * .restarts must be incremented before .device_busy is read because the
1618 	 * code in scsi_run_queue_async() depends on the order of these operations.
1619 	 */
1620 	smp_mb__after_atomic();
1621 
1622 	/*
1623 	 * If all in-flight requests originated from this LUN are completed
1624 	 * before reading .device_busy, sdev->device_busy will be observed as
1625 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1626 	 * soon. Otherwise, completion of one of these requests will observe
1627 	 * the .restarts flag, and the request queue will be run for handling
1628 	 * this request, see scsi_end_request().
1629 	 */
1630 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1631 				!scsi_device_blocked(sdev)))
1632 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1633 	return -1;
1634 }
1635 
1636 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1637 {
1638 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1639 
1640 	cmd->budget_token = token;
1641 }
1642 
1643 static int scsi_mq_get_rq_budget_token(struct request *req)
1644 {
1645 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1646 
1647 	return cmd->budget_token;
1648 }
1649 
1650 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1651 			 const struct blk_mq_queue_data *bd)
1652 {
1653 	struct request *req = bd->rq;
1654 	struct request_queue *q = req->q;
1655 	struct scsi_device *sdev = q->queuedata;
1656 	struct Scsi_Host *shost = sdev->host;
1657 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1658 	blk_status_t ret;
1659 	int reason;
1660 
1661 	WARN_ON_ONCE(cmd->budget_token < 0);
1662 
1663 	/*
1664 	 * If the device is not in running state we will reject some or all
1665 	 * commands.
1666 	 */
1667 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1668 		ret = scsi_device_state_check(sdev, req);
1669 		if (ret != BLK_STS_OK)
1670 			goto out_put_budget;
1671 	}
1672 
1673 	ret = BLK_STS_RESOURCE;
1674 	if (!scsi_target_queue_ready(shost, sdev))
1675 		goto out_put_budget;
1676 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1677 		goto out_dec_target_busy;
1678 
1679 	if (!(req->rq_flags & RQF_DONTPREP)) {
1680 		ret = scsi_prepare_cmd(req);
1681 		if (ret != BLK_STS_OK)
1682 			goto out_dec_host_busy;
1683 		req->rq_flags |= RQF_DONTPREP;
1684 	} else {
1685 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1686 	}
1687 
1688 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1689 	if (sdev->simple_tags)
1690 		cmd->flags |= SCMD_TAGGED;
1691 	if (bd->last)
1692 		cmd->flags |= SCMD_LAST;
1693 
1694 	scsi_set_resid(cmd, 0);
1695 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1696 	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1697 	cmd->scsi_done = scsi_done;
1698 
1699 	blk_mq_start_request(req);
1700 	reason = scsi_dispatch_cmd(cmd);
1701 	if (reason) {
1702 		scsi_set_blocked(cmd, reason);
1703 		ret = BLK_STS_RESOURCE;
1704 		goto out_dec_host_busy;
1705 	}
1706 
1707 	return BLK_STS_OK;
1708 
1709 out_dec_host_busy:
1710 	scsi_dec_host_busy(shost, cmd);
1711 out_dec_target_busy:
1712 	if (scsi_target(sdev)->can_queue > 0)
1713 		atomic_dec(&scsi_target(sdev)->target_busy);
1714 out_put_budget:
1715 	scsi_mq_put_budget(q, cmd->budget_token);
1716 	cmd->budget_token = -1;
1717 	switch (ret) {
1718 	case BLK_STS_OK:
1719 		break;
1720 	case BLK_STS_RESOURCE:
1721 	case BLK_STS_ZONE_RESOURCE:
1722 		if (scsi_device_blocked(sdev))
1723 			ret = BLK_STS_DEV_RESOURCE;
1724 		break;
1725 	case BLK_STS_AGAIN:
1726 		scsi_req(req)->result = DID_BUS_BUSY << 16;
1727 		if (req->rq_flags & RQF_DONTPREP)
1728 			scsi_mq_uninit_cmd(cmd);
1729 		break;
1730 	default:
1731 		if (unlikely(!scsi_device_online(sdev)))
1732 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1733 		else
1734 			scsi_req(req)->result = DID_ERROR << 16;
1735 		/*
1736 		 * Make sure to release all allocated resources when
1737 		 * we hit an error, as we will never see this command
1738 		 * again.
1739 		 */
1740 		if (req->rq_flags & RQF_DONTPREP)
1741 			scsi_mq_uninit_cmd(cmd);
1742 		scsi_run_queue_async(sdev);
1743 		break;
1744 	}
1745 	return ret;
1746 }
1747 
1748 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1749 		bool reserved)
1750 {
1751 	if (reserved)
1752 		return BLK_EH_RESET_TIMER;
1753 	return scsi_times_out(req);
1754 }
1755 
1756 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1757 				unsigned int hctx_idx, unsigned int numa_node)
1758 {
1759 	struct Scsi_Host *shost = set->driver_data;
1760 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1761 	struct scatterlist *sg;
1762 	int ret = 0;
1763 
1764 	cmd->sense_buffer =
1765 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1766 	if (!cmd->sense_buffer)
1767 		return -ENOMEM;
1768 	cmd->req.sense = cmd->sense_buffer;
1769 
1770 	if (scsi_host_get_prot(shost)) {
1771 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1772 			shost->hostt->cmd_size;
1773 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1774 	}
1775 
1776 	if (shost->hostt->init_cmd_priv) {
1777 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1778 		if (ret < 0)
1779 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1780 	}
1781 
1782 	return ret;
1783 }
1784 
1785 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1786 				 unsigned int hctx_idx)
1787 {
1788 	struct Scsi_Host *shost = set->driver_data;
1789 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1790 
1791 	if (shost->hostt->exit_cmd_priv)
1792 		shost->hostt->exit_cmd_priv(shost, cmd);
1793 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1794 }
1795 
1796 
1797 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx)
1798 {
1799 	struct Scsi_Host *shost = hctx->driver_data;
1800 
1801 	if (shost->hostt->mq_poll)
1802 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1803 
1804 	return 0;
1805 }
1806 
1807 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1808 			  unsigned int hctx_idx)
1809 {
1810 	struct Scsi_Host *shost = data;
1811 
1812 	hctx->driver_data = shost;
1813 	return 0;
1814 }
1815 
1816 static int scsi_map_queues(struct blk_mq_tag_set *set)
1817 {
1818 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1819 
1820 	if (shost->hostt->map_queues)
1821 		return shost->hostt->map_queues(shost);
1822 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1823 }
1824 
1825 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1826 {
1827 	struct device *dev = shost->dma_dev;
1828 
1829 	/*
1830 	 * this limit is imposed by hardware restrictions
1831 	 */
1832 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1833 					SG_MAX_SEGMENTS));
1834 
1835 	if (scsi_host_prot_dma(shost)) {
1836 		shost->sg_prot_tablesize =
1837 			min_not_zero(shost->sg_prot_tablesize,
1838 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1839 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1840 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1841 	}
1842 
1843 	if (dev->dma_mask) {
1844 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1845 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1846 	}
1847 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1848 	blk_queue_segment_boundary(q, shost->dma_boundary);
1849 	dma_set_seg_boundary(dev, shost->dma_boundary);
1850 
1851 	blk_queue_max_segment_size(q, shost->max_segment_size);
1852 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1853 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1854 
1855 	/*
1856 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1857 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1858 	 * which is set by the platform.
1859 	 *
1860 	 * Devices that require a bigger alignment can increase it later.
1861 	 */
1862 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1863 }
1864 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1865 
1866 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1867 	.get_budget	= scsi_mq_get_budget,
1868 	.put_budget	= scsi_mq_put_budget,
1869 	.queue_rq	= scsi_queue_rq,
1870 	.complete	= scsi_complete,
1871 	.timeout	= scsi_timeout,
1872 #ifdef CONFIG_BLK_DEBUG_FS
1873 	.show_rq	= scsi_show_rq,
1874 #endif
1875 	.init_request	= scsi_mq_init_request,
1876 	.exit_request	= scsi_mq_exit_request,
1877 	.initialize_rq_fn = scsi_initialize_rq,
1878 	.cleanup_rq	= scsi_cleanup_rq,
1879 	.busy		= scsi_mq_lld_busy,
1880 	.map_queues	= scsi_map_queues,
1881 	.init_hctx	= scsi_init_hctx,
1882 	.poll		= scsi_mq_poll,
1883 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1884 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1885 };
1886 
1887 
1888 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1889 {
1890 	struct Scsi_Host *shost = hctx->driver_data;
1891 
1892 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1893 }
1894 
1895 static const struct blk_mq_ops scsi_mq_ops = {
1896 	.get_budget	= scsi_mq_get_budget,
1897 	.put_budget	= scsi_mq_put_budget,
1898 	.queue_rq	= scsi_queue_rq,
1899 	.commit_rqs	= scsi_commit_rqs,
1900 	.complete	= scsi_complete,
1901 	.timeout	= scsi_timeout,
1902 #ifdef CONFIG_BLK_DEBUG_FS
1903 	.show_rq	= scsi_show_rq,
1904 #endif
1905 	.init_request	= scsi_mq_init_request,
1906 	.exit_request	= scsi_mq_exit_request,
1907 	.initialize_rq_fn = scsi_initialize_rq,
1908 	.cleanup_rq	= scsi_cleanup_rq,
1909 	.busy		= scsi_mq_lld_busy,
1910 	.map_queues	= scsi_map_queues,
1911 	.init_hctx	= scsi_init_hctx,
1912 	.poll		= scsi_mq_poll,
1913 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1914 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1915 };
1916 
1917 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1918 {
1919 	unsigned int cmd_size, sgl_size;
1920 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1921 
1922 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1923 				scsi_mq_inline_sgl_size(shost));
1924 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1925 	if (scsi_host_get_prot(shost))
1926 		cmd_size += sizeof(struct scsi_data_buffer) +
1927 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1928 
1929 	memset(tag_set, 0, sizeof(*tag_set));
1930 	if (shost->hostt->commit_rqs)
1931 		tag_set->ops = &scsi_mq_ops;
1932 	else
1933 		tag_set->ops = &scsi_mq_ops_no_commit;
1934 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1935 	tag_set->nr_maps = shost->nr_maps ? : 1;
1936 	tag_set->queue_depth = shost->can_queue;
1937 	tag_set->cmd_size = cmd_size;
1938 	tag_set->numa_node = NUMA_NO_NODE;
1939 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1940 	tag_set->flags |=
1941 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1942 	tag_set->driver_data = shost;
1943 	if (shost->host_tagset)
1944 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1945 
1946 	return blk_mq_alloc_tag_set(tag_set);
1947 }
1948 
1949 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1950 {
1951 	blk_mq_free_tag_set(&shost->tag_set);
1952 }
1953 
1954 /**
1955  * scsi_device_from_queue - return sdev associated with a request_queue
1956  * @q: The request queue to return the sdev from
1957  *
1958  * Return the sdev associated with a request queue or NULL if the
1959  * request_queue does not reference a SCSI device.
1960  */
1961 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1962 {
1963 	struct scsi_device *sdev = NULL;
1964 
1965 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1966 	    q->mq_ops == &scsi_mq_ops)
1967 		sdev = q->queuedata;
1968 	if (!sdev || !get_device(&sdev->sdev_gendev))
1969 		sdev = NULL;
1970 
1971 	return sdev;
1972 }
1973 
1974 /**
1975  * scsi_block_requests - Utility function used by low-level drivers to prevent
1976  * further commands from being queued to the device.
1977  * @shost:  host in question
1978  *
1979  * There is no timer nor any other means by which the requests get unblocked
1980  * other than the low-level driver calling scsi_unblock_requests().
1981  */
1982 void scsi_block_requests(struct Scsi_Host *shost)
1983 {
1984 	shost->host_self_blocked = 1;
1985 }
1986 EXPORT_SYMBOL(scsi_block_requests);
1987 
1988 /**
1989  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1990  * further commands to be queued to the device.
1991  * @shost:  host in question
1992  *
1993  * There is no timer nor any other means by which the requests get unblocked
1994  * other than the low-level driver calling scsi_unblock_requests(). This is done
1995  * as an API function so that changes to the internals of the scsi mid-layer
1996  * won't require wholesale changes to drivers that use this feature.
1997  */
1998 void scsi_unblock_requests(struct Scsi_Host *shost)
1999 {
2000 	shost->host_self_blocked = 0;
2001 	scsi_run_host_queues(shost);
2002 }
2003 EXPORT_SYMBOL(scsi_unblock_requests);
2004 
2005 void scsi_exit_queue(void)
2006 {
2007 	kmem_cache_destroy(scsi_sense_cache);
2008 }
2009 
2010 /**
2011  *	scsi_mode_select - issue a mode select
2012  *	@sdev:	SCSI device to be queried
2013  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2014  *	@sp:	Save page bit (0 == don't save, 1 == save)
2015  *	@modepage: mode page being requested
2016  *	@buffer: request buffer (may not be smaller than eight bytes)
2017  *	@len:	length of request buffer.
2018  *	@timeout: command timeout
2019  *	@retries: number of retries before failing
2020  *	@data: returns a structure abstracting the mode header data
2021  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2022  *		must be SCSI_SENSE_BUFFERSIZE big.
2023  *
2024  *	Returns zero if successful; negative error number or scsi
2025  *	status on error
2026  *
2027  */
2028 int
2029 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2030 		 unsigned char *buffer, int len, int timeout, int retries,
2031 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2032 {
2033 	unsigned char cmd[10];
2034 	unsigned char *real_buffer;
2035 	int ret;
2036 
2037 	memset(cmd, 0, sizeof(cmd));
2038 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2039 
2040 	/*
2041 	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2042 	 * and the mode select header cannot fit within the maximumm 255 bytes
2043 	 * of the MODE SELECT(6) command.
2044 	 */
2045 	if (sdev->use_10_for_ms ||
2046 	    len + 4 > 255 ||
2047 	    data->block_descriptor_length > 255) {
2048 		if (len > 65535 - 8)
2049 			return -EINVAL;
2050 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2051 		if (!real_buffer)
2052 			return -ENOMEM;
2053 		memcpy(real_buffer + 8, buffer, len);
2054 		len += 8;
2055 		real_buffer[0] = 0;
2056 		real_buffer[1] = 0;
2057 		real_buffer[2] = data->medium_type;
2058 		real_buffer[3] = data->device_specific;
2059 		real_buffer[4] = data->longlba ? 0x01 : 0;
2060 		real_buffer[5] = 0;
2061 		put_unaligned_be16(data->block_descriptor_length,
2062 				   &real_buffer[6]);
2063 
2064 		cmd[0] = MODE_SELECT_10;
2065 		put_unaligned_be16(len, &cmd[7]);
2066 	} else {
2067 		if (data->longlba)
2068 			return -EINVAL;
2069 
2070 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2071 		if (!real_buffer)
2072 			return -ENOMEM;
2073 		memcpy(real_buffer + 4, buffer, len);
2074 		len += 4;
2075 		real_buffer[0] = 0;
2076 		real_buffer[1] = data->medium_type;
2077 		real_buffer[2] = data->device_specific;
2078 		real_buffer[3] = data->block_descriptor_length;
2079 
2080 		cmd[0] = MODE_SELECT;
2081 		cmd[4] = len;
2082 	}
2083 
2084 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2085 			       sshdr, timeout, retries, NULL);
2086 	kfree(real_buffer);
2087 	return ret;
2088 }
2089 EXPORT_SYMBOL_GPL(scsi_mode_select);
2090 
2091 /**
2092  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2093  *	@sdev:	SCSI device to be queried
2094  *	@dbd:	set to prevent mode sense from returning block descriptors
2095  *	@modepage: mode page being requested
2096  *	@buffer: request buffer (may not be smaller than eight bytes)
2097  *	@len:	length of request buffer.
2098  *	@timeout: command timeout
2099  *	@retries: number of retries before failing
2100  *	@data: returns a structure abstracting the mode header data
2101  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2102  *		must be SCSI_SENSE_BUFFERSIZE big.
2103  *
2104  *	Returns zero if successful, or a negative error number on failure
2105  */
2106 int
2107 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2108 		  unsigned char *buffer, int len, int timeout, int retries,
2109 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2110 {
2111 	unsigned char cmd[12];
2112 	int use_10_for_ms;
2113 	int header_length;
2114 	int result, retry_count = retries;
2115 	struct scsi_sense_hdr my_sshdr;
2116 
2117 	memset(data, 0, sizeof(*data));
2118 	memset(&cmd[0], 0, 12);
2119 
2120 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2121 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2122 	cmd[2] = modepage;
2123 
2124 	/* caller might not be interested in sense, but we need it */
2125 	if (!sshdr)
2126 		sshdr = &my_sshdr;
2127 
2128  retry:
2129 	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2130 
2131 	if (use_10_for_ms) {
2132 		if (len < 8 || len > 65535)
2133 			return -EINVAL;
2134 
2135 		cmd[0] = MODE_SENSE_10;
2136 		put_unaligned_be16(len, &cmd[7]);
2137 		header_length = 8;
2138 	} else {
2139 		if (len < 4)
2140 			return -EINVAL;
2141 
2142 		cmd[0] = MODE_SENSE;
2143 		cmd[4] = len;
2144 		header_length = 4;
2145 	}
2146 
2147 	memset(buffer, 0, len);
2148 
2149 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2150 				  sshdr, timeout, retries, NULL);
2151 	if (result < 0)
2152 		return result;
2153 
2154 	/* This code looks awful: what it's doing is making sure an
2155 	 * ILLEGAL REQUEST sense return identifies the actual command
2156 	 * byte as the problem.  MODE_SENSE commands can return
2157 	 * ILLEGAL REQUEST if the code page isn't supported */
2158 
2159 	if (!scsi_status_is_good(result)) {
2160 		if (scsi_sense_valid(sshdr)) {
2161 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2162 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2163 				/*
2164 				 * Invalid command operation code: retry using
2165 				 * MODE SENSE(6) if this was a MODE SENSE(10)
2166 				 * request, except if the request mode page is
2167 				 * too large for MODE SENSE single byte
2168 				 * allocation length field.
2169 				 */
2170 				if (use_10_for_ms) {
2171 					if (len > 255)
2172 						return -EIO;
2173 					sdev->use_10_for_ms = 0;
2174 					goto retry;
2175 				}
2176 			}
2177 			if (scsi_status_is_check_condition(result) &&
2178 			    sshdr->sense_key == UNIT_ATTENTION &&
2179 			    retry_count) {
2180 				retry_count--;
2181 				goto retry;
2182 			}
2183 		}
2184 		return -EIO;
2185 	}
2186 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2187 		     (modepage == 6 || modepage == 8))) {
2188 		/* Initio breakage? */
2189 		header_length = 0;
2190 		data->length = 13;
2191 		data->medium_type = 0;
2192 		data->device_specific = 0;
2193 		data->longlba = 0;
2194 		data->block_descriptor_length = 0;
2195 	} else if (use_10_for_ms) {
2196 		data->length = get_unaligned_be16(&buffer[0]) + 2;
2197 		data->medium_type = buffer[2];
2198 		data->device_specific = buffer[3];
2199 		data->longlba = buffer[4] & 0x01;
2200 		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2201 	} else {
2202 		data->length = buffer[0] + 1;
2203 		data->medium_type = buffer[1];
2204 		data->device_specific = buffer[2];
2205 		data->block_descriptor_length = buffer[3];
2206 	}
2207 	data->header_length = header_length;
2208 
2209 	return 0;
2210 }
2211 EXPORT_SYMBOL(scsi_mode_sense);
2212 
2213 /**
2214  *	scsi_test_unit_ready - test if unit is ready
2215  *	@sdev:	scsi device to change the state of.
2216  *	@timeout: command timeout
2217  *	@retries: number of retries before failing
2218  *	@sshdr: outpout pointer for decoded sense information.
2219  *
2220  *	Returns zero if unsuccessful or an error if TUR failed.  For
2221  *	removable media, UNIT_ATTENTION sets ->changed flag.
2222  **/
2223 int
2224 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2225 		     struct scsi_sense_hdr *sshdr)
2226 {
2227 	char cmd[] = {
2228 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2229 	};
2230 	int result;
2231 
2232 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2233 	do {
2234 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2235 					  timeout, 1, NULL);
2236 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2237 		    sshdr->sense_key == UNIT_ATTENTION)
2238 			sdev->changed = 1;
2239 	} while (scsi_sense_valid(sshdr) &&
2240 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2241 
2242 	return result;
2243 }
2244 EXPORT_SYMBOL(scsi_test_unit_ready);
2245 
2246 /**
2247  *	scsi_device_set_state - Take the given device through the device state model.
2248  *	@sdev:	scsi device to change the state of.
2249  *	@state:	state to change to.
2250  *
2251  *	Returns zero if successful or an error if the requested
2252  *	transition is illegal.
2253  */
2254 int
2255 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2256 {
2257 	enum scsi_device_state oldstate = sdev->sdev_state;
2258 
2259 	if (state == oldstate)
2260 		return 0;
2261 
2262 	switch (state) {
2263 	case SDEV_CREATED:
2264 		switch (oldstate) {
2265 		case SDEV_CREATED_BLOCK:
2266 			break;
2267 		default:
2268 			goto illegal;
2269 		}
2270 		break;
2271 
2272 	case SDEV_RUNNING:
2273 		switch (oldstate) {
2274 		case SDEV_CREATED:
2275 		case SDEV_OFFLINE:
2276 		case SDEV_TRANSPORT_OFFLINE:
2277 		case SDEV_QUIESCE:
2278 		case SDEV_BLOCK:
2279 			break;
2280 		default:
2281 			goto illegal;
2282 		}
2283 		break;
2284 
2285 	case SDEV_QUIESCE:
2286 		switch (oldstate) {
2287 		case SDEV_RUNNING:
2288 		case SDEV_OFFLINE:
2289 		case SDEV_TRANSPORT_OFFLINE:
2290 			break;
2291 		default:
2292 			goto illegal;
2293 		}
2294 		break;
2295 
2296 	case SDEV_OFFLINE:
2297 	case SDEV_TRANSPORT_OFFLINE:
2298 		switch (oldstate) {
2299 		case SDEV_CREATED:
2300 		case SDEV_RUNNING:
2301 		case SDEV_QUIESCE:
2302 		case SDEV_BLOCK:
2303 			break;
2304 		default:
2305 			goto illegal;
2306 		}
2307 		break;
2308 
2309 	case SDEV_BLOCK:
2310 		switch (oldstate) {
2311 		case SDEV_RUNNING:
2312 		case SDEV_CREATED_BLOCK:
2313 		case SDEV_QUIESCE:
2314 		case SDEV_OFFLINE:
2315 			break;
2316 		default:
2317 			goto illegal;
2318 		}
2319 		break;
2320 
2321 	case SDEV_CREATED_BLOCK:
2322 		switch (oldstate) {
2323 		case SDEV_CREATED:
2324 			break;
2325 		default:
2326 			goto illegal;
2327 		}
2328 		break;
2329 
2330 	case SDEV_CANCEL:
2331 		switch (oldstate) {
2332 		case SDEV_CREATED:
2333 		case SDEV_RUNNING:
2334 		case SDEV_QUIESCE:
2335 		case SDEV_OFFLINE:
2336 		case SDEV_TRANSPORT_OFFLINE:
2337 			break;
2338 		default:
2339 			goto illegal;
2340 		}
2341 		break;
2342 
2343 	case SDEV_DEL:
2344 		switch (oldstate) {
2345 		case SDEV_CREATED:
2346 		case SDEV_RUNNING:
2347 		case SDEV_OFFLINE:
2348 		case SDEV_TRANSPORT_OFFLINE:
2349 		case SDEV_CANCEL:
2350 		case SDEV_BLOCK:
2351 		case SDEV_CREATED_BLOCK:
2352 			break;
2353 		default:
2354 			goto illegal;
2355 		}
2356 		break;
2357 
2358 	}
2359 	sdev->offline_already = false;
2360 	sdev->sdev_state = state;
2361 	return 0;
2362 
2363  illegal:
2364 	SCSI_LOG_ERROR_RECOVERY(1,
2365 				sdev_printk(KERN_ERR, sdev,
2366 					    "Illegal state transition %s->%s",
2367 					    scsi_device_state_name(oldstate),
2368 					    scsi_device_state_name(state))
2369 				);
2370 	return -EINVAL;
2371 }
2372 EXPORT_SYMBOL(scsi_device_set_state);
2373 
2374 /**
2375  *	scsi_evt_emit - emit a single SCSI device uevent
2376  *	@sdev: associated SCSI device
2377  *	@evt: event to emit
2378  *
2379  *	Send a single uevent (scsi_event) to the associated scsi_device.
2380  */
2381 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2382 {
2383 	int idx = 0;
2384 	char *envp[3];
2385 
2386 	switch (evt->evt_type) {
2387 	case SDEV_EVT_MEDIA_CHANGE:
2388 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2389 		break;
2390 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2391 		scsi_rescan_device(&sdev->sdev_gendev);
2392 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2393 		break;
2394 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2395 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2396 		break;
2397 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2398 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2399 		break;
2400 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2401 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2402 		break;
2403 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2404 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2405 		break;
2406 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2407 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2408 		break;
2409 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2410 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2411 		break;
2412 	default:
2413 		/* do nothing */
2414 		break;
2415 	}
2416 
2417 	envp[idx++] = NULL;
2418 
2419 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2420 }
2421 
2422 /**
2423  *	scsi_evt_thread - send a uevent for each scsi event
2424  *	@work: work struct for scsi_device
2425  *
2426  *	Dispatch queued events to their associated scsi_device kobjects
2427  *	as uevents.
2428  */
2429 void scsi_evt_thread(struct work_struct *work)
2430 {
2431 	struct scsi_device *sdev;
2432 	enum scsi_device_event evt_type;
2433 	LIST_HEAD(event_list);
2434 
2435 	sdev = container_of(work, struct scsi_device, event_work);
2436 
2437 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2438 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2439 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2440 
2441 	while (1) {
2442 		struct scsi_event *evt;
2443 		struct list_head *this, *tmp;
2444 		unsigned long flags;
2445 
2446 		spin_lock_irqsave(&sdev->list_lock, flags);
2447 		list_splice_init(&sdev->event_list, &event_list);
2448 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2449 
2450 		if (list_empty(&event_list))
2451 			break;
2452 
2453 		list_for_each_safe(this, tmp, &event_list) {
2454 			evt = list_entry(this, struct scsi_event, node);
2455 			list_del(&evt->node);
2456 			scsi_evt_emit(sdev, evt);
2457 			kfree(evt);
2458 		}
2459 	}
2460 }
2461 
2462 /**
2463  * 	sdev_evt_send - send asserted event to uevent thread
2464  *	@sdev: scsi_device event occurred on
2465  *	@evt: event to send
2466  *
2467  *	Assert scsi device event asynchronously.
2468  */
2469 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2470 {
2471 	unsigned long flags;
2472 
2473 #if 0
2474 	/* FIXME: currently this check eliminates all media change events
2475 	 * for polled devices.  Need to update to discriminate between AN
2476 	 * and polled events */
2477 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2478 		kfree(evt);
2479 		return;
2480 	}
2481 #endif
2482 
2483 	spin_lock_irqsave(&sdev->list_lock, flags);
2484 	list_add_tail(&evt->node, &sdev->event_list);
2485 	schedule_work(&sdev->event_work);
2486 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2487 }
2488 EXPORT_SYMBOL_GPL(sdev_evt_send);
2489 
2490 /**
2491  * 	sdev_evt_alloc - allocate a new scsi event
2492  *	@evt_type: type of event to allocate
2493  *	@gfpflags: GFP flags for allocation
2494  *
2495  *	Allocates and returns a new scsi_event.
2496  */
2497 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2498 				  gfp_t gfpflags)
2499 {
2500 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2501 	if (!evt)
2502 		return NULL;
2503 
2504 	evt->evt_type = evt_type;
2505 	INIT_LIST_HEAD(&evt->node);
2506 
2507 	/* evt_type-specific initialization, if any */
2508 	switch (evt_type) {
2509 	case SDEV_EVT_MEDIA_CHANGE:
2510 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2511 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2512 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2513 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2514 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2515 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2516 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2517 	default:
2518 		/* do nothing */
2519 		break;
2520 	}
2521 
2522 	return evt;
2523 }
2524 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2525 
2526 /**
2527  * 	sdev_evt_send_simple - send asserted event to uevent thread
2528  *	@sdev: scsi_device event occurred on
2529  *	@evt_type: type of event to send
2530  *	@gfpflags: GFP flags for allocation
2531  *
2532  *	Assert scsi device event asynchronously, given an event type.
2533  */
2534 void sdev_evt_send_simple(struct scsi_device *sdev,
2535 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2536 {
2537 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2538 	if (!evt) {
2539 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2540 			    evt_type);
2541 		return;
2542 	}
2543 
2544 	sdev_evt_send(sdev, evt);
2545 }
2546 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2547 
2548 /**
2549  *	scsi_device_quiesce - Block all commands except power management.
2550  *	@sdev:	scsi device to quiesce.
2551  *
2552  *	This works by trying to transition to the SDEV_QUIESCE state
2553  *	(which must be a legal transition).  When the device is in this
2554  *	state, only power management requests will be accepted, all others will
2555  *	be deferred.
2556  *
2557  *	Must be called with user context, may sleep.
2558  *
2559  *	Returns zero if unsuccessful or an error if not.
2560  */
2561 int
2562 scsi_device_quiesce(struct scsi_device *sdev)
2563 {
2564 	struct request_queue *q = sdev->request_queue;
2565 	int err;
2566 
2567 	/*
2568 	 * It is allowed to call scsi_device_quiesce() multiple times from
2569 	 * the same context but concurrent scsi_device_quiesce() calls are
2570 	 * not allowed.
2571 	 */
2572 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2573 
2574 	if (sdev->quiesced_by == current)
2575 		return 0;
2576 
2577 	blk_set_pm_only(q);
2578 
2579 	blk_mq_freeze_queue(q);
2580 	/*
2581 	 * Ensure that the effect of blk_set_pm_only() will be visible
2582 	 * for percpu_ref_tryget() callers that occur after the queue
2583 	 * unfreeze even if the queue was already frozen before this function
2584 	 * was called. See also https://lwn.net/Articles/573497/.
2585 	 */
2586 	synchronize_rcu();
2587 	blk_mq_unfreeze_queue(q);
2588 
2589 	mutex_lock(&sdev->state_mutex);
2590 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2591 	if (err == 0)
2592 		sdev->quiesced_by = current;
2593 	else
2594 		blk_clear_pm_only(q);
2595 	mutex_unlock(&sdev->state_mutex);
2596 
2597 	return err;
2598 }
2599 EXPORT_SYMBOL(scsi_device_quiesce);
2600 
2601 /**
2602  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2603  *	@sdev:	scsi device to resume.
2604  *
2605  *	Moves the device from quiesced back to running and restarts the
2606  *	queues.
2607  *
2608  *	Must be called with user context, may sleep.
2609  */
2610 void scsi_device_resume(struct scsi_device *sdev)
2611 {
2612 	/* check if the device state was mutated prior to resume, and if
2613 	 * so assume the state is being managed elsewhere (for example
2614 	 * device deleted during suspend)
2615 	 */
2616 	mutex_lock(&sdev->state_mutex);
2617 	if (sdev->sdev_state == SDEV_QUIESCE)
2618 		scsi_device_set_state(sdev, SDEV_RUNNING);
2619 	if (sdev->quiesced_by) {
2620 		sdev->quiesced_by = NULL;
2621 		blk_clear_pm_only(sdev->request_queue);
2622 	}
2623 	mutex_unlock(&sdev->state_mutex);
2624 }
2625 EXPORT_SYMBOL(scsi_device_resume);
2626 
2627 static void
2628 device_quiesce_fn(struct scsi_device *sdev, void *data)
2629 {
2630 	scsi_device_quiesce(sdev);
2631 }
2632 
2633 void
2634 scsi_target_quiesce(struct scsi_target *starget)
2635 {
2636 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2637 }
2638 EXPORT_SYMBOL(scsi_target_quiesce);
2639 
2640 static void
2641 device_resume_fn(struct scsi_device *sdev, void *data)
2642 {
2643 	scsi_device_resume(sdev);
2644 }
2645 
2646 void
2647 scsi_target_resume(struct scsi_target *starget)
2648 {
2649 	starget_for_each_device(starget, NULL, device_resume_fn);
2650 }
2651 EXPORT_SYMBOL(scsi_target_resume);
2652 
2653 /**
2654  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2655  * @sdev: device to block
2656  *
2657  * Pause SCSI command processing on the specified device. Does not sleep.
2658  *
2659  * Returns zero if successful or a negative error code upon failure.
2660  *
2661  * Notes:
2662  * This routine transitions the device to the SDEV_BLOCK state (which must be
2663  * a legal transition). When the device is in this state, command processing
2664  * is paused until the device leaves the SDEV_BLOCK state. See also
2665  * scsi_internal_device_unblock_nowait().
2666  */
2667 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2668 {
2669 	struct request_queue *q = sdev->request_queue;
2670 	int err = 0;
2671 
2672 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2673 	if (err) {
2674 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2675 
2676 		if (err)
2677 			return err;
2678 	}
2679 
2680 	/*
2681 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2682 	 * block layer from calling the midlayer with this device's
2683 	 * request queue.
2684 	 */
2685 	blk_mq_quiesce_queue_nowait(q);
2686 	return 0;
2687 }
2688 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2689 
2690 /**
2691  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2692  * @sdev: device to block
2693  *
2694  * Pause SCSI command processing on the specified device and wait until all
2695  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2696  *
2697  * Returns zero if successful or a negative error code upon failure.
2698  *
2699  * Note:
2700  * This routine transitions the device to the SDEV_BLOCK state (which must be
2701  * a legal transition). When the device is in this state, command processing
2702  * is paused until the device leaves the SDEV_BLOCK state. See also
2703  * scsi_internal_device_unblock().
2704  */
2705 static int scsi_internal_device_block(struct scsi_device *sdev)
2706 {
2707 	struct request_queue *q = sdev->request_queue;
2708 	int err;
2709 
2710 	mutex_lock(&sdev->state_mutex);
2711 	err = scsi_internal_device_block_nowait(sdev);
2712 	if (err == 0)
2713 		blk_mq_quiesce_queue(q);
2714 	mutex_unlock(&sdev->state_mutex);
2715 
2716 	return err;
2717 }
2718 
2719 void scsi_start_queue(struct scsi_device *sdev)
2720 {
2721 	struct request_queue *q = sdev->request_queue;
2722 
2723 	blk_mq_unquiesce_queue(q);
2724 }
2725 
2726 /**
2727  * scsi_internal_device_unblock_nowait - resume a device after a block request
2728  * @sdev:	device to resume
2729  * @new_state:	state to set the device to after unblocking
2730  *
2731  * Restart the device queue for a previously suspended SCSI device. Does not
2732  * sleep.
2733  *
2734  * Returns zero if successful or a negative error code upon failure.
2735  *
2736  * Notes:
2737  * This routine transitions the device to the SDEV_RUNNING state or to one of
2738  * the offline states (which must be a legal transition) allowing the midlayer
2739  * to goose the queue for this device.
2740  */
2741 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2742 					enum scsi_device_state new_state)
2743 {
2744 	switch (new_state) {
2745 	case SDEV_RUNNING:
2746 	case SDEV_TRANSPORT_OFFLINE:
2747 		break;
2748 	default:
2749 		return -EINVAL;
2750 	}
2751 
2752 	/*
2753 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2754 	 * offlined states and goose the device queue if successful.
2755 	 */
2756 	switch (sdev->sdev_state) {
2757 	case SDEV_BLOCK:
2758 	case SDEV_TRANSPORT_OFFLINE:
2759 		sdev->sdev_state = new_state;
2760 		break;
2761 	case SDEV_CREATED_BLOCK:
2762 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2763 		    new_state == SDEV_OFFLINE)
2764 			sdev->sdev_state = new_state;
2765 		else
2766 			sdev->sdev_state = SDEV_CREATED;
2767 		break;
2768 	case SDEV_CANCEL:
2769 	case SDEV_OFFLINE:
2770 		break;
2771 	default:
2772 		return -EINVAL;
2773 	}
2774 	scsi_start_queue(sdev);
2775 
2776 	return 0;
2777 }
2778 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2779 
2780 /**
2781  * scsi_internal_device_unblock - resume a device after a block request
2782  * @sdev:	device to resume
2783  * @new_state:	state to set the device to after unblocking
2784  *
2785  * Restart the device queue for a previously suspended SCSI device. May sleep.
2786  *
2787  * Returns zero if successful or a negative error code upon failure.
2788  *
2789  * Notes:
2790  * This routine transitions the device to the SDEV_RUNNING state or to one of
2791  * the offline states (which must be a legal transition) allowing the midlayer
2792  * to goose the queue for this device.
2793  */
2794 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2795 					enum scsi_device_state new_state)
2796 {
2797 	int ret;
2798 
2799 	mutex_lock(&sdev->state_mutex);
2800 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2801 	mutex_unlock(&sdev->state_mutex);
2802 
2803 	return ret;
2804 }
2805 
2806 static void
2807 device_block(struct scsi_device *sdev, void *data)
2808 {
2809 	int ret;
2810 
2811 	ret = scsi_internal_device_block(sdev);
2812 
2813 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2814 		  dev_name(&sdev->sdev_gendev), ret);
2815 }
2816 
2817 static int
2818 target_block(struct device *dev, void *data)
2819 {
2820 	if (scsi_is_target_device(dev))
2821 		starget_for_each_device(to_scsi_target(dev), NULL,
2822 					device_block);
2823 	return 0;
2824 }
2825 
2826 void
2827 scsi_target_block(struct device *dev)
2828 {
2829 	if (scsi_is_target_device(dev))
2830 		starget_for_each_device(to_scsi_target(dev), NULL,
2831 					device_block);
2832 	else
2833 		device_for_each_child(dev, NULL, target_block);
2834 }
2835 EXPORT_SYMBOL_GPL(scsi_target_block);
2836 
2837 static void
2838 device_unblock(struct scsi_device *sdev, void *data)
2839 {
2840 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2841 }
2842 
2843 static int
2844 target_unblock(struct device *dev, void *data)
2845 {
2846 	if (scsi_is_target_device(dev))
2847 		starget_for_each_device(to_scsi_target(dev), data,
2848 					device_unblock);
2849 	return 0;
2850 }
2851 
2852 void
2853 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2854 {
2855 	if (scsi_is_target_device(dev))
2856 		starget_for_each_device(to_scsi_target(dev), &new_state,
2857 					device_unblock);
2858 	else
2859 		device_for_each_child(dev, &new_state, target_unblock);
2860 }
2861 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2862 
2863 int
2864 scsi_host_block(struct Scsi_Host *shost)
2865 {
2866 	struct scsi_device *sdev;
2867 	int ret = 0;
2868 
2869 	/*
2870 	 * Call scsi_internal_device_block_nowait so we can avoid
2871 	 * calling synchronize_rcu() for each LUN.
2872 	 */
2873 	shost_for_each_device(sdev, shost) {
2874 		mutex_lock(&sdev->state_mutex);
2875 		ret = scsi_internal_device_block_nowait(sdev);
2876 		mutex_unlock(&sdev->state_mutex);
2877 		if (ret) {
2878 			scsi_device_put(sdev);
2879 			break;
2880 		}
2881 	}
2882 
2883 	/*
2884 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2885 	 * calling synchronize_rcu() once is enough.
2886 	 */
2887 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2888 
2889 	if (!ret)
2890 		synchronize_rcu();
2891 
2892 	return ret;
2893 }
2894 EXPORT_SYMBOL_GPL(scsi_host_block);
2895 
2896 int
2897 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2898 {
2899 	struct scsi_device *sdev;
2900 	int ret = 0;
2901 
2902 	shost_for_each_device(sdev, shost) {
2903 		ret = scsi_internal_device_unblock(sdev, new_state);
2904 		if (ret) {
2905 			scsi_device_put(sdev);
2906 			break;
2907 		}
2908 	}
2909 	return ret;
2910 }
2911 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2912 
2913 /**
2914  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2915  * @sgl:	scatter-gather list
2916  * @sg_count:	number of segments in sg
2917  * @offset:	offset in bytes into sg, on return offset into the mapped area
2918  * @len:	bytes to map, on return number of bytes mapped
2919  *
2920  * Returns virtual address of the start of the mapped page
2921  */
2922 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2923 			  size_t *offset, size_t *len)
2924 {
2925 	int i;
2926 	size_t sg_len = 0, len_complete = 0;
2927 	struct scatterlist *sg;
2928 	struct page *page;
2929 
2930 	WARN_ON(!irqs_disabled());
2931 
2932 	for_each_sg(sgl, sg, sg_count, i) {
2933 		len_complete = sg_len; /* Complete sg-entries */
2934 		sg_len += sg->length;
2935 		if (sg_len > *offset)
2936 			break;
2937 	}
2938 
2939 	if (unlikely(i == sg_count)) {
2940 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2941 			"elements %d\n",
2942 		       __func__, sg_len, *offset, sg_count);
2943 		WARN_ON(1);
2944 		return NULL;
2945 	}
2946 
2947 	/* Offset starting from the beginning of first page in this sg-entry */
2948 	*offset = *offset - len_complete + sg->offset;
2949 
2950 	/* Assumption: contiguous pages can be accessed as "page + i" */
2951 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2952 	*offset &= ~PAGE_MASK;
2953 
2954 	/* Bytes in this sg-entry from *offset to the end of the page */
2955 	sg_len = PAGE_SIZE - *offset;
2956 	if (*len > sg_len)
2957 		*len = sg_len;
2958 
2959 	return kmap_atomic(page);
2960 }
2961 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2962 
2963 /**
2964  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2965  * @virt:	virtual address to be unmapped
2966  */
2967 void scsi_kunmap_atomic_sg(void *virt)
2968 {
2969 	kunmap_atomic(virt);
2970 }
2971 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2972 
2973 void sdev_disable_disk_events(struct scsi_device *sdev)
2974 {
2975 	atomic_inc(&sdev->disk_events_disable_depth);
2976 }
2977 EXPORT_SYMBOL(sdev_disable_disk_events);
2978 
2979 void sdev_enable_disk_events(struct scsi_device *sdev)
2980 {
2981 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2982 		return;
2983 	atomic_dec(&sdev->disk_events_disable_depth);
2984 }
2985 EXPORT_SYMBOL(sdev_enable_disk_events);
2986 
2987 static unsigned char designator_prio(const unsigned char *d)
2988 {
2989 	if (d[1] & 0x30)
2990 		/* not associated with LUN */
2991 		return 0;
2992 
2993 	if (d[3] == 0)
2994 		/* invalid length */
2995 		return 0;
2996 
2997 	/*
2998 	 * Order of preference for lun descriptor:
2999 	 * - SCSI name string
3000 	 * - NAA IEEE Registered Extended
3001 	 * - EUI-64 based 16-byte
3002 	 * - EUI-64 based 12-byte
3003 	 * - NAA IEEE Registered
3004 	 * - NAA IEEE Extended
3005 	 * - EUI-64 based 8-byte
3006 	 * - SCSI name string (truncated)
3007 	 * - T10 Vendor ID
3008 	 * as longer descriptors reduce the likelyhood
3009 	 * of identification clashes.
3010 	 */
3011 
3012 	switch (d[1] & 0xf) {
3013 	case 8:
3014 		/* SCSI name string, variable-length UTF-8 */
3015 		return 9;
3016 	case 3:
3017 		switch (d[4] >> 4) {
3018 		case 6:
3019 			/* NAA registered extended */
3020 			return 8;
3021 		case 5:
3022 			/* NAA registered */
3023 			return 5;
3024 		case 4:
3025 			/* NAA extended */
3026 			return 4;
3027 		case 3:
3028 			/* NAA locally assigned */
3029 			return 1;
3030 		default:
3031 			break;
3032 		}
3033 		break;
3034 	case 2:
3035 		switch (d[3]) {
3036 		case 16:
3037 			/* EUI64-based, 16 byte */
3038 			return 7;
3039 		case 12:
3040 			/* EUI64-based, 12 byte */
3041 			return 6;
3042 		case 8:
3043 			/* EUI64-based, 8 byte */
3044 			return 3;
3045 		default:
3046 			break;
3047 		}
3048 		break;
3049 	case 1:
3050 		/* T10 vendor ID */
3051 		return 1;
3052 	default:
3053 		break;
3054 	}
3055 
3056 	return 0;
3057 }
3058 
3059 /**
3060  * scsi_vpd_lun_id - return a unique device identification
3061  * @sdev: SCSI device
3062  * @id:   buffer for the identification
3063  * @id_len:  length of the buffer
3064  *
3065  * Copies a unique device identification into @id based
3066  * on the information in the VPD page 0x83 of the device.
3067  * The string will be formatted as a SCSI name string.
3068  *
3069  * Returns the length of the identification or error on failure.
3070  * If the identifier is longer than the supplied buffer the actual
3071  * identifier length is returned and the buffer is not zero-padded.
3072  */
3073 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3074 {
3075 	u8 cur_id_prio = 0;
3076 	u8 cur_id_size = 0;
3077 	const unsigned char *d, *cur_id_str;
3078 	const struct scsi_vpd *vpd_pg83;
3079 	int id_size = -EINVAL;
3080 
3081 	rcu_read_lock();
3082 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3083 	if (!vpd_pg83) {
3084 		rcu_read_unlock();
3085 		return -ENXIO;
3086 	}
3087 
3088 	/* The id string must be at least 20 bytes + terminating NULL byte */
3089 	if (id_len < 21) {
3090 		rcu_read_unlock();
3091 		return -EINVAL;
3092 	}
3093 
3094 	memset(id, 0, id_len);
3095 	for (d = vpd_pg83->data + 4;
3096 	     d < vpd_pg83->data + vpd_pg83->len;
3097 	     d += d[3] + 4) {
3098 		u8 prio = designator_prio(d);
3099 
3100 		if (prio == 0 || cur_id_prio > prio)
3101 			continue;
3102 
3103 		switch (d[1] & 0xf) {
3104 		case 0x1:
3105 			/* T10 Vendor ID */
3106 			if (cur_id_size > d[3])
3107 				break;
3108 			cur_id_prio = prio;
3109 			cur_id_size = d[3];
3110 			if (cur_id_size + 4 > id_len)
3111 				cur_id_size = id_len - 4;
3112 			cur_id_str = d + 4;
3113 			id_size = snprintf(id, id_len, "t10.%*pE",
3114 					   cur_id_size, cur_id_str);
3115 			break;
3116 		case 0x2:
3117 			/* EUI-64 */
3118 			cur_id_prio = prio;
3119 			cur_id_size = d[3];
3120 			cur_id_str = d + 4;
3121 			switch (cur_id_size) {
3122 			case 8:
3123 				id_size = snprintf(id, id_len,
3124 						   "eui.%8phN",
3125 						   cur_id_str);
3126 				break;
3127 			case 12:
3128 				id_size = snprintf(id, id_len,
3129 						   "eui.%12phN",
3130 						   cur_id_str);
3131 				break;
3132 			case 16:
3133 				id_size = snprintf(id, id_len,
3134 						   "eui.%16phN",
3135 						   cur_id_str);
3136 				break;
3137 			default:
3138 				break;
3139 			}
3140 			break;
3141 		case 0x3:
3142 			/* NAA */
3143 			cur_id_prio = prio;
3144 			cur_id_size = d[3];
3145 			cur_id_str = d + 4;
3146 			switch (cur_id_size) {
3147 			case 8:
3148 				id_size = snprintf(id, id_len,
3149 						   "naa.%8phN",
3150 						   cur_id_str);
3151 				break;
3152 			case 16:
3153 				id_size = snprintf(id, id_len,
3154 						   "naa.%16phN",
3155 						   cur_id_str);
3156 				break;
3157 			default:
3158 				break;
3159 			}
3160 			break;
3161 		case 0x8:
3162 			/* SCSI name string */
3163 			if (cur_id_size > d[3])
3164 				break;
3165 			/* Prefer others for truncated descriptor */
3166 			if (d[3] > id_len) {
3167 				prio = 2;
3168 				if (cur_id_prio > prio)
3169 					break;
3170 			}
3171 			cur_id_prio = prio;
3172 			cur_id_size = id_size = d[3];
3173 			cur_id_str = d + 4;
3174 			if (cur_id_size >= id_len)
3175 				cur_id_size = id_len - 1;
3176 			memcpy(id, cur_id_str, cur_id_size);
3177 			break;
3178 		default:
3179 			break;
3180 		}
3181 	}
3182 	rcu_read_unlock();
3183 
3184 	return id_size;
3185 }
3186 EXPORT_SYMBOL(scsi_vpd_lun_id);
3187 
3188 /*
3189  * scsi_vpd_tpg_id - return a target port group identifier
3190  * @sdev: SCSI device
3191  *
3192  * Returns the Target Port Group identifier from the information
3193  * froom VPD page 0x83 of the device.
3194  *
3195  * Returns the identifier or error on failure.
3196  */
3197 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3198 {
3199 	const unsigned char *d;
3200 	const struct scsi_vpd *vpd_pg83;
3201 	int group_id = -EAGAIN, rel_port = -1;
3202 
3203 	rcu_read_lock();
3204 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3205 	if (!vpd_pg83) {
3206 		rcu_read_unlock();
3207 		return -ENXIO;
3208 	}
3209 
3210 	d = vpd_pg83->data + 4;
3211 	while (d < vpd_pg83->data + vpd_pg83->len) {
3212 		switch (d[1] & 0xf) {
3213 		case 0x4:
3214 			/* Relative target port */
3215 			rel_port = get_unaligned_be16(&d[6]);
3216 			break;
3217 		case 0x5:
3218 			/* Target port group */
3219 			group_id = get_unaligned_be16(&d[6]);
3220 			break;
3221 		default:
3222 			break;
3223 		}
3224 		d += d[3] + 4;
3225 	}
3226 	rcu_read_unlock();
3227 
3228 	if (group_id >= 0 && rel_id && rel_port != -1)
3229 		*rel_id = rel_port;
3230 
3231 	return group_id;
3232 }
3233 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3234 
3235 /**
3236  * scsi_build_sense - build sense data for a command
3237  * @scmd:	scsi command for which the sense should be formatted
3238  * @desc:	Sense format (non-zero == descriptor format,
3239  *              0 == fixed format)
3240  * @key:	Sense key
3241  * @asc:	Additional sense code
3242  * @ascq:	Additional sense code qualifier
3243  *
3244  **/
3245 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3246 {
3247 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3248 	scmd->result = SAM_STAT_CHECK_CONDITION;
3249 }
3250 EXPORT_SYMBOL_GPL(scsi_build_sense);
3251