1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/ratelimit.h> 25 #include <asm/unaligned.h> 26 27 #include <scsi/scsi.h> 28 #include <scsi/scsi_cmnd.h> 29 #include <scsi/scsi_dbg.h> 30 #include <scsi/scsi_device.h> 31 #include <scsi/scsi_driver.h> 32 #include <scsi/scsi_eh.h> 33 #include <scsi/scsi_host.h> 34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 35 #include <scsi/scsi_dh.h> 36 37 #include <trace/events/scsi.h> 38 39 #include "scsi_debugfs.h" 40 #include "scsi_priv.h" 41 #include "scsi_logging.h" 42 43 /* 44 * Size of integrity metadata is usually small, 1 inline sg should 45 * cover normal cases. 46 */ 47 #ifdef CONFIG_ARCH_NO_SG_CHAIN 48 #define SCSI_INLINE_PROT_SG_CNT 0 49 #define SCSI_INLINE_SG_CNT 0 50 #else 51 #define SCSI_INLINE_PROT_SG_CNT 1 52 #define SCSI_INLINE_SG_CNT 2 53 #endif 54 55 static struct kmem_cache *scsi_sdb_cache; 56 static struct kmem_cache *scsi_sense_cache; 57 static struct kmem_cache *scsi_sense_isadma_cache; 58 static DEFINE_MUTEX(scsi_sense_cache_mutex); 59 60 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 61 62 static inline struct kmem_cache * 63 scsi_select_sense_cache(bool unchecked_isa_dma) 64 { 65 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 66 } 67 68 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 69 unsigned char *sense_buffer) 70 { 71 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 72 sense_buffer); 73 } 74 75 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 76 gfp_t gfp_mask, int numa_node) 77 { 78 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 79 gfp_mask, numa_node); 80 } 81 82 int scsi_init_sense_cache(struct Scsi_Host *shost) 83 { 84 struct kmem_cache *cache; 85 int ret = 0; 86 87 mutex_lock(&scsi_sense_cache_mutex); 88 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 89 if (cache) 90 goto exit; 91 92 if (shost->unchecked_isa_dma) { 93 scsi_sense_isadma_cache = 94 kmem_cache_create("scsi_sense_cache(DMA)", 95 SCSI_SENSE_BUFFERSIZE, 0, 96 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 97 if (!scsi_sense_isadma_cache) 98 ret = -ENOMEM; 99 } else { 100 scsi_sense_cache = 101 kmem_cache_create_usercopy("scsi_sense_cache", 102 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 103 0, SCSI_SENSE_BUFFERSIZE, NULL); 104 if (!scsi_sense_cache) 105 ret = -ENOMEM; 106 } 107 exit: 108 mutex_unlock(&scsi_sense_cache_mutex); 109 return ret; 110 } 111 112 /* 113 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 114 * not change behaviour from the previous unplug mechanism, experimentation 115 * may prove this needs changing. 116 */ 117 #define SCSI_QUEUE_DELAY 3 118 119 static void 120 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 121 { 122 struct Scsi_Host *host = cmd->device->host; 123 struct scsi_device *device = cmd->device; 124 struct scsi_target *starget = scsi_target(device); 125 126 /* 127 * Set the appropriate busy bit for the device/host. 128 * 129 * If the host/device isn't busy, assume that something actually 130 * completed, and that we should be able to queue a command now. 131 * 132 * Note that the prior mid-layer assumption that any host could 133 * always queue at least one command is now broken. The mid-layer 134 * will implement a user specifiable stall (see 135 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 136 * if a command is requeued with no other commands outstanding 137 * either for the device or for the host. 138 */ 139 switch (reason) { 140 case SCSI_MLQUEUE_HOST_BUSY: 141 atomic_set(&host->host_blocked, host->max_host_blocked); 142 break; 143 case SCSI_MLQUEUE_DEVICE_BUSY: 144 case SCSI_MLQUEUE_EH_RETRY: 145 atomic_set(&device->device_blocked, 146 device->max_device_blocked); 147 break; 148 case SCSI_MLQUEUE_TARGET_BUSY: 149 atomic_set(&starget->target_blocked, 150 starget->max_target_blocked); 151 break; 152 } 153 } 154 155 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 156 { 157 if (cmd->request->rq_flags & RQF_DONTPREP) { 158 cmd->request->rq_flags &= ~RQF_DONTPREP; 159 scsi_mq_uninit_cmd(cmd); 160 } else { 161 WARN_ON_ONCE(true); 162 } 163 blk_mq_requeue_request(cmd->request, true); 164 } 165 166 /** 167 * __scsi_queue_insert - private queue insertion 168 * @cmd: The SCSI command being requeued 169 * @reason: The reason for the requeue 170 * @unbusy: Whether the queue should be unbusied 171 * 172 * This is a private queue insertion. The public interface 173 * scsi_queue_insert() always assumes the queue should be unbusied 174 * because it's always called before the completion. This function is 175 * for a requeue after completion, which should only occur in this 176 * file. 177 */ 178 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 179 { 180 struct scsi_device *device = cmd->device; 181 182 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 183 "Inserting command %p into mlqueue\n", cmd)); 184 185 scsi_set_blocked(cmd, reason); 186 187 /* 188 * Decrement the counters, since these commands are no longer 189 * active on the host/device. 190 */ 191 if (unbusy) 192 scsi_device_unbusy(device, cmd); 193 194 /* 195 * Requeue this command. It will go before all other commands 196 * that are already in the queue. Schedule requeue work under 197 * lock such that the kblockd_schedule_work() call happens 198 * before blk_cleanup_queue() finishes. 199 */ 200 cmd->result = 0; 201 202 blk_mq_requeue_request(cmd->request, true); 203 } 204 205 /* 206 * Function: scsi_queue_insert() 207 * 208 * Purpose: Insert a command in the midlevel queue. 209 * 210 * Arguments: cmd - command that we are adding to queue. 211 * reason - why we are inserting command to queue. 212 * 213 * Lock status: Assumed that lock is not held upon entry. 214 * 215 * Returns: Nothing. 216 * 217 * Notes: We do this for one of two cases. Either the host is busy 218 * and it cannot accept any more commands for the time being, 219 * or the device returned QUEUE_FULL and can accept no more 220 * commands. 221 * Notes: This could be called either from an interrupt context or a 222 * normal process context. 223 */ 224 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 225 { 226 __scsi_queue_insert(cmd, reason, true); 227 } 228 229 230 /** 231 * __scsi_execute - insert request and wait for the result 232 * @sdev: scsi device 233 * @cmd: scsi command 234 * @data_direction: data direction 235 * @buffer: data buffer 236 * @bufflen: len of buffer 237 * @sense: optional sense buffer 238 * @sshdr: optional decoded sense header 239 * @timeout: request timeout in seconds 240 * @retries: number of times to retry request 241 * @flags: flags for ->cmd_flags 242 * @rq_flags: flags for ->rq_flags 243 * @resid: optional residual length 244 * 245 * Returns the scsi_cmnd result field if a command was executed, or a negative 246 * Linux error code if we didn't get that far. 247 */ 248 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 249 int data_direction, void *buffer, unsigned bufflen, 250 unsigned char *sense, struct scsi_sense_hdr *sshdr, 251 int timeout, int retries, u64 flags, req_flags_t rq_flags, 252 int *resid) 253 { 254 struct request *req; 255 struct scsi_request *rq; 256 int ret = DRIVER_ERROR << 24; 257 258 req = blk_get_request(sdev->request_queue, 259 data_direction == DMA_TO_DEVICE ? 260 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 261 if (IS_ERR(req)) 262 return ret; 263 rq = scsi_req(req); 264 265 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 266 buffer, bufflen, GFP_NOIO)) 267 goto out; 268 269 rq->cmd_len = COMMAND_SIZE(cmd[0]); 270 memcpy(rq->cmd, cmd, rq->cmd_len); 271 rq->retries = retries; 272 req->timeout = timeout; 273 req->cmd_flags |= flags; 274 req->rq_flags |= rq_flags | RQF_QUIET; 275 276 /* 277 * head injection *required* here otherwise quiesce won't work 278 */ 279 blk_execute_rq(req->q, NULL, req, 1); 280 281 /* 282 * Some devices (USB mass-storage in particular) may transfer 283 * garbage data together with a residue indicating that the data 284 * is invalid. Prevent the garbage from being misinterpreted 285 * and prevent security leaks by zeroing out the excess data. 286 */ 287 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 288 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 289 290 if (resid) 291 *resid = rq->resid_len; 292 if (sense && rq->sense_len) 293 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 294 if (sshdr) 295 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 296 ret = rq->result; 297 out: 298 blk_put_request(req); 299 300 return ret; 301 } 302 EXPORT_SYMBOL(__scsi_execute); 303 304 /* 305 * Function: scsi_init_cmd_errh() 306 * 307 * Purpose: Initialize cmd fields related to error handling. 308 * 309 * Arguments: cmd - command that is ready to be queued. 310 * 311 * Notes: This function has the job of initializing a number of 312 * fields related to error handling. Typically this will 313 * be called once for each command, as required. 314 */ 315 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 316 { 317 scsi_set_resid(cmd, 0); 318 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 319 if (cmd->cmd_len == 0) 320 cmd->cmd_len = scsi_command_size(cmd->cmnd); 321 } 322 323 /* 324 * Wake up the error handler if necessary. Avoid as follows that the error 325 * handler is not woken up if host in-flight requests number == 326 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 327 * with an RCU read lock in this function to ensure that this function in 328 * its entirety either finishes before scsi_eh_scmd_add() increases the 329 * host_failed counter or that it notices the shost state change made by 330 * scsi_eh_scmd_add(). 331 */ 332 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 333 { 334 unsigned long flags; 335 336 rcu_read_lock(); 337 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 338 if (unlikely(scsi_host_in_recovery(shost))) { 339 spin_lock_irqsave(shost->host_lock, flags); 340 if (shost->host_failed || shost->host_eh_scheduled) 341 scsi_eh_wakeup(shost); 342 spin_unlock_irqrestore(shost->host_lock, flags); 343 } 344 rcu_read_unlock(); 345 } 346 347 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 348 { 349 struct Scsi_Host *shost = sdev->host; 350 struct scsi_target *starget = scsi_target(sdev); 351 352 scsi_dec_host_busy(shost, cmd); 353 354 if (starget->can_queue > 0) 355 atomic_dec(&starget->target_busy); 356 357 atomic_dec(&sdev->device_busy); 358 } 359 360 static void scsi_kick_queue(struct request_queue *q) 361 { 362 blk_mq_run_hw_queues(q, false); 363 } 364 365 /* 366 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 367 * and call blk_run_queue for all the scsi_devices on the target - 368 * including current_sdev first. 369 * 370 * Called with *no* scsi locks held. 371 */ 372 static void scsi_single_lun_run(struct scsi_device *current_sdev) 373 { 374 struct Scsi_Host *shost = current_sdev->host; 375 struct scsi_device *sdev, *tmp; 376 struct scsi_target *starget = scsi_target(current_sdev); 377 unsigned long flags; 378 379 spin_lock_irqsave(shost->host_lock, flags); 380 starget->starget_sdev_user = NULL; 381 spin_unlock_irqrestore(shost->host_lock, flags); 382 383 /* 384 * Call blk_run_queue for all LUNs on the target, starting with 385 * current_sdev. We race with others (to set starget_sdev_user), 386 * but in most cases, we will be first. Ideally, each LU on the 387 * target would get some limited time or requests on the target. 388 */ 389 scsi_kick_queue(current_sdev->request_queue); 390 391 spin_lock_irqsave(shost->host_lock, flags); 392 if (starget->starget_sdev_user) 393 goto out; 394 list_for_each_entry_safe(sdev, tmp, &starget->devices, 395 same_target_siblings) { 396 if (sdev == current_sdev) 397 continue; 398 if (scsi_device_get(sdev)) 399 continue; 400 401 spin_unlock_irqrestore(shost->host_lock, flags); 402 scsi_kick_queue(sdev->request_queue); 403 spin_lock_irqsave(shost->host_lock, flags); 404 405 scsi_device_put(sdev); 406 } 407 out: 408 spin_unlock_irqrestore(shost->host_lock, flags); 409 } 410 411 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 412 { 413 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 414 return true; 415 if (atomic_read(&sdev->device_blocked) > 0) 416 return true; 417 return false; 418 } 419 420 static inline bool scsi_target_is_busy(struct scsi_target *starget) 421 { 422 if (starget->can_queue > 0) { 423 if (atomic_read(&starget->target_busy) >= starget->can_queue) 424 return true; 425 if (atomic_read(&starget->target_blocked) > 0) 426 return true; 427 } 428 return false; 429 } 430 431 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 432 { 433 if (atomic_read(&shost->host_blocked) > 0) 434 return true; 435 if (shost->host_self_blocked) 436 return true; 437 return false; 438 } 439 440 static void scsi_starved_list_run(struct Scsi_Host *shost) 441 { 442 LIST_HEAD(starved_list); 443 struct scsi_device *sdev; 444 unsigned long flags; 445 446 spin_lock_irqsave(shost->host_lock, flags); 447 list_splice_init(&shost->starved_list, &starved_list); 448 449 while (!list_empty(&starved_list)) { 450 struct request_queue *slq; 451 452 /* 453 * As long as shost is accepting commands and we have 454 * starved queues, call blk_run_queue. scsi_request_fn 455 * drops the queue_lock and can add us back to the 456 * starved_list. 457 * 458 * host_lock protects the starved_list and starved_entry. 459 * scsi_request_fn must get the host_lock before checking 460 * or modifying starved_list or starved_entry. 461 */ 462 if (scsi_host_is_busy(shost)) 463 break; 464 465 sdev = list_entry(starved_list.next, 466 struct scsi_device, starved_entry); 467 list_del_init(&sdev->starved_entry); 468 if (scsi_target_is_busy(scsi_target(sdev))) { 469 list_move_tail(&sdev->starved_entry, 470 &shost->starved_list); 471 continue; 472 } 473 474 /* 475 * Once we drop the host lock, a racing scsi_remove_device() 476 * call may remove the sdev from the starved list and destroy 477 * it and the queue. Mitigate by taking a reference to the 478 * queue and never touching the sdev again after we drop the 479 * host lock. Note: if __scsi_remove_device() invokes 480 * blk_cleanup_queue() before the queue is run from this 481 * function then blk_run_queue() will return immediately since 482 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 483 */ 484 slq = sdev->request_queue; 485 if (!blk_get_queue(slq)) 486 continue; 487 spin_unlock_irqrestore(shost->host_lock, flags); 488 489 scsi_kick_queue(slq); 490 blk_put_queue(slq); 491 492 spin_lock_irqsave(shost->host_lock, flags); 493 } 494 /* put any unprocessed entries back */ 495 list_splice(&starved_list, &shost->starved_list); 496 spin_unlock_irqrestore(shost->host_lock, flags); 497 } 498 499 /* 500 * Function: scsi_run_queue() 501 * 502 * Purpose: Select a proper request queue to serve next 503 * 504 * Arguments: q - last request's queue 505 * 506 * Returns: Nothing 507 * 508 * Notes: The previous command was completely finished, start 509 * a new one if possible. 510 */ 511 static void scsi_run_queue(struct request_queue *q) 512 { 513 struct scsi_device *sdev = q->queuedata; 514 515 if (scsi_target(sdev)->single_lun) 516 scsi_single_lun_run(sdev); 517 if (!list_empty(&sdev->host->starved_list)) 518 scsi_starved_list_run(sdev->host); 519 520 blk_mq_run_hw_queues(q, false); 521 } 522 523 void scsi_requeue_run_queue(struct work_struct *work) 524 { 525 struct scsi_device *sdev; 526 struct request_queue *q; 527 528 sdev = container_of(work, struct scsi_device, requeue_work); 529 q = sdev->request_queue; 530 scsi_run_queue(q); 531 } 532 533 void scsi_run_host_queues(struct Scsi_Host *shost) 534 { 535 struct scsi_device *sdev; 536 537 shost_for_each_device(sdev, shost) 538 scsi_run_queue(sdev->request_queue); 539 } 540 541 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 542 { 543 if (!blk_rq_is_passthrough(cmd->request)) { 544 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 545 546 if (drv->uninit_command) 547 drv->uninit_command(cmd); 548 } 549 } 550 551 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 552 { 553 if (cmd->sdb.table.nents) 554 sg_free_table_chained(&cmd->sdb.table, 555 SCSI_INLINE_SG_CNT); 556 if (scsi_prot_sg_count(cmd)) 557 sg_free_table_chained(&cmd->prot_sdb->table, 558 SCSI_INLINE_PROT_SG_CNT); 559 } 560 561 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 562 { 563 scsi_mq_free_sgtables(cmd); 564 scsi_uninit_cmd(cmd); 565 } 566 567 /* Returns false when no more bytes to process, true if there are more */ 568 static bool scsi_end_request(struct request *req, blk_status_t error, 569 unsigned int bytes) 570 { 571 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 572 struct scsi_device *sdev = cmd->device; 573 struct request_queue *q = sdev->request_queue; 574 575 if (blk_update_request(req, error, bytes)) 576 return true; 577 578 if (blk_queue_add_random(q)) 579 add_disk_randomness(req->rq_disk); 580 581 if (!blk_rq_is_scsi(req)) { 582 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 583 cmd->flags &= ~SCMD_INITIALIZED; 584 } 585 586 /* 587 * Calling rcu_barrier() is not necessary here because the 588 * SCSI error handler guarantees that the function called by 589 * call_rcu() has been called before scsi_end_request() is 590 * called. 591 */ 592 destroy_rcu_head(&cmd->rcu); 593 594 /* 595 * In the MQ case the command gets freed by __blk_mq_end_request, 596 * so we have to do all cleanup that depends on it earlier. 597 * 598 * We also can't kick the queues from irq context, so we 599 * will have to defer it to a workqueue. 600 */ 601 scsi_mq_uninit_cmd(cmd); 602 603 /* 604 * queue is still alive, so grab the ref for preventing it 605 * from being cleaned up during running queue. 606 */ 607 percpu_ref_get(&q->q_usage_counter); 608 609 __blk_mq_end_request(req, error); 610 611 if (scsi_target(sdev)->single_lun || 612 !list_empty(&sdev->host->starved_list)) 613 kblockd_schedule_work(&sdev->requeue_work); 614 else 615 blk_mq_run_hw_queues(q, true); 616 617 percpu_ref_put(&q->q_usage_counter); 618 return false; 619 } 620 621 /** 622 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 623 * @cmd: SCSI command 624 * @result: scsi error code 625 * 626 * Translate a SCSI result code into a blk_status_t value. May reset the host 627 * byte of @cmd->result. 628 */ 629 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 630 { 631 switch (host_byte(result)) { 632 case DID_OK: 633 /* 634 * Also check the other bytes than the status byte in result 635 * to handle the case when a SCSI LLD sets result to 636 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 637 */ 638 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 639 return BLK_STS_OK; 640 return BLK_STS_IOERR; 641 case DID_TRANSPORT_FAILFAST: 642 return BLK_STS_TRANSPORT; 643 case DID_TARGET_FAILURE: 644 set_host_byte(cmd, DID_OK); 645 return BLK_STS_TARGET; 646 case DID_NEXUS_FAILURE: 647 set_host_byte(cmd, DID_OK); 648 return BLK_STS_NEXUS; 649 case DID_ALLOC_FAILURE: 650 set_host_byte(cmd, DID_OK); 651 return BLK_STS_NOSPC; 652 case DID_MEDIUM_ERROR: 653 set_host_byte(cmd, DID_OK); 654 return BLK_STS_MEDIUM; 655 default: 656 return BLK_STS_IOERR; 657 } 658 } 659 660 /* Helper for scsi_io_completion() when "reprep" action required. */ 661 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 662 struct request_queue *q) 663 { 664 /* A new command will be prepared and issued. */ 665 scsi_mq_requeue_cmd(cmd); 666 } 667 668 /* Helper for scsi_io_completion() when special action required. */ 669 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 670 { 671 struct request_queue *q = cmd->device->request_queue; 672 struct request *req = cmd->request; 673 int level = 0; 674 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 675 ACTION_DELAYED_RETRY} action; 676 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 677 struct scsi_sense_hdr sshdr; 678 bool sense_valid; 679 bool sense_current = true; /* false implies "deferred sense" */ 680 blk_status_t blk_stat; 681 682 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 683 if (sense_valid) 684 sense_current = !scsi_sense_is_deferred(&sshdr); 685 686 blk_stat = scsi_result_to_blk_status(cmd, result); 687 688 if (host_byte(result) == DID_RESET) { 689 /* Third party bus reset or reset for error recovery 690 * reasons. Just retry the command and see what 691 * happens. 692 */ 693 action = ACTION_RETRY; 694 } else if (sense_valid && sense_current) { 695 switch (sshdr.sense_key) { 696 case UNIT_ATTENTION: 697 if (cmd->device->removable) { 698 /* Detected disc change. Set a bit 699 * and quietly refuse further access. 700 */ 701 cmd->device->changed = 1; 702 action = ACTION_FAIL; 703 } else { 704 /* Must have been a power glitch, or a 705 * bus reset. Could not have been a 706 * media change, so we just retry the 707 * command and see what happens. 708 */ 709 action = ACTION_RETRY; 710 } 711 break; 712 case ILLEGAL_REQUEST: 713 /* If we had an ILLEGAL REQUEST returned, then 714 * we may have performed an unsupported 715 * command. The only thing this should be 716 * would be a ten byte read where only a six 717 * byte read was supported. Also, on a system 718 * where READ CAPACITY failed, we may have 719 * read past the end of the disk. 720 */ 721 if ((cmd->device->use_10_for_rw && 722 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 723 (cmd->cmnd[0] == READ_10 || 724 cmd->cmnd[0] == WRITE_10)) { 725 /* This will issue a new 6-byte command. */ 726 cmd->device->use_10_for_rw = 0; 727 action = ACTION_REPREP; 728 } else if (sshdr.asc == 0x10) /* DIX */ { 729 action = ACTION_FAIL; 730 blk_stat = BLK_STS_PROTECTION; 731 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 732 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 733 action = ACTION_FAIL; 734 blk_stat = BLK_STS_TARGET; 735 } else 736 action = ACTION_FAIL; 737 break; 738 case ABORTED_COMMAND: 739 action = ACTION_FAIL; 740 if (sshdr.asc == 0x10) /* DIF */ 741 blk_stat = BLK_STS_PROTECTION; 742 break; 743 case NOT_READY: 744 /* If the device is in the process of becoming 745 * ready, or has a temporary blockage, retry. 746 */ 747 if (sshdr.asc == 0x04) { 748 switch (sshdr.ascq) { 749 case 0x01: /* becoming ready */ 750 case 0x04: /* format in progress */ 751 case 0x05: /* rebuild in progress */ 752 case 0x06: /* recalculation in progress */ 753 case 0x07: /* operation in progress */ 754 case 0x08: /* Long write in progress */ 755 case 0x09: /* self test in progress */ 756 case 0x14: /* space allocation in progress */ 757 case 0x1a: /* start stop unit in progress */ 758 case 0x1b: /* sanitize in progress */ 759 case 0x1d: /* configuration in progress */ 760 case 0x24: /* depopulation in progress */ 761 action = ACTION_DELAYED_RETRY; 762 break; 763 default: 764 action = ACTION_FAIL; 765 break; 766 } 767 } else 768 action = ACTION_FAIL; 769 break; 770 case VOLUME_OVERFLOW: 771 /* See SSC3rXX or current. */ 772 action = ACTION_FAIL; 773 break; 774 default: 775 action = ACTION_FAIL; 776 break; 777 } 778 } else 779 action = ACTION_FAIL; 780 781 if (action != ACTION_FAIL && 782 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 783 action = ACTION_FAIL; 784 785 switch (action) { 786 case ACTION_FAIL: 787 /* Give up and fail the remainder of the request */ 788 if (!(req->rq_flags & RQF_QUIET)) { 789 static DEFINE_RATELIMIT_STATE(_rs, 790 DEFAULT_RATELIMIT_INTERVAL, 791 DEFAULT_RATELIMIT_BURST); 792 793 if (unlikely(scsi_logging_level)) 794 level = 795 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 796 SCSI_LOG_MLCOMPLETE_BITS); 797 798 /* 799 * if logging is enabled the failure will be printed 800 * in scsi_log_completion(), so avoid duplicate messages 801 */ 802 if (!level && __ratelimit(&_rs)) { 803 scsi_print_result(cmd, NULL, FAILED); 804 if (driver_byte(result) == DRIVER_SENSE) 805 scsi_print_sense(cmd); 806 scsi_print_command(cmd); 807 } 808 } 809 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req))) 810 return; 811 /*FALLTHRU*/ 812 case ACTION_REPREP: 813 scsi_io_completion_reprep(cmd, q); 814 break; 815 case ACTION_RETRY: 816 /* Retry the same command immediately */ 817 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 818 break; 819 case ACTION_DELAYED_RETRY: 820 /* Retry the same command after a delay */ 821 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 822 break; 823 } 824 } 825 826 /* 827 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 828 * new result that may suppress further error checking. Also modifies 829 * *blk_statp in some cases. 830 */ 831 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 832 blk_status_t *blk_statp) 833 { 834 bool sense_valid; 835 bool sense_current = true; /* false implies "deferred sense" */ 836 struct request *req = cmd->request; 837 struct scsi_sense_hdr sshdr; 838 839 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 840 if (sense_valid) 841 sense_current = !scsi_sense_is_deferred(&sshdr); 842 843 if (blk_rq_is_passthrough(req)) { 844 if (sense_valid) { 845 /* 846 * SG_IO wants current and deferred errors 847 */ 848 scsi_req(req)->sense_len = 849 min(8 + cmd->sense_buffer[7], 850 SCSI_SENSE_BUFFERSIZE); 851 } 852 if (sense_current) 853 *blk_statp = scsi_result_to_blk_status(cmd, result); 854 } else if (blk_rq_bytes(req) == 0 && sense_current) { 855 /* 856 * Flush commands do not transfers any data, and thus cannot use 857 * good_bytes != blk_rq_bytes(req) as the signal for an error. 858 * This sets *blk_statp explicitly for the problem case. 859 */ 860 *blk_statp = scsi_result_to_blk_status(cmd, result); 861 } 862 /* 863 * Recovered errors need reporting, but they're always treated as 864 * success, so fiddle the result code here. For passthrough requests 865 * we already took a copy of the original into sreq->result which 866 * is what gets returned to the user 867 */ 868 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 869 bool do_print = true; 870 /* 871 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 872 * skip print since caller wants ATA registers. Only occurs 873 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 874 */ 875 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 876 do_print = false; 877 else if (req->rq_flags & RQF_QUIET) 878 do_print = false; 879 if (do_print) 880 scsi_print_sense(cmd); 881 result = 0; 882 /* for passthrough, *blk_statp may be set */ 883 *blk_statp = BLK_STS_OK; 884 } 885 /* 886 * Another corner case: the SCSI status byte is non-zero but 'good'. 887 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 888 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 889 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 890 * intermediate statuses (both obsolete in SAM-4) as good. 891 */ 892 if (status_byte(result) && scsi_status_is_good(result)) { 893 result = 0; 894 *blk_statp = BLK_STS_OK; 895 } 896 return result; 897 } 898 899 /* 900 * Function: scsi_io_completion() 901 * 902 * Purpose: Completion processing for block device I/O requests. 903 * 904 * Arguments: cmd - command that is finished. 905 * 906 * Lock status: Assumed that no lock is held upon entry. 907 * 908 * Returns: Nothing 909 * 910 * Notes: We will finish off the specified number of sectors. If we 911 * are done, the command block will be released and the queue 912 * function will be goosed. If we are not done then we have to 913 * figure out what to do next: 914 * 915 * a) We can call scsi_requeue_command(). The request 916 * will be unprepared and put back on the queue. Then 917 * a new command will be created for it. This should 918 * be used if we made forward progress, or if we want 919 * to switch from READ(10) to READ(6) for example. 920 * 921 * b) We can call __scsi_queue_insert(). The request will 922 * be put back on the queue and retried using the same 923 * command as before, possibly after a delay. 924 * 925 * c) We can call scsi_end_request() with blk_stat other than 926 * BLK_STS_OK, to fail the remainder of the request. 927 */ 928 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 929 { 930 int result = cmd->result; 931 struct request_queue *q = cmd->device->request_queue; 932 struct request *req = cmd->request; 933 blk_status_t blk_stat = BLK_STS_OK; 934 935 if (unlikely(result)) /* a nz result may or may not be an error */ 936 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 937 938 if (unlikely(blk_rq_is_passthrough(req))) { 939 /* 940 * scsi_result_to_blk_status may have reset the host_byte 941 */ 942 scsi_req(req)->result = cmd->result; 943 } 944 945 /* 946 * Next deal with any sectors which we were able to correctly 947 * handle. 948 */ 949 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 950 "%u sectors total, %d bytes done.\n", 951 blk_rq_sectors(req), good_bytes)); 952 953 /* 954 * Next deal with any sectors which we were able to correctly 955 * handle. Failed, zero length commands always need to drop down 956 * to retry code. Fast path should return in this block. 957 */ 958 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 959 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 960 return; /* no bytes remaining */ 961 } 962 963 /* Kill remainder if no retries. */ 964 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 965 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 966 WARN_ONCE(true, 967 "Bytes remaining after failed, no-retry command"); 968 return; 969 } 970 971 /* 972 * If there had been no error, but we have leftover bytes in the 973 * requeues just queue the command up again. 974 */ 975 if (likely(result == 0)) 976 scsi_io_completion_reprep(cmd, q); 977 else 978 scsi_io_completion_action(cmd, result); 979 } 980 981 static blk_status_t scsi_init_sgtable(struct request *req, 982 struct scsi_data_buffer *sdb) 983 { 984 int count; 985 986 /* 987 * If sg table allocation fails, requeue request later. 988 */ 989 if (unlikely(sg_alloc_table_chained(&sdb->table, 990 blk_rq_nr_phys_segments(req), sdb->table.sgl, 991 SCSI_INLINE_SG_CNT))) 992 return BLK_STS_RESOURCE; 993 994 /* 995 * Next, walk the list, and fill in the addresses and sizes of 996 * each segment. 997 */ 998 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 999 BUG_ON(count > sdb->table.nents); 1000 sdb->table.nents = count; 1001 sdb->length = blk_rq_payload_bytes(req); 1002 return BLK_STS_OK; 1003 } 1004 1005 /* 1006 * Function: scsi_init_io() 1007 * 1008 * Purpose: SCSI I/O initialize function. 1009 * 1010 * Arguments: cmd - Command descriptor we wish to initialize 1011 * 1012 * Returns: BLK_STS_OK on success 1013 * BLK_STS_RESOURCE if the failure is retryable 1014 * BLK_STS_IOERR if the failure is fatal 1015 */ 1016 blk_status_t scsi_init_io(struct scsi_cmnd *cmd) 1017 { 1018 struct request *rq = cmd->request; 1019 blk_status_t ret; 1020 1021 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1022 return BLK_STS_IOERR; 1023 1024 ret = scsi_init_sgtable(rq, &cmd->sdb); 1025 if (ret) 1026 return ret; 1027 1028 if (blk_integrity_rq(rq)) { 1029 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1030 int ivecs, count; 1031 1032 if (WARN_ON_ONCE(!prot_sdb)) { 1033 /* 1034 * This can happen if someone (e.g. multipath) 1035 * queues a command to a device on an adapter 1036 * that does not support DIX. 1037 */ 1038 ret = BLK_STS_IOERR; 1039 goto out_free_sgtables; 1040 } 1041 1042 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1043 1044 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1045 prot_sdb->table.sgl, 1046 SCSI_INLINE_PROT_SG_CNT)) { 1047 ret = BLK_STS_RESOURCE; 1048 goto out_free_sgtables; 1049 } 1050 1051 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1052 prot_sdb->table.sgl); 1053 BUG_ON(count > ivecs); 1054 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1055 1056 cmd->prot_sdb = prot_sdb; 1057 cmd->prot_sdb->table.nents = count; 1058 } 1059 1060 return BLK_STS_OK; 1061 out_free_sgtables: 1062 scsi_mq_free_sgtables(cmd); 1063 return ret; 1064 } 1065 EXPORT_SYMBOL(scsi_init_io); 1066 1067 /** 1068 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1069 * @rq: Request associated with the SCSI command to be initialized. 1070 * 1071 * This function initializes the members of struct scsi_cmnd that must be 1072 * initialized before request processing starts and that won't be 1073 * reinitialized if a SCSI command is requeued. 1074 * 1075 * Called from inside blk_get_request() for pass-through requests and from 1076 * inside scsi_init_command() for filesystem requests. 1077 */ 1078 static void scsi_initialize_rq(struct request *rq) 1079 { 1080 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1081 1082 scsi_req_init(&cmd->req); 1083 init_rcu_head(&cmd->rcu); 1084 cmd->jiffies_at_alloc = jiffies; 1085 cmd->retries = 0; 1086 } 1087 1088 /* 1089 * Only called when the request isn't completed by SCSI, and not freed by 1090 * SCSI 1091 */ 1092 static void scsi_cleanup_rq(struct request *rq) 1093 { 1094 if (rq->rq_flags & RQF_DONTPREP) { 1095 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1096 rq->rq_flags &= ~RQF_DONTPREP; 1097 } 1098 } 1099 1100 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1101 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1102 { 1103 void *buf = cmd->sense_buffer; 1104 void *prot = cmd->prot_sdb; 1105 struct request *rq = blk_mq_rq_from_pdu(cmd); 1106 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1107 unsigned long jiffies_at_alloc; 1108 int retries, to_clear; 1109 bool in_flight; 1110 1111 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1112 flags |= SCMD_INITIALIZED; 1113 scsi_initialize_rq(rq); 1114 } 1115 1116 jiffies_at_alloc = cmd->jiffies_at_alloc; 1117 retries = cmd->retries; 1118 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1119 /* 1120 * Zero out the cmd, except for the embedded scsi_request. Only clear 1121 * the driver-private command data if the LLD does not supply a 1122 * function to initialize that data. 1123 */ 1124 to_clear = sizeof(*cmd) - sizeof(cmd->req); 1125 if (!dev->host->hostt->init_cmd_priv) 1126 to_clear += dev->host->hostt->cmd_size; 1127 memset((char *)cmd + sizeof(cmd->req), 0, to_clear); 1128 1129 cmd->device = dev; 1130 cmd->sense_buffer = buf; 1131 cmd->prot_sdb = prot; 1132 cmd->flags = flags; 1133 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1134 cmd->jiffies_at_alloc = jiffies_at_alloc; 1135 cmd->retries = retries; 1136 if (in_flight) 1137 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1138 1139 } 1140 1141 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1142 struct request *req) 1143 { 1144 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1145 1146 /* 1147 * Passthrough requests may transfer data, in which case they must 1148 * a bio attached to them. Or they might contain a SCSI command 1149 * that does not transfer data, in which case they may optionally 1150 * submit a request without an attached bio. 1151 */ 1152 if (req->bio) { 1153 blk_status_t ret = scsi_init_io(cmd); 1154 if (unlikely(ret != BLK_STS_OK)) 1155 return ret; 1156 } else { 1157 BUG_ON(blk_rq_bytes(req)); 1158 1159 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1160 } 1161 1162 cmd->cmd_len = scsi_req(req)->cmd_len; 1163 cmd->cmnd = scsi_req(req)->cmd; 1164 cmd->transfersize = blk_rq_bytes(req); 1165 cmd->allowed = scsi_req(req)->retries; 1166 return BLK_STS_OK; 1167 } 1168 1169 /* 1170 * Setup a normal block command. These are simple request from filesystems 1171 * that still need to be translated to SCSI CDBs from the ULD. 1172 */ 1173 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev, 1174 struct request *req) 1175 { 1176 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1177 1178 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1179 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1180 if (ret != BLK_STS_OK) 1181 return ret; 1182 } 1183 1184 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1185 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1186 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1187 } 1188 1189 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev, 1190 struct request *req) 1191 { 1192 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1193 1194 if (!blk_rq_bytes(req)) 1195 cmd->sc_data_direction = DMA_NONE; 1196 else if (rq_data_dir(req) == WRITE) 1197 cmd->sc_data_direction = DMA_TO_DEVICE; 1198 else 1199 cmd->sc_data_direction = DMA_FROM_DEVICE; 1200 1201 if (blk_rq_is_scsi(req)) 1202 return scsi_setup_scsi_cmnd(sdev, req); 1203 else 1204 return scsi_setup_fs_cmnd(sdev, req); 1205 } 1206 1207 static blk_status_t 1208 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1209 { 1210 switch (sdev->sdev_state) { 1211 case SDEV_OFFLINE: 1212 case SDEV_TRANSPORT_OFFLINE: 1213 /* 1214 * If the device is offline we refuse to process any 1215 * commands. The device must be brought online 1216 * before trying any recovery commands. 1217 */ 1218 if (!sdev->offline_already) { 1219 sdev->offline_already = true; 1220 sdev_printk(KERN_ERR, sdev, 1221 "rejecting I/O to offline device\n"); 1222 } 1223 return BLK_STS_IOERR; 1224 case SDEV_DEL: 1225 /* 1226 * If the device is fully deleted, we refuse to 1227 * process any commands as well. 1228 */ 1229 sdev_printk(KERN_ERR, sdev, 1230 "rejecting I/O to dead device\n"); 1231 return BLK_STS_IOERR; 1232 case SDEV_BLOCK: 1233 case SDEV_CREATED_BLOCK: 1234 return BLK_STS_RESOURCE; 1235 case SDEV_QUIESCE: 1236 /* 1237 * If the devices is blocked we defer normal commands. 1238 */ 1239 if (req && !(req->rq_flags & RQF_PREEMPT)) 1240 return BLK_STS_RESOURCE; 1241 return BLK_STS_OK; 1242 default: 1243 /* 1244 * For any other not fully online state we only allow 1245 * special commands. In particular any user initiated 1246 * command is not allowed. 1247 */ 1248 if (req && !(req->rq_flags & RQF_PREEMPT)) 1249 return BLK_STS_IOERR; 1250 return BLK_STS_OK; 1251 } 1252 } 1253 1254 /* 1255 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1256 * return 0. 1257 * 1258 * Called with the queue_lock held. 1259 */ 1260 static inline int scsi_dev_queue_ready(struct request_queue *q, 1261 struct scsi_device *sdev) 1262 { 1263 unsigned int busy; 1264 1265 busy = atomic_inc_return(&sdev->device_busy) - 1; 1266 if (atomic_read(&sdev->device_blocked)) { 1267 if (busy) 1268 goto out_dec; 1269 1270 /* 1271 * unblock after device_blocked iterates to zero 1272 */ 1273 if (atomic_dec_return(&sdev->device_blocked) > 0) 1274 goto out_dec; 1275 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1276 "unblocking device at zero depth\n")); 1277 } 1278 1279 if (busy >= sdev->queue_depth) 1280 goto out_dec; 1281 1282 return 1; 1283 out_dec: 1284 atomic_dec(&sdev->device_busy); 1285 return 0; 1286 } 1287 1288 /* 1289 * scsi_target_queue_ready: checks if there we can send commands to target 1290 * @sdev: scsi device on starget to check. 1291 */ 1292 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1293 struct scsi_device *sdev) 1294 { 1295 struct scsi_target *starget = scsi_target(sdev); 1296 unsigned int busy; 1297 1298 if (starget->single_lun) { 1299 spin_lock_irq(shost->host_lock); 1300 if (starget->starget_sdev_user && 1301 starget->starget_sdev_user != sdev) { 1302 spin_unlock_irq(shost->host_lock); 1303 return 0; 1304 } 1305 starget->starget_sdev_user = sdev; 1306 spin_unlock_irq(shost->host_lock); 1307 } 1308 1309 if (starget->can_queue <= 0) 1310 return 1; 1311 1312 busy = atomic_inc_return(&starget->target_busy) - 1; 1313 if (atomic_read(&starget->target_blocked) > 0) { 1314 if (busy) 1315 goto starved; 1316 1317 /* 1318 * unblock after target_blocked iterates to zero 1319 */ 1320 if (atomic_dec_return(&starget->target_blocked) > 0) 1321 goto out_dec; 1322 1323 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1324 "unblocking target at zero depth\n")); 1325 } 1326 1327 if (busy >= starget->can_queue) 1328 goto starved; 1329 1330 return 1; 1331 1332 starved: 1333 spin_lock_irq(shost->host_lock); 1334 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1335 spin_unlock_irq(shost->host_lock); 1336 out_dec: 1337 if (starget->can_queue > 0) 1338 atomic_dec(&starget->target_busy); 1339 return 0; 1340 } 1341 1342 /* 1343 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1344 * return 0. We must end up running the queue again whenever 0 is 1345 * returned, else IO can hang. 1346 */ 1347 static inline int scsi_host_queue_ready(struct request_queue *q, 1348 struct Scsi_Host *shost, 1349 struct scsi_device *sdev, 1350 struct scsi_cmnd *cmd) 1351 { 1352 if (scsi_host_in_recovery(shost)) 1353 return 0; 1354 1355 if (atomic_read(&shost->host_blocked) > 0) { 1356 if (scsi_host_busy(shost) > 0) 1357 goto starved; 1358 1359 /* 1360 * unblock after host_blocked iterates to zero 1361 */ 1362 if (atomic_dec_return(&shost->host_blocked) > 0) 1363 goto out_dec; 1364 1365 SCSI_LOG_MLQUEUE(3, 1366 shost_printk(KERN_INFO, shost, 1367 "unblocking host at zero depth\n")); 1368 } 1369 1370 if (shost->host_self_blocked) 1371 goto starved; 1372 1373 /* We're OK to process the command, so we can't be starved */ 1374 if (!list_empty(&sdev->starved_entry)) { 1375 spin_lock_irq(shost->host_lock); 1376 if (!list_empty(&sdev->starved_entry)) 1377 list_del_init(&sdev->starved_entry); 1378 spin_unlock_irq(shost->host_lock); 1379 } 1380 1381 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1382 1383 return 1; 1384 1385 starved: 1386 spin_lock_irq(shost->host_lock); 1387 if (list_empty(&sdev->starved_entry)) 1388 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1389 spin_unlock_irq(shost->host_lock); 1390 out_dec: 1391 scsi_dec_host_busy(shost, cmd); 1392 return 0; 1393 } 1394 1395 /* 1396 * Busy state exporting function for request stacking drivers. 1397 * 1398 * For efficiency, no lock is taken to check the busy state of 1399 * shost/starget/sdev, since the returned value is not guaranteed and 1400 * may be changed after request stacking drivers call the function, 1401 * regardless of taking lock or not. 1402 * 1403 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1404 * needs to return 'not busy'. Otherwise, request stacking drivers 1405 * may hold requests forever. 1406 */ 1407 static bool scsi_mq_lld_busy(struct request_queue *q) 1408 { 1409 struct scsi_device *sdev = q->queuedata; 1410 struct Scsi_Host *shost; 1411 1412 if (blk_queue_dying(q)) 1413 return false; 1414 1415 shost = sdev->host; 1416 1417 /* 1418 * Ignore host/starget busy state. 1419 * Since block layer does not have a concept of fairness across 1420 * multiple queues, congestion of host/starget needs to be handled 1421 * in SCSI layer. 1422 */ 1423 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1424 return true; 1425 1426 return false; 1427 } 1428 1429 static void scsi_softirq_done(struct request *rq) 1430 { 1431 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1432 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1433 int disposition; 1434 1435 INIT_LIST_HEAD(&cmd->eh_entry); 1436 1437 atomic_inc(&cmd->device->iodone_cnt); 1438 if (cmd->result) 1439 atomic_inc(&cmd->device->ioerr_cnt); 1440 1441 disposition = scsi_decide_disposition(cmd); 1442 if (disposition != SUCCESS && 1443 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1444 scmd_printk(KERN_ERR, cmd, 1445 "timing out command, waited %lus\n", 1446 wait_for/HZ); 1447 disposition = SUCCESS; 1448 } 1449 1450 scsi_log_completion(cmd, disposition); 1451 1452 switch (disposition) { 1453 case SUCCESS: 1454 scsi_finish_command(cmd); 1455 break; 1456 case NEEDS_RETRY: 1457 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1458 break; 1459 case ADD_TO_MLQUEUE: 1460 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1461 break; 1462 default: 1463 scsi_eh_scmd_add(cmd); 1464 break; 1465 } 1466 } 1467 1468 /** 1469 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1470 * @cmd: command block we are dispatching. 1471 * 1472 * Return: nonzero return request was rejected and device's queue needs to be 1473 * plugged. 1474 */ 1475 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1476 { 1477 struct Scsi_Host *host = cmd->device->host; 1478 int rtn = 0; 1479 1480 atomic_inc(&cmd->device->iorequest_cnt); 1481 1482 /* check if the device is still usable */ 1483 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1484 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1485 * returns an immediate error upwards, and signals 1486 * that the device is no longer present */ 1487 cmd->result = DID_NO_CONNECT << 16; 1488 goto done; 1489 } 1490 1491 /* Check to see if the scsi lld made this device blocked. */ 1492 if (unlikely(scsi_device_blocked(cmd->device))) { 1493 /* 1494 * in blocked state, the command is just put back on 1495 * the device queue. The suspend state has already 1496 * blocked the queue so future requests should not 1497 * occur until the device transitions out of the 1498 * suspend state. 1499 */ 1500 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1501 "queuecommand : device blocked\n")); 1502 return SCSI_MLQUEUE_DEVICE_BUSY; 1503 } 1504 1505 /* Store the LUN value in cmnd, if needed. */ 1506 if (cmd->device->lun_in_cdb) 1507 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1508 (cmd->device->lun << 5 & 0xe0); 1509 1510 scsi_log_send(cmd); 1511 1512 /* 1513 * Before we queue this command, check if the command 1514 * length exceeds what the host adapter can handle. 1515 */ 1516 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1517 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1518 "queuecommand : command too long. " 1519 "cdb_size=%d host->max_cmd_len=%d\n", 1520 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1521 cmd->result = (DID_ABORT << 16); 1522 goto done; 1523 } 1524 1525 if (unlikely(host->shost_state == SHOST_DEL)) { 1526 cmd->result = (DID_NO_CONNECT << 16); 1527 goto done; 1528 1529 } 1530 1531 trace_scsi_dispatch_cmd_start(cmd); 1532 rtn = host->hostt->queuecommand(host, cmd); 1533 if (rtn) { 1534 trace_scsi_dispatch_cmd_error(cmd, rtn); 1535 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1536 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1537 rtn = SCSI_MLQUEUE_HOST_BUSY; 1538 1539 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1540 "queuecommand : request rejected\n")); 1541 } 1542 1543 return rtn; 1544 done: 1545 cmd->scsi_done(cmd); 1546 return 0; 1547 } 1548 1549 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1550 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1551 { 1552 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1553 sizeof(struct scatterlist); 1554 } 1555 1556 static blk_status_t scsi_mq_prep_fn(struct request *req) 1557 { 1558 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1559 struct scsi_device *sdev = req->q->queuedata; 1560 struct Scsi_Host *shost = sdev->host; 1561 struct scatterlist *sg; 1562 1563 scsi_init_command(sdev, cmd); 1564 1565 cmd->request = req; 1566 cmd->tag = req->tag; 1567 cmd->prot_op = SCSI_PROT_NORMAL; 1568 1569 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1570 cmd->sdb.table.sgl = sg; 1571 1572 if (scsi_host_get_prot(shost)) { 1573 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1574 1575 cmd->prot_sdb->table.sgl = 1576 (struct scatterlist *)(cmd->prot_sdb + 1); 1577 } 1578 1579 blk_mq_start_request(req); 1580 1581 return scsi_setup_cmnd(sdev, req); 1582 } 1583 1584 static void scsi_mq_done(struct scsi_cmnd *cmd) 1585 { 1586 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1587 return; 1588 trace_scsi_dispatch_cmd_done(cmd); 1589 1590 /* 1591 * If the block layer didn't complete the request due to a timeout 1592 * injection, scsi must clear its internal completed state so that the 1593 * timeout handler will see it needs to escalate its own error 1594 * recovery. 1595 */ 1596 if (unlikely(!blk_mq_complete_request(cmd->request))) 1597 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1598 } 1599 1600 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx) 1601 { 1602 struct request_queue *q = hctx->queue; 1603 struct scsi_device *sdev = q->queuedata; 1604 1605 atomic_dec(&sdev->device_busy); 1606 } 1607 1608 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx) 1609 { 1610 struct request_queue *q = hctx->queue; 1611 struct scsi_device *sdev = q->queuedata; 1612 1613 if (scsi_dev_queue_ready(q, sdev)) 1614 return true; 1615 1616 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev)) 1617 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 1618 return false; 1619 } 1620 1621 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1622 const struct blk_mq_queue_data *bd) 1623 { 1624 struct request *req = bd->rq; 1625 struct request_queue *q = req->q; 1626 struct scsi_device *sdev = q->queuedata; 1627 struct Scsi_Host *shost = sdev->host; 1628 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1629 blk_status_t ret; 1630 int reason; 1631 1632 /* 1633 * If the device is not in running state we will reject some or all 1634 * commands. 1635 */ 1636 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1637 ret = scsi_prep_state_check(sdev, req); 1638 if (ret != BLK_STS_OK) 1639 goto out_put_budget; 1640 } 1641 1642 ret = BLK_STS_RESOURCE; 1643 if (!scsi_target_queue_ready(shost, sdev)) 1644 goto out_put_budget; 1645 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1646 goto out_dec_target_busy; 1647 1648 if (!(req->rq_flags & RQF_DONTPREP)) { 1649 ret = scsi_mq_prep_fn(req); 1650 if (ret != BLK_STS_OK) 1651 goto out_dec_host_busy; 1652 req->rq_flags |= RQF_DONTPREP; 1653 } else { 1654 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1655 blk_mq_start_request(req); 1656 } 1657 1658 cmd->flags &= SCMD_PRESERVED_FLAGS; 1659 if (sdev->simple_tags) 1660 cmd->flags |= SCMD_TAGGED; 1661 if (bd->last) 1662 cmd->flags |= SCMD_LAST; 1663 1664 scsi_init_cmd_errh(cmd); 1665 cmd->scsi_done = scsi_mq_done; 1666 1667 reason = scsi_dispatch_cmd(cmd); 1668 if (reason) { 1669 scsi_set_blocked(cmd, reason); 1670 ret = BLK_STS_RESOURCE; 1671 goto out_dec_host_busy; 1672 } 1673 1674 return BLK_STS_OK; 1675 1676 out_dec_host_busy: 1677 scsi_dec_host_busy(shost, cmd); 1678 out_dec_target_busy: 1679 if (scsi_target(sdev)->can_queue > 0) 1680 atomic_dec(&scsi_target(sdev)->target_busy); 1681 out_put_budget: 1682 scsi_mq_put_budget(hctx); 1683 switch (ret) { 1684 case BLK_STS_OK: 1685 break; 1686 case BLK_STS_RESOURCE: 1687 if (atomic_read(&sdev->device_busy) || 1688 scsi_device_blocked(sdev)) 1689 ret = BLK_STS_DEV_RESOURCE; 1690 break; 1691 default: 1692 if (unlikely(!scsi_device_online(sdev))) 1693 scsi_req(req)->result = DID_NO_CONNECT << 16; 1694 else 1695 scsi_req(req)->result = DID_ERROR << 16; 1696 /* 1697 * Make sure to release all allocated resources when 1698 * we hit an error, as we will never see this command 1699 * again. 1700 */ 1701 if (req->rq_flags & RQF_DONTPREP) 1702 scsi_mq_uninit_cmd(cmd); 1703 break; 1704 } 1705 return ret; 1706 } 1707 1708 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1709 bool reserved) 1710 { 1711 if (reserved) 1712 return BLK_EH_RESET_TIMER; 1713 return scsi_times_out(req); 1714 } 1715 1716 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1717 unsigned int hctx_idx, unsigned int numa_node) 1718 { 1719 struct Scsi_Host *shost = set->driver_data; 1720 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 1721 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1722 struct scatterlist *sg; 1723 int ret = 0; 1724 1725 if (unchecked_isa_dma) 1726 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 1727 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 1728 GFP_KERNEL, numa_node); 1729 if (!cmd->sense_buffer) 1730 return -ENOMEM; 1731 cmd->req.sense = cmd->sense_buffer; 1732 1733 if (scsi_host_get_prot(shost)) { 1734 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1735 shost->hostt->cmd_size; 1736 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1737 } 1738 1739 if (shost->hostt->init_cmd_priv) { 1740 ret = shost->hostt->init_cmd_priv(shost, cmd); 1741 if (ret < 0) 1742 scsi_free_sense_buffer(unchecked_isa_dma, 1743 cmd->sense_buffer); 1744 } 1745 1746 return ret; 1747 } 1748 1749 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1750 unsigned int hctx_idx) 1751 { 1752 struct Scsi_Host *shost = set->driver_data; 1753 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1754 1755 if (shost->hostt->exit_cmd_priv) 1756 shost->hostt->exit_cmd_priv(shost, cmd); 1757 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 1758 cmd->sense_buffer); 1759 } 1760 1761 static int scsi_map_queues(struct blk_mq_tag_set *set) 1762 { 1763 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1764 1765 if (shost->hostt->map_queues) 1766 return shost->hostt->map_queues(shost); 1767 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1768 } 1769 1770 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1771 { 1772 struct device *dev = shost->dma_dev; 1773 1774 /* 1775 * this limit is imposed by hardware restrictions 1776 */ 1777 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1778 SG_MAX_SEGMENTS)); 1779 1780 if (scsi_host_prot_dma(shost)) { 1781 shost->sg_prot_tablesize = 1782 min_not_zero(shost->sg_prot_tablesize, 1783 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1784 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1785 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1786 } 1787 1788 if (dev->dma_mask) { 1789 shost->max_sectors = min_t(unsigned int, shost->max_sectors, 1790 dma_max_mapping_size(dev) >> SECTOR_SHIFT); 1791 } 1792 blk_queue_max_hw_sectors(q, shost->max_sectors); 1793 if (shost->unchecked_isa_dma) 1794 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 1795 blk_queue_segment_boundary(q, shost->dma_boundary); 1796 dma_set_seg_boundary(dev, shost->dma_boundary); 1797 1798 blk_queue_max_segment_size(q, shost->max_segment_size); 1799 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1800 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1801 1802 /* 1803 * Set a reasonable default alignment: The larger of 32-byte (dword), 1804 * which is a common minimum for HBAs, and the minimum DMA alignment, 1805 * which is set by the platform. 1806 * 1807 * Devices that require a bigger alignment can increase it later. 1808 */ 1809 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1810 } 1811 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1812 1813 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1814 .get_budget = scsi_mq_get_budget, 1815 .put_budget = scsi_mq_put_budget, 1816 .queue_rq = scsi_queue_rq, 1817 .complete = scsi_softirq_done, 1818 .timeout = scsi_timeout, 1819 #ifdef CONFIG_BLK_DEBUG_FS 1820 .show_rq = scsi_show_rq, 1821 #endif 1822 .init_request = scsi_mq_init_request, 1823 .exit_request = scsi_mq_exit_request, 1824 .initialize_rq_fn = scsi_initialize_rq, 1825 .cleanup_rq = scsi_cleanup_rq, 1826 .busy = scsi_mq_lld_busy, 1827 .map_queues = scsi_map_queues, 1828 }; 1829 1830 1831 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1832 { 1833 struct request_queue *q = hctx->queue; 1834 struct scsi_device *sdev = q->queuedata; 1835 struct Scsi_Host *shost = sdev->host; 1836 1837 shost->hostt->commit_rqs(shost, hctx->queue_num); 1838 } 1839 1840 static const struct blk_mq_ops scsi_mq_ops = { 1841 .get_budget = scsi_mq_get_budget, 1842 .put_budget = scsi_mq_put_budget, 1843 .queue_rq = scsi_queue_rq, 1844 .commit_rqs = scsi_commit_rqs, 1845 .complete = scsi_softirq_done, 1846 .timeout = scsi_timeout, 1847 #ifdef CONFIG_BLK_DEBUG_FS 1848 .show_rq = scsi_show_rq, 1849 #endif 1850 .init_request = scsi_mq_init_request, 1851 .exit_request = scsi_mq_exit_request, 1852 .initialize_rq_fn = scsi_initialize_rq, 1853 .cleanup_rq = scsi_cleanup_rq, 1854 .busy = scsi_mq_lld_busy, 1855 .map_queues = scsi_map_queues, 1856 }; 1857 1858 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 1859 { 1860 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 1861 if (IS_ERR(sdev->request_queue)) 1862 return NULL; 1863 1864 sdev->request_queue->queuedata = sdev; 1865 __scsi_init_queue(sdev->host, sdev->request_queue); 1866 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 1867 return sdev->request_queue; 1868 } 1869 1870 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1871 { 1872 unsigned int cmd_size, sgl_size; 1873 1874 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1875 scsi_mq_inline_sgl_size(shost)); 1876 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1877 if (scsi_host_get_prot(shost)) 1878 cmd_size += sizeof(struct scsi_data_buffer) + 1879 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1880 1881 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 1882 if (shost->hostt->commit_rqs) 1883 shost->tag_set.ops = &scsi_mq_ops; 1884 else 1885 shost->tag_set.ops = &scsi_mq_ops_no_commit; 1886 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 1887 shost->tag_set.queue_depth = shost->can_queue; 1888 shost->tag_set.cmd_size = cmd_size; 1889 shost->tag_set.numa_node = NUMA_NO_NODE; 1890 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1891 shost->tag_set.flags |= 1892 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1893 shost->tag_set.driver_data = shost; 1894 1895 return blk_mq_alloc_tag_set(&shost->tag_set); 1896 } 1897 1898 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1899 { 1900 blk_mq_free_tag_set(&shost->tag_set); 1901 } 1902 1903 /** 1904 * scsi_device_from_queue - return sdev associated with a request_queue 1905 * @q: The request queue to return the sdev from 1906 * 1907 * Return the sdev associated with a request queue or NULL if the 1908 * request_queue does not reference a SCSI device. 1909 */ 1910 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1911 { 1912 struct scsi_device *sdev = NULL; 1913 1914 if (q->mq_ops == &scsi_mq_ops_no_commit || 1915 q->mq_ops == &scsi_mq_ops) 1916 sdev = q->queuedata; 1917 if (!sdev || !get_device(&sdev->sdev_gendev)) 1918 sdev = NULL; 1919 1920 return sdev; 1921 } 1922 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 1923 1924 /* 1925 * Function: scsi_block_requests() 1926 * 1927 * Purpose: Utility function used by low-level drivers to prevent further 1928 * commands from being queued to the device. 1929 * 1930 * Arguments: shost - Host in question 1931 * 1932 * Returns: Nothing 1933 * 1934 * Lock status: No locks are assumed held. 1935 * 1936 * Notes: There is no timer nor any other means by which the requests 1937 * get unblocked other than the low-level driver calling 1938 * scsi_unblock_requests(). 1939 */ 1940 void scsi_block_requests(struct Scsi_Host *shost) 1941 { 1942 shost->host_self_blocked = 1; 1943 } 1944 EXPORT_SYMBOL(scsi_block_requests); 1945 1946 /* 1947 * Function: scsi_unblock_requests() 1948 * 1949 * Purpose: Utility function used by low-level drivers to allow further 1950 * commands from being queued to the device. 1951 * 1952 * Arguments: shost - Host in question 1953 * 1954 * Returns: Nothing 1955 * 1956 * Lock status: No locks are assumed held. 1957 * 1958 * Notes: There is no timer nor any other means by which the requests 1959 * get unblocked other than the low-level driver calling 1960 * scsi_unblock_requests(). 1961 * 1962 * This is done as an API function so that changes to the 1963 * internals of the scsi mid-layer won't require wholesale 1964 * changes to drivers that use this feature. 1965 */ 1966 void scsi_unblock_requests(struct Scsi_Host *shost) 1967 { 1968 shost->host_self_blocked = 0; 1969 scsi_run_host_queues(shost); 1970 } 1971 EXPORT_SYMBOL(scsi_unblock_requests); 1972 1973 int __init scsi_init_queue(void) 1974 { 1975 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1976 sizeof(struct scsi_data_buffer), 1977 0, 0, NULL); 1978 if (!scsi_sdb_cache) { 1979 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1980 return -ENOMEM; 1981 } 1982 1983 return 0; 1984 } 1985 1986 void scsi_exit_queue(void) 1987 { 1988 kmem_cache_destroy(scsi_sense_cache); 1989 kmem_cache_destroy(scsi_sense_isadma_cache); 1990 kmem_cache_destroy(scsi_sdb_cache); 1991 } 1992 1993 /** 1994 * scsi_mode_select - issue a mode select 1995 * @sdev: SCSI device to be queried 1996 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1997 * @sp: Save page bit (0 == don't save, 1 == save) 1998 * @modepage: mode page being requested 1999 * @buffer: request buffer (may not be smaller than eight bytes) 2000 * @len: length of request buffer. 2001 * @timeout: command timeout 2002 * @retries: number of retries before failing 2003 * @data: returns a structure abstracting the mode header data 2004 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2005 * must be SCSI_SENSE_BUFFERSIZE big. 2006 * 2007 * Returns zero if successful; negative error number or scsi 2008 * status on error 2009 * 2010 */ 2011 int 2012 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2013 unsigned char *buffer, int len, int timeout, int retries, 2014 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2015 { 2016 unsigned char cmd[10]; 2017 unsigned char *real_buffer; 2018 int ret; 2019 2020 memset(cmd, 0, sizeof(cmd)); 2021 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2022 2023 if (sdev->use_10_for_ms) { 2024 if (len > 65535) 2025 return -EINVAL; 2026 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2027 if (!real_buffer) 2028 return -ENOMEM; 2029 memcpy(real_buffer + 8, buffer, len); 2030 len += 8; 2031 real_buffer[0] = 0; 2032 real_buffer[1] = 0; 2033 real_buffer[2] = data->medium_type; 2034 real_buffer[3] = data->device_specific; 2035 real_buffer[4] = data->longlba ? 0x01 : 0; 2036 real_buffer[5] = 0; 2037 real_buffer[6] = data->block_descriptor_length >> 8; 2038 real_buffer[7] = data->block_descriptor_length; 2039 2040 cmd[0] = MODE_SELECT_10; 2041 cmd[7] = len >> 8; 2042 cmd[8] = len; 2043 } else { 2044 if (len > 255 || data->block_descriptor_length > 255 || 2045 data->longlba) 2046 return -EINVAL; 2047 2048 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2049 if (!real_buffer) 2050 return -ENOMEM; 2051 memcpy(real_buffer + 4, buffer, len); 2052 len += 4; 2053 real_buffer[0] = 0; 2054 real_buffer[1] = data->medium_type; 2055 real_buffer[2] = data->device_specific; 2056 real_buffer[3] = data->block_descriptor_length; 2057 2058 2059 cmd[0] = MODE_SELECT; 2060 cmd[4] = len; 2061 } 2062 2063 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2064 sshdr, timeout, retries, NULL); 2065 kfree(real_buffer); 2066 return ret; 2067 } 2068 EXPORT_SYMBOL_GPL(scsi_mode_select); 2069 2070 /** 2071 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2072 * @sdev: SCSI device to be queried 2073 * @dbd: set if mode sense will allow block descriptors to be returned 2074 * @modepage: mode page being requested 2075 * @buffer: request buffer (may not be smaller than eight bytes) 2076 * @len: length of request buffer. 2077 * @timeout: command timeout 2078 * @retries: number of retries before failing 2079 * @data: returns a structure abstracting the mode header data 2080 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2081 * must be SCSI_SENSE_BUFFERSIZE big. 2082 * 2083 * Returns zero if unsuccessful, or the header offset (either 4 2084 * or 8 depending on whether a six or ten byte command was 2085 * issued) if successful. 2086 */ 2087 int 2088 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2089 unsigned char *buffer, int len, int timeout, int retries, 2090 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2091 { 2092 unsigned char cmd[12]; 2093 int use_10_for_ms; 2094 int header_length; 2095 int result, retry_count = retries; 2096 struct scsi_sense_hdr my_sshdr; 2097 2098 memset(data, 0, sizeof(*data)); 2099 memset(&cmd[0], 0, 12); 2100 2101 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2102 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2103 cmd[2] = modepage; 2104 2105 /* caller might not be interested in sense, but we need it */ 2106 if (!sshdr) 2107 sshdr = &my_sshdr; 2108 2109 retry: 2110 use_10_for_ms = sdev->use_10_for_ms; 2111 2112 if (use_10_for_ms) { 2113 if (len < 8) 2114 len = 8; 2115 2116 cmd[0] = MODE_SENSE_10; 2117 cmd[8] = len; 2118 header_length = 8; 2119 } else { 2120 if (len < 4) 2121 len = 4; 2122 2123 cmd[0] = MODE_SENSE; 2124 cmd[4] = len; 2125 header_length = 4; 2126 } 2127 2128 memset(buffer, 0, len); 2129 2130 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2131 sshdr, timeout, retries, NULL); 2132 2133 /* This code looks awful: what it's doing is making sure an 2134 * ILLEGAL REQUEST sense return identifies the actual command 2135 * byte as the problem. MODE_SENSE commands can return 2136 * ILLEGAL REQUEST if the code page isn't supported */ 2137 2138 if (use_10_for_ms && !scsi_status_is_good(result) && 2139 driver_byte(result) == DRIVER_SENSE) { 2140 if (scsi_sense_valid(sshdr)) { 2141 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2142 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2143 /* 2144 * Invalid command operation code 2145 */ 2146 sdev->use_10_for_ms = 0; 2147 goto retry; 2148 } 2149 } 2150 } 2151 2152 if(scsi_status_is_good(result)) { 2153 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2154 (modepage == 6 || modepage == 8))) { 2155 /* Initio breakage? */ 2156 header_length = 0; 2157 data->length = 13; 2158 data->medium_type = 0; 2159 data->device_specific = 0; 2160 data->longlba = 0; 2161 data->block_descriptor_length = 0; 2162 } else if(use_10_for_ms) { 2163 data->length = buffer[0]*256 + buffer[1] + 2; 2164 data->medium_type = buffer[2]; 2165 data->device_specific = buffer[3]; 2166 data->longlba = buffer[4] & 0x01; 2167 data->block_descriptor_length = buffer[6]*256 2168 + buffer[7]; 2169 } else { 2170 data->length = buffer[0] + 1; 2171 data->medium_type = buffer[1]; 2172 data->device_specific = buffer[2]; 2173 data->block_descriptor_length = buffer[3]; 2174 } 2175 data->header_length = header_length; 2176 } else if ((status_byte(result) == CHECK_CONDITION) && 2177 scsi_sense_valid(sshdr) && 2178 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2179 retry_count--; 2180 goto retry; 2181 } 2182 2183 return result; 2184 } 2185 EXPORT_SYMBOL(scsi_mode_sense); 2186 2187 /** 2188 * scsi_test_unit_ready - test if unit is ready 2189 * @sdev: scsi device to change the state of. 2190 * @timeout: command timeout 2191 * @retries: number of retries before failing 2192 * @sshdr: outpout pointer for decoded sense information. 2193 * 2194 * Returns zero if unsuccessful or an error if TUR failed. For 2195 * removable media, UNIT_ATTENTION sets ->changed flag. 2196 **/ 2197 int 2198 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2199 struct scsi_sense_hdr *sshdr) 2200 { 2201 char cmd[] = { 2202 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2203 }; 2204 int result; 2205 2206 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2207 do { 2208 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2209 timeout, 1, NULL); 2210 if (sdev->removable && scsi_sense_valid(sshdr) && 2211 sshdr->sense_key == UNIT_ATTENTION) 2212 sdev->changed = 1; 2213 } while (scsi_sense_valid(sshdr) && 2214 sshdr->sense_key == UNIT_ATTENTION && --retries); 2215 2216 return result; 2217 } 2218 EXPORT_SYMBOL(scsi_test_unit_ready); 2219 2220 /** 2221 * scsi_device_set_state - Take the given device through the device state model. 2222 * @sdev: scsi device to change the state of. 2223 * @state: state to change to. 2224 * 2225 * Returns zero if successful or an error if the requested 2226 * transition is illegal. 2227 */ 2228 int 2229 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2230 { 2231 enum scsi_device_state oldstate = sdev->sdev_state; 2232 2233 if (state == oldstate) 2234 return 0; 2235 2236 switch (state) { 2237 case SDEV_CREATED: 2238 switch (oldstate) { 2239 case SDEV_CREATED_BLOCK: 2240 break; 2241 default: 2242 goto illegal; 2243 } 2244 break; 2245 2246 case SDEV_RUNNING: 2247 switch (oldstate) { 2248 case SDEV_CREATED: 2249 case SDEV_OFFLINE: 2250 case SDEV_TRANSPORT_OFFLINE: 2251 case SDEV_QUIESCE: 2252 case SDEV_BLOCK: 2253 break; 2254 default: 2255 goto illegal; 2256 } 2257 break; 2258 2259 case SDEV_QUIESCE: 2260 switch (oldstate) { 2261 case SDEV_RUNNING: 2262 case SDEV_OFFLINE: 2263 case SDEV_TRANSPORT_OFFLINE: 2264 break; 2265 default: 2266 goto illegal; 2267 } 2268 break; 2269 2270 case SDEV_OFFLINE: 2271 case SDEV_TRANSPORT_OFFLINE: 2272 switch (oldstate) { 2273 case SDEV_CREATED: 2274 case SDEV_RUNNING: 2275 case SDEV_QUIESCE: 2276 case SDEV_BLOCK: 2277 break; 2278 default: 2279 goto illegal; 2280 } 2281 break; 2282 2283 case SDEV_BLOCK: 2284 switch (oldstate) { 2285 case SDEV_RUNNING: 2286 case SDEV_CREATED_BLOCK: 2287 case SDEV_OFFLINE: 2288 break; 2289 default: 2290 goto illegal; 2291 } 2292 break; 2293 2294 case SDEV_CREATED_BLOCK: 2295 switch (oldstate) { 2296 case SDEV_CREATED: 2297 break; 2298 default: 2299 goto illegal; 2300 } 2301 break; 2302 2303 case SDEV_CANCEL: 2304 switch (oldstate) { 2305 case SDEV_CREATED: 2306 case SDEV_RUNNING: 2307 case SDEV_QUIESCE: 2308 case SDEV_OFFLINE: 2309 case SDEV_TRANSPORT_OFFLINE: 2310 break; 2311 default: 2312 goto illegal; 2313 } 2314 break; 2315 2316 case SDEV_DEL: 2317 switch (oldstate) { 2318 case SDEV_CREATED: 2319 case SDEV_RUNNING: 2320 case SDEV_OFFLINE: 2321 case SDEV_TRANSPORT_OFFLINE: 2322 case SDEV_CANCEL: 2323 case SDEV_BLOCK: 2324 case SDEV_CREATED_BLOCK: 2325 break; 2326 default: 2327 goto illegal; 2328 } 2329 break; 2330 2331 } 2332 sdev->offline_already = false; 2333 sdev->sdev_state = state; 2334 return 0; 2335 2336 illegal: 2337 SCSI_LOG_ERROR_RECOVERY(1, 2338 sdev_printk(KERN_ERR, sdev, 2339 "Illegal state transition %s->%s", 2340 scsi_device_state_name(oldstate), 2341 scsi_device_state_name(state)) 2342 ); 2343 return -EINVAL; 2344 } 2345 EXPORT_SYMBOL(scsi_device_set_state); 2346 2347 /** 2348 * sdev_evt_emit - emit a single SCSI device uevent 2349 * @sdev: associated SCSI device 2350 * @evt: event to emit 2351 * 2352 * Send a single uevent (scsi_event) to the associated scsi_device. 2353 */ 2354 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2355 { 2356 int idx = 0; 2357 char *envp[3]; 2358 2359 switch (evt->evt_type) { 2360 case SDEV_EVT_MEDIA_CHANGE: 2361 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2362 break; 2363 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2364 scsi_rescan_device(&sdev->sdev_gendev); 2365 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2366 break; 2367 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2368 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2369 break; 2370 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2371 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2372 break; 2373 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2374 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2375 break; 2376 case SDEV_EVT_LUN_CHANGE_REPORTED: 2377 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2378 break; 2379 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2380 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2381 break; 2382 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2383 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2384 break; 2385 default: 2386 /* do nothing */ 2387 break; 2388 } 2389 2390 envp[idx++] = NULL; 2391 2392 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2393 } 2394 2395 /** 2396 * sdev_evt_thread - send a uevent for each scsi event 2397 * @work: work struct for scsi_device 2398 * 2399 * Dispatch queued events to their associated scsi_device kobjects 2400 * as uevents. 2401 */ 2402 void scsi_evt_thread(struct work_struct *work) 2403 { 2404 struct scsi_device *sdev; 2405 enum scsi_device_event evt_type; 2406 LIST_HEAD(event_list); 2407 2408 sdev = container_of(work, struct scsi_device, event_work); 2409 2410 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2411 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2412 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2413 2414 while (1) { 2415 struct scsi_event *evt; 2416 struct list_head *this, *tmp; 2417 unsigned long flags; 2418 2419 spin_lock_irqsave(&sdev->list_lock, flags); 2420 list_splice_init(&sdev->event_list, &event_list); 2421 spin_unlock_irqrestore(&sdev->list_lock, flags); 2422 2423 if (list_empty(&event_list)) 2424 break; 2425 2426 list_for_each_safe(this, tmp, &event_list) { 2427 evt = list_entry(this, struct scsi_event, node); 2428 list_del(&evt->node); 2429 scsi_evt_emit(sdev, evt); 2430 kfree(evt); 2431 } 2432 } 2433 } 2434 2435 /** 2436 * sdev_evt_send - send asserted event to uevent thread 2437 * @sdev: scsi_device event occurred on 2438 * @evt: event to send 2439 * 2440 * Assert scsi device event asynchronously. 2441 */ 2442 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2443 { 2444 unsigned long flags; 2445 2446 #if 0 2447 /* FIXME: currently this check eliminates all media change events 2448 * for polled devices. Need to update to discriminate between AN 2449 * and polled events */ 2450 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2451 kfree(evt); 2452 return; 2453 } 2454 #endif 2455 2456 spin_lock_irqsave(&sdev->list_lock, flags); 2457 list_add_tail(&evt->node, &sdev->event_list); 2458 schedule_work(&sdev->event_work); 2459 spin_unlock_irqrestore(&sdev->list_lock, flags); 2460 } 2461 EXPORT_SYMBOL_GPL(sdev_evt_send); 2462 2463 /** 2464 * sdev_evt_alloc - allocate a new scsi event 2465 * @evt_type: type of event to allocate 2466 * @gfpflags: GFP flags for allocation 2467 * 2468 * Allocates and returns a new scsi_event. 2469 */ 2470 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2471 gfp_t gfpflags) 2472 { 2473 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2474 if (!evt) 2475 return NULL; 2476 2477 evt->evt_type = evt_type; 2478 INIT_LIST_HEAD(&evt->node); 2479 2480 /* evt_type-specific initialization, if any */ 2481 switch (evt_type) { 2482 case SDEV_EVT_MEDIA_CHANGE: 2483 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2484 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2485 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2486 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2487 case SDEV_EVT_LUN_CHANGE_REPORTED: 2488 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2489 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2490 default: 2491 /* do nothing */ 2492 break; 2493 } 2494 2495 return evt; 2496 } 2497 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2498 2499 /** 2500 * sdev_evt_send_simple - send asserted event to uevent thread 2501 * @sdev: scsi_device event occurred on 2502 * @evt_type: type of event to send 2503 * @gfpflags: GFP flags for allocation 2504 * 2505 * Assert scsi device event asynchronously, given an event type. 2506 */ 2507 void sdev_evt_send_simple(struct scsi_device *sdev, 2508 enum scsi_device_event evt_type, gfp_t gfpflags) 2509 { 2510 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2511 if (!evt) { 2512 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2513 evt_type); 2514 return; 2515 } 2516 2517 sdev_evt_send(sdev, evt); 2518 } 2519 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2520 2521 /** 2522 * scsi_device_quiesce - Block user issued commands. 2523 * @sdev: scsi device to quiesce. 2524 * 2525 * This works by trying to transition to the SDEV_QUIESCE state 2526 * (which must be a legal transition). When the device is in this 2527 * state, only special requests will be accepted, all others will 2528 * be deferred. Since special requests may also be requeued requests, 2529 * a successful return doesn't guarantee the device will be 2530 * totally quiescent. 2531 * 2532 * Must be called with user context, may sleep. 2533 * 2534 * Returns zero if unsuccessful or an error if not. 2535 */ 2536 int 2537 scsi_device_quiesce(struct scsi_device *sdev) 2538 { 2539 struct request_queue *q = sdev->request_queue; 2540 int err; 2541 2542 /* 2543 * It is allowed to call scsi_device_quiesce() multiple times from 2544 * the same context but concurrent scsi_device_quiesce() calls are 2545 * not allowed. 2546 */ 2547 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2548 2549 if (sdev->quiesced_by == current) 2550 return 0; 2551 2552 blk_set_pm_only(q); 2553 2554 blk_mq_freeze_queue(q); 2555 /* 2556 * Ensure that the effect of blk_set_pm_only() will be visible 2557 * for percpu_ref_tryget() callers that occur after the queue 2558 * unfreeze even if the queue was already frozen before this function 2559 * was called. See also https://lwn.net/Articles/573497/. 2560 */ 2561 synchronize_rcu(); 2562 blk_mq_unfreeze_queue(q); 2563 2564 mutex_lock(&sdev->state_mutex); 2565 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2566 if (err == 0) 2567 sdev->quiesced_by = current; 2568 else 2569 blk_clear_pm_only(q); 2570 mutex_unlock(&sdev->state_mutex); 2571 2572 return err; 2573 } 2574 EXPORT_SYMBOL(scsi_device_quiesce); 2575 2576 /** 2577 * scsi_device_resume - Restart user issued commands to a quiesced device. 2578 * @sdev: scsi device to resume. 2579 * 2580 * Moves the device from quiesced back to running and restarts the 2581 * queues. 2582 * 2583 * Must be called with user context, may sleep. 2584 */ 2585 void scsi_device_resume(struct scsi_device *sdev) 2586 { 2587 /* check if the device state was mutated prior to resume, and if 2588 * so assume the state is being managed elsewhere (for example 2589 * device deleted during suspend) 2590 */ 2591 mutex_lock(&sdev->state_mutex); 2592 if (sdev->quiesced_by) { 2593 sdev->quiesced_by = NULL; 2594 blk_clear_pm_only(sdev->request_queue); 2595 } 2596 if (sdev->sdev_state == SDEV_QUIESCE) 2597 scsi_device_set_state(sdev, SDEV_RUNNING); 2598 mutex_unlock(&sdev->state_mutex); 2599 } 2600 EXPORT_SYMBOL(scsi_device_resume); 2601 2602 static void 2603 device_quiesce_fn(struct scsi_device *sdev, void *data) 2604 { 2605 scsi_device_quiesce(sdev); 2606 } 2607 2608 void 2609 scsi_target_quiesce(struct scsi_target *starget) 2610 { 2611 starget_for_each_device(starget, NULL, device_quiesce_fn); 2612 } 2613 EXPORT_SYMBOL(scsi_target_quiesce); 2614 2615 static void 2616 device_resume_fn(struct scsi_device *sdev, void *data) 2617 { 2618 scsi_device_resume(sdev); 2619 } 2620 2621 void 2622 scsi_target_resume(struct scsi_target *starget) 2623 { 2624 starget_for_each_device(starget, NULL, device_resume_fn); 2625 } 2626 EXPORT_SYMBOL(scsi_target_resume); 2627 2628 /** 2629 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2630 * @sdev: device to block 2631 * 2632 * Pause SCSI command processing on the specified device. Does not sleep. 2633 * 2634 * Returns zero if successful or a negative error code upon failure. 2635 * 2636 * Notes: 2637 * This routine transitions the device to the SDEV_BLOCK state (which must be 2638 * a legal transition). When the device is in this state, command processing 2639 * is paused until the device leaves the SDEV_BLOCK state. See also 2640 * scsi_internal_device_unblock_nowait(). 2641 */ 2642 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2643 { 2644 struct request_queue *q = sdev->request_queue; 2645 int err = 0; 2646 2647 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2648 if (err) { 2649 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2650 2651 if (err) 2652 return err; 2653 } 2654 2655 /* 2656 * The device has transitioned to SDEV_BLOCK. Stop the 2657 * block layer from calling the midlayer with this device's 2658 * request queue. 2659 */ 2660 blk_mq_quiesce_queue_nowait(q); 2661 return 0; 2662 } 2663 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2664 2665 /** 2666 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2667 * @sdev: device to block 2668 * 2669 * Pause SCSI command processing on the specified device and wait until all 2670 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2671 * 2672 * Returns zero if successful or a negative error code upon failure. 2673 * 2674 * Note: 2675 * This routine transitions the device to the SDEV_BLOCK state (which must be 2676 * a legal transition). When the device is in this state, command processing 2677 * is paused until the device leaves the SDEV_BLOCK state. See also 2678 * scsi_internal_device_unblock(). 2679 */ 2680 static int scsi_internal_device_block(struct scsi_device *sdev) 2681 { 2682 struct request_queue *q = sdev->request_queue; 2683 int err; 2684 2685 mutex_lock(&sdev->state_mutex); 2686 err = scsi_internal_device_block_nowait(sdev); 2687 if (err == 0) 2688 blk_mq_quiesce_queue(q); 2689 mutex_unlock(&sdev->state_mutex); 2690 2691 return err; 2692 } 2693 2694 void scsi_start_queue(struct scsi_device *sdev) 2695 { 2696 struct request_queue *q = sdev->request_queue; 2697 2698 blk_mq_unquiesce_queue(q); 2699 } 2700 2701 /** 2702 * scsi_internal_device_unblock_nowait - resume a device after a block request 2703 * @sdev: device to resume 2704 * @new_state: state to set the device to after unblocking 2705 * 2706 * Restart the device queue for a previously suspended SCSI device. Does not 2707 * sleep. 2708 * 2709 * Returns zero if successful or a negative error code upon failure. 2710 * 2711 * Notes: 2712 * This routine transitions the device to the SDEV_RUNNING state or to one of 2713 * the offline states (which must be a legal transition) allowing the midlayer 2714 * to goose the queue for this device. 2715 */ 2716 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2717 enum scsi_device_state new_state) 2718 { 2719 switch (new_state) { 2720 case SDEV_RUNNING: 2721 case SDEV_TRANSPORT_OFFLINE: 2722 break; 2723 default: 2724 return -EINVAL; 2725 } 2726 2727 /* 2728 * Try to transition the scsi device to SDEV_RUNNING or one of the 2729 * offlined states and goose the device queue if successful. 2730 */ 2731 switch (sdev->sdev_state) { 2732 case SDEV_BLOCK: 2733 case SDEV_TRANSPORT_OFFLINE: 2734 sdev->sdev_state = new_state; 2735 break; 2736 case SDEV_CREATED_BLOCK: 2737 if (new_state == SDEV_TRANSPORT_OFFLINE || 2738 new_state == SDEV_OFFLINE) 2739 sdev->sdev_state = new_state; 2740 else 2741 sdev->sdev_state = SDEV_CREATED; 2742 break; 2743 case SDEV_CANCEL: 2744 case SDEV_OFFLINE: 2745 break; 2746 default: 2747 return -EINVAL; 2748 } 2749 scsi_start_queue(sdev); 2750 2751 return 0; 2752 } 2753 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2754 2755 /** 2756 * scsi_internal_device_unblock - resume a device after a block request 2757 * @sdev: device to resume 2758 * @new_state: state to set the device to after unblocking 2759 * 2760 * Restart the device queue for a previously suspended SCSI device. May sleep. 2761 * 2762 * Returns zero if successful or a negative error code upon failure. 2763 * 2764 * Notes: 2765 * This routine transitions the device to the SDEV_RUNNING state or to one of 2766 * the offline states (which must be a legal transition) allowing the midlayer 2767 * to goose the queue for this device. 2768 */ 2769 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2770 enum scsi_device_state new_state) 2771 { 2772 int ret; 2773 2774 mutex_lock(&sdev->state_mutex); 2775 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2776 mutex_unlock(&sdev->state_mutex); 2777 2778 return ret; 2779 } 2780 2781 static void 2782 device_block(struct scsi_device *sdev, void *data) 2783 { 2784 int ret; 2785 2786 ret = scsi_internal_device_block(sdev); 2787 2788 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n", 2789 dev_name(&sdev->sdev_gendev), ret); 2790 } 2791 2792 static int 2793 target_block(struct device *dev, void *data) 2794 { 2795 if (scsi_is_target_device(dev)) 2796 starget_for_each_device(to_scsi_target(dev), NULL, 2797 device_block); 2798 return 0; 2799 } 2800 2801 void 2802 scsi_target_block(struct device *dev) 2803 { 2804 if (scsi_is_target_device(dev)) 2805 starget_for_each_device(to_scsi_target(dev), NULL, 2806 device_block); 2807 else 2808 device_for_each_child(dev, NULL, target_block); 2809 } 2810 EXPORT_SYMBOL_GPL(scsi_target_block); 2811 2812 static void 2813 device_unblock(struct scsi_device *sdev, void *data) 2814 { 2815 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2816 } 2817 2818 static int 2819 target_unblock(struct device *dev, void *data) 2820 { 2821 if (scsi_is_target_device(dev)) 2822 starget_for_each_device(to_scsi_target(dev), data, 2823 device_unblock); 2824 return 0; 2825 } 2826 2827 void 2828 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2829 { 2830 if (scsi_is_target_device(dev)) 2831 starget_for_each_device(to_scsi_target(dev), &new_state, 2832 device_unblock); 2833 else 2834 device_for_each_child(dev, &new_state, target_unblock); 2835 } 2836 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2837 2838 int 2839 scsi_host_block(struct Scsi_Host *shost) 2840 { 2841 struct scsi_device *sdev; 2842 int ret = 0; 2843 2844 shost_for_each_device(sdev, shost) { 2845 ret = scsi_internal_device_block(sdev); 2846 if (ret) 2847 break; 2848 } 2849 return ret; 2850 } 2851 EXPORT_SYMBOL_GPL(scsi_host_block); 2852 2853 int 2854 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 2855 { 2856 struct scsi_device *sdev; 2857 int ret = 0; 2858 2859 shost_for_each_device(sdev, shost) { 2860 ret = scsi_internal_device_unblock(sdev, new_state); 2861 if (ret) 2862 break; 2863 } 2864 return ret; 2865 } 2866 EXPORT_SYMBOL_GPL(scsi_host_unblock); 2867 2868 /** 2869 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2870 * @sgl: scatter-gather list 2871 * @sg_count: number of segments in sg 2872 * @offset: offset in bytes into sg, on return offset into the mapped area 2873 * @len: bytes to map, on return number of bytes mapped 2874 * 2875 * Returns virtual address of the start of the mapped page 2876 */ 2877 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2878 size_t *offset, size_t *len) 2879 { 2880 int i; 2881 size_t sg_len = 0, len_complete = 0; 2882 struct scatterlist *sg; 2883 struct page *page; 2884 2885 WARN_ON(!irqs_disabled()); 2886 2887 for_each_sg(sgl, sg, sg_count, i) { 2888 len_complete = sg_len; /* Complete sg-entries */ 2889 sg_len += sg->length; 2890 if (sg_len > *offset) 2891 break; 2892 } 2893 2894 if (unlikely(i == sg_count)) { 2895 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2896 "elements %d\n", 2897 __func__, sg_len, *offset, sg_count); 2898 WARN_ON(1); 2899 return NULL; 2900 } 2901 2902 /* Offset starting from the beginning of first page in this sg-entry */ 2903 *offset = *offset - len_complete + sg->offset; 2904 2905 /* Assumption: contiguous pages can be accessed as "page + i" */ 2906 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2907 *offset &= ~PAGE_MASK; 2908 2909 /* Bytes in this sg-entry from *offset to the end of the page */ 2910 sg_len = PAGE_SIZE - *offset; 2911 if (*len > sg_len) 2912 *len = sg_len; 2913 2914 return kmap_atomic(page); 2915 } 2916 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2917 2918 /** 2919 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2920 * @virt: virtual address to be unmapped 2921 */ 2922 void scsi_kunmap_atomic_sg(void *virt) 2923 { 2924 kunmap_atomic(virt); 2925 } 2926 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2927 2928 void sdev_disable_disk_events(struct scsi_device *sdev) 2929 { 2930 atomic_inc(&sdev->disk_events_disable_depth); 2931 } 2932 EXPORT_SYMBOL(sdev_disable_disk_events); 2933 2934 void sdev_enable_disk_events(struct scsi_device *sdev) 2935 { 2936 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2937 return; 2938 atomic_dec(&sdev->disk_events_disable_depth); 2939 } 2940 EXPORT_SYMBOL(sdev_enable_disk_events); 2941 2942 /** 2943 * scsi_vpd_lun_id - return a unique device identification 2944 * @sdev: SCSI device 2945 * @id: buffer for the identification 2946 * @id_len: length of the buffer 2947 * 2948 * Copies a unique device identification into @id based 2949 * on the information in the VPD page 0x83 of the device. 2950 * The string will be formatted as a SCSI name string. 2951 * 2952 * Returns the length of the identification or error on failure. 2953 * If the identifier is longer than the supplied buffer the actual 2954 * identifier length is returned and the buffer is not zero-padded. 2955 */ 2956 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 2957 { 2958 u8 cur_id_type = 0xff; 2959 u8 cur_id_size = 0; 2960 const unsigned char *d, *cur_id_str; 2961 const struct scsi_vpd *vpd_pg83; 2962 int id_size = -EINVAL; 2963 2964 rcu_read_lock(); 2965 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 2966 if (!vpd_pg83) { 2967 rcu_read_unlock(); 2968 return -ENXIO; 2969 } 2970 2971 /* 2972 * Look for the correct descriptor. 2973 * Order of preference for lun descriptor: 2974 * - SCSI name string 2975 * - NAA IEEE Registered Extended 2976 * - EUI-64 based 16-byte 2977 * - EUI-64 based 12-byte 2978 * - NAA IEEE Registered 2979 * - NAA IEEE Extended 2980 * - T10 Vendor ID 2981 * as longer descriptors reduce the likelyhood 2982 * of identification clashes. 2983 */ 2984 2985 /* The id string must be at least 20 bytes + terminating NULL byte */ 2986 if (id_len < 21) { 2987 rcu_read_unlock(); 2988 return -EINVAL; 2989 } 2990 2991 memset(id, 0, id_len); 2992 d = vpd_pg83->data + 4; 2993 while (d < vpd_pg83->data + vpd_pg83->len) { 2994 /* Skip designators not referring to the LUN */ 2995 if ((d[1] & 0x30) != 0x00) 2996 goto next_desig; 2997 2998 switch (d[1] & 0xf) { 2999 case 0x1: 3000 /* T10 Vendor ID */ 3001 if (cur_id_size > d[3]) 3002 break; 3003 /* Prefer anything */ 3004 if (cur_id_type > 0x01 && cur_id_type != 0xff) 3005 break; 3006 cur_id_size = d[3]; 3007 if (cur_id_size + 4 > id_len) 3008 cur_id_size = id_len - 4; 3009 cur_id_str = d + 4; 3010 cur_id_type = d[1] & 0xf; 3011 id_size = snprintf(id, id_len, "t10.%*pE", 3012 cur_id_size, cur_id_str); 3013 break; 3014 case 0x2: 3015 /* EUI-64 */ 3016 if (cur_id_size > d[3]) 3017 break; 3018 /* Prefer NAA IEEE Registered Extended */ 3019 if (cur_id_type == 0x3 && 3020 cur_id_size == d[3]) 3021 break; 3022 cur_id_size = d[3]; 3023 cur_id_str = d + 4; 3024 cur_id_type = d[1] & 0xf; 3025 switch (cur_id_size) { 3026 case 8: 3027 id_size = snprintf(id, id_len, 3028 "eui.%8phN", 3029 cur_id_str); 3030 break; 3031 case 12: 3032 id_size = snprintf(id, id_len, 3033 "eui.%12phN", 3034 cur_id_str); 3035 break; 3036 case 16: 3037 id_size = snprintf(id, id_len, 3038 "eui.%16phN", 3039 cur_id_str); 3040 break; 3041 default: 3042 cur_id_size = 0; 3043 break; 3044 } 3045 break; 3046 case 0x3: 3047 /* NAA */ 3048 if (cur_id_size > d[3]) 3049 break; 3050 cur_id_size = d[3]; 3051 cur_id_str = d + 4; 3052 cur_id_type = d[1] & 0xf; 3053 switch (cur_id_size) { 3054 case 8: 3055 id_size = snprintf(id, id_len, 3056 "naa.%8phN", 3057 cur_id_str); 3058 break; 3059 case 16: 3060 id_size = snprintf(id, id_len, 3061 "naa.%16phN", 3062 cur_id_str); 3063 break; 3064 default: 3065 cur_id_size = 0; 3066 break; 3067 } 3068 break; 3069 case 0x8: 3070 /* SCSI name string */ 3071 if (cur_id_size + 4 > d[3]) 3072 break; 3073 /* Prefer others for truncated descriptor */ 3074 if (cur_id_size && d[3] > id_len) 3075 break; 3076 cur_id_size = id_size = d[3]; 3077 cur_id_str = d + 4; 3078 cur_id_type = d[1] & 0xf; 3079 if (cur_id_size >= id_len) 3080 cur_id_size = id_len - 1; 3081 memcpy(id, cur_id_str, cur_id_size); 3082 /* Decrease priority for truncated descriptor */ 3083 if (cur_id_size != id_size) 3084 cur_id_size = 6; 3085 break; 3086 default: 3087 break; 3088 } 3089 next_desig: 3090 d += d[3] + 4; 3091 } 3092 rcu_read_unlock(); 3093 3094 return id_size; 3095 } 3096 EXPORT_SYMBOL(scsi_vpd_lun_id); 3097 3098 /* 3099 * scsi_vpd_tpg_id - return a target port group identifier 3100 * @sdev: SCSI device 3101 * 3102 * Returns the Target Port Group identifier from the information 3103 * froom VPD page 0x83 of the device. 3104 * 3105 * Returns the identifier or error on failure. 3106 */ 3107 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3108 { 3109 const unsigned char *d; 3110 const struct scsi_vpd *vpd_pg83; 3111 int group_id = -EAGAIN, rel_port = -1; 3112 3113 rcu_read_lock(); 3114 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3115 if (!vpd_pg83) { 3116 rcu_read_unlock(); 3117 return -ENXIO; 3118 } 3119 3120 d = vpd_pg83->data + 4; 3121 while (d < vpd_pg83->data + vpd_pg83->len) { 3122 switch (d[1] & 0xf) { 3123 case 0x4: 3124 /* Relative target port */ 3125 rel_port = get_unaligned_be16(&d[6]); 3126 break; 3127 case 0x5: 3128 /* Target port group */ 3129 group_id = get_unaligned_be16(&d[6]); 3130 break; 3131 default: 3132 break; 3133 } 3134 d += d[3] + 4; 3135 } 3136 rcu_read_unlock(); 3137 3138 if (group_id >= 0 && rel_id && rel_port != -1) 3139 *rel_id = rel_port; 3140 3141 return group_id; 3142 } 3143 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3144