xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 15b7cc78)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_dh.h>
34 
35 #include <trace/events/scsi.h>
36 
37 #include "scsi_priv.h"
38 #include "scsi_logging.h"
39 
40 
41 struct kmem_cache *scsi_sdb_cache;
42 
43 /*
44  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
45  * not change behaviour from the previous unplug mechanism, experimentation
46  * may prove this needs changing.
47  */
48 #define SCSI_QUEUE_DELAY	3
49 
50 static void
51 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
52 {
53 	struct Scsi_Host *host = cmd->device->host;
54 	struct scsi_device *device = cmd->device;
55 	struct scsi_target *starget = scsi_target(device);
56 
57 	/*
58 	 * Set the appropriate busy bit for the device/host.
59 	 *
60 	 * If the host/device isn't busy, assume that something actually
61 	 * completed, and that we should be able to queue a command now.
62 	 *
63 	 * Note that the prior mid-layer assumption that any host could
64 	 * always queue at least one command is now broken.  The mid-layer
65 	 * will implement a user specifiable stall (see
66 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
67 	 * if a command is requeued with no other commands outstanding
68 	 * either for the device or for the host.
69 	 */
70 	switch (reason) {
71 	case SCSI_MLQUEUE_HOST_BUSY:
72 		atomic_set(&host->host_blocked, host->max_host_blocked);
73 		break;
74 	case SCSI_MLQUEUE_DEVICE_BUSY:
75 	case SCSI_MLQUEUE_EH_RETRY:
76 		atomic_set(&device->device_blocked,
77 			   device->max_device_blocked);
78 		break;
79 	case SCSI_MLQUEUE_TARGET_BUSY:
80 		atomic_set(&starget->target_blocked,
81 			   starget->max_target_blocked);
82 		break;
83 	}
84 }
85 
86 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
87 {
88 	struct scsi_device *sdev = cmd->device;
89 	struct request_queue *q = cmd->request->q;
90 
91 	blk_mq_requeue_request(cmd->request);
92 	blk_mq_kick_requeue_list(q);
93 	put_device(&sdev->sdev_gendev);
94 }
95 
96 /**
97  * __scsi_queue_insert - private queue insertion
98  * @cmd: The SCSI command being requeued
99  * @reason:  The reason for the requeue
100  * @unbusy: Whether the queue should be unbusied
101  *
102  * This is a private queue insertion.  The public interface
103  * scsi_queue_insert() always assumes the queue should be unbusied
104  * because it's always called before the completion.  This function is
105  * for a requeue after completion, which should only occur in this
106  * file.
107  */
108 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
109 {
110 	struct scsi_device *device = cmd->device;
111 	struct request_queue *q = device->request_queue;
112 	unsigned long flags;
113 
114 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
115 		"Inserting command %p into mlqueue\n", cmd));
116 
117 	scsi_set_blocked(cmd, reason);
118 
119 	/*
120 	 * Decrement the counters, since these commands are no longer
121 	 * active on the host/device.
122 	 */
123 	if (unbusy)
124 		scsi_device_unbusy(device);
125 
126 	/*
127 	 * Requeue this command.  It will go before all other commands
128 	 * that are already in the queue. Schedule requeue work under
129 	 * lock such that the kblockd_schedule_work() call happens
130 	 * before blk_cleanup_queue() finishes.
131 	 */
132 	cmd->result = 0;
133 	if (q->mq_ops) {
134 		scsi_mq_requeue_cmd(cmd);
135 		return;
136 	}
137 	spin_lock_irqsave(q->queue_lock, flags);
138 	blk_requeue_request(q, cmd->request);
139 	kblockd_schedule_work(&device->requeue_work);
140 	spin_unlock_irqrestore(q->queue_lock, flags);
141 }
142 
143 /*
144  * Function:    scsi_queue_insert()
145  *
146  * Purpose:     Insert a command in the midlevel queue.
147  *
148  * Arguments:   cmd    - command that we are adding to queue.
149  *              reason - why we are inserting command to queue.
150  *
151  * Lock status: Assumed that lock is not held upon entry.
152  *
153  * Returns:     Nothing.
154  *
155  * Notes:       We do this for one of two cases.  Either the host is busy
156  *              and it cannot accept any more commands for the time being,
157  *              or the device returned QUEUE_FULL and can accept no more
158  *              commands.
159  * Notes:       This could be called either from an interrupt context or a
160  *              normal process context.
161  */
162 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
163 {
164 	__scsi_queue_insert(cmd, reason, 1);
165 }
166 /**
167  * scsi_execute - insert request and wait for the result
168  * @sdev:	scsi device
169  * @cmd:	scsi command
170  * @data_direction: data direction
171  * @buffer:	data buffer
172  * @bufflen:	len of buffer
173  * @sense:	optional sense buffer
174  * @timeout:	request timeout in seconds
175  * @retries:	number of times to retry request
176  * @flags:	or into request flags;
177  * @resid:	optional residual length
178  *
179  * returns the req->errors value which is the scsi_cmnd result
180  * field.
181  */
182 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
183 		 int data_direction, void *buffer, unsigned bufflen,
184 		 unsigned char *sense, int timeout, int retries, u64 flags,
185 		 int *resid)
186 {
187 	struct request *req;
188 	int write = (data_direction == DMA_TO_DEVICE);
189 	int ret = DRIVER_ERROR << 24;
190 
191 	req = blk_get_request(sdev->request_queue, write, __GFP_RECLAIM);
192 	if (IS_ERR(req))
193 		return ret;
194 	blk_rq_set_block_pc(req);
195 
196 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
197 					buffer, bufflen, __GFP_RECLAIM))
198 		goto out;
199 
200 	req->cmd_len = COMMAND_SIZE(cmd[0]);
201 	memcpy(req->cmd, cmd, req->cmd_len);
202 	req->sense = sense;
203 	req->sense_len = 0;
204 	req->retries = retries;
205 	req->timeout = timeout;
206 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
207 
208 	/*
209 	 * head injection *required* here otherwise quiesce won't work
210 	 */
211 	blk_execute_rq(req->q, NULL, req, 1);
212 
213 	/*
214 	 * Some devices (USB mass-storage in particular) may transfer
215 	 * garbage data together with a residue indicating that the data
216 	 * is invalid.  Prevent the garbage from being misinterpreted
217 	 * and prevent security leaks by zeroing out the excess data.
218 	 */
219 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
220 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
221 
222 	if (resid)
223 		*resid = req->resid_len;
224 	ret = req->errors;
225  out:
226 	blk_put_request(req);
227 
228 	return ret;
229 }
230 EXPORT_SYMBOL(scsi_execute);
231 
232 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
233 		     int data_direction, void *buffer, unsigned bufflen,
234 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
235 		     int *resid, u64 flags)
236 {
237 	char *sense = NULL;
238 	int result;
239 
240 	if (sshdr) {
241 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
242 		if (!sense)
243 			return DRIVER_ERROR << 24;
244 	}
245 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
246 			      sense, timeout, retries, flags, resid);
247 	if (sshdr)
248 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
249 
250 	kfree(sense);
251 	return result;
252 }
253 EXPORT_SYMBOL(scsi_execute_req_flags);
254 
255 /*
256  * Function:    scsi_init_cmd_errh()
257  *
258  * Purpose:     Initialize cmd fields related to error handling.
259  *
260  * Arguments:   cmd	- command that is ready to be queued.
261  *
262  * Notes:       This function has the job of initializing a number of
263  *              fields related to error handling.   Typically this will
264  *              be called once for each command, as required.
265  */
266 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
267 {
268 	cmd->serial_number = 0;
269 	scsi_set_resid(cmd, 0);
270 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
271 	if (cmd->cmd_len == 0)
272 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
273 }
274 
275 void scsi_device_unbusy(struct scsi_device *sdev)
276 {
277 	struct Scsi_Host *shost = sdev->host;
278 	struct scsi_target *starget = scsi_target(sdev);
279 	unsigned long flags;
280 
281 	atomic_dec(&shost->host_busy);
282 	if (starget->can_queue > 0)
283 		atomic_dec(&starget->target_busy);
284 
285 	if (unlikely(scsi_host_in_recovery(shost) &&
286 		     (shost->host_failed || shost->host_eh_scheduled))) {
287 		spin_lock_irqsave(shost->host_lock, flags);
288 		scsi_eh_wakeup(shost);
289 		spin_unlock_irqrestore(shost->host_lock, flags);
290 	}
291 
292 	atomic_dec(&sdev->device_busy);
293 }
294 
295 static void scsi_kick_queue(struct request_queue *q)
296 {
297 	if (q->mq_ops)
298 		blk_mq_start_hw_queues(q);
299 	else
300 		blk_run_queue(q);
301 }
302 
303 /*
304  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
305  * and call blk_run_queue for all the scsi_devices on the target -
306  * including current_sdev first.
307  *
308  * Called with *no* scsi locks held.
309  */
310 static void scsi_single_lun_run(struct scsi_device *current_sdev)
311 {
312 	struct Scsi_Host *shost = current_sdev->host;
313 	struct scsi_device *sdev, *tmp;
314 	struct scsi_target *starget = scsi_target(current_sdev);
315 	unsigned long flags;
316 
317 	spin_lock_irqsave(shost->host_lock, flags);
318 	starget->starget_sdev_user = NULL;
319 	spin_unlock_irqrestore(shost->host_lock, flags);
320 
321 	/*
322 	 * Call blk_run_queue for all LUNs on the target, starting with
323 	 * current_sdev. We race with others (to set starget_sdev_user),
324 	 * but in most cases, we will be first. Ideally, each LU on the
325 	 * target would get some limited time or requests on the target.
326 	 */
327 	scsi_kick_queue(current_sdev->request_queue);
328 
329 	spin_lock_irqsave(shost->host_lock, flags);
330 	if (starget->starget_sdev_user)
331 		goto out;
332 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
333 			same_target_siblings) {
334 		if (sdev == current_sdev)
335 			continue;
336 		if (scsi_device_get(sdev))
337 			continue;
338 
339 		spin_unlock_irqrestore(shost->host_lock, flags);
340 		scsi_kick_queue(sdev->request_queue);
341 		spin_lock_irqsave(shost->host_lock, flags);
342 
343 		scsi_device_put(sdev);
344 	}
345  out:
346 	spin_unlock_irqrestore(shost->host_lock, flags);
347 }
348 
349 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
350 {
351 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
352 		return true;
353 	if (atomic_read(&sdev->device_blocked) > 0)
354 		return true;
355 	return false;
356 }
357 
358 static inline bool scsi_target_is_busy(struct scsi_target *starget)
359 {
360 	if (starget->can_queue > 0) {
361 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
362 			return true;
363 		if (atomic_read(&starget->target_blocked) > 0)
364 			return true;
365 	}
366 	return false;
367 }
368 
369 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
370 {
371 	if (shost->can_queue > 0 &&
372 	    atomic_read(&shost->host_busy) >= shost->can_queue)
373 		return true;
374 	if (atomic_read(&shost->host_blocked) > 0)
375 		return true;
376 	if (shost->host_self_blocked)
377 		return true;
378 	return false;
379 }
380 
381 static void scsi_starved_list_run(struct Scsi_Host *shost)
382 {
383 	LIST_HEAD(starved_list);
384 	struct scsi_device *sdev;
385 	unsigned long flags;
386 
387 	spin_lock_irqsave(shost->host_lock, flags);
388 	list_splice_init(&shost->starved_list, &starved_list);
389 
390 	while (!list_empty(&starved_list)) {
391 		struct request_queue *slq;
392 
393 		/*
394 		 * As long as shost is accepting commands and we have
395 		 * starved queues, call blk_run_queue. scsi_request_fn
396 		 * drops the queue_lock and can add us back to the
397 		 * starved_list.
398 		 *
399 		 * host_lock protects the starved_list and starved_entry.
400 		 * scsi_request_fn must get the host_lock before checking
401 		 * or modifying starved_list or starved_entry.
402 		 */
403 		if (scsi_host_is_busy(shost))
404 			break;
405 
406 		sdev = list_entry(starved_list.next,
407 				  struct scsi_device, starved_entry);
408 		list_del_init(&sdev->starved_entry);
409 		if (scsi_target_is_busy(scsi_target(sdev))) {
410 			list_move_tail(&sdev->starved_entry,
411 				       &shost->starved_list);
412 			continue;
413 		}
414 
415 		/*
416 		 * Once we drop the host lock, a racing scsi_remove_device()
417 		 * call may remove the sdev from the starved list and destroy
418 		 * it and the queue.  Mitigate by taking a reference to the
419 		 * queue and never touching the sdev again after we drop the
420 		 * host lock.  Note: if __scsi_remove_device() invokes
421 		 * blk_cleanup_queue() before the queue is run from this
422 		 * function then blk_run_queue() will return immediately since
423 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
424 		 */
425 		slq = sdev->request_queue;
426 		if (!blk_get_queue(slq))
427 			continue;
428 		spin_unlock_irqrestore(shost->host_lock, flags);
429 
430 		scsi_kick_queue(slq);
431 		blk_put_queue(slq);
432 
433 		spin_lock_irqsave(shost->host_lock, flags);
434 	}
435 	/* put any unprocessed entries back */
436 	list_splice(&starved_list, &shost->starved_list);
437 	spin_unlock_irqrestore(shost->host_lock, flags);
438 }
439 
440 /*
441  * Function:   scsi_run_queue()
442  *
443  * Purpose:    Select a proper request queue to serve next
444  *
445  * Arguments:  q       - last request's queue
446  *
447  * Returns:     Nothing
448  *
449  * Notes:      The previous command was completely finished, start
450  *             a new one if possible.
451  */
452 static void scsi_run_queue(struct request_queue *q)
453 {
454 	struct scsi_device *sdev = q->queuedata;
455 
456 	if (scsi_target(sdev)->single_lun)
457 		scsi_single_lun_run(sdev);
458 	if (!list_empty(&sdev->host->starved_list))
459 		scsi_starved_list_run(sdev->host);
460 
461 	if (q->mq_ops)
462 		blk_mq_start_stopped_hw_queues(q, false);
463 	else
464 		blk_run_queue(q);
465 }
466 
467 void scsi_requeue_run_queue(struct work_struct *work)
468 {
469 	struct scsi_device *sdev;
470 	struct request_queue *q;
471 
472 	sdev = container_of(work, struct scsi_device, requeue_work);
473 	q = sdev->request_queue;
474 	scsi_run_queue(q);
475 }
476 
477 /*
478  * Function:	scsi_requeue_command()
479  *
480  * Purpose:	Handle post-processing of completed commands.
481  *
482  * Arguments:	q	- queue to operate on
483  *		cmd	- command that may need to be requeued.
484  *
485  * Returns:	Nothing
486  *
487  * Notes:	After command completion, there may be blocks left
488  *		over which weren't finished by the previous command
489  *		this can be for a number of reasons - the main one is
490  *		I/O errors in the middle of the request, in which case
491  *		we need to request the blocks that come after the bad
492  *		sector.
493  * Notes:	Upon return, cmd is a stale pointer.
494  */
495 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
496 {
497 	struct scsi_device *sdev = cmd->device;
498 	struct request *req = cmd->request;
499 	unsigned long flags;
500 
501 	spin_lock_irqsave(q->queue_lock, flags);
502 	blk_unprep_request(req);
503 	req->special = NULL;
504 	scsi_put_command(cmd);
505 	blk_requeue_request(q, req);
506 	spin_unlock_irqrestore(q->queue_lock, flags);
507 
508 	scsi_run_queue(q);
509 
510 	put_device(&sdev->sdev_gendev);
511 }
512 
513 void scsi_run_host_queues(struct Scsi_Host *shost)
514 {
515 	struct scsi_device *sdev;
516 
517 	shost_for_each_device(sdev, shost)
518 		scsi_run_queue(sdev->request_queue);
519 }
520 
521 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
522 {
523 	if (cmd->request->cmd_type == REQ_TYPE_FS) {
524 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
525 
526 		if (drv->uninit_command)
527 			drv->uninit_command(cmd);
528 	}
529 }
530 
531 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
532 {
533 	struct scsi_data_buffer *sdb;
534 
535 	if (cmd->sdb.table.nents)
536 		sg_free_table_chained(&cmd->sdb.table, true);
537 	if (cmd->request->next_rq) {
538 		sdb = cmd->request->next_rq->special;
539 		if (sdb)
540 			sg_free_table_chained(&sdb->table, true);
541 	}
542 	if (scsi_prot_sg_count(cmd))
543 		sg_free_table_chained(&cmd->prot_sdb->table, true);
544 }
545 
546 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
547 {
548 	struct scsi_device *sdev = cmd->device;
549 	struct Scsi_Host *shost = sdev->host;
550 	unsigned long flags;
551 
552 	scsi_mq_free_sgtables(cmd);
553 	scsi_uninit_cmd(cmd);
554 
555 	if (shost->use_cmd_list) {
556 		BUG_ON(list_empty(&cmd->list));
557 		spin_lock_irqsave(&sdev->list_lock, flags);
558 		list_del_init(&cmd->list);
559 		spin_unlock_irqrestore(&sdev->list_lock, flags);
560 	}
561 }
562 
563 /*
564  * Function:    scsi_release_buffers()
565  *
566  * Purpose:     Free resources allocate for a scsi_command.
567  *
568  * Arguments:   cmd	- command that we are bailing.
569  *
570  * Lock status: Assumed that no lock is held upon entry.
571  *
572  * Returns:     Nothing
573  *
574  * Notes:       In the event that an upper level driver rejects a
575  *		command, we must release resources allocated during
576  *		the __init_io() function.  Primarily this would involve
577  *		the scatter-gather table.
578  */
579 static void scsi_release_buffers(struct scsi_cmnd *cmd)
580 {
581 	if (cmd->sdb.table.nents)
582 		sg_free_table_chained(&cmd->sdb.table, false);
583 
584 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
585 
586 	if (scsi_prot_sg_count(cmd))
587 		sg_free_table_chained(&cmd->prot_sdb->table, false);
588 }
589 
590 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
591 {
592 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
593 
594 	sg_free_table_chained(&bidi_sdb->table, false);
595 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
596 	cmd->request->next_rq->special = NULL;
597 }
598 
599 static bool scsi_end_request(struct request *req, int error,
600 		unsigned int bytes, unsigned int bidi_bytes)
601 {
602 	struct scsi_cmnd *cmd = req->special;
603 	struct scsi_device *sdev = cmd->device;
604 	struct request_queue *q = sdev->request_queue;
605 
606 	if (blk_update_request(req, error, bytes))
607 		return true;
608 
609 	/* Bidi request must be completed as a whole */
610 	if (unlikely(bidi_bytes) &&
611 	    blk_update_request(req->next_rq, error, bidi_bytes))
612 		return true;
613 
614 	if (blk_queue_add_random(q))
615 		add_disk_randomness(req->rq_disk);
616 
617 	if (req->mq_ctx) {
618 		/*
619 		 * In the MQ case the command gets freed by __blk_mq_end_request,
620 		 * so we have to do all cleanup that depends on it earlier.
621 		 *
622 		 * We also can't kick the queues from irq context, so we
623 		 * will have to defer it to a workqueue.
624 		 */
625 		scsi_mq_uninit_cmd(cmd);
626 
627 		__blk_mq_end_request(req, error);
628 
629 		if (scsi_target(sdev)->single_lun ||
630 		    !list_empty(&sdev->host->starved_list))
631 			kblockd_schedule_work(&sdev->requeue_work);
632 		else
633 			blk_mq_start_stopped_hw_queues(q, true);
634 	} else {
635 		unsigned long flags;
636 
637 		if (bidi_bytes)
638 			scsi_release_bidi_buffers(cmd);
639 
640 		spin_lock_irqsave(q->queue_lock, flags);
641 		blk_finish_request(req, error);
642 		spin_unlock_irqrestore(q->queue_lock, flags);
643 
644 		scsi_release_buffers(cmd);
645 
646 		scsi_put_command(cmd);
647 		scsi_run_queue(q);
648 	}
649 
650 	put_device(&sdev->sdev_gendev);
651 	return false;
652 }
653 
654 /**
655  * __scsi_error_from_host_byte - translate SCSI error code into errno
656  * @cmd:	SCSI command (unused)
657  * @result:	scsi error code
658  *
659  * Translate SCSI error code into standard UNIX errno.
660  * Return values:
661  * -ENOLINK	temporary transport failure
662  * -EREMOTEIO	permanent target failure, do not retry
663  * -EBADE	permanent nexus failure, retry on other path
664  * -ENOSPC	No write space available
665  * -ENODATA	Medium error
666  * -EIO		unspecified I/O error
667  */
668 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
669 {
670 	int error = 0;
671 
672 	switch(host_byte(result)) {
673 	case DID_TRANSPORT_FAILFAST:
674 		error = -ENOLINK;
675 		break;
676 	case DID_TARGET_FAILURE:
677 		set_host_byte(cmd, DID_OK);
678 		error = -EREMOTEIO;
679 		break;
680 	case DID_NEXUS_FAILURE:
681 		set_host_byte(cmd, DID_OK);
682 		error = -EBADE;
683 		break;
684 	case DID_ALLOC_FAILURE:
685 		set_host_byte(cmd, DID_OK);
686 		error = -ENOSPC;
687 		break;
688 	case DID_MEDIUM_ERROR:
689 		set_host_byte(cmd, DID_OK);
690 		error = -ENODATA;
691 		break;
692 	default:
693 		error = -EIO;
694 		break;
695 	}
696 
697 	return error;
698 }
699 
700 /*
701  * Function:    scsi_io_completion()
702  *
703  * Purpose:     Completion processing for block device I/O requests.
704  *
705  * Arguments:   cmd   - command that is finished.
706  *
707  * Lock status: Assumed that no lock is held upon entry.
708  *
709  * Returns:     Nothing
710  *
711  * Notes:       We will finish off the specified number of sectors.  If we
712  *		are done, the command block will be released and the queue
713  *		function will be goosed.  If we are not done then we have to
714  *		figure out what to do next:
715  *
716  *		a) We can call scsi_requeue_command().  The request
717  *		   will be unprepared and put back on the queue.  Then
718  *		   a new command will be created for it.  This should
719  *		   be used if we made forward progress, or if we want
720  *		   to switch from READ(10) to READ(6) for example.
721  *
722  *		b) We can call __scsi_queue_insert().  The request will
723  *		   be put back on the queue and retried using the same
724  *		   command as before, possibly after a delay.
725  *
726  *		c) We can call scsi_end_request() with -EIO to fail
727  *		   the remainder of the request.
728  */
729 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
730 {
731 	int result = cmd->result;
732 	struct request_queue *q = cmd->device->request_queue;
733 	struct request *req = cmd->request;
734 	int error = 0;
735 	struct scsi_sense_hdr sshdr;
736 	bool sense_valid = false;
737 	int sense_deferred = 0, level = 0;
738 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
739 	      ACTION_DELAYED_RETRY} action;
740 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
741 
742 	if (result) {
743 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
744 		if (sense_valid)
745 			sense_deferred = scsi_sense_is_deferred(&sshdr);
746 	}
747 
748 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
749 		if (result) {
750 			if (sense_valid && req->sense) {
751 				/*
752 				 * SG_IO wants current and deferred errors
753 				 */
754 				int len = 8 + cmd->sense_buffer[7];
755 
756 				if (len > SCSI_SENSE_BUFFERSIZE)
757 					len = SCSI_SENSE_BUFFERSIZE;
758 				memcpy(req->sense, cmd->sense_buffer,  len);
759 				req->sense_len = len;
760 			}
761 			if (!sense_deferred)
762 				error = __scsi_error_from_host_byte(cmd, result);
763 		}
764 		/*
765 		 * __scsi_error_from_host_byte may have reset the host_byte
766 		 */
767 		req->errors = cmd->result;
768 
769 		req->resid_len = scsi_get_resid(cmd);
770 
771 		if (scsi_bidi_cmnd(cmd)) {
772 			/*
773 			 * Bidi commands Must be complete as a whole,
774 			 * both sides at once.
775 			 */
776 			req->next_rq->resid_len = scsi_in(cmd)->resid;
777 			if (scsi_end_request(req, 0, blk_rq_bytes(req),
778 					blk_rq_bytes(req->next_rq)))
779 				BUG();
780 			return;
781 		}
782 	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
783 		/*
784 		 * Certain non BLOCK_PC requests are commands that don't
785 		 * actually transfer anything (FLUSH), so cannot use
786 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
787 		 * This sets the error explicitly for the problem case.
788 		 */
789 		error = __scsi_error_from_host_byte(cmd, result);
790 	}
791 
792 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
793 	BUG_ON(blk_bidi_rq(req));
794 
795 	/*
796 	 * Next deal with any sectors which we were able to correctly
797 	 * handle.
798 	 */
799 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
800 		"%u sectors total, %d bytes done.\n",
801 		blk_rq_sectors(req), good_bytes));
802 
803 	/*
804 	 * Recovered errors need reporting, but they're always treated
805 	 * as success, so fiddle the result code here.  For BLOCK_PC
806 	 * we already took a copy of the original into rq->errors which
807 	 * is what gets returned to the user
808 	 */
809 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
810 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
811 		 * print since caller wants ATA registers. Only occurs on
812 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
813 		 */
814 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
815 			;
816 		else if (!(req->cmd_flags & REQ_QUIET))
817 			scsi_print_sense(cmd);
818 		result = 0;
819 		/* BLOCK_PC may have set error */
820 		error = 0;
821 	}
822 
823 	/*
824 	 * If we finished all bytes in the request we are done now.
825 	 */
826 	if (!scsi_end_request(req, error, good_bytes, 0))
827 		return;
828 
829 	/*
830 	 * Kill remainder if no retrys.
831 	 */
832 	if (error && scsi_noretry_cmd(cmd)) {
833 		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
834 			BUG();
835 		return;
836 	}
837 
838 	/*
839 	 * If there had been no error, but we have leftover bytes in the
840 	 * requeues just queue the command up again.
841 	 */
842 	if (result == 0)
843 		goto requeue;
844 
845 	error = __scsi_error_from_host_byte(cmd, result);
846 
847 	if (host_byte(result) == DID_RESET) {
848 		/* Third party bus reset or reset for error recovery
849 		 * reasons.  Just retry the command and see what
850 		 * happens.
851 		 */
852 		action = ACTION_RETRY;
853 	} else if (sense_valid && !sense_deferred) {
854 		switch (sshdr.sense_key) {
855 		case UNIT_ATTENTION:
856 			if (cmd->device->removable) {
857 				/* Detected disc change.  Set a bit
858 				 * and quietly refuse further access.
859 				 */
860 				cmd->device->changed = 1;
861 				action = ACTION_FAIL;
862 			} else {
863 				/* Must have been a power glitch, or a
864 				 * bus reset.  Could not have been a
865 				 * media change, so we just retry the
866 				 * command and see what happens.
867 				 */
868 				action = ACTION_RETRY;
869 			}
870 			break;
871 		case ILLEGAL_REQUEST:
872 			/* If we had an ILLEGAL REQUEST returned, then
873 			 * we may have performed an unsupported
874 			 * command.  The only thing this should be
875 			 * would be a ten byte read where only a six
876 			 * byte read was supported.  Also, on a system
877 			 * where READ CAPACITY failed, we may have
878 			 * read past the end of the disk.
879 			 */
880 			if ((cmd->device->use_10_for_rw &&
881 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
882 			    (cmd->cmnd[0] == READ_10 ||
883 			     cmd->cmnd[0] == WRITE_10)) {
884 				/* This will issue a new 6-byte command. */
885 				cmd->device->use_10_for_rw = 0;
886 				action = ACTION_REPREP;
887 			} else if (sshdr.asc == 0x10) /* DIX */ {
888 				action = ACTION_FAIL;
889 				error = -EILSEQ;
890 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
891 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
892 				action = ACTION_FAIL;
893 				error = -EREMOTEIO;
894 			} else
895 				action = ACTION_FAIL;
896 			break;
897 		case ABORTED_COMMAND:
898 			action = ACTION_FAIL;
899 			if (sshdr.asc == 0x10) /* DIF */
900 				error = -EILSEQ;
901 			break;
902 		case NOT_READY:
903 			/* If the device is in the process of becoming
904 			 * ready, or has a temporary blockage, retry.
905 			 */
906 			if (sshdr.asc == 0x04) {
907 				switch (sshdr.ascq) {
908 				case 0x01: /* becoming ready */
909 				case 0x04: /* format in progress */
910 				case 0x05: /* rebuild in progress */
911 				case 0x06: /* recalculation in progress */
912 				case 0x07: /* operation in progress */
913 				case 0x08: /* Long write in progress */
914 				case 0x09: /* self test in progress */
915 				case 0x14: /* space allocation in progress */
916 					action = ACTION_DELAYED_RETRY;
917 					break;
918 				default:
919 					action = ACTION_FAIL;
920 					break;
921 				}
922 			} else
923 				action = ACTION_FAIL;
924 			break;
925 		case VOLUME_OVERFLOW:
926 			/* See SSC3rXX or current. */
927 			action = ACTION_FAIL;
928 			break;
929 		default:
930 			action = ACTION_FAIL;
931 			break;
932 		}
933 	} else
934 		action = ACTION_FAIL;
935 
936 	if (action != ACTION_FAIL &&
937 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
938 		action = ACTION_FAIL;
939 
940 	switch (action) {
941 	case ACTION_FAIL:
942 		/* Give up and fail the remainder of the request */
943 		if (!(req->cmd_flags & REQ_QUIET)) {
944 			static DEFINE_RATELIMIT_STATE(_rs,
945 					DEFAULT_RATELIMIT_INTERVAL,
946 					DEFAULT_RATELIMIT_BURST);
947 
948 			if (unlikely(scsi_logging_level))
949 				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
950 						       SCSI_LOG_MLCOMPLETE_BITS);
951 
952 			/*
953 			 * if logging is enabled the failure will be printed
954 			 * in scsi_log_completion(), so avoid duplicate messages
955 			 */
956 			if (!level && __ratelimit(&_rs)) {
957 				scsi_print_result(cmd, NULL, FAILED);
958 				if (driver_byte(result) & DRIVER_SENSE)
959 					scsi_print_sense(cmd);
960 				scsi_print_command(cmd);
961 			}
962 		}
963 		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
964 			return;
965 		/*FALLTHRU*/
966 	case ACTION_REPREP:
967 	requeue:
968 		/* Unprep the request and put it back at the head of the queue.
969 		 * A new command will be prepared and issued.
970 		 */
971 		if (q->mq_ops) {
972 			cmd->request->cmd_flags &= ~REQ_DONTPREP;
973 			scsi_mq_uninit_cmd(cmd);
974 			scsi_mq_requeue_cmd(cmd);
975 		} else {
976 			scsi_release_buffers(cmd);
977 			scsi_requeue_command(q, cmd);
978 		}
979 		break;
980 	case ACTION_RETRY:
981 		/* Retry the same command immediately */
982 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
983 		break;
984 	case ACTION_DELAYED_RETRY:
985 		/* Retry the same command after a delay */
986 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
987 		break;
988 	}
989 }
990 
991 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
992 {
993 	int count;
994 
995 	/*
996 	 * If sg table allocation fails, requeue request later.
997 	 */
998 	if (unlikely(sg_alloc_table_chained(&sdb->table, req->nr_phys_segments,
999 					sdb->table.sgl)))
1000 		return BLKPREP_DEFER;
1001 
1002 	/*
1003 	 * Next, walk the list, and fill in the addresses and sizes of
1004 	 * each segment.
1005 	 */
1006 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1007 	BUG_ON(count > sdb->table.nents);
1008 	sdb->table.nents = count;
1009 	sdb->length = blk_rq_bytes(req);
1010 	return BLKPREP_OK;
1011 }
1012 
1013 /*
1014  * Function:    scsi_init_io()
1015  *
1016  * Purpose:     SCSI I/O initialize function.
1017  *
1018  * Arguments:   cmd   - Command descriptor we wish to initialize
1019  *
1020  * Returns:     0 on success
1021  *		BLKPREP_DEFER if the failure is retryable
1022  *		BLKPREP_KILL if the failure is fatal
1023  */
1024 int scsi_init_io(struct scsi_cmnd *cmd)
1025 {
1026 	struct scsi_device *sdev = cmd->device;
1027 	struct request *rq = cmd->request;
1028 	bool is_mq = (rq->mq_ctx != NULL);
1029 	int error;
1030 
1031 	BUG_ON(!rq->nr_phys_segments);
1032 
1033 	error = scsi_init_sgtable(rq, &cmd->sdb);
1034 	if (error)
1035 		goto err_exit;
1036 
1037 	if (blk_bidi_rq(rq)) {
1038 		if (!rq->q->mq_ops) {
1039 			struct scsi_data_buffer *bidi_sdb =
1040 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1041 			if (!bidi_sdb) {
1042 				error = BLKPREP_DEFER;
1043 				goto err_exit;
1044 			}
1045 
1046 			rq->next_rq->special = bidi_sdb;
1047 		}
1048 
1049 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1050 		if (error)
1051 			goto err_exit;
1052 	}
1053 
1054 	if (blk_integrity_rq(rq)) {
1055 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1056 		int ivecs, count;
1057 
1058 		if (prot_sdb == NULL) {
1059 			/*
1060 			 * This can happen if someone (e.g. multipath)
1061 			 * queues a command to a device on an adapter
1062 			 * that does not support DIX.
1063 			 */
1064 			WARN_ON_ONCE(1);
1065 			error = BLKPREP_KILL;
1066 			goto err_exit;
1067 		}
1068 
1069 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1070 
1071 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1072 				prot_sdb->table.sgl)) {
1073 			error = BLKPREP_DEFER;
1074 			goto err_exit;
1075 		}
1076 
1077 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1078 						prot_sdb->table.sgl);
1079 		BUG_ON(unlikely(count > ivecs));
1080 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1081 
1082 		cmd->prot_sdb = prot_sdb;
1083 		cmd->prot_sdb->table.nents = count;
1084 	}
1085 
1086 	return BLKPREP_OK;
1087 err_exit:
1088 	if (is_mq) {
1089 		scsi_mq_free_sgtables(cmd);
1090 	} else {
1091 		scsi_release_buffers(cmd);
1092 		cmd->request->special = NULL;
1093 		scsi_put_command(cmd);
1094 		put_device(&sdev->sdev_gendev);
1095 	}
1096 	return error;
1097 }
1098 EXPORT_SYMBOL(scsi_init_io);
1099 
1100 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1101 		struct request *req)
1102 {
1103 	struct scsi_cmnd *cmd;
1104 
1105 	if (!req->special) {
1106 		/* Bail if we can't get a reference to the device */
1107 		if (!get_device(&sdev->sdev_gendev))
1108 			return NULL;
1109 
1110 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1111 		if (unlikely(!cmd)) {
1112 			put_device(&sdev->sdev_gendev);
1113 			return NULL;
1114 		}
1115 		req->special = cmd;
1116 	} else {
1117 		cmd = req->special;
1118 	}
1119 
1120 	/* pull a tag out of the request if we have one */
1121 	cmd->tag = req->tag;
1122 	cmd->request = req;
1123 
1124 	cmd->cmnd = req->cmd;
1125 	cmd->prot_op = SCSI_PROT_NORMAL;
1126 
1127 	return cmd;
1128 }
1129 
1130 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1131 {
1132 	struct scsi_cmnd *cmd = req->special;
1133 
1134 	/*
1135 	 * BLOCK_PC requests may transfer data, in which case they must
1136 	 * a bio attached to them.  Or they might contain a SCSI command
1137 	 * that does not transfer data, in which case they may optionally
1138 	 * submit a request without an attached bio.
1139 	 */
1140 	if (req->bio) {
1141 		int ret = scsi_init_io(cmd);
1142 		if (unlikely(ret))
1143 			return ret;
1144 	} else {
1145 		BUG_ON(blk_rq_bytes(req));
1146 
1147 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1148 	}
1149 
1150 	cmd->cmd_len = req->cmd_len;
1151 	cmd->transfersize = blk_rq_bytes(req);
1152 	cmd->allowed = req->retries;
1153 	return BLKPREP_OK;
1154 }
1155 
1156 /*
1157  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1158  * that still need to be translated to SCSI CDBs from the ULD.
1159  */
1160 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1161 {
1162 	struct scsi_cmnd *cmd = req->special;
1163 
1164 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1165 		int ret = sdev->handler->prep_fn(sdev, req);
1166 		if (ret != BLKPREP_OK)
1167 			return ret;
1168 	}
1169 
1170 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1171 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1172 }
1173 
1174 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1175 {
1176 	struct scsi_cmnd *cmd = req->special;
1177 
1178 	if (!blk_rq_bytes(req))
1179 		cmd->sc_data_direction = DMA_NONE;
1180 	else if (rq_data_dir(req) == WRITE)
1181 		cmd->sc_data_direction = DMA_TO_DEVICE;
1182 	else
1183 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1184 
1185 	switch (req->cmd_type) {
1186 	case REQ_TYPE_FS:
1187 		return scsi_setup_fs_cmnd(sdev, req);
1188 	case REQ_TYPE_BLOCK_PC:
1189 		return scsi_setup_blk_pc_cmnd(sdev, req);
1190 	default:
1191 		return BLKPREP_KILL;
1192 	}
1193 }
1194 
1195 static int
1196 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1197 {
1198 	int ret = BLKPREP_OK;
1199 
1200 	/*
1201 	 * If the device is not in running state we will reject some
1202 	 * or all commands.
1203 	 */
1204 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1205 		switch (sdev->sdev_state) {
1206 		case SDEV_OFFLINE:
1207 		case SDEV_TRANSPORT_OFFLINE:
1208 			/*
1209 			 * If the device is offline we refuse to process any
1210 			 * commands.  The device must be brought online
1211 			 * before trying any recovery commands.
1212 			 */
1213 			sdev_printk(KERN_ERR, sdev,
1214 				    "rejecting I/O to offline device\n");
1215 			ret = BLKPREP_KILL;
1216 			break;
1217 		case SDEV_DEL:
1218 			/*
1219 			 * If the device is fully deleted, we refuse to
1220 			 * process any commands as well.
1221 			 */
1222 			sdev_printk(KERN_ERR, sdev,
1223 				    "rejecting I/O to dead device\n");
1224 			ret = BLKPREP_KILL;
1225 			break;
1226 		case SDEV_BLOCK:
1227 		case SDEV_CREATED_BLOCK:
1228 			ret = BLKPREP_DEFER;
1229 			break;
1230 		case SDEV_QUIESCE:
1231 			/*
1232 			 * If the devices is blocked we defer normal commands.
1233 			 */
1234 			if (!(req->cmd_flags & REQ_PREEMPT))
1235 				ret = BLKPREP_DEFER;
1236 			break;
1237 		default:
1238 			/*
1239 			 * For any other not fully online state we only allow
1240 			 * special commands.  In particular any user initiated
1241 			 * command is not allowed.
1242 			 */
1243 			if (!(req->cmd_flags & REQ_PREEMPT))
1244 				ret = BLKPREP_KILL;
1245 			break;
1246 		}
1247 	}
1248 	return ret;
1249 }
1250 
1251 static int
1252 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1253 {
1254 	struct scsi_device *sdev = q->queuedata;
1255 
1256 	switch (ret) {
1257 	case BLKPREP_KILL:
1258 	case BLKPREP_INVALID:
1259 		req->errors = DID_NO_CONNECT << 16;
1260 		/* release the command and kill it */
1261 		if (req->special) {
1262 			struct scsi_cmnd *cmd = req->special;
1263 			scsi_release_buffers(cmd);
1264 			scsi_put_command(cmd);
1265 			put_device(&sdev->sdev_gendev);
1266 			req->special = NULL;
1267 		}
1268 		break;
1269 	case BLKPREP_DEFER:
1270 		/*
1271 		 * If we defer, the blk_peek_request() returns NULL, but the
1272 		 * queue must be restarted, so we schedule a callback to happen
1273 		 * shortly.
1274 		 */
1275 		if (atomic_read(&sdev->device_busy) == 0)
1276 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1277 		break;
1278 	default:
1279 		req->cmd_flags |= REQ_DONTPREP;
1280 	}
1281 
1282 	return ret;
1283 }
1284 
1285 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1286 {
1287 	struct scsi_device *sdev = q->queuedata;
1288 	struct scsi_cmnd *cmd;
1289 	int ret;
1290 
1291 	ret = scsi_prep_state_check(sdev, req);
1292 	if (ret != BLKPREP_OK)
1293 		goto out;
1294 
1295 	cmd = scsi_get_cmd_from_req(sdev, req);
1296 	if (unlikely(!cmd)) {
1297 		ret = BLKPREP_DEFER;
1298 		goto out;
1299 	}
1300 
1301 	ret = scsi_setup_cmnd(sdev, req);
1302 out:
1303 	return scsi_prep_return(q, req, ret);
1304 }
1305 
1306 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1307 {
1308 	scsi_uninit_cmd(req->special);
1309 }
1310 
1311 /*
1312  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1313  * return 0.
1314  *
1315  * Called with the queue_lock held.
1316  */
1317 static inline int scsi_dev_queue_ready(struct request_queue *q,
1318 				  struct scsi_device *sdev)
1319 {
1320 	unsigned int busy;
1321 
1322 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1323 	if (atomic_read(&sdev->device_blocked)) {
1324 		if (busy)
1325 			goto out_dec;
1326 
1327 		/*
1328 		 * unblock after device_blocked iterates to zero
1329 		 */
1330 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1331 			/*
1332 			 * For the MQ case we take care of this in the caller.
1333 			 */
1334 			if (!q->mq_ops)
1335 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1336 			goto out_dec;
1337 		}
1338 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1339 				   "unblocking device at zero depth\n"));
1340 	}
1341 
1342 	if (busy >= sdev->queue_depth)
1343 		goto out_dec;
1344 
1345 	return 1;
1346 out_dec:
1347 	atomic_dec(&sdev->device_busy);
1348 	return 0;
1349 }
1350 
1351 /*
1352  * scsi_target_queue_ready: checks if there we can send commands to target
1353  * @sdev: scsi device on starget to check.
1354  */
1355 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1356 					   struct scsi_device *sdev)
1357 {
1358 	struct scsi_target *starget = scsi_target(sdev);
1359 	unsigned int busy;
1360 
1361 	if (starget->single_lun) {
1362 		spin_lock_irq(shost->host_lock);
1363 		if (starget->starget_sdev_user &&
1364 		    starget->starget_sdev_user != sdev) {
1365 			spin_unlock_irq(shost->host_lock);
1366 			return 0;
1367 		}
1368 		starget->starget_sdev_user = sdev;
1369 		spin_unlock_irq(shost->host_lock);
1370 	}
1371 
1372 	if (starget->can_queue <= 0)
1373 		return 1;
1374 
1375 	busy = atomic_inc_return(&starget->target_busy) - 1;
1376 	if (atomic_read(&starget->target_blocked) > 0) {
1377 		if (busy)
1378 			goto starved;
1379 
1380 		/*
1381 		 * unblock after target_blocked iterates to zero
1382 		 */
1383 		if (atomic_dec_return(&starget->target_blocked) > 0)
1384 			goto out_dec;
1385 
1386 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1387 				 "unblocking target at zero depth\n"));
1388 	}
1389 
1390 	if (busy >= starget->can_queue)
1391 		goto starved;
1392 
1393 	return 1;
1394 
1395 starved:
1396 	spin_lock_irq(shost->host_lock);
1397 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1398 	spin_unlock_irq(shost->host_lock);
1399 out_dec:
1400 	if (starget->can_queue > 0)
1401 		atomic_dec(&starget->target_busy);
1402 	return 0;
1403 }
1404 
1405 /*
1406  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1407  * return 0. We must end up running the queue again whenever 0 is
1408  * returned, else IO can hang.
1409  */
1410 static inline int scsi_host_queue_ready(struct request_queue *q,
1411 				   struct Scsi_Host *shost,
1412 				   struct scsi_device *sdev)
1413 {
1414 	unsigned int busy;
1415 
1416 	if (scsi_host_in_recovery(shost))
1417 		return 0;
1418 
1419 	busy = atomic_inc_return(&shost->host_busy) - 1;
1420 	if (atomic_read(&shost->host_blocked) > 0) {
1421 		if (busy)
1422 			goto starved;
1423 
1424 		/*
1425 		 * unblock after host_blocked iterates to zero
1426 		 */
1427 		if (atomic_dec_return(&shost->host_blocked) > 0)
1428 			goto out_dec;
1429 
1430 		SCSI_LOG_MLQUEUE(3,
1431 			shost_printk(KERN_INFO, shost,
1432 				     "unblocking host at zero depth\n"));
1433 	}
1434 
1435 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1436 		goto starved;
1437 	if (shost->host_self_blocked)
1438 		goto starved;
1439 
1440 	/* We're OK to process the command, so we can't be starved */
1441 	if (!list_empty(&sdev->starved_entry)) {
1442 		spin_lock_irq(shost->host_lock);
1443 		if (!list_empty(&sdev->starved_entry))
1444 			list_del_init(&sdev->starved_entry);
1445 		spin_unlock_irq(shost->host_lock);
1446 	}
1447 
1448 	return 1;
1449 
1450 starved:
1451 	spin_lock_irq(shost->host_lock);
1452 	if (list_empty(&sdev->starved_entry))
1453 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1454 	spin_unlock_irq(shost->host_lock);
1455 out_dec:
1456 	atomic_dec(&shost->host_busy);
1457 	return 0;
1458 }
1459 
1460 /*
1461  * Busy state exporting function for request stacking drivers.
1462  *
1463  * For efficiency, no lock is taken to check the busy state of
1464  * shost/starget/sdev, since the returned value is not guaranteed and
1465  * may be changed after request stacking drivers call the function,
1466  * regardless of taking lock or not.
1467  *
1468  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1469  * needs to return 'not busy'. Otherwise, request stacking drivers
1470  * may hold requests forever.
1471  */
1472 static int scsi_lld_busy(struct request_queue *q)
1473 {
1474 	struct scsi_device *sdev = q->queuedata;
1475 	struct Scsi_Host *shost;
1476 
1477 	if (blk_queue_dying(q))
1478 		return 0;
1479 
1480 	shost = sdev->host;
1481 
1482 	/*
1483 	 * Ignore host/starget busy state.
1484 	 * Since block layer does not have a concept of fairness across
1485 	 * multiple queues, congestion of host/starget needs to be handled
1486 	 * in SCSI layer.
1487 	 */
1488 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1489 		return 1;
1490 
1491 	return 0;
1492 }
1493 
1494 /*
1495  * Kill a request for a dead device
1496  */
1497 static void scsi_kill_request(struct request *req, struct request_queue *q)
1498 {
1499 	struct scsi_cmnd *cmd = req->special;
1500 	struct scsi_device *sdev;
1501 	struct scsi_target *starget;
1502 	struct Scsi_Host *shost;
1503 
1504 	blk_start_request(req);
1505 
1506 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1507 
1508 	sdev = cmd->device;
1509 	starget = scsi_target(sdev);
1510 	shost = sdev->host;
1511 	scsi_init_cmd_errh(cmd);
1512 	cmd->result = DID_NO_CONNECT << 16;
1513 	atomic_inc(&cmd->device->iorequest_cnt);
1514 
1515 	/*
1516 	 * SCSI request completion path will do scsi_device_unbusy(),
1517 	 * bump busy counts.  To bump the counters, we need to dance
1518 	 * with the locks as normal issue path does.
1519 	 */
1520 	atomic_inc(&sdev->device_busy);
1521 	atomic_inc(&shost->host_busy);
1522 	if (starget->can_queue > 0)
1523 		atomic_inc(&starget->target_busy);
1524 
1525 	blk_complete_request(req);
1526 }
1527 
1528 static void scsi_softirq_done(struct request *rq)
1529 {
1530 	struct scsi_cmnd *cmd = rq->special;
1531 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1532 	int disposition;
1533 
1534 	INIT_LIST_HEAD(&cmd->eh_entry);
1535 
1536 	atomic_inc(&cmd->device->iodone_cnt);
1537 	if (cmd->result)
1538 		atomic_inc(&cmd->device->ioerr_cnt);
1539 
1540 	disposition = scsi_decide_disposition(cmd);
1541 	if (disposition != SUCCESS &&
1542 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1543 		sdev_printk(KERN_ERR, cmd->device,
1544 			    "timing out command, waited %lus\n",
1545 			    wait_for/HZ);
1546 		disposition = SUCCESS;
1547 	}
1548 
1549 	scsi_log_completion(cmd, disposition);
1550 
1551 	switch (disposition) {
1552 		case SUCCESS:
1553 			scsi_finish_command(cmd);
1554 			break;
1555 		case NEEDS_RETRY:
1556 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1557 			break;
1558 		case ADD_TO_MLQUEUE:
1559 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1560 			break;
1561 		default:
1562 			if (!scsi_eh_scmd_add(cmd, 0))
1563 				scsi_finish_command(cmd);
1564 	}
1565 }
1566 
1567 /**
1568  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1569  * @cmd: command block we are dispatching.
1570  *
1571  * Return: nonzero return request was rejected and device's queue needs to be
1572  * plugged.
1573  */
1574 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1575 {
1576 	struct Scsi_Host *host = cmd->device->host;
1577 	int rtn = 0;
1578 
1579 	atomic_inc(&cmd->device->iorequest_cnt);
1580 
1581 	/* check if the device is still usable */
1582 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1583 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1584 		 * returns an immediate error upwards, and signals
1585 		 * that the device is no longer present */
1586 		cmd->result = DID_NO_CONNECT << 16;
1587 		goto done;
1588 	}
1589 
1590 	/* Check to see if the scsi lld made this device blocked. */
1591 	if (unlikely(scsi_device_blocked(cmd->device))) {
1592 		/*
1593 		 * in blocked state, the command is just put back on
1594 		 * the device queue.  The suspend state has already
1595 		 * blocked the queue so future requests should not
1596 		 * occur until the device transitions out of the
1597 		 * suspend state.
1598 		 */
1599 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1600 			"queuecommand : device blocked\n"));
1601 		return SCSI_MLQUEUE_DEVICE_BUSY;
1602 	}
1603 
1604 	/* Store the LUN value in cmnd, if needed. */
1605 	if (cmd->device->lun_in_cdb)
1606 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1607 			       (cmd->device->lun << 5 & 0xe0);
1608 
1609 	scsi_log_send(cmd);
1610 
1611 	/*
1612 	 * Before we queue this command, check if the command
1613 	 * length exceeds what the host adapter can handle.
1614 	 */
1615 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1616 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1617 			       "queuecommand : command too long. "
1618 			       "cdb_size=%d host->max_cmd_len=%d\n",
1619 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1620 		cmd->result = (DID_ABORT << 16);
1621 		goto done;
1622 	}
1623 
1624 	if (unlikely(host->shost_state == SHOST_DEL)) {
1625 		cmd->result = (DID_NO_CONNECT << 16);
1626 		goto done;
1627 
1628 	}
1629 
1630 	trace_scsi_dispatch_cmd_start(cmd);
1631 	rtn = host->hostt->queuecommand(host, cmd);
1632 	if (rtn) {
1633 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1634 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1635 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1636 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1637 
1638 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1639 			"queuecommand : request rejected\n"));
1640 	}
1641 
1642 	return rtn;
1643  done:
1644 	cmd->scsi_done(cmd);
1645 	return 0;
1646 }
1647 
1648 /**
1649  * scsi_done - Invoke completion on finished SCSI command.
1650  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1651  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1652  *
1653  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1654  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1655  * calls blk_complete_request() for further processing.
1656  *
1657  * This function is interrupt context safe.
1658  */
1659 static void scsi_done(struct scsi_cmnd *cmd)
1660 {
1661 	trace_scsi_dispatch_cmd_done(cmd);
1662 	blk_complete_request(cmd->request);
1663 }
1664 
1665 /*
1666  * Function:    scsi_request_fn()
1667  *
1668  * Purpose:     Main strategy routine for SCSI.
1669  *
1670  * Arguments:   q       - Pointer to actual queue.
1671  *
1672  * Returns:     Nothing
1673  *
1674  * Lock status: IO request lock assumed to be held when called.
1675  */
1676 static void scsi_request_fn(struct request_queue *q)
1677 	__releases(q->queue_lock)
1678 	__acquires(q->queue_lock)
1679 {
1680 	struct scsi_device *sdev = q->queuedata;
1681 	struct Scsi_Host *shost;
1682 	struct scsi_cmnd *cmd;
1683 	struct request *req;
1684 
1685 	/*
1686 	 * To start with, we keep looping until the queue is empty, or until
1687 	 * the host is no longer able to accept any more requests.
1688 	 */
1689 	shost = sdev->host;
1690 	for (;;) {
1691 		int rtn;
1692 		/*
1693 		 * get next queueable request.  We do this early to make sure
1694 		 * that the request is fully prepared even if we cannot
1695 		 * accept it.
1696 		 */
1697 		req = blk_peek_request(q);
1698 		if (!req)
1699 			break;
1700 
1701 		if (unlikely(!scsi_device_online(sdev))) {
1702 			sdev_printk(KERN_ERR, sdev,
1703 				    "rejecting I/O to offline device\n");
1704 			scsi_kill_request(req, q);
1705 			continue;
1706 		}
1707 
1708 		if (!scsi_dev_queue_ready(q, sdev))
1709 			break;
1710 
1711 		/*
1712 		 * Remove the request from the request list.
1713 		 */
1714 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1715 			blk_start_request(req);
1716 
1717 		spin_unlock_irq(q->queue_lock);
1718 		cmd = req->special;
1719 		if (unlikely(cmd == NULL)) {
1720 			printk(KERN_CRIT "impossible request in %s.\n"
1721 					 "please mail a stack trace to "
1722 					 "linux-scsi@vger.kernel.org\n",
1723 					 __func__);
1724 			blk_dump_rq_flags(req, "foo");
1725 			BUG();
1726 		}
1727 
1728 		/*
1729 		 * We hit this when the driver is using a host wide
1730 		 * tag map. For device level tag maps the queue_depth check
1731 		 * in the device ready fn would prevent us from trying
1732 		 * to allocate a tag. Since the map is a shared host resource
1733 		 * we add the dev to the starved list so it eventually gets
1734 		 * a run when a tag is freed.
1735 		 */
1736 		if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1737 			spin_lock_irq(shost->host_lock);
1738 			if (list_empty(&sdev->starved_entry))
1739 				list_add_tail(&sdev->starved_entry,
1740 					      &shost->starved_list);
1741 			spin_unlock_irq(shost->host_lock);
1742 			goto not_ready;
1743 		}
1744 
1745 		if (!scsi_target_queue_ready(shost, sdev))
1746 			goto not_ready;
1747 
1748 		if (!scsi_host_queue_ready(q, shost, sdev))
1749 			goto host_not_ready;
1750 
1751 		if (sdev->simple_tags)
1752 			cmd->flags |= SCMD_TAGGED;
1753 		else
1754 			cmd->flags &= ~SCMD_TAGGED;
1755 
1756 		/*
1757 		 * Finally, initialize any error handling parameters, and set up
1758 		 * the timers for timeouts.
1759 		 */
1760 		scsi_init_cmd_errh(cmd);
1761 
1762 		/*
1763 		 * Dispatch the command to the low-level driver.
1764 		 */
1765 		cmd->scsi_done = scsi_done;
1766 		rtn = scsi_dispatch_cmd(cmd);
1767 		if (rtn) {
1768 			scsi_queue_insert(cmd, rtn);
1769 			spin_lock_irq(q->queue_lock);
1770 			goto out_delay;
1771 		}
1772 		spin_lock_irq(q->queue_lock);
1773 	}
1774 
1775 	return;
1776 
1777  host_not_ready:
1778 	if (scsi_target(sdev)->can_queue > 0)
1779 		atomic_dec(&scsi_target(sdev)->target_busy);
1780  not_ready:
1781 	/*
1782 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1783 	 * must return with queue_lock held.
1784 	 *
1785 	 * Decrementing device_busy without checking it is OK, as all such
1786 	 * cases (host limits or settings) should run the queue at some
1787 	 * later time.
1788 	 */
1789 	spin_lock_irq(q->queue_lock);
1790 	blk_requeue_request(q, req);
1791 	atomic_dec(&sdev->device_busy);
1792 out_delay:
1793 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1794 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1795 }
1796 
1797 static inline int prep_to_mq(int ret)
1798 {
1799 	switch (ret) {
1800 	case BLKPREP_OK:
1801 		return 0;
1802 	case BLKPREP_DEFER:
1803 		return BLK_MQ_RQ_QUEUE_BUSY;
1804 	default:
1805 		return BLK_MQ_RQ_QUEUE_ERROR;
1806 	}
1807 }
1808 
1809 static int scsi_mq_prep_fn(struct request *req)
1810 {
1811 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1812 	struct scsi_device *sdev = req->q->queuedata;
1813 	struct Scsi_Host *shost = sdev->host;
1814 	unsigned char *sense_buf = cmd->sense_buffer;
1815 	struct scatterlist *sg;
1816 
1817 	memset(cmd, 0, sizeof(struct scsi_cmnd));
1818 
1819 	req->special = cmd;
1820 
1821 	cmd->request = req;
1822 	cmd->device = sdev;
1823 	cmd->sense_buffer = sense_buf;
1824 
1825 	cmd->tag = req->tag;
1826 
1827 	cmd->cmnd = req->cmd;
1828 	cmd->prot_op = SCSI_PROT_NORMAL;
1829 
1830 	INIT_LIST_HEAD(&cmd->list);
1831 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1832 	cmd->jiffies_at_alloc = jiffies;
1833 
1834 	if (shost->use_cmd_list) {
1835 		spin_lock_irq(&sdev->list_lock);
1836 		list_add_tail(&cmd->list, &sdev->cmd_list);
1837 		spin_unlock_irq(&sdev->list_lock);
1838 	}
1839 
1840 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1841 	cmd->sdb.table.sgl = sg;
1842 
1843 	if (scsi_host_get_prot(shost)) {
1844 		cmd->prot_sdb = (void *)sg +
1845 			min_t(unsigned int,
1846 			      shost->sg_tablesize, SG_CHUNK_SIZE) *
1847 			sizeof(struct scatterlist);
1848 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1849 
1850 		cmd->prot_sdb->table.sgl =
1851 			(struct scatterlist *)(cmd->prot_sdb + 1);
1852 	}
1853 
1854 	if (blk_bidi_rq(req)) {
1855 		struct request *next_rq = req->next_rq;
1856 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1857 
1858 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1859 		bidi_sdb->table.sgl =
1860 			(struct scatterlist *)(bidi_sdb + 1);
1861 
1862 		next_rq->special = bidi_sdb;
1863 	}
1864 
1865 	blk_mq_start_request(req);
1866 
1867 	return scsi_setup_cmnd(sdev, req);
1868 }
1869 
1870 static void scsi_mq_done(struct scsi_cmnd *cmd)
1871 {
1872 	trace_scsi_dispatch_cmd_done(cmd);
1873 	blk_mq_complete_request(cmd->request, cmd->request->errors);
1874 }
1875 
1876 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1877 			 const struct blk_mq_queue_data *bd)
1878 {
1879 	struct request *req = bd->rq;
1880 	struct request_queue *q = req->q;
1881 	struct scsi_device *sdev = q->queuedata;
1882 	struct Scsi_Host *shost = sdev->host;
1883 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1884 	int ret;
1885 	int reason;
1886 
1887 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1888 	if (ret)
1889 		goto out;
1890 
1891 	ret = BLK_MQ_RQ_QUEUE_BUSY;
1892 	if (!get_device(&sdev->sdev_gendev))
1893 		goto out;
1894 
1895 	if (!scsi_dev_queue_ready(q, sdev))
1896 		goto out_put_device;
1897 	if (!scsi_target_queue_ready(shost, sdev))
1898 		goto out_dec_device_busy;
1899 	if (!scsi_host_queue_ready(q, shost, sdev))
1900 		goto out_dec_target_busy;
1901 
1902 
1903 	if (!(req->cmd_flags & REQ_DONTPREP)) {
1904 		ret = prep_to_mq(scsi_mq_prep_fn(req));
1905 		if (ret)
1906 			goto out_dec_host_busy;
1907 		req->cmd_flags |= REQ_DONTPREP;
1908 	} else {
1909 		blk_mq_start_request(req);
1910 	}
1911 
1912 	if (sdev->simple_tags)
1913 		cmd->flags |= SCMD_TAGGED;
1914 	else
1915 		cmd->flags &= ~SCMD_TAGGED;
1916 
1917 	scsi_init_cmd_errh(cmd);
1918 	cmd->scsi_done = scsi_mq_done;
1919 
1920 	reason = scsi_dispatch_cmd(cmd);
1921 	if (reason) {
1922 		scsi_set_blocked(cmd, reason);
1923 		ret = BLK_MQ_RQ_QUEUE_BUSY;
1924 		goto out_dec_host_busy;
1925 	}
1926 
1927 	return BLK_MQ_RQ_QUEUE_OK;
1928 
1929 out_dec_host_busy:
1930 	atomic_dec(&shost->host_busy);
1931 out_dec_target_busy:
1932 	if (scsi_target(sdev)->can_queue > 0)
1933 		atomic_dec(&scsi_target(sdev)->target_busy);
1934 out_dec_device_busy:
1935 	atomic_dec(&sdev->device_busy);
1936 out_put_device:
1937 	put_device(&sdev->sdev_gendev);
1938 out:
1939 	switch (ret) {
1940 	case BLK_MQ_RQ_QUEUE_BUSY:
1941 		blk_mq_stop_hw_queue(hctx);
1942 		if (atomic_read(&sdev->device_busy) == 0 &&
1943 		    !scsi_device_blocked(sdev))
1944 			blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1945 		break;
1946 	case BLK_MQ_RQ_QUEUE_ERROR:
1947 		/*
1948 		 * Make sure to release all allocated ressources when
1949 		 * we hit an error, as we will never see this command
1950 		 * again.
1951 		 */
1952 		if (req->cmd_flags & REQ_DONTPREP)
1953 			scsi_mq_uninit_cmd(cmd);
1954 		break;
1955 	default:
1956 		break;
1957 	}
1958 	return ret;
1959 }
1960 
1961 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1962 		bool reserved)
1963 {
1964 	if (reserved)
1965 		return BLK_EH_RESET_TIMER;
1966 	return scsi_times_out(req);
1967 }
1968 
1969 static int scsi_init_request(void *data, struct request *rq,
1970 		unsigned int hctx_idx, unsigned int request_idx,
1971 		unsigned int numa_node)
1972 {
1973 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1974 
1975 	cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1976 			numa_node);
1977 	if (!cmd->sense_buffer)
1978 		return -ENOMEM;
1979 	return 0;
1980 }
1981 
1982 static void scsi_exit_request(void *data, struct request *rq,
1983 		unsigned int hctx_idx, unsigned int request_idx)
1984 {
1985 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1986 
1987 	kfree(cmd->sense_buffer);
1988 }
1989 
1990 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1991 {
1992 	struct device *host_dev;
1993 	u64 bounce_limit = 0xffffffff;
1994 
1995 	if (shost->unchecked_isa_dma)
1996 		return BLK_BOUNCE_ISA;
1997 	/*
1998 	 * Platforms with virtual-DMA translation
1999 	 * hardware have no practical limit.
2000 	 */
2001 	if (!PCI_DMA_BUS_IS_PHYS)
2002 		return BLK_BOUNCE_ANY;
2003 
2004 	host_dev = scsi_get_device(shost);
2005 	if (host_dev && host_dev->dma_mask)
2006 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2007 
2008 	return bounce_limit;
2009 }
2010 
2011 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2012 {
2013 	struct device *dev = shost->dma_dev;
2014 
2015 	/*
2016 	 * this limit is imposed by hardware restrictions
2017 	 */
2018 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2019 					SG_MAX_SEGMENTS));
2020 
2021 	if (scsi_host_prot_dma(shost)) {
2022 		shost->sg_prot_tablesize =
2023 			min_not_zero(shost->sg_prot_tablesize,
2024 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2025 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2026 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2027 	}
2028 
2029 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2030 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2031 	blk_queue_segment_boundary(q, shost->dma_boundary);
2032 	dma_set_seg_boundary(dev, shost->dma_boundary);
2033 
2034 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2035 
2036 	if (!shost->use_clustering)
2037 		q->limits.cluster = 0;
2038 
2039 	/*
2040 	 * set a reasonable default alignment on word boundaries: the
2041 	 * host and device may alter it using
2042 	 * blk_queue_update_dma_alignment() later.
2043 	 */
2044 	blk_queue_dma_alignment(q, 0x03);
2045 }
2046 
2047 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2048 					 request_fn_proc *request_fn)
2049 {
2050 	struct request_queue *q;
2051 
2052 	q = blk_init_queue(request_fn, NULL);
2053 	if (!q)
2054 		return NULL;
2055 	__scsi_init_queue(shost, q);
2056 	return q;
2057 }
2058 EXPORT_SYMBOL(__scsi_alloc_queue);
2059 
2060 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2061 {
2062 	struct request_queue *q;
2063 
2064 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2065 	if (!q)
2066 		return NULL;
2067 
2068 	blk_queue_prep_rq(q, scsi_prep_fn);
2069 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2070 	blk_queue_softirq_done(q, scsi_softirq_done);
2071 	blk_queue_rq_timed_out(q, scsi_times_out);
2072 	blk_queue_lld_busy(q, scsi_lld_busy);
2073 	return q;
2074 }
2075 
2076 static struct blk_mq_ops scsi_mq_ops = {
2077 	.map_queue	= blk_mq_map_queue,
2078 	.queue_rq	= scsi_queue_rq,
2079 	.complete	= scsi_softirq_done,
2080 	.timeout	= scsi_timeout,
2081 	.init_request	= scsi_init_request,
2082 	.exit_request	= scsi_exit_request,
2083 };
2084 
2085 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2086 {
2087 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2088 	if (IS_ERR(sdev->request_queue))
2089 		return NULL;
2090 
2091 	sdev->request_queue->queuedata = sdev;
2092 	__scsi_init_queue(sdev->host, sdev->request_queue);
2093 	return sdev->request_queue;
2094 }
2095 
2096 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2097 {
2098 	unsigned int cmd_size, sgl_size, tbl_size;
2099 
2100 	tbl_size = shost->sg_tablesize;
2101 	if (tbl_size > SG_CHUNK_SIZE)
2102 		tbl_size = SG_CHUNK_SIZE;
2103 	sgl_size = tbl_size * sizeof(struct scatterlist);
2104 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2105 	if (scsi_host_get_prot(shost))
2106 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2107 
2108 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2109 	shost->tag_set.ops = &scsi_mq_ops;
2110 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2111 	shost->tag_set.queue_depth = shost->can_queue;
2112 	shost->tag_set.cmd_size = cmd_size;
2113 	shost->tag_set.numa_node = NUMA_NO_NODE;
2114 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2115 	shost->tag_set.flags |=
2116 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2117 	shost->tag_set.driver_data = shost;
2118 
2119 	return blk_mq_alloc_tag_set(&shost->tag_set);
2120 }
2121 
2122 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2123 {
2124 	blk_mq_free_tag_set(&shost->tag_set);
2125 }
2126 
2127 /*
2128  * Function:    scsi_block_requests()
2129  *
2130  * Purpose:     Utility function used by low-level drivers to prevent further
2131  *		commands from being queued to the device.
2132  *
2133  * Arguments:   shost       - Host in question
2134  *
2135  * Returns:     Nothing
2136  *
2137  * Lock status: No locks are assumed held.
2138  *
2139  * Notes:       There is no timer nor any other means by which the requests
2140  *		get unblocked other than the low-level driver calling
2141  *		scsi_unblock_requests().
2142  */
2143 void scsi_block_requests(struct Scsi_Host *shost)
2144 {
2145 	shost->host_self_blocked = 1;
2146 }
2147 EXPORT_SYMBOL(scsi_block_requests);
2148 
2149 /*
2150  * Function:    scsi_unblock_requests()
2151  *
2152  * Purpose:     Utility function used by low-level drivers to allow further
2153  *		commands from being queued to the device.
2154  *
2155  * Arguments:   shost       - Host in question
2156  *
2157  * Returns:     Nothing
2158  *
2159  * Lock status: No locks are assumed held.
2160  *
2161  * Notes:       There is no timer nor any other means by which the requests
2162  *		get unblocked other than the low-level driver calling
2163  *		scsi_unblock_requests().
2164  *
2165  *		This is done as an API function so that changes to the
2166  *		internals of the scsi mid-layer won't require wholesale
2167  *		changes to drivers that use this feature.
2168  */
2169 void scsi_unblock_requests(struct Scsi_Host *shost)
2170 {
2171 	shost->host_self_blocked = 0;
2172 	scsi_run_host_queues(shost);
2173 }
2174 EXPORT_SYMBOL(scsi_unblock_requests);
2175 
2176 int __init scsi_init_queue(void)
2177 {
2178 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2179 					   sizeof(struct scsi_data_buffer),
2180 					   0, 0, NULL);
2181 	if (!scsi_sdb_cache) {
2182 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2183 		return -ENOMEM;
2184 	}
2185 
2186 	return 0;
2187 }
2188 
2189 void scsi_exit_queue(void)
2190 {
2191 	kmem_cache_destroy(scsi_sdb_cache);
2192 }
2193 
2194 /**
2195  *	scsi_mode_select - issue a mode select
2196  *	@sdev:	SCSI device to be queried
2197  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2198  *	@sp:	Save page bit (0 == don't save, 1 == save)
2199  *	@modepage: mode page being requested
2200  *	@buffer: request buffer (may not be smaller than eight bytes)
2201  *	@len:	length of request buffer.
2202  *	@timeout: command timeout
2203  *	@retries: number of retries before failing
2204  *	@data: returns a structure abstracting the mode header data
2205  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2206  *		must be SCSI_SENSE_BUFFERSIZE big.
2207  *
2208  *	Returns zero if successful; negative error number or scsi
2209  *	status on error
2210  *
2211  */
2212 int
2213 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2214 		 unsigned char *buffer, int len, int timeout, int retries,
2215 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2216 {
2217 	unsigned char cmd[10];
2218 	unsigned char *real_buffer;
2219 	int ret;
2220 
2221 	memset(cmd, 0, sizeof(cmd));
2222 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2223 
2224 	if (sdev->use_10_for_ms) {
2225 		if (len > 65535)
2226 			return -EINVAL;
2227 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2228 		if (!real_buffer)
2229 			return -ENOMEM;
2230 		memcpy(real_buffer + 8, buffer, len);
2231 		len += 8;
2232 		real_buffer[0] = 0;
2233 		real_buffer[1] = 0;
2234 		real_buffer[2] = data->medium_type;
2235 		real_buffer[3] = data->device_specific;
2236 		real_buffer[4] = data->longlba ? 0x01 : 0;
2237 		real_buffer[5] = 0;
2238 		real_buffer[6] = data->block_descriptor_length >> 8;
2239 		real_buffer[7] = data->block_descriptor_length;
2240 
2241 		cmd[0] = MODE_SELECT_10;
2242 		cmd[7] = len >> 8;
2243 		cmd[8] = len;
2244 	} else {
2245 		if (len > 255 || data->block_descriptor_length > 255 ||
2246 		    data->longlba)
2247 			return -EINVAL;
2248 
2249 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2250 		if (!real_buffer)
2251 			return -ENOMEM;
2252 		memcpy(real_buffer + 4, buffer, len);
2253 		len += 4;
2254 		real_buffer[0] = 0;
2255 		real_buffer[1] = data->medium_type;
2256 		real_buffer[2] = data->device_specific;
2257 		real_buffer[3] = data->block_descriptor_length;
2258 
2259 
2260 		cmd[0] = MODE_SELECT;
2261 		cmd[4] = len;
2262 	}
2263 
2264 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2265 			       sshdr, timeout, retries, NULL);
2266 	kfree(real_buffer);
2267 	return ret;
2268 }
2269 EXPORT_SYMBOL_GPL(scsi_mode_select);
2270 
2271 /**
2272  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2273  *	@sdev:	SCSI device to be queried
2274  *	@dbd:	set if mode sense will allow block descriptors to be returned
2275  *	@modepage: mode page being requested
2276  *	@buffer: request buffer (may not be smaller than eight bytes)
2277  *	@len:	length of request buffer.
2278  *	@timeout: command timeout
2279  *	@retries: number of retries before failing
2280  *	@data: returns a structure abstracting the mode header data
2281  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2282  *		must be SCSI_SENSE_BUFFERSIZE big.
2283  *
2284  *	Returns zero if unsuccessful, or the header offset (either 4
2285  *	or 8 depending on whether a six or ten byte command was
2286  *	issued) if successful.
2287  */
2288 int
2289 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2290 		  unsigned char *buffer, int len, int timeout, int retries,
2291 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2292 {
2293 	unsigned char cmd[12];
2294 	int use_10_for_ms;
2295 	int header_length;
2296 	int result, retry_count = retries;
2297 	struct scsi_sense_hdr my_sshdr;
2298 
2299 	memset(data, 0, sizeof(*data));
2300 	memset(&cmd[0], 0, 12);
2301 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2302 	cmd[2] = modepage;
2303 
2304 	/* caller might not be interested in sense, but we need it */
2305 	if (!sshdr)
2306 		sshdr = &my_sshdr;
2307 
2308  retry:
2309 	use_10_for_ms = sdev->use_10_for_ms;
2310 
2311 	if (use_10_for_ms) {
2312 		if (len < 8)
2313 			len = 8;
2314 
2315 		cmd[0] = MODE_SENSE_10;
2316 		cmd[8] = len;
2317 		header_length = 8;
2318 	} else {
2319 		if (len < 4)
2320 			len = 4;
2321 
2322 		cmd[0] = MODE_SENSE;
2323 		cmd[4] = len;
2324 		header_length = 4;
2325 	}
2326 
2327 	memset(buffer, 0, len);
2328 
2329 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2330 				  sshdr, timeout, retries, NULL);
2331 
2332 	/* This code looks awful: what it's doing is making sure an
2333 	 * ILLEGAL REQUEST sense return identifies the actual command
2334 	 * byte as the problem.  MODE_SENSE commands can return
2335 	 * ILLEGAL REQUEST if the code page isn't supported */
2336 
2337 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2338 	    (driver_byte(result) & DRIVER_SENSE)) {
2339 		if (scsi_sense_valid(sshdr)) {
2340 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2341 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2342 				/*
2343 				 * Invalid command operation code
2344 				 */
2345 				sdev->use_10_for_ms = 0;
2346 				goto retry;
2347 			}
2348 		}
2349 	}
2350 
2351 	if(scsi_status_is_good(result)) {
2352 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2353 			     (modepage == 6 || modepage == 8))) {
2354 			/* Initio breakage? */
2355 			header_length = 0;
2356 			data->length = 13;
2357 			data->medium_type = 0;
2358 			data->device_specific = 0;
2359 			data->longlba = 0;
2360 			data->block_descriptor_length = 0;
2361 		} else if(use_10_for_ms) {
2362 			data->length = buffer[0]*256 + buffer[1] + 2;
2363 			data->medium_type = buffer[2];
2364 			data->device_specific = buffer[3];
2365 			data->longlba = buffer[4] & 0x01;
2366 			data->block_descriptor_length = buffer[6]*256
2367 				+ buffer[7];
2368 		} else {
2369 			data->length = buffer[0] + 1;
2370 			data->medium_type = buffer[1];
2371 			data->device_specific = buffer[2];
2372 			data->block_descriptor_length = buffer[3];
2373 		}
2374 		data->header_length = header_length;
2375 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2376 		   scsi_sense_valid(sshdr) &&
2377 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2378 		retry_count--;
2379 		goto retry;
2380 	}
2381 
2382 	return result;
2383 }
2384 EXPORT_SYMBOL(scsi_mode_sense);
2385 
2386 /**
2387  *	scsi_test_unit_ready - test if unit is ready
2388  *	@sdev:	scsi device to change the state of.
2389  *	@timeout: command timeout
2390  *	@retries: number of retries before failing
2391  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2392  *		returning sense. Make sure that this is cleared before passing
2393  *		in.
2394  *
2395  *	Returns zero if unsuccessful or an error if TUR failed.  For
2396  *	removable media, UNIT_ATTENTION sets ->changed flag.
2397  **/
2398 int
2399 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2400 		     struct scsi_sense_hdr *sshdr_external)
2401 {
2402 	char cmd[] = {
2403 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2404 	};
2405 	struct scsi_sense_hdr *sshdr;
2406 	int result;
2407 
2408 	if (!sshdr_external)
2409 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2410 	else
2411 		sshdr = sshdr_external;
2412 
2413 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2414 	do {
2415 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2416 					  timeout, retries, NULL);
2417 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2418 		    sshdr->sense_key == UNIT_ATTENTION)
2419 			sdev->changed = 1;
2420 	} while (scsi_sense_valid(sshdr) &&
2421 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2422 
2423 	if (!sshdr_external)
2424 		kfree(sshdr);
2425 	return result;
2426 }
2427 EXPORT_SYMBOL(scsi_test_unit_ready);
2428 
2429 /**
2430  *	scsi_device_set_state - Take the given device through the device state model.
2431  *	@sdev:	scsi device to change the state of.
2432  *	@state:	state to change to.
2433  *
2434  *	Returns zero if unsuccessful or an error if the requested
2435  *	transition is illegal.
2436  */
2437 int
2438 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2439 {
2440 	enum scsi_device_state oldstate = sdev->sdev_state;
2441 
2442 	if (state == oldstate)
2443 		return 0;
2444 
2445 	switch (state) {
2446 	case SDEV_CREATED:
2447 		switch (oldstate) {
2448 		case SDEV_CREATED_BLOCK:
2449 			break;
2450 		default:
2451 			goto illegal;
2452 		}
2453 		break;
2454 
2455 	case SDEV_RUNNING:
2456 		switch (oldstate) {
2457 		case SDEV_CREATED:
2458 		case SDEV_OFFLINE:
2459 		case SDEV_TRANSPORT_OFFLINE:
2460 		case SDEV_QUIESCE:
2461 		case SDEV_BLOCK:
2462 			break;
2463 		default:
2464 			goto illegal;
2465 		}
2466 		break;
2467 
2468 	case SDEV_QUIESCE:
2469 		switch (oldstate) {
2470 		case SDEV_RUNNING:
2471 		case SDEV_OFFLINE:
2472 		case SDEV_TRANSPORT_OFFLINE:
2473 			break;
2474 		default:
2475 			goto illegal;
2476 		}
2477 		break;
2478 
2479 	case SDEV_OFFLINE:
2480 	case SDEV_TRANSPORT_OFFLINE:
2481 		switch (oldstate) {
2482 		case SDEV_CREATED:
2483 		case SDEV_RUNNING:
2484 		case SDEV_QUIESCE:
2485 		case SDEV_BLOCK:
2486 			break;
2487 		default:
2488 			goto illegal;
2489 		}
2490 		break;
2491 
2492 	case SDEV_BLOCK:
2493 		switch (oldstate) {
2494 		case SDEV_RUNNING:
2495 		case SDEV_CREATED_BLOCK:
2496 			break;
2497 		default:
2498 			goto illegal;
2499 		}
2500 		break;
2501 
2502 	case SDEV_CREATED_BLOCK:
2503 		switch (oldstate) {
2504 		case SDEV_CREATED:
2505 			break;
2506 		default:
2507 			goto illegal;
2508 		}
2509 		break;
2510 
2511 	case SDEV_CANCEL:
2512 		switch (oldstate) {
2513 		case SDEV_CREATED:
2514 		case SDEV_RUNNING:
2515 		case SDEV_QUIESCE:
2516 		case SDEV_OFFLINE:
2517 		case SDEV_TRANSPORT_OFFLINE:
2518 		case SDEV_BLOCK:
2519 			break;
2520 		default:
2521 			goto illegal;
2522 		}
2523 		break;
2524 
2525 	case SDEV_DEL:
2526 		switch (oldstate) {
2527 		case SDEV_CREATED:
2528 		case SDEV_RUNNING:
2529 		case SDEV_OFFLINE:
2530 		case SDEV_TRANSPORT_OFFLINE:
2531 		case SDEV_CANCEL:
2532 		case SDEV_CREATED_BLOCK:
2533 			break;
2534 		default:
2535 			goto illegal;
2536 		}
2537 		break;
2538 
2539 	}
2540 	sdev->sdev_state = state;
2541 	return 0;
2542 
2543  illegal:
2544 	SCSI_LOG_ERROR_RECOVERY(1,
2545 				sdev_printk(KERN_ERR, sdev,
2546 					    "Illegal state transition %s->%s",
2547 					    scsi_device_state_name(oldstate),
2548 					    scsi_device_state_name(state))
2549 				);
2550 	return -EINVAL;
2551 }
2552 EXPORT_SYMBOL(scsi_device_set_state);
2553 
2554 /**
2555  * 	sdev_evt_emit - emit a single SCSI device uevent
2556  *	@sdev: associated SCSI device
2557  *	@evt: event to emit
2558  *
2559  *	Send a single uevent (scsi_event) to the associated scsi_device.
2560  */
2561 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2562 {
2563 	int idx = 0;
2564 	char *envp[3];
2565 
2566 	switch (evt->evt_type) {
2567 	case SDEV_EVT_MEDIA_CHANGE:
2568 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2569 		break;
2570 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2571 		scsi_rescan_device(&sdev->sdev_gendev);
2572 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2573 		break;
2574 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2575 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2576 		break;
2577 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2578 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2579 		break;
2580 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2581 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2582 		break;
2583 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2584 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2585 		break;
2586 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2587 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2588 		break;
2589 	default:
2590 		/* do nothing */
2591 		break;
2592 	}
2593 
2594 	envp[idx++] = NULL;
2595 
2596 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2597 }
2598 
2599 /**
2600  * 	sdev_evt_thread - send a uevent for each scsi event
2601  *	@work: work struct for scsi_device
2602  *
2603  *	Dispatch queued events to their associated scsi_device kobjects
2604  *	as uevents.
2605  */
2606 void scsi_evt_thread(struct work_struct *work)
2607 {
2608 	struct scsi_device *sdev;
2609 	enum scsi_device_event evt_type;
2610 	LIST_HEAD(event_list);
2611 
2612 	sdev = container_of(work, struct scsi_device, event_work);
2613 
2614 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2615 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2616 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2617 
2618 	while (1) {
2619 		struct scsi_event *evt;
2620 		struct list_head *this, *tmp;
2621 		unsigned long flags;
2622 
2623 		spin_lock_irqsave(&sdev->list_lock, flags);
2624 		list_splice_init(&sdev->event_list, &event_list);
2625 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2626 
2627 		if (list_empty(&event_list))
2628 			break;
2629 
2630 		list_for_each_safe(this, tmp, &event_list) {
2631 			evt = list_entry(this, struct scsi_event, node);
2632 			list_del(&evt->node);
2633 			scsi_evt_emit(sdev, evt);
2634 			kfree(evt);
2635 		}
2636 	}
2637 }
2638 
2639 /**
2640  * 	sdev_evt_send - send asserted event to uevent thread
2641  *	@sdev: scsi_device event occurred on
2642  *	@evt: event to send
2643  *
2644  *	Assert scsi device event asynchronously.
2645  */
2646 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2647 {
2648 	unsigned long flags;
2649 
2650 #if 0
2651 	/* FIXME: currently this check eliminates all media change events
2652 	 * for polled devices.  Need to update to discriminate between AN
2653 	 * and polled events */
2654 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2655 		kfree(evt);
2656 		return;
2657 	}
2658 #endif
2659 
2660 	spin_lock_irqsave(&sdev->list_lock, flags);
2661 	list_add_tail(&evt->node, &sdev->event_list);
2662 	schedule_work(&sdev->event_work);
2663 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2664 }
2665 EXPORT_SYMBOL_GPL(sdev_evt_send);
2666 
2667 /**
2668  * 	sdev_evt_alloc - allocate a new scsi event
2669  *	@evt_type: type of event to allocate
2670  *	@gfpflags: GFP flags for allocation
2671  *
2672  *	Allocates and returns a new scsi_event.
2673  */
2674 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2675 				  gfp_t gfpflags)
2676 {
2677 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2678 	if (!evt)
2679 		return NULL;
2680 
2681 	evt->evt_type = evt_type;
2682 	INIT_LIST_HEAD(&evt->node);
2683 
2684 	/* evt_type-specific initialization, if any */
2685 	switch (evt_type) {
2686 	case SDEV_EVT_MEDIA_CHANGE:
2687 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2688 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2689 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2690 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2691 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2692 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2693 	default:
2694 		/* do nothing */
2695 		break;
2696 	}
2697 
2698 	return evt;
2699 }
2700 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2701 
2702 /**
2703  * 	sdev_evt_send_simple - send asserted event to uevent thread
2704  *	@sdev: scsi_device event occurred on
2705  *	@evt_type: type of event to send
2706  *	@gfpflags: GFP flags for allocation
2707  *
2708  *	Assert scsi device event asynchronously, given an event type.
2709  */
2710 void sdev_evt_send_simple(struct scsi_device *sdev,
2711 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2712 {
2713 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2714 	if (!evt) {
2715 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2716 			    evt_type);
2717 		return;
2718 	}
2719 
2720 	sdev_evt_send(sdev, evt);
2721 }
2722 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2723 
2724 /**
2725  *	scsi_device_quiesce - Block user issued commands.
2726  *	@sdev:	scsi device to quiesce.
2727  *
2728  *	This works by trying to transition to the SDEV_QUIESCE state
2729  *	(which must be a legal transition).  When the device is in this
2730  *	state, only special requests will be accepted, all others will
2731  *	be deferred.  Since special requests may also be requeued requests,
2732  *	a successful return doesn't guarantee the device will be
2733  *	totally quiescent.
2734  *
2735  *	Must be called with user context, may sleep.
2736  *
2737  *	Returns zero if unsuccessful or an error if not.
2738  */
2739 int
2740 scsi_device_quiesce(struct scsi_device *sdev)
2741 {
2742 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2743 	if (err)
2744 		return err;
2745 
2746 	scsi_run_queue(sdev->request_queue);
2747 	while (atomic_read(&sdev->device_busy)) {
2748 		msleep_interruptible(200);
2749 		scsi_run_queue(sdev->request_queue);
2750 	}
2751 	return 0;
2752 }
2753 EXPORT_SYMBOL(scsi_device_quiesce);
2754 
2755 /**
2756  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2757  *	@sdev:	scsi device to resume.
2758  *
2759  *	Moves the device from quiesced back to running and restarts the
2760  *	queues.
2761  *
2762  *	Must be called with user context, may sleep.
2763  */
2764 void scsi_device_resume(struct scsi_device *sdev)
2765 {
2766 	/* check if the device state was mutated prior to resume, and if
2767 	 * so assume the state is being managed elsewhere (for example
2768 	 * device deleted during suspend)
2769 	 */
2770 	if (sdev->sdev_state != SDEV_QUIESCE ||
2771 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2772 		return;
2773 	scsi_run_queue(sdev->request_queue);
2774 }
2775 EXPORT_SYMBOL(scsi_device_resume);
2776 
2777 static void
2778 device_quiesce_fn(struct scsi_device *sdev, void *data)
2779 {
2780 	scsi_device_quiesce(sdev);
2781 }
2782 
2783 void
2784 scsi_target_quiesce(struct scsi_target *starget)
2785 {
2786 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2787 }
2788 EXPORT_SYMBOL(scsi_target_quiesce);
2789 
2790 static void
2791 device_resume_fn(struct scsi_device *sdev, void *data)
2792 {
2793 	scsi_device_resume(sdev);
2794 }
2795 
2796 void
2797 scsi_target_resume(struct scsi_target *starget)
2798 {
2799 	starget_for_each_device(starget, NULL, device_resume_fn);
2800 }
2801 EXPORT_SYMBOL(scsi_target_resume);
2802 
2803 /**
2804  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2805  * @sdev:	device to block
2806  *
2807  * Block request made by scsi lld's to temporarily stop all
2808  * scsi commands on the specified device.  Called from interrupt
2809  * or normal process context.
2810  *
2811  * Returns zero if successful or error if not
2812  *
2813  * Notes:
2814  *	This routine transitions the device to the SDEV_BLOCK state
2815  *	(which must be a legal transition).  When the device is in this
2816  *	state, all commands are deferred until the scsi lld reenables
2817  *	the device with scsi_device_unblock or device_block_tmo fires.
2818  */
2819 int
2820 scsi_internal_device_block(struct scsi_device *sdev)
2821 {
2822 	struct request_queue *q = sdev->request_queue;
2823 	unsigned long flags;
2824 	int err = 0;
2825 
2826 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2827 	if (err) {
2828 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2829 
2830 		if (err)
2831 			return err;
2832 	}
2833 
2834 	/*
2835 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2836 	 * block layer from calling the midlayer with this device's
2837 	 * request queue.
2838 	 */
2839 	if (q->mq_ops) {
2840 		blk_mq_stop_hw_queues(q);
2841 	} else {
2842 		spin_lock_irqsave(q->queue_lock, flags);
2843 		blk_stop_queue(q);
2844 		spin_unlock_irqrestore(q->queue_lock, flags);
2845 	}
2846 
2847 	return 0;
2848 }
2849 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2850 
2851 /**
2852  * scsi_internal_device_unblock - resume a device after a block request
2853  * @sdev:	device to resume
2854  * @new_state:	state to set devices to after unblocking
2855  *
2856  * Called by scsi lld's or the midlayer to restart the device queue
2857  * for the previously suspended scsi device.  Called from interrupt or
2858  * normal process context.
2859  *
2860  * Returns zero if successful or error if not.
2861  *
2862  * Notes:
2863  *	This routine transitions the device to the SDEV_RUNNING state
2864  *	or to one of the offline states (which must be a legal transition)
2865  *	allowing the midlayer to goose the queue for this device.
2866  */
2867 int
2868 scsi_internal_device_unblock(struct scsi_device *sdev,
2869 			     enum scsi_device_state new_state)
2870 {
2871 	struct request_queue *q = sdev->request_queue;
2872 	unsigned long flags;
2873 
2874 	/*
2875 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2876 	 * offlined states and goose the device queue if successful.
2877 	 */
2878 	if ((sdev->sdev_state == SDEV_BLOCK) ||
2879 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2880 		sdev->sdev_state = new_state;
2881 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2882 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2883 		    new_state == SDEV_OFFLINE)
2884 			sdev->sdev_state = new_state;
2885 		else
2886 			sdev->sdev_state = SDEV_CREATED;
2887 	} else if (sdev->sdev_state != SDEV_CANCEL &&
2888 		 sdev->sdev_state != SDEV_OFFLINE)
2889 		return -EINVAL;
2890 
2891 	if (q->mq_ops) {
2892 		blk_mq_start_stopped_hw_queues(q, false);
2893 	} else {
2894 		spin_lock_irqsave(q->queue_lock, flags);
2895 		blk_start_queue(q);
2896 		spin_unlock_irqrestore(q->queue_lock, flags);
2897 	}
2898 
2899 	return 0;
2900 }
2901 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2902 
2903 static void
2904 device_block(struct scsi_device *sdev, void *data)
2905 {
2906 	scsi_internal_device_block(sdev);
2907 }
2908 
2909 static int
2910 target_block(struct device *dev, void *data)
2911 {
2912 	if (scsi_is_target_device(dev))
2913 		starget_for_each_device(to_scsi_target(dev), NULL,
2914 					device_block);
2915 	return 0;
2916 }
2917 
2918 void
2919 scsi_target_block(struct device *dev)
2920 {
2921 	if (scsi_is_target_device(dev))
2922 		starget_for_each_device(to_scsi_target(dev), NULL,
2923 					device_block);
2924 	else
2925 		device_for_each_child(dev, NULL, target_block);
2926 }
2927 EXPORT_SYMBOL_GPL(scsi_target_block);
2928 
2929 static void
2930 device_unblock(struct scsi_device *sdev, void *data)
2931 {
2932 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2933 }
2934 
2935 static int
2936 target_unblock(struct device *dev, void *data)
2937 {
2938 	if (scsi_is_target_device(dev))
2939 		starget_for_each_device(to_scsi_target(dev), data,
2940 					device_unblock);
2941 	return 0;
2942 }
2943 
2944 void
2945 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2946 {
2947 	if (scsi_is_target_device(dev))
2948 		starget_for_each_device(to_scsi_target(dev), &new_state,
2949 					device_unblock);
2950 	else
2951 		device_for_each_child(dev, &new_state, target_unblock);
2952 }
2953 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2954 
2955 /**
2956  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2957  * @sgl:	scatter-gather list
2958  * @sg_count:	number of segments in sg
2959  * @offset:	offset in bytes into sg, on return offset into the mapped area
2960  * @len:	bytes to map, on return number of bytes mapped
2961  *
2962  * Returns virtual address of the start of the mapped page
2963  */
2964 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2965 			  size_t *offset, size_t *len)
2966 {
2967 	int i;
2968 	size_t sg_len = 0, len_complete = 0;
2969 	struct scatterlist *sg;
2970 	struct page *page;
2971 
2972 	WARN_ON(!irqs_disabled());
2973 
2974 	for_each_sg(sgl, sg, sg_count, i) {
2975 		len_complete = sg_len; /* Complete sg-entries */
2976 		sg_len += sg->length;
2977 		if (sg_len > *offset)
2978 			break;
2979 	}
2980 
2981 	if (unlikely(i == sg_count)) {
2982 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2983 			"elements %d\n",
2984 		       __func__, sg_len, *offset, sg_count);
2985 		WARN_ON(1);
2986 		return NULL;
2987 	}
2988 
2989 	/* Offset starting from the beginning of first page in this sg-entry */
2990 	*offset = *offset - len_complete + sg->offset;
2991 
2992 	/* Assumption: contiguous pages can be accessed as "page + i" */
2993 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2994 	*offset &= ~PAGE_MASK;
2995 
2996 	/* Bytes in this sg-entry from *offset to the end of the page */
2997 	sg_len = PAGE_SIZE - *offset;
2998 	if (*len > sg_len)
2999 		*len = sg_len;
3000 
3001 	return kmap_atomic(page);
3002 }
3003 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3004 
3005 /**
3006  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3007  * @virt:	virtual address to be unmapped
3008  */
3009 void scsi_kunmap_atomic_sg(void *virt)
3010 {
3011 	kunmap_atomic(virt);
3012 }
3013 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3014 
3015 void sdev_disable_disk_events(struct scsi_device *sdev)
3016 {
3017 	atomic_inc(&sdev->disk_events_disable_depth);
3018 }
3019 EXPORT_SYMBOL(sdev_disable_disk_events);
3020 
3021 void sdev_enable_disk_events(struct scsi_device *sdev)
3022 {
3023 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3024 		return;
3025 	atomic_dec(&sdev->disk_events_disable_depth);
3026 }
3027 EXPORT_SYMBOL(sdev_enable_disk_events);
3028 
3029 /**
3030  * scsi_vpd_lun_id - return a unique device identification
3031  * @sdev: SCSI device
3032  * @id:   buffer for the identification
3033  * @id_len:  length of the buffer
3034  *
3035  * Copies a unique device identification into @id based
3036  * on the information in the VPD page 0x83 of the device.
3037  * The string will be formatted as a SCSI name string.
3038  *
3039  * Returns the length of the identification or error on failure.
3040  * If the identifier is longer than the supplied buffer the actual
3041  * identifier length is returned and the buffer is not zero-padded.
3042  */
3043 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3044 {
3045 	u8 cur_id_type = 0xff;
3046 	u8 cur_id_size = 0;
3047 	unsigned char *d, *cur_id_str;
3048 	unsigned char __rcu *vpd_pg83;
3049 	int id_size = -EINVAL;
3050 
3051 	rcu_read_lock();
3052 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3053 	if (!vpd_pg83) {
3054 		rcu_read_unlock();
3055 		return -ENXIO;
3056 	}
3057 
3058 	/*
3059 	 * Look for the correct descriptor.
3060 	 * Order of preference for lun descriptor:
3061 	 * - SCSI name string
3062 	 * - NAA IEEE Registered Extended
3063 	 * - EUI-64 based 16-byte
3064 	 * - EUI-64 based 12-byte
3065 	 * - NAA IEEE Registered
3066 	 * - NAA IEEE Extended
3067 	 * - T10 Vendor ID
3068 	 * as longer descriptors reduce the likelyhood
3069 	 * of identification clashes.
3070 	 */
3071 
3072 	/* The id string must be at least 20 bytes + terminating NULL byte */
3073 	if (id_len < 21) {
3074 		rcu_read_unlock();
3075 		return -EINVAL;
3076 	}
3077 
3078 	memset(id, 0, id_len);
3079 	d = vpd_pg83 + 4;
3080 	while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3081 		/* Skip designators not referring to the LUN */
3082 		if ((d[1] & 0x30) != 0x00)
3083 			goto next_desig;
3084 
3085 		switch (d[1] & 0xf) {
3086 		case 0x1:
3087 			/* T10 Vendor ID */
3088 			if (cur_id_size > d[3])
3089 				break;
3090 			/* Prefer anything */
3091 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3092 				break;
3093 			cur_id_size = d[3];
3094 			if (cur_id_size + 4 > id_len)
3095 				cur_id_size = id_len - 4;
3096 			cur_id_str = d + 4;
3097 			cur_id_type = d[1] & 0xf;
3098 			id_size = snprintf(id, id_len, "t10.%*pE",
3099 					   cur_id_size, cur_id_str);
3100 			break;
3101 		case 0x2:
3102 			/* EUI-64 */
3103 			if (cur_id_size > d[3])
3104 				break;
3105 			/* Prefer NAA IEEE Registered Extended */
3106 			if (cur_id_type == 0x3 &&
3107 			    cur_id_size == d[3])
3108 				break;
3109 			cur_id_size = d[3];
3110 			cur_id_str = d + 4;
3111 			cur_id_type = d[1] & 0xf;
3112 			switch (cur_id_size) {
3113 			case 8:
3114 				id_size = snprintf(id, id_len,
3115 						   "eui.%8phN",
3116 						   cur_id_str);
3117 				break;
3118 			case 12:
3119 				id_size = snprintf(id, id_len,
3120 						   "eui.%12phN",
3121 						   cur_id_str);
3122 				break;
3123 			case 16:
3124 				id_size = snprintf(id, id_len,
3125 						   "eui.%16phN",
3126 						   cur_id_str);
3127 				break;
3128 			default:
3129 				cur_id_size = 0;
3130 				break;
3131 			}
3132 			break;
3133 		case 0x3:
3134 			/* NAA */
3135 			if (cur_id_size > d[3])
3136 				break;
3137 			cur_id_size = d[3];
3138 			cur_id_str = d + 4;
3139 			cur_id_type = d[1] & 0xf;
3140 			switch (cur_id_size) {
3141 			case 8:
3142 				id_size = snprintf(id, id_len,
3143 						   "naa.%8phN",
3144 						   cur_id_str);
3145 				break;
3146 			case 16:
3147 				id_size = snprintf(id, id_len,
3148 						   "naa.%16phN",
3149 						   cur_id_str);
3150 				break;
3151 			default:
3152 				cur_id_size = 0;
3153 				break;
3154 			}
3155 			break;
3156 		case 0x8:
3157 			/* SCSI name string */
3158 			if (cur_id_size + 4 > d[3])
3159 				break;
3160 			/* Prefer others for truncated descriptor */
3161 			if (cur_id_size && d[3] > id_len)
3162 				break;
3163 			cur_id_size = id_size = d[3];
3164 			cur_id_str = d + 4;
3165 			cur_id_type = d[1] & 0xf;
3166 			if (cur_id_size >= id_len)
3167 				cur_id_size = id_len - 1;
3168 			memcpy(id, cur_id_str, cur_id_size);
3169 			/* Decrease priority for truncated descriptor */
3170 			if (cur_id_size != id_size)
3171 				cur_id_size = 6;
3172 			break;
3173 		default:
3174 			break;
3175 		}
3176 next_desig:
3177 		d += d[3] + 4;
3178 	}
3179 	rcu_read_unlock();
3180 
3181 	return id_size;
3182 }
3183 EXPORT_SYMBOL(scsi_vpd_lun_id);
3184 
3185 /*
3186  * scsi_vpd_tpg_id - return a target port group identifier
3187  * @sdev: SCSI device
3188  *
3189  * Returns the Target Port Group identifier from the information
3190  * froom VPD page 0x83 of the device.
3191  *
3192  * Returns the identifier or error on failure.
3193  */
3194 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3195 {
3196 	unsigned char *d;
3197 	unsigned char __rcu *vpd_pg83;
3198 	int group_id = -EAGAIN, rel_port = -1;
3199 
3200 	rcu_read_lock();
3201 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3202 	if (!vpd_pg83) {
3203 		rcu_read_unlock();
3204 		return -ENXIO;
3205 	}
3206 
3207 	d = sdev->vpd_pg83 + 4;
3208 	while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3209 		switch (d[1] & 0xf) {
3210 		case 0x4:
3211 			/* Relative target port */
3212 			rel_port = get_unaligned_be16(&d[6]);
3213 			break;
3214 		case 0x5:
3215 			/* Target port group */
3216 			group_id = get_unaligned_be16(&d[6]);
3217 			break;
3218 		default:
3219 			break;
3220 		}
3221 		d += d[3] + 4;
3222 	}
3223 	rcu_read_unlock();
3224 
3225 	if (group_id >= 0 && rel_id && rel_port != -1)
3226 		*rel_id = rel_port;
3227 
3228 	return group_id;
3229 }
3230 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3231