xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 144679df)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27 
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37 
38 #include <trace/events/scsi.h>
39 
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43 
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55 
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 	int ret = 0;
64 
65 	mutex_lock(&scsi_sense_cache_mutex);
66 	if (!scsi_sense_cache) {
67 		scsi_sense_cache =
68 			kmem_cache_create_usercopy("scsi_sense_cache",
69 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 				0, SCSI_SENSE_BUFFERSIZE, NULL);
71 		if (!scsi_sense_cache)
72 			ret = -ENOMEM;
73 	}
74 	mutex_unlock(&scsi_sense_cache_mutex);
75 	return ret;
76 }
77 
78 static void
79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81 	struct Scsi_Host *host = cmd->device->host;
82 	struct scsi_device *device = cmd->device;
83 	struct scsi_target *starget = scsi_target(device);
84 
85 	/*
86 	 * Set the appropriate busy bit for the device/host.
87 	 *
88 	 * If the host/device isn't busy, assume that something actually
89 	 * completed, and that we should be able to queue a command now.
90 	 *
91 	 * Note that the prior mid-layer assumption that any host could
92 	 * always queue at least one command is now broken.  The mid-layer
93 	 * will implement a user specifiable stall (see
94 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 	 * if a command is requeued with no other commands outstanding
96 	 * either for the device or for the host.
97 	 */
98 	switch (reason) {
99 	case SCSI_MLQUEUE_HOST_BUSY:
100 		atomic_set(&host->host_blocked, host->max_host_blocked);
101 		break;
102 	case SCSI_MLQUEUE_DEVICE_BUSY:
103 	case SCSI_MLQUEUE_EH_RETRY:
104 		atomic_set(&device->device_blocked,
105 			   device->max_device_blocked);
106 		break;
107 	case SCSI_MLQUEUE_TARGET_BUSY:
108 		atomic_set(&starget->target_blocked,
109 			   starget->max_target_blocked);
110 		break;
111 	}
112 }
113 
114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116 	struct request *rq = scsi_cmd_to_rq(cmd);
117 
118 	if (rq->rq_flags & RQF_DONTPREP) {
119 		rq->rq_flags &= ~RQF_DONTPREP;
120 		scsi_mq_uninit_cmd(cmd);
121 	} else {
122 		WARN_ON_ONCE(true);
123 	}
124 
125 	if (msecs) {
126 		blk_mq_requeue_request(rq, false);
127 		blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 	} else
129 		blk_mq_requeue_request(rq, true);
130 }
131 
132 /**
133  * __scsi_queue_insert - private queue insertion
134  * @cmd: The SCSI command being requeued
135  * @reason:  The reason for the requeue
136  * @unbusy: Whether the queue should be unbusied
137  *
138  * This is a private queue insertion.  The public interface
139  * scsi_queue_insert() always assumes the queue should be unbusied
140  * because it's always called before the completion.  This function is
141  * for a requeue after completion, which should only occur in this
142  * file.
143  */
144 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
145 {
146 	struct scsi_device *device = cmd->device;
147 
148 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
149 		"Inserting command %p into mlqueue\n", cmd));
150 
151 	scsi_set_blocked(cmd, reason);
152 
153 	/*
154 	 * Decrement the counters, since these commands are no longer
155 	 * active on the host/device.
156 	 */
157 	if (unbusy)
158 		scsi_device_unbusy(device, cmd);
159 
160 	/*
161 	 * Requeue this command.  It will go before all other commands
162 	 * that are already in the queue. Schedule requeue work under
163 	 * lock such that the kblockd_schedule_work() call happens
164 	 * before blk_mq_destroy_queue() finishes.
165 	 */
166 	cmd->result = 0;
167 
168 	blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
169 }
170 
171 /**
172  * scsi_queue_insert - Reinsert a command in the queue.
173  * @cmd:    command that we are adding to queue.
174  * @reason: why we are inserting command to queue.
175  *
176  * We do this for one of two cases. Either the host is busy and it cannot accept
177  * any more commands for the time being, or the device returned QUEUE_FULL and
178  * can accept no more commands.
179  *
180  * Context: This could be called either from an interrupt context or a normal
181  * process context.
182  */
183 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
184 {
185 	__scsi_queue_insert(cmd, reason, true);
186 }
187 
188 /**
189  * scsi_execute_cmd - insert request and wait for the result
190  * @sdev:	scsi_device
191  * @cmd:	scsi command
192  * @opf:	block layer request cmd_flags
193  * @buffer:	data buffer
194  * @bufflen:	len of buffer
195  * @timeout:	request timeout in HZ
196  * @retries:	number of times to retry request
197  * @args:	Optional args. See struct definition for field descriptions
198  *
199  * Returns the scsi_cmnd result field if a command was executed, or a negative
200  * Linux error code if we didn't get that far.
201  */
202 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
203 		     blk_opf_t opf, void *buffer, unsigned int bufflen,
204 		     int timeout, int retries,
205 		     const struct scsi_exec_args *args)
206 {
207 	static const struct scsi_exec_args default_args;
208 	struct request *req;
209 	struct scsi_cmnd *scmd;
210 	int ret;
211 
212 	if (!args)
213 		args = &default_args;
214 	else if (WARN_ON_ONCE(args->sense &&
215 			      args->sense_len != SCSI_SENSE_BUFFERSIZE))
216 		return -EINVAL;
217 
218 	req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
219 	if (IS_ERR(req))
220 		return PTR_ERR(req);
221 
222 	if (bufflen) {
223 		ret = blk_rq_map_kern(sdev->request_queue, req,
224 				      buffer, bufflen, GFP_NOIO);
225 		if (ret)
226 			goto out;
227 	}
228 	scmd = blk_mq_rq_to_pdu(req);
229 	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
230 	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
231 	scmd->allowed = retries;
232 	scmd->flags |= args->scmd_flags;
233 	req->timeout = timeout;
234 	req->rq_flags |= RQF_QUIET;
235 
236 	/*
237 	 * head injection *required* here otherwise quiesce won't work
238 	 */
239 	blk_execute_rq(req, true);
240 
241 	/*
242 	 * Some devices (USB mass-storage in particular) may transfer
243 	 * garbage data together with a residue indicating that the data
244 	 * is invalid.  Prevent the garbage from being misinterpreted
245 	 * and prevent security leaks by zeroing out the excess data.
246 	 */
247 	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
248 		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
249 
250 	if (args->resid)
251 		*args->resid = scmd->resid_len;
252 	if (args->sense)
253 		memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
254 	if (args->sshdr)
255 		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
256 				     args->sshdr);
257 
258 	ret = scmd->result;
259  out:
260 	blk_mq_free_request(req);
261 
262 	return ret;
263 }
264 EXPORT_SYMBOL(scsi_execute_cmd);
265 
266 /*
267  * Wake up the error handler if necessary. Avoid as follows that the error
268  * handler is not woken up if host in-flight requests number ==
269  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
270  * with an RCU read lock in this function to ensure that this function in
271  * its entirety either finishes before scsi_eh_scmd_add() increases the
272  * host_failed counter or that it notices the shost state change made by
273  * scsi_eh_scmd_add().
274  */
275 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
276 {
277 	unsigned long flags;
278 
279 	rcu_read_lock();
280 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
281 	if (unlikely(scsi_host_in_recovery(shost))) {
282 		spin_lock_irqsave(shost->host_lock, flags);
283 		if (shost->host_failed || shost->host_eh_scheduled)
284 			scsi_eh_wakeup(shost);
285 		spin_unlock_irqrestore(shost->host_lock, flags);
286 	}
287 	rcu_read_unlock();
288 }
289 
290 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
291 {
292 	struct Scsi_Host *shost = sdev->host;
293 	struct scsi_target *starget = scsi_target(sdev);
294 
295 	scsi_dec_host_busy(shost, cmd);
296 
297 	if (starget->can_queue > 0)
298 		atomic_dec(&starget->target_busy);
299 
300 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
301 	cmd->budget_token = -1;
302 }
303 
304 static void scsi_kick_queue(struct request_queue *q)
305 {
306 	blk_mq_run_hw_queues(q, false);
307 }
308 
309 /*
310  * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
311  * interrupts disabled.
312  */
313 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
314 {
315 	struct scsi_device *current_sdev = data;
316 
317 	if (sdev != current_sdev)
318 		blk_mq_run_hw_queues(sdev->request_queue, true);
319 }
320 
321 /*
322  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
323  * and call blk_run_queue for all the scsi_devices on the target -
324  * including current_sdev first.
325  *
326  * Called with *no* scsi locks held.
327  */
328 static void scsi_single_lun_run(struct scsi_device *current_sdev)
329 {
330 	struct Scsi_Host *shost = current_sdev->host;
331 	struct scsi_target *starget = scsi_target(current_sdev);
332 	unsigned long flags;
333 
334 	spin_lock_irqsave(shost->host_lock, flags);
335 	starget->starget_sdev_user = NULL;
336 	spin_unlock_irqrestore(shost->host_lock, flags);
337 
338 	/*
339 	 * Call blk_run_queue for all LUNs on the target, starting with
340 	 * current_sdev. We race with others (to set starget_sdev_user),
341 	 * but in most cases, we will be first. Ideally, each LU on the
342 	 * target would get some limited time or requests on the target.
343 	 */
344 	scsi_kick_queue(current_sdev->request_queue);
345 
346 	spin_lock_irqsave(shost->host_lock, flags);
347 	if (!starget->starget_sdev_user)
348 		__starget_for_each_device(starget, current_sdev,
349 					  scsi_kick_sdev_queue);
350 	spin_unlock_irqrestore(shost->host_lock, flags);
351 }
352 
353 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
354 {
355 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
356 		return true;
357 	if (atomic_read(&sdev->device_blocked) > 0)
358 		return true;
359 	return false;
360 }
361 
362 static inline bool scsi_target_is_busy(struct scsi_target *starget)
363 {
364 	if (starget->can_queue > 0) {
365 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
366 			return true;
367 		if (atomic_read(&starget->target_blocked) > 0)
368 			return true;
369 	}
370 	return false;
371 }
372 
373 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
374 {
375 	if (atomic_read(&shost->host_blocked) > 0)
376 		return true;
377 	if (shost->host_self_blocked)
378 		return true;
379 	return false;
380 }
381 
382 static void scsi_starved_list_run(struct Scsi_Host *shost)
383 {
384 	LIST_HEAD(starved_list);
385 	struct scsi_device *sdev;
386 	unsigned long flags;
387 
388 	spin_lock_irqsave(shost->host_lock, flags);
389 	list_splice_init(&shost->starved_list, &starved_list);
390 
391 	while (!list_empty(&starved_list)) {
392 		struct request_queue *slq;
393 
394 		/*
395 		 * As long as shost is accepting commands and we have
396 		 * starved queues, call blk_run_queue. scsi_request_fn
397 		 * drops the queue_lock and can add us back to the
398 		 * starved_list.
399 		 *
400 		 * host_lock protects the starved_list and starved_entry.
401 		 * scsi_request_fn must get the host_lock before checking
402 		 * or modifying starved_list or starved_entry.
403 		 */
404 		if (scsi_host_is_busy(shost))
405 			break;
406 
407 		sdev = list_entry(starved_list.next,
408 				  struct scsi_device, starved_entry);
409 		list_del_init(&sdev->starved_entry);
410 		if (scsi_target_is_busy(scsi_target(sdev))) {
411 			list_move_tail(&sdev->starved_entry,
412 				       &shost->starved_list);
413 			continue;
414 		}
415 
416 		/*
417 		 * Once we drop the host lock, a racing scsi_remove_device()
418 		 * call may remove the sdev from the starved list and destroy
419 		 * it and the queue.  Mitigate by taking a reference to the
420 		 * queue and never touching the sdev again after we drop the
421 		 * host lock.  Note: if __scsi_remove_device() invokes
422 		 * blk_mq_destroy_queue() before the queue is run from this
423 		 * function then blk_run_queue() will return immediately since
424 		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
425 		 */
426 		slq = sdev->request_queue;
427 		if (!blk_get_queue(slq))
428 			continue;
429 		spin_unlock_irqrestore(shost->host_lock, flags);
430 
431 		scsi_kick_queue(slq);
432 		blk_put_queue(slq);
433 
434 		spin_lock_irqsave(shost->host_lock, flags);
435 	}
436 	/* put any unprocessed entries back */
437 	list_splice(&starved_list, &shost->starved_list);
438 	spin_unlock_irqrestore(shost->host_lock, flags);
439 }
440 
441 /**
442  * scsi_run_queue - Select a proper request queue to serve next.
443  * @q:  last request's queue
444  *
445  * The previous command was completely finished, start a new one if possible.
446  */
447 static void scsi_run_queue(struct request_queue *q)
448 {
449 	struct scsi_device *sdev = q->queuedata;
450 
451 	if (scsi_target(sdev)->single_lun)
452 		scsi_single_lun_run(sdev);
453 	if (!list_empty(&sdev->host->starved_list))
454 		scsi_starved_list_run(sdev->host);
455 
456 	blk_mq_run_hw_queues(q, false);
457 }
458 
459 void scsi_requeue_run_queue(struct work_struct *work)
460 {
461 	struct scsi_device *sdev;
462 	struct request_queue *q;
463 
464 	sdev = container_of(work, struct scsi_device, requeue_work);
465 	q = sdev->request_queue;
466 	scsi_run_queue(q);
467 }
468 
469 void scsi_run_host_queues(struct Scsi_Host *shost)
470 {
471 	struct scsi_device *sdev;
472 
473 	shost_for_each_device(sdev, shost)
474 		scsi_run_queue(sdev->request_queue);
475 }
476 
477 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
478 {
479 	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
480 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
481 
482 		if (drv->uninit_command)
483 			drv->uninit_command(cmd);
484 	}
485 }
486 
487 void scsi_free_sgtables(struct scsi_cmnd *cmd)
488 {
489 	if (cmd->sdb.table.nents)
490 		sg_free_table_chained(&cmd->sdb.table,
491 				SCSI_INLINE_SG_CNT);
492 	if (scsi_prot_sg_count(cmd))
493 		sg_free_table_chained(&cmd->prot_sdb->table,
494 				SCSI_INLINE_PROT_SG_CNT);
495 }
496 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
497 
498 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
499 {
500 	scsi_free_sgtables(cmd);
501 	scsi_uninit_cmd(cmd);
502 }
503 
504 static void scsi_run_queue_async(struct scsi_device *sdev)
505 {
506 	if (scsi_target(sdev)->single_lun ||
507 	    !list_empty(&sdev->host->starved_list)) {
508 		kblockd_schedule_work(&sdev->requeue_work);
509 	} else {
510 		/*
511 		 * smp_mb() present in sbitmap_queue_clear() or implied in
512 		 * .end_io is for ordering writing .device_busy in
513 		 * scsi_device_unbusy() and reading sdev->restarts.
514 		 */
515 		int old = atomic_read(&sdev->restarts);
516 
517 		/*
518 		 * ->restarts has to be kept as non-zero if new budget
519 		 *  contention occurs.
520 		 *
521 		 *  No need to run queue when either another re-run
522 		 *  queue wins in updating ->restarts or a new budget
523 		 *  contention occurs.
524 		 */
525 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
526 			blk_mq_run_hw_queues(sdev->request_queue, true);
527 	}
528 }
529 
530 /* Returns false when no more bytes to process, true if there are more */
531 static bool scsi_end_request(struct request *req, blk_status_t error,
532 		unsigned int bytes)
533 {
534 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
535 	struct scsi_device *sdev = cmd->device;
536 	struct request_queue *q = sdev->request_queue;
537 
538 	if (blk_update_request(req, error, bytes))
539 		return true;
540 
541 	// XXX:
542 	if (blk_queue_add_random(q))
543 		add_disk_randomness(req->q->disk);
544 
545 	if (!blk_rq_is_passthrough(req)) {
546 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
547 		cmd->flags &= ~SCMD_INITIALIZED;
548 	}
549 
550 	/*
551 	 * Calling rcu_barrier() is not necessary here because the
552 	 * SCSI error handler guarantees that the function called by
553 	 * call_rcu() has been called before scsi_end_request() is
554 	 * called.
555 	 */
556 	destroy_rcu_head(&cmd->rcu);
557 
558 	/*
559 	 * In the MQ case the command gets freed by __blk_mq_end_request,
560 	 * so we have to do all cleanup that depends on it earlier.
561 	 *
562 	 * We also can't kick the queues from irq context, so we
563 	 * will have to defer it to a workqueue.
564 	 */
565 	scsi_mq_uninit_cmd(cmd);
566 
567 	/*
568 	 * queue is still alive, so grab the ref for preventing it
569 	 * from being cleaned up during running queue.
570 	 */
571 	percpu_ref_get(&q->q_usage_counter);
572 
573 	__blk_mq_end_request(req, error);
574 
575 	scsi_run_queue_async(sdev);
576 
577 	percpu_ref_put(&q->q_usage_counter);
578 	return false;
579 }
580 
581 /**
582  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
583  * @result:	scsi error code
584  *
585  * Translate a SCSI result code into a blk_status_t value.
586  */
587 static blk_status_t scsi_result_to_blk_status(int result)
588 {
589 	/*
590 	 * Check the scsi-ml byte first in case we converted a host or status
591 	 * byte.
592 	 */
593 	switch (scsi_ml_byte(result)) {
594 	case SCSIML_STAT_OK:
595 		break;
596 	case SCSIML_STAT_RESV_CONFLICT:
597 		return BLK_STS_RESV_CONFLICT;
598 	case SCSIML_STAT_NOSPC:
599 		return BLK_STS_NOSPC;
600 	case SCSIML_STAT_MED_ERROR:
601 		return BLK_STS_MEDIUM;
602 	case SCSIML_STAT_TGT_FAILURE:
603 		return BLK_STS_TARGET;
604 	case SCSIML_STAT_DL_TIMEOUT:
605 		return BLK_STS_DURATION_LIMIT;
606 	}
607 
608 	switch (host_byte(result)) {
609 	case DID_OK:
610 		if (scsi_status_is_good(result))
611 			return BLK_STS_OK;
612 		return BLK_STS_IOERR;
613 	case DID_TRANSPORT_FAILFAST:
614 	case DID_TRANSPORT_MARGINAL:
615 		return BLK_STS_TRANSPORT;
616 	default:
617 		return BLK_STS_IOERR;
618 	}
619 }
620 
621 /**
622  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
623  * @rq: request to examine
624  *
625  * Description:
626  *     A request could be merge of IOs which require different failure
627  *     handling.  This function determines the number of bytes which
628  *     can be failed from the beginning of the request without
629  *     crossing into area which need to be retried further.
630  *
631  * Return:
632  *     The number of bytes to fail.
633  */
634 static unsigned int scsi_rq_err_bytes(const struct request *rq)
635 {
636 	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
637 	unsigned int bytes = 0;
638 	struct bio *bio;
639 
640 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
641 		return blk_rq_bytes(rq);
642 
643 	/*
644 	 * Currently the only 'mixing' which can happen is between
645 	 * different fastfail types.  We can safely fail portions
646 	 * which have all the failfast bits that the first one has -
647 	 * the ones which are at least as eager to fail as the first
648 	 * one.
649 	 */
650 	for (bio = rq->bio; bio; bio = bio->bi_next) {
651 		if ((bio->bi_opf & ff) != ff)
652 			break;
653 		bytes += bio->bi_iter.bi_size;
654 	}
655 
656 	/* this could lead to infinite loop */
657 	BUG_ON(blk_rq_bytes(rq) && !bytes);
658 	return bytes;
659 }
660 
661 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
662 {
663 	struct request *req = scsi_cmd_to_rq(cmd);
664 	unsigned long wait_for;
665 
666 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
667 		return false;
668 
669 	wait_for = (cmd->allowed + 1) * req->timeout;
670 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
671 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
672 			    wait_for/HZ);
673 		return true;
674 	}
675 	return false;
676 }
677 
678 /*
679  * When ALUA transition state is returned, reprep the cmd to
680  * use the ALUA handler's transition timeout. Delay the reprep
681  * 1 sec to avoid aggressive retries of the target in that
682  * state.
683  */
684 #define ALUA_TRANSITION_REPREP_DELAY	1000
685 
686 /* Helper for scsi_io_completion() when special action required. */
687 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
688 {
689 	struct request *req = scsi_cmd_to_rq(cmd);
690 	int level = 0;
691 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
692 	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
693 	struct scsi_sense_hdr sshdr;
694 	bool sense_valid;
695 	bool sense_current = true;      /* false implies "deferred sense" */
696 	blk_status_t blk_stat;
697 
698 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
699 	if (sense_valid)
700 		sense_current = !scsi_sense_is_deferred(&sshdr);
701 
702 	blk_stat = scsi_result_to_blk_status(result);
703 
704 	if (host_byte(result) == DID_RESET) {
705 		/* Third party bus reset or reset for error recovery
706 		 * reasons.  Just retry the command and see what
707 		 * happens.
708 		 */
709 		action = ACTION_RETRY;
710 	} else if (sense_valid && sense_current) {
711 		switch (sshdr.sense_key) {
712 		case UNIT_ATTENTION:
713 			if (cmd->device->removable) {
714 				/* Detected disc change.  Set a bit
715 				 * and quietly refuse further access.
716 				 */
717 				cmd->device->changed = 1;
718 				action = ACTION_FAIL;
719 			} else {
720 				/* Must have been a power glitch, or a
721 				 * bus reset.  Could not have been a
722 				 * media change, so we just retry the
723 				 * command and see what happens.
724 				 */
725 				action = ACTION_RETRY;
726 			}
727 			break;
728 		case ILLEGAL_REQUEST:
729 			/* If we had an ILLEGAL REQUEST returned, then
730 			 * we may have performed an unsupported
731 			 * command.  The only thing this should be
732 			 * would be a ten byte read where only a six
733 			 * byte read was supported.  Also, on a system
734 			 * where READ CAPACITY failed, we may have
735 			 * read past the end of the disk.
736 			 */
737 			if ((cmd->device->use_10_for_rw &&
738 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
739 			    (cmd->cmnd[0] == READ_10 ||
740 			     cmd->cmnd[0] == WRITE_10)) {
741 				/* This will issue a new 6-byte command. */
742 				cmd->device->use_10_for_rw = 0;
743 				action = ACTION_REPREP;
744 			} else if (sshdr.asc == 0x10) /* DIX */ {
745 				action = ACTION_FAIL;
746 				blk_stat = BLK_STS_PROTECTION;
747 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
748 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
749 				action = ACTION_FAIL;
750 				blk_stat = BLK_STS_TARGET;
751 			} else
752 				action = ACTION_FAIL;
753 			break;
754 		case ABORTED_COMMAND:
755 			action = ACTION_FAIL;
756 			if (sshdr.asc == 0x10) /* DIF */
757 				blk_stat = BLK_STS_PROTECTION;
758 			break;
759 		case NOT_READY:
760 			/* If the device is in the process of becoming
761 			 * ready, or has a temporary blockage, retry.
762 			 */
763 			if (sshdr.asc == 0x04) {
764 				switch (sshdr.ascq) {
765 				case 0x01: /* becoming ready */
766 				case 0x04: /* format in progress */
767 				case 0x05: /* rebuild in progress */
768 				case 0x06: /* recalculation in progress */
769 				case 0x07: /* operation in progress */
770 				case 0x08: /* Long write in progress */
771 				case 0x09: /* self test in progress */
772 				case 0x11: /* notify (enable spinup) required */
773 				case 0x14: /* space allocation in progress */
774 				case 0x1a: /* start stop unit in progress */
775 				case 0x1b: /* sanitize in progress */
776 				case 0x1d: /* configuration in progress */
777 				case 0x24: /* depopulation in progress */
778 					action = ACTION_DELAYED_RETRY;
779 					break;
780 				case 0x0a: /* ALUA state transition */
781 					action = ACTION_DELAYED_REPREP;
782 					break;
783 				default:
784 					action = ACTION_FAIL;
785 					break;
786 				}
787 			} else
788 				action = ACTION_FAIL;
789 			break;
790 		case VOLUME_OVERFLOW:
791 			/* See SSC3rXX or current. */
792 			action = ACTION_FAIL;
793 			break;
794 		case DATA_PROTECT:
795 			action = ACTION_FAIL;
796 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
797 			    (sshdr.asc == 0x55 &&
798 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
799 				/* Insufficient zone resources */
800 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
801 			}
802 			break;
803 		case COMPLETED:
804 			fallthrough;
805 		default:
806 			action = ACTION_FAIL;
807 			break;
808 		}
809 	} else
810 		action = ACTION_FAIL;
811 
812 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
813 		action = ACTION_FAIL;
814 
815 	switch (action) {
816 	case ACTION_FAIL:
817 		/* Give up and fail the remainder of the request */
818 		if (!(req->rq_flags & RQF_QUIET)) {
819 			static DEFINE_RATELIMIT_STATE(_rs,
820 					DEFAULT_RATELIMIT_INTERVAL,
821 					DEFAULT_RATELIMIT_BURST);
822 
823 			if (unlikely(scsi_logging_level))
824 				level =
825 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
826 						    SCSI_LOG_MLCOMPLETE_BITS);
827 
828 			/*
829 			 * if logging is enabled the failure will be printed
830 			 * in scsi_log_completion(), so avoid duplicate messages
831 			 */
832 			if (!level && __ratelimit(&_rs)) {
833 				scsi_print_result(cmd, NULL, FAILED);
834 				if (sense_valid)
835 					scsi_print_sense(cmd);
836 				scsi_print_command(cmd);
837 			}
838 		}
839 		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
840 			return;
841 		fallthrough;
842 	case ACTION_REPREP:
843 		scsi_mq_requeue_cmd(cmd, 0);
844 		break;
845 	case ACTION_DELAYED_REPREP:
846 		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
847 		break;
848 	case ACTION_RETRY:
849 		/* Retry the same command immediately */
850 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
851 		break;
852 	case ACTION_DELAYED_RETRY:
853 		/* Retry the same command after a delay */
854 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
855 		break;
856 	}
857 }
858 
859 /*
860  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
861  * new result that may suppress further error checking. Also modifies
862  * *blk_statp in some cases.
863  */
864 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
865 					blk_status_t *blk_statp)
866 {
867 	bool sense_valid;
868 	bool sense_current = true;	/* false implies "deferred sense" */
869 	struct request *req = scsi_cmd_to_rq(cmd);
870 	struct scsi_sense_hdr sshdr;
871 
872 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
873 	if (sense_valid)
874 		sense_current = !scsi_sense_is_deferred(&sshdr);
875 
876 	if (blk_rq_is_passthrough(req)) {
877 		if (sense_valid) {
878 			/*
879 			 * SG_IO wants current and deferred errors
880 			 */
881 			cmd->sense_len = min(8 + cmd->sense_buffer[7],
882 					     SCSI_SENSE_BUFFERSIZE);
883 		}
884 		if (sense_current)
885 			*blk_statp = scsi_result_to_blk_status(result);
886 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
887 		/*
888 		 * Flush commands do not transfers any data, and thus cannot use
889 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
890 		 * This sets *blk_statp explicitly for the problem case.
891 		 */
892 		*blk_statp = scsi_result_to_blk_status(result);
893 	}
894 	/*
895 	 * Recovered errors need reporting, but they're always treated as
896 	 * success, so fiddle the result code here.  For passthrough requests
897 	 * we already took a copy of the original into sreq->result which
898 	 * is what gets returned to the user
899 	 */
900 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
901 		bool do_print = true;
902 		/*
903 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
904 		 * skip print since caller wants ATA registers. Only occurs
905 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
906 		 */
907 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
908 			do_print = false;
909 		else if (req->rq_flags & RQF_QUIET)
910 			do_print = false;
911 		if (do_print)
912 			scsi_print_sense(cmd);
913 		result = 0;
914 		/* for passthrough, *blk_statp may be set */
915 		*blk_statp = BLK_STS_OK;
916 	}
917 	/*
918 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
919 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
920 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
921 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
922 	 * intermediate statuses (both obsolete in SAM-4) as good.
923 	 */
924 	if ((result & 0xff) && scsi_status_is_good(result)) {
925 		result = 0;
926 		*blk_statp = BLK_STS_OK;
927 	}
928 	return result;
929 }
930 
931 /**
932  * scsi_io_completion - Completion processing for SCSI commands.
933  * @cmd:	command that is finished.
934  * @good_bytes:	number of processed bytes.
935  *
936  * We will finish off the specified number of sectors. If we are done, the
937  * command block will be released and the queue function will be goosed. If we
938  * are not done then we have to figure out what to do next:
939  *
940  *   a) We can call scsi_mq_requeue_cmd().  The request will be
941  *	unprepared and put back on the queue.  Then a new command will
942  *	be created for it.  This should be used if we made forward
943  *	progress, or if we want to switch from READ(10) to READ(6) for
944  *	example.
945  *
946  *   b) We can call scsi_io_completion_action().  The request will be
947  *	put back on the queue and retried using the same command as
948  *	before, possibly after a delay.
949  *
950  *   c) We can call scsi_end_request() with blk_stat other than
951  *	BLK_STS_OK, to fail the remainder of the request.
952  */
953 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
954 {
955 	int result = cmd->result;
956 	struct request *req = scsi_cmd_to_rq(cmd);
957 	blk_status_t blk_stat = BLK_STS_OK;
958 
959 	if (unlikely(result))	/* a nz result may or may not be an error */
960 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
961 
962 	/*
963 	 * Next deal with any sectors which we were able to correctly
964 	 * handle.
965 	 */
966 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
967 		"%u sectors total, %d bytes done.\n",
968 		blk_rq_sectors(req), good_bytes));
969 
970 	/*
971 	 * Failed, zero length commands always need to drop down
972 	 * to retry code. Fast path should return in this block.
973 	 */
974 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
975 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
976 			return; /* no bytes remaining */
977 	}
978 
979 	/* Kill remainder if no retries. */
980 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
981 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
982 			WARN_ONCE(true,
983 			    "Bytes remaining after failed, no-retry command");
984 		return;
985 	}
986 
987 	/*
988 	 * If there had been no error, but we have leftover bytes in the
989 	 * request just queue the command up again.
990 	 */
991 	if (likely(result == 0))
992 		scsi_mq_requeue_cmd(cmd, 0);
993 	else
994 		scsi_io_completion_action(cmd, result);
995 }
996 
997 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
998 		struct request *rq)
999 {
1000 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1001 	       !op_is_write(req_op(rq)) &&
1002 	       sdev->host->hostt->dma_need_drain(rq);
1003 }
1004 
1005 /**
1006  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1007  * @cmd: SCSI command data structure to initialize.
1008  *
1009  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1010  * for @cmd.
1011  *
1012  * Returns:
1013  * * BLK_STS_OK       - on success
1014  * * BLK_STS_RESOURCE - if the failure is retryable
1015  * * BLK_STS_IOERR    - if the failure is fatal
1016  */
1017 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1018 {
1019 	struct scsi_device *sdev = cmd->device;
1020 	struct request *rq = scsi_cmd_to_rq(cmd);
1021 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1022 	struct scatterlist *last_sg = NULL;
1023 	blk_status_t ret;
1024 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1025 	int count;
1026 
1027 	if (WARN_ON_ONCE(!nr_segs))
1028 		return BLK_STS_IOERR;
1029 
1030 	/*
1031 	 * Make sure there is space for the drain.  The driver must adjust
1032 	 * max_hw_segments to be prepared for this.
1033 	 */
1034 	if (need_drain)
1035 		nr_segs++;
1036 
1037 	/*
1038 	 * If sg table allocation fails, requeue request later.
1039 	 */
1040 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1041 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1042 		return BLK_STS_RESOURCE;
1043 
1044 	/*
1045 	 * Next, walk the list, and fill in the addresses and sizes of
1046 	 * each segment.
1047 	 */
1048 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1049 
1050 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1051 		unsigned int pad_len =
1052 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1053 
1054 		last_sg->length += pad_len;
1055 		cmd->extra_len += pad_len;
1056 	}
1057 
1058 	if (need_drain) {
1059 		sg_unmark_end(last_sg);
1060 		last_sg = sg_next(last_sg);
1061 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1062 		sg_mark_end(last_sg);
1063 
1064 		cmd->extra_len += sdev->dma_drain_len;
1065 		count++;
1066 	}
1067 
1068 	BUG_ON(count > cmd->sdb.table.nents);
1069 	cmd->sdb.table.nents = count;
1070 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1071 
1072 	if (blk_integrity_rq(rq)) {
1073 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1074 		int ivecs;
1075 
1076 		if (WARN_ON_ONCE(!prot_sdb)) {
1077 			/*
1078 			 * This can happen if someone (e.g. multipath)
1079 			 * queues a command to a device on an adapter
1080 			 * that does not support DIX.
1081 			 */
1082 			ret = BLK_STS_IOERR;
1083 			goto out_free_sgtables;
1084 		}
1085 
1086 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1087 
1088 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1089 				prot_sdb->table.sgl,
1090 				SCSI_INLINE_PROT_SG_CNT)) {
1091 			ret = BLK_STS_RESOURCE;
1092 			goto out_free_sgtables;
1093 		}
1094 
1095 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1096 						prot_sdb->table.sgl);
1097 		BUG_ON(count > ivecs);
1098 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1099 
1100 		cmd->prot_sdb = prot_sdb;
1101 		cmd->prot_sdb->table.nents = count;
1102 	}
1103 
1104 	return BLK_STS_OK;
1105 out_free_sgtables:
1106 	scsi_free_sgtables(cmd);
1107 	return ret;
1108 }
1109 EXPORT_SYMBOL(scsi_alloc_sgtables);
1110 
1111 /**
1112  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1113  * @rq: Request associated with the SCSI command to be initialized.
1114  *
1115  * This function initializes the members of struct scsi_cmnd that must be
1116  * initialized before request processing starts and that won't be
1117  * reinitialized if a SCSI command is requeued.
1118  */
1119 static void scsi_initialize_rq(struct request *rq)
1120 {
1121 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1122 
1123 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1124 	cmd->cmd_len = MAX_COMMAND_SIZE;
1125 	cmd->sense_len = 0;
1126 	init_rcu_head(&cmd->rcu);
1127 	cmd->jiffies_at_alloc = jiffies;
1128 	cmd->retries = 0;
1129 }
1130 
1131 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1132 				   blk_mq_req_flags_t flags)
1133 {
1134 	struct request *rq;
1135 
1136 	rq = blk_mq_alloc_request(q, opf, flags);
1137 	if (!IS_ERR(rq))
1138 		scsi_initialize_rq(rq);
1139 	return rq;
1140 }
1141 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1142 
1143 /*
1144  * Only called when the request isn't completed by SCSI, and not freed by
1145  * SCSI
1146  */
1147 static void scsi_cleanup_rq(struct request *rq)
1148 {
1149 	if (rq->rq_flags & RQF_DONTPREP) {
1150 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1151 		rq->rq_flags &= ~RQF_DONTPREP;
1152 	}
1153 }
1154 
1155 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1156 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1157 {
1158 	struct request *rq = scsi_cmd_to_rq(cmd);
1159 
1160 	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1161 		cmd->flags |= SCMD_INITIALIZED;
1162 		scsi_initialize_rq(rq);
1163 	}
1164 
1165 	cmd->device = dev;
1166 	INIT_LIST_HEAD(&cmd->eh_entry);
1167 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1168 }
1169 
1170 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1171 		struct request *req)
1172 {
1173 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1174 
1175 	/*
1176 	 * Passthrough requests may transfer data, in which case they must
1177 	 * a bio attached to them.  Or they might contain a SCSI command
1178 	 * that does not transfer data, in which case they may optionally
1179 	 * submit a request without an attached bio.
1180 	 */
1181 	if (req->bio) {
1182 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1183 		if (unlikely(ret != BLK_STS_OK))
1184 			return ret;
1185 	} else {
1186 		BUG_ON(blk_rq_bytes(req));
1187 
1188 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1189 	}
1190 
1191 	cmd->transfersize = blk_rq_bytes(req);
1192 	return BLK_STS_OK;
1193 }
1194 
1195 static blk_status_t
1196 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1197 {
1198 	switch (sdev->sdev_state) {
1199 	case SDEV_CREATED:
1200 		return BLK_STS_OK;
1201 	case SDEV_OFFLINE:
1202 	case SDEV_TRANSPORT_OFFLINE:
1203 		/*
1204 		 * If the device is offline we refuse to process any
1205 		 * commands.  The device must be brought online
1206 		 * before trying any recovery commands.
1207 		 */
1208 		if (!sdev->offline_already) {
1209 			sdev->offline_already = true;
1210 			sdev_printk(KERN_ERR, sdev,
1211 				    "rejecting I/O to offline device\n");
1212 		}
1213 		return BLK_STS_IOERR;
1214 	case SDEV_DEL:
1215 		/*
1216 		 * If the device is fully deleted, we refuse to
1217 		 * process any commands as well.
1218 		 */
1219 		sdev_printk(KERN_ERR, sdev,
1220 			    "rejecting I/O to dead device\n");
1221 		return BLK_STS_IOERR;
1222 	case SDEV_BLOCK:
1223 	case SDEV_CREATED_BLOCK:
1224 		return BLK_STS_RESOURCE;
1225 	case SDEV_QUIESCE:
1226 		/*
1227 		 * If the device is blocked we only accept power management
1228 		 * commands.
1229 		 */
1230 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1231 			return BLK_STS_RESOURCE;
1232 		return BLK_STS_OK;
1233 	default:
1234 		/*
1235 		 * For any other not fully online state we only allow
1236 		 * power management commands.
1237 		 */
1238 		if (req && !(req->rq_flags & RQF_PM))
1239 			return BLK_STS_OFFLINE;
1240 		return BLK_STS_OK;
1241 	}
1242 }
1243 
1244 /*
1245  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1246  * and return the token else return -1.
1247  */
1248 static inline int scsi_dev_queue_ready(struct request_queue *q,
1249 				  struct scsi_device *sdev)
1250 {
1251 	int token;
1252 
1253 	token = sbitmap_get(&sdev->budget_map);
1254 	if (atomic_read(&sdev->device_blocked)) {
1255 		if (token < 0)
1256 			goto out;
1257 
1258 		if (scsi_device_busy(sdev) > 1)
1259 			goto out_dec;
1260 
1261 		/*
1262 		 * unblock after device_blocked iterates to zero
1263 		 */
1264 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1265 			goto out_dec;
1266 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1267 				   "unblocking device at zero depth\n"));
1268 	}
1269 
1270 	return token;
1271 out_dec:
1272 	if (token >= 0)
1273 		sbitmap_put(&sdev->budget_map, token);
1274 out:
1275 	return -1;
1276 }
1277 
1278 /*
1279  * scsi_target_queue_ready: checks if there we can send commands to target
1280  * @sdev: scsi device on starget to check.
1281  */
1282 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1283 					   struct scsi_device *sdev)
1284 {
1285 	struct scsi_target *starget = scsi_target(sdev);
1286 	unsigned int busy;
1287 
1288 	if (starget->single_lun) {
1289 		spin_lock_irq(shost->host_lock);
1290 		if (starget->starget_sdev_user &&
1291 		    starget->starget_sdev_user != sdev) {
1292 			spin_unlock_irq(shost->host_lock);
1293 			return 0;
1294 		}
1295 		starget->starget_sdev_user = sdev;
1296 		spin_unlock_irq(shost->host_lock);
1297 	}
1298 
1299 	if (starget->can_queue <= 0)
1300 		return 1;
1301 
1302 	busy = atomic_inc_return(&starget->target_busy) - 1;
1303 	if (atomic_read(&starget->target_blocked) > 0) {
1304 		if (busy)
1305 			goto starved;
1306 
1307 		/*
1308 		 * unblock after target_blocked iterates to zero
1309 		 */
1310 		if (atomic_dec_return(&starget->target_blocked) > 0)
1311 			goto out_dec;
1312 
1313 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1314 				 "unblocking target at zero depth\n"));
1315 	}
1316 
1317 	if (busy >= starget->can_queue)
1318 		goto starved;
1319 
1320 	return 1;
1321 
1322 starved:
1323 	spin_lock_irq(shost->host_lock);
1324 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1325 	spin_unlock_irq(shost->host_lock);
1326 out_dec:
1327 	if (starget->can_queue > 0)
1328 		atomic_dec(&starget->target_busy);
1329 	return 0;
1330 }
1331 
1332 /*
1333  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1334  * return 0. We must end up running the queue again whenever 0 is
1335  * returned, else IO can hang.
1336  */
1337 static inline int scsi_host_queue_ready(struct request_queue *q,
1338 				   struct Scsi_Host *shost,
1339 				   struct scsi_device *sdev,
1340 				   struct scsi_cmnd *cmd)
1341 {
1342 	if (atomic_read(&shost->host_blocked) > 0) {
1343 		if (scsi_host_busy(shost) > 0)
1344 			goto starved;
1345 
1346 		/*
1347 		 * unblock after host_blocked iterates to zero
1348 		 */
1349 		if (atomic_dec_return(&shost->host_blocked) > 0)
1350 			goto out_dec;
1351 
1352 		SCSI_LOG_MLQUEUE(3,
1353 			shost_printk(KERN_INFO, shost,
1354 				     "unblocking host at zero depth\n"));
1355 	}
1356 
1357 	if (shost->host_self_blocked)
1358 		goto starved;
1359 
1360 	/* We're OK to process the command, so we can't be starved */
1361 	if (!list_empty(&sdev->starved_entry)) {
1362 		spin_lock_irq(shost->host_lock);
1363 		if (!list_empty(&sdev->starved_entry))
1364 			list_del_init(&sdev->starved_entry);
1365 		spin_unlock_irq(shost->host_lock);
1366 	}
1367 
1368 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1369 
1370 	return 1;
1371 
1372 starved:
1373 	spin_lock_irq(shost->host_lock);
1374 	if (list_empty(&sdev->starved_entry))
1375 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1376 	spin_unlock_irq(shost->host_lock);
1377 out_dec:
1378 	scsi_dec_host_busy(shost, cmd);
1379 	return 0;
1380 }
1381 
1382 /*
1383  * Busy state exporting function for request stacking drivers.
1384  *
1385  * For efficiency, no lock is taken to check the busy state of
1386  * shost/starget/sdev, since the returned value is not guaranteed and
1387  * may be changed after request stacking drivers call the function,
1388  * regardless of taking lock or not.
1389  *
1390  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1391  * needs to return 'not busy'. Otherwise, request stacking drivers
1392  * may hold requests forever.
1393  */
1394 static bool scsi_mq_lld_busy(struct request_queue *q)
1395 {
1396 	struct scsi_device *sdev = q->queuedata;
1397 	struct Scsi_Host *shost;
1398 
1399 	if (blk_queue_dying(q))
1400 		return false;
1401 
1402 	shost = sdev->host;
1403 
1404 	/*
1405 	 * Ignore host/starget busy state.
1406 	 * Since block layer does not have a concept of fairness across
1407 	 * multiple queues, congestion of host/starget needs to be handled
1408 	 * in SCSI layer.
1409 	 */
1410 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1411 		return true;
1412 
1413 	return false;
1414 }
1415 
1416 /*
1417  * Block layer request completion callback. May be called from interrupt
1418  * context.
1419  */
1420 static void scsi_complete(struct request *rq)
1421 {
1422 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1423 	enum scsi_disposition disposition;
1424 
1425 	INIT_LIST_HEAD(&cmd->eh_entry);
1426 
1427 	atomic_inc(&cmd->device->iodone_cnt);
1428 	if (cmd->result)
1429 		atomic_inc(&cmd->device->ioerr_cnt);
1430 
1431 	disposition = scsi_decide_disposition(cmd);
1432 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1433 		disposition = SUCCESS;
1434 
1435 	scsi_log_completion(cmd, disposition);
1436 
1437 	switch (disposition) {
1438 	case SUCCESS:
1439 		scsi_finish_command(cmd);
1440 		break;
1441 	case NEEDS_RETRY:
1442 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1443 		break;
1444 	case ADD_TO_MLQUEUE:
1445 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1446 		break;
1447 	default:
1448 		scsi_eh_scmd_add(cmd);
1449 		break;
1450 	}
1451 }
1452 
1453 /**
1454  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1455  * @cmd: command block we are dispatching.
1456  *
1457  * Return: nonzero return request was rejected and device's queue needs to be
1458  * plugged.
1459  */
1460 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1461 {
1462 	struct Scsi_Host *host = cmd->device->host;
1463 	int rtn = 0;
1464 
1465 	/* check if the device is still usable */
1466 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1467 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1468 		 * returns an immediate error upwards, and signals
1469 		 * that the device is no longer present */
1470 		cmd->result = DID_NO_CONNECT << 16;
1471 		goto done;
1472 	}
1473 
1474 	/* Check to see if the scsi lld made this device blocked. */
1475 	if (unlikely(scsi_device_blocked(cmd->device))) {
1476 		/*
1477 		 * in blocked state, the command is just put back on
1478 		 * the device queue.  The suspend state has already
1479 		 * blocked the queue so future requests should not
1480 		 * occur until the device transitions out of the
1481 		 * suspend state.
1482 		 */
1483 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1484 			"queuecommand : device blocked\n"));
1485 		return SCSI_MLQUEUE_DEVICE_BUSY;
1486 	}
1487 
1488 	/* Store the LUN value in cmnd, if needed. */
1489 	if (cmd->device->lun_in_cdb)
1490 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1491 			       (cmd->device->lun << 5 & 0xe0);
1492 
1493 	scsi_log_send(cmd);
1494 
1495 	/*
1496 	 * Before we queue this command, check if the command
1497 	 * length exceeds what the host adapter can handle.
1498 	 */
1499 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1500 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1501 			       "queuecommand : command too long. "
1502 			       "cdb_size=%d host->max_cmd_len=%d\n",
1503 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1504 		cmd->result = (DID_ABORT << 16);
1505 		goto done;
1506 	}
1507 
1508 	if (unlikely(host->shost_state == SHOST_DEL)) {
1509 		cmd->result = (DID_NO_CONNECT << 16);
1510 		goto done;
1511 
1512 	}
1513 
1514 	trace_scsi_dispatch_cmd_start(cmd);
1515 	rtn = host->hostt->queuecommand(host, cmd);
1516 	if (rtn) {
1517 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1518 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1519 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1520 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1521 
1522 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1523 			"queuecommand : request rejected\n"));
1524 	}
1525 
1526 	return rtn;
1527  done:
1528 	scsi_done(cmd);
1529 	return 0;
1530 }
1531 
1532 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1533 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1534 {
1535 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1536 		sizeof(struct scatterlist);
1537 }
1538 
1539 static blk_status_t scsi_prepare_cmd(struct request *req)
1540 {
1541 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1542 	struct scsi_device *sdev = req->q->queuedata;
1543 	struct Scsi_Host *shost = sdev->host;
1544 	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1545 	struct scatterlist *sg;
1546 
1547 	scsi_init_command(sdev, cmd);
1548 
1549 	cmd->eh_eflags = 0;
1550 	cmd->prot_type = 0;
1551 	cmd->prot_flags = 0;
1552 	cmd->submitter = 0;
1553 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1554 	cmd->underflow = 0;
1555 	cmd->transfersize = 0;
1556 	cmd->host_scribble = NULL;
1557 	cmd->result = 0;
1558 	cmd->extra_len = 0;
1559 	cmd->state = 0;
1560 	if (in_flight)
1561 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1562 
1563 	/*
1564 	 * Only clear the driver-private command data if the LLD does not supply
1565 	 * a function to initialize that data.
1566 	 */
1567 	if (!shost->hostt->init_cmd_priv)
1568 		memset(cmd + 1, 0, shost->hostt->cmd_size);
1569 
1570 	cmd->prot_op = SCSI_PROT_NORMAL;
1571 	if (blk_rq_bytes(req))
1572 		cmd->sc_data_direction = rq_dma_dir(req);
1573 	else
1574 		cmd->sc_data_direction = DMA_NONE;
1575 
1576 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1577 	cmd->sdb.table.sgl = sg;
1578 
1579 	if (scsi_host_get_prot(shost)) {
1580 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1581 
1582 		cmd->prot_sdb->table.sgl =
1583 			(struct scatterlist *)(cmd->prot_sdb + 1);
1584 	}
1585 
1586 	/*
1587 	 * Special handling for passthrough commands, which don't go to the ULP
1588 	 * at all:
1589 	 */
1590 	if (blk_rq_is_passthrough(req))
1591 		return scsi_setup_scsi_cmnd(sdev, req);
1592 
1593 	if (sdev->handler && sdev->handler->prep_fn) {
1594 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1595 
1596 		if (ret != BLK_STS_OK)
1597 			return ret;
1598 	}
1599 
1600 	/* Usually overridden by the ULP */
1601 	cmd->allowed = 0;
1602 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1603 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1604 }
1605 
1606 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1607 {
1608 	struct request *req = scsi_cmd_to_rq(cmd);
1609 
1610 	switch (cmd->submitter) {
1611 	case SUBMITTED_BY_BLOCK_LAYER:
1612 		break;
1613 	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1614 		return scsi_eh_done(cmd);
1615 	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1616 		return;
1617 	}
1618 
1619 	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1620 		return;
1621 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1622 		return;
1623 	trace_scsi_dispatch_cmd_done(cmd);
1624 
1625 	if (complete_directly)
1626 		blk_mq_complete_request_direct(req, scsi_complete);
1627 	else
1628 		blk_mq_complete_request(req);
1629 }
1630 
1631 void scsi_done(struct scsi_cmnd *cmd)
1632 {
1633 	scsi_done_internal(cmd, false);
1634 }
1635 EXPORT_SYMBOL(scsi_done);
1636 
1637 void scsi_done_direct(struct scsi_cmnd *cmd)
1638 {
1639 	scsi_done_internal(cmd, true);
1640 }
1641 EXPORT_SYMBOL(scsi_done_direct);
1642 
1643 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1644 {
1645 	struct scsi_device *sdev = q->queuedata;
1646 
1647 	sbitmap_put(&sdev->budget_map, budget_token);
1648 }
1649 
1650 /*
1651  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1652  * not change behaviour from the previous unplug mechanism, experimentation
1653  * may prove this needs changing.
1654  */
1655 #define SCSI_QUEUE_DELAY 3
1656 
1657 static int scsi_mq_get_budget(struct request_queue *q)
1658 {
1659 	struct scsi_device *sdev = q->queuedata;
1660 	int token = scsi_dev_queue_ready(q, sdev);
1661 
1662 	if (token >= 0)
1663 		return token;
1664 
1665 	atomic_inc(&sdev->restarts);
1666 
1667 	/*
1668 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1669 	 * .restarts must be incremented before .device_busy is read because the
1670 	 * code in scsi_run_queue_async() depends on the order of these operations.
1671 	 */
1672 	smp_mb__after_atomic();
1673 
1674 	/*
1675 	 * If all in-flight requests originated from this LUN are completed
1676 	 * before reading .device_busy, sdev->device_busy will be observed as
1677 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1678 	 * soon. Otherwise, completion of one of these requests will observe
1679 	 * the .restarts flag, and the request queue will be run for handling
1680 	 * this request, see scsi_end_request().
1681 	 */
1682 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1683 				!scsi_device_blocked(sdev)))
1684 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1685 	return -1;
1686 }
1687 
1688 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1689 {
1690 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1691 
1692 	cmd->budget_token = token;
1693 }
1694 
1695 static int scsi_mq_get_rq_budget_token(struct request *req)
1696 {
1697 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1698 
1699 	return cmd->budget_token;
1700 }
1701 
1702 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1703 			 const struct blk_mq_queue_data *bd)
1704 {
1705 	struct request *req = bd->rq;
1706 	struct request_queue *q = req->q;
1707 	struct scsi_device *sdev = q->queuedata;
1708 	struct Scsi_Host *shost = sdev->host;
1709 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1710 	blk_status_t ret;
1711 	int reason;
1712 
1713 	WARN_ON_ONCE(cmd->budget_token < 0);
1714 
1715 	/*
1716 	 * If the device is not in running state we will reject some or all
1717 	 * commands.
1718 	 */
1719 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1720 		ret = scsi_device_state_check(sdev, req);
1721 		if (ret != BLK_STS_OK)
1722 			goto out_put_budget;
1723 	}
1724 
1725 	ret = BLK_STS_RESOURCE;
1726 	if (!scsi_target_queue_ready(shost, sdev))
1727 		goto out_put_budget;
1728 	if (unlikely(scsi_host_in_recovery(shost))) {
1729 		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1730 			ret = BLK_STS_OFFLINE;
1731 		goto out_dec_target_busy;
1732 	}
1733 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1734 		goto out_dec_target_busy;
1735 
1736 	if (!(req->rq_flags & RQF_DONTPREP)) {
1737 		ret = scsi_prepare_cmd(req);
1738 		if (ret != BLK_STS_OK)
1739 			goto out_dec_host_busy;
1740 		req->rq_flags |= RQF_DONTPREP;
1741 	} else {
1742 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1743 	}
1744 
1745 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1746 	if (sdev->simple_tags)
1747 		cmd->flags |= SCMD_TAGGED;
1748 	if (bd->last)
1749 		cmd->flags |= SCMD_LAST;
1750 
1751 	scsi_set_resid(cmd, 0);
1752 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1753 	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1754 
1755 	blk_mq_start_request(req);
1756 	reason = scsi_dispatch_cmd(cmd);
1757 	if (reason) {
1758 		scsi_set_blocked(cmd, reason);
1759 		ret = BLK_STS_RESOURCE;
1760 		goto out_dec_host_busy;
1761 	}
1762 
1763 	atomic_inc(&cmd->device->iorequest_cnt);
1764 	return BLK_STS_OK;
1765 
1766 out_dec_host_busy:
1767 	scsi_dec_host_busy(shost, cmd);
1768 out_dec_target_busy:
1769 	if (scsi_target(sdev)->can_queue > 0)
1770 		atomic_dec(&scsi_target(sdev)->target_busy);
1771 out_put_budget:
1772 	scsi_mq_put_budget(q, cmd->budget_token);
1773 	cmd->budget_token = -1;
1774 	switch (ret) {
1775 	case BLK_STS_OK:
1776 		break;
1777 	case BLK_STS_RESOURCE:
1778 	case BLK_STS_ZONE_RESOURCE:
1779 		if (scsi_device_blocked(sdev))
1780 			ret = BLK_STS_DEV_RESOURCE;
1781 		break;
1782 	case BLK_STS_AGAIN:
1783 		cmd->result = DID_BUS_BUSY << 16;
1784 		if (req->rq_flags & RQF_DONTPREP)
1785 			scsi_mq_uninit_cmd(cmd);
1786 		break;
1787 	default:
1788 		if (unlikely(!scsi_device_online(sdev)))
1789 			cmd->result = DID_NO_CONNECT << 16;
1790 		else
1791 			cmd->result = DID_ERROR << 16;
1792 		/*
1793 		 * Make sure to release all allocated resources when
1794 		 * we hit an error, as we will never see this command
1795 		 * again.
1796 		 */
1797 		if (req->rq_flags & RQF_DONTPREP)
1798 			scsi_mq_uninit_cmd(cmd);
1799 		scsi_run_queue_async(sdev);
1800 		break;
1801 	}
1802 	return ret;
1803 }
1804 
1805 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1806 				unsigned int hctx_idx, unsigned int numa_node)
1807 {
1808 	struct Scsi_Host *shost = set->driver_data;
1809 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1810 	struct scatterlist *sg;
1811 	int ret = 0;
1812 
1813 	cmd->sense_buffer =
1814 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1815 	if (!cmd->sense_buffer)
1816 		return -ENOMEM;
1817 
1818 	if (scsi_host_get_prot(shost)) {
1819 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1820 			shost->hostt->cmd_size;
1821 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1822 	}
1823 
1824 	if (shost->hostt->init_cmd_priv) {
1825 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1826 		if (ret < 0)
1827 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1828 	}
1829 
1830 	return ret;
1831 }
1832 
1833 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1834 				 unsigned int hctx_idx)
1835 {
1836 	struct Scsi_Host *shost = set->driver_data;
1837 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1838 
1839 	if (shost->hostt->exit_cmd_priv)
1840 		shost->hostt->exit_cmd_priv(shost, cmd);
1841 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1842 }
1843 
1844 
1845 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1846 {
1847 	struct Scsi_Host *shost = hctx->driver_data;
1848 
1849 	if (shost->hostt->mq_poll)
1850 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1851 
1852 	return 0;
1853 }
1854 
1855 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1856 			  unsigned int hctx_idx)
1857 {
1858 	struct Scsi_Host *shost = data;
1859 
1860 	hctx->driver_data = shost;
1861 	return 0;
1862 }
1863 
1864 static void scsi_map_queues(struct blk_mq_tag_set *set)
1865 {
1866 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1867 
1868 	if (shost->hostt->map_queues)
1869 		return shost->hostt->map_queues(shost);
1870 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1871 }
1872 
1873 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1874 {
1875 	struct device *dev = shost->dma_dev;
1876 
1877 	/*
1878 	 * this limit is imposed by hardware restrictions
1879 	 */
1880 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1881 					SG_MAX_SEGMENTS));
1882 
1883 	if (scsi_host_prot_dma(shost)) {
1884 		shost->sg_prot_tablesize =
1885 			min_not_zero(shost->sg_prot_tablesize,
1886 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1887 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1888 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1889 	}
1890 
1891 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1892 	blk_queue_segment_boundary(q, shost->dma_boundary);
1893 	dma_set_seg_boundary(dev, shost->dma_boundary);
1894 
1895 	blk_queue_max_segment_size(q, shost->max_segment_size);
1896 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1897 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1898 
1899 	/*
1900 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1901 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1902 	 * which is set by the platform.
1903 	 *
1904 	 * Devices that require a bigger alignment can increase it later.
1905 	 */
1906 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1907 }
1908 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1909 
1910 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1911 	.get_budget	= scsi_mq_get_budget,
1912 	.put_budget	= scsi_mq_put_budget,
1913 	.queue_rq	= scsi_queue_rq,
1914 	.complete	= scsi_complete,
1915 	.timeout	= scsi_timeout,
1916 #ifdef CONFIG_BLK_DEBUG_FS
1917 	.show_rq	= scsi_show_rq,
1918 #endif
1919 	.init_request	= scsi_mq_init_request,
1920 	.exit_request	= scsi_mq_exit_request,
1921 	.cleanup_rq	= scsi_cleanup_rq,
1922 	.busy		= scsi_mq_lld_busy,
1923 	.map_queues	= scsi_map_queues,
1924 	.init_hctx	= scsi_init_hctx,
1925 	.poll		= scsi_mq_poll,
1926 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1927 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1928 };
1929 
1930 
1931 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1932 {
1933 	struct Scsi_Host *shost = hctx->driver_data;
1934 
1935 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1936 }
1937 
1938 static const struct blk_mq_ops scsi_mq_ops = {
1939 	.get_budget	= scsi_mq_get_budget,
1940 	.put_budget	= scsi_mq_put_budget,
1941 	.queue_rq	= scsi_queue_rq,
1942 	.commit_rqs	= scsi_commit_rqs,
1943 	.complete	= scsi_complete,
1944 	.timeout	= scsi_timeout,
1945 #ifdef CONFIG_BLK_DEBUG_FS
1946 	.show_rq	= scsi_show_rq,
1947 #endif
1948 	.init_request	= scsi_mq_init_request,
1949 	.exit_request	= scsi_mq_exit_request,
1950 	.cleanup_rq	= scsi_cleanup_rq,
1951 	.busy		= scsi_mq_lld_busy,
1952 	.map_queues	= scsi_map_queues,
1953 	.init_hctx	= scsi_init_hctx,
1954 	.poll		= scsi_mq_poll,
1955 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1956 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1957 };
1958 
1959 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1960 {
1961 	unsigned int cmd_size, sgl_size;
1962 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1963 
1964 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1965 				scsi_mq_inline_sgl_size(shost));
1966 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1967 	if (scsi_host_get_prot(shost))
1968 		cmd_size += sizeof(struct scsi_data_buffer) +
1969 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1970 
1971 	memset(tag_set, 0, sizeof(*tag_set));
1972 	if (shost->hostt->commit_rqs)
1973 		tag_set->ops = &scsi_mq_ops;
1974 	else
1975 		tag_set->ops = &scsi_mq_ops_no_commit;
1976 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1977 	tag_set->nr_maps = shost->nr_maps ? : 1;
1978 	tag_set->queue_depth = shost->can_queue;
1979 	tag_set->cmd_size = cmd_size;
1980 	tag_set->numa_node = dev_to_node(shost->dma_dev);
1981 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1982 	tag_set->flags |=
1983 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1984 	tag_set->driver_data = shost;
1985 	if (shost->host_tagset)
1986 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1987 
1988 	return blk_mq_alloc_tag_set(tag_set);
1989 }
1990 
1991 void scsi_mq_free_tags(struct kref *kref)
1992 {
1993 	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
1994 					       tagset_refcnt);
1995 
1996 	blk_mq_free_tag_set(&shost->tag_set);
1997 	complete(&shost->tagset_freed);
1998 }
1999 
2000 /**
2001  * scsi_device_from_queue - return sdev associated with a request_queue
2002  * @q: The request queue to return the sdev from
2003  *
2004  * Return the sdev associated with a request queue or NULL if the
2005  * request_queue does not reference a SCSI device.
2006  */
2007 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2008 {
2009 	struct scsi_device *sdev = NULL;
2010 
2011 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2012 	    q->mq_ops == &scsi_mq_ops)
2013 		sdev = q->queuedata;
2014 	if (!sdev || !get_device(&sdev->sdev_gendev))
2015 		sdev = NULL;
2016 
2017 	return sdev;
2018 }
2019 /*
2020  * pktcdvd should have been integrated into the SCSI layers, but for historical
2021  * reasons like the old IDE driver it isn't.  This export allows it to safely
2022  * probe if a given device is a SCSI one and only attach to that.
2023  */
2024 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2025 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2026 #endif
2027 
2028 /**
2029  * scsi_block_requests - Utility function used by low-level drivers to prevent
2030  * further commands from being queued to the device.
2031  * @shost:  host in question
2032  *
2033  * There is no timer nor any other means by which the requests get unblocked
2034  * other than the low-level driver calling scsi_unblock_requests().
2035  */
2036 void scsi_block_requests(struct Scsi_Host *shost)
2037 {
2038 	shost->host_self_blocked = 1;
2039 }
2040 EXPORT_SYMBOL(scsi_block_requests);
2041 
2042 /**
2043  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2044  * further commands to be queued to the device.
2045  * @shost:  host in question
2046  *
2047  * There is no timer nor any other means by which the requests get unblocked
2048  * other than the low-level driver calling scsi_unblock_requests(). This is done
2049  * as an API function so that changes to the internals of the scsi mid-layer
2050  * won't require wholesale changes to drivers that use this feature.
2051  */
2052 void scsi_unblock_requests(struct Scsi_Host *shost)
2053 {
2054 	shost->host_self_blocked = 0;
2055 	scsi_run_host_queues(shost);
2056 }
2057 EXPORT_SYMBOL(scsi_unblock_requests);
2058 
2059 void scsi_exit_queue(void)
2060 {
2061 	kmem_cache_destroy(scsi_sense_cache);
2062 }
2063 
2064 /**
2065  *	scsi_mode_select - issue a mode select
2066  *	@sdev:	SCSI device to be queried
2067  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2068  *	@sp:	Save page bit (0 == don't save, 1 == save)
2069  *	@buffer: request buffer (may not be smaller than eight bytes)
2070  *	@len:	length of request buffer.
2071  *	@timeout: command timeout
2072  *	@retries: number of retries before failing
2073  *	@data: returns a structure abstracting the mode header data
2074  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2075  *		must be SCSI_SENSE_BUFFERSIZE big.
2076  *
2077  *	Returns zero if successful; negative error number or scsi
2078  *	status on error
2079  *
2080  */
2081 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2082 		     unsigned char *buffer, int len, int timeout, int retries,
2083 		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2084 {
2085 	unsigned char cmd[10];
2086 	unsigned char *real_buffer;
2087 	const struct scsi_exec_args exec_args = {
2088 		.sshdr = sshdr,
2089 	};
2090 	int ret;
2091 
2092 	memset(cmd, 0, sizeof(cmd));
2093 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2094 
2095 	/*
2096 	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2097 	 * and the mode select header cannot fit within the maximumm 255 bytes
2098 	 * of the MODE SELECT(6) command.
2099 	 */
2100 	if (sdev->use_10_for_ms ||
2101 	    len + 4 > 255 ||
2102 	    data->block_descriptor_length > 255) {
2103 		if (len > 65535 - 8)
2104 			return -EINVAL;
2105 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2106 		if (!real_buffer)
2107 			return -ENOMEM;
2108 		memcpy(real_buffer + 8, buffer, len);
2109 		len += 8;
2110 		real_buffer[0] = 0;
2111 		real_buffer[1] = 0;
2112 		real_buffer[2] = data->medium_type;
2113 		real_buffer[3] = data->device_specific;
2114 		real_buffer[4] = data->longlba ? 0x01 : 0;
2115 		real_buffer[5] = 0;
2116 		put_unaligned_be16(data->block_descriptor_length,
2117 				   &real_buffer[6]);
2118 
2119 		cmd[0] = MODE_SELECT_10;
2120 		put_unaligned_be16(len, &cmd[7]);
2121 	} else {
2122 		if (data->longlba)
2123 			return -EINVAL;
2124 
2125 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2126 		if (!real_buffer)
2127 			return -ENOMEM;
2128 		memcpy(real_buffer + 4, buffer, len);
2129 		len += 4;
2130 		real_buffer[0] = 0;
2131 		real_buffer[1] = data->medium_type;
2132 		real_buffer[2] = data->device_specific;
2133 		real_buffer[3] = data->block_descriptor_length;
2134 
2135 		cmd[0] = MODE_SELECT;
2136 		cmd[4] = len;
2137 	}
2138 
2139 	ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2140 			       timeout, retries, &exec_args);
2141 	kfree(real_buffer);
2142 	return ret;
2143 }
2144 EXPORT_SYMBOL_GPL(scsi_mode_select);
2145 
2146 /**
2147  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2148  *	@sdev:	SCSI device to be queried
2149  *	@dbd:	set to prevent mode sense from returning block descriptors
2150  *	@modepage: mode page being requested
2151  *	@subpage: sub-page of the mode page being requested
2152  *	@buffer: request buffer (may not be smaller than eight bytes)
2153  *	@len:	length of request buffer.
2154  *	@timeout: command timeout
2155  *	@retries: number of retries before failing
2156  *	@data: returns a structure abstracting the mode header data
2157  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2158  *		must be SCSI_SENSE_BUFFERSIZE big.
2159  *
2160  *	Returns zero if successful, or a negative error number on failure
2161  */
2162 int
2163 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2164 		  unsigned char *buffer, int len, int timeout, int retries,
2165 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2166 {
2167 	unsigned char cmd[12];
2168 	int use_10_for_ms;
2169 	int header_length;
2170 	int result, retry_count = retries;
2171 	struct scsi_sense_hdr my_sshdr;
2172 	const struct scsi_exec_args exec_args = {
2173 		/* caller might not be interested in sense, but we need it */
2174 		.sshdr = sshdr ? : &my_sshdr,
2175 	};
2176 
2177 	memset(data, 0, sizeof(*data));
2178 	memset(&cmd[0], 0, 12);
2179 
2180 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2181 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2182 	cmd[2] = modepage;
2183 	cmd[3] = subpage;
2184 
2185 	sshdr = exec_args.sshdr;
2186 
2187  retry:
2188 	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2189 
2190 	if (use_10_for_ms) {
2191 		if (len < 8 || len > 65535)
2192 			return -EINVAL;
2193 
2194 		cmd[0] = MODE_SENSE_10;
2195 		put_unaligned_be16(len, &cmd[7]);
2196 		header_length = 8;
2197 	} else {
2198 		if (len < 4)
2199 			return -EINVAL;
2200 
2201 		cmd[0] = MODE_SENSE;
2202 		cmd[4] = len;
2203 		header_length = 4;
2204 	}
2205 
2206 	memset(buffer, 0, len);
2207 
2208 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2209 				  timeout, retries, &exec_args);
2210 	if (result < 0)
2211 		return result;
2212 
2213 	/* This code looks awful: what it's doing is making sure an
2214 	 * ILLEGAL REQUEST sense return identifies the actual command
2215 	 * byte as the problem.  MODE_SENSE commands can return
2216 	 * ILLEGAL REQUEST if the code page isn't supported */
2217 
2218 	if (!scsi_status_is_good(result)) {
2219 		if (scsi_sense_valid(sshdr)) {
2220 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2221 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2222 				/*
2223 				 * Invalid command operation code: retry using
2224 				 * MODE SENSE(6) if this was a MODE SENSE(10)
2225 				 * request, except if the request mode page is
2226 				 * too large for MODE SENSE single byte
2227 				 * allocation length field.
2228 				 */
2229 				if (use_10_for_ms) {
2230 					if (len > 255)
2231 						return -EIO;
2232 					sdev->use_10_for_ms = 0;
2233 					goto retry;
2234 				}
2235 			}
2236 			if (scsi_status_is_check_condition(result) &&
2237 			    sshdr->sense_key == UNIT_ATTENTION &&
2238 			    retry_count) {
2239 				retry_count--;
2240 				goto retry;
2241 			}
2242 		}
2243 		return -EIO;
2244 	}
2245 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2246 		     (modepage == 6 || modepage == 8))) {
2247 		/* Initio breakage? */
2248 		header_length = 0;
2249 		data->length = 13;
2250 		data->medium_type = 0;
2251 		data->device_specific = 0;
2252 		data->longlba = 0;
2253 		data->block_descriptor_length = 0;
2254 	} else if (use_10_for_ms) {
2255 		data->length = get_unaligned_be16(&buffer[0]) + 2;
2256 		data->medium_type = buffer[2];
2257 		data->device_specific = buffer[3];
2258 		data->longlba = buffer[4] & 0x01;
2259 		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2260 	} else {
2261 		data->length = buffer[0] + 1;
2262 		data->medium_type = buffer[1];
2263 		data->device_specific = buffer[2];
2264 		data->block_descriptor_length = buffer[3];
2265 	}
2266 	data->header_length = header_length;
2267 
2268 	return 0;
2269 }
2270 EXPORT_SYMBOL(scsi_mode_sense);
2271 
2272 /**
2273  *	scsi_test_unit_ready - test if unit is ready
2274  *	@sdev:	scsi device to change the state of.
2275  *	@timeout: command timeout
2276  *	@retries: number of retries before failing
2277  *	@sshdr: outpout pointer for decoded sense information.
2278  *
2279  *	Returns zero if unsuccessful or an error if TUR failed.  For
2280  *	removable media, UNIT_ATTENTION sets ->changed flag.
2281  **/
2282 int
2283 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2284 		     struct scsi_sense_hdr *sshdr)
2285 {
2286 	char cmd[] = {
2287 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2288 	};
2289 	const struct scsi_exec_args exec_args = {
2290 		.sshdr = sshdr,
2291 	};
2292 	int result;
2293 
2294 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2295 	do {
2296 		result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2297 					  timeout, 1, &exec_args);
2298 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2299 		    sshdr->sense_key == UNIT_ATTENTION)
2300 			sdev->changed = 1;
2301 	} while (scsi_sense_valid(sshdr) &&
2302 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2303 
2304 	return result;
2305 }
2306 EXPORT_SYMBOL(scsi_test_unit_ready);
2307 
2308 /**
2309  *	scsi_device_set_state - Take the given device through the device state model.
2310  *	@sdev:	scsi device to change the state of.
2311  *	@state:	state to change to.
2312  *
2313  *	Returns zero if successful or an error if the requested
2314  *	transition is illegal.
2315  */
2316 int
2317 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2318 {
2319 	enum scsi_device_state oldstate = sdev->sdev_state;
2320 
2321 	if (state == oldstate)
2322 		return 0;
2323 
2324 	switch (state) {
2325 	case SDEV_CREATED:
2326 		switch (oldstate) {
2327 		case SDEV_CREATED_BLOCK:
2328 			break;
2329 		default:
2330 			goto illegal;
2331 		}
2332 		break;
2333 
2334 	case SDEV_RUNNING:
2335 		switch (oldstate) {
2336 		case SDEV_CREATED:
2337 		case SDEV_OFFLINE:
2338 		case SDEV_TRANSPORT_OFFLINE:
2339 		case SDEV_QUIESCE:
2340 		case SDEV_BLOCK:
2341 			break;
2342 		default:
2343 			goto illegal;
2344 		}
2345 		break;
2346 
2347 	case SDEV_QUIESCE:
2348 		switch (oldstate) {
2349 		case SDEV_RUNNING:
2350 		case SDEV_OFFLINE:
2351 		case SDEV_TRANSPORT_OFFLINE:
2352 			break;
2353 		default:
2354 			goto illegal;
2355 		}
2356 		break;
2357 
2358 	case SDEV_OFFLINE:
2359 	case SDEV_TRANSPORT_OFFLINE:
2360 		switch (oldstate) {
2361 		case SDEV_CREATED:
2362 		case SDEV_RUNNING:
2363 		case SDEV_QUIESCE:
2364 		case SDEV_BLOCK:
2365 			break;
2366 		default:
2367 			goto illegal;
2368 		}
2369 		break;
2370 
2371 	case SDEV_BLOCK:
2372 		switch (oldstate) {
2373 		case SDEV_RUNNING:
2374 		case SDEV_CREATED_BLOCK:
2375 		case SDEV_QUIESCE:
2376 		case SDEV_OFFLINE:
2377 			break;
2378 		default:
2379 			goto illegal;
2380 		}
2381 		break;
2382 
2383 	case SDEV_CREATED_BLOCK:
2384 		switch (oldstate) {
2385 		case SDEV_CREATED:
2386 			break;
2387 		default:
2388 			goto illegal;
2389 		}
2390 		break;
2391 
2392 	case SDEV_CANCEL:
2393 		switch (oldstate) {
2394 		case SDEV_CREATED:
2395 		case SDEV_RUNNING:
2396 		case SDEV_QUIESCE:
2397 		case SDEV_OFFLINE:
2398 		case SDEV_TRANSPORT_OFFLINE:
2399 			break;
2400 		default:
2401 			goto illegal;
2402 		}
2403 		break;
2404 
2405 	case SDEV_DEL:
2406 		switch (oldstate) {
2407 		case SDEV_CREATED:
2408 		case SDEV_RUNNING:
2409 		case SDEV_OFFLINE:
2410 		case SDEV_TRANSPORT_OFFLINE:
2411 		case SDEV_CANCEL:
2412 		case SDEV_BLOCK:
2413 		case SDEV_CREATED_BLOCK:
2414 			break;
2415 		default:
2416 			goto illegal;
2417 		}
2418 		break;
2419 
2420 	}
2421 	sdev->offline_already = false;
2422 	sdev->sdev_state = state;
2423 	return 0;
2424 
2425  illegal:
2426 	SCSI_LOG_ERROR_RECOVERY(1,
2427 				sdev_printk(KERN_ERR, sdev,
2428 					    "Illegal state transition %s->%s",
2429 					    scsi_device_state_name(oldstate),
2430 					    scsi_device_state_name(state))
2431 				);
2432 	return -EINVAL;
2433 }
2434 EXPORT_SYMBOL(scsi_device_set_state);
2435 
2436 /**
2437  *	scsi_evt_emit - emit a single SCSI device uevent
2438  *	@sdev: associated SCSI device
2439  *	@evt: event to emit
2440  *
2441  *	Send a single uevent (scsi_event) to the associated scsi_device.
2442  */
2443 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2444 {
2445 	int idx = 0;
2446 	char *envp[3];
2447 
2448 	switch (evt->evt_type) {
2449 	case SDEV_EVT_MEDIA_CHANGE:
2450 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2451 		break;
2452 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2453 		scsi_rescan_device(&sdev->sdev_gendev);
2454 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2455 		break;
2456 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2457 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2458 		break;
2459 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2460 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2461 		break;
2462 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2463 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2464 		break;
2465 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2466 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2467 		break;
2468 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2469 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2470 		break;
2471 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2472 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2473 		break;
2474 	default:
2475 		/* do nothing */
2476 		break;
2477 	}
2478 
2479 	envp[idx++] = NULL;
2480 
2481 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2482 }
2483 
2484 /**
2485  *	scsi_evt_thread - send a uevent for each scsi event
2486  *	@work: work struct for scsi_device
2487  *
2488  *	Dispatch queued events to their associated scsi_device kobjects
2489  *	as uevents.
2490  */
2491 void scsi_evt_thread(struct work_struct *work)
2492 {
2493 	struct scsi_device *sdev;
2494 	enum scsi_device_event evt_type;
2495 	LIST_HEAD(event_list);
2496 
2497 	sdev = container_of(work, struct scsi_device, event_work);
2498 
2499 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2500 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2501 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2502 
2503 	while (1) {
2504 		struct scsi_event *evt;
2505 		struct list_head *this, *tmp;
2506 		unsigned long flags;
2507 
2508 		spin_lock_irqsave(&sdev->list_lock, flags);
2509 		list_splice_init(&sdev->event_list, &event_list);
2510 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2511 
2512 		if (list_empty(&event_list))
2513 			break;
2514 
2515 		list_for_each_safe(this, tmp, &event_list) {
2516 			evt = list_entry(this, struct scsi_event, node);
2517 			list_del(&evt->node);
2518 			scsi_evt_emit(sdev, evt);
2519 			kfree(evt);
2520 		}
2521 	}
2522 }
2523 
2524 /**
2525  * 	sdev_evt_send - send asserted event to uevent thread
2526  *	@sdev: scsi_device event occurred on
2527  *	@evt: event to send
2528  *
2529  *	Assert scsi device event asynchronously.
2530  */
2531 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2532 {
2533 	unsigned long flags;
2534 
2535 #if 0
2536 	/* FIXME: currently this check eliminates all media change events
2537 	 * for polled devices.  Need to update to discriminate between AN
2538 	 * and polled events */
2539 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2540 		kfree(evt);
2541 		return;
2542 	}
2543 #endif
2544 
2545 	spin_lock_irqsave(&sdev->list_lock, flags);
2546 	list_add_tail(&evt->node, &sdev->event_list);
2547 	schedule_work(&sdev->event_work);
2548 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2549 }
2550 EXPORT_SYMBOL_GPL(sdev_evt_send);
2551 
2552 /**
2553  * 	sdev_evt_alloc - allocate a new scsi event
2554  *	@evt_type: type of event to allocate
2555  *	@gfpflags: GFP flags for allocation
2556  *
2557  *	Allocates and returns a new scsi_event.
2558  */
2559 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2560 				  gfp_t gfpflags)
2561 {
2562 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2563 	if (!evt)
2564 		return NULL;
2565 
2566 	evt->evt_type = evt_type;
2567 	INIT_LIST_HEAD(&evt->node);
2568 
2569 	/* evt_type-specific initialization, if any */
2570 	switch (evt_type) {
2571 	case SDEV_EVT_MEDIA_CHANGE:
2572 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2573 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2574 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2575 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2576 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2577 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2578 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2579 	default:
2580 		/* do nothing */
2581 		break;
2582 	}
2583 
2584 	return evt;
2585 }
2586 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2587 
2588 /**
2589  * 	sdev_evt_send_simple - send asserted event to uevent thread
2590  *	@sdev: scsi_device event occurred on
2591  *	@evt_type: type of event to send
2592  *	@gfpflags: GFP flags for allocation
2593  *
2594  *	Assert scsi device event asynchronously, given an event type.
2595  */
2596 void sdev_evt_send_simple(struct scsi_device *sdev,
2597 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2598 {
2599 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2600 	if (!evt) {
2601 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2602 			    evt_type);
2603 		return;
2604 	}
2605 
2606 	sdev_evt_send(sdev, evt);
2607 }
2608 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2609 
2610 /**
2611  *	scsi_device_quiesce - Block all commands except power management.
2612  *	@sdev:	scsi device to quiesce.
2613  *
2614  *	This works by trying to transition to the SDEV_QUIESCE state
2615  *	(which must be a legal transition).  When the device is in this
2616  *	state, only power management requests will be accepted, all others will
2617  *	be deferred.
2618  *
2619  *	Must be called with user context, may sleep.
2620  *
2621  *	Returns zero if unsuccessful or an error if not.
2622  */
2623 int
2624 scsi_device_quiesce(struct scsi_device *sdev)
2625 {
2626 	struct request_queue *q = sdev->request_queue;
2627 	int err;
2628 
2629 	/*
2630 	 * It is allowed to call scsi_device_quiesce() multiple times from
2631 	 * the same context but concurrent scsi_device_quiesce() calls are
2632 	 * not allowed.
2633 	 */
2634 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2635 
2636 	if (sdev->quiesced_by == current)
2637 		return 0;
2638 
2639 	blk_set_pm_only(q);
2640 
2641 	blk_mq_freeze_queue(q);
2642 	/*
2643 	 * Ensure that the effect of blk_set_pm_only() will be visible
2644 	 * for percpu_ref_tryget() callers that occur after the queue
2645 	 * unfreeze even if the queue was already frozen before this function
2646 	 * was called. See also https://lwn.net/Articles/573497/.
2647 	 */
2648 	synchronize_rcu();
2649 	blk_mq_unfreeze_queue(q);
2650 
2651 	mutex_lock(&sdev->state_mutex);
2652 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2653 	if (err == 0)
2654 		sdev->quiesced_by = current;
2655 	else
2656 		blk_clear_pm_only(q);
2657 	mutex_unlock(&sdev->state_mutex);
2658 
2659 	return err;
2660 }
2661 EXPORT_SYMBOL(scsi_device_quiesce);
2662 
2663 /**
2664  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2665  *	@sdev:	scsi device to resume.
2666  *
2667  *	Moves the device from quiesced back to running and restarts the
2668  *	queues.
2669  *
2670  *	Must be called with user context, may sleep.
2671  */
2672 void scsi_device_resume(struct scsi_device *sdev)
2673 {
2674 	/* check if the device state was mutated prior to resume, and if
2675 	 * so assume the state is being managed elsewhere (for example
2676 	 * device deleted during suspend)
2677 	 */
2678 	mutex_lock(&sdev->state_mutex);
2679 	if (sdev->sdev_state == SDEV_QUIESCE)
2680 		scsi_device_set_state(sdev, SDEV_RUNNING);
2681 	if (sdev->quiesced_by) {
2682 		sdev->quiesced_by = NULL;
2683 		blk_clear_pm_only(sdev->request_queue);
2684 	}
2685 	mutex_unlock(&sdev->state_mutex);
2686 }
2687 EXPORT_SYMBOL(scsi_device_resume);
2688 
2689 static void
2690 device_quiesce_fn(struct scsi_device *sdev, void *data)
2691 {
2692 	scsi_device_quiesce(sdev);
2693 }
2694 
2695 void
2696 scsi_target_quiesce(struct scsi_target *starget)
2697 {
2698 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2699 }
2700 EXPORT_SYMBOL(scsi_target_quiesce);
2701 
2702 static void
2703 device_resume_fn(struct scsi_device *sdev, void *data)
2704 {
2705 	scsi_device_resume(sdev);
2706 }
2707 
2708 void
2709 scsi_target_resume(struct scsi_target *starget)
2710 {
2711 	starget_for_each_device(starget, NULL, device_resume_fn);
2712 }
2713 EXPORT_SYMBOL(scsi_target_resume);
2714 
2715 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2716 {
2717 	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2718 		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2719 
2720 	return 0;
2721 }
2722 
2723 void scsi_start_queue(struct scsi_device *sdev)
2724 {
2725 	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2726 		blk_mq_unquiesce_queue(sdev->request_queue);
2727 }
2728 
2729 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
2730 {
2731 	/*
2732 	 * The atomic variable of ->queue_stopped covers that
2733 	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2734 	 *
2735 	 * However, we still need to wait until quiesce is done
2736 	 * in case that queue has been stopped.
2737 	 */
2738 	if (!cmpxchg(&sdev->queue_stopped, 0, 1)) {
2739 		if (nowait)
2740 			blk_mq_quiesce_queue_nowait(sdev->request_queue);
2741 		else
2742 			blk_mq_quiesce_queue(sdev->request_queue);
2743 	} else {
2744 		if (!nowait)
2745 			blk_mq_wait_quiesce_done(sdev->request_queue->tag_set);
2746 	}
2747 }
2748 
2749 /**
2750  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2751  * @sdev: device to block
2752  *
2753  * Pause SCSI command processing on the specified device. Does not sleep.
2754  *
2755  * Returns zero if successful or a negative error code upon failure.
2756  *
2757  * Notes:
2758  * This routine transitions the device to the SDEV_BLOCK state (which must be
2759  * a legal transition). When the device is in this state, command processing
2760  * is paused until the device leaves the SDEV_BLOCK state. See also
2761  * scsi_internal_device_unblock_nowait().
2762  */
2763 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2764 {
2765 	int ret = __scsi_internal_device_block_nowait(sdev);
2766 
2767 	/*
2768 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2769 	 * block layer from calling the midlayer with this device's
2770 	 * request queue.
2771 	 */
2772 	if (!ret)
2773 		scsi_stop_queue(sdev, true);
2774 	return ret;
2775 }
2776 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2777 
2778 /**
2779  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2780  * @sdev: device to block
2781  *
2782  * Pause SCSI command processing on the specified device and wait until all
2783  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2784  *
2785  * Returns zero if successful or a negative error code upon failure.
2786  *
2787  * Note:
2788  * This routine transitions the device to the SDEV_BLOCK state (which must be
2789  * a legal transition). When the device is in this state, command processing
2790  * is paused until the device leaves the SDEV_BLOCK state. See also
2791  * scsi_internal_device_unblock().
2792  */
2793 static int scsi_internal_device_block(struct scsi_device *sdev)
2794 {
2795 	int err;
2796 
2797 	mutex_lock(&sdev->state_mutex);
2798 	err = __scsi_internal_device_block_nowait(sdev);
2799 	if (err == 0)
2800 		scsi_stop_queue(sdev, false);
2801 	mutex_unlock(&sdev->state_mutex);
2802 
2803 	return err;
2804 }
2805 
2806 /**
2807  * scsi_internal_device_unblock_nowait - resume a device after a block request
2808  * @sdev:	device to resume
2809  * @new_state:	state to set the device to after unblocking
2810  *
2811  * Restart the device queue for a previously suspended SCSI device. Does not
2812  * sleep.
2813  *
2814  * Returns zero if successful or a negative error code upon failure.
2815  *
2816  * Notes:
2817  * This routine transitions the device to the SDEV_RUNNING state or to one of
2818  * the offline states (which must be a legal transition) allowing the midlayer
2819  * to goose the queue for this device.
2820  */
2821 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2822 					enum scsi_device_state new_state)
2823 {
2824 	switch (new_state) {
2825 	case SDEV_RUNNING:
2826 	case SDEV_TRANSPORT_OFFLINE:
2827 		break;
2828 	default:
2829 		return -EINVAL;
2830 	}
2831 
2832 	/*
2833 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2834 	 * offlined states and goose the device queue if successful.
2835 	 */
2836 	switch (sdev->sdev_state) {
2837 	case SDEV_BLOCK:
2838 	case SDEV_TRANSPORT_OFFLINE:
2839 		sdev->sdev_state = new_state;
2840 		break;
2841 	case SDEV_CREATED_BLOCK:
2842 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2843 		    new_state == SDEV_OFFLINE)
2844 			sdev->sdev_state = new_state;
2845 		else
2846 			sdev->sdev_state = SDEV_CREATED;
2847 		break;
2848 	case SDEV_CANCEL:
2849 	case SDEV_OFFLINE:
2850 		break;
2851 	default:
2852 		return -EINVAL;
2853 	}
2854 	scsi_start_queue(sdev);
2855 
2856 	return 0;
2857 }
2858 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2859 
2860 /**
2861  * scsi_internal_device_unblock - resume a device after a block request
2862  * @sdev:	device to resume
2863  * @new_state:	state to set the device to after unblocking
2864  *
2865  * Restart the device queue for a previously suspended SCSI device. May sleep.
2866  *
2867  * Returns zero if successful or a negative error code upon failure.
2868  *
2869  * Notes:
2870  * This routine transitions the device to the SDEV_RUNNING state or to one of
2871  * the offline states (which must be a legal transition) allowing the midlayer
2872  * to goose the queue for this device.
2873  */
2874 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2875 					enum scsi_device_state new_state)
2876 {
2877 	int ret;
2878 
2879 	mutex_lock(&sdev->state_mutex);
2880 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2881 	mutex_unlock(&sdev->state_mutex);
2882 
2883 	return ret;
2884 }
2885 
2886 static void
2887 device_block(struct scsi_device *sdev, void *data)
2888 {
2889 	int ret;
2890 
2891 	ret = scsi_internal_device_block(sdev);
2892 
2893 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2894 		  dev_name(&sdev->sdev_gendev), ret);
2895 }
2896 
2897 static int
2898 target_block(struct device *dev, void *data)
2899 {
2900 	if (scsi_is_target_device(dev))
2901 		starget_for_each_device(to_scsi_target(dev), NULL,
2902 					device_block);
2903 	return 0;
2904 }
2905 
2906 void
2907 scsi_target_block(struct device *dev)
2908 {
2909 	if (scsi_is_target_device(dev))
2910 		starget_for_each_device(to_scsi_target(dev), NULL,
2911 					device_block);
2912 	else
2913 		device_for_each_child(dev, NULL, target_block);
2914 }
2915 EXPORT_SYMBOL_GPL(scsi_target_block);
2916 
2917 static void
2918 device_unblock(struct scsi_device *sdev, void *data)
2919 {
2920 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2921 }
2922 
2923 static int
2924 target_unblock(struct device *dev, void *data)
2925 {
2926 	if (scsi_is_target_device(dev))
2927 		starget_for_each_device(to_scsi_target(dev), data,
2928 					device_unblock);
2929 	return 0;
2930 }
2931 
2932 void
2933 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2934 {
2935 	if (scsi_is_target_device(dev))
2936 		starget_for_each_device(to_scsi_target(dev), &new_state,
2937 					device_unblock);
2938 	else
2939 		device_for_each_child(dev, &new_state, target_unblock);
2940 }
2941 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2942 
2943 int
2944 scsi_host_block(struct Scsi_Host *shost)
2945 {
2946 	struct scsi_device *sdev;
2947 	int ret = 0;
2948 
2949 	/*
2950 	 * Call scsi_internal_device_block_nowait so we can avoid
2951 	 * calling synchronize_rcu() for each LUN.
2952 	 */
2953 	shost_for_each_device(sdev, shost) {
2954 		mutex_lock(&sdev->state_mutex);
2955 		ret = scsi_internal_device_block_nowait(sdev);
2956 		mutex_unlock(&sdev->state_mutex);
2957 		if (ret) {
2958 			scsi_device_put(sdev);
2959 			break;
2960 		}
2961 	}
2962 
2963 	/*
2964 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2965 	 * calling synchronize_rcu() once is enough.
2966 	 */
2967 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2968 
2969 	if (!ret)
2970 		synchronize_rcu();
2971 
2972 	return ret;
2973 }
2974 EXPORT_SYMBOL_GPL(scsi_host_block);
2975 
2976 int
2977 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2978 {
2979 	struct scsi_device *sdev;
2980 	int ret = 0;
2981 
2982 	shost_for_each_device(sdev, shost) {
2983 		ret = scsi_internal_device_unblock(sdev, new_state);
2984 		if (ret) {
2985 			scsi_device_put(sdev);
2986 			break;
2987 		}
2988 	}
2989 	return ret;
2990 }
2991 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2992 
2993 /**
2994  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2995  * @sgl:	scatter-gather list
2996  * @sg_count:	number of segments in sg
2997  * @offset:	offset in bytes into sg, on return offset into the mapped area
2998  * @len:	bytes to map, on return number of bytes mapped
2999  *
3000  * Returns virtual address of the start of the mapped page
3001  */
3002 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3003 			  size_t *offset, size_t *len)
3004 {
3005 	int i;
3006 	size_t sg_len = 0, len_complete = 0;
3007 	struct scatterlist *sg;
3008 	struct page *page;
3009 
3010 	WARN_ON(!irqs_disabled());
3011 
3012 	for_each_sg(sgl, sg, sg_count, i) {
3013 		len_complete = sg_len; /* Complete sg-entries */
3014 		sg_len += sg->length;
3015 		if (sg_len > *offset)
3016 			break;
3017 	}
3018 
3019 	if (unlikely(i == sg_count)) {
3020 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3021 			"elements %d\n",
3022 		       __func__, sg_len, *offset, sg_count);
3023 		WARN_ON(1);
3024 		return NULL;
3025 	}
3026 
3027 	/* Offset starting from the beginning of first page in this sg-entry */
3028 	*offset = *offset - len_complete + sg->offset;
3029 
3030 	/* Assumption: contiguous pages can be accessed as "page + i" */
3031 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3032 	*offset &= ~PAGE_MASK;
3033 
3034 	/* Bytes in this sg-entry from *offset to the end of the page */
3035 	sg_len = PAGE_SIZE - *offset;
3036 	if (*len > sg_len)
3037 		*len = sg_len;
3038 
3039 	return kmap_atomic(page);
3040 }
3041 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3042 
3043 /**
3044  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3045  * @virt:	virtual address to be unmapped
3046  */
3047 void scsi_kunmap_atomic_sg(void *virt)
3048 {
3049 	kunmap_atomic(virt);
3050 }
3051 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3052 
3053 void sdev_disable_disk_events(struct scsi_device *sdev)
3054 {
3055 	atomic_inc(&sdev->disk_events_disable_depth);
3056 }
3057 EXPORT_SYMBOL(sdev_disable_disk_events);
3058 
3059 void sdev_enable_disk_events(struct scsi_device *sdev)
3060 {
3061 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3062 		return;
3063 	atomic_dec(&sdev->disk_events_disable_depth);
3064 }
3065 EXPORT_SYMBOL(sdev_enable_disk_events);
3066 
3067 static unsigned char designator_prio(const unsigned char *d)
3068 {
3069 	if (d[1] & 0x30)
3070 		/* not associated with LUN */
3071 		return 0;
3072 
3073 	if (d[3] == 0)
3074 		/* invalid length */
3075 		return 0;
3076 
3077 	/*
3078 	 * Order of preference for lun descriptor:
3079 	 * - SCSI name string
3080 	 * - NAA IEEE Registered Extended
3081 	 * - EUI-64 based 16-byte
3082 	 * - EUI-64 based 12-byte
3083 	 * - NAA IEEE Registered
3084 	 * - NAA IEEE Extended
3085 	 * - EUI-64 based 8-byte
3086 	 * - SCSI name string (truncated)
3087 	 * - T10 Vendor ID
3088 	 * as longer descriptors reduce the likelyhood
3089 	 * of identification clashes.
3090 	 */
3091 
3092 	switch (d[1] & 0xf) {
3093 	case 8:
3094 		/* SCSI name string, variable-length UTF-8 */
3095 		return 9;
3096 	case 3:
3097 		switch (d[4] >> 4) {
3098 		case 6:
3099 			/* NAA registered extended */
3100 			return 8;
3101 		case 5:
3102 			/* NAA registered */
3103 			return 5;
3104 		case 4:
3105 			/* NAA extended */
3106 			return 4;
3107 		case 3:
3108 			/* NAA locally assigned */
3109 			return 1;
3110 		default:
3111 			break;
3112 		}
3113 		break;
3114 	case 2:
3115 		switch (d[3]) {
3116 		case 16:
3117 			/* EUI64-based, 16 byte */
3118 			return 7;
3119 		case 12:
3120 			/* EUI64-based, 12 byte */
3121 			return 6;
3122 		case 8:
3123 			/* EUI64-based, 8 byte */
3124 			return 3;
3125 		default:
3126 			break;
3127 		}
3128 		break;
3129 	case 1:
3130 		/* T10 vendor ID */
3131 		return 1;
3132 	default:
3133 		break;
3134 	}
3135 
3136 	return 0;
3137 }
3138 
3139 /**
3140  * scsi_vpd_lun_id - return a unique device identification
3141  * @sdev: SCSI device
3142  * @id:   buffer for the identification
3143  * @id_len:  length of the buffer
3144  *
3145  * Copies a unique device identification into @id based
3146  * on the information in the VPD page 0x83 of the device.
3147  * The string will be formatted as a SCSI name string.
3148  *
3149  * Returns the length of the identification or error on failure.
3150  * If the identifier is longer than the supplied buffer the actual
3151  * identifier length is returned and the buffer is not zero-padded.
3152  */
3153 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3154 {
3155 	u8 cur_id_prio = 0;
3156 	u8 cur_id_size = 0;
3157 	const unsigned char *d, *cur_id_str;
3158 	const struct scsi_vpd *vpd_pg83;
3159 	int id_size = -EINVAL;
3160 
3161 	rcu_read_lock();
3162 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3163 	if (!vpd_pg83) {
3164 		rcu_read_unlock();
3165 		return -ENXIO;
3166 	}
3167 
3168 	/* The id string must be at least 20 bytes + terminating NULL byte */
3169 	if (id_len < 21) {
3170 		rcu_read_unlock();
3171 		return -EINVAL;
3172 	}
3173 
3174 	memset(id, 0, id_len);
3175 	for (d = vpd_pg83->data + 4;
3176 	     d < vpd_pg83->data + vpd_pg83->len;
3177 	     d += d[3] + 4) {
3178 		u8 prio = designator_prio(d);
3179 
3180 		if (prio == 0 || cur_id_prio > prio)
3181 			continue;
3182 
3183 		switch (d[1] & 0xf) {
3184 		case 0x1:
3185 			/* T10 Vendor ID */
3186 			if (cur_id_size > d[3])
3187 				break;
3188 			cur_id_prio = prio;
3189 			cur_id_size = d[3];
3190 			if (cur_id_size + 4 > id_len)
3191 				cur_id_size = id_len - 4;
3192 			cur_id_str = d + 4;
3193 			id_size = snprintf(id, id_len, "t10.%*pE",
3194 					   cur_id_size, cur_id_str);
3195 			break;
3196 		case 0x2:
3197 			/* EUI-64 */
3198 			cur_id_prio = prio;
3199 			cur_id_size = d[3];
3200 			cur_id_str = d + 4;
3201 			switch (cur_id_size) {
3202 			case 8:
3203 				id_size = snprintf(id, id_len,
3204 						   "eui.%8phN",
3205 						   cur_id_str);
3206 				break;
3207 			case 12:
3208 				id_size = snprintf(id, id_len,
3209 						   "eui.%12phN",
3210 						   cur_id_str);
3211 				break;
3212 			case 16:
3213 				id_size = snprintf(id, id_len,
3214 						   "eui.%16phN",
3215 						   cur_id_str);
3216 				break;
3217 			default:
3218 				break;
3219 			}
3220 			break;
3221 		case 0x3:
3222 			/* NAA */
3223 			cur_id_prio = prio;
3224 			cur_id_size = d[3];
3225 			cur_id_str = d + 4;
3226 			switch (cur_id_size) {
3227 			case 8:
3228 				id_size = snprintf(id, id_len,
3229 						   "naa.%8phN",
3230 						   cur_id_str);
3231 				break;
3232 			case 16:
3233 				id_size = snprintf(id, id_len,
3234 						   "naa.%16phN",
3235 						   cur_id_str);
3236 				break;
3237 			default:
3238 				break;
3239 			}
3240 			break;
3241 		case 0x8:
3242 			/* SCSI name string */
3243 			if (cur_id_size > d[3])
3244 				break;
3245 			/* Prefer others for truncated descriptor */
3246 			if (d[3] > id_len) {
3247 				prio = 2;
3248 				if (cur_id_prio > prio)
3249 					break;
3250 			}
3251 			cur_id_prio = prio;
3252 			cur_id_size = id_size = d[3];
3253 			cur_id_str = d + 4;
3254 			if (cur_id_size >= id_len)
3255 				cur_id_size = id_len - 1;
3256 			memcpy(id, cur_id_str, cur_id_size);
3257 			break;
3258 		default:
3259 			break;
3260 		}
3261 	}
3262 	rcu_read_unlock();
3263 
3264 	return id_size;
3265 }
3266 EXPORT_SYMBOL(scsi_vpd_lun_id);
3267 
3268 /*
3269  * scsi_vpd_tpg_id - return a target port group identifier
3270  * @sdev: SCSI device
3271  *
3272  * Returns the Target Port Group identifier from the information
3273  * froom VPD page 0x83 of the device.
3274  *
3275  * Returns the identifier or error on failure.
3276  */
3277 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3278 {
3279 	const unsigned char *d;
3280 	const struct scsi_vpd *vpd_pg83;
3281 	int group_id = -EAGAIN, rel_port = -1;
3282 
3283 	rcu_read_lock();
3284 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3285 	if (!vpd_pg83) {
3286 		rcu_read_unlock();
3287 		return -ENXIO;
3288 	}
3289 
3290 	d = vpd_pg83->data + 4;
3291 	while (d < vpd_pg83->data + vpd_pg83->len) {
3292 		switch (d[1] & 0xf) {
3293 		case 0x4:
3294 			/* Relative target port */
3295 			rel_port = get_unaligned_be16(&d[6]);
3296 			break;
3297 		case 0x5:
3298 			/* Target port group */
3299 			group_id = get_unaligned_be16(&d[6]);
3300 			break;
3301 		default:
3302 			break;
3303 		}
3304 		d += d[3] + 4;
3305 	}
3306 	rcu_read_unlock();
3307 
3308 	if (group_id >= 0 && rel_id && rel_port != -1)
3309 		*rel_id = rel_port;
3310 
3311 	return group_id;
3312 }
3313 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3314 
3315 /**
3316  * scsi_build_sense - build sense data for a command
3317  * @scmd:	scsi command for which the sense should be formatted
3318  * @desc:	Sense format (non-zero == descriptor format,
3319  *              0 == fixed format)
3320  * @key:	Sense key
3321  * @asc:	Additional sense code
3322  * @ascq:	Additional sense code qualifier
3323  *
3324  **/
3325 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3326 {
3327 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3328 	scmd->result = SAM_STAT_CHECK_CONDITION;
3329 }
3330 EXPORT_SYMBOL_GPL(scsi_build_sense);
3331