1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/blk-integrity.h> 25 #include <linux/ratelimit.h> 26 #include <asm/unaligned.h> 27 28 #include <scsi/scsi.h> 29 #include <scsi/scsi_cmnd.h> 30 #include <scsi/scsi_dbg.h> 31 #include <scsi/scsi_device.h> 32 #include <scsi/scsi_driver.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 36 #include <scsi/scsi_dh.h> 37 38 #include <trace/events/scsi.h> 39 40 #include "scsi_debugfs.h" 41 #include "scsi_priv.h" 42 #include "scsi_logging.h" 43 44 /* 45 * Size of integrity metadata is usually small, 1 inline sg should 46 * cover normal cases. 47 */ 48 #ifdef CONFIG_ARCH_NO_SG_CHAIN 49 #define SCSI_INLINE_PROT_SG_CNT 0 50 #define SCSI_INLINE_SG_CNT 0 51 #else 52 #define SCSI_INLINE_PROT_SG_CNT 1 53 #define SCSI_INLINE_SG_CNT 2 54 #endif 55 56 static struct kmem_cache *scsi_sense_cache; 57 static DEFINE_MUTEX(scsi_sense_cache_mutex); 58 59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 60 61 int scsi_init_sense_cache(struct Scsi_Host *shost) 62 { 63 int ret = 0; 64 65 mutex_lock(&scsi_sense_cache_mutex); 66 if (!scsi_sense_cache) { 67 scsi_sense_cache = 68 kmem_cache_create_usercopy("scsi_sense_cache", 69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 70 0, SCSI_SENSE_BUFFERSIZE, NULL); 71 if (!scsi_sense_cache) 72 ret = -ENOMEM; 73 } 74 mutex_unlock(&scsi_sense_cache_mutex); 75 return ret; 76 } 77 78 static void 79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 80 { 81 struct Scsi_Host *host = cmd->device->host; 82 struct scsi_device *device = cmd->device; 83 struct scsi_target *starget = scsi_target(device); 84 85 /* 86 * Set the appropriate busy bit for the device/host. 87 * 88 * If the host/device isn't busy, assume that something actually 89 * completed, and that we should be able to queue a command now. 90 * 91 * Note that the prior mid-layer assumption that any host could 92 * always queue at least one command is now broken. The mid-layer 93 * will implement a user specifiable stall (see 94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 95 * if a command is requeued with no other commands outstanding 96 * either for the device or for the host. 97 */ 98 switch (reason) { 99 case SCSI_MLQUEUE_HOST_BUSY: 100 atomic_set(&host->host_blocked, host->max_host_blocked); 101 break; 102 case SCSI_MLQUEUE_DEVICE_BUSY: 103 case SCSI_MLQUEUE_EH_RETRY: 104 atomic_set(&device->device_blocked, 105 device->max_device_blocked); 106 break; 107 case SCSI_MLQUEUE_TARGET_BUSY: 108 atomic_set(&starget->target_blocked, 109 starget->max_target_blocked); 110 break; 111 } 112 } 113 114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs) 115 { 116 struct request *rq = scsi_cmd_to_rq(cmd); 117 118 if (rq->rq_flags & RQF_DONTPREP) { 119 rq->rq_flags &= ~RQF_DONTPREP; 120 scsi_mq_uninit_cmd(cmd); 121 } else { 122 WARN_ON_ONCE(true); 123 } 124 125 if (msecs) { 126 blk_mq_requeue_request(rq, false); 127 blk_mq_delay_kick_requeue_list(rq->q, msecs); 128 } else 129 blk_mq_requeue_request(rq, true); 130 } 131 132 /** 133 * __scsi_queue_insert - private queue insertion 134 * @cmd: The SCSI command being requeued 135 * @reason: The reason for the requeue 136 * @unbusy: Whether the queue should be unbusied 137 * 138 * This is a private queue insertion. The public interface 139 * scsi_queue_insert() always assumes the queue should be unbusied 140 * because it's always called before the completion. This function is 141 * for a requeue after completion, which should only occur in this 142 * file. 143 */ 144 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 145 { 146 struct scsi_device *device = cmd->device; 147 148 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 149 "Inserting command %p into mlqueue\n", cmd)); 150 151 scsi_set_blocked(cmd, reason); 152 153 /* 154 * Decrement the counters, since these commands are no longer 155 * active on the host/device. 156 */ 157 if (unbusy) 158 scsi_device_unbusy(device, cmd); 159 160 /* 161 * Requeue this command. It will go before all other commands 162 * that are already in the queue. Schedule requeue work under 163 * lock such that the kblockd_schedule_work() call happens 164 * before blk_mq_destroy_queue() finishes. 165 */ 166 cmd->result = 0; 167 168 blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true); 169 } 170 171 /** 172 * scsi_queue_insert - Reinsert a command in the queue. 173 * @cmd: command that we are adding to queue. 174 * @reason: why we are inserting command to queue. 175 * 176 * We do this for one of two cases. Either the host is busy and it cannot accept 177 * any more commands for the time being, or the device returned QUEUE_FULL and 178 * can accept no more commands. 179 * 180 * Context: This could be called either from an interrupt context or a normal 181 * process context. 182 */ 183 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 184 { 185 __scsi_queue_insert(cmd, reason, true); 186 } 187 188 /** 189 * scsi_execute_cmd - insert request and wait for the result 190 * @sdev: scsi_device 191 * @cmd: scsi command 192 * @opf: block layer request cmd_flags 193 * @buffer: data buffer 194 * @bufflen: len of buffer 195 * @timeout: request timeout in HZ 196 * @retries: number of times to retry request 197 * @args: Optional args. See struct definition for field descriptions 198 * 199 * Returns the scsi_cmnd result field if a command was executed, or a negative 200 * Linux error code if we didn't get that far. 201 */ 202 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd, 203 blk_opf_t opf, void *buffer, unsigned int bufflen, 204 int timeout, int retries, 205 const struct scsi_exec_args *args) 206 { 207 static const struct scsi_exec_args default_args; 208 struct request *req; 209 struct scsi_cmnd *scmd; 210 int ret; 211 212 if (!args) 213 args = &default_args; 214 else if (WARN_ON_ONCE(args->sense && 215 args->sense_len != SCSI_SENSE_BUFFERSIZE)) 216 return -EINVAL; 217 218 req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags); 219 if (IS_ERR(req)) 220 return PTR_ERR(req); 221 222 if (bufflen) { 223 ret = blk_rq_map_kern(sdev->request_queue, req, 224 buffer, bufflen, GFP_NOIO); 225 if (ret) 226 goto out; 227 } 228 scmd = blk_mq_rq_to_pdu(req); 229 scmd->cmd_len = COMMAND_SIZE(cmd[0]); 230 memcpy(scmd->cmnd, cmd, scmd->cmd_len); 231 scmd->allowed = retries; 232 scmd->flags |= args->scmd_flags; 233 req->timeout = timeout; 234 req->rq_flags |= RQF_QUIET; 235 236 /* 237 * head injection *required* here otherwise quiesce won't work 238 */ 239 blk_execute_rq(req, true); 240 241 /* 242 * Some devices (USB mass-storage in particular) may transfer 243 * garbage data together with a residue indicating that the data 244 * is invalid. Prevent the garbage from being misinterpreted 245 * and prevent security leaks by zeroing out the excess data. 246 */ 247 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen)) 248 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len); 249 250 if (args->resid) 251 *args->resid = scmd->resid_len; 252 if (args->sense) 253 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE); 254 if (args->sshdr) 255 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len, 256 args->sshdr); 257 258 ret = scmd->result; 259 out: 260 blk_mq_free_request(req); 261 262 return ret; 263 } 264 EXPORT_SYMBOL(scsi_execute_cmd); 265 266 /* 267 * Wake up the error handler if necessary. Avoid as follows that the error 268 * handler is not woken up if host in-flight requests number == 269 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 270 * with an RCU read lock in this function to ensure that this function in 271 * its entirety either finishes before scsi_eh_scmd_add() increases the 272 * host_failed counter or that it notices the shost state change made by 273 * scsi_eh_scmd_add(). 274 */ 275 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 276 { 277 unsigned long flags; 278 279 rcu_read_lock(); 280 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 281 if (unlikely(scsi_host_in_recovery(shost))) { 282 spin_lock_irqsave(shost->host_lock, flags); 283 if (shost->host_failed || shost->host_eh_scheduled) 284 scsi_eh_wakeup(shost); 285 spin_unlock_irqrestore(shost->host_lock, flags); 286 } 287 rcu_read_unlock(); 288 } 289 290 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 291 { 292 struct Scsi_Host *shost = sdev->host; 293 struct scsi_target *starget = scsi_target(sdev); 294 295 scsi_dec_host_busy(shost, cmd); 296 297 if (starget->can_queue > 0) 298 atomic_dec(&starget->target_busy); 299 300 sbitmap_put(&sdev->budget_map, cmd->budget_token); 301 cmd->budget_token = -1; 302 } 303 304 static void scsi_kick_queue(struct request_queue *q) 305 { 306 blk_mq_run_hw_queues(q, false); 307 } 308 309 /* 310 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with 311 * interrupts disabled. 312 */ 313 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data) 314 { 315 struct scsi_device *current_sdev = data; 316 317 if (sdev != current_sdev) 318 blk_mq_run_hw_queues(sdev->request_queue, true); 319 } 320 321 /* 322 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 323 * and call blk_run_queue for all the scsi_devices on the target - 324 * including current_sdev first. 325 * 326 * Called with *no* scsi locks held. 327 */ 328 static void scsi_single_lun_run(struct scsi_device *current_sdev) 329 { 330 struct Scsi_Host *shost = current_sdev->host; 331 struct scsi_target *starget = scsi_target(current_sdev); 332 unsigned long flags; 333 334 spin_lock_irqsave(shost->host_lock, flags); 335 starget->starget_sdev_user = NULL; 336 spin_unlock_irqrestore(shost->host_lock, flags); 337 338 /* 339 * Call blk_run_queue for all LUNs on the target, starting with 340 * current_sdev. We race with others (to set starget_sdev_user), 341 * but in most cases, we will be first. Ideally, each LU on the 342 * target would get some limited time or requests on the target. 343 */ 344 scsi_kick_queue(current_sdev->request_queue); 345 346 spin_lock_irqsave(shost->host_lock, flags); 347 if (!starget->starget_sdev_user) 348 __starget_for_each_device(starget, current_sdev, 349 scsi_kick_sdev_queue); 350 spin_unlock_irqrestore(shost->host_lock, flags); 351 } 352 353 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 354 { 355 if (scsi_device_busy(sdev) >= sdev->queue_depth) 356 return true; 357 if (atomic_read(&sdev->device_blocked) > 0) 358 return true; 359 return false; 360 } 361 362 static inline bool scsi_target_is_busy(struct scsi_target *starget) 363 { 364 if (starget->can_queue > 0) { 365 if (atomic_read(&starget->target_busy) >= starget->can_queue) 366 return true; 367 if (atomic_read(&starget->target_blocked) > 0) 368 return true; 369 } 370 return false; 371 } 372 373 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 374 { 375 if (atomic_read(&shost->host_blocked) > 0) 376 return true; 377 if (shost->host_self_blocked) 378 return true; 379 return false; 380 } 381 382 static void scsi_starved_list_run(struct Scsi_Host *shost) 383 { 384 LIST_HEAD(starved_list); 385 struct scsi_device *sdev; 386 unsigned long flags; 387 388 spin_lock_irqsave(shost->host_lock, flags); 389 list_splice_init(&shost->starved_list, &starved_list); 390 391 while (!list_empty(&starved_list)) { 392 struct request_queue *slq; 393 394 /* 395 * As long as shost is accepting commands and we have 396 * starved queues, call blk_run_queue. scsi_request_fn 397 * drops the queue_lock and can add us back to the 398 * starved_list. 399 * 400 * host_lock protects the starved_list and starved_entry. 401 * scsi_request_fn must get the host_lock before checking 402 * or modifying starved_list or starved_entry. 403 */ 404 if (scsi_host_is_busy(shost)) 405 break; 406 407 sdev = list_entry(starved_list.next, 408 struct scsi_device, starved_entry); 409 list_del_init(&sdev->starved_entry); 410 if (scsi_target_is_busy(scsi_target(sdev))) { 411 list_move_tail(&sdev->starved_entry, 412 &shost->starved_list); 413 continue; 414 } 415 416 /* 417 * Once we drop the host lock, a racing scsi_remove_device() 418 * call may remove the sdev from the starved list and destroy 419 * it and the queue. Mitigate by taking a reference to the 420 * queue and never touching the sdev again after we drop the 421 * host lock. Note: if __scsi_remove_device() invokes 422 * blk_mq_destroy_queue() before the queue is run from this 423 * function then blk_run_queue() will return immediately since 424 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING. 425 */ 426 slq = sdev->request_queue; 427 if (!blk_get_queue(slq)) 428 continue; 429 spin_unlock_irqrestore(shost->host_lock, flags); 430 431 scsi_kick_queue(slq); 432 blk_put_queue(slq); 433 434 spin_lock_irqsave(shost->host_lock, flags); 435 } 436 /* put any unprocessed entries back */ 437 list_splice(&starved_list, &shost->starved_list); 438 spin_unlock_irqrestore(shost->host_lock, flags); 439 } 440 441 /** 442 * scsi_run_queue - Select a proper request queue to serve next. 443 * @q: last request's queue 444 * 445 * The previous command was completely finished, start a new one if possible. 446 */ 447 static void scsi_run_queue(struct request_queue *q) 448 { 449 struct scsi_device *sdev = q->queuedata; 450 451 if (scsi_target(sdev)->single_lun) 452 scsi_single_lun_run(sdev); 453 if (!list_empty(&sdev->host->starved_list)) 454 scsi_starved_list_run(sdev->host); 455 456 blk_mq_run_hw_queues(q, false); 457 } 458 459 void scsi_requeue_run_queue(struct work_struct *work) 460 { 461 struct scsi_device *sdev; 462 struct request_queue *q; 463 464 sdev = container_of(work, struct scsi_device, requeue_work); 465 q = sdev->request_queue; 466 scsi_run_queue(q); 467 } 468 469 void scsi_run_host_queues(struct Scsi_Host *shost) 470 { 471 struct scsi_device *sdev; 472 473 shost_for_each_device(sdev, shost) 474 scsi_run_queue(sdev->request_queue); 475 } 476 477 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 478 { 479 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) { 480 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 481 482 if (drv->uninit_command) 483 drv->uninit_command(cmd); 484 } 485 } 486 487 void scsi_free_sgtables(struct scsi_cmnd *cmd) 488 { 489 if (cmd->sdb.table.nents) 490 sg_free_table_chained(&cmd->sdb.table, 491 SCSI_INLINE_SG_CNT); 492 if (scsi_prot_sg_count(cmd)) 493 sg_free_table_chained(&cmd->prot_sdb->table, 494 SCSI_INLINE_PROT_SG_CNT); 495 } 496 EXPORT_SYMBOL_GPL(scsi_free_sgtables); 497 498 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 499 { 500 scsi_free_sgtables(cmd); 501 scsi_uninit_cmd(cmd); 502 } 503 504 static void scsi_run_queue_async(struct scsi_device *sdev) 505 { 506 if (scsi_target(sdev)->single_lun || 507 !list_empty(&sdev->host->starved_list)) { 508 kblockd_schedule_work(&sdev->requeue_work); 509 } else { 510 /* 511 * smp_mb() present in sbitmap_queue_clear() or implied in 512 * .end_io is for ordering writing .device_busy in 513 * scsi_device_unbusy() and reading sdev->restarts. 514 */ 515 int old = atomic_read(&sdev->restarts); 516 517 /* 518 * ->restarts has to be kept as non-zero if new budget 519 * contention occurs. 520 * 521 * No need to run queue when either another re-run 522 * queue wins in updating ->restarts or a new budget 523 * contention occurs. 524 */ 525 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 526 blk_mq_run_hw_queues(sdev->request_queue, true); 527 } 528 } 529 530 /* Returns false when no more bytes to process, true if there are more */ 531 static bool scsi_end_request(struct request *req, blk_status_t error, 532 unsigned int bytes) 533 { 534 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 535 struct scsi_device *sdev = cmd->device; 536 struct request_queue *q = sdev->request_queue; 537 538 if (blk_update_request(req, error, bytes)) 539 return true; 540 541 // XXX: 542 if (blk_queue_add_random(q)) 543 add_disk_randomness(req->q->disk); 544 545 if (!blk_rq_is_passthrough(req)) { 546 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 547 cmd->flags &= ~SCMD_INITIALIZED; 548 } 549 550 /* 551 * Calling rcu_barrier() is not necessary here because the 552 * SCSI error handler guarantees that the function called by 553 * call_rcu() has been called before scsi_end_request() is 554 * called. 555 */ 556 destroy_rcu_head(&cmd->rcu); 557 558 /* 559 * In the MQ case the command gets freed by __blk_mq_end_request, 560 * so we have to do all cleanup that depends on it earlier. 561 * 562 * We also can't kick the queues from irq context, so we 563 * will have to defer it to a workqueue. 564 */ 565 scsi_mq_uninit_cmd(cmd); 566 567 /* 568 * queue is still alive, so grab the ref for preventing it 569 * from being cleaned up during running queue. 570 */ 571 percpu_ref_get(&q->q_usage_counter); 572 573 __blk_mq_end_request(req, error); 574 575 scsi_run_queue_async(sdev); 576 577 percpu_ref_put(&q->q_usage_counter); 578 return false; 579 } 580 581 /** 582 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 583 * @result: scsi error code 584 * 585 * Translate a SCSI result code into a blk_status_t value. 586 */ 587 static blk_status_t scsi_result_to_blk_status(int result) 588 { 589 /* 590 * Check the scsi-ml byte first in case we converted a host or status 591 * byte. 592 */ 593 switch (scsi_ml_byte(result)) { 594 case SCSIML_STAT_OK: 595 break; 596 case SCSIML_STAT_RESV_CONFLICT: 597 return BLK_STS_RESV_CONFLICT; 598 case SCSIML_STAT_NOSPC: 599 return BLK_STS_NOSPC; 600 case SCSIML_STAT_MED_ERROR: 601 return BLK_STS_MEDIUM; 602 case SCSIML_STAT_TGT_FAILURE: 603 return BLK_STS_TARGET; 604 case SCSIML_STAT_DL_TIMEOUT: 605 return BLK_STS_DURATION_LIMIT; 606 } 607 608 switch (host_byte(result)) { 609 case DID_OK: 610 if (scsi_status_is_good(result)) 611 return BLK_STS_OK; 612 return BLK_STS_IOERR; 613 case DID_TRANSPORT_FAILFAST: 614 case DID_TRANSPORT_MARGINAL: 615 return BLK_STS_TRANSPORT; 616 default: 617 return BLK_STS_IOERR; 618 } 619 } 620 621 /** 622 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary 623 * @rq: request to examine 624 * 625 * Description: 626 * A request could be merge of IOs which require different failure 627 * handling. This function determines the number of bytes which 628 * can be failed from the beginning of the request without 629 * crossing into area which need to be retried further. 630 * 631 * Return: 632 * The number of bytes to fail. 633 */ 634 static unsigned int scsi_rq_err_bytes(const struct request *rq) 635 { 636 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 637 unsigned int bytes = 0; 638 struct bio *bio; 639 640 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 641 return blk_rq_bytes(rq); 642 643 /* 644 * Currently the only 'mixing' which can happen is between 645 * different fastfail types. We can safely fail portions 646 * which have all the failfast bits that the first one has - 647 * the ones which are at least as eager to fail as the first 648 * one. 649 */ 650 for (bio = rq->bio; bio; bio = bio->bi_next) { 651 if ((bio->bi_opf & ff) != ff) 652 break; 653 bytes += bio->bi_iter.bi_size; 654 } 655 656 /* this could lead to infinite loop */ 657 BUG_ON(blk_rq_bytes(rq) && !bytes); 658 return bytes; 659 } 660 661 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 662 { 663 struct request *req = scsi_cmd_to_rq(cmd); 664 unsigned long wait_for; 665 666 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 667 return false; 668 669 wait_for = (cmd->allowed + 1) * req->timeout; 670 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 671 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 672 wait_for/HZ); 673 return true; 674 } 675 return false; 676 } 677 678 /* 679 * When ALUA transition state is returned, reprep the cmd to 680 * use the ALUA handler's transition timeout. Delay the reprep 681 * 1 sec to avoid aggressive retries of the target in that 682 * state. 683 */ 684 #define ALUA_TRANSITION_REPREP_DELAY 1000 685 686 /* Helper for scsi_io_completion() when special action required. */ 687 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 688 { 689 struct request *req = scsi_cmd_to_rq(cmd); 690 int level = 0; 691 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP, 692 ACTION_RETRY, ACTION_DELAYED_RETRY} action; 693 struct scsi_sense_hdr sshdr; 694 bool sense_valid; 695 bool sense_current = true; /* false implies "deferred sense" */ 696 blk_status_t blk_stat; 697 698 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 699 if (sense_valid) 700 sense_current = !scsi_sense_is_deferred(&sshdr); 701 702 blk_stat = scsi_result_to_blk_status(result); 703 704 if (host_byte(result) == DID_RESET) { 705 /* Third party bus reset or reset for error recovery 706 * reasons. Just retry the command and see what 707 * happens. 708 */ 709 action = ACTION_RETRY; 710 } else if (sense_valid && sense_current) { 711 switch (sshdr.sense_key) { 712 case UNIT_ATTENTION: 713 if (cmd->device->removable) { 714 /* Detected disc change. Set a bit 715 * and quietly refuse further access. 716 */ 717 cmd->device->changed = 1; 718 action = ACTION_FAIL; 719 } else { 720 /* Must have been a power glitch, or a 721 * bus reset. Could not have been a 722 * media change, so we just retry the 723 * command and see what happens. 724 */ 725 action = ACTION_RETRY; 726 } 727 break; 728 case ILLEGAL_REQUEST: 729 /* If we had an ILLEGAL REQUEST returned, then 730 * we may have performed an unsupported 731 * command. The only thing this should be 732 * would be a ten byte read where only a six 733 * byte read was supported. Also, on a system 734 * where READ CAPACITY failed, we may have 735 * read past the end of the disk. 736 */ 737 if ((cmd->device->use_10_for_rw && 738 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 739 (cmd->cmnd[0] == READ_10 || 740 cmd->cmnd[0] == WRITE_10)) { 741 /* This will issue a new 6-byte command. */ 742 cmd->device->use_10_for_rw = 0; 743 action = ACTION_REPREP; 744 } else if (sshdr.asc == 0x10) /* DIX */ { 745 action = ACTION_FAIL; 746 blk_stat = BLK_STS_PROTECTION; 747 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 748 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 749 action = ACTION_FAIL; 750 blk_stat = BLK_STS_TARGET; 751 } else 752 action = ACTION_FAIL; 753 break; 754 case ABORTED_COMMAND: 755 action = ACTION_FAIL; 756 if (sshdr.asc == 0x10) /* DIF */ 757 blk_stat = BLK_STS_PROTECTION; 758 break; 759 case NOT_READY: 760 /* If the device is in the process of becoming 761 * ready, or has a temporary blockage, retry. 762 */ 763 if (sshdr.asc == 0x04) { 764 switch (sshdr.ascq) { 765 case 0x01: /* becoming ready */ 766 case 0x04: /* format in progress */ 767 case 0x05: /* rebuild in progress */ 768 case 0x06: /* recalculation in progress */ 769 case 0x07: /* operation in progress */ 770 case 0x08: /* Long write in progress */ 771 case 0x09: /* self test in progress */ 772 case 0x11: /* notify (enable spinup) required */ 773 case 0x14: /* space allocation in progress */ 774 case 0x1a: /* start stop unit in progress */ 775 case 0x1b: /* sanitize in progress */ 776 case 0x1d: /* configuration in progress */ 777 case 0x24: /* depopulation in progress */ 778 action = ACTION_DELAYED_RETRY; 779 break; 780 case 0x0a: /* ALUA state transition */ 781 action = ACTION_DELAYED_REPREP; 782 break; 783 default: 784 action = ACTION_FAIL; 785 break; 786 } 787 } else 788 action = ACTION_FAIL; 789 break; 790 case VOLUME_OVERFLOW: 791 /* See SSC3rXX or current. */ 792 action = ACTION_FAIL; 793 break; 794 case DATA_PROTECT: 795 action = ACTION_FAIL; 796 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) || 797 (sshdr.asc == 0x55 && 798 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) { 799 /* Insufficient zone resources */ 800 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE; 801 } 802 break; 803 case COMPLETED: 804 fallthrough; 805 default: 806 action = ACTION_FAIL; 807 break; 808 } 809 } else 810 action = ACTION_FAIL; 811 812 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 813 action = ACTION_FAIL; 814 815 switch (action) { 816 case ACTION_FAIL: 817 /* Give up and fail the remainder of the request */ 818 if (!(req->rq_flags & RQF_QUIET)) { 819 static DEFINE_RATELIMIT_STATE(_rs, 820 DEFAULT_RATELIMIT_INTERVAL, 821 DEFAULT_RATELIMIT_BURST); 822 823 if (unlikely(scsi_logging_level)) 824 level = 825 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 826 SCSI_LOG_MLCOMPLETE_BITS); 827 828 /* 829 * if logging is enabled the failure will be printed 830 * in scsi_log_completion(), so avoid duplicate messages 831 */ 832 if (!level && __ratelimit(&_rs)) { 833 scsi_print_result(cmd, NULL, FAILED); 834 if (sense_valid) 835 scsi_print_sense(cmd); 836 scsi_print_command(cmd); 837 } 838 } 839 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req))) 840 return; 841 fallthrough; 842 case ACTION_REPREP: 843 scsi_mq_requeue_cmd(cmd, 0); 844 break; 845 case ACTION_DELAYED_REPREP: 846 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY); 847 break; 848 case ACTION_RETRY: 849 /* Retry the same command immediately */ 850 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 851 break; 852 case ACTION_DELAYED_RETRY: 853 /* Retry the same command after a delay */ 854 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 855 break; 856 } 857 } 858 859 /* 860 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 861 * new result that may suppress further error checking. Also modifies 862 * *blk_statp in some cases. 863 */ 864 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 865 blk_status_t *blk_statp) 866 { 867 bool sense_valid; 868 bool sense_current = true; /* false implies "deferred sense" */ 869 struct request *req = scsi_cmd_to_rq(cmd); 870 struct scsi_sense_hdr sshdr; 871 872 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 873 if (sense_valid) 874 sense_current = !scsi_sense_is_deferred(&sshdr); 875 876 if (blk_rq_is_passthrough(req)) { 877 if (sense_valid) { 878 /* 879 * SG_IO wants current and deferred errors 880 */ 881 cmd->sense_len = min(8 + cmd->sense_buffer[7], 882 SCSI_SENSE_BUFFERSIZE); 883 } 884 if (sense_current) 885 *blk_statp = scsi_result_to_blk_status(result); 886 } else if (blk_rq_bytes(req) == 0 && sense_current) { 887 /* 888 * Flush commands do not transfers any data, and thus cannot use 889 * good_bytes != blk_rq_bytes(req) as the signal for an error. 890 * This sets *blk_statp explicitly for the problem case. 891 */ 892 *blk_statp = scsi_result_to_blk_status(result); 893 } 894 /* 895 * Recovered errors need reporting, but they're always treated as 896 * success, so fiddle the result code here. For passthrough requests 897 * we already took a copy of the original into sreq->result which 898 * is what gets returned to the user 899 */ 900 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 901 bool do_print = true; 902 /* 903 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 904 * skip print since caller wants ATA registers. Only occurs 905 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 906 */ 907 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 908 do_print = false; 909 else if (req->rq_flags & RQF_QUIET) 910 do_print = false; 911 if (do_print) 912 scsi_print_sense(cmd); 913 result = 0; 914 /* for passthrough, *blk_statp may be set */ 915 *blk_statp = BLK_STS_OK; 916 } 917 /* 918 * Another corner case: the SCSI status byte is non-zero but 'good'. 919 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 920 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 921 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 922 * intermediate statuses (both obsolete in SAM-4) as good. 923 */ 924 if ((result & 0xff) && scsi_status_is_good(result)) { 925 result = 0; 926 *blk_statp = BLK_STS_OK; 927 } 928 return result; 929 } 930 931 /** 932 * scsi_io_completion - Completion processing for SCSI commands. 933 * @cmd: command that is finished. 934 * @good_bytes: number of processed bytes. 935 * 936 * We will finish off the specified number of sectors. If we are done, the 937 * command block will be released and the queue function will be goosed. If we 938 * are not done then we have to figure out what to do next: 939 * 940 * a) We can call scsi_mq_requeue_cmd(). The request will be 941 * unprepared and put back on the queue. Then a new command will 942 * be created for it. This should be used if we made forward 943 * progress, or if we want to switch from READ(10) to READ(6) for 944 * example. 945 * 946 * b) We can call scsi_io_completion_action(). The request will be 947 * put back on the queue and retried using the same command as 948 * before, possibly after a delay. 949 * 950 * c) We can call scsi_end_request() with blk_stat other than 951 * BLK_STS_OK, to fail the remainder of the request. 952 */ 953 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 954 { 955 int result = cmd->result; 956 struct request *req = scsi_cmd_to_rq(cmd); 957 blk_status_t blk_stat = BLK_STS_OK; 958 959 if (unlikely(result)) /* a nz result may or may not be an error */ 960 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 961 962 /* 963 * Next deal with any sectors which we were able to correctly 964 * handle. 965 */ 966 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 967 "%u sectors total, %d bytes done.\n", 968 blk_rq_sectors(req), good_bytes)); 969 970 /* 971 * Failed, zero length commands always need to drop down 972 * to retry code. Fast path should return in this block. 973 */ 974 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 975 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 976 return; /* no bytes remaining */ 977 } 978 979 /* Kill remainder if no retries. */ 980 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 981 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 982 WARN_ONCE(true, 983 "Bytes remaining after failed, no-retry command"); 984 return; 985 } 986 987 /* 988 * If there had been no error, but we have leftover bytes in the 989 * request just queue the command up again. 990 */ 991 if (likely(result == 0)) 992 scsi_mq_requeue_cmd(cmd, 0); 993 else 994 scsi_io_completion_action(cmd, result); 995 } 996 997 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 998 struct request *rq) 999 { 1000 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 1001 !op_is_write(req_op(rq)) && 1002 sdev->host->hostt->dma_need_drain(rq); 1003 } 1004 1005 /** 1006 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists 1007 * @cmd: SCSI command data structure to initialize. 1008 * 1009 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled 1010 * for @cmd. 1011 * 1012 * Returns: 1013 * * BLK_STS_OK - on success 1014 * * BLK_STS_RESOURCE - if the failure is retryable 1015 * * BLK_STS_IOERR - if the failure is fatal 1016 */ 1017 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd) 1018 { 1019 struct scsi_device *sdev = cmd->device; 1020 struct request *rq = scsi_cmd_to_rq(cmd); 1021 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 1022 struct scatterlist *last_sg = NULL; 1023 blk_status_t ret; 1024 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 1025 int count; 1026 1027 if (WARN_ON_ONCE(!nr_segs)) 1028 return BLK_STS_IOERR; 1029 1030 /* 1031 * Make sure there is space for the drain. The driver must adjust 1032 * max_hw_segments to be prepared for this. 1033 */ 1034 if (need_drain) 1035 nr_segs++; 1036 1037 /* 1038 * If sg table allocation fails, requeue request later. 1039 */ 1040 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1041 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1042 return BLK_STS_RESOURCE; 1043 1044 /* 1045 * Next, walk the list, and fill in the addresses and sizes of 1046 * each segment. 1047 */ 1048 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1049 1050 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) { 1051 unsigned int pad_len = 1052 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1053 1054 last_sg->length += pad_len; 1055 cmd->extra_len += pad_len; 1056 } 1057 1058 if (need_drain) { 1059 sg_unmark_end(last_sg); 1060 last_sg = sg_next(last_sg); 1061 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1062 sg_mark_end(last_sg); 1063 1064 cmd->extra_len += sdev->dma_drain_len; 1065 count++; 1066 } 1067 1068 BUG_ON(count > cmd->sdb.table.nents); 1069 cmd->sdb.table.nents = count; 1070 cmd->sdb.length = blk_rq_payload_bytes(rq); 1071 1072 if (blk_integrity_rq(rq)) { 1073 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1074 int ivecs; 1075 1076 if (WARN_ON_ONCE(!prot_sdb)) { 1077 /* 1078 * This can happen if someone (e.g. multipath) 1079 * queues a command to a device on an adapter 1080 * that does not support DIX. 1081 */ 1082 ret = BLK_STS_IOERR; 1083 goto out_free_sgtables; 1084 } 1085 1086 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1087 1088 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1089 prot_sdb->table.sgl, 1090 SCSI_INLINE_PROT_SG_CNT)) { 1091 ret = BLK_STS_RESOURCE; 1092 goto out_free_sgtables; 1093 } 1094 1095 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1096 prot_sdb->table.sgl); 1097 BUG_ON(count > ivecs); 1098 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1099 1100 cmd->prot_sdb = prot_sdb; 1101 cmd->prot_sdb->table.nents = count; 1102 } 1103 1104 return BLK_STS_OK; 1105 out_free_sgtables: 1106 scsi_free_sgtables(cmd); 1107 return ret; 1108 } 1109 EXPORT_SYMBOL(scsi_alloc_sgtables); 1110 1111 /** 1112 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1113 * @rq: Request associated with the SCSI command to be initialized. 1114 * 1115 * This function initializes the members of struct scsi_cmnd that must be 1116 * initialized before request processing starts and that won't be 1117 * reinitialized if a SCSI command is requeued. 1118 */ 1119 static void scsi_initialize_rq(struct request *rq) 1120 { 1121 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1122 1123 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1124 cmd->cmd_len = MAX_COMMAND_SIZE; 1125 cmd->sense_len = 0; 1126 init_rcu_head(&cmd->rcu); 1127 cmd->jiffies_at_alloc = jiffies; 1128 cmd->retries = 0; 1129 } 1130 1131 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf, 1132 blk_mq_req_flags_t flags) 1133 { 1134 struct request *rq; 1135 1136 rq = blk_mq_alloc_request(q, opf, flags); 1137 if (!IS_ERR(rq)) 1138 scsi_initialize_rq(rq); 1139 return rq; 1140 } 1141 EXPORT_SYMBOL_GPL(scsi_alloc_request); 1142 1143 /* 1144 * Only called when the request isn't completed by SCSI, and not freed by 1145 * SCSI 1146 */ 1147 static void scsi_cleanup_rq(struct request *rq) 1148 { 1149 if (rq->rq_flags & RQF_DONTPREP) { 1150 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1151 rq->rq_flags &= ~RQF_DONTPREP; 1152 } 1153 } 1154 1155 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1156 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1157 { 1158 struct request *rq = scsi_cmd_to_rq(cmd); 1159 1160 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) { 1161 cmd->flags |= SCMD_INITIALIZED; 1162 scsi_initialize_rq(rq); 1163 } 1164 1165 cmd->device = dev; 1166 INIT_LIST_HEAD(&cmd->eh_entry); 1167 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1168 } 1169 1170 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1171 struct request *req) 1172 { 1173 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1174 1175 /* 1176 * Passthrough requests may transfer data, in which case they must 1177 * a bio attached to them. Or they might contain a SCSI command 1178 * that does not transfer data, in which case they may optionally 1179 * submit a request without an attached bio. 1180 */ 1181 if (req->bio) { 1182 blk_status_t ret = scsi_alloc_sgtables(cmd); 1183 if (unlikely(ret != BLK_STS_OK)) 1184 return ret; 1185 } else { 1186 BUG_ON(blk_rq_bytes(req)); 1187 1188 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1189 } 1190 1191 cmd->transfersize = blk_rq_bytes(req); 1192 return BLK_STS_OK; 1193 } 1194 1195 static blk_status_t 1196 scsi_device_state_check(struct scsi_device *sdev, struct request *req) 1197 { 1198 switch (sdev->sdev_state) { 1199 case SDEV_CREATED: 1200 return BLK_STS_OK; 1201 case SDEV_OFFLINE: 1202 case SDEV_TRANSPORT_OFFLINE: 1203 /* 1204 * If the device is offline we refuse to process any 1205 * commands. The device must be brought online 1206 * before trying any recovery commands. 1207 */ 1208 if (!sdev->offline_already) { 1209 sdev->offline_already = true; 1210 sdev_printk(KERN_ERR, sdev, 1211 "rejecting I/O to offline device\n"); 1212 } 1213 return BLK_STS_IOERR; 1214 case SDEV_DEL: 1215 /* 1216 * If the device is fully deleted, we refuse to 1217 * process any commands as well. 1218 */ 1219 sdev_printk(KERN_ERR, sdev, 1220 "rejecting I/O to dead device\n"); 1221 return BLK_STS_IOERR; 1222 case SDEV_BLOCK: 1223 case SDEV_CREATED_BLOCK: 1224 return BLK_STS_RESOURCE; 1225 case SDEV_QUIESCE: 1226 /* 1227 * If the device is blocked we only accept power management 1228 * commands. 1229 */ 1230 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM))) 1231 return BLK_STS_RESOURCE; 1232 return BLK_STS_OK; 1233 default: 1234 /* 1235 * For any other not fully online state we only allow 1236 * power management commands. 1237 */ 1238 if (req && !(req->rq_flags & RQF_PM)) 1239 return BLK_STS_OFFLINE; 1240 return BLK_STS_OK; 1241 } 1242 } 1243 1244 /* 1245 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token 1246 * and return the token else return -1. 1247 */ 1248 static inline int scsi_dev_queue_ready(struct request_queue *q, 1249 struct scsi_device *sdev) 1250 { 1251 int token; 1252 1253 token = sbitmap_get(&sdev->budget_map); 1254 if (atomic_read(&sdev->device_blocked)) { 1255 if (token < 0) 1256 goto out; 1257 1258 if (scsi_device_busy(sdev) > 1) 1259 goto out_dec; 1260 1261 /* 1262 * unblock after device_blocked iterates to zero 1263 */ 1264 if (atomic_dec_return(&sdev->device_blocked) > 0) 1265 goto out_dec; 1266 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1267 "unblocking device at zero depth\n")); 1268 } 1269 1270 return token; 1271 out_dec: 1272 if (token >= 0) 1273 sbitmap_put(&sdev->budget_map, token); 1274 out: 1275 return -1; 1276 } 1277 1278 /* 1279 * scsi_target_queue_ready: checks if there we can send commands to target 1280 * @sdev: scsi device on starget to check. 1281 */ 1282 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1283 struct scsi_device *sdev) 1284 { 1285 struct scsi_target *starget = scsi_target(sdev); 1286 unsigned int busy; 1287 1288 if (starget->single_lun) { 1289 spin_lock_irq(shost->host_lock); 1290 if (starget->starget_sdev_user && 1291 starget->starget_sdev_user != sdev) { 1292 spin_unlock_irq(shost->host_lock); 1293 return 0; 1294 } 1295 starget->starget_sdev_user = sdev; 1296 spin_unlock_irq(shost->host_lock); 1297 } 1298 1299 if (starget->can_queue <= 0) 1300 return 1; 1301 1302 busy = atomic_inc_return(&starget->target_busy) - 1; 1303 if (atomic_read(&starget->target_blocked) > 0) { 1304 if (busy) 1305 goto starved; 1306 1307 /* 1308 * unblock after target_blocked iterates to zero 1309 */ 1310 if (atomic_dec_return(&starget->target_blocked) > 0) 1311 goto out_dec; 1312 1313 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1314 "unblocking target at zero depth\n")); 1315 } 1316 1317 if (busy >= starget->can_queue) 1318 goto starved; 1319 1320 return 1; 1321 1322 starved: 1323 spin_lock_irq(shost->host_lock); 1324 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1325 spin_unlock_irq(shost->host_lock); 1326 out_dec: 1327 if (starget->can_queue > 0) 1328 atomic_dec(&starget->target_busy); 1329 return 0; 1330 } 1331 1332 /* 1333 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1334 * return 0. We must end up running the queue again whenever 0 is 1335 * returned, else IO can hang. 1336 */ 1337 static inline int scsi_host_queue_ready(struct request_queue *q, 1338 struct Scsi_Host *shost, 1339 struct scsi_device *sdev, 1340 struct scsi_cmnd *cmd) 1341 { 1342 if (atomic_read(&shost->host_blocked) > 0) { 1343 if (scsi_host_busy(shost) > 0) 1344 goto starved; 1345 1346 /* 1347 * unblock after host_blocked iterates to zero 1348 */ 1349 if (atomic_dec_return(&shost->host_blocked) > 0) 1350 goto out_dec; 1351 1352 SCSI_LOG_MLQUEUE(3, 1353 shost_printk(KERN_INFO, shost, 1354 "unblocking host at zero depth\n")); 1355 } 1356 1357 if (shost->host_self_blocked) 1358 goto starved; 1359 1360 /* We're OK to process the command, so we can't be starved */ 1361 if (!list_empty(&sdev->starved_entry)) { 1362 spin_lock_irq(shost->host_lock); 1363 if (!list_empty(&sdev->starved_entry)) 1364 list_del_init(&sdev->starved_entry); 1365 spin_unlock_irq(shost->host_lock); 1366 } 1367 1368 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1369 1370 return 1; 1371 1372 starved: 1373 spin_lock_irq(shost->host_lock); 1374 if (list_empty(&sdev->starved_entry)) 1375 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1376 spin_unlock_irq(shost->host_lock); 1377 out_dec: 1378 scsi_dec_host_busy(shost, cmd); 1379 return 0; 1380 } 1381 1382 /* 1383 * Busy state exporting function for request stacking drivers. 1384 * 1385 * For efficiency, no lock is taken to check the busy state of 1386 * shost/starget/sdev, since the returned value is not guaranteed and 1387 * may be changed after request stacking drivers call the function, 1388 * regardless of taking lock or not. 1389 * 1390 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1391 * needs to return 'not busy'. Otherwise, request stacking drivers 1392 * may hold requests forever. 1393 */ 1394 static bool scsi_mq_lld_busy(struct request_queue *q) 1395 { 1396 struct scsi_device *sdev = q->queuedata; 1397 struct Scsi_Host *shost; 1398 1399 if (blk_queue_dying(q)) 1400 return false; 1401 1402 shost = sdev->host; 1403 1404 /* 1405 * Ignore host/starget busy state. 1406 * Since block layer does not have a concept of fairness across 1407 * multiple queues, congestion of host/starget needs to be handled 1408 * in SCSI layer. 1409 */ 1410 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1411 return true; 1412 1413 return false; 1414 } 1415 1416 /* 1417 * Block layer request completion callback. May be called from interrupt 1418 * context. 1419 */ 1420 static void scsi_complete(struct request *rq) 1421 { 1422 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1423 enum scsi_disposition disposition; 1424 1425 INIT_LIST_HEAD(&cmd->eh_entry); 1426 1427 atomic_inc(&cmd->device->iodone_cnt); 1428 if (cmd->result) 1429 atomic_inc(&cmd->device->ioerr_cnt); 1430 1431 disposition = scsi_decide_disposition(cmd); 1432 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1433 disposition = SUCCESS; 1434 1435 scsi_log_completion(cmd, disposition); 1436 1437 switch (disposition) { 1438 case SUCCESS: 1439 scsi_finish_command(cmd); 1440 break; 1441 case NEEDS_RETRY: 1442 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1443 break; 1444 case ADD_TO_MLQUEUE: 1445 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1446 break; 1447 default: 1448 scsi_eh_scmd_add(cmd); 1449 break; 1450 } 1451 } 1452 1453 /** 1454 * scsi_dispatch_cmd - Dispatch a command to the low-level driver. 1455 * @cmd: command block we are dispatching. 1456 * 1457 * Return: nonzero return request was rejected and device's queue needs to be 1458 * plugged. 1459 */ 1460 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1461 { 1462 struct Scsi_Host *host = cmd->device->host; 1463 int rtn = 0; 1464 1465 /* check if the device is still usable */ 1466 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1467 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1468 * returns an immediate error upwards, and signals 1469 * that the device is no longer present */ 1470 cmd->result = DID_NO_CONNECT << 16; 1471 goto done; 1472 } 1473 1474 /* Check to see if the scsi lld made this device blocked. */ 1475 if (unlikely(scsi_device_blocked(cmd->device))) { 1476 /* 1477 * in blocked state, the command is just put back on 1478 * the device queue. The suspend state has already 1479 * blocked the queue so future requests should not 1480 * occur until the device transitions out of the 1481 * suspend state. 1482 */ 1483 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1484 "queuecommand : device blocked\n")); 1485 return SCSI_MLQUEUE_DEVICE_BUSY; 1486 } 1487 1488 /* Store the LUN value in cmnd, if needed. */ 1489 if (cmd->device->lun_in_cdb) 1490 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1491 (cmd->device->lun << 5 & 0xe0); 1492 1493 scsi_log_send(cmd); 1494 1495 /* 1496 * Before we queue this command, check if the command 1497 * length exceeds what the host adapter can handle. 1498 */ 1499 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1500 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1501 "queuecommand : command too long. " 1502 "cdb_size=%d host->max_cmd_len=%d\n", 1503 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1504 cmd->result = (DID_ABORT << 16); 1505 goto done; 1506 } 1507 1508 if (unlikely(host->shost_state == SHOST_DEL)) { 1509 cmd->result = (DID_NO_CONNECT << 16); 1510 goto done; 1511 1512 } 1513 1514 trace_scsi_dispatch_cmd_start(cmd); 1515 rtn = host->hostt->queuecommand(host, cmd); 1516 if (rtn) { 1517 trace_scsi_dispatch_cmd_error(cmd, rtn); 1518 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1519 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1520 rtn = SCSI_MLQUEUE_HOST_BUSY; 1521 1522 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1523 "queuecommand : request rejected\n")); 1524 } 1525 1526 return rtn; 1527 done: 1528 scsi_done(cmd); 1529 return 0; 1530 } 1531 1532 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1533 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1534 { 1535 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1536 sizeof(struct scatterlist); 1537 } 1538 1539 static blk_status_t scsi_prepare_cmd(struct request *req) 1540 { 1541 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1542 struct scsi_device *sdev = req->q->queuedata; 1543 struct Scsi_Host *shost = sdev->host; 1544 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1545 struct scatterlist *sg; 1546 1547 scsi_init_command(sdev, cmd); 1548 1549 cmd->eh_eflags = 0; 1550 cmd->prot_type = 0; 1551 cmd->prot_flags = 0; 1552 cmd->submitter = 0; 1553 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1554 cmd->underflow = 0; 1555 cmd->transfersize = 0; 1556 cmd->host_scribble = NULL; 1557 cmd->result = 0; 1558 cmd->extra_len = 0; 1559 cmd->state = 0; 1560 if (in_flight) 1561 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1562 1563 /* 1564 * Only clear the driver-private command data if the LLD does not supply 1565 * a function to initialize that data. 1566 */ 1567 if (!shost->hostt->init_cmd_priv) 1568 memset(cmd + 1, 0, shost->hostt->cmd_size); 1569 1570 cmd->prot_op = SCSI_PROT_NORMAL; 1571 if (blk_rq_bytes(req)) 1572 cmd->sc_data_direction = rq_dma_dir(req); 1573 else 1574 cmd->sc_data_direction = DMA_NONE; 1575 1576 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1577 cmd->sdb.table.sgl = sg; 1578 1579 if (scsi_host_get_prot(shost)) { 1580 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1581 1582 cmd->prot_sdb->table.sgl = 1583 (struct scatterlist *)(cmd->prot_sdb + 1); 1584 } 1585 1586 /* 1587 * Special handling for passthrough commands, which don't go to the ULP 1588 * at all: 1589 */ 1590 if (blk_rq_is_passthrough(req)) 1591 return scsi_setup_scsi_cmnd(sdev, req); 1592 1593 if (sdev->handler && sdev->handler->prep_fn) { 1594 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1595 1596 if (ret != BLK_STS_OK) 1597 return ret; 1598 } 1599 1600 /* Usually overridden by the ULP */ 1601 cmd->allowed = 0; 1602 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1603 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1604 } 1605 1606 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly) 1607 { 1608 struct request *req = scsi_cmd_to_rq(cmd); 1609 1610 switch (cmd->submitter) { 1611 case SUBMITTED_BY_BLOCK_LAYER: 1612 break; 1613 case SUBMITTED_BY_SCSI_ERROR_HANDLER: 1614 return scsi_eh_done(cmd); 1615 case SUBMITTED_BY_SCSI_RESET_IOCTL: 1616 return; 1617 } 1618 1619 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q))) 1620 return; 1621 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1622 return; 1623 trace_scsi_dispatch_cmd_done(cmd); 1624 1625 if (complete_directly) 1626 blk_mq_complete_request_direct(req, scsi_complete); 1627 else 1628 blk_mq_complete_request(req); 1629 } 1630 1631 void scsi_done(struct scsi_cmnd *cmd) 1632 { 1633 scsi_done_internal(cmd, false); 1634 } 1635 EXPORT_SYMBOL(scsi_done); 1636 1637 void scsi_done_direct(struct scsi_cmnd *cmd) 1638 { 1639 scsi_done_internal(cmd, true); 1640 } 1641 EXPORT_SYMBOL(scsi_done_direct); 1642 1643 static void scsi_mq_put_budget(struct request_queue *q, int budget_token) 1644 { 1645 struct scsi_device *sdev = q->queuedata; 1646 1647 sbitmap_put(&sdev->budget_map, budget_token); 1648 } 1649 1650 /* 1651 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 1652 * not change behaviour from the previous unplug mechanism, experimentation 1653 * may prove this needs changing. 1654 */ 1655 #define SCSI_QUEUE_DELAY 3 1656 1657 static int scsi_mq_get_budget(struct request_queue *q) 1658 { 1659 struct scsi_device *sdev = q->queuedata; 1660 int token = scsi_dev_queue_ready(q, sdev); 1661 1662 if (token >= 0) 1663 return token; 1664 1665 atomic_inc(&sdev->restarts); 1666 1667 /* 1668 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1669 * .restarts must be incremented before .device_busy is read because the 1670 * code in scsi_run_queue_async() depends on the order of these operations. 1671 */ 1672 smp_mb__after_atomic(); 1673 1674 /* 1675 * If all in-flight requests originated from this LUN are completed 1676 * before reading .device_busy, sdev->device_busy will be observed as 1677 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1678 * soon. Otherwise, completion of one of these requests will observe 1679 * the .restarts flag, and the request queue will be run for handling 1680 * this request, see scsi_end_request(). 1681 */ 1682 if (unlikely(scsi_device_busy(sdev) == 0 && 1683 !scsi_device_blocked(sdev))) 1684 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1685 return -1; 1686 } 1687 1688 static void scsi_mq_set_rq_budget_token(struct request *req, int token) 1689 { 1690 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1691 1692 cmd->budget_token = token; 1693 } 1694 1695 static int scsi_mq_get_rq_budget_token(struct request *req) 1696 { 1697 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1698 1699 return cmd->budget_token; 1700 } 1701 1702 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1703 const struct blk_mq_queue_data *bd) 1704 { 1705 struct request *req = bd->rq; 1706 struct request_queue *q = req->q; 1707 struct scsi_device *sdev = q->queuedata; 1708 struct Scsi_Host *shost = sdev->host; 1709 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1710 blk_status_t ret; 1711 int reason; 1712 1713 WARN_ON_ONCE(cmd->budget_token < 0); 1714 1715 /* 1716 * If the device is not in running state we will reject some or all 1717 * commands. 1718 */ 1719 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1720 ret = scsi_device_state_check(sdev, req); 1721 if (ret != BLK_STS_OK) 1722 goto out_put_budget; 1723 } 1724 1725 ret = BLK_STS_RESOURCE; 1726 if (!scsi_target_queue_ready(shost, sdev)) 1727 goto out_put_budget; 1728 if (unlikely(scsi_host_in_recovery(shost))) { 1729 if (cmd->flags & SCMD_FAIL_IF_RECOVERING) 1730 ret = BLK_STS_OFFLINE; 1731 goto out_dec_target_busy; 1732 } 1733 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1734 goto out_dec_target_busy; 1735 1736 if (!(req->rq_flags & RQF_DONTPREP)) { 1737 ret = scsi_prepare_cmd(req); 1738 if (ret != BLK_STS_OK) 1739 goto out_dec_host_busy; 1740 req->rq_flags |= RQF_DONTPREP; 1741 } else { 1742 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1743 } 1744 1745 cmd->flags &= SCMD_PRESERVED_FLAGS; 1746 if (sdev->simple_tags) 1747 cmd->flags |= SCMD_TAGGED; 1748 if (bd->last) 1749 cmd->flags |= SCMD_LAST; 1750 1751 scsi_set_resid(cmd, 0); 1752 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1753 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER; 1754 1755 blk_mq_start_request(req); 1756 reason = scsi_dispatch_cmd(cmd); 1757 if (reason) { 1758 scsi_set_blocked(cmd, reason); 1759 ret = BLK_STS_RESOURCE; 1760 goto out_dec_host_busy; 1761 } 1762 1763 atomic_inc(&cmd->device->iorequest_cnt); 1764 return BLK_STS_OK; 1765 1766 out_dec_host_busy: 1767 scsi_dec_host_busy(shost, cmd); 1768 out_dec_target_busy: 1769 if (scsi_target(sdev)->can_queue > 0) 1770 atomic_dec(&scsi_target(sdev)->target_busy); 1771 out_put_budget: 1772 scsi_mq_put_budget(q, cmd->budget_token); 1773 cmd->budget_token = -1; 1774 switch (ret) { 1775 case BLK_STS_OK: 1776 break; 1777 case BLK_STS_RESOURCE: 1778 case BLK_STS_ZONE_RESOURCE: 1779 if (scsi_device_blocked(sdev)) 1780 ret = BLK_STS_DEV_RESOURCE; 1781 break; 1782 case BLK_STS_AGAIN: 1783 cmd->result = DID_BUS_BUSY << 16; 1784 if (req->rq_flags & RQF_DONTPREP) 1785 scsi_mq_uninit_cmd(cmd); 1786 break; 1787 default: 1788 if (unlikely(!scsi_device_online(sdev))) 1789 cmd->result = DID_NO_CONNECT << 16; 1790 else 1791 cmd->result = DID_ERROR << 16; 1792 /* 1793 * Make sure to release all allocated resources when 1794 * we hit an error, as we will never see this command 1795 * again. 1796 */ 1797 if (req->rq_flags & RQF_DONTPREP) 1798 scsi_mq_uninit_cmd(cmd); 1799 scsi_run_queue_async(sdev); 1800 break; 1801 } 1802 return ret; 1803 } 1804 1805 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1806 unsigned int hctx_idx, unsigned int numa_node) 1807 { 1808 struct Scsi_Host *shost = set->driver_data; 1809 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1810 struct scatterlist *sg; 1811 int ret = 0; 1812 1813 cmd->sense_buffer = 1814 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node); 1815 if (!cmd->sense_buffer) 1816 return -ENOMEM; 1817 1818 if (scsi_host_get_prot(shost)) { 1819 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1820 shost->hostt->cmd_size; 1821 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1822 } 1823 1824 if (shost->hostt->init_cmd_priv) { 1825 ret = shost->hostt->init_cmd_priv(shost, cmd); 1826 if (ret < 0) 1827 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1828 } 1829 1830 return ret; 1831 } 1832 1833 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1834 unsigned int hctx_idx) 1835 { 1836 struct Scsi_Host *shost = set->driver_data; 1837 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1838 1839 if (shost->hostt->exit_cmd_priv) 1840 shost->hostt->exit_cmd_priv(shost, cmd); 1841 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1842 } 1843 1844 1845 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1846 { 1847 struct Scsi_Host *shost = hctx->driver_data; 1848 1849 if (shost->hostt->mq_poll) 1850 return shost->hostt->mq_poll(shost, hctx->queue_num); 1851 1852 return 0; 1853 } 1854 1855 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1856 unsigned int hctx_idx) 1857 { 1858 struct Scsi_Host *shost = data; 1859 1860 hctx->driver_data = shost; 1861 return 0; 1862 } 1863 1864 static void scsi_map_queues(struct blk_mq_tag_set *set) 1865 { 1866 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1867 1868 if (shost->hostt->map_queues) 1869 return shost->hostt->map_queues(shost); 1870 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1871 } 1872 1873 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1874 { 1875 struct device *dev = shost->dma_dev; 1876 1877 /* 1878 * this limit is imposed by hardware restrictions 1879 */ 1880 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1881 SG_MAX_SEGMENTS)); 1882 1883 if (scsi_host_prot_dma(shost)) { 1884 shost->sg_prot_tablesize = 1885 min_not_zero(shost->sg_prot_tablesize, 1886 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1887 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1888 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1889 } 1890 1891 blk_queue_max_hw_sectors(q, shost->max_sectors); 1892 blk_queue_segment_boundary(q, shost->dma_boundary); 1893 dma_set_seg_boundary(dev, shost->dma_boundary); 1894 1895 blk_queue_max_segment_size(q, shost->max_segment_size); 1896 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1897 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1898 1899 /* 1900 * Set a reasonable default alignment: The larger of 32-byte (dword), 1901 * which is a common minimum for HBAs, and the minimum DMA alignment, 1902 * which is set by the platform. 1903 * 1904 * Devices that require a bigger alignment can increase it later. 1905 */ 1906 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1907 } 1908 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1909 1910 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1911 .get_budget = scsi_mq_get_budget, 1912 .put_budget = scsi_mq_put_budget, 1913 .queue_rq = scsi_queue_rq, 1914 .complete = scsi_complete, 1915 .timeout = scsi_timeout, 1916 #ifdef CONFIG_BLK_DEBUG_FS 1917 .show_rq = scsi_show_rq, 1918 #endif 1919 .init_request = scsi_mq_init_request, 1920 .exit_request = scsi_mq_exit_request, 1921 .cleanup_rq = scsi_cleanup_rq, 1922 .busy = scsi_mq_lld_busy, 1923 .map_queues = scsi_map_queues, 1924 .init_hctx = scsi_init_hctx, 1925 .poll = scsi_mq_poll, 1926 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1927 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1928 }; 1929 1930 1931 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1932 { 1933 struct Scsi_Host *shost = hctx->driver_data; 1934 1935 shost->hostt->commit_rqs(shost, hctx->queue_num); 1936 } 1937 1938 static const struct blk_mq_ops scsi_mq_ops = { 1939 .get_budget = scsi_mq_get_budget, 1940 .put_budget = scsi_mq_put_budget, 1941 .queue_rq = scsi_queue_rq, 1942 .commit_rqs = scsi_commit_rqs, 1943 .complete = scsi_complete, 1944 .timeout = scsi_timeout, 1945 #ifdef CONFIG_BLK_DEBUG_FS 1946 .show_rq = scsi_show_rq, 1947 #endif 1948 .init_request = scsi_mq_init_request, 1949 .exit_request = scsi_mq_exit_request, 1950 .cleanup_rq = scsi_cleanup_rq, 1951 .busy = scsi_mq_lld_busy, 1952 .map_queues = scsi_map_queues, 1953 .init_hctx = scsi_init_hctx, 1954 .poll = scsi_mq_poll, 1955 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1956 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1957 }; 1958 1959 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1960 { 1961 unsigned int cmd_size, sgl_size; 1962 struct blk_mq_tag_set *tag_set = &shost->tag_set; 1963 1964 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1965 scsi_mq_inline_sgl_size(shost)); 1966 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1967 if (scsi_host_get_prot(shost)) 1968 cmd_size += sizeof(struct scsi_data_buffer) + 1969 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1970 1971 memset(tag_set, 0, sizeof(*tag_set)); 1972 if (shost->hostt->commit_rqs) 1973 tag_set->ops = &scsi_mq_ops; 1974 else 1975 tag_set->ops = &scsi_mq_ops_no_commit; 1976 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 1977 tag_set->nr_maps = shost->nr_maps ? : 1; 1978 tag_set->queue_depth = shost->can_queue; 1979 tag_set->cmd_size = cmd_size; 1980 tag_set->numa_node = dev_to_node(shost->dma_dev); 1981 tag_set->flags = BLK_MQ_F_SHOULD_MERGE; 1982 tag_set->flags |= 1983 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1984 tag_set->driver_data = shost; 1985 if (shost->host_tagset) 1986 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1987 1988 return blk_mq_alloc_tag_set(tag_set); 1989 } 1990 1991 void scsi_mq_free_tags(struct kref *kref) 1992 { 1993 struct Scsi_Host *shost = container_of(kref, typeof(*shost), 1994 tagset_refcnt); 1995 1996 blk_mq_free_tag_set(&shost->tag_set); 1997 complete(&shost->tagset_freed); 1998 } 1999 2000 /** 2001 * scsi_device_from_queue - return sdev associated with a request_queue 2002 * @q: The request queue to return the sdev from 2003 * 2004 * Return the sdev associated with a request queue or NULL if the 2005 * request_queue does not reference a SCSI device. 2006 */ 2007 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2008 { 2009 struct scsi_device *sdev = NULL; 2010 2011 if (q->mq_ops == &scsi_mq_ops_no_commit || 2012 q->mq_ops == &scsi_mq_ops) 2013 sdev = q->queuedata; 2014 if (!sdev || !get_device(&sdev->sdev_gendev)) 2015 sdev = NULL; 2016 2017 return sdev; 2018 } 2019 /* 2020 * pktcdvd should have been integrated into the SCSI layers, but for historical 2021 * reasons like the old IDE driver it isn't. This export allows it to safely 2022 * probe if a given device is a SCSI one and only attach to that. 2023 */ 2024 #ifdef CONFIG_CDROM_PKTCDVD_MODULE 2025 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2026 #endif 2027 2028 /** 2029 * scsi_block_requests - Utility function used by low-level drivers to prevent 2030 * further commands from being queued to the device. 2031 * @shost: host in question 2032 * 2033 * There is no timer nor any other means by which the requests get unblocked 2034 * other than the low-level driver calling scsi_unblock_requests(). 2035 */ 2036 void scsi_block_requests(struct Scsi_Host *shost) 2037 { 2038 shost->host_self_blocked = 1; 2039 } 2040 EXPORT_SYMBOL(scsi_block_requests); 2041 2042 /** 2043 * scsi_unblock_requests - Utility function used by low-level drivers to allow 2044 * further commands to be queued to the device. 2045 * @shost: host in question 2046 * 2047 * There is no timer nor any other means by which the requests get unblocked 2048 * other than the low-level driver calling scsi_unblock_requests(). This is done 2049 * as an API function so that changes to the internals of the scsi mid-layer 2050 * won't require wholesale changes to drivers that use this feature. 2051 */ 2052 void scsi_unblock_requests(struct Scsi_Host *shost) 2053 { 2054 shost->host_self_blocked = 0; 2055 scsi_run_host_queues(shost); 2056 } 2057 EXPORT_SYMBOL(scsi_unblock_requests); 2058 2059 void scsi_exit_queue(void) 2060 { 2061 kmem_cache_destroy(scsi_sense_cache); 2062 } 2063 2064 /** 2065 * scsi_mode_select - issue a mode select 2066 * @sdev: SCSI device to be queried 2067 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2068 * @sp: Save page bit (0 == don't save, 1 == save) 2069 * @buffer: request buffer (may not be smaller than eight bytes) 2070 * @len: length of request buffer. 2071 * @timeout: command timeout 2072 * @retries: number of retries before failing 2073 * @data: returns a structure abstracting the mode header data 2074 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2075 * must be SCSI_SENSE_BUFFERSIZE big. 2076 * 2077 * Returns zero if successful; negative error number or scsi 2078 * status on error 2079 * 2080 */ 2081 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp, 2082 unsigned char *buffer, int len, int timeout, int retries, 2083 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2084 { 2085 unsigned char cmd[10]; 2086 unsigned char *real_buffer; 2087 const struct scsi_exec_args exec_args = { 2088 .sshdr = sshdr, 2089 }; 2090 int ret; 2091 2092 memset(cmd, 0, sizeof(cmd)); 2093 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2094 2095 /* 2096 * Use MODE SELECT(10) if the device asked for it or if the mode page 2097 * and the mode select header cannot fit within the maximumm 255 bytes 2098 * of the MODE SELECT(6) command. 2099 */ 2100 if (sdev->use_10_for_ms || 2101 len + 4 > 255 || 2102 data->block_descriptor_length > 255) { 2103 if (len > 65535 - 8) 2104 return -EINVAL; 2105 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2106 if (!real_buffer) 2107 return -ENOMEM; 2108 memcpy(real_buffer + 8, buffer, len); 2109 len += 8; 2110 real_buffer[0] = 0; 2111 real_buffer[1] = 0; 2112 real_buffer[2] = data->medium_type; 2113 real_buffer[3] = data->device_specific; 2114 real_buffer[4] = data->longlba ? 0x01 : 0; 2115 real_buffer[5] = 0; 2116 put_unaligned_be16(data->block_descriptor_length, 2117 &real_buffer[6]); 2118 2119 cmd[0] = MODE_SELECT_10; 2120 put_unaligned_be16(len, &cmd[7]); 2121 } else { 2122 if (data->longlba) 2123 return -EINVAL; 2124 2125 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2126 if (!real_buffer) 2127 return -ENOMEM; 2128 memcpy(real_buffer + 4, buffer, len); 2129 len += 4; 2130 real_buffer[0] = 0; 2131 real_buffer[1] = data->medium_type; 2132 real_buffer[2] = data->device_specific; 2133 real_buffer[3] = data->block_descriptor_length; 2134 2135 cmd[0] = MODE_SELECT; 2136 cmd[4] = len; 2137 } 2138 2139 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len, 2140 timeout, retries, &exec_args); 2141 kfree(real_buffer); 2142 return ret; 2143 } 2144 EXPORT_SYMBOL_GPL(scsi_mode_select); 2145 2146 /** 2147 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2148 * @sdev: SCSI device to be queried 2149 * @dbd: set to prevent mode sense from returning block descriptors 2150 * @modepage: mode page being requested 2151 * @subpage: sub-page of the mode page being requested 2152 * @buffer: request buffer (may not be smaller than eight bytes) 2153 * @len: length of request buffer. 2154 * @timeout: command timeout 2155 * @retries: number of retries before failing 2156 * @data: returns a structure abstracting the mode header data 2157 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2158 * must be SCSI_SENSE_BUFFERSIZE big. 2159 * 2160 * Returns zero if successful, or a negative error number on failure 2161 */ 2162 int 2163 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage, 2164 unsigned char *buffer, int len, int timeout, int retries, 2165 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2166 { 2167 unsigned char cmd[12]; 2168 int use_10_for_ms; 2169 int header_length; 2170 int result, retry_count = retries; 2171 struct scsi_sense_hdr my_sshdr; 2172 const struct scsi_exec_args exec_args = { 2173 /* caller might not be interested in sense, but we need it */ 2174 .sshdr = sshdr ? : &my_sshdr, 2175 }; 2176 2177 memset(data, 0, sizeof(*data)); 2178 memset(&cmd[0], 0, 12); 2179 2180 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2181 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2182 cmd[2] = modepage; 2183 cmd[3] = subpage; 2184 2185 sshdr = exec_args.sshdr; 2186 2187 retry: 2188 use_10_for_ms = sdev->use_10_for_ms || len > 255; 2189 2190 if (use_10_for_ms) { 2191 if (len < 8 || len > 65535) 2192 return -EINVAL; 2193 2194 cmd[0] = MODE_SENSE_10; 2195 put_unaligned_be16(len, &cmd[7]); 2196 header_length = 8; 2197 } else { 2198 if (len < 4) 2199 return -EINVAL; 2200 2201 cmd[0] = MODE_SENSE; 2202 cmd[4] = len; 2203 header_length = 4; 2204 } 2205 2206 memset(buffer, 0, len); 2207 2208 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len, 2209 timeout, retries, &exec_args); 2210 if (result < 0) 2211 return result; 2212 2213 /* This code looks awful: what it's doing is making sure an 2214 * ILLEGAL REQUEST sense return identifies the actual command 2215 * byte as the problem. MODE_SENSE commands can return 2216 * ILLEGAL REQUEST if the code page isn't supported */ 2217 2218 if (!scsi_status_is_good(result)) { 2219 if (scsi_sense_valid(sshdr)) { 2220 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2221 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2222 /* 2223 * Invalid command operation code: retry using 2224 * MODE SENSE(6) if this was a MODE SENSE(10) 2225 * request, except if the request mode page is 2226 * too large for MODE SENSE single byte 2227 * allocation length field. 2228 */ 2229 if (use_10_for_ms) { 2230 if (len > 255) 2231 return -EIO; 2232 sdev->use_10_for_ms = 0; 2233 goto retry; 2234 } 2235 } 2236 if (scsi_status_is_check_condition(result) && 2237 sshdr->sense_key == UNIT_ATTENTION && 2238 retry_count) { 2239 retry_count--; 2240 goto retry; 2241 } 2242 } 2243 return -EIO; 2244 } 2245 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2246 (modepage == 6 || modepage == 8))) { 2247 /* Initio breakage? */ 2248 header_length = 0; 2249 data->length = 13; 2250 data->medium_type = 0; 2251 data->device_specific = 0; 2252 data->longlba = 0; 2253 data->block_descriptor_length = 0; 2254 } else if (use_10_for_ms) { 2255 data->length = get_unaligned_be16(&buffer[0]) + 2; 2256 data->medium_type = buffer[2]; 2257 data->device_specific = buffer[3]; 2258 data->longlba = buffer[4] & 0x01; 2259 data->block_descriptor_length = get_unaligned_be16(&buffer[6]); 2260 } else { 2261 data->length = buffer[0] + 1; 2262 data->medium_type = buffer[1]; 2263 data->device_specific = buffer[2]; 2264 data->block_descriptor_length = buffer[3]; 2265 } 2266 data->header_length = header_length; 2267 2268 return 0; 2269 } 2270 EXPORT_SYMBOL(scsi_mode_sense); 2271 2272 /** 2273 * scsi_test_unit_ready - test if unit is ready 2274 * @sdev: scsi device to change the state of. 2275 * @timeout: command timeout 2276 * @retries: number of retries before failing 2277 * @sshdr: outpout pointer for decoded sense information. 2278 * 2279 * Returns zero if unsuccessful or an error if TUR failed. For 2280 * removable media, UNIT_ATTENTION sets ->changed flag. 2281 **/ 2282 int 2283 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2284 struct scsi_sense_hdr *sshdr) 2285 { 2286 char cmd[] = { 2287 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2288 }; 2289 const struct scsi_exec_args exec_args = { 2290 .sshdr = sshdr, 2291 }; 2292 int result; 2293 2294 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2295 do { 2296 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0, 2297 timeout, 1, &exec_args); 2298 if (sdev->removable && scsi_sense_valid(sshdr) && 2299 sshdr->sense_key == UNIT_ATTENTION) 2300 sdev->changed = 1; 2301 } while (scsi_sense_valid(sshdr) && 2302 sshdr->sense_key == UNIT_ATTENTION && --retries); 2303 2304 return result; 2305 } 2306 EXPORT_SYMBOL(scsi_test_unit_ready); 2307 2308 /** 2309 * scsi_device_set_state - Take the given device through the device state model. 2310 * @sdev: scsi device to change the state of. 2311 * @state: state to change to. 2312 * 2313 * Returns zero if successful or an error if the requested 2314 * transition is illegal. 2315 */ 2316 int 2317 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2318 { 2319 enum scsi_device_state oldstate = sdev->sdev_state; 2320 2321 if (state == oldstate) 2322 return 0; 2323 2324 switch (state) { 2325 case SDEV_CREATED: 2326 switch (oldstate) { 2327 case SDEV_CREATED_BLOCK: 2328 break; 2329 default: 2330 goto illegal; 2331 } 2332 break; 2333 2334 case SDEV_RUNNING: 2335 switch (oldstate) { 2336 case SDEV_CREATED: 2337 case SDEV_OFFLINE: 2338 case SDEV_TRANSPORT_OFFLINE: 2339 case SDEV_QUIESCE: 2340 case SDEV_BLOCK: 2341 break; 2342 default: 2343 goto illegal; 2344 } 2345 break; 2346 2347 case SDEV_QUIESCE: 2348 switch (oldstate) { 2349 case SDEV_RUNNING: 2350 case SDEV_OFFLINE: 2351 case SDEV_TRANSPORT_OFFLINE: 2352 break; 2353 default: 2354 goto illegal; 2355 } 2356 break; 2357 2358 case SDEV_OFFLINE: 2359 case SDEV_TRANSPORT_OFFLINE: 2360 switch (oldstate) { 2361 case SDEV_CREATED: 2362 case SDEV_RUNNING: 2363 case SDEV_QUIESCE: 2364 case SDEV_BLOCK: 2365 break; 2366 default: 2367 goto illegal; 2368 } 2369 break; 2370 2371 case SDEV_BLOCK: 2372 switch (oldstate) { 2373 case SDEV_RUNNING: 2374 case SDEV_CREATED_BLOCK: 2375 case SDEV_QUIESCE: 2376 case SDEV_OFFLINE: 2377 break; 2378 default: 2379 goto illegal; 2380 } 2381 break; 2382 2383 case SDEV_CREATED_BLOCK: 2384 switch (oldstate) { 2385 case SDEV_CREATED: 2386 break; 2387 default: 2388 goto illegal; 2389 } 2390 break; 2391 2392 case SDEV_CANCEL: 2393 switch (oldstate) { 2394 case SDEV_CREATED: 2395 case SDEV_RUNNING: 2396 case SDEV_QUIESCE: 2397 case SDEV_OFFLINE: 2398 case SDEV_TRANSPORT_OFFLINE: 2399 break; 2400 default: 2401 goto illegal; 2402 } 2403 break; 2404 2405 case SDEV_DEL: 2406 switch (oldstate) { 2407 case SDEV_CREATED: 2408 case SDEV_RUNNING: 2409 case SDEV_OFFLINE: 2410 case SDEV_TRANSPORT_OFFLINE: 2411 case SDEV_CANCEL: 2412 case SDEV_BLOCK: 2413 case SDEV_CREATED_BLOCK: 2414 break; 2415 default: 2416 goto illegal; 2417 } 2418 break; 2419 2420 } 2421 sdev->offline_already = false; 2422 sdev->sdev_state = state; 2423 return 0; 2424 2425 illegal: 2426 SCSI_LOG_ERROR_RECOVERY(1, 2427 sdev_printk(KERN_ERR, sdev, 2428 "Illegal state transition %s->%s", 2429 scsi_device_state_name(oldstate), 2430 scsi_device_state_name(state)) 2431 ); 2432 return -EINVAL; 2433 } 2434 EXPORT_SYMBOL(scsi_device_set_state); 2435 2436 /** 2437 * scsi_evt_emit - emit a single SCSI device uevent 2438 * @sdev: associated SCSI device 2439 * @evt: event to emit 2440 * 2441 * Send a single uevent (scsi_event) to the associated scsi_device. 2442 */ 2443 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2444 { 2445 int idx = 0; 2446 char *envp[3]; 2447 2448 switch (evt->evt_type) { 2449 case SDEV_EVT_MEDIA_CHANGE: 2450 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2451 break; 2452 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2453 scsi_rescan_device(&sdev->sdev_gendev); 2454 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2455 break; 2456 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2457 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2458 break; 2459 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2460 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2461 break; 2462 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2463 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2464 break; 2465 case SDEV_EVT_LUN_CHANGE_REPORTED: 2466 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2467 break; 2468 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2469 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2470 break; 2471 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2472 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2473 break; 2474 default: 2475 /* do nothing */ 2476 break; 2477 } 2478 2479 envp[idx++] = NULL; 2480 2481 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2482 } 2483 2484 /** 2485 * scsi_evt_thread - send a uevent for each scsi event 2486 * @work: work struct for scsi_device 2487 * 2488 * Dispatch queued events to their associated scsi_device kobjects 2489 * as uevents. 2490 */ 2491 void scsi_evt_thread(struct work_struct *work) 2492 { 2493 struct scsi_device *sdev; 2494 enum scsi_device_event evt_type; 2495 LIST_HEAD(event_list); 2496 2497 sdev = container_of(work, struct scsi_device, event_work); 2498 2499 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2500 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2501 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2502 2503 while (1) { 2504 struct scsi_event *evt; 2505 struct list_head *this, *tmp; 2506 unsigned long flags; 2507 2508 spin_lock_irqsave(&sdev->list_lock, flags); 2509 list_splice_init(&sdev->event_list, &event_list); 2510 spin_unlock_irqrestore(&sdev->list_lock, flags); 2511 2512 if (list_empty(&event_list)) 2513 break; 2514 2515 list_for_each_safe(this, tmp, &event_list) { 2516 evt = list_entry(this, struct scsi_event, node); 2517 list_del(&evt->node); 2518 scsi_evt_emit(sdev, evt); 2519 kfree(evt); 2520 } 2521 } 2522 } 2523 2524 /** 2525 * sdev_evt_send - send asserted event to uevent thread 2526 * @sdev: scsi_device event occurred on 2527 * @evt: event to send 2528 * 2529 * Assert scsi device event asynchronously. 2530 */ 2531 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2532 { 2533 unsigned long flags; 2534 2535 #if 0 2536 /* FIXME: currently this check eliminates all media change events 2537 * for polled devices. Need to update to discriminate between AN 2538 * and polled events */ 2539 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2540 kfree(evt); 2541 return; 2542 } 2543 #endif 2544 2545 spin_lock_irqsave(&sdev->list_lock, flags); 2546 list_add_tail(&evt->node, &sdev->event_list); 2547 schedule_work(&sdev->event_work); 2548 spin_unlock_irqrestore(&sdev->list_lock, flags); 2549 } 2550 EXPORT_SYMBOL_GPL(sdev_evt_send); 2551 2552 /** 2553 * sdev_evt_alloc - allocate a new scsi event 2554 * @evt_type: type of event to allocate 2555 * @gfpflags: GFP flags for allocation 2556 * 2557 * Allocates and returns a new scsi_event. 2558 */ 2559 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2560 gfp_t gfpflags) 2561 { 2562 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2563 if (!evt) 2564 return NULL; 2565 2566 evt->evt_type = evt_type; 2567 INIT_LIST_HEAD(&evt->node); 2568 2569 /* evt_type-specific initialization, if any */ 2570 switch (evt_type) { 2571 case SDEV_EVT_MEDIA_CHANGE: 2572 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2573 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2574 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2575 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2576 case SDEV_EVT_LUN_CHANGE_REPORTED: 2577 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2578 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2579 default: 2580 /* do nothing */ 2581 break; 2582 } 2583 2584 return evt; 2585 } 2586 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2587 2588 /** 2589 * sdev_evt_send_simple - send asserted event to uevent thread 2590 * @sdev: scsi_device event occurred on 2591 * @evt_type: type of event to send 2592 * @gfpflags: GFP flags for allocation 2593 * 2594 * Assert scsi device event asynchronously, given an event type. 2595 */ 2596 void sdev_evt_send_simple(struct scsi_device *sdev, 2597 enum scsi_device_event evt_type, gfp_t gfpflags) 2598 { 2599 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2600 if (!evt) { 2601 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2602 evt_type); 2603 return; 2604 } 2605 2606 sdev_evt_send(sdev, evt); 2607 } 2608 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2609 2610 /** 2611 * scsi_device_quiesce - Block all commands except power management. 2612 * @sdev: scsi device to quiesce. 2613 * 2614 * This works by trying to transition to the SDEV_QUIESCE state 2615 * (which must be a legal transition). When the device is in this 2616 * state, only power management requests will be accepted, all others will 2617 * be deferred. 2618 * 2619 * Must be called with user context, may sleep. 2620 * 2621 * Returns zero if unsuccessful or an error if not. 2622 */ 2623 int 2624 scsi_device_quiesce(struct scsi_device *sdev) 2625 { 2626 struct request_queue *q = sdev->request_queue; 2627 int err; 2628 2629 /* 2630 * It is allowed to call scsi_device_quiesce() multiple times from 2631 * the same context but concurrent scsi_device_quiesce() calls are 2632 * not allowed. 2633 */ 2634 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2635 2636 if (sdev->quiesced_by == current) 2637 return 0; 2638 2639 blk_set_pm_only(q); 2640 2641 blk_mq_freeze_queue(q); 2642 /* 2643 * Ensure that the effect of blk_set_pm_only() will be visible 2644 * for percpu_ref_tryget() callers that occur after the queue 2645 * unfreeze even if the queue was already frozen before this function 2646 * was called. See also https://lwn.net/Articles/573497/. 2647 */ 2648 synchronize_rcu(); 2649 blk_mq_unfreeze_queue(q); 2650 2651 mutex_lock(&sdev->state_mutex); 2652 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2653 if (err == 0) 2654 sdev->quiesced_by = current; 2655 else 2656 blk_clear_pm_only(q); 2657 mutex_unlock(&sdev->state_mutex); 2658 2659 return err; 2660 } 2661 EXPORT_SYMBOL(scsi_device_quiesce); 2662 2663 /** 2664 * scsi_device_resume - Restart user issued commands to a quiesced device. 2665 * @sdev: scsi device to resume. 2666 * 2667 * Moves the device from quiesced back to running and restarts the 2668 * queues. 2669 * 2670 * Must be called with user context, may sleep. 2671 */ 2672 void scsi_device_resume(struct scsi_device *sdev) 2673 { 2674 /* check if the device state was mutated prior to resume, and if 2675 * so assume the state is being managed elsewhere (for example 2676 * device deleted during suspend) 2677 */ 2678 mutex_lock(&sdev->state_mutex); 2679 if (sdev->sdev_state == SDEV_QUIESCE) 2680 scsi_device_set_state(sdev, SDEV_RUNNING); 2681 if (sdev->quiesced_by) { 2682 sdev->quiesced_by = NULL; 2683 blk_clear_pm_only(sdev->request_queue); 2684 } 2685 mutex_unlock(&sdev->state_mutex); 2686 } 2687 EXPORT_SYMBOL(scsi_device_resume); 2688 2689 static void 2690 device_quiesce_fn(struct scsi_device *sdev, void *data) 2691 { 2692 scsi_device_quiesce(sdev); 2693 } 2694 2695 void 2696 scsi_target_quiesce(struct scsi_target *starget) 2697 { 2698 starget_for_each_device(starget, NULL, device_quiesce_fn); 2699 } 2700 EXPORT_SYMBOL(scsi_target_quiesce); 2701 2702 static void 2703 device_resume_fn(struct scsi_device *sdev, void *data) 2704 { 2705 scsi_device_resume(sdev); 2706 } 2707 2708 void 2709 scsi_target_resume(struct scsi_target *starget) 2710 { 2711 starget_for_each_device(starget, NULL, device_resume_fn); 2712 } 2713 EXPORT_SYMBOL(scsi_target_resume); 2714 2715 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev) 2716 { 2717 if (scsi_device_set_state(sdev, SDEV_BLOCK)) 2718 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2719 2720 return 0; 2721 } 2722 2723 void scsi_start_queue(struct scsi_device *sdev) 2724 { 2725 if (cmpxchg(&sdev->queue_stopped, 1, 0)) 2726 blk_mq_unquiesce_queue(sdev->request_queue); 2727 } 2728 2729 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait) 2730 { 2731 /* 2732 * The atomic variable of ->queue_stopped covers that 2733 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue. 2734 * 2735 * However, we still need to wait until quiesce is done 2736 * in case that queue has been stopped. 2737 */ 2738 if (!cmpxchg(&sdev->queue_stopped, 0, 1)) { 2739 if (nowait) 2740 blk_mq_quiesce_queue_nowait(sdev->request_queue); 2741 else 2742 blk_mq_quiesce_queue(sdev->request_queue); 2743 } else { 2744 if (!nowait) 2745 blk_mq_wait_quiesce_done(sdev->request_queue->tag_set); 2746 } 2747 } 2748 2749 /** 2750 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2751 * @sdev: device to block 2752 * 2753 * Pause SCSI command processing on the specified device. Does not sleep. 2754 * 2755 * Returns zero if successful or a negative error code upon failure. 2756 * 2757 * Notes: 2758 * This routine transitions the device to the SDEV_BLOCK state (which must be 2759 * a legal transition). When the device is in this state, command processing 2760 * is paused until the device leaves the SDEV_BLOCK state. See also 2761 * scsi_internal_device_unblock_nowait(). 2762 */ 2763 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2764 { 2765 int ret = __scsi_internal_device_block_nowait(sdev); 2766 2767 /* 2768 * The device has transitioned to SDEV_BLOCK. Stop the 2769 * block layer from calling the midlayer with this device's 2770 * request queue. 2771 */ 2772 if (!ret) 2773 scsi_stop_queue(sdev, true); 2774 return ret; 2775 } 2776 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2777 2778 /** 2779 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2780 * @sdev: device to block 2781 * 2782 * Pause SCSI command processing on the specified device and wait until all 2783 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2784 * 2785 * Returns zero if successful or a negative error code upon failure. 2786 * 2787 * Note: 2788 * This routine transitions the device to the SDEV_BLOCK state (which must be 2789 * a legal transition). When the device is in this state, command processing 2790 * is paused until the device leaves the SDEV_BLOCK state. See also 2791 * scsi_internal_device_unblock(). 2792 */ 2793 static int scsi_internal_device_block(struct scsi_device *sdev) 2794 { 2795 int err; 2796 2797 mutex_lock(&sdev->state_mutex); 2798 err = __scsi_internal_device_block_nowait(sdev); 2799 if (err == 0) 2800 scsi_stop_queue(sdev, false); 2801 mutex_unlock(&sdev->state_mutex); 2802 2803 return err; 2804 } 2805 2806 /** 2807 * scsi_internal_device_unblock_nowait - resume a device after a block request 2808 * @sdev: device to resume 2809 * @new_state: state to set the device to after unblocking 2810 * 2811 * Restart the device queue for a previously suspended SCSI device. Does not 2812 * sleep. 2813 * 2814 * Returns zero if successful or a negative error code upon failure. 2815 * 2816 * Notes: 2817 * This routine transitions the device to the SDEV_RUNNING state or to one of 2818 * the offline states (which must be a legal transition) allowing the midlayer 2819 * to goose the queue for this device. 2820 */ 2821 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2822 enum scsi_device_state new_state) 2823 { 2824 switch (new_state) { 2825 case SDEV_RUNNING: 2826 case SDEV_TRANSPORT_OFFLINE: 2827 break; 2828 default: 2829 return -EINVAL; 2830 } 2831 2832 /* 2833 * Try to transition the scsi device to SDEV_RUNNING or one of the 2834 * offlined states and goose the device queue if successful. 2835 */ 2836 switch (sdev->sdev_state) { 2837 case SDEV_BLOCK: 2838 case SDEV_TRANSPORT_OFFLINE: 2839 sdev->sdev_state = new_state; 2840 break; 2841 case SDEV_CREATED_BLOCK: 2842 if (new_state == SDEV_TRANSPORT_OFFLINE || 2843 new_state == SDEV_OFFLINE) 2844 sdev->sdev_state = new_state; 2845 else 2846 sdev->sdev_state = SDEV_CREATED; 2847 break; 2848 case SDEV_CANCEL: 2849 case SDEV_OFFLINE: 2850 break; 2851 default: 2852 return -EINVAL; 2853 } 2854 scsi_start_queue(sdev); 2855 2856 return 0; 2857 } 2858 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2859 2860 /** 2861 * scsi_internal_device_unblock - resume a device after a block request 2862 * @sdev: device to resume 2863 * @new_state: state to set the device to after unblocking 2864 * 2865 * Restart the device queue for a previously suspended SCSI device. May sleep. 2866 * 2867 * Returns zero if successful or a negative error code upon failure. 2868 * 2869 * Notes: 2870 * This routine transitions the device to the SDEV_RUNNING state or to one of 2871 * the offline states (which must be a legal transition) allowing the midlayer 2872 * to goose the queue for this device. 2873 */ 2874 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2875 enum scsi_device_state new_state) 2876 { 2877 int ret; 2878 2879 mutex_lock(&sdev->state_mutex); 2880 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2881 mutex_unlock(&sdev->state_mutex); 2882 2883 return ret; 2884 } 2885 2886 static void 2887 device_block(struct scsi_device *sdev, void *data) 2888 { 2889 int ret; 2890 2891 ret = scsi_internal_device_block(sdev); 2892 2893 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n", 2894 dev_name(&sdev->sdev_gendev), ret); 2895 } 2896 2897 static int 2898 target_block(struct device *dev, void *data) 2899 { 2900 if (scsi_is_target_device(dev)) 2901 starget_for_each_device(to_scsi_target(dev), NULL, 2902 device_block); 2903 return 0; 2904 } 2905 2906 void 2907 scsi_target_block(struct device *dev) 2908 { 2909 if (scsi_is_target_device(dev)) 2910 starget_for_each_device(to_scsi_target(dev), NULL, 2911 device_block); 2912 else 2913 device_for_each_child(dev, NULL, target_block); 2914 } 2915 EXPORT_SYMBOL_GPL(scsi_target_block); 2916 2917 static void 2918 device_unblock(struct scsi_device *sdev, void *data) 2919 { 2920 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2921 } 2922 2923 static int 2924 target_unblock(struct device *dev, void *data) 2925 { 2926 if (scsi_is_target_device(dev)) 2927 starget_for_each_device(to_scsi_target(dev), data, 2928 device_unblock); 2929 return 0; 2930 } 2931 2932 void 2933 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2934 { 2935 if (scsi_is_target_device(dev)) 2936 starget_for_each_device(to_scsi_target(dev), &new_state, 2937 device_unblock); 2938 else 2939 device_for_each_child(dev, &new_state, target_unblock); 2940 } 2941 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2942 2943 int 2944 scsi_host_block(struct Scsi_Host *shost) 2945 { 2946 struct scsi_device *sdev; 2947 int ret = 0; 2948 2949 /* 2950 * Call scsi_internal_device_block_nowait so we can avoid 2951 * calling synchronize_rcu() for each LUN. 2952 */ 2953 shost_for_each_device(sdev, shost) { 2954 mutex_lock(&sdev->state_mutex); 2955 ret = scsi_internal_device_block_nowait(sdev); 2956 mutex_unlock(&sdev->state_mutex); 2957 if (ret) { 2958 scsi_device_put(sdev); 2959 break; 2960 } 2961 } 2962 2963 /* 2964 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so 2965 * calling synchronize_rcu() once is enough. 2966 */ 2967 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING); 2968 2969 if (!ret) 2970 synchronize_rcu(); 2971 2972 return ret; 2973 } 2974 EXPORT_SYMBOL_GPL(scsi_host_block); 2975 2976 int 2977 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 2978 { 2979 struct scsi_device *sdev; 2980 int ret = 0; 2981 2982 shost_for_each_device(sdev, shost) { 2983 ret = scsi_internal_device_unblock(sdev, new_state); 2984 if (ret) { 2985 scsi_device_put(sdev); 2986 break; 2987 } 2988 } 2989 return ret; 2990 } 2991 EXPORT_SYMBOL_GPL(scsi_host_unblock); 2992 2993 /** 2994 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2995 * @sgl: scatter-gather list 2996 * @sg_count: number of segments in sg 2997 * @offset: offset in bytes into sg, on return offset into the mapped area 2998 * @len: bytes to map, on return number of bytes mapped 2999 * 3000 * Returns virtual address of the start of the mapped page 3001 */ 3002 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3003 size_t *offset, size_t *len) 3004 { 3005 int i; 3006 size_t sg_len = 0, len_complete = 0; 3007 struct scatterlist *sg; 3008 struct page *page; 3009 3010 WARN_ON(!irqs_disabled()); 3011 3012 for_each_sg(sgl, sg, sg_count, i) { 3013 len_complete = sg_len; /* Complete sg-entries */ 3014 sg_len += sg->length; 3015 if (sg_len > *offset) 3016 break; 3017 } 3018 3019 if (unlikely(i == sg_count)) { 3020 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3021 "elements %d\n", 3022 __func__, sg_len, *offset, sg_count); 3023 WARN_ON(1); 3024 return NULL; 3025 } 3026 3027 /* Offset starting from the beginning of first page in this sg-entry */ 3028 *offset = *offset - len_complete + sg->offset; 3029 3030 /* Assumption: contiguous pages can be accessed as "page + i" */ 3031 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3032 *offset &= ~PAGE_MASK; 3033 3034 /* Bytes in this sg-entry from *offset to the end of the page */ 3035 sg_len = PAGE_SIZE - *offset; 3036 if (*len > sg_len) 3037 *len = sg_len; 3038 3039 return kmap_atomic(page); 3040 } 3041 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3042 3043 /** 3044 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3045 * @virt: virtual address to be unmapped 3046 */ 3047 void scsi_kunmap_atomic_sg(void *virt) 3048 { 3049 kunmap_atomic(virt); 3050 } 3051 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3052 3053 void sdev_disable_disk_events(struct scsi_device *sdev) 3054 { 3055 atomic_inc(&sdev->disk_events_disable_depth); 3056 } 3057 EXPORT_SYMBOL(sdev_disable_disk_events); 3058 3059 void sdev_enable_disk_events(struct scsi_device *sdev) 3060 { 3061 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3062 return; 3063 atomic_dec(&sdev->disk_events_disable_depth); 3064 } 3065 EXPORT_SYMBOL(sdev_enable_disk_events); 3066 3067 static unsigned char designator_prio(const unsigned char *d) 3068 { 3069 if (d[1] & 0x30) 3070 /* not associated with LUN */ 3071 return 0; 3072 3073 if (d[3] == 0) 3074 /* invalid length */ 3075 return 0; 3076 3077 /* 3078 * Order of preference for lun descriptor: 3079 * - SCSI name string 3080 * - NAA IEEE Registered Extended 3081 * - EUI-64 based 16-byte 3082 * - EUI-64 based 12-byte 3083 * - NAA IEEE Registered 3084 * - NAA IEEE Extended 3085 * - EUI-64 based 8-byte 3086 * - SCSI name string (truncated) 3087 * - T10 Vendor ID 3088 * as longer descriptors reduce the likelyhood 3089 * of identification clashes. 3090 */ 3091 3092 switch (d[1] & 0xf) { 3093 case 8: 3094 /* SCSI name string, variable-length UTF-8 */ 3095 return 9; 3096 case 3: 3097 switch (d[4] >> 4) { 3098 case 6: 3099 /* NAA registered extended */ 3100 return 8; 3101 case 5: 3102 /* NAA registered */ 3103 return 5; 3104 case 4: 3105 /* NAA extended */ 3106 return 4; 3107 case 3: 3108 /* NAA locally assigned */ 3109 return 1; 3110 default: 3111 break; 3112 } 3113 break; 3114 case 2: 3115 switch (d[3]) { 3116 case 16: 3117 /* EUI64-based, 16 byte */ 3118 return 7; 3119 case 12: 3120 /* EUI64-based, 12 byte */ 3121 return 6; 3122 case 8: 3123 /* EUI64-based, 8 byte */ 3124 return 3; 3125 default: 3126 break; 3127 } 3128 break; 3129 case 1: 3130 /* T10 vendor ID */ 3131 return 1; 3132 default: 3133 break; 3134 } 3135 3136 return 0; 3137 } 3138 3139 /** 3140 * scsi_vpd_lun_id - return a unique device identification 3141 * @sdev: SCSI device 3142 * @id: buffer for the identification 3143 * @id_len: length of the buffer 3144 * 3145 * Copies a unique device identification into @id based 3146 * on the information in the VPD page 0x83 of the device. 3147 * The string will be formatted as a SCSI name string. 3148 * 3149 * Returns the length of the identification or error on failure. 3150 * If the identifier is longer than the supplied buffer the actual 3151 * identifier length is returned and the buffer is not zero-padded. 3152 */ 3153 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3154 { 3155 u8 cur_id_prio = 0; 3156 u8 cur_id_size = 0; 3157 const unsigned char *d, *cur_id_str; 3158 const struct scsi_vpd *vpd_pg83; 3159 int id_size = -EINVAL; 3160 3161 rcu_read_lock(); 3162 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3163 if (!vpd_pg83) { 3164 rcu_read_unlock(); 3165 return -ENXIO; 3166 } 3167 3168 /* The id string must be at least 20 bytes + terminating NULL byte */ 3169 if (id_len < 21) { 3170 rcu_read_unlock(); 3171 return -EINVAL; 3172 } 3173 3174 memset(id, 0, id_len); 3175 for (d = vpd_pg83->data + 4; 3176 d < vpd_pg83->data + vpd_pg83->len; 3177 d += d[3] + 4) { 3178 u8 prio = designator_prio(d); 3179 3180 if (prio == 0 || cur_id_prio > prio) 3181 continue; 3182 3183 switch (d[1] & 0xf) { 3184 case 0x1: 3185 /* T10 Vendor ID */ 3186 if (cur_id_size > d[3]) 3187 break; 3188 cur_id_prio = prio; 3189 cur_id_size = d[3]; 3190 if (cur_id_size + 4 > id_len) 3191 cur_id_size = id_len - 4; 3192 cur_id_str = d + 4; 3193 id_size = snprintf(id, id_len, "t10.%*pE", 3194 cur_id_size, cur_id_str); 3195 break; 3196 case 0x2: 3197 /* EUI-64 */ 3198 cur_id_prio = prio; 3199 cur_id_size = d[3]; 3200 cur_id_str = d + 4; 3201 switch (cur_id_size) { 3202 case 8: 3203 id_size = snprintf(id, id_len, 3204 "eui.%8phN", 3205 cur_id_str); 3206 break; 3207 case 12: 3208 id_size = snprintf(id, id_len, 3209 "eui.%12phN", 3210 cur_id_str); 3211 break; 3212 case 16: 3213 id_size = snprintf(id, id_len, 3214 "eui.%16phN", 3215 cur_id_str); 3216 break; 3217 default: 3218 break; 3219 } 3220 break; 3221 case 0x3: 3222 /* NAA */ 3223 cur_id_prio = prio; 3224 cur_id_size = d[3]; 3225 cur_id_str = d + 4; 3226 switch (cur_id_size) { 3227 case 8: 3228 id_size = snprintf(id, id_len, 3229 "naa.%8phN", 3230 cur_id_str); 3231 break; 3232 case 16: 3233 id_size = snprintf(id, id_len, 3234 "naa.%16phN", 3235 cur_id_str); 3236 break; 3237 default: 3238 break; 3239 } 3240 break; 3241 case 0x8: 3242 /* SCSI name string */ 3243 if (cur_id_size > d[3]) 3244 break; 3245 /* Prefer others for truncated descriptor */ 3246 if (d[3] > id_len) { 3247 prio = 2; 3248 if (cur_id_prio > prio) 3249 break; 3250 } 3251 cur_id_prio = prio; 3252 cur_id_size = id_size = d[3]; 3253 cur_id_str = d + 4; 3254 if (cur_id_size >= id_len) 3255 cur_id_size = id_len - 1; 3256 memcpy(id, cur_id_str, cur_id_size); 3257 break; 3258 default: 3259 break; 3260 } 3261 } 3262 rcu_read_unlock(); 3263 3264 return id_size; 3265 } 3266 EXPORT_SYMBOL(scsi_vpd_lun_id); 3267 3268 /* 3269 * scsi_vpd_tpg_id - return a target port group identifier 3270 * @sdev: SCSI device 3271 * 3272 * Returns the Target Port Group identifier from the information 3273 * froom VPD page 0x83 of the device. 3274 * 3275 * Returns the identifier or error on failure. 3276 */ 3277 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3278 { 3279 const unsigned char *d; 3280 const struct scsi_vpd *vpd_pg83; 3281 int group_id = -EAGAIN, rel_port = -1; 3282 3283 rcu_read_lock(); 3284 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3285 if (!vpd_pg83) { 3286 rcu_read_unlock(); 3287 return -ENXIO; 3288 } 3289 3290 d = vpd_pg83->data + 4; 3291 while (d < vpd_pg83->data + vpd_pg83->len) { 3292 switch (d[1] & 0xf) { 3293 case 0x4: 3294 /* Relative target port */ 3295 rel_port = get_unaligned_be16(&d[6]); 3296 break; 3297 case 0x5: 3298 /* Target port group */ 3299 group_id = get_unaligned_be16(&d[6]); 3300 break; 3301 default: 3302 break; 3303 } 3304 d += d[3] + 4; 3305 } 3306 rcu_read_unlock(); 3307 3308 if (group_id >= 0 && rel_id && rel_port != -1) 3309 *rel_id = rel_port; 3310 3311 return group_id; 3312 } 3313 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3314 3315 /** 3316 * scsi_build_sense - build sense data for a command 3317 * @scmd: scsi command for which the sense should be formatted 3318 * @desc: Sense format (non-zero == descriptor format, 3319 * 0 == fixed format) 3320 * @key: Sense key 3321 * @asc: Additional sense code 3322 * @ascq: Additional sense code qualifier 3323 * 3324 **/ 3325 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq) 3326 { 3327 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq); 3328 scmd->result = SAM_STAT_CHECK_CONDITION; 3329 } 3330 EXPORT_SYMBOL_GPL(scsi_build_sense); 3331