xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 04eb94d526423ff082efce61f4f26b0369d0bfdd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sdb_cache;
56 static struct kmem_cache *scsi_sense_cache;
57 static struct kmem_cache *scsi_sense_isadma_cache;
58 static DEFINE_MUTEX(scsi_sense_cache_mutex);
59 
60 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
61 
62 static inline struct kmem_cache *
63 scsi_select_sense_cache(bool unchecked_isa_dma)
64 {
65 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
66 }
67 
68 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
69 				   unsigned char *sense_buffer)
70 {
71 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
72 			sense_buffer);
73 }
74 
75 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
76 	gfp_t gfp_mask, int numa_node)
77 {
78 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
79 				     gfp_mask, numa_node);
80 }
81 
82 int scsi_init_sense_cache(struct Scsi_Host *shost)
83 {
84 	struct kmem_cache *cache;
85 	int ret = 0;
86 
87 	mutex_lock(&scsi_sense_cache_mutex);
88 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
89 	if (cache)
90 		goto exit;
91 
92 	if (shost->unchecked_isa_dma) {
93 		scsi_sense_isadma_cache =
94 			kmem_cache_create("scsi_sense_cache(DMA)",
95 				SCSI_SENSE_BUFFERSIZE, 0,
96 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
97 		if (!scsi_sense_isadma_cache)
98 			ret = -ENOMEM;
99 	} else {
100 		scsi_sense_cache =
101 			kmem_cache_create_usercopy("scsi_sense_cache",
102 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
103 				0, SCSI_SENSE_BUFFERSIZE, NULL);
104 		if (!scsi_sense_cache)
105 			ret = -ENOMEM;
106 	}
107  exit:
108 	mutex_unlock(&scsi_sense_cache_mutex);
109 	return ret;
110 }
111 
112 /*
113  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
114  * not change behaviour from the previous unplug mechanism, experimentation
115  * may prove this needs changing.
116  */
117 #define SCSI_QUEUE_DELAY	3
118 
119 static void
120 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
121 {
122 	struct Scsi_Host *host = cmd->device->host;
123 	struct scsi_device *device = cmd->device;
124 	struct scsi_target *starget = scsi_target(device);
125 
126 	/*
127 	 * Set the appropriate busy bit for the device/host.
128 	 *
129 	 * If the host/device isn't busy, assume that something actually
130 	 * completed, and that we should be able to queue a command now.
131 	 *
132 	 * Note that the prior mid-layer assumption that any host could
133 	 * always queue at least one command is now broken.  The mid-layer
134 	 * will implement a user specifiable stall (see
135 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
136 	 * if a command is requeued with no other commands outstanding
137 	 * either for the device or for the host.
138 	 */
139 	switch (reason) {
140 	case SCSI_MLQUEUE_HOST_BUSY:
141 		atomic_set(&host->host_blocked, host->max_host_blocked);
142 		break;
143 	case SCSI_MLQUEUE_DEVICE_BUSY:
144 	case SCSI_MLQUEUE_EH_RETRY:
145 		atomic_set(&device->device_blocked,
146 			   device->max_device_blocked);
147 		break;
148 	case SCSI_MLQUEUE_TARGET_BUSY:
149 		atomic_set(&starget->target_blocked,
150 			   starget->max_target_blocked);
151 		break;
152 	}
153 }
154 
155 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
156 {
157 	if (cmd->request->rq_flags & RQF_DONTPREP) {
158 		cmd->request->rq_flags &= ~RQF_DONTPREP;
159 		scsi_mq_uninit_cmd(cmd);
160 	} else {
161 		WARN_ON_ONCE(true);
162 	}
163 	blk_mq_requeue_request(cmd->request, true);
164 }
165 
166 /**
167  * __scsi_queue_insert - private queue insertion
168  * @cmd: The SCSI command being requeued
169  * @reason:  The reason for the requeue
170  * @unbusy: Whether the queue should be unbusied
171  *
172  * This is a private queue insertion.  The public interface
173  * scsi_queue_insert() always assumes the queue should be unbusied
174  * because it's always called before the completion.  This function is
175  * for a requeue after completion, which should only occur in this
176  * file.
177  */
178 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
179 {
180 	struct scsi_device *device = cmd->device;
181 
182 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
183 		"Inserting command %p into mlqueue\n", cmd));
184 
185 	scsi_set_blocked(cmd, reason);
186 
187 	/*
188 	 * Decrement the counters, since these commands are no longer
189 	 * active on the host/device.
190 	 */
191 	if (unbusy)
192 		scsi_device_unbusy(device);
193 
194 	/*
195 	 * Requeue this command.  It will go before all other commands
196 	 * that are already in the queue. Schedule requeue work under
197 	 * lock such that the kblockd_schedule_work() call happens
198 	 * before blk_cleanup_queue() finishes.
199 	 */
200 	cmd->result = 0;
201 
202 	blk_mq_requeue_request(cmd->request, true);
203 }
204 
205 /*
206  * Function:    scsi_queue_insert()
207  *
208  * Purpose:     Insert a command in the midlevel queue.
209  *
210  * Arguments:   cmd    - command that we are adding to queue.
211  *              reason - why we are inserting command to queue.
212  *
213  * Lock status: Assumed that lock is not held upon entry.
214  *
215  * Returns:     Nothing.
216  *
217  * Notes:       We do this for one of two cases.  Either the host is busy
218  *              and it cannot accept any more commands for the time being,
219  *              or the device returned QUEUE_FULL and can accept no more
220  *              commands.
221  * Notes:       This could be called either from an interrupt context or a
222  *              normal process context.
223  */
224 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
225 {
226 	__scsi_queue_insert(cmd, reason, true);
227 }
228 
229 
230 /**
231  * __scsi_execute - insert request and wait for the result
232  * @sdev:	scsi device
233  * @cmd:	scsi command
234  * @data_direction: data direction
235  * @buffer:	data buffer
236  * @bufflen:	len of buffer
237  * @sense:	optional sense buffer
238  * @sshdr:	optional decoded sense header
239  * @timeout:	request timeout in seconds
240  * @retries:	number of times to retry request
241  * @flags:	flags for ->cmd_flags
242  * @rq_flags:	flags for ->rq_flags
243  * @resid:	optional residual length
244  *
245  * Returns the scsi_cmnd result field if a command was executed, or a negative
246  * Linux error code if we didn't get that far.
247  */
248 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
249 		 int data_direction, void *buffer, unsigned bufflen,
250 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
251 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
252 		 int *resid)
253 {
254 	struct request *req;
255 	struct scsi_request *rq;
256 	int ret = DRIVER_ERROR << 24;
257 
258 	req = blk_get_request(sdev->request_queue,
259 			data_direction == DMA_TO_DEVICE ?
260 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
261 	if (IS_ERR(req))
262 		return ret;
263 	rq = scsi_req(req);
264 
265 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
266 					buffer, bufflen, GFP_NOIO))
267 		goto out;
268 
269 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
270 	memcpy(rq->cmd, cmd, rq->cmd_len);
271 	rq->retries = retries;
272 	req->timeout = timeout;
273 	req->cmd_flags |= flags;
274 	req->rq_flags |= rq_flags | RQF_QUIET;
275 
276 	/*
277 	 * head injection *required* here otherwise quiesce won't work
278 	 */
279 	blk_execute_rq(req->q, NULL, req, 1);
280 
281 	/*
282 	 * Some devices (USB mass-storage in particular) may transfer
283 	 * garbage data together with a residue indicating that the data
284 	 * is invalid.  Prevent the garbage from being misinterpreted
285 	 * and prevent security leaks by zeroing out the excess data.
286 	 */
287 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
288 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
289 
290 	if (resid)
291 		*resid = rq->resid_len;
292 	if (sense && rq->sense_len)
293 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
294 	if (sshdr)
295 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
296 	ret = rq->result;
297  out:
298 	blk_put_request(req);
299 
300 	return ret;
301 }
302 EXPORT_SYMBOL(__scsi_execute);
303 
304 /*
305  * Function:    scsi_init_cmd_errh()
306  *
307  * Purpose:     Initialize cmd fields related to error handling.
308  *
309  * Arguments:   cmd	- command that is ready to be queued.
310  *
311  * Notes:       This function has the job of initializing a number of
312  *              fields related to error handling.   Typically this will
313  *              be called once for each command, as required.
314  */
315 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
316 {
317 	scsi_set_resid(cmd, 0);
318 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
319 	if (cmd->cmd_len == 0)
320 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
321 }
322 
323 /*
324  * Decrement the host_busy counter and wake up the error handler if necessary.
325  * Avoid as follows that the error handler is not woken up if shost->host_busy
326  * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
327  * with an RCU read lock in this function to ensure that this function in its
328  * entirety either finishes before scsi_eh_scmd_add() increases the
329  * host_failed counter or that it notices the shost state change made by
330  * scsi_eh_scmd_add().
331  */
332 static void scsi_dec_host_busy(struct Scsi_Host *shost)
333 {
334 	unsigned long flags;
335 
336 	rcu_read_lock();
337 	atomic_dec(&shost->host_busy);
338 	if (unlikely(scsi_host_in_recovery(shost))) {
339 		spin_lock_irqsave(shost->host_lock, flags);
340 		if (shost->host_failed || shost->host_eh_scheduled)
341 			scsi_eh_wakeup(shost);
342 		spin_unlock_irqrestore(shost->host_lock, flags);
343 	}
344 	rcu_read_unlock();
345 }
346 
347 void scsi_device_unbusy(struct scsi_device *sdev)
348 {
349 	struct Scsi_Host *shost = sdev->host;
350 	struct scsi_target *starget = scsi_target(sdev);
351 
352 	scsi_dec_host_busy(shost);
353 
354 	if (starget->can_queue > 0)
355 		atomic_dec(&starget->target_busy);
356 
357 	atomic_dec(&sdev->device_busy);
358 }
359 
360 static void scsi_kick_queue(struct request_queue *q)
361 {
362 	blk_mq_run_hw_queues(q, false);
363 }
364 
365 /*
366  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
367  * and call blk_run_queue for all the scsi_devices on the target -
368  * including current_sdev first.
369  *
370  * Called with *no* scsi locks held.
371  */
372 static void scsi_single_lun_run(struct scsi_device *current_sdev)
373 {
374 	struct Scsi_Host *shost = current_sdev->host;
375 	struct scsi_device *sdev, *tmp;
376 	struct scsi_target *starget = scsi_target(current_sdev);
377 	unsigned long flags;
378 
379 	spin_lock_irqsave(shost->host_lock, flags);
380 	starget->starget_sdev_user = NULL;
381 	spin_unlock_irqrestore(shost->host_lock, flags);
382 
383 	/*
384 	 * Call blk_run_queue for all LUNs on the target, starting with
385 	 * current_sdev. We race with others (to set starget_sdev_user),
386 	 * but in most cases, we will be first. Ideally, each LU on the
387 	 * target would get some limited time or requests on the target.
388 	 */
389 	scsi_kick_queue(current_sdev->request_queue);
390 
391 	spin_lock_irqsave(shost->host_lock, flags);
392 	if (starget->starget_sdev_user)
393 		goto out;
394 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
395 			same_target_siblings) {
396 		if (sdev == current_sdev)
397 			continue;
398 		if (scsi_device_get(sdev))
399 			continue;
400 
401 		spin_unlock_irqrestore(shost->host_lock, flags);
402 		scsi_kick_queue(sdev->request_queue);
403 		spin_lock_irqsave(shost->host_lock, flags);
404 
405 		scsi_device_put(sdev);
406 	}
407  out:
408 	spin_unlock_irqrestore(shost->host_lock, flags);
409 }
410 
411 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
412 {
413 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
414 		return true;
415 	if (atomic_read(&sdev->device_blocked) > 0)
416 		return true;
417 	return false;
418 }
419 
420 static inline bool scsi_target_is_busy(struct scsi_target *starget)
421 {
422 	if (starget->can_queue > 0) {
423 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
424 			return true;
425 		if (atomic_read(&starget->target_blocked) > 0)
426 			return true;
427 	}
428 	return false;
429 }
430 
431 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
432 {
433 	if (shost->can_queue > 0 &&
434 	    atomic_read(&shost->host_busy) >= shost->can_queue)
435 		return true;
436 	if (atomic_read(&shost->host_blocked) > 0)
437 		return true;
438 	if (shost->host_self_blocked)
439 		return true;
440 	return false;
441 }
442 
443 static void scsi_starved_list_run(struct Scsi_Host *shost)
444 {
445 	LIST_HEAD(starved_list);
446 	struct scsi_device *sdev;
447 	unsigned long flags;
448 
449 	spin_lock_irqsave(shost->host_lock, flags);
450 	list_splice_init(&shost->starved_list, &starved_list);
451 
452 	while (!list_empty(&starved_list)) {
453 		struct request_queue *slq;
454 
455 		/*
456 		 * As long as shost is accepting commands and we have
457 		 * starved queues, call blk_run_queue. scsi_request_fn
458 		 * drops the queue_lock and can add us back to the
459 		 * starved_list.
460 		 *
461 		 * host_lock protects the starved_list and starved_entry.
462 		 * scsi_request_fn must get the host_lock before checking
463 		 * or modifying starved_list or starved_entry.
464 		 */
465 		if (scsi_host_is_busy(shost))
466 			break;
467 
468 		sdev = list_entry(starved_list.next,
469 				  struct scsi_device, starved_entry);
470 		list_del_init(&sdev->starved_entry);
471 		if (scsi_target_is_busy(scsi_target(sdev))) {
472 			list_move_tail(&sdev->starved_entry,
473 				       &shost->starved_list);
474 			continue;
475 		}
476 
477 		/*
478 		 * Once we drop the host lock, a racing scsi_remove_device()
479 		 * call may remove the sdev from the starved list and destroy
480 		 * it and the queue.  Mitigate by taking a reference to the
481 		 * queue and never touching the sdev again after we drop the
482 		 * host lock.  Note: if __scsi_remove_device() invokes
483 		 * blk_cleanup_queue() before the queue is run from this
484 		 * function then blk_run_queue() will return immediately since
485 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
486 		 */
487 		slq = sdev->request_queue;
488 		if (!blk_get_queue(slq))
489 			continue;
490 		spin_unlock_irqrestore(shost->host_lock, flags);
491 
492 		scsi_kick_queue(slq);
493 		blk_put_queue(slq);
494 
495 		spin_lock_irqsave(shost->host_lock, flags);
496 	}
497 	/* put any unprocessed entries back */
498 	list_splice(&starved_list, &shost->starved_list);
499 	spin_unlock_irqrestore(shost->host_lock, flags);
500 }
501 
502 /*
503  * Function:   scsi_run_queue()
504  *
505  * Purpose:    Select a proper request queue to serve next
506  *
507  * Arguments:  q       - last request's queue
508  *
509  * Returns:     Nothing
510  *
511  * Notes:      The previous command was completely finished, start
512  *             a new one if possible.
513  */
514 static void scsi_run_queue(struct request_queue *q)
515 {
516 	struct scsi_device *sdev = q->queuedata;
517 
518 	if (scsi_target(sdev)->single_lun)
519 		scsi_single_lun_run(sdev);
520 	if (!list_empty(&sdev->host->starved_list))
521 		scsi_starved_list_run(sdev->host);
522 
523 	blk_mq_run_hw_queues(q, false);
524 }
525 
526 void scsi_requeue_run_queue(struct work_struct *work)
527 {
528 	struct scsi_device *sdev;
529 	struct request_queue *q;
530 
531 	sdev = container_of(work, struct scsi_device, requeue_work);
532 	q = sdev->request_queue;
533 	scsi_run_queue(q);
534 }
535 
536 void scsi_run_host_queues(struct Scsi_Host *shost)
537 {
538 	struct scsi_device *sdev;
539 
540 	shost_for_each_device(sdev, shost)
541 		scsi_run_queue(sdev->request_queue);
542 }
543 
544 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
545 {
546 	if (!blk_rq_is_passthrough(cmd->request)) {
547 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
548 
549 		if (drv->uninit_command)
550 			drv->uninit_command(cmd);
551 	}
552 }
553 
554 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
555 {
556 	if (cmd->sdb.table.nents)
557 		sg_free_table_chained(&cmd->sdb.table,
558 				SCSI_INLINE_SG_CNT);
559 	if (scsi_prot_sg_count(cmd))
560 		sg_free_table_chained(&cmd->prot_sdb->table,
561 				SCSI_INLINE_PROT_SG_CNT);
562 }
563 
564 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
565 {
566 	scsi_mq_free_sgtables(cmd);
567 	scsi_uninit_cmd(cmd);
568 	scsi_del_cmd_from_list(cmd);
569 }
570 
571 /* Returns false when no more bytes to process, true if there are more */
572 static bool scsi_end_request(struct request *req, blk_status_t error,
573 		unsigned int bytes)
574 {
575 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
576 	struct scsi_device *sdev = cmd->device;
577 	struct request_queue *q = sdev->request_queue;
578 
579 	if (blk_update_request(req, error, bytes))
580 		return true;
581 
582 	if (blk_queue_add_random(q))
583 		add_disk_randomness(req->rq_disk);
584 
585 	if (!blk_rq_is_scsi(req)) {
586 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
587 		cmd->flags &= ~SCMD_INITIALIZED;
588 	}
589 
590 	/*
591 	 * Calling rcu_barrier() is not necessary here because the
592 	 * SCSI error handler guarantees that the function called by
593 	 * call_rcu() has been called before scsi_end_request() is
594 	 * called.
595 	 */
596 	destroy_rcu_head(&cmd->rcu);
597 
598 	/*
599 	 * In the MQ case the command gets freed by __blk_mq_end_request,
600 	 * so we have to do all cleanup that depends on it earlier.
601 	 *
602 	 * We also can't kick the queues from irq context, so we
603 	 * will have to defer it to a workqueue.
604 	 */
605 	scsi_mq_uninit_cmd(cmd);
606 
607 	/*
608 	 * queue is still alive, so grab the ref for preventing it
609 	 * from being cleaned up during running queue.
610 	 */
611 	percpu_ref_get(&q->q_usage_counter);
612 
613 	__blk_mq_end_request(req, error);
614 
615 	if (scsi_target(sdev)->single_lun ||
616 	    !list_empty(&sdev->host->starved_list))
617 		kblockd_schedule_work(&sdev->requeue_work);
618 	else
619 		blk_mq_run_hw_queues(q, true);
620 
621 	percpu_ref_put(&q->q_usage_counter);
622 	return false;
623 }
624 
625 /**
626  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
627  * @cmd:	SCSI command
628  * @result:	scsi error code
629  *
630  * Translate a SCSI result code into a blk_status_t value. May reset the host
631  * byte of @cmd->result.
632  */
633 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
634 {
635 	switch (host_byte(result)) {
636 	case DID_OK:
637 		/*
638 		 * Also check the other bytes than the status byte in result
639 		 * to handle the case when a SCSI LLD sets result to
640 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
641 		 */
642 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
643 			return BLK_STS_OK;
644 		return BLK_STS_IOERR;
645 	case DID_TRANSPORT_FAILFAST:
646 		return BLK_STS_TRANSPORT;
647 	case DID_TARGET_FAILURE:
648 		set_host_byte(cmd, DID_OK);
649 		return BLK_STS_TARGET;
650 	case DID_NEXUS_FAILURE:
651 		set_host_byte(cmd, DID_OK);
652 		return BLK_STS_NEXUS;
653 	case DID_ALLOC_FAILURE:
654 		set_host_byte(cmd, DID_OK);
655 		return BLK_STS_NOSPC;
656 	case DID_MEDIUM_ERROR:
657 		set_host_byte(cmd, DID_OK);
658 		return BLK_STS_MEDIUM;
659 	default:
660 		return BLK_STS_IOERR;
661 	}
662 }
663 
664 /* Helper for scsi_io_completion() when "reprep" action required. */
665 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
666 				      struct request_queue *q)
667 {
668 	/* A new command will be prepared and issued. */
669 	scsi_mq_requeue_cmd(cmd);
670 }
671 
672 /* Helper for scsi_io_completion() when special action required. */
673 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
674 {
675 	struct request_queue *q = cmd->device->request_queue;
676 	struct request *req = cmd->request;
677 	int level = 0;
678 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
679 	      ACTION_DELAYED_RETRY} action;
680 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
681 	struct scsi_sense_hdr sshdr;
682 	bool sense_valid;
683 	bool sense_current = true;      /* false implies "deferred sense" */
684 	blk_status_t blk_stat;
685 
686 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
687 	if (sense_valid)
688 		sense_current = !scsi_sense_is_deferred(&sshdr);
689 
690 	blk_stat = scsi_result_to_blk_status(cmd, result);
691 
692 	if (host_byte(result) == DID_RESET) {
693 		/* Third party bus reset or reset for error recovery
694 		 * reasons.  Just retry the command and see what
695 		 * happens.
696 		 */
697 		action = ACTION_RETRY;
698 	} else if (sense_valid && sense_current) {
699 		switch (sshdr.sense_key) {
700 		case UNIT_ATTENTION:
701 			if (cmd->device->removable) {
702 				/* Detected disc change.  Set a bit
703 				 * and quietly refuse further access.
704 				 */
705 				cmd->device->changed = 1;
706 				action = ACTION_FAIL;
707 			} else {
708 				/* Must have been a power glitch, or a
709 				 * bus reset.  Could not have been a
710 				 * media change, so we just retry the
711 				 * command and see what happens.
712 				 */
713 				action = ACTION_RETRY;
714 			}
715 			break;
716 		case ILLEGAL_REQUEST:
717 			/* If we had an ILLEGAL REQUEST returned, then
718 			 * we may have performed an unsupported
719 			 * command.  The only thing this should be
720 			 * would be a ten byte read where only a six
721 			 * byte read was supported.  Also, on a system
722 			 * where READ CAPACITY failed, we may have
723 			 * read past the end of the disk.
724 			 */
725 			if ((cmd->device->use_10_for_rw &&
726 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
727 			    (cmd->cmnd[0] == READ_10 ||
728 			     cmd->cmnd[0] == WRITE_10)) {
729 				/* This will issue a new 6-byte command. */
730 				cmd->device->use_10_for_rw = 0;
731 				action = ACTION_REPREP;
732 			} else if (sshdr.asc == 0x10) /* DIX */ {
733 				action = ACTION_FAIL;
734 				blk_stat = BLK_STS_PROTECTION;
735 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
736 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
737 				action = ACTION_FAIL;
738 				blk_stat = BLK_STS_TARGET;
739 			} else
740 				action = ACTION_FAIL;
741 			break;
742 		case ABORTED_COMMAND:
743 			action = ACTION_FAIL;
744 			if (sshdr.asc == 0x10) /* DIF */
745 				blk_stat = BLK_STS_PROTECTION;
746 			break;
747 		case NOT_READY:
748 			/* If the device is in the process of becoming
749 			 * ready, or has a temporary blockage, retry.
750 			 */
751 			if (sshdr.asc == 0x04) {
752 				switch (sshdr.ascq) {
753 				case 0x01: /* becoming ready */
754 				case 0x04: /* format in progress */
755 				case 0x05: /* rebuild in progress */
756 				case 0x06: /* recalculation in progress */
757 				case 0x07: /* operation in progress */
758 				case 0x08: /* Long write in progress */
759 				case 0x09: /* self test in progress */
760 				case 0x14: /* space allocation in progress */
761 				case 0x1a: /* start stop unit in progress */
762 				case 0x1b: /* sanitize in progress */
763 				case 0x1d: /* configuration in progress */
764 				case 0x24: /* depopulation in progress */
765 					action = ACTION_DELAYED_RETRY;
766 					break;
767 				default:
768 					action = ACTION_FAIL;
769 					break;
770 				}
771 			} else
772 				action = ACTION_FAIL;
773 			break;
774 		case VOLUME_OVERFLOW:
775 			/* See SSC3rXX or current. */
776 			action = ACTION_FAIL;
777 			break;
778 		default:
779 			action = ACTION_FAIL;
780 			break;
781 		}
782 	} else
783 		action = ACTION_FAIL;
784 
785 	if (action != ACTION_FAIL &&
786 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
787 		action = ACTION_FAIL;
788 
789 	switch (action) {
790 	case ACTION_FAIL:
791 		/* Give up and fail the remainder of the request */
792 		if (!(req->rq_flags & RQF_QUIET)) {
793 			static DEFINE_RATELIMIT_STATE(_rs,
794 					DEFAULT_RATELIMIT_INTERVAL,
795 					DEFAULT_RATELIMIT_BURST);
796 
797 			if (unlikely(scsi_logging_level))
798 				level =
799 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
800 						    SCSI_LOG_MLCOMPLETE_BITS);
801 
802 			/*
803 			 * if logging is enabled the failure will be printed
804 			 * in scsi_log_completion(), so avoid duplicate messages
805 			 */
806 			if (!level && __ratelimit(&_rs)) {
807 				scsi_print_result(cmd, NULL, FAILED);
808 				if (driver_byte(result) == DRIVER_SENSE)
809 					scsi_print_sense(cmd);
810 				scsi_print_command(cmd);
811 			}
812 		}
813 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
814 			return;
815 		/*FALLTHRU*/
816 	case ACTION_REPREP:
817 		scsi_io_completion_reprep(cmd, q);
818 		break;
819 	case ACTION_RETRY:
820 		/* Retry the same command immediately */
821 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
822 		break;
823 	case ACTION_DELAYED_RETRY:
824 		/* Retry the same command after a delay */
825 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
826 		break;
827 	}
828 }
829 
830 /*
831  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
832  * new result that may suppress further error checking. Also modifies
833  * *blk_statp in some cases.
834  */
835 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
836 					blk_status_t *blk_statp)
837 {
838 	bool sense_valid;
839 	bool sense_current = true;	/* false implies "deferred sense" */
840 	struct request *req = cmd->request;
841 	struct scsi_sense_hdr sshdr;
842 
843 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
844 	if (sense_valid)
845 		sense_current = !scsi_sense_is_deferred(&sshdr);
846 
847 	if (blk_rq_is_passthrough(req)) {
848 		if (sense_valid) {
849 			/*
850 			 * SG_IO wants current and deferred errors
851 			 */
852 			scsi_req(req)->sense_len =
853 				min(8 + cmd->sense_buffer[7],
854 				    SCSI_SENSE_BUFFERSIZE);
855 		}
856 		if (sense_current)
857 			*blk_statp = scsi_result_to_blk_status(cmd, result);
858 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
859 		/*
860 		 * Flush commands do not transfers any data, and thus cannot use
861 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
862 		 * This sets *blk_statp explicitly for the problem case.
863 		 */
864 		*blk_statp = scsi_result_to_blk_status(cmd, result);
865 	}
866 	/*
867 	 * Recovered errors need reporting, but they're always treated as
868 	 * success, so fiddle the result code here.  For passthrough requests
869 	 * we already took a copy of the original into sreq->result which
870 	 * is what gets returned to the user
871 	 */
872 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
873 		bool do_print = true;
874 		/*
875 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
876 		 * skip print since caller wants ATA registers. Only occurs
877 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
878 		 */
879 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
880 			do_print = false;
881 		else if (req->rq_flags & RQF_QUIET)
882 			do_print = false;
883 		if (do_print)
884 			scsi_print_sense(cmd);
885 		result = 0;
886 		/* for passthrough, *blk_statp may be set */
887 		*blk_statp = BLK_STS_OK;
888 	}
889 	/*
890 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
891 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
892 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
893 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
894 	 * intermediate statuses (both obsolete in SAM-4) as good.
895 	 */
896 	if (status_byte(result) && scsi_status_is_good(result)) {
897 		result = 0;
898 		*blk_statp = BLK_STS_OK;
899 	}
900 	return result;
901 }
902 
903 /*
904  * Function:    scsi_io_completion()
905  *
906  * Purpose:     Completion processing for block device I/O requests.
907  *
908  * Arguments:   cmd   - command that is finished.
909  *
910  * Lock status: Assumed that no lock is held upon entry.
911  *
912  * Returns:     Nothing
913  *
914  * Notes:       We will finish off the specified number of sectors.  If we
915  *		are done, the command block will be released and the queue
916  *		function will be goosed.  If we are not done then we have to
917  *		figure out what to do next:
918  *
919  *		a) We can call scsi_requeue_command().  The request
920  *		   will be unprepared and put back on the queue.  Then
921  *		   a new command will be created for it.  This should
922  *		   be used if we made forward progress, or if we want
923  *		   to switch from READ(10) to READ(6) for example.
924  *
925  *		b) We can call __scsi_queue_insert().  The request will
926  *		   be put back on the queue and retried using the same
927  *		   command as before, possibly after a delay.
928  *
929  *		c) We can call scsi_end_request() with blk_stat other than
930  *		   BLK_STS_OK, to fail the remainder of the request.
931  */
932 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
933 {
934 	int result = cmd->result;
935 	struct request_queue *q = cmd->device->request_queue;
936 	struct request *req = cmd->request;
937 	blk_status_t blk_stat = BLK_STS_OK;
938 
939 	if (unlikely(result))	/* a nz result may or may not be an error */
940 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
941 
942 	if (unlikely(blk_rq_is_passthrough(req))) {
943 		/*
944 		 * scsi_result_to_blk_status may have reset the host_byte
945 		 */
946 		scsi_req(req)->result = cmd->result;
947 	}
948 
949 	/*
950 	 * Next deal with any sectors which we were able to correctly
951 	 * handle.
952 	 */
953 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
954 		"%u sectors total, %d bytes done.\n",
955 		blk_rq_sectors(req), good_bytes));
956 
957 	/*
958 	 * Next deal with any sectors which we were able to correctly
959 	 * handle. Failed, zero length commands always need to drop down
960 	 * to retry code. Fast path should return in this block.
961 	 */
962 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
963 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
964 			return; /* no bytes remaining */
965 	}
966 
967 	/* Kill remainder if no retries. */
968 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
969 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
970 			WARN_ONCE(true,
971 			    "Bytes remaining after failed, no-retry command");
972 		return;
973 	}
974 
975 	/*
976 	 * If there had been no error, but we have leftover bytes in the
977 	 * requeues just queue the command up again.
978 	 */
979 	if (likely(result == 0))
980 		scsi_io_completion_reprep(cmd, q);
981 	else
982 		scsi_io_completion_action(cmd, result);
983 }
984 
985 static blk_status_t scsi_init_sgtable(struct request *req,
986 		struct scsi_data_buffer *sdb)
987 {
988 	int count;
989 
990 	/*
991 	 * If sg table allocation fails, requeue request later.
992 	 */
993 	if (unlikely(sg_alloc_table_chained(&sdb->table,
994 			blk_rq_nr_phys_segments(req), sdb->table.sgl,
995 			SCSI_INLINE_SG_CNT)))
996 		return BLK_STS_RESOURCE;
997 
998 	/*
999 	 * Next, walk the list, and fill in the addresses and sizes of
1000 	 * each segment.
1001 	 */
1002 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1003 	BUG_ON(count > sdb->table.nents);
1004 	sdb->table.nents = count;
1005 	sdb->length = blk_rq_payload_bytes(req);
1006 	return BLK_STS_OK;
1007 }
1008 
1009 /*
1010  * Function:    scsi_init_io()
1011  *
1012  * Purpose:     SCSI I/O initialize function.
1013  *
1014  * Arguments:   cmd   - Command descriptor we wish to initialize
1015  *
1016  * Returns:     BLK_STS_OK on success
1017  *		BLK_STS_RESOURCE if the failure is retryable
1018  *		BLK_STS_IOERR if the failure is fatal
1019  */
1020 blk_status_t scsi_init_io(struct scsi_cmnd *cmd)
1021 {
1022 	struct request *rq = cmd->request;
1023 	blk_status_t ret;
1024 
1025 	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1026 		return BLK_STS_IOERR;
1027 
1028 	ret = scsi_init_sgtable(rq, &cmd->sdb);
1029 	if (ret)
1030 		return ret;
1031 
1032 	if (blk_integrity_rq(rq)) {
1033 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1034 		int ivecs, count;
1035 
1036 		if (WARN_ON_ONCE(!prot_sdb)) {
1037 			/*
1038 			 * This can happen if someone (e.g. multipath)
1039 			 * queues a command to a device on an adapter
1040 			 * that does not support DIX.
1041 			 */
1042 			ret = BLK_STS_IOERR;
1043 			goto out_free_sgtables;
1044 		}
1045 
1046 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1047 
1048 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1049 				prot_sdb->table.sgl,
1050 				SCSI_INLINE_PROT_SG_CNT)) {
1051 			ret = BLK_STS_RESOURCE;
1052 			goto out_free_sgtables;
1053 		}
1054 
1055 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1056 						prot_sdb->table.sgl);
1057 		BUG_ON(count > ivecs);
1058 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1059 
1060 		cmd->prot_sdb = prot_sdb;
1061 		cmd->prot_sdb->table.nents = count;
1062 	}
1063 
1064 	return BLK_STS_OK;
1065 out_free_sgtables:
1066 	scsi_mq_free_sgtables(cmd);
1067 	return ret;
1068 }
1069 EXPORT_SYMBOL(scsi_init_io);
1070 
1071 /**
1072  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1073  * @rq: Request associated with the SCSI command to be initialized.
1074  *
1075  * This function initializes the members of struct scsi_cmnd that must be
1076  * initialized before request processing starts and that won't be
1077  * reinitialized if a SCSI command is requeued.
1078  *
1079  * Called from inside blk_get_request() for pass-through requests and from
1080  * inside scsi_init_command() for filesystem requests.
1081  */
1082 static void scsi_initialize_rq(struct request *rq)
1083 {
1084 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1085 
1086 	scsi_req_init(&cmd->req);
1087 	init_rcu_head(&cmd->rcu);
1088 	cmd->jiffies_at_alloc = jiffies;
1089 	cmd->retries = 0;
1090 }
1091 
1092 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1093 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1094 {
1095 	struct scsi_device *sdev = cmd->device;
1096 	struct Scsi_Host *shost = sdev->host;
1097 	unsigned long flags;
1098 
1099 	if (shost->use_cmd_list) {
1100 		spin_lock_irqsave(&sdev->list_lock, flags);
1101 		list_add_tail(&cmd->list, &sdev->cmd_list);
1102 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1103 	}
1104 }
1105 
1106 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1107 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1108 {
1109 	struct scsi_device *sdev = cmd->device;
1110 	struct Scsi_Host *shost = sdev->host;
1111 	unsigned long flags;
1112 
1113 	if (shost->use_cmd_list) {
1114 		spin_lock_irqsave(&sdev->list_lock, flags);
1115 		BUG_ON(list_empty(&cmd->list));
1116 		list_del_init(&cmd->list);
1117 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1118 	}
1119 }
1120 
1121 /* Called after a request has been started. */
1122 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1123 {
1124 	void *buf = cmd->sense_buffer;
1125 	void *prot = cmd->prot_sdb;
1126 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1127 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1128 	unsigned long jiffies_at_alloc;
1129 	int retries;
1130 
1131 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1132 		flags |= SCMD_INITIALIZED;
1133 		scsi_initialize_rq(rq);
1134 	}
1135 
1136 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1137 	retries = cmd->retries;
1138 	/* zero out the cmd, except for the embedded scsi_request */
1139 	memset((char *)cmd + sizeof(cmd->req), 0,
1140 		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1141 
1142 	cmd->device = dev;
1143 	cmd->sense_buffer = buf;
1144 	cmd->prot_sdb = prot;
1145 	cmd->flags = flags;
1146 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1147 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1148 	cmd->retries = retries;
1149 
1150 	scsi_add_cmd_to_list(cmd);
1151 }
1152 
1153 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1154 		struct request *req)
1155 {
1156 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1157 
1158 	/*
1159 	 * Passthrough requests may transfer data, in which case they must
1160 	 * a bio attached to them.  Or they might contain a SCSI command
1161 	 * that does not transfer data, in which case they may optionally
1162 	 * submit a request without an attached bio.
1163 	 */
1164 	if (req->bio) {
1165 		blk_status_t ret = scsi_init_io(cmd);
1166 		if (unlikely(ret != BLK_STS_OK))
1167 			return ret;
1168 	} else {
1169 		BUG_ON(blk_rq_bytes(req));
1170 
1171 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1172 	}
1173 
1174 	cmd->cmd_len = scsi_req(req)->cmd_len;
1175 	cmd->cmnd = scsi_req(req)->cmd;
1176 	cmd->transfersize = blk_rq_bytes(req);
1177 	cmd->allowed = scsi_req(req)->retries;
1178 	return BLK_STS_OK;
1179 }
1180 
1181 /*
1182  * Setup a normal block command.  These are simple request from filesystems
1183  * that still need to be translated to SCSI CDBs from the ULD.
1184  */
1185 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev,
1186 		struct request *req)
1187 {
1188 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1189 
1190 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1191 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1192 		if (ret != BLK_STS_OK)
1193 			return ret;
1194 	}
1195 
1196 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1197 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1198 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1199 }
1200 
1201 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev,
1202 		struct request *req)
1203 {
1204 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1205 
1206 	if (!blk_rq_bytes(req))
1207 		cmd->sc_data_direction = DMA_NONE;
1208 	else if (rq_data_dir(req) == WRITE)
1209 		cmd->sc_data_direction = DMA_TO_DEVICE;
1210 	else
1211 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1212 
1213 	if (blk_rq_is_scsi(req))
1214 		return scsi_setup_scsi_cmnd(sdev, req);
1215 	else
1216 		return scsi_setup_fs_cmnd(sdev, req);
1217 }
1218 
1219 static blk_status_t
1220 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1221 {
1222 	switch (sdev->sdev_state) {
1223 	case SDEV_OFFLINE:
1224 	case SDEV_TRANSPORT_OFFLINE:
1225 		/*
1226 		 * If the device is offline we refuse to process any
1227 		 * commands.  The device must be brought online
1228 		 * before trying any recovery commands.
1229 		 */
1230 		sdev_printk(KERN_ERR, sdev,
1231 			    "rejecting I/O to offline device\n");
1232 		return BLK_STS_IOERR;
1233 	case SDEV_DEL:
1234 		/*
1235 		 * If the device is fully deleted, we refuse to
1236 		 * process any commands as well.
1237 		 */
1238 		sdev_printk(KERN_ERR, sdev,
1239 			    "rejecting I/O to dead device\n");
1240 		return BLK_STS_IOERR;
1241 	case SDEV_BLOCK:
1242 	case SDEV_CREATED_BLOCK:
1243 		return BLK_STS_RESOURCE;
1244 	case SDEV_QUIESCE:
1245 		/*
1246 		 * If the devices is blocked we defer normal commands.
1247 		 */
1248 		if (req && !(req->rq_flags & RQF_PREEMPT))
1249 			return BLK_STS_RESOURCE;
1250 		return BLK_STS_OK;
1251 	default:
1252 		/*
1253 		 * For any other not fully online state we only allow
1254 		 * special commands.  In particular any user initiated
1255 		 * command is not allowed.
1256 		 */
1257 		if (req && !(req->rq_flags & RQF_PREEMPT))
1258 			return BLK_STS_IOERR;
1259 		return BLK_STS_OK;
1260 	}
1261 }
1262 
1263 /*
1264  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1265  * return 0.
1266  *
1267  * Called with the queue_lock held.
1268  */
1269 static inline int scsi_dev_queue_ready(struct request_queue *q,
1270 				  struct scsi_device *sdev)
1271 {
1272 	unsigned int busy;
1273 
1274 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1275 	if (atomic_read(&sdev->device_blocked)) {
1276 		if (busy)
1277 			goto out_dec;
1278 
1279 		/*
1280 		 * unblock after device_blocked iterates to zero
1281 		 */
1282 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1283 			goto out_dec;
1284 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1285 				   "unblocking device at zero depth\n"));
1286 	}
1287 
1288 	if (busy >= sdev->queue_depth)
1289 		goto out_dec;
1290 
1291 	return 1;
1292 out_dec:
1293 	atomic_dec(&sdev->device_busy);
1294 	return 0;
1295 }
1296 
1297 /*
1298  * scsi_target_queue_ready: checks if there we can send commands to target
1299  * @sdev: scsi device on starget to check.
1300  */
1301 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1302 					   struct scsi_device *sdev)
1303 {
1304 	struct scsi_target *starget = scsi_target(sdev);
1305 	unsigned int busy;
1306 
1307 	if (starget->single_lun) {
1308 		spin_lock_irq(shost->host_lock);
1309 		if (starget->starget_sdev_user &&
1310 		    starget->starget_sdev_user != sdev) {
1311 			spin_unlock_irq(shost->host_lock);
1312 			return 0;
1313 		}
1314 		starget->starget_sdev_user = sdev;
1315 		spin_unlock_irq(shost->host_lock);
1316 	}
1317 
1318 	if (starget->can_queue <= 0)
1319 		return 1;
1320 
1321 	busy = atomic_inc_return(&starget->target_busy) - 1;
1322 	if (atomic_read(&starget->target_blocked) > 0) {
1323 		if (busy)
1324 			goto starved;
1325 
1326 		/*
1327 		 * unblock after target_blocked iterates to zero
1328 		 */
1329 		if (atomic_dec_return(&starget->target_blocked) > 0)
1330 			goto out_dec;
1331 
1332 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1333 				 "unblocking target at zero depth\n"));
1334 	}
1335 
1336 	if (busy >= starget->can_queue)
1337 		goto starved;
1338 
1339 	return 1;
1340 
1341 starved:
1342 	spin_lock_irq(shost->host_lock);
1343 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1344 	spin_unlock_irq(shost->host_lock);
1345 out_dec:
1346 	if (starget->can_queue > 0)
1347 		atomic_dec(&starget->target_busy);
1348 	return 0;
1349 }
1350 
1351 /*
1352  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1353  * return 0. We must end up running the queue again whenever 0 is
1354  * returned, else IO can hang.
1355  */
1356 static inline int scsi_host_queue_ready(struct request_queue *q,
1357 				   struct Scsi_Host *shost,
1358 				   struct scsi_device *sdev)
1359 {
1360 	unsigned int busy;
1361 
1362 	if (scsi_host_in_recovery(shost))
1363 		return 0;
1364 
1365 	busy = atomic_inc_return(&shost->host_busy) - 1;
1366 	if (atomic_read(&shost->host_blocked) > 0) {
1367 		if (busy)
1368 			goto starved;
1369 
1370 		/*
1371 		 * unblock after host_blocked iterates to zero
1372 		 */
1373 		if (atomic_dec_return(&shost->host_blocked) > 0)
1374 			goto out_dec;
1375 
1376 		SCSI_LOG_MLQUEUE(3,
1377 			shost_printk(KERN_INFO, shost,
1378 				     "unblocking host at zero depth\n"));
1379 	}
1380 
1381 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1382 		goto starved;
1383 	if (shost->host_self_blocked)
1384 		goto starved;
1385 
1386 	/* We're OK to process the command, so we can't be starved */
1387 	if (!list_empty(&sdev->starved_entry)) {
1388 		spin_lock_irq(shost->host_lock);
1389 		if (!list_empty(&sdev->starved_entry))
1390 			list_del_init(&sdev->starved_entry);
1391 		spin_unlock_irq(shost->host_lock);
1392 	}
1393 
1394 	return 1;
1395 
1396 starved:
1397 	spin_lock_irq(shost->host_lock);
1398 	if (list_empty(&sdev->starved_entry))
1399 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1400 	spin_unlock_irq(shost->host_lock);
1401 out_dec:
1402 	scsi_dec_host_busy(shost);
1403 	return 0;
1404 }
1405 
1406 /*
1407  * Busy state exporting function for request stacking drivers.
1408  *
1409  * For efficiency, no lock is taken to check the busy state of
1410  * shost/starget/sdev, since the returned value is not guaranteed and
1411  * may be changed after request stacking drivers call the function,
1412  * regardless of taking lock or not.
1413  *
1414  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1415  * needs to return 'not busy'. Otherwise, request stacking drivers
1416  * may hold requests forever.
1417  */
1418 static bool scsi_mq_lld_busy(struct request_queue *q)
1419 {
1420 	struct scsi_device *sdev = q->queuedata;
1421 	struct Scsi_Host *shost;
1422 
1423 	if (blk_queue_dying(q))
1424 		return false;
1425 
1426 	shost = sdev->host;
1427 
1428 	/*
1429 	 * Ignore host/starget busy state.
1430 	 * Since block layer does not have a concept of fairness across
1431 	 * multiple queues, congestion of host/starget needs to be handled
1432 	 * in SCSI layer.
1433 	 */
1434 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1435 		return true;
1436 
1437 	return false;
1438 }
1439 
1440 static void scsi_softirq_done(struct request *rq)
1441 {
1442 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1443 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1444 	int disposition;
1445 
1446 	INIT_LIST_HEAD(&cmd->eh_entry);
1447 
1448 	atomic_inc(&cmd->device->iodone_cnt);
1449 	if (cmd->result)
1450 		atomic_inc(&cmd->device->ioerr_cnt);
1451 
1452 	disposition = scsi_decide_disposition(cmd);
1453 	if (disposition != SUCCESS &&
1454 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1455 		scmd_printk(KERN_ERR, cmd,
1456 			    "timing out command, waited %lus\n",
1457 			    wait_for/HZ);
1458 		disposition = SUCCESS;
1459 	}
1460 
1461 	scsi_log_completion(cmd, disposition);
1462 
1463 	switch (disposition) {
1464 		case SUCCESS:
1465 			scsi_finish_command(cmd);
1466 			break;
1467 		case NEEDS_RETRY:
1468 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1469 			break;
1470 		case ADD_TO_MLQUEUE:
1471 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1472 			break;
1473 		default:
1474 			scsi_eh_scmd_add(cmd);
1475 			break;
1476 	}
1477 }
1478 
1479 /**
1480  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1481  * @cmd: command block we are dispatching.
1482  *
1483  * Return: nonzero return request was rejected and device's queue needs to be
1484  * plugged.
1485  */
1486 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1487 {
1488 	struct Scsi_Host *host = cmd->device->host;
1489 	int rtn = 0;
1490 
1491 	atomic_inc(&cmd->device->iorequest_cnt);
1492 
1493 	/* check if the device is still usable */
1494 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1495 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1496 		 * returns an immediate error upwards, and signals
1497 		 * that the device is no longer present */
1498 		cmd->result = DID_NO_CONNECT << 16;
1499 		goto done;
1500 	}
1501 
1502 	/* Check to see if the scsi lld made this device blocked. */
1503 	if (unlikely(scsi_device_blocked(cmd->device))) {
1504 		/*
1505 		 * in blocked state, the command is just put back on
1506 		 * the device queue.  The suspend state has already
1507 		 * blocked the queue so future requests should not
1508 		 * occur until the device transitions out of the
1509 		 * suspend state.
1510 		 */
1511 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1512 			"queuecommand : device blocked\n"));
1513 		return SCSI_MLQUEUE_DEVICE_BUSY;
1514 	}
1515 
1516 	/* Store the LUN value in cmnd, if needed. */
1517 	if (cmd->device->lun_in_cdb)
1518 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1519 			       (cmd->device->lun << 5 & 0xe0);
1520 
1521 	scsi_log_send(cmd);
1522 
1523 	/*
1524 	 * Before we queue this command, check if the command
1525 	 * length exceeds what the host adapter can handle.
1526 	 */
1527 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1528 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1529 			       "queuecommand : command too long. "
1530 			       "cdb_size=%d host->max_cmd_len=%d\n",
1531 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1532 		cmd->result = (DID_ABORT << 16);
1533 		goto done;
1534 	}
1535 
1536 	if (unlikely(host->shost_state == SHOST_DEL)) {
1537 		cmd->result = (DID_NO_CONNECT << 16);
1538 		goto done;
1539 
1540 	}
1541 
1542 	trace_scsi_dispatch_cmd_start(cmd);
1543 	rtn = host->hostt->queuecommand(host, cmd);
1544 	if (rtn) {
1545 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1546 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1547 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1548 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1549 
1550 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1551 			"queuecommand : request rejected\n"));
1552 	}
1553 
1554 	return rtn;
1555  done:
1556 	cmd->scsi_done(cmd);
1557 	return 0;
1558 }
1559 
1560 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1561 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1562 {
1563 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1564 		sizeof(struct scatterlist);
1565 }
1566 
1567 static blk_status_t scsi_mq_prep_fn(struct request *req)
1568 {
1569 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1570 	struct scsi_device *sdev = req->q->queuedata;
1571 	struct Scsi_Host *shost = sdev->host;
1572 	struct scatterlist *sg;
1573 
1574 	scsi_init_command(sdev, cmd);
1575 
1576 	cmd->request = req;
1577 	cmd->tag = req->tag;
1578 	cmd->prot_op = SCSI_PROT_NORMAL;
1579 
1580 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1581 	cmd->sdb.table.sgl = sg;
1582 
1583 	if (scsi_host_get_prot(shost)) {
1584 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1585 
1586 		cmd->prot_sdb->table.sgl =
1587 			(struct scatterlist *)(cmd->prot_sdb + 1);
1588 	}
1589 
1590 	blk_mq_start_request(req);
1591 
1592 	return scsi_setup_cmnd(sdev, req);
1593 }
1594 
1595 static void scsi_mq_done(struct scsi_cmnd *cmd)
1596 {
1597 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1598 		return;
1599 	trace_scsi_dispatch_cmd_done(cmd);
1600 
1601 	/*
1602 	 * If the block layer didn't complete the request due to a timeout
1603 	 * injection, scsi must clear its internal completed state so that the
1604 	 * timeout handler will see it needs to escalate its own error
1605 	 * recovery.
1606 	 */
1607 	if (unlikely(!blk_mq_complete_request(cmd->request)))
1608 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1609 }
1610 
1611 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1612 {
1613 	struct request_queue *q = hctx->queue;
1614 	struct scsi_device *sdev = q->queuedata;
1615 
1616 	atomic_dec(&sdev->device_busy);
1617 }
1618 
1619 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1620 {
1621 	struct request_queue *q = hctx->queue;
1622 	struct scsi_device *sdev = q->queuedata;
1623 
1624 	if (scsi_dev_queue_ready(q, sdev))
1625 		return true;
1626 
1627 	if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
1628 		blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1629 	return false;
1630 }
1631 
1632 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1633 			 const struct blk_mq_queue_data *bd)
1634 {
1635 	struct request *req = bd->rq;
1636 	struct request_queue *q = req->q;
1637 	struct scsi_device *sdev = q->queuedata;
1638 	struct Scsi_Host *shost = sdev->host;
1639 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1640 	blk_status_t ret;
1641 	int reason;
1642 
1643 	/*
1644 	 * If the device is not in running state we will reject some or all
1645 	 * commands.
1646 	 */
1647 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1648 		ret = scsi_prep_state_check(sdev, req);
1649 		if (ret != BLK_STS_OK)
1650 			goto out_put_budget;
1651 	}
1652 
1653 	ret = BLK_STS_RESOURCE;
1654 	if (!scsi_target_queue_ready(shost, sdev))
1655 		goto out_put_budget;
1656 	if (!scsi_host_queue_ready(q, shost, sdev))
1657 		goto out_dec_target_busy;
1658 
1659 	if (!(req->rq_flags & RQF_DONTPREP)) {
1660 		ret = scsi_mq_prep_fn(req);
1661 		if (ret != BLK_STS_OK)
1662 			goto out_dec_host_busy;
1663 		req->rq_flags |= RQF_DONTPREP;
1664 	} else {
1665 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1666 		blk_mq_start_request(req);
1667 	}
1668 
1669 	if (sdev->simple_tags)
1670 		cmd->flags |= SCMD_TAGGED;
1671 	else
1672 		cmd->flags &= ~SCMD_TAGGED;
1673 
1674 	scsi_init_cmd_errh(cmd);
1675 	cmd->scsi_done = scsi_mq_done;
1676 
1677 	reason = scsi_dispatch_cmd(cmd);
1678 	if (reason) {
1679 		scsi_set_blocked(cmd, reason);
1680 		ret = BLK_STS_RESOURCE;
1681 		goto out_dec_host_busy;
1682 	}
1683 
1684 	return BLK_STS_OK;
1685 
1686 out_dec_host_busy:
1687 	scsi_dec_host_busy(shost);
1688 out_dec_target_busy:
1689 	if (scsi_target(sdev)->can_queue > 0)
1690 		atomic_dec(&scsi_target(sdev)->target_busy);
1691 out_put_budget:
1692 	scsi_mq_put_budget(hctx);
1693 	switch (ret) {
1694 	case BLK_STS_OK:
1695 		break;
1696 	case BLK_STS_RESOURCE:
1697 		if (atomic_read(&sdev->device_busy) ||
1698 		    scsi_device_blocked(sdev))
1699 			ret = BLK_STS_DEV_RESOURCE;
1700 		break;
1701 	default:
1702 		if (unlikely(!scsi_device_online(sdev)))
1703 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1704 		else
1705 			scsi_req(req)->result = DID_ERROR << 16;
1706 		/*
1707 		 * Make sure to release all allocated resources when
1708 		 * we hit an error, as we will never see this command
1709 		 * again.
1710 		 */
1711 		if (req->rq_flags & RQF_DONTPREP)
1712 			scsi_mq_uninit_cmd(cmd);
1713 		break;
1714 	}
1715 	return ret;
1716 }
1717 
1718 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1719 		bool reserved)
1720 {
1721 	if (reserved)
1722 		return BLK_EH_RESET_TIMER;
1723 	return scsi_times_out(req);
1724 }
1725 
1726 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1727 				unsigned int hctx_idx, unsigned int numa_node)
1728 {
1729 	struct Scsi_Host *shost = set->driver_data;
1730 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1731 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1732 	struct scatterlist *sg;
1733 
1734 	if (unchecked_isa_dma)
1735 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1736 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1737 						    GFP_KERNEL, numa_node);
1738 	if (!cmd->sense_buffer)
1739 		return -ENOMEM;
1740 	cmd->req.sense = cmd->sense_buffer;
1741 
1742 	if (scsi_host_get_prot(shost)) {
1743 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1744 			shost->hostt->cmd_size;
1745 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1746 	}
1747 
1748 	return 0;
1749 }
1750 
1751 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1752 				 unsigned int hctx_idx)
1753 {
1754 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1755 
1756 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1757 			       cmd->sense_buffer);
1758 }
1759 
1760 static int scsi_map_queues(struct blk_mq_tag_set *set)
1761 {
1762 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1763 
1764 	if (shost->hostt->map_queues)
1765 		return shost->hostt->map_queues(shost);
1766 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1767 }
1768 
1769 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1770 {
1771 	struct device *dev = shost->dma_dev;
1772 
1773 	/*
1774 	 * this limit is imposed by hardware restrictions
1775 	 */
1776 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1777 					SG_MAX_SEGMENTS));
1778 
1779 	if (scsi_host_prot_dma(shost)) {
1780 		shost->sg_prot_tablesize =
1781 			min_not_zero(shost->sg_prot_tablesize,
1782 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1783 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1784 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1785 	}
1786 
1787 	if (dev->dma_mask) {
1788 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1789 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1790 	}
1791 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1792 	if (shost->unchecked_isa_dma)
1793 		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1794 	blk_queue_segment_boundary(q, shost->dma_boundary);
1795 	dma_set_seg_boundary(dev, shost->dma_boundary);
1796 
1797 	blk_queue_max_segment_size(q, shost->max_segment_size);
1798 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1799 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1800 
1801 	/*
1802 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1803 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1804 	 * which is set by the platform.
1805 	 *
1806 	 * Devices that require a bigger alignment can increase it later.
1807 	 */
1808 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1809 }
1810 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1811 
1812 static const struct blk_mq_ops scsi_mq_ops = {
1813 	.get_budget	= scsi_mq_get_budget,
1814 	.put_budget	= scsi_mq_put_budget,
1815 	.queue_rq	= scsi_queue_rq,
1816 	.complete	= scsi_softirq_done,
1817 	.timeout	= scsi_timeout,
1818 #ifdef CONFIG_BLK_DEBUG_FS
1819 	.show_rq	= scsi_show_rq,
1820 #endif
1821 	.init_request	= scsi_mq_init_request,
1822 	.exit_request	= scsi_mq_exit_request,
1823 	.initialize_rq_fn = scsi_initialize_rq,
1824 	.busy		= scsi_mq_lld_busy,
1825 	.map_queues	= scsi_map_queues,
1826 };
1827 
1828 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1829 {
1830 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1831 	if (IS_ERR(sdev->request_queue))
1832 		return NULL;
1833 
1834 	sdev->request_queue->queuedata = sdev;
1835 	__scsi_init_queue(sdev->host, sdev->request_queue);
1836 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1837 	return sdev->request_queue;
1838 }
1839 
1840 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1841 {
1842 	unsigned int cmd_size, sgl_size;
1843 
1844 	sgl_size = scsi_mq_inline_sgl_size(shost);
1845 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1846 	if (scsi_host_get_prot(shost))
1847 		cmd_size += sizeof(struct scsi_data_buffer) +
1848 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1849 
1850 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
1851 	shost->tag_set.ops = &scsi_mq_ops;
1852 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
1853 	shost->tag_set.queue_depth = shost->can_queue;
1854 	shost->tag_set.cmd_size = cmd_size;
1855 	shost->tag_set.numa_node = NUMA_NO_NODE;
1856 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1857 	shost->tag_set.flags |=
1858 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1859 	shost->tag_set.driver_data = shost;
1860 
1861 	return blk_mq_alloc_tag_set(&shost->tag_set);
1862 }
1863 
1864 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1865 {
1866 	blk_mq_free_tag_set(&shost->tag_set);
1867 }
1868 
1869 /**
1870  * scsi_device_from_queue - return sdev associated with a request_queue
1871  * @q: The request queue to return the sdev from
1872  *
1873  * Return the sdev associated with a request queue or NULL if the
1874  * request_queue does not reference a SCSI device.
1875  */
1876 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1877 {
1878 	struct scsi_device *sdev = NULL;
1879 
1880 	if (q->mq_ops == &scsi_mq_ops)
1881 		sdev = q->queuedata;
1882 	if (!sdev || !get_device(&sdev->sdev_gendev))
1883 		sdev = NULL;
1884 
1885 	return sdev;
1886 }
1887 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
1888 
1889 /*
1890  * Function:    scsi_block_requests()
1891  *
1892  * Purpose:     Utility function used by low-level drivers to prevent further
1893  *		commands from being queued to the device.
1894  *
1895  * Arguments:   shost       - Host in question
1896  *
1897  * Returns:     Nothing
1898  *
1899  * Lock status: No locks are assumed held.
1900  *
1901  * Notes:       There is no timer nor any other means by which the requests
1902  *		get unblocked other than the low-level driver calling
1903  *		scsi_unblock_requests().
1904  */
1905 void scsi_block_requests(struct Scsi_Host *shost)
1906 {
1907 	shost->host_self_blocked = 1;
1908 }
1909 EXPORT_SYMBOL(scsi_block_requests);
1910 
1911 /*
1912  * Function:    scsi_unblock_requests()
1913  *
1914  * Purpose:     Utility function used by low-level drivers to allow further
1915  *		commands from being queued to the device.
1916  *
1917  * Arguments:   shost       - Host in question
1918  *
1919  * Returns:     Nothing
1920  *
1921  * Lock status: No locks are assumed held.
1922  *
1923  * Notes:       There is no timer nor any other means by which the requests
1924  *		get unblocked other than the low-level driver calling
1925  *		scsi_unblock_requests().
1926  *
1927  *		This is done as an API function so that changes to the
1928  *		internals of the scsi mid-layer won't require wholesale
1929  *		changes to drivers that use this feature.
1930  */
1931 void scsi_unblock_requests(struct Scsi_Host *shost)
1932 {
1933 	shost->host_self_blocked = 0;
1934 	scsi_run_host_queues(shost);
1935 }
1936 EXPORT_SYMBOL(scsi_unblock_requests);
1937 
1938 int __init scsi_init_queue(void)
1939 {
1940 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1941 					   sizeof(struct scsi_data_buffer),
1942 					   0, 0, NULL);
1943 	if (!scsi_sdb_cache) {
1944 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1945 		return -ENOMEM;
1946 	}
1947 
1948 	return 0;
1949 }
1950 
1951 void scsi_exit_queue(void)
1952 {
1953 	kmem_cache_destroy(scsi_sense_cache);
1954 	kmem_cache_destroy(scsi_sense_isadma_cache);
1955 	kmem_cache_destroy(scsi_sdb_cache);
1956 }
1957 
1958 /**
1959  *	scsi_mode_select - issue a mode select
1960  *	@sdev:	SCSI device to be queried
1961  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1962  *	@sp:	Save page bit (0 == don't save, 1 == save)
1963  *	@modepage: mode page being requested
1964  *	@buffer: request buffer (may not be smaller than eight bytes)
1965  *	@len:	length of request buffer.
1966  *	@timeout: command timeout
1967  *	@retries: number of retries before failing
1968  *	@data: returns a structure abstracting the mode header data
1969  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1970  *		must be SCSI_SENSE_BUFFERSIZE big.
1971  *
1972  *	Returns zero if successful; negative error number or scsi
1973  *	status on error
1974  *
1975  */
1976 int
1977 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1978 		 unsigned char *buffer, int len, int timeout, int retries,
1979 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1980 {
1981 	unsigned char cmd[10];
1982 	unsigned char *real_buffer;
1983 	int ret;
1984 
1985 	memset(cmd, 0, sizeof(cmd));
1986 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1987 
1988 	if (sdev->use_10_for_ms) {
1989 		if (len > 65535)
1990 			return -EINVAL;
1991 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1992 		if (!real_buffer)
1993 			return -ENOMEM;
1994 		memcpy(real_buffer + 8, buffer, len);
1995 		len += 8;
1996 		real_buffer[0] = 0;
1997 		real_buffer[1] = 0;
1998 		real_buffer[2] = data->medium_type;
1999 		real_buffer[3] = data->device_specific;
2000 		real_buffer[4] = data->longlba ? 0x01 : 0;
2001 		real_buffer[5] = 0;
2002 		real_buffer[6] = data->block_descriptor_length >> 8;
2003 		real_buffer[7] = data->block_descriptor_length;
2004 
2005 		cmd[0] = MODE_SELECT_10;
2006 		cmd[7] = len >> 8;
2007 		cmd[8] = len;
2008 	} else {
2009 		if (len > 255 || data->block_descriptor_length > 255 ||
2010 		    data->longlba)
2011 			return -EINVAL;
2012 
2013 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2014 		if (!real_buffer)
2015 			return -ENOMEM;
2016 		memcpy(real_buffer + 4, buffer, len);
2017 		len += 4;
2018 		real_buffer[0] = 0;
2019 		real_buffer[1] = data->medium_type;
2020 		real_buffer[2] = data->device_specific;
2021 		real_buffer[3] = data->block_descriptor_length;
2022 
2023 
2024 		cmd[0] = MODE_SELECT;
2025 		cmd[4] = len;
2026 	}
2027 
2028 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2029 			       sshdr, timeout, retries, NULL);
2030 	kfree(real_buffer);
2031 	return ret;
2032 }
2033 EXPORT_SYMBOL_GPL(scsi_mode_select);
2034 
2035 /**
2036  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2037  *	@sdev:	SCSI device to be queried
2038  *	@dbd:	set if mode sense will allow block descriptors to be returned
2039  *	@modepage: mode page being requested
2040  *	@buffer: request buffer (may not be smaller than eight bytes)
2041  *	@len:	length of request buffer.
2042  *	@timeout: command timeout
2043  *	@retries: number of retries before failing
2044  *	@data: returns a structure abstracting the mode header data
2045  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2046  *		must be SCSI_SENSE_BUFFERSIZE big.
2047  *
2048  *	Returns zero if unsuccessful, or the header offset (either 4
2049  *	or 8 depending on whether a six or ten byte command was
2050  *	issued) if successful.
2051  */
2052 int
2053 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2054 		  unsigned char *buffer, int len, int timeout, int retries,
2055 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2056 {
2057 	unsigned char cmd[12];
2058 	int use_10_for_ms;
2059 	int header_length;
2060 	int result, retry_count = retries;
2061 	struct scsi_sense_hdr my_sshdr;
2062 
2063 	memset(data, 0, sizeof(*data));
2064 	memset(&cmd[0], 0, 12);
2065 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2066 	cmd[2] = modepage;
2067 
2068 	/* caller might not be interested in sense, but we need it */
2069 	if (!sshdr)
2070 		sshdr = &my_sshdr;
2071 
2072  retry:
2073 	use_10_for_ms = sdev->use_10_for_ms;
2074 
2075 	if (use_10_for_ms) {
2076 		if (len < 8)
2077 			len = 8;
2078 
2079 		cmd[0] = MODE_SENSE_10;
2080 		cmd[8] = len;
2081 		header_length = 8;
2082 	} else {
2083 		if (len < 4)
2084 			len = 4;
2085 
2086 		cmd[0] = MODE_SENSE;
2087 		cmd[4] = len;
2088 		header_length = 4;
2089 	}
2090 
2091 	memset(buffer, 0, len);
2092 
2093 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2094 				  sshdr, timeout, retries, NULL);
2095 
2096 	/* This code looks awful: what it's doing is making sure an
2097 	 * ILLEGAL REQUEST sense return identifies the actual command
2098 	 * byte as the problem.  MODE_SENSE commands can return
2099 	 * ILLEGAL REQUEST if the code page isn't supported */
2100 
2101 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2102 	    driver_byte(result) == DRIVER_SENSE) {
2103 		if (scsi_sense_valid(sshdr)) {
2104 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2105 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2106 				/*
2107 				 * Invalid command operation code
2108 				 */
2109 				sdev->use_10_for_ms = 0;
2110 				goto retry;
2111 			}
2112 		}
2113 	}
2114 
2115 	if(scsi_status_is_good(result)) {
2116 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2117 			     (modepage == 6 || modepage == 8))) {
2118 			/* Initio breakage? */
2119 			header_length = 0;
2120 			data->length = 13;
2121 			data->medium_type = 0;
2122 			data->device_specific = 0;
2123 			data->longlba = 0;
2124 			data->block_descriptor_length = 0;
2125 		} else if(use_10_for_ms) {
2126 			data->length = buffer[0]*256 + buffer[1] + 2;
2127 			data->medium_type = buffer[2];
2128 			data->device_specific = buffer[3];
2129 			data->longlba = buffer[4] & 0x01;
2130 			data->block_descriptor_length = buffer[6]*256
2131 				+ buffer[7];
2132 		} else {
2133 			data->length = buffer[0] + 1;
2134 			data->medium_type = buffer[1];
2135 			data->device_specific = buffer[2];
2136 			data->block_descriptor_length = buffer[3];
2137 		}
2138 		data->header_length = header_length;
2139 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2140 		   scsi_sense_valid(sshdr) &&
2141 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2142 		retry_count--;
2143 		goto retry;
2144 	}
2145 
2146 	return result;
2147 }
2148 EXPORT_SYMBOL(scsi_mode_sense);
2149 
2150 /**
2151  *	scsi_test_unit_ready - test if unit is ready
2152  *	@sdev:	scsi device to change the state of.
2153  *	@timeout: command timeout
2154  *	@retries: number of retries before failing
2155  *	@sshdr: outpout pointer for decoded sense information.
2156  *
2157  *	Returns zero if unsuccessful or an error if TUR failed.  For
2158  *	removable media, UNIT_ATTENTION sets ->changed flag.
2159  **/
2160 int
2161 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2162 		     struct scsi_sense_hdr *sshdr)
2163 {
2164 	char cmd[] = {
2165 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2166 	};
2167 	int result;
2168 
2169 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2170 	do {
2171 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2172 					  timeout, 1, NULL);
2173 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2174 		    sshdr->sense_key == UNIT_ATTENTION)
2175 			sdev->changed = 1;
2176 	} while (scsi_sense_valid(sshdr) &&
2177 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2178 
2179 	return result;
2180 }
2181 EXPORT_SYMBOL(scsi_test_unit_ready);
2182 
2183 /**
2184  *	scsi_device_set_state - Take the given device through the device state model.
2185  *	@sdev:	scsi device to change the state of.
2186  *	@state:	state to change to.
2187  *
2188  *	Returns zero if successful or an error if the requested
2189  *	transition is illegal.
2190  */
2191 int
2192 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2193 {
2194 	enum scsi_device_state oldstate = sdev->sdev_state;
2195 
2196 	if (state == oldstate)
2197 		return 0;
2198 
2199 	switch (state) {
2200 	case SDEV_CREATED:
2201 		switch (oldstate) {
2202 		case SDEV_CREATED_BLOCK:
2203 			break;
2204 		default:
2205 			goto illegal;
2206 		}
2207 		break;
2208 
2209 	case SDEV_RUNNING:
2210 		switch (oldstate) {
2211 		case SDEV_CREATED:
2212 		case SDEV_OFFLINE:
2213 		case SDEV_TRANSPORT_OFFLINE:
2214 		case SDEV_QUIESCE:
2215 		case SDEV_BLOCK:
2216 			break;
2217 		default:
2218 			goto illegal;
2219 		}
2220 		break;
2221 
2222 	case SDEV_QUIESCE:
2223 		switch (oldstate) {
2224 		case SDEV_RUNNING:
2225 		case SDEV_OFFLINE:
2226 		case SDEV_TRANSPORT_OFFLINE:
2227 			break;
2228 		default:
2229 			goto illegal;
2230 		}
2231 		break;
2232 
2233 	case SDEV_OFFLINE:
2234 	case SDEV_TRANSPORT_OFFLINE:
2235 		switch (oldstate) {
2236 		case SDEV_CREATED:
2237 		case SDEV_RUNNING:
2238 		case SDEV_QUIESCE:
2239 		case SDEV_BLOCK:
2240 			break;
2241 		default:
2242 			goto illegal;
2243 		}
2244 		break;
2245 
2246 	case SDEV_BLOCK:
2247 		switch (oldstate) {
2248 		case SDEV_RUNNING:
2249 		case SDEV_CREATED_BLOCK:
2250 		case SDEV_OFFLINE:
2251 			break;
2252 		default:
2253 			goto illegal;
2254 		}
2255 		break;
2256 
2257 	case SDEV_CREATED_BLOCK:
2258 		switch (oldstate) {
2259 		case SDEV_CREATED:
2260 			break;
2261 		default:
2262 			goto illegal;
2263 		}
2264 		break;
2265 
2266 	case SDEV_CANCEL:
2267 		switch (oldstate) {
2268 		case SDEV_CREATED:
2269 		case SDEV_RUNNING:
2270 		case SDEV_QUIESCE:
2271 		case SDEV_OFFLINE:
2272 		case SDEV_TRANSPORT_OFFLINE:
2273 			break;
2274 		default:
2275 			goto illegal;
2276 		}
2277 		break;
2278 
2279 	case SDEV_DEL:
2280 		switch (oldstate) {
2281 		case SDEV_CREATED:
2282 		case SDEV_RUNNING:
2283 		case SDEV_OFFLINE:
2284 		case SDEV_TRANSPORT_OFFLINE:
2285 		case SDEV_CANCEL:
2286 		case SDEV_BLOCK:
2287 		case SDEV_CREATED_BLOCK:
2288 			break;
2289 		default:
2290 			goto illegal;
2291 		}
2292 		break;
2293 
2294 	}
2295 	sdev->sdev_state = state;
2296 	return 0;
2297 
2298  illegal:
2299 	SCSI_LOG_ERROR_RECOVERY(1,
2300 				sdev_printk(KERN_ERR, sdev,
2301 					    "Illegal state transition %s->%s",
2302 					    scsi_device_state_name(oldstate),
2303 					    scsi_device_state_name(state))
2304 				);
2305 	return -EINVAL;
2306 }
2307 EXPORT_SYMBOL(scsi_device_set_state);
2308 
2309 /**
2310  * 	sdev_evt_emit - emit a single SCSI device uevent
2311  *	@sdev: associated SCSI device
2312  *	@evt: event to emit
2313  *
2314  *	Send a single uevent (scsi_event) to the associated scsi_device.
2315  */
2316 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2317 {
2318 	int idx = 0;
2319 	char *envp[3];
2320 
2321 	switch (evt->evt_type) {
2322 	case SDEV_EVT_MEDIA_CHANGE:
2323 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2324 		break;
2325 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2326 		scsi_rescan_device(&sdev->sdev_gendev);
2327 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2328 		break;
2329 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2330 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2331 		break;
2332 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2333 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2334 		break;
2335 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2336 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2337 		break;
2338 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2339 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2340 		break;
2341 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2342 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2343 		break;
2344 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2345 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2346 		break;
2347 	default:
2348 		/* do nothing */
2349 		break;
2350 	}
2351 
2352 	envp[idx++] = NULL;
2353 
2354 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2355 }
2356 
2357 /**
2358  * 	sdev_evt_thread - send a uevent for each scsi event
2359  *	@work: work struct for scsi_device
2360  *
2361  *	Dispatch queued events to their associated scsi_device kobjects
2362  *	as uevents.
2363  */
2364 void scsi_evt_thread(struct work_struct *work)
2365 {
2366 	struct scsi_device *sdev;
2367 	enum scsi_device_event evt_type;
2368 	LIST_HEAD(event_list);
2369 
2370 	sdev = container_of(work, struct scsi_device, event_work);
2371 
2372 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2373 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2374 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2375 
2376 	while (1) {
2377 		struct scsi_event *evt;
2378 		struct list_head *this, *tmp;
2379 		unsigned long flags;
2380 
2381 		spin_lock_irqsave(&sdev->list_lock, flags);
2382 		list_splice_init(&sdev->event_list, &event_list);
2383 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2384 
2385 		if (list_empty(&event_list))
2386 			break;
2387 
2388 		list_for_each_safe(this, tmp, &event_list) {
2389 			evt = list_entry(this, struct scsi_event, node);
2390 			list_del(&evt->node);
2391 			scsi_evt_emit(sdev, evt);
2392 			kfree(evt);
2393 		}
2394 	}
2395 }
2396 
2397 /**
2398  * 	sdev_evt_send - send asserted event to uevent thread
2399  *	@sdev: scsi_device event occurred on
2400  *	@evt: event to send
2401  *
2402  *	Assert scsi device event asynchronously.
2403  */
2404 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2405 {
2406 	unsigned long flags;
2407 
2408 #if 0
2409 	/* FIXME: currently this check eliminates all media change events
2410 	 * for polled devices.  Need to update to discriminate between AN
2411 	 * and polled events */
2412 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2413 		kfree(evt);
2414 		return;
2415 	}
2416 #endif
2417 
2418 	spin_lock_irqsave(&sdev->list_lock, flags);
2419 	list_add_tail(&evt->node, &sdev->event_list);
2420 	schedule_work(&sdev->event_work);
2421 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2422 }
2423 EXPORT_SYMBOL_GPL(sdev_evt_send);
2424 
2425 /**
2426  * 	sdev_evt_alloc - allocate a new scsi event
2427  *	@evt_type: type of event to allocate
2428  *	@gfpflags: GFP flags for allocation
2429  *
2430  *	Allocates and returns a new scsi_event.
2431  */
2432 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2433 				  gfp_t gfpflags)
2434 {
2435 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2436 	if (!evt)
2437 		return NULL;
2438 
2439 	evt->evt_type = evt_type;
2440 	INIT_LIST_HEAD(&evt->node);
2441 
2442 	/* evt_type-specific initialization, if any */
2443 	switch (evt_type) {
2444 	case SDEV_EVT_MEDIA_CHANGE:
2445 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2446 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2447 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2448 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2449 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2450 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2451 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2452 	default:
2453 		/* do nothing */
2454 		break;
2455 	}
2456 
2457 	return evt;
2458 }
2459 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2460 
2461 /**
2462  * 	sdev_evt_send_simple - send asserted event to uevent thread
2463  *	@sdev: scsi_device event occurred on
2464  *	@evt_type: type of event to send
2465  *	@gfpflags: GFP flags for allocation
2466  *
2467  *	Assert scsi device event asynchronously, given an event type.
2468  */
2469 void sdev_evt_send_simple(struct scsi_device *sdev,
2470 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2471 {
2472 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2473 	if (!evt) {
2474 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2475 			    evt_type);
2476 		return;
2477 	}
2478 
2479 	sdev_evt_send(sdev, evt);
2480 }
2481 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2482 
2483 /**
2484  *	scsi_device_quiesce - Block user issued commands.
2485  *	@sdev:	scsi device to quiesce.
2486  *
2487  *	This works by trying to transition to the SDEV_QUIESCE state
2488  *	(which must be a legal transition).  When the device is in this
2489  *	state, only special requests will be accepted, all others will
2490  *	be deferred.  Since special requests may also be requeued requests,
2491  *	a successful return doesn't guarantee the device will be
2492  *	totally quiescent.
2493  *
2494  *	Must be called with user context, may sleep.
2495  *
2496  *	Returns zero if unsuccessful or an error if not.
2497  */
2498 int
2499 scsi_device_quiesce(struct scsi_device *sdev)
2500 {
2501 	struct request_queue *q = sdev->request_queue;
2502 	int err;
2503 
2504 	/*
2505 	 * It is allowed to call scsi_device_quiesce() multiple times from
2506 	 * the same context but concurrent scsi_device_quiesce() calls are
2507 	 * not allowed.
2508 	 */
2509 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2510 
2511 	if (sdev->quiesced_by == current)
2512 		return 0;
2513 
2514 	blk_set_pm_only(q);
2515 
2516 	blk_mq_freeze_queue(q);
2517 	/*
2518 	 * Ensure that the effect of blk_set_pm_only() will be visible
2519 	 * for percpu_ref_tryget() callers that occur after the queue
2520 	 * unfreeze even if the queue was already frozen before this function
2521 	 * was called. See also https://lwn.net/Articles/573497/.
2522 	 */
2523 	synchronize_rcu();
2524 	blk_mq_unfreeze_queue(q);
2525 
2526 	mutex_lock(&sdev->state_mutex);
2527 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2528 	if (err == 0)
2529 		sdev->quiesced_by = current;
2530 	else
2531 		blk_clear_pm_only(q);
2532 	mutex_unlock(&sdev->state_mutex);
2533 
2534 	return err;
2535 }
2536 EXPORT_SYMBOL(scsi_device_quiesce);
2537 
2538 /**
2539  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2540  *	@sdev:	scsi device to resume.
2541  *
2542  *	Moves the device from quiesced back to running and restarts the
2543  *	queues.
2544  *
2545  *	Must be called with user context, may sleep.
2546  */
2547 void scsi_device_resume(struct scsi_device *sdev)
2548 {
2549 	/* check if the device state was mutated prior to resume, and if
2550 	 * so assume the state is being managed elsewhere (for example
2551 	 * device deleted during suspend)
2552 	 */
2553 	mutex_lock(&sdev->state_mutex);
2554 	if (sdev->quiesced_by) {
2555 		sdev->quiesced_by = NULL;
2556 		blk_clear_pm_only(sdev->request_queue);
2557 	}
2558 	if (sdev->sdev_state == SDEV_QUIESCE)
2559 		scsi_device_set_state(sdev, SDEV_RUNNING);
2560 	mutex_unlock(&sdev->state_mutex);
2561 }
2562 EXPORT_SYMBOL(scsi_device_resume);
2563 
2564 static void
2565 device_quiesce_fn(struct scsi_device *sdev, void *data)
2566 {
2567 	scsi_device_quiesce(sdev);
2568 }
2569 
2570 void
2571 scsi_target_quiesce(struct scsi_target *starget)
2572 {
2573 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2574 }
2575 EXPORT_SYMBOL(scsi_target_quiesce);
2576 
2577 static void
2578 device_resume_fn(struct scsi_device *sdev, void *data)
2579 {
2580 	scsi_device_resume(sdev);
2581 }
2582 
2583 void
2584 scsi_target_resume(struct scsi_target *starget)
2585 {
2586 	starget_for_each_device(starget, NULL, device_resume_fn);
2587 }
2588 EXPORT_SYMBOL(scsi_target_resume);
2589 
2590 /**
2591  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2592  * @sdev: device to block
2593  *
2594  * Pause SCSI command processing on the specified device. Does not sleep.
2595  *
2596  * Returns zero if successful or a negative error code upon failure.
2597  *
2598  * Notes:
2599  * This routine transitions the device to the SDEV_BLOCK state (which must be
2600  * a legal transition). When the device is in this state, command processing
2601  * is paused until the device leaves the SDEV_BLOCK state. See also
2602  * scsi_internal_device_unblock_nowait().
2603  */
2604 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2605 {
2606 	struct request_queue *q = sdev->request_queue;
2607 	int err = 0;
2608 
2609 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2610 	if (err) {
2611 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2612 
2613 		if (err)
2614 			return err;
2615 	}
2616 
2617 	/*
2618 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2619 	 * block layer from calling the midlayer with this device's
2620 	 * request queue.
2621 	 */
2622 	blk_mq_quiesce_queue_nowait(q);
2623 	return 0;
2624 }
2625 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2626 
2627 /**
2628  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2629  * @sdev: device to block
2630  *
2631  * Pause SCSI command processing on the specified device and wait until all
2632  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2633  *
2634  * Returns zero if successful or a negative error code upon failure.
2635  *
2636  * Note:
2637  * This routine transitions the device to the SDEV_BLOCK state (which must be
2638  * a legal transition). When the device is in this state, command processing
2639  * is paused until the device leaves the SDEV_BLOCK state. See also
2640  * scsi_internal_device_unblock().
2641  */
2642 static int scsi_internal_device_block(struct scsi_device *sdev)
2643 {
2644 	struct request_queue *q = sdev->request_queue;
2645 	int err;
2646 
2647 	mutex_lock(&sdev->state_mutex);
2648 	err = scsi_internal_device_block_nowait(sdev);
2649 	if (err == 0)
2650 		blk_mq_quiesce_queue(q);
2651 	mutex_unlock(&sdev->state_mutex);
2652 
2653 	return err;
2654 }
2655 
2656 void scsi_start_queue(struct scsi_device *sdev)
2657 {
2658 	struct request_queue *q = sdev->request_queue;
2659 
2660 	blk_mq_unquiesce_queue(q);
2661 }
2662 
2663 /**
2664  * scsi_internal_device_unblock_nowait - resume a device after a block request
2665  * @sdev:	device to resume
2666  * @new_state:	state to set the device to after unblocking
2667  *
2668  * Restart the device queue for a previously suspended SCSI device. Does not
2669  * sleep.
2670  *
2671  * Returns zero if successful or a negative error code upon failure.
2672  *
2673  * Notes:
2674  * This routine transitions the device to the SDEV_RUNNING state or to one of
2675  * the offline states (which must be a legal transition) allowing the midlayer
2676  * to goose the queue for this device.
2677  */
2678 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2679 					enum scsi_device_state new_state)
2680 {
2681 	/*
2682 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2683 	 * offlined states and goose the device queue if successful.
2684 	 */
2685 	switch (sdev->sdev_state) {
2686 	case SDEV_BLOCK:
2687 	case SDEV_TRANSPORT_OFFLINE:
2688 		sdev->sdev_state = new_state;
2689 		break;
2690 	case SDEV_CREATED_BLOCK:
2691 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2692 		    new_state == SDEV_OFFLINE)
2693 			sdev->sdev_state = new_state;
2694 		else
2695 			sdev->sdev_state = SDEV_CREATED;
2696 		break;
2697 	case SDEV_CANCEL:
2698 	case SDEV_OFFLINE:
2699 		break;
2700 	default:
2701 		return -EINVAL;
2702 	}
2703 	scsi_start_queue(sdev);
2704 
2705 	return 0;
2706 }
2707 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2708 
2709 /**
2710  * scsi_internal_device_unblock - resume a device after a block request
2711  * @sdev:	device to resume
2712  * @new_state:	state to set the device to after unblocking
2713  *
2714  * Restart the device queue for a previously suspended SCSI device. May sleep.
2715  *
2716  * Returns zero if successful or a negative error code upon failure.
2717  *
2718  * Notes:
2719  * This routine transitions the device to the SDEV_RUNNING state or to one of
2720  * the offline states (which must be a legal transition) allowing the midlayer
2721  * to goose the queue for this device.
2722  */
2723 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2724 					enum scsi_device_state new_state)
2725 {
2726 	int ret;
2727 
2728 	mutex_lock(&sdev->state_mutex);
2729 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2730 	mutex_unlock(&sdev->state_mutex);
2731 
2732 	return ret;
2733 }
2734 
2735 static void
2736 device_block(struct scsi_device *sdev, void *data)
2737 {
2738 	scsi_internal_device_block(sdev);
2739 }
2740 
2741 static int
2742 target_block(struct device *dev, void *data)
2743 {
2744 	if (scsi_is_target_device(dev))
2745 		starget_for_each_device(to_scsi_target(dev), NULL,
2746 					device_block);
2747 	return 0;
2748 }
2749 
2750 void
2751 scsi_target_block(struct device *dev)
2752 {
2753 	if (scsi_is_target_device(dev))
2754 		starget_for_each_device(to_scsi_target(dev), NULL,
2755 					device_block);
2756 	else
2757 		device_for_each_child(dev, NULL, target_block);
2758 }
2759 EXPORT_SYMBOL_GPL(scsi_target_block);
2760 
2761 static void
2762 device_unblock(struct scsi_device *sdev, void *data)
2763 {
2764 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2765 }
2766 
2767 static int
2768 target_unblock(struct device *dev, void *data)
2769 {
2770 	if (scsi_is_target_device(dev))
2771 		starget_for_each_device(to_scsi_target(dev), data,
2772 					device_unblock);
2773 	return 0;
2774 }
2775 
2776 void
2777 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2778 {
2779 	if (scsi_is_target_device(dev))
2780 		starget_for_each_device(to_scsi_target(dev), &new_state,
2781 					device_unblock);
2782 	else
2783 		device_for_each_child(dev, &new_state, target_unblock);
2784 }
2785 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2786 
2787 /**
2788  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2789  * @sgl:	scatter-gather list
2790  * @sg_count:	number of segments in sg
2791  * @offset:	offset in bytes into sg, on return offset into the mapped area
2792  * @len:	bytes to map, on return number of bytes mapped
2793  *
2794  * Returns virtual address of the start of the mapped page
2795  */
2796 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2797 			  size_t *offset, size_t *len)
2798 {
2799 	int i;
2800 	size_t sg_len = 0, len_complete = 0;
2801 	struct scatterlist *sg;
2802 	struct page *page;
2803 
2804 	WARN_ON(!irqs_disabled());
2805 
2806 	for_each_sg(sgl, sg, sg_count, i) {
2807 		len_complete = sg_len; /* Complete sg-entries */
2808 		sg_len += sg->length;
2809 		if (sg_len > *offset)
2810 			break;
2811 	}
2812 
2813 	if (unlikely(i == sg_count)) {
2814 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2815 			"elements %d\n",
2816 		       __func__, sg_len, *offset, sg_count);
2817 		WARN_ON(1);
2818 		return NULL;
2819 	}
2820 
2821 	/* Offset starting from the beginning of first page in this sg-entry */
2822 	*offset = *offset - len_complete + sg->offset;
2823 
2824 	/* Assumption: contiguous pages can be accessed as "page + i" */
2825 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2826 	*offset &= ~PAGE_MASK;
2827 
2828 	/* Bytes in this sg-entry from *offset to the end of the page */
2829 	sg_len = PAGE_SIZE - *offset;
2830 	if (*len > sg_len)
2831 		*len = sg_len;
2832 
2833 	return kmap_atomic(page);
2834 }
2835 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2836 
2837 /**
2838  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2839  * @virt:	virtual address to be unmapped
2840  */
2841 void scsi_kunmap_atomic_sg(void *virt)
2842 {
2843 	kunmap_atomic(virt);
2844 }
2845 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2846 
2847 void sdev_disable_disk_events(struct scsi_device *sdev)
2848 {
2849 	atomic_inc(&sdev->disk_events_disable_depth);
2850 }
2851 EXPORT_SYMBOL(sdev_disable_disk_events);
2852 
2853 void sdev_enable_disk_events(struct scsi_device *sdev)
2854 {
2855 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2856 		return;
2857 	atomic_dec(&sdev->disk_events_disable_depth);
2858 }
2859 EXPORT_SYMBOL(sdev_enable_disk_events);
2860 
2861 /**
2862  * scsi_vpd_lun_id - return a unique device identification
2863  * @sdev: SCSI device
2864  * @id:   buffer for the identification
2865  * @id_len:  length of the buffer
2866  *
2867  * Copies a unique device identification into @id based
2868  * on the information in the VPD page 0x83 of the device.
2869  * The string will be formatted as a SCSI name string.
2870  *
2871  * Returns the length of the identification or error on failure.
2872  * If the identifier is longer than the supplied buffer the actual
2873  * identifier length is returned and the buffer is not zero-padded.
2874  */
2875 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2876 {
2877 	u8 cur_id_type = 0xff;
2878 	u8 cur_id_size = 0;
2879 	const unsigned char *d, *cur_id_str;
2880 	const struct scsi_vpd *vpd_pg83;
2881 	int id_size = -EINVAL;
2882 
2883 	rcu_read_lock();
2884 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2885 	if (!vpd_pg83) {
2886 		rcu_read_unlock();
2887 		return -ENXIO;
2888 	}
2889 
2890 	/*
2891 	 * Look for the correct descriptor.
2892 	 * Order of preference for lun descriptor:
2893 	 * - SCSI name string
2894 	 * - NAA IEEE Registered Extended
2895 	 * - EUI-64 based 16-byte
2896 	 * - EUI-64 based 12-byte
2897 	 * - NAA IEEE Registered
2898 	 * - NAA IEEE Extended
2899 	 * - T10 Vendor ID
2900 	 * as longer descriptors reduce the likelyhood
2901 	 * of identification clashes.
2902 	 */
2903 
2904 	/* The id string must be at least 20 bytes + terminating NULL byte */
2905 	if (id_len < 21) {
2906 		rcu_read_unlock();
2907 		return -EINVAL;
2908 	}
2909 
2910 	memset(id, 0, id_len);
2911 	d = vpd_pg83->data + 4;
2912 	while (d < vpd_pg83->data + vpd_pg83->len) {
2913 		/* Skip designators not referring to the LUN */
2914 		if ((d[1] & 0x30) != 0x00)
2915 			goto next_desig;
2916 
2917 		switch (d[1] & 0xf) {
2918 		case 0x1:
2919 			/* T10 Vendor ID */
2920 			if (cur_id_size > d[3])
2921 				break;
2922 			/* Prefer anything */
2923 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
2924 				break;
2925 			cur_id_size = d[3];
2926 			if (cur_id_size + 4 > id_len)
2927 				cur_id_size = id_len - 4;
2928 			cur_id_str = d + 4;
2929 			cur_id_type = d[1] & 0xf;
2930 			id_size = snprintf(id, id_len, "t10.%*pE",
2931 					   cur_id_size, cur_id_str);
2932 			break;
2933 		case 0x2:
2934 			/* EUI-64 */
2935 			if (cur_id_size > d[3])
2936 				break;
2937 			/* Prefer NAA IEEE Registered Extended */
2938 			if (cur_id_type == 0x3 &&
2939 			    cur_id_size == d[3])
2940 				break;
2941 			cur_id_size = d[3];
2942 			cur_id_str = d + 4;
2943 			cur_id_type = d[1] & 0xf;
2944 			switch (cur_id_size) {
2945 			case 8:
2946 				id_size = snprintf(id, id_len,
2947 						   "eui.%8phN",
2948 						   cur_id_str);
2949 				break;
2950 			case 12:
2951 				id_size = snprintf(id, id_len,
2952 						   "eui.%12phN",
2953 						   cur_id_str);
2954 				break;
2955 			case 16:
2956 				id_size = snprintf(id, id_len,
2957 						   "eui.%16phN",
2958 						   cur_id_str);
2959 				break;
2960 			default:
2961 				cur_id_size = 0;
2962 				break;
2963 			}
2964 			break;
2965 		case 0x3:
2966 			/* NAA */
2967 			if (cur_id_size > d[3])
2968 				break;
2969 			cur_id_size = d[3];
2970 			cur_id_str = d + 4;
2971 			cur_id_type = d[1] & 0xf;
2972 			switch (cur_id_size) {
2973 			case 8:
2974 				id_size = snprintf(id, id_len,
2975 						   "naa.%8phN",
2976 						   cur_id_str);
2977 				break;
2978 			case 16:
2979 				id_size = snprintf(id, id_len,
2980 						   "naa.%16phN",
2981 						   cur_id_str);
2982 				break;
2983 			default:
2984 				cur_id_size = 0;
2985 				break;
2986 			}
2987 			break;
2988 		case 0x8:
2989 			/* SCSI name string */
2990 			if (cur_id_size + 4 > d[3])
2991 				break;
2992 			/* Prefer others for truncated descriptor */
2993 			if (cur_id_size && d[3] > id_len)
2994 				break;
2995 			cur_id_size = id_size = d[3];
2996 			cur_id_str = d + 4;
2997 			cur_id_type = d[1] & 0xf;
2998 			if (cur_id_size >= id_len)
2999 				cur_id_size = id_len - 1;
3000 			memcpy(id, cur_id_str, cur_id_size);
3001 			/* Decrease priority for truncated descriptor */
3002 			if (cur_id_size != id_size)
3003 				cur_id_size = 6;
3004 			break;
3005 		default:
3006 			break;
3007 		}
3008 next_desig:
3009 		d += d[3] + 4;
3010 	}
3011 	rcu_read_unlock();
3012 
3013 	return id_size;
3014 }
3015 EXPORT_SYMBOL(scsi_vpd_lun_id);
3016 
3017 /*
3018  * scsi_vpd_tpg_id - return a target port group identifier
3019  * @sdev: SCSI device
3020  *
3021  * Returns the Target Port Group identifier from the information
3022  * froom VPD page 0x83 of the device.
3023  *
3024  * Returns the identifier or error on failure.
3025  */
3026 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3027 {
3028 	const unsigned char *d;
3029 	const struct scsi_vpd *vpd_pg83;
3030 	int group_id = -EAGAIN, rel_port = -1;
3031 
3032 	rcu_read_lock();
3033 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3034 	if (!vpd_pg83) {
3035 		rcu_read_unlock();
3036 		return -ENXIO;
3037 	}
3038 
3039 	d = vpd_pg83->data + 4;
3040 	while (d < vpd_pg83->data + vpd_pg83->len) {
3041 		switch (d[1] & 0xf) {
3042 		case 0x4:
3043 			/* Relative target port */
3044 			rel_port = get_unaligned_be16(&d[6]);
3045 			break;
3046 		case 0x5:
3047 			/* Target port group */
3048 			group_id = get_unaligned_be16(&d[6]);
3049 			break;
3050 		default:
3051 			break;
3052 		}
3053 		d += d[3] + 4;
3054 	}
3055 	rcu_read_unlock();
3056 
3057 	if (group_id >= 0 && rel_id && rel_port != -1)
3058 		*rel_id = rel_port;
3059 
3060 	return group_id;
3061 }
3062 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3063