xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 002dff36)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sdb_cache;
56 static struct kmem_cache *scsi_sense_cache;
57 static struct kmem_cache *scsi_sense_isadma_cache;
58 static DEFINE_MUTEX(scsi_sense_cache_mutex);
59 
60 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
61 
62 static inline struct kmem_cache *
63 scsi_select_sense_cache(bool unchecked_isa_dma)
64 {
65 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
66 }
67 
68 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
69 				   unsigned char *sense_buffer)
70 {
71 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
72 			sense_buffer);
73 }
74 
75 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
76 	gfp_t gfp_mask, int numa_node)
77 {
78 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
79 				     gfp_mask, numa_node);
80 }
81 
82 int scsi_init_sense_cache(struct Scsi_Host *shost)
83 {
84 	struct kmem_cache *cache;
85 	int ret = 0;
86 
87 	mutex_lock(&scsi_sense_cache_mutex);
88 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
89 	if (cache)
90 		goto exit;
91 
92 	if (shost->unchecked_isa_dma) {
93 		scsi_sense_isadma_cache =
94 			kmem_cache_create("scsi_sense_cache(DMA)",
95 				SCSI_SENSE_BUFFERSIZE, 0,
96 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
97 		if (!scsi_sense_isadma_cache)
98 			ret = -ENOMEM;
99 	} else {
100 		scsi_sense_cache =
101 			kmem_cache_create_usercopy("scsi_sense_cache",
102 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
103 				0, SCSI_SENSE_BUFFERSIZE, NULL);
104 		if (!scsi_sense_cache)
105 			ret = -ENOMEM;
106 	}
107  exit:
108 	mutex_unlock(&scsi_sense_cache_mutex);
109 	return ret;
110 }
111 
112 /*
113  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
114  * not change behaviour from the previous unplug mechanism, experimentation
115  * may prove this needs changing.
116  */
117 #define SCSI_QUEUE_DELAY	3
118 
119 static void
120 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
121 {
122 	struct Scsi_Host *host = cmd->device->host;
123 	struct scsi_device *device = cmd->device;
124 	struct scsi_target *starget = scsi_target(device);
125 
126 	/*
127 	 * Set the appropriate busy bit for the device/host.
128 	 *
129 	 * If the host/device isn't busy, assume that something actually
130 	 * completed, and that we should be able to queue a command now.
131 	 *
132 	 * Note that the prior mid-layer assumption that any host could
133 	 * always queue at least one command is now broken.  The mid-layer
134 	 * will implement a user specifiable stall (see
135 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
136 	 * if a command is requeued with no other commands outstanding
137 	 * either for the device or for the host.
138 	 */
139 	switch (reason) {
140 	case SCSI_MLQUEUE_HOST_BUSY:
141 		atomic_set(&host->host_blocked, host->max_host_blocked);
142 		break;
143 	case SCSI_MLQUEUE_DEVICE_BUSY:
144 	case SCSI_MLQUEUE_EH_RETRY:
145 		atomic_set(&device->device_blocked,
146 			   device->max_device_blocked);
147 		break;
148 	case SCSI_MLQUEUE_TARGET_BUSY:
149 		atomic_set(&starget->target_blocked,
150 			   starget->max_target_blocked);
151 		break;
152 	}
153 }
154 
155 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
156 {
157 	if (cmd->request->rq_flags & RQF_DONTPREP) {
158 		cmd->request->rq_flags &= ~RQF_DONTPREP;
159 		scsi_mq_uninit_cmd(cmd);
160 	} else {
161 		WARN_ON_ONCE(true);
162 	}
163 	blk_mq_requeue_request(cmd->request, true);
164 }
165 
166 /**
167  * __scsi_queue_insert - private queue insertion
168  * @cmd: The SCSI command being requeued
169  * @reason:  The reason for the requeue
170  * @unbusy: Whether the queue should be unbusied
171  *
172  * This is a private queue insertion.  The public interface
173  * scsi_queue_insert() always assumes the queue should be unbusied
174  * because it's always called before the completion.  This function is
175  * for a requeue after completion, which should only occur in this
176  * file.
177  */
178 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
179 {
180 	struct scsi_device *device = cmd->device;
181 
182 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
183 		"Inserting command %p into mlqueue\n", cmd));
184 
185 	scsi_set_blocked(cmd, reason);
186 
187 	/*
188 	 * Decrement the counters, since these commands are no longer
189 	 * active on the host/device.
190 	 */
191 	if (unbusy)
192 		scsi_device_unbusy(device, cmd);
193 
194 	/*
195 	 * Requeue this command.  It will go before all other commands
196 	 * that are already in the queue. Schedule requeue work under
197 	 * lock such that the kblockd_schedule_work() call happens
198 	 * before blk_cleanup_queue() finishes.
199 	 */
200 	cmd->result = 0;
201 
202 	blk_mq_requeue_request(cmd->request, true);
203 }
204 
205 /**
206  * scsi_queue_insert - Reinsert a command in the queue.
207  * @cmd:    command that we are adding to queue.
208  * @reason: why we are inserting command to queue.
209  *
210  * We do this for one of two cases. Either the host is busy and it cannot accept
211  * any more commands for the time being, or the device returned QUEUE_FULL and
212  * can accept no more commands.
213  *
214  * Context: This could be called either from an interrupt context or a normal
215  * process context.
216  */
217 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
218 {
219 	__scsi_queue_insert(cmd, reason, true);
220 }
221 
222 
223 /**
224  * __scsi_execute - insert request and wait for the result
225  * @sdev:	scsi device
226  * @cmd:	scsi command
227  * @data_direction: data direction
228  * @buffer:	data buffer
229  * @bufflen:	len of buffer
230  * @sense:	optional sense buffer
231  * @sshdr:	optional decoded sense header
232  * @timeout:	request timeout in seconds
233  * @retries:	number of times to retry request
234  * @flags:	flags for ->cmd_flags
235  * @rq_flags:	flags for ->rq_flags
236  * @resid:	optional residual length
237  *
238  * Returns the scsi_cmnd result field if a command was executed, or a negative
239  * Linux error code if we didn't get that far.
240  */
241 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
242 		 int data_direction, void *buffer, unsigned bufflen,
243 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
244 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
245 		 int *resid)
246 {
247 	struct request *req;
248 	struct scsi_request *rq;
249 	int ret = DRIVER_ERROR << 24;
250 
251 	req = blk_get_request(sdev->request_queue,
252 			data_direction == DMA_TO_DEVICE ?
253 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
254 	if (IS_ERR(req))
255 		return ret;
256 	rq = scsi_req(req);
257 
258 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
259 					buffer, bufflen, GFP_NOIO))
260 		goto out;
261 
262 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
263 	memcpy(rq->cmd, cmd, rq->cmd_len);
264 	rq->retries = retries;
265 	req->timeout = timeout;
266 	req->cmd_flags |= flags;
267 	req->rq_flags |= rq_flags | RQF_QUIET;
268 
269 	/*
270 	 * head injection *required* here otherwise quiesce won't work
271 	 */
272 	blk_execute_rq(req->q, NULL, req, 1);
273 
274 	/*
275 	 * Some devices (USB mass-storage in particular) may transfer
276 	 * garbage data together with a residue indicating that the data
277 	 * is invalid.  Prevent the garbage from being misinterpreted
278 	 * and prevent security leaks by zeroing out the excess data.
279 	 */
280 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
281 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
282 
283 	if (resid)
284 		*resid = rq->resid_len;
285 	if (sense && rq->sense_len)
286 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
287 	if (sshdr)
288 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
289 	ret = rq->result;
290  out:
291 	blk_put_request(req);
292 
293 	return ret;
294 }
295 EXPORT_SYMBOL(__scsi_execute);
296 
297 /**
298  * scsi_init_cmd_errh - Initialize cmd fields related to error handling.
299  * @cmd:  command that is ready to be queued.
300  *
301  * This function has the job of initializing a number of fields related to error
302  * handling. Typically this will be called once for each command, as required.
303  */
304 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
305 {
306 	scsi_set_resid(cmd, 0);
307 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
308 	if (cmd->cmd_len == 0)
309 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
310 }
311 
312 /*
313  * Wake up the error handler if necessary. Avoid as follows that the error
314  * handler is not woken up if host in-flight requests number ==
315  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
316  * with an RCU read lock in this function to ensure that this function in
317  * its entirety either finishes before scsi_eh_scmd_add() increases the
318  * host_failed counter or that it notices the shost state change made by
319  * scsi_eh_scmd_add().
320  */
321 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
322 {
323 	unsigned long flags;
324 
325 	rcu_read_lock();
326 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
327 	if (unlikely(scsi_host_in_recovery(shost))) {
328 		spin_lock_irqsave(shost->host_lock, flags);
329 		if (shost->host_failed || shost->host_eh_scheduled)
330 			scsi_eh_wakeup(shost);
331 		spin_unlock_irqrestore(shost->host_lock, flags);
332 	}
333 	rcu_read_unlock();
334 }
335 
336 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
337 {
338 	struct Scsi_Host *shost = sdev->host;
339 	struct scsi_target *starget = scsi_target(sdev);
340 
341 	scsi_dec_host_busy(shost, cmd);
342 
343 	if (starget->can_queue > 0)
344 		atomic_dec(&starget->target_busy);
345 
346 	atomic_dec(&sdev->device_busy);
347 }
348 
349 static void scsi_kick_queue(struct request_queue *q)
350 {
351 	blk_mq_run_hw_queues(q, false);
352 }
353 
354 /*
355  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
356  * and call blk_run_queue for all the scsi_devices on the target -
357  * including current_sdev first.
358  *
359  * Called with *no* scsi locks held.
360  */
361 static void scsi_single_lun_run(struct scsi_device *current_sdev)
362 {
363 	struct Scsi_Host *shost = current_sdev->host;
364 	struct scsi_device *sdev, *tmp;
365 	struct scsi_target *starget = scsi_target(current_sdev);
366 	unsigned long flags;
367 
368 	spin_lock_irqsave(shost->host_lock, flags);
369 	starget->starget_sdev_user = NULL;
370 	spin_unlock_irqrestore(shost->host_lock, flags);
371 
372 	/*
373 	 * Call blk_run_queue for all LUNs on the target, starting with
374 	 * current_sdev. We race with others (to set starget_sdev_user),
375 	 * but in most cases, we will be first. Ideally, each LU on the
376 	 * target would get some limited time or requests on the target.
377 	 */
378 	scsi_kick_queue(current_sdev->request_queue);
379 
380 	spin_lock_irqsave(shost->host_lock, flags);
381 	if (starget->starget_sdev_user)
382 		goto out;
383 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
384 			same_target_siblings) {
385 		if (sdev == current_sdev)
386 			continue;
387 		if (scsi_device_get(sdev))
388 			continue;
389 
390 		spin_unlock_irqrestore(shost->host_lock, flags);
391 		scsi_kick_queue(sdev->request_queue);
392 		spin_lock_irqsave(shost->host_lock, flags);
393 
394 		scsi_device_put(sdev);
395 	}
396  out:
397 	spin_unlock_irqrestore(shost->host_lock, flags);
398 }
399 
400 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
401 {
402 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
403 		return true;
404 	if (atomic_read(&sdev->device_blocked) > 0)
405 		return true;
406 	return false;
407 }
408 
409 static inline bool scsi_target_is_busy(struct scsi_target *starget)
410 {
411 	if (starget->can_queue > 0) {
412 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
413 			return true;
414 		if (atomic_read(&starget->target_blocked) > 0)
415 			return true;
416 	}
417 	return false;
418 }
419 
420 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
421 {
422 	if (atomic_read(&shost->host_blocked) > 0)
423 		return true;
424 	if (shost->host_self_blocked)
425 		return true;
426 	return false;
427 }
428 
429 static void scsi_starved_list_run(struct Scsi_Host *shost)
430 {
431 	LIST_HEAD(starved_list);
432 	struct scsi_device *sdev;
433 	unsigned long flags;
434 
435 	spin_lock_irqsave(shost->host_lock, flags);
436 	list_splice_init(&shost->starved_list, &starved_list);
437 
438 	while (!list_empty(&starved_list)) {
439 		struct request_queue *slq;
440 
441 		/*
442 		 * As long as shost is accepting commands and we have
443 		 * starved queues, call blk_run_queue. scsi_request_fn
444 		 * drops the queue_lock and can add us back to the
445 		 * starved_list.
446 		 *
447 		 * host_lock protects the starved_list and starved_entry.
448 		 * scsi_request_fn must get the host_lock before checking
449 		 * or modifying starved_list or starved_entry.
450 		 */
451 		if (scsi_host_is_busy(shost))
452 			break;
453 
454 		sdev = list_entry(starved_list.next,
455 				  struct scsi_device, starved_entry);
456 		list_del_init(&sdev->starved_entry);
457 		if (scsi_target_is_busy(scsi_target(sdev))) {
458 			list_move_tail(&sdev->starved_entry,
459 				       &shost->starved_list);
460 			continue;
461 		}
462 
463 		/*
464 		 * Once we drop the host lock, a racing scsi_remove_device()
465 		 * call may remove the sdev from the starved list and destroy
466 		 * it and the queue.  Mitigate by taking a reference to the
467 		 * queue and never touching the sdev again after we drop the
468 		 * host lock.  Note: if __scsi_remove_device() invokes
469 		 * blk_cleanup_queue() before the queue is run from this
470 		 * function then blk_run_queue() will return immediately since
471 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
472 		 */
473 		slq = sdev->request_queue;
474 		if (!blk_get_queue(slq))
475 			continue;
476 		spin_unlock_irqrestore(shost->host_lock, flags);
477 
478 		scsi_kick_queue(slq);
479 		blk_put_queue(slq);
480 
481 		spin_lock_irqsave(shost->host_lock, flags);
482 	}
483 	/* put any unprocessed entries back */
484 	list_splice(&starved_list, &shost->starved_list);
485 	spin_unlock_irqrestore(shost->host_lock, flags);
486 }
487 
488 /**
489  * scsi_run_queue - Select a proper request queue to serve next.
490  * @q:  last request's queue
491  *
492  * The previous command was completely finished, start a new one if possible.
493  */
494 static void scsi_run_queue(struct request_queue *q)
495 {
496 	struct scsi_device *sdev = q->queuedata;
497 
498 	if (scsi_target(sdev)->single_lun)
499 		scsi_single_lun_run(sdev);
500 	if (!list_empty(&sdev->host->starved_list))
501 		scsi_starved_list_run(sdev->host);
502 
503 	blk_mq_run_hw_queues(q, false);
504 }
505 
506 void scsi_requeue_run_queue(struct work_struct *work)
507 {
508 	struct scsi_device *sdev;
509 	struct request_queue *q;
510 
511 	sdev = container_of(work, struct scsi_device, requeue_work);
512 	q = sdev->request_queue;
513 	scsi_run_queue(q);
514 }
515 
516 void scsi_run_host_queues(struct Scsi_Host *shost)
517 {
518 	struct scsi_device *sdev;
519 
520 	shost_for_each_device(sdev, shost)
521 		scsi_run_queue(sdev->request_queue);
522 }
523 
524 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
525 {
526 	if (!blk_rq_is_passthrough(cmd->request)) {
527 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
528 
529 		if (drv->uninit_command)
530 			drv->uninit_command(cmd);
531 	}
532 }
533 
534 static void scsi_free_sgtables(struct scsi_cmnd *cmd)
535 {
536 	if (cmd->sdb.table.nents)
537 		sg_free_table_chained(&cmd->sdb.table,
538 				SCSI_INLINE_SG_CNT);
539 	if (scsi_prot_sg_count(cmd))
540 		sg_free_table_chained(&cmd->prot_sdb->table,
541 				SCSI_INLINE_PROT_SG_CNT);
542 }
543 
544 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
545 {
546 	scsi_free_sgtables(cmd);
547 	scsi_uninit_cmd(cmd);
548 }
549 
550 /* Returns false when no more bytes to process, true if there are more */
551 static bool scsi_end_request(struct request *req, blk_status_t error,
552 		unsigned int bytes)
553 {
554 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
555 	struct scsi_device *sdev = cmd->device;
556 	struct request_queue *q = sdev->request_queue;
557 
558 	if (blk_update_request(req, error, bytes))
559 		return true;
560 
561 	if (blk_queue_add_random(q))
562 		add_disk_randomness(req->rq_disk);
563 
564 	if (!blk_rq_is_scsi(req)) {
565 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
566 		cmd->flags &= ~SCMD_INITIALIZED;
567 	}
568 
569 	/*
570 	 * Calling rcu_barrier() is not necessary here because the
571 	 * SCSI error handler guarantees that the function called by
572 	 * call_rcu() has been called before scsi_end_request() is
573 	 * called.
574 	 */
575 	destroy_rcu_head(&cmd->rcu);
576 
577 	/*
578 	 * In the MQ case the command gets freed by __blk_mq_end_request,
579 	 * so we have to do all cleanup that depends on it earlier.
580 	 *
581 	 * We also can't kick the queues from irq context, so we
582 	 * will have to defer it to a workqueue.
583 	 */
584 	scsi_mq_uninit_cmd(cmd);
585 
586 	/*
587 	 * queue is still alive, so grab the ref for preventing it
588 	 * from being cleaned up during running queue.
589 	 */
590 	percpu_ref_get(&q->q_usage_counter);
591 
592 	__blk_mq_end_request(req, error);
593 
594 	if (scsi_target(sdev)->single_lun ||
595 	    !list_empty(&sdev->host->starved_list))
596 		kblockd_schedule_work(&sdev->requeue_work);
597 	else
598 		blk_mq_run_hw_queues(q, true);
599 
600 	percpu_ref_put(&q->q_usage_counter);
601 	return false;
602 }
603 
604 /**
605  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
606  * @cmd:	SCSI command
607  * @result:	scsi error code
608  *
609  * Translate a SCSI result code into a blk_status_t value. May reset the host
610  * byte of @cmd->result.
611  */
612 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
613 {
614 	switch (host_byte(result)) {
615 	case DID_OK:
616 		/*
617 		 * Also check the other bytes than the status byte in result
618 		 * to handle the case when a SCSI LLD sets result to
619 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
620 		 */
621 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
622 			return BLK_STS_OK;
623 		return BLK_STS_IOERR;
624 	case DID_TRANSPORT_FAILFAST:
625 		return BLK_STS_TRANSPORT;
626 	case DID_TARGET_FAILURE:
627 		set_host_byte(cmd, DID_OK);
628 		return BLK_STS_TARGET;
629 	case DID_NEXUS_FAILURE:
630 		set_host_byte(cmd, DID_OK);
631 		return BLK_STS_NEXUS;
632 	case DID_ALLOC_FAILURE:
633 		set_host_byte(cmd, DID_OK);
634 		return BLK_STS_NOSPC;
635 	case DID_MEDIUM_ERROR:
636 		set_host_byte(cmd, DID_OK);
637 		return BLK_STS_MEDIUM;
638 	default:
639 		return BLK_STS_IOERR;
640 	}
641 }
642 
643 /* Helper for scsi_io_completion() when "reprep" action required. */
644 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
645 				      struct request_queue *q)
646 {
647 	/* A new command will be prepared and issued. */
648 	scsi_mq_requeue_cmd(cmd);
649 }
650 
651 /* Helper for scsi_io_completion() when special action required. */
652 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
653 {
654 	struct request_queue *q = cmd->device->request_queue;
655 	struct request *req = cmd->request;
656 	int level = 0;
657 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
658 	      ACTION_DELAYED_RETRY} action;
659 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
660 	struct scsi_sense_hdr sshdr;
661 	bool sense_valid;
662 	bool sense_current = true;      /* false implies "deferred sense" */
663 	blk_status_t blk_stat;
664 
665 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
666 	if (sense_valid)
667 		sense_current = !scsi_sense_is_deferred(&sshdr);
668 
669 	blk_stat = scsi_result_to_blk_status(cmd, result);
670 
671 	if (host_byte(result) == DID_RESET) {
672 		/* Third party bus reset or reset for error recovery
673 		 * reasons.  Just retry the command and see what
674 		 * happens.
675 		 */
676 		action = ACTION_RETRY;
677 	} else if (sense_valid && sense_current) {
678 		switch (sshdr.sense_key) {
679 		case UNIT_ATTENTION:
680 			if (cmd->device->removable) {
681 				/* Detected disc change.  Set a bit
682 				 * and quietly refuse further access.
683 				 */
684 				cmd->device->changed = 1;
685 				action = ACTION_FAIL;
686 			} else {
687 				/* Must have been a power glitch, or a
688 				 * bus reset.  Could not have been a
689 				 * media change, so we just retry the
690 				 * command and see what happens.
691 				 */
692 				action = ACTION_RETRY;
693 			}
694 			break;
695 		case ILLEGAL_REQUEST:
696 			/* If we had an ILLEGAL REQUEST returned, then
697 			 * we may have performed an unsupported
698 			 * command.  The only thing this should be
699 			 * would be a ten byte read where only a six
700 			 * byte read was supported.  Also, on a system
701 			 * where READ CAPACITY failed, we may have
702 			 * read past the end of the disk.
703 			 */
704 			if ((cmd->device->use_10_for_rw &&
705 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
706 			    (cmd->cmnd[0] == READ_10 ||
707 			     cmd->cmnd[0] == WRITE_10)) {
708 				/* This will issue a new 6-byte command. */
709 				cmd->device->use_10_for_rw = 0;
710 				action = ACTION_REPREP;
711 			} else if (sshdr.asc == 0x10) /* DIX */ {
712 				action = ACTION_FAIL;
713 				blk_stat = BLK_STS_PROTECTION;
714 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
715 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
716 				action = ACTION_FAIL;
717 				blk_stat = BLK_STS_TARGET;
718 			} else
719 				action = ACTION_FAIL;
720 			break;
721 		case ABORTED_COMMAND:
722 			action = ACTION_FAIL;
723 			if (sshdr.asc == 0x10) /* DIF */
724 				blk_stat = BLK_STS_PROTECTION;
725 			break;
726 		case NOT_READY:
727 			/* If the device is in the process of becoming
728 			 * ready, or has a temporary blockage, retry.
729 			 */
730 			if (sshdr.asc == 0x04) {
731 				switch (sshdr.ascq) {
732 				case 0x01: /* becoming ready */
733 				case 0x04: /* format in progress */
734 				case 0x05: /* rebuild in progress */
735 				case 0x06: /* recalculation in progress */
736 				case 0x07: /* operation in progress */
737 				case 0x08: /* Long write in progress */
738 				case 0x09: /* self test in progress */
739 				case 0x14: /* space allocation in progress */
740 				case 0x1a: /* start stop unit in progress */
741 				case 0x1b: /* sanitize in progress */
742 				case 0x1d: /* configuration in progress */
743 				case 0x24: /* depopulation in progress */
744 					action = ACTION_DELAYED_RETRY;
745 					break;
746 				default:
747 					action = ACTION_FAIL;
748 					break;
749 				}
750 			} else
751 				action = ACTION_FAIL;
752 			break;
753 		case VOLUME_OVERFLOW:
754 			/* See SSC3rXX or current. */
755 			action = ACTION_FAIL;
756 			break;
757 		default:
758 			action = ACTION_FAIL;
759 			break;
760 		}
761 	} else
762 		action = ACTION_FAIL;
763 
764 	if (action != ACTION_FAIL &&
765 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
766 		action = ACTION_FAIL;
767 
768 	switch (action) {
769 	case ACTION_FAIL:
770 		/* Give up and fail the remainder of the request */
771 		if (!(req->rq_flags & RQF_QUIET)) {
772 			static DEFINE_RATELIMIT_STATE(_rs,
773 					DEFAULT_RATELIMIT_INTERVAL,
774 					DEFAULT_RATELIMIT_BURST);
775 
776 			if (unlikely(scsi_logging_level))
777 				level =
778 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
779 						    SCSI_LOG_MLCOMPLETE_BITS);
780 
781 			/*
782 			 * if logging is enabled the failure will be printed
783 			 * in scsi_log_completion(), so avoid duplicate messages
784 			 */
785 			if (!level && __ratelimit(&_rs)) {
786 				scsi_print_result(cmd, NULL, FAILED);
787 				if (driver_byte(result) == DRIVER_SENSE)
788 					scsi_print_sense(cmd);
789 				scsi_print_command(cmd);
790 			}
791 		}
792 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
793 			return;
794 		/*FALLTHRU*/
795 	case ACTION_REPREP:
796 		scsi_io_completion_reprep(cmd, q);
797 		break;
798 	case ACTION_RETRY:
799 		/* Retry the same command immediately */
800 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
801 		break;
802 	case ACTION_DELAYED_RETRY:
803 		/* Retry the same command after a delay */
804 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
805 		break;
806 	}
807 }
808 
809 /*
810  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
811  * new result that may suppress further error checking. Also modifies
812  * *blk_statp in some cases.
813  */
814 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
815 					blk_status_t *blk_statp)
816 {
817 	bool sense_valid;
818 	bool sense_current = true;	/* false implies "deferred sense" */
819 	struct request *req = cmd->request;
820 	struct scsi_sense_hdr sshdr;
821 
822 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
823 	if (sense_valid)
824 		sense_current = !scsi_sense_is_deferred(&sshdr);
825 
826 	if (blk_rq_is_passthrough(req)) {
827 		if (sense_valid) {
828 			/*
829 			 * SG_IO wants current and deferred errors
830 			 */
831 			scsi_req(req)->sense_len =
832 				min(8 + cmd->sense_buffer[7],
833 				    SCSI_SENSE_BUFFERSIZE);
834 		}
835 		if (sense_current)
836 			*blk_statp = scsi_result_to_blk_status(cmd, result);
837 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
838 		/*
839 		 * Flush commands do not transfers any data, and thus cannot use
840 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
841 		 * This sets *blk_statp explicitly for the problem case.
842 		 */
843 		*blk_statp = scsi_result_to_blk_status(cmd, result);
844 	}
845 	/*
846 	 * Recovered errors need reporting, but they're always treated as
847 	 * success, so fiddle the result code here.  For passthrough requests
848 	 * we already took a copy of the original into sreq->result which
849 	 * is what gets returned to the user
850 	 */
851 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
852 		bool do_print = true;
853 		/*
854 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
855 		 * skip print since caller wants ATA registers. Only occurs
856 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
857 		 */
858 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
859 			do_print = false;
860 		else if (req->rq_flags & RQF_QUIET)
861 			do_print = false;
862 		if (do_print)
863 			scsi_print_sense(cmd);
864 		result = 0;
865 		/* for passthrough, *blk_statp may be set */
866 		*blk_statp = BLK_STS_OK;
867 	}
868 	/*
869 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
870 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
871 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
872 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
873 	 * intermediate statuses (both obsolete in SAM-4) as good.
874 	 */
875 	if (status_byte(result) && scsi_status_is_good(result)) {
876 		result = 0;
877 		*blk_statp = BLK_STS_OK;
878 	}
879 	return result;
880 }
881 
882 /**
883  * scsi_io_completion - Completion processing for SCSI commands.
884  * @cmd:	command that is finished.
885  * @good_bytes:	number of processed bytes.
886  *
887  * We will finish off the specified number of sectors. If we are done, the
888  * command block will be released and the queue function will be goosed. If we
889  * are not done then we have to figure out what to do next:
890  *
891  *   a) We can call scsi_io_completion_reprep().  The request will be
892  *	unprepared and put back on the queue.  Then a new command will
893  *	be created for it.  This should be used if we made forward
894  *	progress, or if we want to switch from READ(10) to READ(6) for
895  *	example.
896  *
897  *   b) We can call scsi_io_completion_action().  The request will be
898  *	put back on the queue and retried using the same command as
899  *	before, possibly after a delay.
900  *
901  *   c) We can call scsi_end_request() with blk_stat other than
902  *	BLK_STS_OK, to fail the remainder of the request.
903  */
904 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
905 {
906 	int result = cmd->result;
907 	struct request_queue *q = cmd->device->request_queue;
908 	struct request *req = cmd->request;
909 	blk_status_t blk_stat = BLK_STS_OK;
910 
911 	if (unlikely(result))	/* a nz result may or may not be an error */
912 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
913 
914 	if (unlikely(blk_rq_is_passthrough(req))) {
915 		/*
916 		 * scsi_result_to_blk_status may have reset the host_byte
917 		 */
918 		scsi_req(req)->result = cmd->result;
919 	}
920 
921 	/*
922 	 * Next deal with any sectors which we were able to correctly
923 	 * handle.
924 	 */
925 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
926 		"%u sectors total, %d bytes done.\n",
927 		blk_rq_sectors(req), good_bytes));
928 
929 	/*
930 	 * Failed, zero length commands always need to drop down
931 	 * to retry code. Fast path should return in this block.
932 	 */
933 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
934 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
935 			return; /* no bytes remaining */
936 	}
937 
938 	/* Kill remainder if no retries. */
939 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
940 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
941 			WARN_ONCE(true,
942 			    "Bytes remaining after failed, no-retry command");
943 		return;
944 	}
945 
946 	/*
947 	 * If there had been no error, but we have leftover bytes in the
948 	 * requeues just queue the command up again.
949 	 */
950 	if (likely(result == 0))
951 		scsi_io_completion_reprep(cmd, q);
952 	else
953 		scsi_io_completion_action(cmd, result);
954 }
955 
956 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
957 		struct request *rq)
958 {
959 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
960 	       !op_is_write(req_op(rq)) &&
961 	       sdev->host->hostt->dma_need_drain(rq);
962 }
963 
964 /**
965  * scsi_init_io - SCSI I/O initialization function.
966  * @cmd:  command descriptor we wish to initialize
967  *
968  * Returns:
969  * * BLK_STS_OK       - on success
970  * * BLK_STS_RESOURCE - if the failure is retryable
971  * * BLK_STS_IOERR    - if the failure is fatal
972  */
973 blk_status_t scsi_init_io(struct scsi_cmnd *cmd)
974 {
975 	struct scsi_device *sdev = cmd->device;
976 	struct request *rq = cmd->request;
977 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
978 	struct scatterlist *last_sg = NULL;
979 	blk_status_t ret;
980 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
981 	int count;
982 
983 	if (WARN_ON_ONCE(!nr_segs))
984 		return BLK_STS_IOERR;
985 
986 	/*
987 	 * Make sure there is space for the drain.  The driver must adjust
988 	 * max_hw_segments to be prepared for this.
989 	 */
990 	if (need_drain)
991 		nr_segs++;
992 
993 	/*
994 	 * If sg table allocation fails, requeue request later.
995 	 */
996 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
997 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
998 		return BLK_STS_RESOURCE;
999 
1000 	/*
1001 	 * Next, walk the list, and fill in the addresses and sizes of
1002 	 * each segment.
1003 	 */
1004 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1005 
1006 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1007 		unsigned int pad_len =
1008 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1009 
1010 		last_sg->length += pad_len;
1011 		cmd->extra_len += pad_len;
1012 	}
1013 
1014 	if (need_drain) {
1015 		sg_unmark_end(last_sg);
1016 		last_sg = sg_next(last_sg);
1017 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1018 		sg_mark_end(last_sg);
1019 
1020 		cmd->extra_len += sdev->dma_drain_len;
1021 		count++;
1022 	}
1023 
1024 	BUG_ON(count > cmd->sdb.table.nents);
1025 	cmd->sdb.table.nents = count;
1026 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1027 
1028 	if (blk_integrity_rq(rq)) {
1029 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1030 		int ivecs;
1031 
1032 		if (WARN_ON_ONCE(!prot_sdb)) {
1033 			/*
1034 			 * This can happen if someone (e.g. multipath)
1035 			 * queues a command to a device on an adapter
1036 			 * that does not support DIX.
1037 			 */
1038 			ret = BLK_STS_IOERR;
1039 			goto out_free_sgtables;
1040 		}
1041 
1042 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1043 
1044 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1045 				prot_sdb->table.sgl,
1046 				SCSI_INLINE_PROT_SG_CNT)) {
1047 			ret = BLK_STS_RESOURCE;
1048 			goto out_free_sgtables;
1049 		}
1050 
1051 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1052 						prot_sdb->table.sgl);
1053 		BUG_ON(count > ivecs);
1054 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1055 
1056 		cmd->prot_sdb = prot_sdb;
1057 		cmd->prot_sdb->table.nents = count;
1058 	}
1059 
1060 	return BLK_STS_OK;
1061 out_free_sgtables:
1062 	scsi_free_sgtables(cmd);
1063 	return ret;
1064 }
1065 EXPORT_SYMBOL(scsi_init_io);
1066 
1067 /**
1068  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1069  * @rq: Request associated with the SCSI command to be initialized.
1070  *
1071  * This function initializes the members of struct scsi_cmnd that must be
1072  * initialized before request processing starts and that won't be
1073  * reinitialized if a SCSI command is requeued.
1074  *
1075  * Called from inside blk_get_request() for pass-through requests and from
1076  * inside scsi_init_command() for filesystem requests.
1077  */
1078 static void scsi_initialize_rq(struct request *rq)
1079 {
1080 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1081 
1082 	scsi_req_init(&cmd->req);
1083 	init_rcu_head(&cmd->rcu);
1084 	cmd->jiffies_at_alloc = jiffies;
1085 	cmd->retries = 0;
1086 }
1087 
1088 /*
1089  * Only called when the request isn't completed by SCSI, and not freed by
1090  * SCSI
1091  */
1092 static void scsi_cleanup_rq(struct request *rq)
1093 {
1094 	if (rq->rq_flags & RQF_DONTPREP) {
1095 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1096 		rq->rq_flags &= ~RQF_DONTPREP;
1097 	}
1098 }
1099 
1100 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1101 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1102 {
1103 	void *buf = cmd->sense_buffer;
1104 	void *prot = cmd->prot_sdb;
1105 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1106 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1107 	unsigned long jiffies_at_alloc;
1108 	int retries, to_clear;
1109 	bool in_flight;
1110 
1111 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1112 		flags |= SCMD_INITIALIZED;
1113 		scsi_initialize_rq(rq);
1114 	}
1115 
1116 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1117 	retries = cmd->retries;
1118 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1119 	/*
1120 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1121 	 * the driver-private command data if the LLD does not supply a
1122 	 * function to initialize that data.
1123 	 */
1124 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1125 	if (!dev->host->hostt->init_cmd_priv)
1126 		to_clear += dev->host->hostt->cmd_size;
1127 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1128 
1129 	cmd->device = dev;
1130 	cmd->sense_buffer = buf;
1131 	cmd->prot_sdb = prot;
1132 	cmd->flags = flags;
1133 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1134 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1135 	cmd->retries = retries;
1136 	if (in_flight)
1137 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1138 
1139 }
1140 
1141 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1142 		struct request *req)
1143 {
1144 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1145 
1146 	/*
1147 	 * Passthrough requests may transfer data, in which case they must
1148 	 * a bio attached to them.  Or they might contain a SCSI command
1149 	 * that does not transfer data, in which case they may optionally
1150 	 * submit a request without an attached bio.
1151 	 */
1152 	if (req->bio) {
1153 		blk_status_t ret = scsi_init_io(cmd);
1154 		if (unlikely(ret != BLK_STS_OK))
1155 			return ret;
1156 	} else {
1157 		BUG_ON(blk_rq_bytes(req));
1158 
1159 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1160 	}
1161 
1162 	cmd->cmd_len = scsi_req(req)->cmd_len;
1163 	cmd->cmnd = scsi_req(req)->cmd;
1164 	cmd->transfersize = blk_rq_bytes(req);
1165 	cmd->allowed = scsi_req(req)->retries;
1166 	return BLK_STS_OK;
1167 }
1168 
1169 /*
1170  * Setup a normal block command.  These are simple request from filesystems
1171  * that still need to be translated to SCSI CDBs from the ULD.
1172  */
1173 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev,
1174 		struct request *req)
1175 {
1176 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1177 
1178 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1179 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1180 		if (ret != BLK_STS_OK)
1181 			return ret;
1182 	}
1183 
1184 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1185 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1186 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1187 }
1188 
1189 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev,
1190 		struct request *req)
1191 {
1192 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1193 	blk_status_t ret;
1194 
1195 	if (!blk_rq_bytes(req))
1196 		cmd->sc_data_direction = DMA_NONE;
1197 	else if (rq_data_dir(req) == WRITE)
1198 		cmd->sc_data_direction = DMA_TO_DEVICE;
1199 	else
1200 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1201 
1202 	if (blk_rq_is_scsi(req))
1203 		ret = scsi_setup_scsi_cmnd(sdev, req);
1204 	else
1205 		ret = scsi_setup_fs_cmnd(sdev, req);
1206 
1207 	if (ret != BLK_STS_OK)
1208 		scsi_free_sgtables(cmd);
1209 
1210 	return ret;
1211 }
1212 
1213 static blk_status_t
1214 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1215 {
1216 	switch (sdev->sdev_state) {
1217 	case SDEV_OFFLINE:
1218 	case SDEV_TRANSPORT_OFFLINE:
1219 		/*
1220 		 * If the device is offline we refuse to process any
1221 		 * commands.  The device must be brought online
1222 		 * before trying any recovery commands.
1223 		 */
1224 		if (!sdev->offline_already) {
1225 			sdev->offline_already = true;
1226 			sdev_printk(KERN_ERR, sdev,
1227 				    "rejecting I/O to offline device\n");
1228 		}
1229 		return BLK_STS_IOERR;
1230 	case SDEV_DEL:
1231 		/*
1232 		 * If the device is fully deleted, we refuse to
1233 		 * process any commands as well.
1234 		 */
1235 		sdev_printk(KERN_ERR, sdev,
1236 			    "rejecting I/O to dead device\n");
1237 		return BLK_STS_IOERR;
1238 	case SDEV_BLOCK:
1239 	case SDEV_CREATED_BLOCK:
1240 		return BLK_STS_RESOURCE;
1241 	case SDEV_QUIESCE:
1242 		/*
1243 		 * If the devices is blocked we defer normal commands.
1244 		 */
1245 		if (req && !(req->rq_flags & RQF_PREEMPT))
1246 			return BLK_STS_RESOURCE;
1247 		return BLK_STS_OK;
1248 	default:
1249 		/*
1250 		 * For any other not fully online state we only allow
1251 		 * special commands.  In particular any user initiated
1252 		 * command is not allowed.
1253 		 */
1254 		if (req && !(req->rq_flags & RQF_PREEMPT))
1255 			return BLK_STS_IOERR;
1256 		return BLK_STS_OK;
1257 	}
1258 }
1259 
1260 /*
1261  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1262  * return 0.
1263  *
1264  * Called with the queue_lock held.
1265  */
1266 static inline int scsi_dev_queue_ready(struct request_queue *q,
1267 				  struct scsi_device *sdev)
1268 {
1269 	unsigned int busy;
1270 
1271 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1272 	if (atomic_read(&sdev->device_blocked)) {
1273 		if (busy)
1274 			goto out_dec;
1275 
1276 		/*
1277 		 * unblock after device_blocked iterates to zero
1278 		 */
1279 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1280 			goto out_dec;
1281 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1282 				   "unblocking device at zero depth\n"));
1283 	}
1284 
1285 	if (busy >= sdev->queue_depth)
1286 		goto out_dec;
1287 
1288 	return 1;
1289 out_dec:
1290 	atomic_dec(&sdev->device_busy);
1291 	return 0;
1292 }
1293 
1294 /*
1295  * scsi_target_queue_ready: checks if there we can send commands to target
1296  * @sdev: scsi device on starget to check.
1297  */
1298 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1299 					   struct scsi_device *sdev)
1300 {
1301 	struct scsi_target *starget = scsi_target(sdev);
1302 	unsigned int busy;
1303 
1304 	if (starget->single_lun) {
1305 		spin_lock_irq(shost->host_lock);
1306 		if (starget->starget_sdev_user &&
1307 		    starget->starget_sdev_user != sdev) {
1308 			spin_unlock_irq(shost->host_lock);
1309 			return 0;
1310 		}
1311 		starget->starget_sdev_user = sdev;
1312 		spin_unlock_irq(shost->host_lock);
1313 	}
1314 
1315 	if (starget->can_queue <= 0)
1316 		return 1;
1317 
1318 	busy = atomic_inc_return(&starget->target_busy) - 1;
1319 	if (atomic_read(&starget->target_blocked) > 0) {
1320 		if (busy)
1321 			goto starved;
1322 
1323 		/*
1324 		 * unblock after target_blocked iterates to zero
1325 		 */
1326 		if (atomic_dec_return(&starget->target_blocked) > 0)
1327 			goto out_dec;
1328 
1329 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1330 				 "unblocking target at zero depth\n"));
1331 	}
1332 
1333 	if (busy >= starget->can_queue)
1334 		goto starved;
1335 
1336 	return 1;
1337 
1338 starved:
1339 	spin_lock_irq(shost->host_lock);
1340 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1341 	spin_unlock_irq(shost->host_lock);
1342 out_dec:
1343 	if (starget->can_queue > 0)
1344 		atomic_dec(&starget->target_busy);
1345 	return 0;
1346 }
1347 
1348 /*
1349  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1350  * return 0. We must end up running the queue again whenever 0 is
1351  * returned, else IO can hang.
1352  */
1353 static inline int scsi_host_queue_ready(struct request_queue *q,
1354 				   struct Scsi_Host *shost,
1355 				   struct scsi_device *sdev,
1356 				   struct scsi_cmnd *cmd)
1357 {
1358 	if (scsi_host_in_recovery(shost))
1359 		return 0;
1360 
1361 	if (atomic_read(&shost->host_blocked) > 0) {
1362 		if (scsi_host_busy(shost) > 0)
1363 			goto starved;
1364 
1365 		/*
1366 		 * unblock after host_blocked iterates to zero
1367 		 */
1368 		if (atomic_dec_return(&shost->host_blocked) > 0)
1369 			goto out_dec;
1370 
1371 		SCSI_LOG_MLQUEUE(3,
1372 			shost_printk(KERN_INFO, shost,
1373 				     "unblocking host at zero depth\n"));
1374 	}
1375 
1376 	if (shost->host_self_blocked)
1377 		goto starved;
1378 
1379 	/* We're OK to process the command, so we can't be starved */
1380 	if (!list_empty(&sdev->starved_entry)) {
1381 		spin_lock_irq(shost->host_lock);
1382 		if (!list_empty(&sdev->starved_entry))
1383 			list_del_init(&sdev->starved_entry);
1384 		spin_unlock_irq(shost->host_lock);
1385 	}
1386 
1387 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1388 
1389 	return 1;
1390 
1391 starved:
1392 	spin_lock_irq(shost->host_lock);
1393 	if (list_empty(&sdev->starved_entry))
1394 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1395 	spin_unlock_irq(shost->host_lock);
1396 out_dec:
1397 	scsi_dec_host_busy(shost, cmd);
1398 	return 0;
1399 }
1400 
1401 /*
1402  * Busy state exporting function for request stacking drivers.
1403  *
1404  * For efficiency, no lock is taken to check the busy state of
1405  * shost/starget/sdev, since the returned value is not guaranteed and
1406  * may be changed after request stacking drivers call the function,
1407  * regardless of taking lock or not.
1408  *
1409  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1410  * needs to return 'not busy'. Otherwise, request stacking drivers
1411  * may hold requests forever.
1412  */
1413 static bool scsi_mq_lld_busy(struct request_queue *q)
1414 {
1415 	struct scsi_device *sdev = q->queuedata;
1416 	struct Scsi_Host *shost;
1417 
1418 	if (blk_queue_dying(q))
1419 		return false;
1420 
1421 	shost = sdev->host;
1422 
1423 	/*
1424 	 * Ignore host/starget busy state.
1425 	 * Since block layer does not have a concept of fairness across
1426 	 * multiple queues, congestion of host/starget needs to be handled
1427 	 * in SCSI layer.
1428 	 */
1429 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1430 		return true;
1431 
1432 	return false;
1433 }
1434 
1435 static void scsi_softirq_done(struct request *rq)
1436 {
1437 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1438 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1439 	int disposition;
1440 
1441 	INIT_LIST_HEAD(&cmd->eh_entry);
1442 
1443 	atomic_inc(&cmd->device->iodone_cnt);
1444 	if (cmd->result)
1445 		atomic_inc(&cmd->device->ioerr_cnt);
1446 
1447 	disposition = scsi_decide_disposition(cmd);
1448 	if (disposition != SUCCESS &&
1449 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1450 		scmd_printk(KERN_ERR, cmd,
1451 			    "timing out command, waited %lus\n",
1452 			    wait_for/HZ);
1453 		disposition = SUCCESS;
1454 	}
1455 
1456 	scsi_log_completion(cmd, disposition);
1457 
1458 	switch (disposition) {
1459 		case SUCCESS:
1460 			scsi_finish_command(cmd);
1461 			break;
1462 		case NEEDS_RETRY:
1463 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1464 			break;
1465 		case ADD_TO_MLQUEUE:
1466 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1467 			break;
1468 		default:
1469 			scsi_eh_scmd_add(cmd);
1470 			break;
1471 	}
1472 }
1473 
1474 /**
1475  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1476  * @cmd: command block we are dispatching.
1477  *
1478  * Return: nonzero return request was rejected and device's queue needs to be
1479  * plugged.
1480  */
1481 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1482 {
1483 	struct Scsi_Host *host = cmd->device->host;
1484 	int rtn = 0;
1485 
1486 	atomic_inc(&cmd->device->iorequest_cnt);
1487 
1488 	/* check if the device is still usable */
1489 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1490 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1491 		 * returns an immediate error upwards, and signals
1492 		 * that the device is no longer present */
1493 		cmd->result = DID_NO_CONNECT << 16;
1494 		goto done;
1495 	}
1496 
1497 	/* Check to see if the scsi lld made this device blocked. */
1498 	if (unlikely(scsi_device_blocked(cmd->device))) {
1499 		/*
1500 		 * in blocked state, the command is just put back on
1501 		 * the device queue.  The suspend state has already
1502 		 * blocked the queue so future requests should not
1503 		 * occur until the device transitions out of the
1504 		 * suspend state.
1505 		 */
1506 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1507 			"queuecommand : device blocked\n"));
1508 		return SCSI_MLQUEUE_DEVICE_BUSY;
1509 	}
1510 
1511 	/* Store the LUN value in cmnd, if needed. */
1512 	if (cmd->device->lun_in_cdb)
1513 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1514 			       (cmd->device->lun << 5 & 0xe0);
1515 
1516 	scsi_log_send(cmd);
1517 
1518 	/*
1519 	 * Before we queue this command, check if the command
1520 	 * length exceeds what the host adapter can handle.
1521 	 */
1522 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1523 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1524 			       "queuecommand : command too long. "
1525 			       "cdb_size=%d host->max_cmd_len=%d\n",
1526 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1527 		cmd->result = (DID_ABORT << 16);
1528 		goto done;
1529 	}
1530 
1531 	if (unlikely(host->shost_state == SHOST_DEL)) {
1532 		cmd->result = (DID_NO_CONNECT << 16);
1533 		goto done;
1534 
1535 	}
1536 
1537 	trace_scsi_dispatch_cmd_start(cmd);
1538 	rtn = host->hostt->queuecommand(host, cmd);
1539 	if (rtn) {
1540 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1541 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1542 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1543 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1544 
1545 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1546 			"queuecommand : request rejected\n"));
1547 	}
1548 
1549 	return rtn;
1550  done:
1551 	cmd->scsi_done(cmd);
1552 	return 0;
1553 }
1554 
1555 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1556 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1557 {
1558 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1559 		sizeof(struct scatterlist);
1560 }
1561 
1562 static blk_status_t scsi_mq_prep_fn(struct request *req)
1563 {
1564 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1565 	struct scsi_device *sdev = req->q->queuedata;
1566 	struct Scsi_Host *shost = sdev->host;
1567 	struct scatterlist *sg;
1568 
1569 	scsi_init_command(sdev, cmd);
1570 
1571 	cmd->request = req;
1572 	cmd->tag = req->tag;
1573 	cmd->prot_op = SCSI_PROT_NORMAL;
1574 
1575 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1576 	cmd->sdb.table.sgl = sg;
1577 
1578 	if (scsi_host_get_prot(shost)) {
1579 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1580 
1581 		cmd->prot_sdb->table.sgl =
1582 			(struct scatterlist *)(cmd->prot_sdb + 1);
1583 	}
1584 
1585 	blk_mq_start_request(req);
1586 
1587 	return scsi_setup_cmnd(sdev, req);
1588 }
1589 
1590 static void scsi_mq_done(struct scsi_cmnd *cmd)
1591 {
1592 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1593 		return;
1594 	trace_scsi_dispatch_cmd_done(cmd);
1595 
1596 	/*
1597 	 * If the block layer didn't complete the request due to a timeout
1598 	 * injection, scsi must clear its internal completed state so that the
1599 	 * timeout handler will see it needs to escalate its own error
1600 	 * recovery.
1601 	 */
1602 	if (unlikely(!blk_mq_complete_request(cmd->request)))
1603 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1604 }
1605 
1606 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1607 {
1608 	struct request_queue *q = hctx->queue;
1609 	struct scsi_device *sdev = q->queuedata;
1610 
1611 	atomic_dec(&sdev->device_busy);
1612 }
1613 
1614 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1615 {
1616 	struct request_queue *q = hctx->queue;
1617 	struct scsi_device *sdev = q->queuedata;
1618 
1619 	return scsi_dev_queue_ready(q, sdev);
1620 }
1621 
1622 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1623 			 const struct blk_mq_queue_data *bd)
1624 {
1625 	struct request *req = bd->rq;
1626 	struct request_queue *q = req->q;
1627 	struct scsi_device *sdev = q->queuedata;
1628 	struct Scsi_Host *shost = sdev->host;
1629 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1630 	blk_status_t ret;
1631 	int reason;
1632 
1633 	/*
1634 	 * If the device is not in running state we will reject some or all
1635 	 * commands.
1636 	 */
1637 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1638 		ret = scsi_prep_state_check(sdev, req);
1639 		if (ret != BLK_STS_OK)
1640 			goto out_put_budget;
1641 	}
1642 
1643 	ret = BLK_STS_RESOURCE;
1644 	if (!scsi_target_queue_ready(shost, sdev))
1645 		goto out_put_budget;
1646 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1647 		goto out_dec_target_busy;
1648 
1649 	if (!(req->rq_flags & RQF_DONTPREP)) {
1650 		ret = scsi_mq_prep_fn(req);
1651 		if (ret != BLK_STS_OK)
1652 			goto out_dec_host_busy;
1653 		req->rq_flags |= RQF_DONTPREP;
1654 	} else {
1655 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1656 		blk_mq_start_request(req);
1657 	}
1658 
1659 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1660 	if (sdev->simple_tags)
1661 		cmd->flags |= SCMD_TAGGED;
1662 	if (bd->last)
1663 		cmd->flags |= SCMD_LAST;
1664 
1665 	scsi_init_cmd_errh(cmd);
1666 	cmd->scsi_done = scsi_mq_done;
1667 
1668 	reason = scsi_dispatch_cmd(cmd);
1669 	if (reason) {
1670 		scsi_set_blocked(cmd, reason);
1671 		ret = BLK_STS_RESOURCE;
1672 		goto out_dec_host_busy;
1673 	}
1674 
1675 	return BLK_STS_OK;
1676 
1677 out_dec_host_busy:
1678 	scsi_dec_host_busy(shost, cmd);
1679 out_dec_target_busy:
1680 	if (scsi_target(sdev)->can_queue > 0)
1681 		atomic_dec(&scsi_target(sdev)->target_busy);
1682 out_put_budget:
1683 	scsi_mq_put_budget(hctx);
1684 	switch (ret) {
1685 	case BLK_STS_OK:
1686 		break;
1687 	case BLK_STS_RESOURCE:
1688 	case BLK_STS_ZONE_RESOURCE:
1689 		if (atomic_read(&sdev->device_busy) ||
1690 		    scsi_device_blocked(sdev))
1691 			ret = BLK_STS_DEV_RESOURCE;
1692 		break;
1693 	default:
1694 		if (unlikely(!scsi_device_online(sdev)))
1695 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1696 		else
1697 			scsi_req(req)->result = DID_ERROR << 16;
1698 		/*
1699 		 * Make sure to release all allocated resources when
1700 		 * we hit an error, as we will never see this command
1701 		 * again.
1702 		 */
1703 		if (req->rq_flags & RQF_DONTPREP)
1704 			scsi_mq_uninit_cmd(cmd);
1705 		break;
1706 	}
1707 	return ret;
1708 }
1709 
1710 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1711 		bool reserved)
1712 {
1713 	if (reserved)
1714 		return BLK_EH_RESET_TIMER;
1715 	return scsi_times_out(req);
1716 }
1717 
1718 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1719 				unsigned int hctx_idx, unsigned int numa_node)
1720 {
1721 	struct Scsi_Host *shost = set->driver_data;
1722 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1723 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1724 	struct scatterlist *sg;
1725 	int ret = 0;
1726 
1727 	if (unchecked_isa_dma)
1728 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1729 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1730 						    GFP_KERNEL, numa_node);
1731 	if (!cmd->sense_buffer)
1732 		return -ENOMEM;
1733 	cmd->req.sense = cmd->sense_buffer;
1734 
1735 	if (scsi_host_get_prot(shost)) {
1736 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1737 			shost->hostt->cmd_size;
1738 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1739 	}
1740 
1741 	if (shost->hostt->init_cmd_priv) {
1742 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1743 		if (ret < 0)
1744 			scsi_free_sense_buffer(unchecked_isa_dma,
1745 					       cmd->sense_buffer);
1746 	}
1747 
1748 	return ret;
1749 }
1750 
1751 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1752 				 unsigned int hctx_idx)
1753 {
1754 	struct Scsi_Host *shost = set->driver_data;
1755 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1756 
1757 	if (shost->hostt->exit_cmd_priv)
1758 		shost->hostt->exit_cmd_priv(shost, cmd);
1759 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1760 			       cmd->sense_buffer);
1761 }
1762 
1763 static int scsi_map_queues(struct blk_mq_tag_set *set)
1764 {
1765 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1766 
1767 	if (shost->hostt->map_queues)
1768 		return shost->hostt->map_queues(shost);
1769 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1770 }
1771 
1772 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1773 {
1774 	struct device *dev = shost->dma_dev;
1775 
1776 	/*
1777 	 * this limit is imposed by hardware restrictions
1778 	 */
1779 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1780 					SG_MAX_SEGMENTS));
1781 
1782 	if (scsi_host_prot_dma(shost)) {
1783 		shost->sg_prot_tablesize =
1784 			min_not_zero(shost->sg_prot_tablesize,
1785 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1786 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1787 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1788 	}
1789 
1790 	if (dev->dma_mask) {
1791 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1792 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1793 	}
1794 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1795 	if (shost->unchecked_isa_dma)
1796 		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1797 	blk_queue_segment_boundary(q, shost->dma_boundary);
1798 	dma_set_seg_boundary(dev, shost->dma_boundary);
1799 
1800 	blk_queue_max_segment_size(q, shost->max_segment_size);
1801 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1802 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1803 
1804 	/*
1805 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1806 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1807 	 * which is set by the platform.
1808 	 *
1809 	 * Devices that require a bigger alignment can increase it later.
1810 	 */
1811 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1812 }
1813 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1814 
1815 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1816 	.get_budget	= scsi_mq_get_budget,
1817 	.put_budget	= scsi_mq_put_budget,
1818 	.queue_rq	= scsi_queue_rq,
1819 	.complete	= scsi_softirq_done,
1820 	.timeout	= scsi_timeout,
1821 #ifdef CONFIG_BLK_DEBUG_FS
1822 	.show_rq	= scsi_show_rq,
1823 #endif
1824 	.init_request	= scsi_mq_init_request,
1825 	.exit_request	= scsi_mq_exit_request,
1826 	.initialize_rq_fn = scsi_initialize_rq,
1827 	.cleanup_rq	= scsi_cleanup_rq,
1828 	.busy		= scsi_mq_lld_busy,
1829 	.map_queues	= scsi_map_queues,
1830 };
1831 
1832 
1833 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1834 {
1835 	struct request_queue *q = hctx->queue;
1836 	struct scsi_device *sdev = q->queuedata;
1837 	struct Scsi_Host *shost = sdev->host;
1838 
1839 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1840 }
1841 
1842 static const struct blk_mq_ops scsi_mq_ops = {
1843 	.get_budget	= scsi_mq_get_budget,
1844 	.put_budget	= scsi_mq_put_budget,
1845 	.queue_rq	= scsi_queue_rq,
1846 	.commit_rqs	= scsi_commit_rqs,
1847 	.complete	= scsi_softirq_done,
1848 	.timeout	= scsi_timeout,
1849 #ifdef CONFIG_BLK_DEBUG_FS
1850 	.show_rq	= scsi_show_rq,
1851 #endif
1852 	.init_request	= scsi_mq_init_request,
1853 	.exit_request	= scsi_mq_exit_request,
1854 	.initialize_rq_fn = scsi_initialize_rq,
1855 	.cleanup_rq	= scsi_cleanup_rq,
1856 	.busy		= scsi_mq_lld_busy,
1857 	.map_queues	= scsi_map_queues,
1858 };
1859 
1860 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1861 {
1862 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1863 	if (IS_ERR(sdev->request_queue))
1864 		return NULL;
1865 
1866 	sdev->request_queue->queuedata = sdev;
1867 	__scsi_init_queue(sdev->host, sdev->request_queue);
1868 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1869 	return sdev->request_queue;
1870 }
1871 
1872 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1873 {
1874 	unsigned int cmd_size, sgl_size;
1875 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1876 
1877 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1878 				scsi_mq_inline_sgl_size(shost));
1879 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1880 	if (scsi_host_get_prot(shost))
1881 		cmd_size += sizeof(struct scsi_data_buffer) +
1882 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1883 
1884 	memset(tag_set, 0, sizeof(*tag_set));
1885 	if (shost->hostt->commit_rqs)
1886 		tag_set->ops = &scsi_mq_ops;
1887 	else
1888 		tag_set->ops = &scsi_mq_ops_no_commit;
1889 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1890 	tag_set->queue_depth = shost->can_queue;
1891 	tag_set->cmd_size = cmd_size;
1892 	tag_set->numa_node = NUMA_NO_NODE;
1893 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1894 	tag_set->flags |=
1895 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1896 	tag_set->driver_data = shost;
1897 
1898 	return blk_mq_alloc_tag_set(tag_set);
1899 }
1900 
1901 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1902 {
1903 	blk_mq_free_tag_set(&shost->tag_set);
1904 }
1905 
1906 /**
1907  * scsi_device_from_queue - return sdev associated with a request_queue
1908  * @q: The request queue to return the sdev from
1909  *
1910  * Return the sdev associated with a request queue or NULL if the
1911  * request_queue does not reference a SCSI device.
1912  */
1913 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1914 {
1915 	struct scsi_device *sdev = NULL;
1916 
1917 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1918 	    q->mq_ops == &scsi_mq_ops)
1919 		sdev = q->queuedata;
1920 	if (!sdev || !get_device(&sdev->sdev_gendev))
1921 		sdev = NULL;
1922 
1923 	return sdev;
1924 }
1925 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
1926 
1927 /**
1928  * scsi_block_requests - Utility function used by low-level drivers to prevent
1929  * further commands from being queued to the device.
1930  * @shost:  host in question
1931  *
1932  * There is no timer nor any other means by which the requests get unblocked
1933  * other than the low-level driver calling scsi_unblock_requests().
1934  */
1935 void scsi_block_requests(struct Scsi_Host *shost)
1936 {
1937 	shost->host_self_blocked = 1;
1938 }
1939 EXPORT_SYMBOL(scsi_block_requests);
1940 
1941 /**
1942  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1943  * further commands to be queued to the device.
1944  * @shost:  host in question
1945  *
1946  * There is no timer nor any other means by which the requests get unblocked
1947  * other than the low-level driver calling scsi_unblock_requests(). This is done
1948  * as an API function so that changes to the internals of the scsi mid-layer
1949  * won't require wholesale changes to drivers that use this feature.
1950  */
1951 void scsi_unblock_requests(struct Scsi_Host *shost)
1952 {
1953 	shost->host_self_blocked = 0;
1954 	scsi_run_host_queues(shost);
1955 }
1956 EXPORT_SYMBOL(scsi_unblock_requests);
1957 
1958 int __init scsi_init_queue(void)
1959 {
1960 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1961 					   sizeof(struct scsi_data_buffer),
1962 					   0, 0, NULL);
1963 	if (!scsi_sdb_cache) {
1964 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1965 		return -ENOMEM;
1966 	}
1967 
1968 	return 0;
1969 }
1970 
1971 void scsi_exit_queue(void)
1972 {
1973 	kmem_cache_destroy(scsi_sense_cache);
1974 	kmem_cache_destroy(scsi_sense_isadma_cache);
1975 	kmem_cache_destroy(scsi_sdb_cache);
1976 }
1977 
1978 /**
1979  *	scsi_mode_select - issue a mode select
1980  *	@sdev:	SCSI device to be queried
1981  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1982  *	@sp:	Save page bit (0 == don't save, 1 == save)
1983  *	@modepage: mode page being requested
1984  *	@buffer: request buffer (may not be smaller than eight bytes)
1985  *	@len:	length of request buffer.
1986  *	@timeout: command timeout
1987  *	@retries: number of retries before failing
1988  *	@data: returns a structure abstracting the mode header data
1989  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1990  *		must be SCSI_SENSE_BUFFERSIZE big.
1991  *
1992  *	Returns zero if successful; negative error number or scsi
1993  *	status on error
1994  *
1995  */
1996 int
1997 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1998 		 unsigned char *buffer, int len, int timeout, int retries,
1999 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2000 {
2001 	unsigned char cmd[10];
2002 	unsigned char *real_buffer;
2003 	int ret;
2004 
2005 	memset(cmd, 0, sizeof(cmd));
2006 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2007 
2008 	if (sdev->use_10_for_ms) {
2009 		if (len > 65535)
2010 			return -EINVAL;
2011 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2012 		if (!real_buffer)
2013 			return -ENOMEM;
2014 		memcpy(real_buffer + 8, buffer, len);
2015 		len += 8;
2016 		real_buffer[0] = 0;
2017 		real_buffer[1] = 0;
2018 		real_buffer[2] = data->medium_type;
2019 		real_buffer[3] = data->device_specific;
2020 		real_buffer[4] = data->longlba ? 0x01 : 0;
2021 		real_buffer[5] = 0;
2022 		real_buffer[6] = data->block_descriptor_length >> 8;
2023 		real_buffer[7] = data->block_descriptor_length;
2024 
2025 		cmd[0] = MODE_SELECT_10;
2026 		cmd[7] = len >> 8;
2027 		cmd[8] = len;
2028 	} else {
2029 		if (len > 255 || data->block_descriptor_length > 255 ||
2030 		    data->longlba)
2031 			return -EINVAL;
2032 
2033 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2034 		if (!real_buffer)
2035 			return -ENOMEM;
2036 		memcpy(real_buffer + 4, buffer, len);
2037 		len += 4;
2038 		real_buffer[0] = 0;
2039 		real_buffer[1] = data->medium_type;
2040 		real_buffer[2] = data->device_specific;
2041 		real_buffer[3] = data->block_descriptor_length;
2042 
2043 
2044 		cmd[0] = MODE_SELECT;
2045 		cmd[4] = len;
2046 	}
2047 
2048 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2049 			       sshdr, timeout, retries, NULL);
2050 	kfree(real_buffer);
2051 	return ret;
2052 }
2053 EXPORT_SYMBOL_GPL(scsi_mode_select);
2054 
2055 /**
2056  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2057  *	@sdev:	SCSI device to be queried
2058  *	@dbd:	set if mode sense will allow block descriptors to be returned
2059  *	@modepage: mode page being requested
2060  *	@buffer: request buffer (may not be smaller than eight bytes)
2061  *	@len:	length of request buffer.
2062  *	@timeout: command timeout
2063  *	@retries: number of retries before failing
2064  *	@data: returns a structure abstracting the mode header data
2065  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2066  *		must be SCSI_SENSE_BUFFERSIZE big.
2067  *
2068  *	Returns zero if unsuccessful, or the header offset (either 4
2069  *	or 8 depending on whether a six or ten byte command was
2070  *	issued) if successful.
2071  */
2072 int
2073 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2074 		  unsigned char *buffer, int len, int timeout, int retries,
2075 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2076 {
2077 	unsigned char cmd[12];
2078 	int use_10_for_ms;
2079 	int header_length;
2080 	int result, retry_count = retries;
2081 	struct scsi_sense_hdr my_sshdr;
2082 
2083 	memset(data, 0, sizeof(*data));
2084 	memset(&cmd[0], 0, 12);
2085 
2086 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2087 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2088 	cmd[2] = modepage;
2089 
2090 	/* caller might not be interested in sense, but we need it */
2091 	if (!sshdr)
2092 		sshdr = &my_sshdr;
2093 
2094  retry:
2095 	use_10_for_ms = sdev->use_10_for_ms;
2096 
2097 	if (use_10_for_ms) {
2098 		if (len < 8)
2099 			len = 8;
2100 
2101 		cmd[0] = MODE_SENSE_10;
2102 		cmd[8] = len;
2103 		header_length = 8;
2104 	} else {
2105 		if (len < 4)
2106 			len = 4;
2107 
2108 		cmd[0] = MODE_SENSE;
2109 		cmd[4] = len;
2110 		header_length = 4;
2111 	}
2112 
2113 	memset(buffer, 0, len);
2114 
2115 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2116 				  sshdr, timeout, retries, NULL);
2117 
2118 	/* This code looks awful: what it's doing is making sure an
2119 	 * ILLEGAL REQUEST sense return identifies the actual command
2120 	 * byte as the problem.  MODE_SENSE commands can return
2121 	 * ILLEGAL REQUEST if the code page isn't supported */
2122 
2123 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2124 	    driver_byte(result) == DRIVER_SENSE) {
2125 		if (scsi_sense_valid(sshdr)) {
2126 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2127 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2128 				/*
2129 				 * Invalid command operation code
2130 				 */
2131 				sdev->use_10_for_ms = 0;
2132 				goto retry;
2133 			}
2134 		}
2135 	}
2136 
2137 	if(scsi_status_is_good(result)) {
2138 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2139 			     (modepage == 6 || modepage == 8))) {
2140 			/* Initio breakage? */
2141 			header_length = 0;
2142 			data->length = 13;
2143 			data->medium_type = 0;
2144 			data->device_specific = 0;
2145 			data->longlba = 0;
2146 			data->block_descriptor_length = 0;
2147 		} else if(use_10_for_ms) {
2148 			data->length = buffer[0]*256 + buffer[1] + 2;
2149 			data->medium_type = buffer[2];
2150 			data->device_specific = buffer[3];
2151 			data->longlba = buffer[4] & 0x01;
2152 			data->block_descriptor_length = buffer[6]*256
2153 				+ buffer[7];
2154 		} else {
2155 			data->length = buffer[0] + 1;
2156 			data->medium_type = buffer[1];
2157 			data->device_specific = buffer[2];
2158 			data->block_descriptor_length = buffer[3];
2159 		}
2160 		data->header_length = header_length;
2161 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2162 		   scsi_sense_valid(sshdr) &&
2163 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2164 		retry_count--;
2165 		goto retry;
2166 	}
2167 
2168 	return result;
2169 }
2170 EXPORT_SYMBOL(scsi_mode_sense);
2171 
2172 /**
2173  *	scsi_test_unit_ready - test if unit is ready
2174  *	@sdev:	scsi device to change the state of.
2175  *	@timeout: command timeout
2176  *	@retries: number of retries before failing
2177  *	@sshdr: outpout pointer for decoded sense information.
2178  *
2179  *	Returns zero if unsuccessful or an error if TUR failed.  For
2180  *	removable media, UNIT_ATTENTION sets ->changed flag.
2181  **/
2182 int
2183 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2184 		     struct scsi_sense_hdr *sshdr)
2185 {
2186 	char cmd[] = {
2187 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2188 	};
2189 	int result;
2190 
2191 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2192 	do {
2193 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2194 					  timeout, 1, NULL);
2195 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2196 		    sshdr->sense_key == UNIT_ATTENTION)
2197 			sdev->changed = 1;
2198 	} while (scsi_sense_valid(sshdr) &&
2199 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2200 
2201 	return result;
2202 }
2203 EXPORT_SYMBOL(scsi_test_unit_ready);
2204 
2205 /**
2206  *	scsi_device_set_state - Take the given device through the device state model.
2207  *	@sdev:	scsi device to change the state of.
2208  *	@state:	state to change to.
2209  *
2210  *	Returns zero if successful or an error if the requested
2211  *	transition is illegal.
2212  */
2213 int
2214 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2215 {
2216 	enum scsi_device_state oldstate = sdev->sdev_state;
2217 
2218 	if (state == oldstate)
2219 		return 0;
2220 
2221 	switch (state) {
2222 	case SDEV_CREATED:
2223 		switch (oldstate) {
2224 		case SDEV_CREATED_BLOCK:
2225 			break;
2226 		default:
2227 			goto illegal;
2228 		}
2229 		break;
2230 
2231 	case SDEV_RUNNING:
2232 		switch (oldstate) {
2233 		case SDEV_CREATED:
2234 		case SDEV_OFFLINE:
2235 		case SDEV_TRANSPORT_OFFLINE:
2236 		case SDEV_QUIESCE:
2237 		case SDEV_BLOCK:
2238 			break;
2239 		default:
2240 			goto illegal;
2241 		}
2242 		break;
2243 
2244 	case SDEV_QUIESCE:
2245 		switch (oldstate) {
2246 		case SDEV_RUNNING:
2247 		case SDEV_OFFLINE:
2248 		case SDEV_TRANSPORT_OFFLINE:
2249 			break;
2250 		default:
2251 			goto illegal;
2252 		}
2253 		break;
2254 
2255 	case SDEV_OFFLINE:
2256 	case SDEV_TRANSPORT_OFFLINE:
2257 		switch (oldstate) {
2258 		case SDEV_CREATED:
2259 		case SDEV_RUNNING:
2260 		case SDEV_QUIESCE:
2261 		case SDEV_BLOCK:
2262 			break;
2263 		default:
2264 			goto illegal;
2265 		}
2266 		break;
2267 
2268 	case SDEV_BLOCK:
2269 		switch (oldstate) {
2270 		case SDEV_RUNNING:
2271 		case SDEV_CREATED_BLOCK:
2272 		case SDEV_QUIESCE:
2273 		case SDEV_OFFLINE:
2274 			break;
2275 		default:
2276 			goto illegal;
2277 		}
2278 		break;
2279 
2280 	case SDEV_CREATED_BLOCK:
2281 		switch (oldstate) {
2282 		case SDEV_CREATED:
2283 			break;
2284 		default:
2285 			goto illegal;
2286 		}
2287 		break;
2288 
2289 	case SDEV_CANCEL:
2290 		switch (oldstate) {
2291 		case SDEV_CREATED:
2292 		case SDEV_RUNNING:
2293 		case SDEV_QUIESCE:
2294 		case SDEV_OFFLINE:
2295 		case SDEV_TRANSPORT_OFFLINE:
2296 			break;
2297 		default:
2298 			goto illegal;
2299 		}
2300 		break;
2301 
2302 	case SDEV_DEL:
2303 		switch (oldstate) {
2304 		case SDEV_CREATED:
2305 		case SDEV_RUNNING:
2306 		case SDEV_OFFLINE:
2307 		case SDEV_TRANSPORT_OFFLINE:
2308 		case SDEV_CANCEL:
2309 		case SDEV_BLOCK:
2310 		case SDEV_CREATED_BLOCK:
2311 			break;
2312 		default:
2313 			goto illegal;
2314 		}
2315 		break;
2316 
2317 	}
2318 	sdev->offline_already = false;
2319 	sdev->sdev_state = state;
2320 	return 0;
2321 
2322  illegal:
2323 	SCSI_LOG_ERROR_RECOVERY(1,
2324 				sdev_printk(KERN_ERR, sdev,
2325 					    "Illegal state transition %s->%s",
2326 					    scsi_device_state_name(oldstate),
2327 					    scsi_device_state_name(state))
2328 				);
2329 	return -EINVAL;
2330 }
2331 EXPORT_SYMBOL(scsi_device_set_state);
2332 
2333 /**
2334  * 	sdev_evt_emit - emit a single SCSI device uevent
2335  *	@sdev: associated SCSI device
2336  *	@evt: event to emit
2337  *
2338  *	Send a single uevent (scsi_event) to the associated scsi_device.
2339  */
2340 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2341 {
2342 	int idx = 0;
2343 	char *envp[3];
2344 
2345 	switch (evt->evt_type) {
2346 	case SDEV_EVT_MEDIA_CHANGE:
2347 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2348 		break;
2349 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2350 		scsi_rescan_device(&sdev->sdev_gendev);
2351 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2352 		break;
2353 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2354 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2355 		break;
2356 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2357 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2358 		break;
2359 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2360 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2361 		break;
2362 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2363 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2364 		break;
2365 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2366 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2367 		break;
2368 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2369 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2370 		break;
2371 	default:
2372 		/* do nothing */
2373 		break;
2374 	}
2375 
2376 	envp[idx++] = NULL;
2377 
2378 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2379 }
2380 
2381 /**
2382  * 	sdev_evt_thread - send a uevent for each scsi event
2383  *	@work: work struct for scsi_device
2384  *
2385  *	Dispatch queued events to their associated scsi_device kobjects
2386  *	as uevents.
2387  */
2388 void scsi_evt_thread(struct work_struct *work)
2389 {
2390 	struct scsi_device *sdev;
2391 	enum scsi_device_event evt_type;
2392 	LIST_HEAD(event_list);
2393 
2394 	sdev = container_of(work, struct scsi_device, event_work);
2395 
2396 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2397 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2398 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2399 
2400 	while (1) {
2401 		struct scsi_event *evt;
2402 		struct list_head *this, *tmp;
2403 		unsigned long flags;
2404 
2405 		spin_lock_irqsave(&sdev->list_lock, flags);
2406 		list_splice_init(&sdev->event_list, &event_list);
2407 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2408 
2409 		if (list_empty(&event_list))
2410 			break;
2411 
2412 		list_for_each_safe(this, tmp, &event_list) {
2413 			evt = list_entry(this, struct scsi_event, node);
2414 			list_del(&evt->node);
2415 			scsi_evt_emit(sdev, evt);
2416 			kfree(evt);
2417 		}
2418 	}
2419 }
2420 
2421 /**
2422  * 	sdev_evt_send - send asserted event to uevent thread
2423  *	@sdev: scsi_device event occurred on
2424  *	@evt: event to send
2425  *
2426  *	Assert scsi device event asynchronously.
2427  */
2428 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2429 {
2430 	unsigned long flags;
2431 
2432 #if 0
2433 	/* FIXME: currently this check eliminates all media change events
2434 	 * for polled devices.  Need to update to discriminate between AN
2435 	 * and polled events */
2436 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2437 		kfree(evt);
2438 		return;
2439 	}
2440 #endif
2441 
2442 	spin_lock_irqsave(&sdev->list_lock, flags);
2443 	list_add_tail(&evt->node, &sdev->event_list);
2444 	schedule_work(&sdev->event_work);
2445 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2446 }
2447 EXPORT_SYMBOL_GPL(sdev_evt_send);
2448 
2449 /**
2450  * 	sdev_evt_alloc - allocate a new scsi event
2451  *	@evt_type: type of event to allocate
2452  *	@gfpflags: GFP flags for allocation
2453  *
2454  *	Allocates and returns a new scsi_event.
2455  */
2456 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2457 				  gfp_t gfpflags)
2458 {
2459 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2460 	if (!evt)
2461 		return NULL;
2462 
2463 	evt->evt_type = evt_type;
2464 	INIT_LIST_HEAD(&evt->node);
2465 
2466 	/* evt_type-specific initialization, if any */
2467 	switch (evt_type) {
2468 	case SDEV_EVT_MEDIA_CHANGE:
2469 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2470 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2471 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2472 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2473 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2474 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2475 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2476 	default:
2477 		/* do nothing */
2478 		break;
2479 	}
2480 
2481 	return evt;
2482 }
2483 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2484 
2485 /**
2486  * 	sdev_evt_send_simple - send asserted event to uevent thread
2487  *	@sdev: scsi_device event occurred on
2488  *	@evt_type: type of event to send
2489  *	@gfpflags: GFP flags for allocation
2490  *
2491  *	Assert scsi device event asynchronously, given an event type.
2492  */
2493 void sdev_evt_send_simple(struct scsi_device *sdev,
2494 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2495 {
2496 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2497 	if (!evt) {
2498 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2499 			    evt_type);
2500 		return;
2501 	}
2502 
2503 	sdev_evt_send(sdev, evt);
2504 }
2505 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2506 
2507 /**
2508  *	scsi_device_quiesce - Block user issued commands.
2509  *	@sdev:	scsi device to quiesce.
2510  *
2511  *	This works by trying to transition to the SDEV_QUIESCE state
2512  *	(which must be a legal transition).  When the device is in this
2513  *	state, only special requests will be accepted, all others will
2514  *	be deferred.  Since special requests may also be requeued requests,
2515  *	a successful return doesn't guarantee the device will be
2516  *	totally quiescent.
2517  *
2518  *	Must be called with user context, may sleep.
2519  *
2520  *	Returns zero if unsuccessful or an error if not.
2521  */
2522 int
2523 scsi_device_quiesce(struct scsi_device *sdev)
2524 {
2525 	struct request_queue *q = sdev->request_queue;
2526 	int err;
2527 
2528 	/*
2529 	 * It is allowed to call scsi_device_quiesce() multiple times from
2530 	 * the same context but concurrent scsi_device_quiesce() calls are
2531 	 * not allowed.
2532 	 */
2533 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2534 
2535 	if (sdev->quiesced_by == current)
2536 		return 0;
2537 
2538 	blk_set_pm_only(q);
2539 
2540 	blk_mq_freeze_queue(q);
2541 	/*
2542 	 * Ensure that the effect of blk_set_pm_only() will be visible
2543 	 * for percpu_ref_tryget() callers that occur after the queue
2544 	 * unfreeze even if the queue was already frozen before this function
2545 	 * was called. See also https://lwn.net/Articles/573497/.
2546 	 */
2547 	synchronize_rcu();
2548 	blk_mq_unfreeze_queue(q);
2549 
2550 	mutex_lock(&sdev->state_mutex);
2551 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2552 	if (err == 0)
2553 		sdev->quiesced_by = current;
2554 	else
2555 		blk_clear_pm_only(q);
2556 	mutex_unlock(&sdev->state_mutex);
2557 
2558 	return err;
2559 }
2560 EXPORT_SYMBOL(scsi_device_quiesce);
2561 
2562 /**
2563  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2564  *	@sdev:	scsi device to resume.
2565  *
2566  *	Moves the device from quiesced back to running and restarts the
2567  *	queues.
2568  *
2569  *	Must be called with user context, may sleep.
2570  */
2571 void scsi_device_resume(struct scsi_device *sdev)
2572 {
2573 	/* check if the device state was mutated prior to resume, and if
2574 	 * so assume the state is being managed elsewhere (for example
2575 	 * device deleted during suspend)
2576 	 */
2577 	mutex_lock(&sdev->state_mutex);
2578 	if (sdev->quiesced_by) {
2579 		sdev->quiesced_by = NULL;
2580 		blk_clear_pm_only(sdev->request_queue);
2581 	}
2582 	if (sdev->sdev_state == SDEV_QUIESCE)
2583 		scsi_device_set_state(sdev, SDEV_RUNNING);
2584 	mutex_unlock(&sdev->state_mutex);
2585 }
2586 EXPORT_SYMBOL(scsi_device_resume);
2587 
2588 static void
2589 device_quiesce_fn(struct scsi_device *sdev, void *data)
2590 {
2591 	scsi_device_quiesce(sdev);
2592 }
2593 
2594 void
2595 scsi_target_quiesce(struct scsi_target *starget)
2596 {
2597 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2598 }
2599 EXPORT_SYMBOL(scsi_target_quiesce);
2600 
2601 static void
2602 device_resume_fn(struct scsi_device *sdev, void *data)
2603 {
2604 	scsi_device_resume(sdev);
2605 }
2606 
2607 void
2608 scsi_target_resume(struct scsi_target *starget)
2609 {
2610 	starget_for_each_device(starget, NULL, device_resume_fn);
2611 }
2612 EXPORT_SYMBOL(scsi_target_resume);
2613 
2614 /**
2615  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2616  * @sdev: device to block
2617  *
2618  * Pause SCSI command processing on the specified device. Does not sleep.
2619  *
2620  * Returns zero if successful or a negative error code upon failure.
2621  *
2622  * Notes:
2623  * This routine transitions the device to the SDEV_BLOCK state (which must be
2624  * a legal transition). When the device is in this state, command processing
2625  * is paused until the device leaves the SDEV_BLOCK state. See also
2626  * scsi_internal_device_unblock_nowait().
2627  */
2628 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2629 {
2630 	struct request_queue *q = sdev->request_queue;
2631 	int err = 0;
2632 
2633 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2634 	if (err) {
2635 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2636 
2637 		if (err)
2638 			return err;
2639 	}
2640 
2641 	/*
2642 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2643 	 * block layer from calling the midlayer with this device's
2644 	 * request queue.
2645 	 */
2646 	blk_mq_quiesce_queue_nowait(q);
2647 	return 0;
2648 }
2649 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2650 
2651 /**
2652  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2653  * @sdev: device to block
2654  *
2655  * Pause SCSI command processing on the specified device and wait until all
2656  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2657  *
2658  * Returns zero if successful or a negative error code upon failure.
2659  *
2660  * Note:
2661  * This routine transitions the device to the SDEV_BLOCK state (which must be
2662  * a legal transition). When the device is in this state, command processing
2663  * is paused until the device leaves the SDEV_BLOCK state. See also
2664  * scsi_internal_device_unblock().
2665  */
2666 static int scsi_internal_device_block(struct scsi_device *sdev)
2667 {
2668 	struct request_queue *q = sdev->request_queue;
2669 	int err;
2670 
2671 	mutex_lock(&sdev->state_mutex);
2672 	err = scsi_internal_device_block_nowait(sdev);
2673 	if (err == 0)
2674 		blk_mq_quiesce_queue(q);
2675 	mutex_unlock(&sdev->state_mutex);
2676 
2677 	return err;
2678 }
2679 
2680 void scsi_start_queue(struct scsi_device *sdev)
2681 {
2682 	struct request_queue *q = sdev->request_queue;
2683 
2684 	blk_mq_unquiesce_queue(q);
2685 }
2686 
2687 /**
2688  * scsi_internal_device_unblock_nowait - resume a device after a block request
2689  * @sdev:	device to resume
2690  * @new_state:	state to set the device to after unblocking
2691  *
2692  * Restart the device queue for a previously suspended SCSI device. Does not
2693  * sleep.
2694  *
2695  * Returns zero if successful or a negative error code upon failure.
2696  *
2697  * Notes:
2698  * This routine transitions the device to the SDEV_RUNNING state or to one of
2699  * the offline states (which must be a legal transition) allowing the midlayer
2700  * to goose the queue for this device.
2701  */
2702 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2703 					enum scsi_device_state new_state)
2704 {
2705 	switch (new_state) {
2706 	case SDEV_RUNNING:
2707 	case SDEV_TRANSPORT_OFFLINE:
2708 		break;
2709 	default:
2710 		return -EINVAL;
2711 	}
2712 
2713 	/*
2714 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2715 	 * offlined states and goose the device queue if successful.
2716 	 */
2717 	switch (sdev->sdev_state) {
2718 	case SDEV_BLOCK:
2719 	case SDEV_TRANSPORT_OFFLINE:
2720 		sdev->sdev_state = new_state;
2721 		break;
2722 	case SDEV_CREATED_BLOCK:
2723 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2724 		    new_state == SDEV_OFFLINE)
2725 			sdev->sdev_state = new_state;
2726 		else
2727 			sdev->sdev_state = SDEV_CREATED;
2728 		break;
2729 	case SDEV_CANCEL:
2730 	case SDEV_OFFLINE:
2731 		break;
2732 	default:
2733 		return -EINVAL;
2734 	}
2735 	scsi_start_queue(sdev);
2736 
2737 	return 0;
2738 }
2739 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2740 
2741 /**
2742  * scsi_internal_device_unblock - resume a device after a block request
2743  * @sdev:	device to resume
2744  * @new_state:	state to set the device to after unblocking
2745  *
2746  * Restart the device queue for a previously suspended SCSI device. May sleep.
2747  *
2748  * Returns zero if successful or a negative error code upon failure.
2749  *
2750  * Notes:
2751  * This routine transitions the device to the SDEV_RUNNING state or to one of
2752  * the offline states (which must be a legal transition) allowing the midlayer
2753  * to goose the queue for this device.
2754  */
2755 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2756 					enum scsi_device_state new_state)
2757 {
2758 	int ret;
2759 
2760 	mutex_lock(&sdev->state_mutex);
2761 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2762 	mutex_unlock(&sdev->state_mutex);
2763 
2764 	return ret;
2765 }
2766 
2767 static void
2768 device_block(struct scsi_device *sdev, void *data)
2769 {
2770 	int ret;
2771 
2772 	ret = scsi_internal_device_block(sdev);
2773 
2774 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2775 		  dev_name(&sdev->sdev_gendev), ret);
2776 }
2777 
2778 static int
2779 target_block(struct device *dev, void *data)
2780 {
2781 	if (scsi_is_target_device(dev))
2782 		starget_for_each_device(to_scsi_target(dev), NULL,
2783 					device_block);
2784 	return 0;
2785 }
2786 
2787 void
2788 scsi_target_block(struct device *dev)
2789 {
2790 	if (scsi_is_target_device(dev))
2791 		starget_for_each_device(to_scsi_target(dev), NULL,
2792 					device_block);
2793 	else
2794 		device_for_each_child(dev, NULL, target_block);
2795 }
2796 EXPORT_SYMBOL_GPL(scsi_target_block);
2797 
2798 static void
2799 device_unblock(struct scsi_device *sdev, void *data)
2800 {
2801 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2802 }
2803 
2804 static int
2805 target_unblock(struct device *dev, void *data)
2806 {
2807 	if (scsi_is_target_device(dev))
2808 		starget_for_each_device(to_scsi_target(dev), data,
2809 					device_unblock);
2810 	return 0;
2811 }
2812 
2813 void
2814 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2815 {
2816 	if (scsi_is_target_device(dev))
2817 		starget_for_each_device(to_scsi_target(dev), &new_state,
2818 					device_unblock);
2819 	else
2820 		device_for_each_child(dev, &new_state, target_unblock);
2821 }
2822 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2823 
2824 int
2825 scsi_host_block(struct Scsi_Host *shost)
2826 {
2827 	struct scsi_device *sdev;
2828 	int ret = 0;
2829 
2830 	/*
2831 	 * Call scsi_internal_device_block_nowait so we can avoid
2832 	 * calling synchronize_rcu() for each LUN.
2833 	 */
2834 	shost_for_each_device(sdev, shost) {
2835 		mutex_lock(&sdev->state_mutex);
2836 		ret = scsi_internal_device_block_nowait(sdev);
2837 		mutex_unlock(&sdev->state_mutex);
2838 		if (ret)
2839 			break;
2840 	}
2841 
2842 	/*
2843 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2844 	 * calling synchronize_rcu() once is enough.
2845 	 */
2846 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2847 
2848 	if (!ret)
2849 		synchronize_rcu();
2850 
2851 	return ret;
2852 }
2853 EXPORT_SYMBOL_GPL(scsi_host_block);
2854 
2855 int
2856 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2857 {
2858 	struct scsi_device *sdev;
2859 	int ret = 0;
2860 
2861 	shost_for_each_device(sdev, shost) {
2862 		ret = scsi_internal_device_unblock(sdev, new_state);
2863 		if (ret) {
2864 			scsi_device_put(sdev);
2865 			break;
2866 		}
2867 	}
2868 	return ret;
2869 }
2870 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2871 
2872 /**
2873  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2874  * @sgl:	scatter-gather list
2875  * @sg_count:	number of segments in sg
2876  * @offset:	offset in bytes into sg, on return offset into the mapped area
2877  * @len:	bytes to map, on return number of bytes mapped
2878  *
2879  * Returns virtual address of the start of the mapped page
2880  */
2881 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2882 			  size_t *offset, size_t *len)
2883 {
2884 	int i;
2885 	size_t sg_len = 0, len_complete = 0;
2886 	struct scatterlist *sg;
2887 	struct page *page;
2888 
2889 	WARN_ON(!irqs_disabled());
2890 
2891 	for_each_sg(sgl, sg, sg_count, i) {
2892 		len_complete = sg_len; /* Complete sg-entries */
2893 		sg_len += sg->length;
2894 		if (sg_len > *offset)
2895 			break;
2896 	}
2897 
2898 	if (unlikely(i == sg_count)) {
2899 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2900 			"elements %d\n",
2901 		       __func__, sg_len, *offset, sg_count);
2902 		WARN_ON(1);
2903 		return NULL;
2904 	}
2905 
2906 	/* Offset starting from the beginning of first page in this sg-entry */
2907 	*offset = *offset - len_complete + sg->offset;
2908 
2909 	/* Assumption: contiguous pages can be accessed as "page + i" */
2910 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2911 	*offset &= ~PAGE_MASK;
2912 
2913 	/* Bytes in this sg-entry from *offset to the end of the page */
2914 	sg_len = PAGE_SIZE - *offset;
2915 	if (*len > sg_len)
2916 		*len = sg_len;
2917 
2918 	return kmap_atomic(page);
2919 }
2920 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2921 
2922 /**
2923  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2924  * @virt:	virtual address to be unmapped
2925  */
2926 void scsi_kunmap_atomic_sg(void *virt)
2927 {
2928 	kunmap_atomic(virt);
2929 }
2930 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2931 
2932 void sdev_disable_disk_events(struct scsi_device *sdev)
2933 {
2934 	atomic_inc(&sdev->disk_events_disable_depth);
2935 }
2936 EXPORT_SYMBOL(sdev_disable_disk_events);
2937 
2938 void sdev_enable_disk_events(struct scsi_device *sdev)
2939 {
2940 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2941 		return;
2942 	atomic_dec(&sdev->disk_events_disable_depth);
2943 }
2944 EXPORT_SYMBOL(sdev_enable_disk_events);
2945 
2946 /**
2947  * scsi_vpd_lun_id - return a unique device identification
2948  * @sdev: SCSI device
2949  * @id:   buffer for the identification
2950  * @id_len:  length of the buffer
2951  *
2952  * Copies a unique device identification into @id based
2953  * on the information in the VPD page 0x83 of the device.
2954  * The string will be formatted as a SCSI name string.
2955  *
2956  * Returns the length of the identification or error on failure.
2957  * If the identifier is longer than the supplied buffer the actual
2958  * identifier length is returned and the buffer is not zero-padded.
2959  */
2960 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2961 {
2962 	u8 cur_id_type = 0xff;
2963 	u8 cur_id_size = 0;
2964 	const unsigned char *d, *cur_id_str;
2965 	const struct scsi_vpd *vpd_pg83;
2966 	int id_size = -EINVAL;
2967 
2968 	rcu_read_lock();
2969 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2970 	if (!vpd_pg83) {
2971 		rcu_read_unlock();
2972 		return -ENXIO;
2973 	}
2974 
2975 	/*
2976 	 * Look for the correct descriptor.
2977 	 * Order of preference for lun descriptor:
2978 	 * - SCSI name string
2979 	 * - NAA IEEE Registered Extended
2980 	 * - EUI-64 based 16-byte
2981 	 * - EUI-64 based 12-byte
2982 	 * - NAA IEEE Registered
2983 	 * - NAA IEEE Extended
2984 	 * - T10 Vendor ID
2985 	 * as longer descriptors reduce the likelyhood
2986 	 * of identification clashes.
2987 	 */
2988 
2989 	/* The id string must be at least 20 bytes + terminating NULL byte */
2990 	if (id_len < 21) {
2991 		rcu_read_unlock();
2992 		return -EINVAL;
2993 	}
2994 
2995 	memset(id, 0, id_len);
2996 	d = vpd_pg83->data + 4;
2997 	while (d < vpd_pg83->data + vpd_pg83->len) {
2998 		/* Skip designators not referring to the LUN */
2999 		if ((d[1] & 0x30) != 0x00)
3000 			goto next_desig;
3001 
3002 		switch (d[1] & 0xf) {
3003 		case 0x1:
3004 			/* T10 Vendor ID */
3005 			if (cur_id_size > d[3])
3006 				break;
3007 			/* Prefer anything */
3008 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3009 				break;
3010 			cur_id_size = d[3];
3011 			if (cur_id_size + 4 > id_len)
3012 				cur_id_size = id_len - 4;
3013 			cur_id_str = d + 4;
3014 			cur_id_type = d[1] & 0xf;
3015 			id_size = snprintf(id, id_len, "t10.%*pE",
3016 					   cur_id_size, cur_id_str);
3017 			break;
3018 		case 0x2:
3019 			/* EUI-64 */
3020 			if (cur_id_size > d[3])
3021 				break;
3022 			/* Prefer NAA IEEE Registered Extended */
3023 			if (cur_id_type == 0x3 &&
3024 			    cur_id_size == d[3])
3025 				break;
3026 			cur_id_size = d[3];
3027 			cur_id_str = d + 4;
3028 			cur_id_type = d[1] & 0xf;
3029 			switch (cur_id_size) {
3030 			case 8:
3031 				id_size = snprintf(id, id_len,
3032 						   "eui.%8phN",
3033 						   cur_id_str);
3034 				break;
3035 			case 12:
3036 				id_size = snprintf(id, id_len,
3037 						   "eui.%12phN",
3038 						   cur_id_str);
3039 				break;
3040 			case 16:
3041 				id_size = snprintf(id, id_len,
3042 						   "eui.%16phN",
3043 						   cur_id_str);
3044 				break;
3045 			default:
3046 				cur_id_size = 0;
3047 				break;
3048 			}
3049 			break;
3050 		case 0x3:
3051 			/* NAA */
3052 			if (cur_id_size > d[3])
3053 				break;
3054 			cur_id_size = d[3];
3055 			cur_id_str = d + 4;
3056 			cur_id_type = d[1] & 0xf;
3057 			switch (cur_id_size) {
3058 			case 8:
3059 				id_size = snprintf(id, id_len,
3060 						   "naa.%8phN",
3061 						   cur_id_str);
3062 				break;
3063 			case 16:
3064 				id_size = snprintf(id, id_len,
3065 						   "naa.%16phN",
3066 						   cur_id_str);
3067 				break;
3068 			default:
3069 				cur_id_size = 0;
3070 				break;
3071 			}
3072 			break;
3073 		case 0x8:
3074 			/* SCSI name string */
3075 			if (cur_id_size + 4 > d[3])
3076 				break;
3077 			/* Prefer others for truncated descriptor */
3078 			if (cur_id_size && d[3] > id_len)
3079 				break;
3080 			cur_id_size = id_size = d[3];
3081 			cur_id_str = d + 4;
3082 			cur_id_type = d[1] & 0xf;
3083 			if (cur_id_size >= id_len)
3084 				cur_id_size = id_len - 1;
3085 			memcpy(id, cur_id_str, cur_id_size);
3086 			/* Decrease priority for truncated descriptor */
3087 			if (cur_id_size != id_size)
3088 				cur_id_size = 6;
3089 			break;
3090 		default:
3091 			break;
3092 		}
3093 next_desig:
3094 		d += d[3] + 4;
3095 	}
3096 	rcu_read_unlock();
3097 
3098 	return id_size;
3099 }
3100 EXPORT_SYMBOL(scsi_vpd_lun_id);
3101 
3102 /*
3103  * scsi_vpd_tpg_id - return a target port group identifier
3104  * @sdev: SCSI device
3105  *
3106  * Returns the Target Port Group identifier from the information
3107  * froom VPD page 0x83 of the device.
3108  *
3109  * Returns the identifier or error on failure.
3110  */
3111 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3112 {
3113 	const unsigned char *d;
3114 	const struct scsi_vpd *vpd_pg83;
3115 	int group_id = -EAGAIN, rel_port = -1;
3116 
3117 	rcu_read_lock();
3118 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3119 	if (!vpd_pg83) {
3120 		rcu_read_unlock();
3121 		return -ENXIO;
3122 	}
3123 
3124 	d = vpd_pg83->data + 4;
3125 	while (d < vpd_pg83->data + vpd_pg83->len) {
3126 		switch (d[1] & 0xf) {
3127 		case 0x4:
3128 			/* Relative target port */
3129 			rel_port = get_unaligned_be16(&d[6]);
3130 			break;
3131 		case 0x5:
3132 			/* Target port group */
3133 			group_id = get_unaligned_be16(&d[6]);
3134 			break;
3135 		default:
3136 			break;
3137 		}
3138 		d += d[3] + 4;
3139 	}
3140 	rcu_read_unlock();
3141 
3142 	if (group_id >= 0 && rel_id && rel_port != -1)
3143 		*rel_id = rel_port;
3144 
3145 	return group_id;
3146 }
3147 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3148