1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 * SCSI queueing library.
7 * Initial versions: Eric Youngdale (eric@andante.org).
8 * Based upon conversations with large numbers
9 * of people at Linux Expo.
10 */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37
38 #include <trace/events/scsi.h>
39
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43
44 /*
45 * Size of integrity metadata is usually small, 1 inline sg should
46 * cover normal cases.
47 */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define SCSI_INLINE_PROT_SG_CNT 0
50 #define SCSI_INLINE_SG_CNT 0
51 #else
52 #define SCSI_INLINE_PROT_SG_CNT 1
53 #define SCSI_INLINE_SG_CNT 2
54 #endif
55
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
scsi_init_sense_cache(struct Scsi_Host * shost)61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 int ret = 0;
64
65 mutex_lock(&scsi_sense_cache_mutex);
66 if (!scsi_sense_cache) {
67 scsi_sense_cache =
68 kmem_cache_create_usercopy("scsi_sense_cache",
69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 0, SCSI_SENSE_BUFFERSIZE, NULL);
71 if (!scsi_sense_cache)
72 ret = -ENOMEM;
73 }
74 mutex_unlock(&scsi_sense_cache_mutex);
75 return ret;
76 }
77
78 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81 struct Scsi_Host *host = cmd->device->host;
82 struct scsi_device *device = cmd->device;
83 struct scsi_target *starget = scsi_target(device);
84
85 /*
86 * Set the appropriate busy bit for the device/host.
87 *
88 * If the host/device isn't busy, assume that something actually
89 * completed, and that we should be able to queue a command now.
90 *
91 * Note that the prior mid-layer assumption that any host could
92 * always queue at least one command is now broken. The mid-layer
93 * will implement a user specifiable stall (see
94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 * if a command is requeued with no other commands outstanding
96 * either for the device or for the host.
97 */
98 switch (reason) {
99 case SCSI_MLQUEUE_HOST_BUSY:
100 atomic_set(&host->host_blocked, host->max_host_blocked);
101 break;
102 case SCSI_MLQUEUE_DEVICE_BUSY:
103 case SCSI_MLQUEUE_EH_RETRY:
104 atomic_set(&device->device_blocked,
105 device->max_device_blocked);
106 break;
107 case SCSI_MLQUEUE_TARGET_BUSY:
108 atomic_set(&starget->target_blocked,
109 starget->max_target_blocked);
110 break;
111 }
112 }
113
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd,unsigned long msecs)114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116 struct request *rq = scsi_cmd_to_rq(cmd);
117
118 if (rq->rq_flags & RQF_DONTPREP) {
119 rq->rq_flags &= ~RQF_DONTPREP;
120 scsi_mq_uninit_cmd(cmd);
121 } else {
122 WARN_ON_ONCE(true);
123 }
124
125 blk_mq_requeue_request(rq, false);
126 if (!scsi_host_in_recovery(cmd->device->host))
127 blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 }
129
130 /**
131 * __scsi_queue_insert - private queue insertion
132 * @cmd: The SCSI command being requeued
133 * @reason: The reason for the requeue
134 * @unbusy: Whether the queue should be unbusied
135 *
136 * This is a private queue insertion. The public interface
137 * scsi_queue_insert() always assumes the queue should be unbusied
138 * because it's always called before the completion. This function is
139 * for a requeue after completion, which should only occur in this
140 * file.
141 */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143 {
144 struct scsi_device *device = cmd->device;
145
146 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147 "Inserting command %p into mlqueue\n", cmd));
148
149 scsi_set_blocked(cmd, reason);
150
151 /*
152 * Decrement the counters, since these commands are no longer
153 * active on the host/device.
154 */
155 if (unbusy)
156 scsi_device_unbusy(device, cmd);
157
158 /*
159 * Requeue this command. It will go before all other commands
160 * that are already in the queue. Schedule requeue work under
161 * lock such that the kblockd_schedule_work() call happens
162 * before blk_mq_destroy_queue() finishes.
163 */
164 cmd->result = 0;
165
166 blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167 !scsi_host_in_recovery(cmd->device->host));
168 }
169
170 /**
171 * scsi_queue_insert - Reinsert a command in the queue.
172 * @cmd: command that we are adding to queue.
173 * @reason: why we are inserting command to queue.
174 *
175 * We do this for one of two cases. Either the host is busy and it cannot accept
176 * any more commands for the time being, or the device returned QUEUE_FULL and
177 * can accept no more commands.
178 *
179 * Context: This could be called either from an interrupt context or a normal
180 * process context.
181 */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184 __scsi_queue_insert(cmd, reason, true);
185 }
186
187 /**
188 * scsi_execute_cmd - insert request and wait for the result
189 * @sdev: scsi_device
190 * @cmd: scsi command
191 * @opf: block layer request cmd_flags
192 * @buffer: data buffer
193 * @bufflen: len of buffer
194 * @timeout: request timeout in HZ
195 * @retries: number of times to retry request
196 * @args: Optional args. See struct definition for field descriptions
197 *
198 * Returns the scsi_cmnd result field if a command was executed, or a negative
199 * Linux error code if we didn't get that far.
200 */
scsi_execute_cmd(struct scsi_device * sdev,const unsigned char * cmd,blk_opf_t opf,void * buffer,unsigned int bufflen,int timeout,int retries,const struct scsi_exec_args * args)201 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
202 blk_opf_t opf, void *buffer, unsigned int bufflen,
203 int timeout, int retries,
204 const struct scsi_exec_args *args)
205 {
206 static const struct scsi_exec_args default_args;
207 struct request *req;
208 struct scsi_cmnd *scmd;
209 int ret;
210
211 if (!args)
212 args = &default_args;
213 else if (WARN_ON_ONCE(args->sense &&
214 args->sense_len != SCSI_SENSE_BUFFERSIZE))
215 return -EINVAL;
216
217 req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
218 if (IS_ERR(req))
219 return PTR_ERR(req);
220
221 if (bufflen) {
222 ret = blk_rq_map_kern(sdev->request_queue, req,
223 buffer, bufflen, GFP_NOIO);
224 if (ret)
225 goto out;
226 }
227 scmd = blk_mq_rq_to_pdu(req);
228 scmd->cmd_len = COMMAND_SIZE(cmd[0]);
229 memcpy(scmd->cmnd, cmd, scmd->cmd_len);
230 scmd->allowed = retries;
231 scmd->flags |= args->scmd_flags;
232 req->timeout = timeout;
233 req->rq_flags |= RQF_QUIET;
234
235 /*
236 * head injection *required* here otherwise quiesce won't work
237 */
238 blk_execute_rq(req, true);
239
240 /*
241 * Some devices (USB mass-storage in particular) may transfer
242 * garbage data together with a residue indicating that the data
243 * is invalid. Prevent the garbage from being misinterpreted
244 * and prevent security leaks by zeroing out the excess data.
245 */
246 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
247 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
248
249 if (args->resid)
250 *args->resid = scmd->resid_len;
251 if (args->sense)
252 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
253 if (args->sshdr)
254 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
255 args->sshdr);
256
257 ret = scmd->result;
258 out:
259 blk_mq_free_request(req);
260
261 return ret;
262 }
263 EXPORT_SYMBOL(scsi_execute_cmd);
264
265 /*
266 * Wake up the error handler if necessary. Avoid as follows that the error
267 * handler is not woken up if host in-flight requests number ==
268 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
269 * with an RCU read lock in this function to ensure that this function in
270 * its entirety either finishes before scsi_eh_scmd_add() increases the
271 * host_failed counter or that it notices the shost state change made by
272 * scsi_eh_scmd_add().
273 */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)274 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
275 {
276 unsigned long flags;
277
278 rcu_read_lock();
279 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
280 if (unlikely(scsi_host_in_recovery(shost))) {
281 unsigned int busy = scsi_host_busy(shost);
282
283 spin_lock_irqsave(shost->host_lock, flags);
284 if (shost->host_failed || shost->host_eh_scheduled)
285 scsi_eh_wakeup(shost, busy);
286 spin_unlock_irqrestore(shost->host_lock, flags);
287 }
288 rcu_read_unlock();
289 }
290
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)291 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
292 {
293 struct Scsi_Host *shost = sdev->host;
294 struct scsi_target *starget = scsi_target(sdev);
295
296 scsi_dec_host_busy(shost, cmd);
297
298 if (starget->can_queue > 0)
299 atomic_dec(&starget->target_busy);
300
301 sbitmap_put(&sdev->budget_map, cmd->budget_token);
302 cmd->budget_token = -1;
303 }
304
305 /*
306 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
307 * interrupts disabled.
308 */
scsi_kick_sdev_queue(struct scsi_device * sdev,void * data)309 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
310 {
311 struct scsi_device *current_sdev = data;
312
313 if (sdev != current_sdev)
314 blk_mq_run_hw_queues(sdev->request_queue, true);
315 }
316
317 /*
318 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
319 * and call blk_run_queue for all the scsi_devices on the target -
320 * including current_sdev first.
321 *
322 * Called with *no* scsi locks held.
323 */
scsi_single_lun_run(struct scsi_device * current_sdev)324 static void scsi_single_lun_run(struct scsi_device *current_sdev)
325 {
326 struct Scsi_Host *shost = current_sdev->host;
327 struct scsi_target *starget = scsi_target(current_sdev);
328 unsigned long flags;
329
330 spin_lock_irqsave(shost->host_lock, flags);
331 starget->starget_sdev_user = NULL;
332 spin_unlock_irqrestore(shost->host_lock, flags);
333
334 /*
335 * Call blk_run_queue for all LUNs on the target, starting with
336 * current_sdev. We race with others (to set starget_sdev_user),
337 * but in most cases, we will be first. Ideally, each LU on the
338 * target would get some limited time or requests on the target.
339 */
340 blk_mq_run_hw_queues(current_sdev->request_queue,
341 shost->queuecommand_may_block);
342
343 spin_lock_irqsave(shost->host_lock, flags);
344 if (!starget->starget_sdev_user)
345 __starget_for_each_device(starget, current_sdev,
346 scsi_kick_sdev_queue);
347 spin_unlock_irqrestore(shost->host_lock, flags);
348 }
349
scsi_device_is_busy(struct scsi_device * sdev)350 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
351 {
352 if (scsi_device_busy(sdev) >= sdev->queue_depth)
353 return true;
354 if (atomic_read(&sdev->device_blocked) > 0)
355 return true;
356 return false;
357 }
358
scsi_target_is_busy(struct scsi_target * starget)359 static inline bool scsi_target_is_busy(struct scsi_target *starget)
360 {
361 if (starget->can_queue > 0) {
362 if (atomic_read(&starget->target_busy) >= starget->can_queue)
363 return true;
364 if (atomic_read(&starget->target_blocked) > 0)
365 return true;
366 }
367 return false;
368 }
369
scsi_host_is_busy(struct Scsi_Host * shost)370 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
371 {
372 if (atomic_read(&shost->host_blocked) > 0)
373 return true;
374 if (shost->host_self_blocked)
375 return true;
376 return false;
377 }
378
scsi_starved_list_run(struct Scsi_Host * shost)379 static void scsi_starved_list_run(struct Scsi_Host *shost)
380 {
381 LIST_HEAD(starved_list);
382 struct scsi_device *sdev;
383 unsigned long flags;
384
385 spin_lock_irqsave(shost->host_lock, flags);
386 list_splice_init(&shost->starved_list, &starved_list);
387
388 while (!list_empty(&starved_list)) {
389 struct request_queue *slq;
390
391 /*
392 * As long as shost is accepting commands and we have
393 * starved queues, call blk_run_queue. scsi_request_fn
394 * drops the queue_lock and can add us back to the
395 * starved_list.
396 *
397 * host_lock protects the starved_list and starved_entry.
398 * scsi_request_fn must get the host_lock before checking
399 * or modifying starved_list or starved_entry.
400 */
401 if (scsi_host_is_busy(shost))
402 break;
403
404 sdev = list_entry(starved_list.next,
405 struct scsi_device, starved_entry);
406 list_del_init(&sdev->starved_entry);
407 if (scsi_target_is_busy(scsi_target(sdev))) {
408 list_move_tail(&sdev->starved_entry,
409 &shost->starved_list);
410 continue;
411 }
412
413 /*
414 * Once we drop the host lock, a racing scsi_remove_device()
415 * call may remove the sdev from the starved list and destroy
416 * it and the queue. Mitigate by taking a reference to the
417 * queue and never touching the sdev again after we drop the
418 * host lock. Note: if __scsi_remove_device() invokes
419 * blk_mq_destroy_queue() before the queue is run from this
420 * function then blk_run_queue() will return immediately since
421 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
422 */
423 slq = sdev->request_queue;
424 if (!blk_get_queue(slq))
425 continue;
426 spin_unlock_irqrestore(shost->host_lock, flags);
427
428 blk_mq_run_hw_queues(slq, false);
429 blk_put_queue(slq);
430
431 spin_lock_irqsave(shost->host_lock, flags);
432 }
433 /* put any unprocessed entries back */
434 list_splice(&starved_list, &shost->starved_list);
435 spin_unlock_irqrestore(shost->host_lock, flags);
436 }
437
438 /**
439 * scsi_run_queue - Select a proper request queue to serve next.
440 * @q: last request's queue
441 *
442 * The previous command was completely finished, start a new one if possible.
443 */
scsi_run_queue(struct request_queue * q)444 static void scsi_run_queue(struct request_queue *q)
445 {
446 struct scsi_device *sdev = q->queuedata;
447
448 if (scsi_target(sdev)->single_lun)
449 scsi_single_lun_run(sdev);
450 if (!list_empty(&sdev->host->starved_list))
451 scsi_starved_list_run(sdev->host);
452
453 /* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
454 blk_mq_kick_requeue_list(q);
455 }
456
scsi_requeue_run_queue(struct work_struct * work)457 void scsi_requeue_run_queue(struct work_struct *work)
458 {
459 struct scsi_device *sdev;
460 struct request_queue *q;
461
462 sdev = container_of(work, struct scsi_device, requeue_work);
463 q = sdev->request_queue;
464 scsi_run_queue(q);
465 }
466
scsi_run_host_queues(struct Scsi_Host * shost)467 void scsi_run_host_queues(struct Scsi_Host *shost)
468 {
469 struct scsi_device *sdev;
470
471 shost_for_each_device(sdev, shost)
472 scsi_run_queue(sdev->request_queue);
473 }
474
scsi_uninit_cmd(struct scsi_cmnd * cmd)475 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
476 {
477 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
478 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
479
480 if (drv->uninit_command)
481 drv->uninit_command(cmd);
482 }
483 }
484
scsi_free_sgtables(struct scsi_cmnd * cmd)485 void scsi_free_sgtables(struct scsi_cmnd *cmd)
486 {
487 if (cmd->sdb.table.nents)
488 sg_free_table_chained(&cmd->sdb.table,
489 SCSI_INLINE_SG_CNT);
490 if (scsi_prot_sg_count(cmd))
491 sg_free_table_chained(&cmd->prot_sdb->table,
492 SCSI_INLINE_PROT_SG_CNT);
493 }
494 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
495
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)496 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
497 {
498 scsi_free_sgtables(cmd);
499 scsi_uninit_cmd(cmd);
500 }
501
scsi_run_queue_async(struct scsi_device * sdev)502 static void scsi_run_queue_async(struct scsi_device *sdev)
503 {
504 if (scsi_host_in_recovery(sdev->host))
505 return;
506
507 if (scsi_target(sdev)->single_lun ||
508 !list_empty(&sdev->host->starved_list)) {
509 kblockd_schedule_work(&sdev->requeue_work);
510 } else {
511 /*
512 * smp_mb() present in sbitmap_queue_clear() or implied in
513 * .end_io is for ordering writing .device_busy in
514 * scsi_device_unbusy() and reading sdev->restarts.
515 */
516 int old = atomic_read(&sdev->restarts);
517
518 /*
519 * ->restarts has to be kept as non-zero if new budget
520 * contention occurs.
521 *
522 * No need to run queue when either another re-run
523 * queue wins in updating ->restarts or a new budget
524 * contention occurs.
525 */
526 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
527 blk_mq_run_hw_queues(sdev->request_queue, true);
528 }
529 }
530
531 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)532 static bool scsi_end_request(struct request *req, blk_status_t error,
533 unsigned int bytes)
534 {
535 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
536 struct scsi_device *sdev = cmd->device;
537 struct request_queue *q = sdev->request_queue;
538
539 if (blk_update_request(req, error, bytes))
540 return true;
541
542 // XXX:
543 if (blk_queue_add_random(q))
544 add_disk_randomness(req->q->disk);
545
546 WARN_ON_ONCE(!blk_rq_is_passthrough(req) &&
547 !(cmd->flags & SCMD_INITIALIZED));
548 cmd->flags = 0;
549
550 /*
551 * Calling rcu_barrier() is not necessary here because the
552 * SCSI error handler guarantees that the function called by
553 * call_rcu() has been called before scsi_end_request() is
554 * called.
555 */
556 destroy_rcu_head(&cmd->rcu);
557
558 /*
559 * In the MQ case the command gets freed by __blk_mq_end_request,
560 * so we have to do all cleanup that depends on it earlier.
561 *
562 * We also can't kick the queues from irq context, so we
563 * will have to defer it to a workqueue.
564 */
565 scsi_mq_uninit_cmd(cmd);
566
567 /*
568 * queue is still alive, so grab the ref for preventing it
569 * from being cleaned up during running queue.
570 */
571 percpu_ref_get(&q->q_usage_counter);
572
573 __blk_mq_end_request(req, error);
574
575 scsi_run_queue_async(sdev);
576
577 percpu_ref_put(&q->q_usage_counter);
578 return false;
579 }
580
581 /**
582 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
583 * @result: scsi error code
584 *
585 * Translate a SCSI result code into a blk_status_t value.
586 */
scsi_result_to_blk_status(int result)587 static blk_status_t scsi_result_to_blk_status(int result)
588 {
589 /*
590 * Check the scsi-ml byte first in case we converted a host or status
591 * byte.
592 */
593 switch (scsi_ml_byte(result)) {
594 case SCSIML_STAT_OK:
595 break;
596 case SCSIML_STAT_RESV_CONFLICT:
597 return BLK_STS_RESV_CONFLICT;
598 case SCSIML_STAT_NOSPC:
599 return BLK_STS_NOSPC;
600 case SCSIML_STAT_MED_ERROR:
601 return BLK_STS_MEDIUM;
602 case SCSIML_STAT_TGT_FAILURE:
603 return BLK_STS_TARGET;
604 case SCSIML_STAT_DL_TIMEOUT:
605 return BLK_STS_DURATION_LIMIT;
606 }
607
608 switch (host_byte(result)) {
609 case DID_OK:
610 if (scsi_status_is_good(result))
611 return BLK_STS_OK;
612 return BLK_STS_IOERR;
613 case DID_TRANSPORT_FAILFAST:
614 case DID_TRANSPORT_MARGINAL:
615 return BLK_STS_TRANSPORT;
616 default:
617 return BLK_STS_IOERR;
618 }
619 }
620
621 /**
622 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
623 * @rq: request to examine
624 *
625 * Description:
626 * A request could be merge of IOs which require different failure
627 * handling. This function determines the number of bytes which
628 * can be failed from the beginning of the request without
629 * crossing into area which need to be retried further.
630 *
631 * Return:
632 * The number of bytes to fail.
633 */
scsi_rq_err_bytes(const struct request * rq)634 static unsigned int scsi_rq_err_bytes(const struct request *rq)
635 {
636 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
637 unsigned int bytes = 0;
638 struct bio *bio;
639
640 if (!(rq->rq_flags & RQF_MIXED_MERGE))
641 return blk_rq_bytes(rq);
642
643 /*
644 * Currently the only 'mixing' which can happen is between
645 * different fastfail types. We can safely fail portions
646 * which have all the failfast bits that the first one has -
647 * the ones which are at least as eager to fail as the first
648 * one.
649 */
650 for (bio = rq->bio; bio; bio = bio->bi_next) {
651 if ((bio->bi_opf & ff) != ff)
652 break;
653 bytes += bio->bi_iter.bi_size;
654 }
655
656 /* this could lead to infinite loop */
657 BUG_ON(blk_rq_bytes(rq) && !bytes);
658 return bytes;
659 }
660
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)661 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
662 {
663 struct request *req = scsi_cmd_to_rq(cmd);
664 unsigned long wait_for;
665
666 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
667 return false;
668
669 wait_for = (cmd->allowed + 1) * req->timeout;
670 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
671 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
672 wait_for/HZ);
673 return true;
674 }
675 return false;
676 }
677
678 /*
679 * When ALUA transition state is returned, reprep the cmd to
680 * use the ALUA handler's transition timeout. Delay the reprep
681 * 1 sec to avoid aggressive retries of the target in that
682 * state.
683 */
684 #define ALUA_TRANSITION_REPREP_DELAY 1000
685
686 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)687 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
688 {
689 struct request *req = scsi_cmd_to_rq(cmd);
690 int level = 0;
691 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
692 ACTION_RETRY, ACTION_DELAYED_RETRY} action;
693 struct scsi_sense_hdr sshdr;
694 bool sense_valid;
695 bool sense_current = true; /* false implies "deferred sense" */
696 blk_status_t blk_stat;
697
698 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
699 if (sense_valid)
700 sense_current = !scsi_sense_is_deferred(&sshdr);
701
702 blk_stat = scsi_result_to_blk_status(result);
703
704 if (host_byte(result) == DID_RESET) {
705 /* Third party bus reset or reset for error recovery
706 * reasons. Just retry the command and see what
707 * happens.
708 */
709 action = ACTION_RETRY;
710 } else if (sense_valid && sense_current) {
711 switch (sshdr.sense_key) {
712 case UNIT_ATTENTION:
713 if (cmd->device->removable) {
714 /* Detected disc change. Set a bit
715 * and quietly refuse further access.
716 */
717 cmd->device->changed = 1;
718 action = ACTION_FAIL;
719 } else {
720 /* Must have been a power glitch, or a
721 * bus reset. Could not have been a
722 * media change, so we just retry the
723 * command and see what happens.
724 */
725 action = ACTION_RETRY;
726 }
727 break;
728 case ILLEGAL_REQUEST:
729 /* If we had an ILLEGAL REQUEST returned, then
730 * we may have performed an unsupported
731 * command. The only thing this should be
732 * would be a ten byte read where only a six
733 * byte read was supported. Also, on a system
734 * where READ CAPACITY failed, we may have
735 * read past the end of the disk.
736 */
737 if ((cmd->device->use_10_for_rw &&
738 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
739 (cmd->cmnd[0] == READ_10 ||
740 cmd->cmnd[0] == WRITE_10)) {
741 /* This will issue a new 6-byte command. */
742 cmd->device->use_10_for_rw = 0;
743 action = ACTION_REPREP;
744 } else if (sshdr.asc == 0x10) /* DIX */ {
745 action = ACTION_FAIL;
746 blk_stat = BLK_STS_PROTECTION;
747 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
748 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
749 action = ACTION_FAIL;
750 blk_stat = BLK_STS_TARGET;
751 } else
752 action = ACTION_FAIL;
753 break;
754 case ABORTED_COMMAND:
755 action = ACTION_FAIL;
756 if (sshdr.asc == 0x10) /* DIF */
757 blk_stat = BLK_STS_PROTECTION;
758 break;
759 case NOT_READY:
760 /* If the device is in the process of becoming
761 * ready, or has a temporary blockage, retry.
762 */
763 if (sshdr.asc == 0x04) {
764 switch (sshdr.ascq) {
765 case 0x01: /* becoming ready */
766 case 0x04: /* format in progress */
767 case 0x05: /* rebuild in progress */
768 case 0x06: /* recalculation in progress */
769 case 0x07: /* operation in progress */
770 case 0x08: /* Long write in progress */
771 case 0x09: /* self test in progress */
772 case 0x11: /* notify (enable spinup) required */
773 case 0x14: /* space allocation in progress */
774 case 0x1a: /* start stop unit in progress */
775 case 0x1b: /* sanitize in progress */
776 case 0x1d: /* configuration in progress */
777 case 0x24: /* depopulation in progress */
778 action = ACTION_DELAYED_RETRY;
779 break;
780 case 0x0a: /* ALUA state transition */
781 action = ACTION_DELAYED_REPREP;
782 break;
783 default:
784 action = ACTION_FAIL;
785 break;
786 }
787 } else
788 action = ACTION_FAIL;
789 break;
790 case VOLUME_OVERFLOW:
791 /* See SSC3rXX or current. */
792 action = ACTION_FAIL;
793 break;
794 case DATA_PROTECT:
795 action = ACTION_FAIL;
796 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
797 (sshdr.asc == 0x55 &&
798 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
799 /* Insufficient zone resources */
800 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
801 }
802 break;
803 case COMPLETED:
804 fallthrough;
805 default:
806 action = ACTION_FAIL;
807 break;
808 }
809 } else
810 action = ACTION_FAIL;
811
812 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
813 action = ACTION_FAIL;
814
815 switch (action) {
816 case ACTION_FAIL:
817 /* Give up and fail the remainder of the request */
818 if (!(req->rq_flags & RQF_QUIET)) {
819 static DEFINE_RATELIMIT_STATE(_rs,
820 DEFAULT_RATELIMIT_INTERVAL,
821 DEFAULT_RATELIMIT_BURST);
822
823 if (unlikely(scsi_logging_level))
824 level =
825 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
826 SCSI_LOG_MLCOMPLETE_BITS);
827
828 /*
829 * if logging is enabled the failure will be printed
830 * in scsi_log_completion(), so avoid duplicate messages
831 */
832 if (!level && __ratelimit(&_rs)) {
833 scsi_print_result(cmd, NULL, FAILED);
834 if (sense_valid)
835 scsi_print_sense(cmd);
836 scsi_print_command(cmd);
837 }
838 }
839 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
840 return;
841 fallthrough;
842 case ACTION_REPREP:
843 scsi_mq_requeue_cmd(cmd, 0);
844 break;
845 case ACTION_DELAYED_REPREP:
846 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
847 break;
848 case ACTION_RETRY:
849 /* Retry the same command immediately */
850 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
851 break;
852 case ACTION_DELAYED_RETRY:
853 /* Retry the same command after a delay */
854 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
855 break;
856 }
857 }
858
859 /*
860 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
861 * new result that may suppress further error checking. Also modifies
862 * *blk_statp in some cases.
863 */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)864 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
865 blk_status_t *blk_statp)
866 {
867 bool sense_valid;
868 bool sense_current = true; /* false implies "deferred sense" */
869 struct request *req = scsi_cmd_to_rq(cmd);
870 struct scsi_sense_hdr sshdr;
871
872 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
873 if (sense_valid)
874 sense_current = !scsi_sense_is_deferred(&sshdr);
875
876 if (blk_rq_is_passthrough(req)) {
877 if (sense_valid) {
878 /*
879 * SG_IO wants current and deferred errors
880 */
881 cmd->sense_len = min(8 + cmd->sense_buffer[7],
882 SCSI_SENSE_BUFFERSIZE);
883 }
884 if (sense_current)
885 *blk_statp = scsi_result_to_blk_status(result);
886 } else if (blk_rq_bytes(req) == 0 && sense_current) {
887 /*
888 * Flush commands do not transfers any data, and thus cannot use
889 * good_bytes != blk_rq_bytes(req) as the signal for an error.
890 * This sets *blk_statp explicitly for the problem case.
891 */
892 *blk_statp = scsi_result_to_blk_status(result);
893 }
894 /*
895 * Recovered errors need reporting, but they're always treated as
896 * success, so fiddle the result code here. For passthrough requests
897 * we already took a copy of the original into sreq->result which
898 * is what gets returned to the user
899 */
900 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
901 bool do_print = true;
902 /*
903 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
904 * skip print since caller wants ATA registers. Only occurs
905 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
906 */
907 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
908 do_print = false;
909 else if (req->rq_flags & RQF_QUIET)
910 do_print = false;
911 if (do_print)
912 scsi_print_sense(cmd);
913 result = 0;
914 /* for passthrough, *blk_statp may be set */
915 *blk_statp = BLK_STS_OK;
916 }
917 /*
918 * Another corner case: the SCSI status byte is non-zero but 'good'.
919 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
920 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
921 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
922 * intermediate statuses (both obsolete in SAM-4) as good.
923 */
924 if ((result & 0xff) && scsi_status_is_good(result)) {
925 result = 0;
926 *blk_statp = BLK_STS_OK;
927 }
928 return result;
929 }
930
931 /**
932 * scsi_io_completion - Completion processing for SCSI commands.
933 * @cmd: command that is finished.
934 * @good_bytes: number of processed bytes.
935 *
936 * We will finish off the specified number of sectors. If we are done, the
937 * command block will be released and the queue function will be goosed. If we
938 * are not done then we have to figure out what to do next:
939 *
940 * a) We can call scsi_mq_requeue_cmd(). The request will be
941 * unprepared and put back on the queue. Then a new command will
942 * be created for it. This should be used if we made forward
943 * progress, or if we want to switch from READ(10) to READ(6) for
944 * example.
945 *
946 * b) We can call scsi_io_completion_action(). The request will be
947 * put back on the queue and retried using the same command as
948 * before, possibly after a delay.
949 *
950 * c) We can call scsi_end_request() with blk_stat other than
951 * BLK_STS_OK, to fail the remainder of the request.
952 */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)953 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
954 {
955 int result = cmd->result;
956 struct request *req = scsi_cmd_to_rq(cmd);
957 blk_status_t blk_stat = BLK_STS_OK;
958
959 if (unlikely(result)) /* a nz result may or may not be an error */
960 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
961
962 /*
963 * Next deal with any sectors which we were able to correctly
964 * handle.
965 */
966 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
967 "%u sectors total, %d bytes done.\n",
968 blk_rq_sectors(req), good_bytes));
969
970 /*
971 * Failed, zero length commands always need to drop down
972 * to retry code. Fast path should return in this block.
973 */
974 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
975 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
976 return; /* no bytes remaining */
977 }
978
979 /* Kill remainder if no retries. */
980 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
981 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
982 WARN_ONCE(true,
983 "Bytes remaining after failed, no-retry command");
984 return;
985 }
986
987 /*
988 * If there had been no error, but we have leftover bytes in the
989 * request just queue the command up again.
990 */
991 if (likely(result == 0))
992 scsi_mq_requeue_cmd(cmd, 0);
993 else
994 scsi_io_completion_action(cmd, result);
995 }
996
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)997 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
998 struct request *rq)
999 {
1000 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1001 !op_is_write(req_op(rq)) &&
1002 sdev->host->hostt->dma_need_drain(rq);
1003 }
1004
1005 /**
1006 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1007 * @cmd: SCSI command data structure to initialize.
1008 *
1009 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1010 * for @cmd.
1011 *
1012 * Returns:
1013 * * BLK_STS_OK - on success
1014 * * BLK_STS_RESOURCE - if the failure is retryable
1015 * * BLK_STS_IOERR - if the failure is fatal
1016 */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)1017 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1018 {
1019 struct scsi_device *sdev = cmd->device;
1020 struct request *rq = scsi_cmd_to_rq(cmd);
1021 unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1022 struct scatterlist *last_sg = NULL;
1023 blk_status_t ret;
1024 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1025 int count;
1026
1027 if (WARN_ON_ONCE(!nr_segs))
1028 return BLK_STS_IOERR;
1029
1030 /*
1031 * Make sure there is space for the drain. The driver must adjust
1032 * max_hw_segments to be prepared for this.
1033 */
1034 if (need_drain)
1035 nr_segs++;
1036
1037 /*
1038 * If sg table allocation fails, requeue request later.
1039 */
1040 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1041 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1042 return BLK_STS_RESOURCE;
1043
1044 /*
1045 * Next, walk the list, and fill in the addresses and sizes of
1046 * each segment.
1047 */
1048 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1049
1050 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1051 unsigned int pad_len =
1052 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1053
1054 last_sg->length += pad_len;
1055 cmd->extra_len += pad_len;
1056 }
1057
1058 if (need_drain) {
1059 sg_unmark_end(last_sg);
1060 last_sg = sg_next(last_sg);
1061 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1062 sg_mark_end(last_sg);
1063
1064 cmd->extra_len += sdev->dma_drain_len;
1065 count++;
1066 }
1067
1068 BUG_ON(count > cmd->sdb.table.nents);
1069 cmd->sdb.table.nents = count;
1070 cmd->sdb.length = blk_rq_payload_bytes(rq);
1071
1072 if (blk_integrity_rq(rq)) {
1073 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1074 int ivecs;
1075
1076 if (WARN_ON_ONCE(!prot_sdb)) {
1077 /*
1078 * This can happen if someone (e.g. multipath)
1079 * queues a command to a device on an adapter
1080 * that does not support DIX.
1081 */
1082 ret = BLK_STS_IOERR;
1083 goto out_free_sgtables;
1084 }
1085
1086 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1087
1088 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1089 prot_sdb->table.sgl,
1090 SCSI_INLINE_PROT_SG_CNT)) {
1091 ret = BLK_STS_RESOURCE;
1092 goto out_free_sgtables;
1093 }
1094
1095 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1096 prot_sdb->table.sgl);
1097 BUG_ON(count > ivecs);
1098 BUG_ON(count > queue_max_integrity_segments(rq->q));
1099
1100 cmd->prot_sdb = prot_sdb;
1101 cmd->prot_sdb->table.nents = count;
1102 }
1103
1104 return BLK_STS_OK;
1105 out_free_sgtables:
1106 scsi_free_sgtables(cmd);
1107 return ret;
1108 }
1109 EXPORT_SYMBOL(scsi_alloc_sgtables);
1110
1111 /**
1112 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1113 * @rq: Request associated with the SCSI command to be initialized.
1114 *
1115 * This function initializes the members of struct scsi_cmnd that must be
1116 * initialized before request processing starts and that won't be
1117 * reinitialized if a SCSI command is requeued.
1118 */
scsi_initialize_rq(struct request * rq)1119 static void scsi_initialize_rq(struct request *rq)
1120 {
1121 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1122
1123 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1124 cmd->cmd_len = MAX_COMMAND_SIZE;
1125 cmd->sense_len = 0;
1126 init_rcu_head(&cmd->rcu);
1127 cmd->jiffies_at_alloc = jiffies;
1128 cmd->retries = 0;
1129 }
1130
scsi_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)1131 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1132 blk_mq_req_flags_t flags)
1133 {
1134 struct request *rq;
1135
1136 rq = blk_mq_alloc_request(q, opf, flags);
1137 if (!IS_ERR(rq))
1138 scsi_initialize_rq(rq);
1139 return rq;
1140 }
1141 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1142
1143 /*
1144 * Only called when the request isn't completed by SCSI, and not freed by
1145 * SCSI
1146 */
scsi_cleanup_rq(struct request * rq)1147 static void scsi_cleanup_rq(struct request *rq)
1148 {
1149 if (rq->rq_flags & RQF_DONTPREP) {
1150 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1151 rq->rq_flags &= ~RQF_DONTPREP;
1152 }
1153 }
1154
1155 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1156 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1157 {
1158 struct request *rq = scsi_cmd_to_rq(cmd);
1159
1160 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1161 cmd->flags |= SCMD_INITIALIZED;
1162 scsi_initialize_rq(rq);
1163 }
1164
1165 cmd->device = dev;
1166 INIT_LIST_HEAD(&cmd->eh_entry);
1167 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1168 }
1169
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1170 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1171 struct request *req)
1172 {
1173 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1174
1175 /*
1176 * Passthrough requests may transfer data, in which case they must
1177 * a bio attached to them. Or they might contain a SCSI command
1178 * that does not transfer data, in which case they may optionally
1179 * submit a request without an attached bio.
1180 */
1181 if (req->bio) {
1182 blk_status_t ret = scsi_alloc_sgtables(cmd);
1183 if (unlikely(ret != BLK_STS_OK))
1184 return ret;
1185 } else {
1186 BUG_ON(blk_rq_bytes(req));
1187
1188 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1189 }
1190
1191 cmd->transfersize = blk_rq_bytes(req);
1192 return BLK_STS_OK;
1193 }
1194
1195 static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1196 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1197 {
1198 switch (sdev->sdev_state) {
1199 case SDEV_CREATED:
1200 return BLK_STS_OK;
1201 case SDEV_OFFLINE:
1202 case SDEV_TRANSPORT_OFFLINE:
1203 /*
1204 * If the device is offline we refuse to process any
1205 * commands. The device must be brought online
1206 * before trying any recovery commands.
1207 */
1208 if (!sdev->offline_already) {
1209 sdev->offline_already = true;
1210 sdev_printk(KERN_ERR, sdev,
1211 "rejecting I/O to offline device\n");
1212 }
1213 return BLK_STS_IOERR;
1214 case SDEV_DEL:
1215 /*
1216 * If the device is fully deleted, we refuse to
1217 * process any commands as well.
1218 */
1219 sdev_printk(KERN_ERR, sdev,
1220 "rejecting I/O to dead device\n");
1221 return BLK_STS_IOERR;
1222 case SDEV_BLOCK:
1223 case SDEV_CREATED_BLOCK:
1224 return BLK_STS_RESOURCE;
1225 case SDEV_QUIESCE:
1226 /*
1227 * If the device is blocked we only accept power management
1228 * commands.
1229 */
1230 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1231 return BLK_STS_RESOURCE;
1232 return BLK_STS_OK;
1233 default:
1234 /*
1235 * For any other not fully online state we only allow
1236 * power management commands.
1237 */
1238 if (req && !(req->rq_flags & RQF_PM))
1239 return BLK_STS_OFFLINE;
1240 return BLK_STS_OK;
1241 }
1242 }
1243
1244 /*
1245 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1246 * and return the token else return -1.
1247 */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1248 static inline int scsi_dev_queue_ready(struct request_queue *q,
1249 struct scsi_device *sdev)
1250 {
1251 int token;
1252
1253 token = sbitmap_get(&sdev->budget_map);
1254 if (atomic_read(&sdev->device_blocked)) {
1255 if (token < 0)
1256 goto out;
1257
1258 if (scsi_device_busy(sdev) > 1)
1259 goto out_dec;
1260
1261 /*
1262 * unblock after device_blocked iterates to zero
1263 */
1264 if (atomic_dec_return(&sdev->device_blocked) > 0)
1265 goto out_dec;
1266 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1267 "unblocking device at zero depth\n"));
1268 }
1269
1270 return token;
1271 out_dec:
1272 if (token >= 0)
1273 sbitmap_put(&sdev->budget_map, token);
1274 out:
1275 return -1;
1276 }
1277
1278 /*
1279 * scsi_target_queue_ready: checks if there we can send commands to target
1280 * @sdev: scsi device on starget to check.
1281 */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1282 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1283 struct scsi_device *sdev)
1284 {
1285 struct scsi_target *starget = scsi_target(sdev);
1286 unsigned int busy;
1287
1288 if (starget->single_lun) {
1289 spin_lock_irq(shost->host_lock);
1290 if (starget->starget_sdev_user &&
1291 starget->starget_sdev_user != sdev) {
1292 spin_unlock_irq(shost->host_lock);
1293 return 0;
1294 }
1295 starget->starget_sdev_user = sdev;
1296 spin_unlock_irq(shost->host_lock);
1297 }
1298
1299 if (starget->can_queue <= 0)
1300 return 1;
1301
1302 busy = atomic_inc_return(&starget->target_busy) - 1;
1303 if (atomic_read(&starget->target_blocked) > 0) {
1304 if (busy)
1305 goto starved;
1306
1307 /*
1308 * unblock after target_blocked iterates to zero
1309 */
1310 if (atomic_dec_return(&starget->target_blocked) > 0)
1311 goto out_dec;
1312
1313 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1314 "unblocking target at zero depth\n"));
1315 }
1316
1317 if (busy >= starget->can_queue)
1318 goto starved;
1319
1320 return 1;
1321
1322 starved:
1323 spin_lock_irq(shost->host_lock);
1324 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1325 spin_unlock_irq(shost->host_lock);
1326 out_dec:
1327 if (starget->can_queue > 0)
1328 atomic_dec(&starget->target_busy);
1329 return 0;
1330 }
1331
1332 /*
1333 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1334 * return 0. We must end up running the queue again whenever 0 is
1335 * returned, else IO can hang.
1336 */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1337 static inline int scsi_host_queue_ready(struct request_queue *q,
1338 struct Scsi_Host *shost,
1339 struct scsi_device *sdev,
1340 struct scsi_cmnd *cmd)
1341 {
1342 if (atomic_read(&shost->host_blocked) > 0) {
1343 if (scsi_host_busy(shost) > 0)
1344 goto starved;
1345
1346 /*
1347 * unblock after host_blocked iterates to zero
1348 */
1349 if (atomic_dec_return(&shost->host_blocked) > 0)
1350 goto out_dec;
1351
1352 SCSI_LOG_MLQUEUE(3,
1353 shost_printk(KERN_INFO, shost,
1354 "unblocking host at zero depth\n"));
1355 }
1356
1357 if (shost->host_self_blocked)
1358 goto starved;
1359
1360 /* We're OK to process the command, so we can't be starved */
1361 if (!list_empty(&sdev->starved_entry)) {
1362 spin_lock_irq(shost->host_lock);
1363 if (!list_empty(&sdev->starved_entry))
1364 list_del_init(&sdev->starved_entry);
1365 spin_unlock_irq(shost->host_lock);
1366 }
1367
1368 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1369
1370 return 1;
1371
1372 starved:
1373 spin_lock_irq(shost->host_lock);
1374 if (list_empty(&sdev->starved_entry))
1375 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1376 spin_unlock_irq(shost->host_lock);
1377 out_dec:
1378 scsi_dec_host_busy(shost, cmd);
1379 return 0;
1380 }
1381
1382 /*
1383 * Busy state exporting function for request stacking drivers.
1384 *
1385 * For efficiency, no lock is taken to check the busy state of
1386 * shost/starget/sdev, since the returned value is not guaranteed and
1387 * may be changed after request stacking drivers call the function,
1388 * regardless of taking lock or not.
1389 *
1390 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1391 * needs to return 'not busy'. Otherwise, request stacking drivers
1392 * may hold requests forever.
1393 */
scsi_mq_lld_busy(struct request_queue * q)1394 static bool scsi_mq_lld_busy(struct request_queue *q)
1395 {
1396 struct scsi_device *sdev = q->queuedata;
1397 struct Scsi_Host *shost;
1398
1399 if (blk_queue_dying(q))
1400 return false;
1401
1402 shost = sdev->host;
1403
1404 /*
1405 * Ignore host/starget busy state.
1406 * Since block layer does not have a concept of fairness across
1407 * multiple queues, congestion of host/starget needs to be handled
1408 * in SCSI layer.
1409 */
1410 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1411 return true;
1412
1413 return false;
1414 }
1415
1416 /*
1417 * Block layer request completion callback. May be called from interrupt
1418 * context.
1419 */
scsi_complete(struct request * rq)1420 static void scsi_complete(struct request *rq)
1421 {
1422 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1423 enum scsi_disposition disposition;
1424
1425 INIT_LIST_HEAD(&cmd->eh_entry);
1426
1427 atomic_inc(&cmd->device->iodone_cnt);
1428 if (cmd->result)
1429 atomic_inc(&cmd->device->ioerr_cnt);
1430
1431 disposition = scsi_decide_disposition(cmd);
1432 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1433 disposition = SUCCESS;
1434
1435 scsi_log_completion(cmd, disposition);
1436
1437 switch (disposition) {
1438 case SUCCESS:
1439 scsi_finish_command(cmd);
1440 break;
1441 case NEEDS_RETRY:
1442 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1443 break;
1444 case ADD_TO_MLQUEUE:
1445 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1446 break;
1447 default:
1448 scsi_eh_scmd_add(cmd);
1449 break;
1450 }
1451 }
1452
1453 /**
1454 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1455 * @cmd: command block we are dispatching.
1456 *
1457 * Return: nonzero return request was rejected and device's queue needs to be
1458 * plugged.
1459 */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1460 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1461 {
1462 struct Scsi_Host *host = cmd->device->host;
1463 int rtn = 0;
1464
1465 atomic_inc(&cmd->device->iorequest_cnt);
1466
1467 /* check if the device is still usable */
1468 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1469 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1470 * returns an immediate error upwards, and signals
1471 * that the device is no longer present */
1472 cmd->result = DID_NO_CONNECT << 16;
1473 goto done;
1474 }
1475
1476 /* Check to see if the scsi lld made this device blocked. */
1477 if (unlikely(scsi_device_blocked(cmd->device))) {
1478 /*
1479 * in blocked state, the command is just put back on
1480 * the device queue. The suspend state has already
1481 * blocked the queue so future requests should not
1482 * occur until the device transitions out of the
1483 * suspend state.
1484 */
1485 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1486 "queuecommand : device blocked\n"));
1487 atomic_dec(&cmd->device->iorequest_cnt);
1488 return SCSI_MLQUEUE_DEVICE_BUSY;
1489 }
1490
1491 /* Store the LUN value in cmnd, if needed. */
1492 if (cmd->device->lun_in_cdb)
1493 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1494 (cmd->device->lun << 5 & 0xe0);
1495
1496 scsi_log_send(cmd);
1497
1498 /*
1499 * Before we queue this command, check if the command
1500 * length exceeds what the host adapter can handle.
1501 */
1502 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1503 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1504 "queuecommand : command too long. "
1505 "cdb_size=%d host->max_cmd_len=%d\n",
1506 cmd->cmd_len, cmd->device->host->max_cmd_len));
1507 cmd->result = (DID_ABORT << 16);
1508 goto done;
1509 }
1510
1511 if (unlikely(host->shost_state == SHOST_DEL)) {
1512 cmd->result = (DID_NO_CONNECT << 16);
1513 goto done;
1514
1515 }
1516
1517 trace_scsi_dispatch_cmd_start(cmd);
1518 rtn = host->hostt->queuecommand(host, cmd);
1519 if (rtn) {
1520 atomic_dec(&cmd->device->iorequest_cnt);
1521 trace_scsi_dispatch_cmd_error(cmd, rtn);
1522 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1523 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1524 rtn = SCSI_MLQUEUE_HOST_BUSY;
1525
1526 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1527 "queuecommand : request rejected\n"));
1528 }
1529
1530 return rtn;
1531 done:
1532 scsi_done(cmd);
1533 return 0;
1534 }
1535
1536 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1537 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1538 {
1539 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1540 sizeof(struct scatterlist);
1541 }
1542
scsi_prepare_cmd(struct request * req)1543 static blk_status_t scsi_prepare_cmd(struct request *req)
1544 {
1545 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1546 struct scsi_device *sdev = req->q->queuedata;
1547 struct Scsi_Host *shost = sdev->host;
1548 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1549 struct scatterlist *sg;
1550
1551 scsi_init_command(sdev, cmd);
1552
1553 cmd->eh_eflags = 0;
1554 cmd->prot_type = 0;
1555 cmd->prot_flags = 0;
1556 cmd->submitter = 0;
1557 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1558 cmd->underflow = 0;
1559 cmd->transfersize = 0;
1560 cmd->host_scribble = NULL;
1561 cmd->result = 0;
1562 cmd->extra_len = 0;
1563 cmd->state = 0;
1564 if (in_flight)
1565 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1566
1567 /*
1568 * Only clear the driver-private command data if the LLD does not supply
1569 * a function to initialize that data.
1570 */
1571 if (!shost->hostt->init_cmd_priv)
1572 memset(cmd + 1, 0, shost->hostt->cmd_size);
1573
1574 cmd->prot_op = SCSI_PROT_NORMAL;
1575 if (blk_rq_bytes(req))
1576 cmd->sc_data_direction = rq_dma_dir(req);
1577 else
1578 cmd->sc_data_direction = DMA_NONE;
1579
1580 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1581 cmd->sdb.table.sgl = sg;
1582
1583 if (scsi_host_get_prot(shost)) {
1584 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1585
1586 cmd->prot_sdb->table.sgl =
1587 (struct scatterlist *)(cmd->prot_sdb + 1);
1588 }
1589
1590 /*
1591 * Special handling for passthrough commands, which don't go to the ULP
1592 * at all:
1593 */
1594 if (blk_rq_is_passthrough(req))
1595 return scsi_setup_scsi_cmnd(sdev, req);
1596
1597 if (sdev->handler && sdev->handler->prep_fn) {
1598 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1599
1600 if (ret != BLK_STS_OK)
1601 return ret;
1602 }
1603
1604 /* Usually overridden by the ULP */
1605 cmd->allowed = 0;
1606 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1607 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1608 }
1609
scsi_done_internal(struct scsi_cmnd * cmd,bool complete_directly)1610 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1611 {
1612 struct request *req = scsi_cmd_to_rq(cmd);
1613
1614 switch (cmd->submitter) {
1615 case SUBMITTED_BY_BLOCK_LAYER:
1616 break;
1617 case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1618 return scsi_eh_done(cmd);
1619 case SUBMITTED_BY_SCSI_RESET_IOCTL:
1620 return;
1621 }
1622
1623 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1624 return;
1625 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1626 return;
1627 trace_scsi_dispatch_cmd_done(cmd);
1628
1629 if (complete_directly)
1630 blk_mq_complete_request_direct(req, scsi_complete);
1631 else
1632 blk_mq_complete_request(req);
1633 }
1634
scsi_done(struct scsi_cmnd * cmd)1635 void scsi_done(struct scsi_cmnd *cmd)
1636 {
1637 scsi_done_internal(cmd, false);
1638 }
1639 EXPORT_SYMBOL(scsi_done);
1640
scsi_done_direct(struct scsi_cmnd * cmd)1641 void scsi_done_direct(struct scsi_cmnd *cmd)
1642 {
1643 scsi_done_internal(cmd, true);
1644 }
1645 EXPORT_SYMBOL(scsi_done_direct);
1646
scsi_mq_put_budget(struct request_queue * q,int budget_token)1647 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1648 {
1649 struct scsi_device *sdev = q->queuedata;
1650
1651 sbitmap_put(&sdev->budget_map, budget_token);
1652 }
1653
1654 /*
1655 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1656 * not change behaviour from the previous unplug mechanism, experimentation
1657 * may prove this needs changing.
1658 */
1659 #define SCSI_QUEUE_DELAY 3
1660
scsi_mq_get_budget(struct request_queue * q)1661 static int scsi_mq_get_budget(struct request_queue *q)
1662 {
1663 struct scsi_device *sdev = q->queuedata;
1664 int token = scsi_dev_queue_ready(q, sdev);
1665
1666 if (token >= 0)
1667 return token;
1668
1669 atomic_inc(&sdev->restarts);
1670
1671 /*
1672 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1673 * .restarts must be incremented before .device_busy is read because the
1674 * code in scsi_run_queue_async() depends on the order of these operations.
1675 */
1676 smp_mb__after_atomic();
1677
1678 /*
1679 * If all in-flight requests originated from this LUN are completed
1680 * before reading .device_busy, sdev->device_busy will be observed as
1681 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1682 * soon. Otherwise, completion of one of these requests will observe
1683 * the .restarts flag, and the request queue will be run for handling
1684 * this request, see scsi_end_request().
1685 */
1686 if (unlikely(scsi_device_busy(sdev) == 0 &&
1687 !scsi_device_blocked(sdev)))
1688 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1689 return -1;
1690 }
1691
scsi_mq_set_rq_budget_token(struct request * req,int token)1692 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1693 {
1694 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1695
1696 cmd->budget_token = token;
1697 }
1698
scsi_mq_get_rq_budget_token(struct request * req)1699 static int scsi_mq_get_rq_budget_token(struct request *req)
1700 {
1701 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1702
1703 return cmd->budget_token;
1704 }
1705
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1706 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1707 const struct blk_mq_queue_data *bd)
1708 {
1709 struct request *req = bd->rq;
1710 struct request_queue *q = req->q;
1711 struct scsi_device *sdev = q->queuedata;
1712 struct Scsi_Host *shost = sdev->host;
1713 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1714 blk_status_t ret;
1715 int reason;
1716
1717 WARN_ON_ONCE(cmd->budget_token < 0);
1718
1719 /*
1720 * If the device is not in running state we will reject some or all
1721 * commands.
1722 */
1723 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1724 ret = scsi_device_state_check(sdev, req);
1725 if (ret != BLK_STS_OK)
1726 goto out_put_budget;
1727 }
1728
1729 ret = BLK_STS_RESOURCE;
1730 if (!scsi_target_queue_ready(shost, sdev))
1731 goto out_put_budget;
1732 if (unlikely(scsi_host_in_recovery(shost))) {
1733 if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1734 ret = BLK_STS_OFFLINE;
1735 goto out_dec_target_busy;
1736 }
1737 if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1738 goto out_dec_target_busy;
1739
1740 if (!(req->rq_flags & RQF_DONTPREP)) {
1741 ret = scsi_prepare_cmd(req);
1742 if (ret != BLK_STS_OK)
1743 goto out_dec_host_busy;
1744 req->rq_flags |= RQF_DONTPREP;
1745 } else {
1746 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1747 }
1748
1749 cmd->flags &= SCMD_PRESERVED_FLAGS;
1750 if (sdev->simple_tags)
1751 cmd->flags |= SCMD_TAGGED;
1752 if (bd->last)
1753 cmd->flags |= SCMD_LAST;
1754
1755 scsi_set_resid(cmd, 0);
1756 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1757 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1758
1759 blk_mq_start_request(req);
1760 reason = scsi_dispatch_cmd(cmd);
1761 if (reason) {
1762 scsi_set_blocked(cmd, reason);
1763 ret = BLK_STS_RESOURCE;
1764 goto out_dec_host_busy;
1765 }
1766
1767 return BLK_STS_OK;
1768
1769 out_dec_host_busy:
1770 scsi_dec_host_busy(shost, cmd);
1771 out_dec_target_busy:
1772 if (scsi_target(sdev)->can_queue > 0)
1773 atomic_dec(&scsi_target(sdev)->target_busy);
1774 out_put_budget:
1775 scsi_mq_put_budget(q, cmd->budget_token);
1776 cmd->budget_token = -1;
1777 switch (ret) {
1778 case BLK_STS_OK:
1779 break;
1780 case BLK_STS_RESOURCE:
1781 case BLK_STS_ZONE_RESOURCE:
1782 if (scsi_device_blocked(sdev))
1783 ret = BLK_STS_DEV_RESOURCE;
1784 break;
1785 case BLK_STS_AGAIN:
1786 cmd->result = DID_BUS_BUSY << 16;
1787 if (req->rq_flags & RQF_DONTPREP)
1788 scsi_mq_uninit_cmd(cmd);
1789 break;
1790 default:
1791 if (unlikely(!scsi_device_online(sdev)))
1792 cmd->result = DID_NO_CONNECT << 16;
1793 else
1794 cmd->result = DID_ERROR << 16;
1795 /*
1796 * Make sure to release all allocated resources when
1797 * we hit an error, as we will never see this command
1798 * again.
1799 */
1800 if (req->rq_flags & RQF_DONTPREP)
1801 scsi_mq_uninit_cmd(cmd);
1802 scsi_run_queue_async(sdev);
1803 break;
1804 }
1805 return ret;
1806 }
1807
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1808 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1809 unsigned int hctx_idx, unsigned int numa_node)
1810 {
1811 struct Scsi_Host *shost = set->driver_data;
1812 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1813 struct scatterlist *sg;
1814 int ret = 0;
1815
1816 cmd->sense_buffer =
1817 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1818 if (!cmd->sense_buffer)
1819 return -ENOMEM;
1820
1821 if (scsi_host_get_prot(shost)) {
1822 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1823 shost->hostt->cmd_size;
1824 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1825 }
1826
1827 if (shost->hostt->init_cmd_priv) {
1828 ret = shost->hostt->init_cmd_priv(shost, cmd);
1829 if (ret < 0)
1830 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1831 }
1832
1833 return ret;
1834 }
1835
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1836 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1837 unsigned int hctx_idx)
1838 {
1839 struct Scsi_Host *shost = set->driver_data;
1840 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1841
1842 if (shost->hostt->exit_cmd_priv)
1843 shost->hostt->exit_cmd_priv(shost, cmd);
1844 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1845 }
1846
1847
scsi_mq_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1848 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1849 {
1850 struct Scsi_Host *shost = hctx->driver_data;
1851
1852 if (shost->hostt->mq_poll)
1853 return shost->hostt->mq_poll(shost, hctx->queue_num);
1854
1855 return 0;
1856 }
1857
scsi_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1858 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1859 unsigned int hctx_idx)
1860 {
1861 struct Scsi_Host *shost = data;
1862
1863 hctx->driver_data = shost;
1864 return 0;
1865 }
1866
scsi_map_queues(struct blk_mq_tag_set * set)1867 static void scsi_map_queues(struct blk_mq_tag_set *set)
1868 {
1869 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1870
1871 if (shost->hostt->map_queues)
1872 return shost->hostt->map_queues(shost);
1873 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1874 }
1875
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)1876 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1877 {
1878 struct device *dev = shost->dma_dev;
1879
1880 /*
1881 * this limit is imposed by hardware restrictions
1882 */
1883 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1884 SG_MAX_SEGMENTS));
1885
1886 if (scsi_host_prot_dma(shost)) {
1887 shost->sg_prot_tablesize =
1888 min_not_zero(shost->sg_prot_tablesize,
1889 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1890 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1891 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1892 }
1893
1894 blk_queue_max_hw_sectors(q, shost->max_sectors);
1895 blk_queue_segment_boundary(q, shost->dma_boundary);
1896 dma_set_seg_boundary(dev, shost->dma_boundary);
1897
1898 blk_queue_max_segment_size(q, shost->max_segment_size);
1899 blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1900 dma_set_max_seg_size(dev, queue_max_segment_size(q));
1901
1902 /*
1903 * Set a reasonable default alignment: The larger of 32-byte (dword),
1904 * which is a common minimum for HBAs, and the minimum DMA alignment,
1905 * which is set by the platform.
1906 *
1907 * Devices that require a bigger alignment can increase it later.
1908 */
1909 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1910 }
1911 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1912
1913 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1914 .get_budget = scsi_mq_get_budget,
1915 .put_budget = scsi_mq_put_budget,
1916 .queue_rq = scsi_queue_rq,
1917 .complete = scsi_complete,
1918 .timeout = scsi_timeout,
1919 #ifdef CONFIG_BLK_DEBUG_FS
1920 .show_rq = scsi_show_rq,
1921 #endif
1922 .init_request = scsi_mq_init_request,
1923 .exit_request = scsi_mq_exit_request,
1924 .cleanup_rq = scsi_cleanup_rq,
1925 .busy = scsi_mq_lld_busy,
1926 .map_queues = scsi_map_queues,
1927 .init_hctx = scsi_init_hctx,
1928 .poll = scsi_mq_poll,
1929 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1930 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1931 };
1932
1933
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)1934 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1935 {
1936 struct Scsi_Host *shost = hctx->driver_data;
1937
1938 shost->hostt->commit_rqs(shost, hctx->queue_num);
1939 }
1940
1941 static const struct blk_mq_ops scsi_mq_ops = {
1942 .get_budget = scsi_mq_get_budget,
1943 .put_budget = scsi_mq_put_budget,
1944 .queue_rq = scsi_queue_rq,
1945 .commit_rqs = scsi_commit_rqs,
1946 .complete = scsi_complete,
1947 .timeout = scsi_timeout,
1948 #ifdef CONFIG_BLK_DEBUG_FS
1949 .show_rq = scsi_show_rq,
1950 #endif
1951 .init_request = scsi_mq_init_request,
1952 .exit_request = scsi_mq_exit_request,
1953 .cleanup_rq = scsi_cleanup_rq,
1954 .busy = scsi_mq_lld_busy,
1955 .map_queues = scsi_map_queues,
1956 .init_hctx = scsi_init_hctx,
1957 .poll = scsi_mq_poll,
1958 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1959 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1960 };
1961
scsi_mq_setup_tags(struct Scsi_Host * shost)1962 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1963 {
1964 unsigned int cmd_size, sgl_size;
1965 struct blk_mq_tag_set *tag_set = &shost->tag_set;
1966
1967 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1968 scsi_mq_inline_sgl_size(shost));
1969 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1970 if (scsi_host_get_prot(shost))
1971 cmd_size += sizeof(struct scsi_data_buffer) +
1972 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1973
1974 memset(tag_set, 0, sizeof(*tag_set));
1975 if (shost->hostt->commit_rqs)
1976 tag_set->ops = &scsi_mq_ops;
1977 else
1978 tag_set->ops = &scsi_mq_ops_no_commit;
1979 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1980 tag_set->nr_maps = shost->nr_maps ? : 1;
1981 tag_set->queue_depth = shost->can_queue;
1982 tag_set->cmd_size = cmd_size;
1983 tag_set->numa_node = dev_to_node(shost->dma_dev);
1984 tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1985 tag_set->flags |=
1986 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1987 if (shost->queuecommand_may_block)
1988 tag_set->flags |= BLK_MQ_F_BLOCKING;
1989 tag_set->driver_data = shost;
1990 if (shost->host_tagset)
1991 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1992
1993 return blk_mq_alloc_tag_set(tag_set);
1994 }
1995
scsi_mq_free_tags(struct kref * kref)1996 void scsi_mq_free_tags(struct kref *kref)
1997 {
1998 struct Scsi_Host *shost = container_of(kref, typeof(*shost),
1999 tagset_refcnt);
2000
2001 blk_mq_free_tag_set(&shost->tag_set);
2002 complete(&shost->tagset_freed);
2003 }
2004
2005 /**
2006 * scsi_device_from_queue - return sdev associated with a request_queue
2007 * @q: The request queue to return the sdev from
2008 *
2009 * Return the sdev associated with a request queue or NULL if the
2010 * request_queue does not reference a SCSI device.
2011 */
scsi_device_from_queue(struct request_queue * q)2012 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2013 {
2014 struct scsi_device *sdev = NULL;
2015
2016 if (q->mq_ops == &scsi_mq_ops_no_commit ||
2017 q->mq_ops == &scsi_mq_ops)
2018 sdev = q->queuedata;
2019 if (!sdev || !get_device(&sdev->sdev_gendev))
2020 sdev = NULL;
2021
2022 return sdev;
2023 }
2024 /*
2025 * pktcdvd should have been integrated into the SCSI layers, but for historical
2026 * reasons like the old IDE driver it isn't. This export allows it to safely
2027 * probe if a given device is a SCSI one and only attach to that.
2028 */
2029 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2030 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2031 #endif
2032
2033 /**
2034 * scsi_block_requests - Utility function used by low-level drivers to prevent
2035 * further commands from being queued to the device.
2036 * @shost: host in question
2037 *
2038 * There is no timer nor any other means by which the requests get unblocked
2039 * other than the low-level driver calling scsi_unblock_requests().
2040 */
scsi_block_requests(struct Scsi_Host * shost)2041 void scsi_block_requests(struct Scsi_Host *shost)
2042 {
2043 shost->host_self_blocked = 1;
2044 }
2045 EXPORT_SYMBOL(scsi_block_requests);
2046
2047 /**
2048 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2049 * further commands to be queued to the device.
2050 * @shost: host in question
2051 *
2052 * There is no timer nor any other means by which the requests get unblocked
2053 * other than the low-level driver calling scsi_unblock_requests(). This is done
2054 * as an API function so that changes to the internals of the scsi mid-layer
2055 * won't require wholesale changes to drivers that use this feature.
2056 */
scsi_unblock_requests(struct Scsi_Host * shost)2057 void scsi_unblock_requests(struct Scsi_Host *shost)
2058 {
2059 shost->host_self_blocked = 0;
2060 scsi_run_host_queues(shost);
2061 }
2062 EXPORT_SYMBOL(scsi_unblock_requests);
2063
scsi_exit_queue(void)2064 void scsi_exit_queue(void)
2065 {
2066 kmem_cache_destroy(scsi_sense_cache);
2067 }
2068
2069 /**
2070 * scsi_mode_select - issue a mode select
2071 * @sdev: SCSI device to be queried
2072 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2073 * @sp: Save page bit (0 == don't save, 1 == save)
2074 * @buffer: request buffer (may not be smaller than eight bytes)
2075 * @len: length of request buffer.
2076 * @timeout: command timeout
2077 * @retries: number of retries before failing
2078 * @data: returns a structure abstracting the mode header data
2079 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2080 * must be SCSI_SENSE_BUFFERSIZE big.
2081 *
2082 * Returns zero if successful; negative error number or scsi
2083 * status on error
2084 *
2085 */
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2086 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2087 unsigned char *buffer, int len, int timeout, int retries,
2088 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2089 {
2090 unsigned char cmd[10];
2091 unsigned char *real_buffer;
2092 const struct scsi_exec_args exec_args = {
2093 .sshdr = sshdr,
2094 };
2095 int ret;
2096
2097 memset(cmd, 0, sizeof(cmd));
2098 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2099
2100 /*
2101 * Use MODE SELECT(10) if the device asked for it or if the mode page
2102 * and the mode select header cannot fit within the maximumm 255 bytes
2103 * of the MODE SELECT(6) command.
2104 */
2105 if (sdev->use_10_for_ms ||
2106 len + 4 > 255 ||
2107 data->block_descriptor_length > 255) {
2108 if (len > 65535 - 8)
2109 return -EINVAL;
2110 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2111 if (!real_buffer)
2112 return -ENOMEM;
2113 memcpy(real_buffer + 8, buffer, len);
2114 len += 8;
2115 real_buffer[0] = 0;
2116 real_buffer[1] = 0;
2117 real_buffer[2] = data->medium_type;
2118 real_buffer[3] = data->device_specific;
2119 real_buffer[4] = data->longlba ? 0x01 : 0;
2120 real_buffer[5] = 0;
2121 put_unaligned_be16(data->block_descriptor_length,
2122 &real_buffer[6]);
2123
2124 cmd[0] = MODE_SELECT_10;
2125 put_unaligned_be16(len, &cmd[7]);
2126 } else {
2127 if (data->longlba)
2128 return -EINVAL;
2129
2130 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2131 if (!real_buffer)
2132 return -ENOMEM;
2133 memcpy(real_buffer + 4, buffer, len);
2134 len += 4;
2135 real_buffer[0] = 0;
2136 real_buffer[1] = data->medium_type;
2137 real_buffer[2] = data->device_specific;
2138 real_buffer[3] = data->block_descriptor_length;
2139
2140 cmd[0] = MODE_SELECT;
2141 cmd[4] = len;
2142 }
2143
2144 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2145 timeout, retries, &exec_args);
2146 kfree(real_buffer);
2147 return ret;
2148 }
2149 EXPORT_SYMBOL_GPL(scsi_mode_select);
2150
2151 /**
2152 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2153 * @sdev: SCSI device to be queried
2154 * @dbd: set to prevent mode sense from returning block descriptors
2155 * @modepage: mode page being requested
2156 * @subpage: sub-page of the mode page being requested
2157 * @buffer: request buffer (may not be smaller than eight bytes)
2158 * @len: length of request buffer.
2159 * @timeout: command timeout
2160 * @retries: number of retries before failing
2161 * @data: returns a structure abstracting the mode header data
2162 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2163 * must be SCSI_SENSE_BUFFERSIZE big.
2164 *
2165 * Returns zero if successful, or a negative error number on failure
2166 */
2167 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,int subpage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2168 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2169 unsigned char *buffer, int len, int timeout, int retries,
2170 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2171 {
2172 unsigned char cmd[12];
2173 int use_10_for_ms;
2174 int header_length;
2175 int result, retry_count = retries;
2176 struct scsi_sense_hdr my_sshdr;
2177 const struct scsi_exec_args exec_args = {
2178 /* caller might not be interested in sense, but we need it */
2179 .sshdr = sshdr ? : &my_sshdr,
2180 };
2181
2182 memset(data, 0, sizeof(*data));
2183 memset(&cmd[0], 0, 12);
2184
2185 dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2186 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2187 cmd[2] = modepage;
2188 cmd[3] = subpage;
2189
2190 sshdr = exec_args.sshdr;
2191
2192 retry:
2193 use_10_for_ms = sdev->use_10_for_ms || len > 255;
2194
2195 if (use_10_for_ms) {
2196 if (len < 8 || len > 65535)
2197 return -EINVAL;
2198
2199 cmd[0] = MODE_SENSE_10;
2200 put_unaligned_be16(len, &cmd[7]);
2201 header_length = 8;
2202 } else {
2203 if (len < 4)
2204 return -EINVAL;
2205
2206 cmd[0] = MODE_SENSE;
2207 cmd[4] = len;
2208 header_length = 4;
2209 }
2210
2211 memset(buffer, 0, len);
2212
2213 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2214 timeout, retries, &exec_args);
2215 if (result < 0)
2216 return result;
2217
2218 /* This code looks awful: what it's doing is making sure an
2219 * ILLEGAL REQUEST sense return identifies the actual command
2220 * byte as the problem. MODE_SENSE commands can return
2221 * ILLEGAL REQUEST if the code page isn't supported */
2222
2223 if (!scsi_status_is_good(result)) {
2224 if (scsi_sense_valid(sshdr)) {
2225 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2226 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2227 /*
2228 * Invalid command operation code: retry using
2229 * MODE SENSE(6) if this was a MODE SENSE(10)
2230 * request, except if the request mode page is
2231 * too large for MODE SENSE single byte
2232 * allocation length field.
2233 */
2234 if (use_10_for_ms) {
2235 if (len > 255)
2236 return -EIO;
2237 sdev->use_10_for_ms = 0;
2238 goto retry;
2239 }
2240 }
2241 if (scsi_status_is_check_condition(result) &&
2242 sshdr->sense_key == UNIT_ATTENTION &&
2243 retry_count) {
2244 retry_count--;
2245 goto retry;
2246 }
2247 }
2248 return -EIO;
2249 }
2250 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2251 (modepage == 6 || modepage == 8))) {
2252 /* Initio breakage? */
2253 header_length = 0;
2254 data->length = 13;
2255 data->medium_type = 0;
2256 data->device_specific = 0;
2257 data->longlba = 0;
2258 data->block_descriptor_length = 0;
2259 } else if (use_10_for_ms) {
2260 data->length = get_unaligned_be16(&buffer[0]) + 2;
2261 data->medium_type = buffer[2];
2262 data->device_specific = buffer[3];
2263 data->longlba = buffer[4] & 0x01;
2264 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2265 } else {
2266 data->length = buffer[0] + 1;
2267 data->medium_type = buffer[1];
2268 data->device_specific = buffer[2];
2269 data->block_descriptor_length = buffer[3];
2270 }
2271 data->header_length = header_length;
2272
2273 return 0;
2274 }
2275 EXPORT_SYMBOL(scsi_mode_sense);
2276
2277 /**
2278 * scsi_test_unit_ready - test if unit is ready
2279 * @sdev: scsi device to change the state of.
2280 * @timeout: command timeout
2281 * @retries: number of retries before failing
2282 * @sshdr: outpout pointer for decoded sense information.
2283 *
2284 * Returns zero if unsuccessful or an error if TUR failed. For
2285 * removable media, UNIT_ATTENTION sets ->changed flag.
2286 **/
2287 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2288 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2289 struct scsi_sense_hdr *sshdr)
2290 {
2291 char cmd[] = {
2292 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2293 };
2294 const struct scsi_exec_args exec_args = {
2295 .sshdr = sshdr,
2296 };
2297 int result;
2298
2299 /* try to eat the UNIT_ATTENTION if there are enough retries */
2300 do {
2301 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2302 timeout, 1, &exec_args);
2303 if (sdev->removable && scsi_sense_valid(sshdr) &&
2304 sshdr->sense_key == UNIT_ATTENTION)
2305 sdev->changed = 1;
2306 } while (scsi_sense_valid(sshdr) &&
2307 sshdr->sense_key == UNIT_ATTENTION && --retries);
2308
2309 return result;
2310 }
2311 EXPORT_SYMBOL(scsi_test_unit_ready);
2312
2313 /**
2314 * scsi_device_set_state - Take the given device through the device state model.
2315 * @sdev: scsi device to change the state of.
2316 * @state: state to change to.
2317 *
2318 * Returns zero if successful or an error if the requested
2319 * transition is illegal.
2320 */
2321 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2322 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2323 {
2324 enum scsi_device_state oldstate = sdev->sdev_state;
2325
2326 if (state == oldstate)
2327 return 0;
2328
2329 switch (state) {
2330 case SDEV_CREATED:
2331 switch (oldstate) {
2332 case SDEV_CREATED_BLOCK:
2333 break;
2334 default:
2335 goto illegal;
2336 }
2337 break;
2338
2339 case SDEV_RUNNING:
2340 switch (oldstate) {
2341 case SDEV_CREATED:
2342 case SDEV_OFFLINE:
2343 case SDEV_TRANSPORT_OFFLINE:
2344 case SDEV_QUIESCE:
2345 case SDEV_BLOCK:
2346 break;
2347 default:
2348 goto illegal;
2349 }
2350 break;
2351
2352 case SDEV_QUIESCE:
2353 switch (oldstate) {
2354 case SDEV_RUNNING:
2355 case SDEV_OFFLINE:
2356 case SDEV_TRANSPORT_OFFLINE:
2357 break;
2358 default:
2359 goto illegal;
2360 }
2361 break;
2362
2363 case SDEV_OFFLINE:
2364 case SDEV_TRANSPORT_OFFLINE:
2365 switch (oldstate) {
2366 case SDEV_CREATED:
2367 case SDEV_RUNNING:
2368 case SDEV_QUIESCE:
2369 case SDEV_BLOCK:
2370 break;
2371 default:
2372 goto illegal;
2373 }
2374 break;
2375
2376 case SDEV_BLOCK:
2377 switch (oldstate) {
2378 case SDEV_RUNNING:
2379 case SDEV_CREATED_BLOCK:
2380 case SDEV_QUIESCE:
2381 case SDEV_OFFLINE:
2382 break;
2383 default:
2384 goto illegal;
2385 }
2386 break;
2387
2388 case SDEV_CREATED_BLOCK:
2389 switch (oldstate) {
2390 case SDEV_CREATED:
2391 break;
2392 default:
2393 goto illegal;
2394 }
2395 break;
2396
2397 case SDEV_CANCEL:
2398 switch (oldstate) {
2399 case SDEV_CREATED:
2400 case SDEV_RUNNING:
2401 case SDEV_QUIESCE:
2402 case SDEV_OFFLINE:
2403 case SDEV_TRANSPORT_OFFLINE:
2404 break;
2405 default:
2406 goto illegal;
2407 }
2408 break;
2409
2410 case SDEV_DEL:
2411 switch (oldstate) {
2412 case SDEV_CREATED:
2413 case SDEV_RUNNING:
2414 case SDEV_OFFLINE:
2415 case SDEV_TRANSPORT_OFFLINE:
2416 case SDEV_CANCEL:
2417 case SDEV_BLOCK:
2418 case SDEV_CREATED_BLOCK:
2419 break;
2420 default:
2421 goto illegal;
2422 }
2423 break;
2424
2425 }
2426 sdev->offline_already = false;
2427 sdev->sdev_state = state;
2428 return 0;
2429
2430 illegal:
2431 SCSI_LOG_ERROR_RECOVERY(1,
2432 sdev_printk(KERN_ERR, sdev,
2433 "Illegal state transition %s->%s",
2434 scsi_device_state_name(oldstate),
2435 scsi_device_state_name(state))
2436 );
2437 return -EINVAL;
2438 }
2439 EXPORT_SYMBOL(scsi_device_set_state);
2440
2441 /**
2442 * scsi_evt_emit - emit a single SCSI device uevent
2443 * @sdev: associated SCSI device
2444 * @evt: event to emit
2445 *
2446 * Send a single uevent (scsi_event) to the associated scsi_device.
2447 */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2448 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2449 {
2450 int idx = 0;
2451 char *envp[3];
2452
2453 switch (evt->evt_type) {
2454 case SDEV_EVT_MEDIA_CHANGE:
2455 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2456 break;
2457 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2458 scsi_rescan_device(sdev);
2459 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2460 break;
2461 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2462 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2463 break;
2464 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2465 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2466 break;
2467 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2468 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2469 break;
2470 case SDEV_EVT_LUN_CHANGE_REPORTED:
2471 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2472 break;
2473 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2474 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2475 break;
2476 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2477 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2478 break;
2479 default:
2480 /* do nothing */
2481 break;
2482 }
2483
2484 envp[idx++] = NULL;
2485
2486 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2487 }
2488
2489 /**
2490 * scsi_evt_thread - send a uevent for each scsi event
2491 * @work: work struct for scsi_device
2492 *
2493 * Dispatch queued events to their associated scsi_device kobjects
2494 * as uevents.
2495 */
scsi_evt_thread(struct work_struct * work)2496 void scsi_evt_thread(struct work_struct *work)
2497 {
2498 struct scsi_device *sdev;
2499 enum scsi_device_event evt_type;
2500 LIST_HEAD(event_list);
2501
2502 sdev = container_of(work, struct scsi_device, event_work);
2503
2504 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2505 if (test_and_clear_bit(evt_type, sdev->pending_events))
2506 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2507
2508 while (1) {
2509 struct scsi_event *evt;
2510 struct list_head *this, *tmp;
2511 unsigned long flags;
2512
2513 spin_lock_irqsave(&sdev->list_lock, flags);
2514 list_splice_init(&sdev->event_list, &event_list);
2515 spin_unlock_irqrestore(&sdev->list_lock, flags);
2516
2517 if (list_empty(&event_list))
2518 break;
2519
2520 list_for_each_safe(this, tmp, &event_list) {
2521 evt = list_entry(this, struct scsi_event, node);
2522 list_del(&evt->node);
2523 scsi_evt_emit(sdev, evt);
2524 kfree(evt);
2525 }
2526 }
2527 }
2528
2529 /**
2530 * sdev_evt_send - send asserted event to uevent thread
2531 * @sdev: scsi_device event occurred on
2532 * @evt: event to send
2533 *
2534 * Assert scsi device event asynchronously.
2535 */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2536 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2537 {
2538 unsigned long flags;
2539
2540 #if 0
2541 /* FIXME: currently this check eliminates all media change events
2542 * for polled devices. Need to update to discriminate between AN
2543 * and polled events */
2544 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2545 kfree(evt);
2546 return;
2547 }
2548 #endif
2549
2550 spin_lock_irqsave(&sdev->list_lock, flags);
2551 list_add_tail(&evt->node, &sdev->event_list);
2552 schedule_work(&sdev->event_work);
2553 spin_unlock_irqrestore(&sdev->list_lock, flags);
2554 }
2555 EXPORT_SYMBOL_GPL(sdev_evt_send);
2556
2557 /**
2558 * sdev_evt_alloc - allocate a new scsi event
2559 * @evt_type: type of event to allocate
2560 * @gfpflags: GFP flags for allocation
2561 *
2562 * Allocates and returns a new scsi_event.
2563 */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2564 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2565 gfp_t gfpflags)
2566 {
2567 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2568 if (!evt)
2569 return NULL;
2570
2571 evt->evt_type = evt_type;
2572 INIT_LIST_HEAD(&evt->node);
2573
2574 /* evt_type-specific initialization, if any */
2575 switch (evt_type) {
2576 case SDEV_EVT_MEDIA_CHANGE:
2577 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2578 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2579 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2580 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2581 case SDEV_EVT_LUN_CHANGE_REPORTED:
2582 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2583 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2584 default:
2585 /* do nothing */
2586 break;
2587 }
2588
2589 return evt;
2590 }
2591 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2592
2593 /**
2594 * sdev_evt_send_simple - send asserted event to uevent thread
2595 * @sdev: scsi_device event occurred on
2596 * @evt_type: type of event to send
2597 * @gfpflags: GFP flags for allocation
2598 *
2599 * Assert scsi device event asynchronously, given an event type.
2600 */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2601 void sdev_evt_send_simple(struct scsi_device *sdev,
2602 enum scsi_device_event evt_type, gfp_t gfpflags)
2603 {
2604 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2605 if (!evt) {
2606 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2607 evt_type);
2608 return;
2609 }
2610
2611 sdev_evt_send(sdev, evt);
2612 }
2613 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2614
2615 /**
2616 * scsi_device_quiesce - Block all commands except power management.
2617 * @sdev: scsi device to quiesce.
2618 *
2619 * This works by trying to transition to the SDEV_QUIESCE state
2620 * (which must be a legal transition). When the device is in this
2621 * state, only power management requests will be accepted, all others will
2622 * be deferred.
2623 *
2624 * Must be called with user context, may sleep.
2625 *
2626 * Returns zero if unsuccessful or an error if not.
2627 */
2628 int
scsi_device_quiesce(struct scsi_device * sdev)2629 scsi_device_quiesce(struct scsi_device *sdev)
2630 {
2631 struct request_queue *q = sdev->request_queue;
2632 int err;
2633
2634 /*
2635 * It is allowed to call scsi_device_quiesce() multiple times from
2636 * the same context but concurrent scsi_device_quiesce() calls are
2637 * not allowed.
2638 */
2639 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2640
2641 if (sdev->quiesced_by == current)
2642 return 0;
2643
2644 blk_set_pm_only(q);
2645
2646 blk_mq_freeze_queue(q);
2647 /*
2648 * Ensure that the effect of blk_set_pm_only() will be visible
2649 * for percpu_ref_tryget() callers that occur after the queue
2650 * unfreeze even if the queue was already frozen before this function
2651 * was called. See also https://lwn.net/Articles/573497/.
2652 */
2653 synchronize_rcu();
2654 blk_mq_unfreeze_queue(q);
2655
2656 mutex_lock(&sdev->state_mutex);
2657 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2658 if (err == 0)
2659 sdev->quiesced_by = current;
2660 else
2661 blk_clear_pm_only(q);
2662 mutex_unlock(&sdev->state_mutex);
2663
2664 return err;
2665 }
2666 EXPORT_SYMBOL(scsi_device_quiesce);
2667
2668 /**
2669 * scsi_device_resume - Restart user issued commands to a quiesced device.
2670 * @sdev: scsi device to resume.
2671 *
2672 * Moves the device from quiesced back to running and restarts the
2673 * queues.
2674 *
2675 * Must be called with user context, may sleep.
2676 */
scsi_device_resume(struct scsi_device * sdev)2677 void scsi_device_resume(struct scsi_device *sdev)
2678 {
2679 /* check if the device state was mutated prior to resume, and if
2680 * so assume the state is being managed elsewhere (for example
2681 * device deleted during suspend)
2682 */
2683 mutex_lock(&sdev->state_mutex);
2684 if (sdev->sdev_state == SDEV_QUIESCE)
2685 scsi_device_set_state(sdev, SDEV_RUNNING);
2686 if (sdev->quiesced_by) {
2687 sdev->quiesced_by = NULL;
2688 blk_clear_pm_only(sdev->request_queue);
2689 }
2690 mutex_unlock(&sdev->state_mutex);
2691 }
2692 EXPORT_SYMBOL(scsi_device_resume);
2693
2694 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2695 device_quiesce_fn(struct scsi_device *sdev, void *data)
2696 {
2697 scsi_device_quiesce(sdev);
2698 }
2699
2700 void
scsi_target_quiesce(struct scsi_target * starget)2701 scsi_target_quiesce(struct scsi_target *starget)
2702 {
2703 starget_for_each_device(starget, NULL, device_quiesce_fn);
2704 }
2705 EXPORT_SYMBOL(scsi_target_quiesce);
2706
2707 static void
device_resume_fn(struct scsi_device * sdev,void * data)2708 device_resume_fn(struct scsi_device *sdev, void *data)
2709 {
2710 scsi_device_resume(sdev);
2711 }
2712
2713 void
scsi_target_resume(struct scsi_target * starget)2714 scsi_target_resume(struct scsi_target *starget)
2715 {
2716 starget_for_each_device(starget, NULL, device_resume_fn);
2717 }
2718 EXPORT_SYMBOL(scsi_target_resume);
2719
__scsi_internal_device_block_nowait(struct scsi_device * sdev)2720 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2721 {
2722 if (scsi_device_set_state(sdev, SDEV_BLOCK))
2723 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2724
2725 return 0;
2726 }
2727
scsi_start_queue(struct scsi_device * sdev)2728 void scsi_start_queue(struct scsi_device *sdev)
2729 {
2730 if (cmpxchg(&sdev->queue_stopped, 1, 0))
2731 blk_mq_unquiesce_queue(sdev->request_queue);
2732 }
2733
scsi_stop_queue(struct scsi_device * sdev)2734 static void scsi_stop_queue(struct scsi_device *sdev)
2735 {
2736 /*
2737 * The atomic variable of ->queue_stopped covers that
2738 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2739 *
2740 * The caller needs to wait until quiesce is done.
2741 */
2742 if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2743 blk_mq_quiesce_queue_nowait(sdev->request_queue);
2744 }
2745
2746 /**
2747 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2748 * @sdev: device to block
2749 *
2750 * Pause SCSI command processing on the specified device. Does not sleep.
2751 *
2752 * Returns zero if successful or a negative error code upon failure.
2753 *
2754 * Notes:
2755 * This routine transitions the device to the SDEV_BLOCK state (which must be
2756 * a legal transition). When the device is in this state, command processing
2757 * is paused until the device leaves the SDEV_BLOCK state. See also
2758 * scsi_internal_device_unblock_nowait().
2759 */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2760 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2761 {
2762 int ret = __scsi_internal_device_block_nowait(sdev);
2763
2764 /*
2765 * The device has transitioned to SDEV_BLOCK. Stop the
2766 * block layer from calling the midlayer with this device's
2767 * request queue.
2768 */
2769 if (!ret)
2770 scsi_stop_queue(sdev);
2771 return ret;
2772 }
2773 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2774
2775 /**
2776 * scsi_device_block - try to transition to the SDEV_BLOCK state
2777 * @sdev: device to block
2778 * @data: dummy argument, ignored
2779 *
2780 * Pause SCSI command processing on the specified device. Callers must wait
2781 * until all ongoing scsi_queue_rq() calls have finished after this function
2782 * returns.
2783 *
2784 * Note:
2785 * This routine transitions the device to the SDEV_BLOCK state (which must be
2786 * a legal transition). When the device is in this state, command processing
2787 * is paused until the device leaves the SDEV_BLOCK state. See also
2788 * scsi_internal_device_unblock().
2789 */
scsi_device_block(struct scsi_device * sdev,void * data)2790 static void scsi_device_block(struct scsi_device *sdev, void *data)
2791 {
2792 int err;
2793 enum scsi_device_state state;
2794
2795 mutex_lock(&sdev->state_mutex);
2796 err = __scsi_internal_device_block_nowait(sdev);
2797 state = sdev->sdev_state;
2798 if (err == 0)
2799 /*
2800 * scsi_stop_queue() must be called with the state_mutex
2801 * held. Otherwise a simultaneous scsi_start_queue() call
2802 * might unquiesce the queue before we quiesce it.
2803 */
2804 scsi_stop_queue(sdev);
2805
2806 mutex_unlock(&sdev->state_mutex);
2807
2808 WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2809 __func__, dev_name(&sdev->sdev_gendev), state);
2810 }
2811
2812 /**
2813 * scsi_internal_device_unblock_nowait - resume a device after a block request
2814 * @sdev: device to resume
2815 * @new_state: state to set the device to after unblocking
2816 *
2817 * Restart the device queue for a previously suspended SCSI device. Does not
2818 * sleep.
2819 *
2820 * Returns zero if successful or a negative error code upon failure.
2821 *
2822 * Notes:
2823 * This routine transitions the device to the SDEV_RUNNING state or to one of
2824 * the offline states (which must be a legal transition) allowing the midlayer
2825 * to goose the queue for this device.
2826 */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)2827 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2828 enum scsi_device_state new_state)
2829 {
2830 switch (new_state) {
2831 case SDEV_RUNNING:
2832 case SDEV_TRANSPORT_OFFLINE:
2833 break;
2834 default:
2835 return -EINVAL;
2836 }
2837
2838 /*
2839 * Try to transition the scsi device to SDEV_RUNNING or one of the
2840 * offlined states and goose the device queue if successful.
2841 */
2842 switch (sdev->sdev_state) {
2843 case SDEV_BLOCK:
2844 case SDEV_TRANSPORT_OFFLINE:
2845 sdev->sdev_state = new_state;
2846 break;
2847 case SDEV_CREATED_BLOCK:
2848 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2849 new_state == SDEV_OFFLINE)
2850 sdev->sdev_state = new_state;
2851 else
2852 sdev->sdev_state = SDEV_CREATED;
2853 break;
2854 case SDEV_CANCEL:
2855 case SDEV_OFFLINE:
2856 break;
2857 default:
2858 return -EINVAL;
2859 }
2860 scsi_start_queue(sdev);
2861
2862 return 0;
2863 }
2864 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2865
2866 /**
2867 * scsi_internal_device_unblock - resume a device after a block request
2868 * @sdev: device to resume
2869 * @new_state: state to set the device to after unblocking
2870 *
2871 * Restart the device queue for a previously suspended SCSI device. May sleep.
2872 *
2873 * Returns zero if successful or a negative error code upon failure.
2874 *
2875 * Notes:
2876 * This routine transitions the device to the SDEV_RUNNING state or to one of
2877 * the offline states (which must be a legal transition) allowing the midlayer
2878 * to goose the queue for this device.
2879 */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2880 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2881 enum scsi_device_state new_state)
2882 {
2883 int ret;
2884
2885 mutex_lock(&sdev->state_mutex);
2886 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2887 mutex_unlock(&sdev->state_mutex);
2888
2889 return ret;
2890 }
2891
2892 static int
target_block(struct device * dev,void * data)2893 target_block(struct device *dev, void *data)
2894 {
2895 if (scsi_is_target_device(dev))
2896 starget_for_each_device(to_scsi_target(dev), NULL,
2897 scsi_device_block);
2898 return 0;
2899 }
2900
2901 /**
2902 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
2903 * @dev: a parent device of one or more scsi_target devices
2904 * @shost: the Scsi_Host to which this device belongs
2905 *
2906 * Iterate over all children of @dev, which should be scsi_target devices,
2907 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
2908 * ongoing scsi_queue_rq() calls to finish. May sleep.
2909 *
2910 * Note:
2911 * @dev must not itself be a scsi_target device.
2912 */
2913 void
scsi_block_targets(struct Scsi_Host * shost,struct device * dev)2914 scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
2915 {
2916 WARN_ON_ONCE(scsi_is_target_device(dev));
2917 device_for_each_child(dev, NULL, target_block);
2918 blk_mq_wait_quiesce_done(&shost->tag_set);
2919 }
2920 EXPORT_SYMBOL_GPL(scsi_block_targets);
2921
2922 static void
device_unblock(struct scsi_device * sdev,void * data)2923 device_unblock(struct scsi_device *sdev, void *data)
2924 {
2925 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2926 }
2927
2928 static int
target_unblock(struct device * dev,void * data)2929 target_unblock(struct device *dev, void *data)
2930 {
2931 if (scsi_is_target_device(dev))
2932 starget_for_each_device(to_scsi_target(dev), data,
2933 device_unblock);
2934 return 0;
2935 }
2936
2937 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2938 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2939 {
2940 if (scsi_is_target_device(dev))
2941 starget_for_each_device(to_scsi_target(dev), &new_state,
2942 device_unblock);
2943 else
2944 device_for_each_child(dev, &new_state, target_unblock);
2945 }
2946 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2947
2948 /**
2949 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
2950 * @shost: device to block
2951 *
2952 * Pause SCSI command processing for all logical units associated with the SCSI
2953 * host and wait until pending scsi_queue_rq() calls have finished.
2954 *
2955 * Returns zero if successful or a negative error code upon failure.
2956 */
2957 int
scsi_host_block(struct Scsi_Host * shost)2958 scsi_host_block(struct Scsi_Host *shost)
2959 {
2960 struct scsi_device *sdev;
2961 int ret;
2962
2963 /*
2964 * Call scsi_internal_device_block_nowait so we can avoid
2965 * calling synchronize_rcu() for each LUN.
2966 */
2967 shost_for_each_device(sdev, shost) {
2968 mutex_lock(&sdev->state_mutex);
2969 ret = scsi_internal_device_block_nowait(sdev);
2970 mutex_unlock(&sdev->state_mutex);
2971 if (ret) {
2972 scsi_device_put(sdev);
2973 return ret;
2974 }
2975 }
2976
2977 /* Wait for ongoing scsi_queue_rq() calls to finish. */
2978 blk_mq_wait_quiesce_done(&shost->tag_set);
2979
2980 return 0;
2981 }
2982 EXPORT_SYMBOL_GPL(scsi_host_block);
2983
2984 int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)2985 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2986 {
2987 struct scsi_device *sdev;
2988 int ret = 0;
2989
2990 shost_for_each_device(sdev, shost) {
2991 ret = scsi_internal_device_unblock(sdev, new_state);
2992 if (ret) {
2993 scsi_device_put(sdev);
2994 break;
2995 }
2996 }
2997 return ret;
2998 }
2999 EXPORT_SYMBOL_GPL(scsi_host_unblock);
3000
3001 /**
3002 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3003 * @sgl: scatter-gather list
3004 * @sg_count: number of segments in sg
3005 * @offset: offset in bytes into sg, on return offset into the mapped area
3006 * @len: bytes to map, on return number of bytes mapped
3007 *
3008 * Returns virtual address of the start of the mapped page
3009 */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)3010 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3011 size_t *offset, size_t *len)
3012 {
3013 int i;
3014 size_t sg_len = 0, len_complete = 0;
3015 struct scatterlist *sg;
3016 struct page *page;
3017
3018 WARN_ON(!irqs_disabled());
3019
3020 for_each_sg(sgl, sg, sg_count, i) {
3021 len_complete = sg_len; /* Complete sg-entries */
3022 sg_len += sg->length;
3023 if (sg_len > *offset)
3024 break;
3025 }
3026
3027 if (unlikely(i == sg_count)) {
3028 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3029 "elements %d\n",
3030 __func__, sg_len, *offset, sg_count);
3031 WARN_ON(1);
3032 return NULL;
3033 }
3034
3035 /* Offset starting from the beginning of first page in this sg-entry */
3036 *offset = *offset - len_complete + sg->offset;
3037
3038 /* Assumption: contiguous pages can be accessed as "page + i" */
3039 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3040 *offset &= ~PAGE_MASK;
3041
3042 /* Bytes in this sg-entry from *offset to the end of the page */
3043 sg_len = PAGE_SIZE - *offset;
3044 if (*len > sg_len)
3045 *len = sg_len;
3046
3047 return kmap_atomic(page);
3048 }
3049 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3050
3051 /**
3052 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3053 * @virt: virtual address to be unmapped
3054 */
scsi_kunmap_atomic_sg(void * virt)3055 void scsi_kunmap_atomic_sg(void *virt)
3056 {
3057 kunmap_atomic(virt);
3058 }
3059 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3060
sdev_disable_disk_events(struct scsi_device * sdev)3061 void sdev_disable_disk_events(struct scsi_device *sdev)
3062 {
3063 atomic_inc(&sdev->disk_events_disable_depth);
3064 }
3065 EXPORT_SYMBOL(sdev_disable_disk_events);
3066
sdev_enable_disk_events(struct scsi_device * sdev)3067 void sdev_enable_disk_events(struct scsi_device *sdev)
3068 {
3069 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3070 return;
3071 atomic_dec(&sdev->disk_events_disable_depth);
3072 }
3073 EXPORT_SYMBOL(sdev_enable_disk_events);
3074
designator_prio(const unsigned char * d)3075 static unsigned char designator_prio(const unsigned char *d)
3076 {
3077 if (d[1] & 0x30)
3078 /* not associated with LUN */
3079 return 0;
3080
3081 if (d[3] == 0)
3082 /* invalid length */
3083 return 0;
3084
3085 /*
3086 * Order of preference for lun descriptor:
3087 * - SCSI name string
3088 * - NAA IEEE Registered Extended
3089 * - EUI-64 based 16-byte
3090 * - EUI-64 based 12-byte
3091 * - NAA IEEE Registered
3092 * - NAA IEEE Extended
3093 * - EUI-64 based 8-byte
3094 * - SCSI name string (truncated)
3095 * - T10 Vendor ID
3096 * as longer descriptors reduce the likelyhood
3097 * of identification clashes.
3098 */
3099
3100 switch (d[1] & 0xf) {
3101 case 8:
3102 /* SCSI name string, variable-length UTF-8 */
3103 return 9;
3104 case 3:
3105 switch (d[4] >> 4) {
3106 case 6:
3107 /* NAA registered extended */
3108 return 8;
3109 case 5:
3110 /* NAA registered */
3111 return 5;
3112 case 4:
3113 /* NAA extended */
3114 return 4;
3115 case 3:
3116 /* NAA locally assigned */
3117 return 1;
3118 default:
3119 break;
3120 }
3121 break;
3122 case 2:
3123 switch (d[3]) {
3124 case 16:
3125 /* EUI64-based, 16 byte */
3126 return 7;
3127 case 12:
3128 /* EUI64-based, 12 byte */
3129 return 6;
3130 case 8:
3131 /* EUI64-based, 8 byte */
3132 return 3;
3133 default:
3134 break;
3135 }
3136 break;
3137 case 1:
3138 /* T10 vendor ID */
3139 return 1;
3140 default:
3141 break;
3142 }
3143
3144 return 0;
3145 }
3146
3147 /**
3148 * scsi_vpd_lun_id - return a unique device identification
3149 * @sdev: SCSI device
3150 * @id: buffer for the identification
3151 * @id_len: length of the buffer
3152 *
3153 * Copies a unique device identification into @id based
3154 * on the information in the VPD page 0x83 of the device.
3155 * The string will be formatted as a SCSI name string.
3156 *
3157 * Returns the length of the identification or error on failure.
3158 * If the identifier is longer than the supplied buffer the actual
3159 * identifier length is returned and the buffer is not zero-padded.
3160 */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3161 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3162 {
3163 u8 cur_id_prio = 0;
3164 u8 cur_id_size = 0;
3165 const unsigned char *d, *cur_id_str;
3166 const struct scsi_vpd *vpd_pg83;
3167 int id_size = -EINVAL;
3168
3169 rcu_read_lock();
3170 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3171 if (!vpd_pg83) {
3172 rcu_read_unlock();
3173 return -ENXIO;
3174 }
3175
3176 /* The id string must be at least 20 bytes + terminating NULL byte */
3177 if (id_len < 21) {
3178 rcu_read_unlock();
3179 return -EINVAL;
3180 }
3181
3182 memset(id, 0, id_len);
3183 for (d = vpd_pg83->data + 4;
3184 d < vpd_pg83->data + vpd_pg83->len;
3185 d += d[3] + 4) {
3186 u8 prio = designator_prio(d);
3187
3188 if (prio == 0 || cur_id_prio > prio)
3189 continue;
3190
3191 switch (d[1] & 0xf) {
3192 case 0x1:
3193 /* T10 Vendor ID */
3194 if (cur_id_size > d[3])
3195 break;
3196 cur_id_prio = prio;
3197 cur_id_size = d[3];
3198 if (cur_id_size + 4 > id_len)
3199 cur_id_size = id_len - 4;
3200 cur_id_str = d + 4;
3201 id_size = snprintf(id, id_len, "t10.%*pE",
3202 cur_id_size, cur_id_str);
3203 break;
3204 case 0x2:
3205 /* EUI-64 */
3206 cur_id_prio = prio;
3207 cur_id_size = d[3];
3208 cur_id_str = d + 4;
3209 switch (cur_id_size) {
3210 case 8:
3211 id_size = snprintf(id, id_len,
3212 "eui.%8phN",
3213 cur_id_str);
3214 break;
3215 case 12:
3216 id_size = snprintf(id, id_len,
3217 "eui.%12phN",
3218 cur_id_str);
3219 break;
3220 case 16:
3221 id_size = snprintf(id, id_len,
3222 "eui.%16phN",
3223 cur_id_str);
3224 break;
3225 default:
3226 break;
3227 }
3228 break;
3229 case 0x3:
3230 /* NAA */
3231 cur_id_prio = prio;
3232 cur_id_size = d[3];
3233 cur_id_str = d + 4;
3234 switch (cur_id_size) {
3235 case 8:
3236 id_size = snprintf(id, id_len,
3237 "naa.%8phN",
3238 cur_id_str);
3239 break;
3240 case 16:
3241 id_size = snprintf(id, id_len,
3242 "naa.%16phN",
3243 cur_id_str);
3244 break;
3245 default:
3246 break;
3247 }
3248 break;
3249 case 0x8:
3250 /* SCSI name string */
3251 if (cur_id_size > d[3])
3252 break;
3253 /* Prefer others for truncated descriptor */
3254 if (d[3] > id_len) {
3255 prio = 2;
3256 if (cur_id_prio > prio)
3257 break;
3258 }
3259 cur_id_prio = prio;
3260 cur_id_size = id_size = d[3];
3261 cur_id_str = d + 4;
3262 if (cur_id_size >= id_len)
3263 cur_id_size = id_len - 1;
3264 memcpy(id, cur_id_str, cur_id_size);
3265 break;
3266 default:
3267 break;
3268 }
3269 }
3270 rcu_read_unlock();
3271
3272 return id_size;
3273 }
3274 EXPORT_SYMBOL(scsi_vpd_lun_id);
3275
3276 /*
3277 * scsi_vpd_tpg_id - return a target port group identifier
3278 * @sdev: SCSI device
3279 *
3280 * Returns the Target Port Group identifier from the information
3281 * froom VPD page 0x83 of the device.
3282 *
3283 * Returns the identifier or error on failure.
3284 */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3285 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3286 {
3287 const unsigned char *d;
3288 const struct scsi_vpd *vpd_pg83;
3289 int group_id = -EAGAIN, rel_port = -1;
3290
3291 rcu_read_lock();
3292 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3293 if (!vpd_pg83) {
3294 rcu_read_unlock();
3295 return -ENXIO;
3296 }
3297
3298 d = vpd_pg83->data + 4;
3299 while (d < vpd_pg83->data + vpd_pg83->len) {
3300 switch (d[1] & 0xf) {
3301 case 0x4:
3302 /* Relative target port */
3303 rel_port = get_unaligned_be16(&d[6]);
3304 break;
3305 case 0x5:
3306 /* Target port group */
3307 group_id = get_unaligned_be16(&d[6]);
3308 break;
3309 default:
3310 break;
3311 }
3312 d += d[3] + 4;
3313 }
3314 rcu_read_unlock();
3315
3316 if (group_id >= 0 && rel_id && rel_port != -1)
3317 *rel_id = rel_port;
3318
3319 return group_id;
3320 }
3321 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3322
3323 /**
3324 * scsi_build_sense - build sense data for a command
3325 * @scmd: scsi command for which the sense should be formatted
3326 * @desc: Sense format (non-zero == descriptor format,
3327 * 0 == fixed format)
3328 * @key: Sense key
3329 * @asc: Additional sense code
3330 * @ascq: Additional sense code qualifier
3331 *
3332 **/
scsi_build_sense(struct scsi_cmnd * scmd,int desc,u8 key,u8 asc,u8 ascq)3333 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3334 {
3335 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3336 scmd->result = SAM_STAT_CHECK_CONDITION;
3337 }
3338 EXPORT_SYMBOL_GPL(scsi_build_sense);
3339