1 /* 2 * scsi_error.c Copyright (C) 1997 Eric Youngdale 3 * 4 * SCSI error/timeout handling 5 * Initial versions: Eric Youngdale. Based upon conversations with 6 * Leonard Zubkoff and David Miller at Linux Expo, 7 * ideas originating from all over the place. 8 * 9 * Restructured scsi_unjam_host and associated functions. 10 * September 04, 2002 Mike Anderson (andmike@us.ibm.com) 11 * 12 * Forward port of Russell King's (rmk@arm.linux.org.uk) changes and 13 * minor cleanups. 14 * September 30, 2002 Mike Anderson (andmike@us.ibm.com) 15 */ 16 17 #include <linux/module.h> 18 #include <linux/sched.h> 19 #include <linux/timer.h> 20 #include <linux/string.h> 21 #include <linux/kernel.h> 22 #include <linux/freezer.h> 23 #include <linux/kthread.h> 24 #include <linux/interrupt.h> 25 #include <linux/blkdev.h> 26 #include <linux/delay.h> 27 28 #include <scsi/scsi.h> 29 #include <scsi/scsi_cmnd.h> 30 #include <scsi/scsi_dbg.h> 31 #include <scsi/scsi_device.h> 32 #include <scsi/scsi_eh.h> 33 #include <scsi/scsi_transport.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_ioctl.h> 36 37 #include "scsi_priv.h" 38 #include "scsi_logging.h" 39 #include "scsi_transport_api.h" 40 41 #define SENSE_TIMEOUT (10*HZ) 42 43 /* 44 * These should *probably* be handled by the host itself. 45 * Since it is allowed to sleep, it probably should. 46 */ 47 #define BUS_RESET_SETTLE_TIME (10) 48 #define HOST_RESET_SETTLE_TIME (10) 49 50 /* called with shost->host_lock held */ 51 void scsi_eh_wakeup(struct Scsi_Host *shost) 52 { 53 if (shost->host_busy == shost->host_failed) { 54 wake_up_process(shost->ehandler); 55 SCSI_LOG_ERROR_RECOVERY(5, 56 printk("Waking error handler thread\n")); 57 } 58 } 59 60 /** 61 * scsi_schedule_eh - schedule EH for SCSI host 62 * @shost: SCSI host to invoke error handling on. 63 * 64 * Schedule SCSI EH without scmd. 65 */ 66 void scsi_schedule_eh(struct Scsi_Host *shost) 67 { 68 unsigned long flags; 69 70 spin_lock_irqsave(shost->host_lock, flags); 71 72 if (scsi_host_set_state(shost, SHOST_RECOVERY) == 0 || 73 scsi_host_set_state(shost, SHOST_CANCEL_RECOVERY) == 0) { 74 shost->host_eh_scheduled++; 75 scsi_eh_wakeup(shost); 76 } 77 78 spin_unlock_irqrestore(shost->host_lock, flags); 79 } 80 EXPORT_SYMBOL_GPL(scsi_schedule_eh); 81 82 /** 83 * scsi_eh_scmd_add - add scsi cmd to error handling. 84 * @scmd: scmd to run eh on. 85 * @eh_flag: optional SCSI_EH flag. 86 * 87 * Return value: 88 * 0 on failure. 89 */ 90 int scsi_eh_scmd_add(struct scsi_cmnd *scmd, int eh_flag) 91 { 92 struct Scsi_Host *shost = scmd->device->host; 93 unsigned long flags; 94 int ret = 0; 95 96 if (!shost->ehandler) 97 return 0; 98 99 spin_lock_irqsave(shost->host_lock, flags); 100 if (scsi_host_set_state(shost, SHOST_RECOVERY)) 101 if (scsi_host_set_state(shost, SHOST_CANCEL_RECOVERY)) 102 goto out_unlock; 103 104 ret = 1; 105 scmd->eh_eflags |= eh_flag; 106 list_add_tail(&scmd->eh_entry, &shost->eh_cmd_q); 107 shost->host_failed++; 108 scsi_eh_wakeup(shost); 109 out_unlock: 110 spin_unlock_irqrestore(shost->host_lock, flags); 111 return ret; 112 } 113 114 /** 115 * scsi_add_timer - Start timeout timer for a single scsi command. 116 * @scmd: scsi command that is about to start running. 117 * @timeout: amount of time to allow this command to run. 118 * @complete: timeout function to call if timer isn't canceled. 119 * 120 * Notes: 121 * This should be turned into an inline function. Each scsi command 122 * has its own timer, and as it is added to the queue, we set up the 123 * timer. When the command completes, we cancel the timer. 124 */ 125 void scsi_add_timer(struct scsi_cmnd *scmd, int timeout, 126 void (*complete)(struct scsi_cmnd *)) 127 { 128 129 /* 130 * If the clock was already running for this command, then 131 * first delete the timer. The timer handling code gets rather 132 * confused if we don't do this. 133 */ 134 if (scmd->eh_timeout.function) 135 del_timer(&scmd->eh_timeout); 136 137 scmd->eh_timeout.data = (unsigned long)scmd; 138 scmd->eh_timeout.expires = jiffies + timeout; 139 scmd->eh_timeout.function = (void (*)(unsigned long)) complete; 140 141 SCSI_LOG_ERROR_RECOVERY(5, printk("%s: scmd: %p, time:" 142 " %d, (%p)\n", __FUNCTION__, 143 scmd, timeout, complete)); 144 145 add_timer(&scmd->eh_timeout); 146 } 147 148 /** 149 * scsi_delete_timer - Delete/cancel timer for a given function. 150 * @scmd: Cmd that we are canceling timer for 151 * 152 * Notes: 153 * This should be turned into an inline function. 154 * 155 * Return value: 156 * 1 if we were able to detach the timer. 0 if we blew it, and the 157 * timer function has already started to run. 158 */ 159 int scsi_delete_timer(struct scsi_cmnd *scmd) 160 { 161 int rtn; 162 163 rtn = del_timer(&scmd->eh_timeout); 164 165 SCSI_LOG_ERROR_RECOVERY(5, printk("%s: scmd: %p," 166 " rtn: %d\n", __FUNCTION__, 167 scmd, rtn)); 168 169 scmd->eh_timeout.data = (unsigned long)NULL; 170 scmd->eh_timeout.function = NULL; 171 172 return rtn; 173 } 174 175 /** 176 * scsi_times_out - Timeout function for normal scsi commands. 177 * @scmd: Cmd that is timing out. 178 * 179 * Notes: 180 * We do not need to lock this. There is the potential for a race 181 * only in that the normal completion handling might run, but if the 182 * normal completion function determines that the timer has already 183 * fired, then it mustn't do anything. 184 */ 185 void scsi_times_out(struct scsi_cmnd *scmd) 186 { 187 enum scsi_eh_timer_return (* eh_timed_out)(struct scsi_cmnd *); 188 189 scsi_log_completion(scmd, TIMEOUT_ERROR); 190 191 if (scmd->device->host->transportt->eh_timed_out) 192 eh_timed_out = scmd->device->host->transportt->eh_timed_out; 193 else if (scmd->device->host->hostt->eh_timed_out) 194 eh_timed_out = scmd->device->host->hostt->eh_timed_out; 195 else 196 eh_timed_out = NULL; 197 198 if (eh_timed_out) 199 switch (eh_timed_out(scmd)) { 200 case EH_HANDLED: 201 __scsi_done(scmd); 202 return; 203 case EH_RESET_TIMER: 204 scsi_add_timer(scmd, scmd->timeout_per_command, 205 scsi_times_out); 206 return; 207 case EH_NOT_HANDLED: 208 break; 209 } 210 211 if (unlikely(!scsi_eh_scmd_add(scmd, SCSI_EH_CANCEL_CMD))) { 212 scmd->result |= DID_TIME_OUT << 16; 213 __scsi_done(scmd); 214 } 215 } 216 217 /** 218 * scsi_block_when_processing_errors - Prevent cmds from being queued. 219 * @sdev: Device on which we are performing recovery. 220 * 221 * Description: 222 * We block until the host is out of error recovery, and then check to 223 * see whether the host or the device is offline. 224 * 225 * Return value: 226 * 0 when dev was taken offline by error recovery. 1 OK to proceed. 227 */ 228 int scsi_block_when_processing_errors(struct scsi_device *sdev) 229 { 230 int online; 231 232 wait_event(sdev->host->host_wait, !scsi_host_in_recovery(sdev->host)); 233 234 online = scsi_device_online(sdev); 235 236 SCSI_LOG_ERROR_RECOVERY(5, printk("%s: rtn: %d\n", __FUNCTION__, 237 online)); 238 239 return online; 240 } 241 EXPORT_SYMBOL(scsi_block_when_processing_errors); 242 243 #ifdef CONFIG_SCSI_LOGGING 244 /** 245 * scsi_eh_prt_fail_stats - Log info on failures. 246 * @shost: scsi host being recovered. 247 * @work_q: Queue of scsi cmds to process. 248 */ 249 static inline void scsi_eh_prt_fail_stats(struct Scsi_Host *shost, 250 struct list_head *work_q) 251 { 252 struct scsi_cmnd *scmd; 253 struct scsi_device *sdev; 254 int total_failures = 0; 255 int cmd_failed = 0; 256 int cmd_cancel = 0; 257 int devices_failed = 0; 258 259 shost_for_each_device(sdev, shost) { 260 list_for_each_entry(scmd, work_q, eh_entry) { 261 if (scmd->device == sdev) { 262 ++total_failures; 263 if (scmd->eh_eflags & SCSI_EH_CANCEL_CMD) 264 ++cmd_cancel; 265 else 266 ++cmd_failed; 267 } 268 } 269 270 if (cmd_cancel || cmd_failed) { 271 SCSI_LOG_ERROR_RECOVERY(3, 272 sdev_printk(KERN_INFO, sdev, 273 "%s: cmds failed: %d, cancel: %d\n", 274 __FUNCTION__, cmd_failed, 275 cmd_cancel)); 276 cmd_cancel = 0; 277 cmd_failed = 0; 278 ++devices_failed; 279 } 280 } 281 282 SCSI_LOG_ERROR_RECOVERY(2, printk("Total of %d commands on %d" 283 " devices require eh work\n", 284 total_failures, devices_failed)); 285 } 286 #endif 287 288 /** 289 * scsi_check_sense - Examine scsi cmd sense 290 * @scmd: Cmd to have sense checked. 291 * 292 * Return value: 293 * SUCCESS or FAILED or NEEDS_RETRY 294 * 295 * Notes: 296 * When a deferred error is detected the current command has 297 * not been executed and needs retrying. 298 */ 299 static int scsi_check_sense(struct scsi_cmnd *scmd) 300 { 301 struct scsi_sense_hdr sshdr; 302 303 if (! scsi_command_normalize_sense(scmd, &sshdr)) 304 return FAILED; /* no valid sense data */ 305 306 if (scsi_sense_is_deferred(&sshdr)) 307 return NEEDS_RETRY; 308 309 /* 310 * Previous logic looked for FILEMARK, EOM or ILI which are 311 * mainly associated with tapes and returned SUCCESS. 312 */ 313 if (sshdr.response_code == 0x70) { 314 /* fixed format */ 315 if (scmd->sense_buffer[2] & 0xe0) 316 return SUCCESS; 317 } else { 318 /* 319 * descriptor format: look for "stream commands sense data 320 * descriptor" (see SSC-3). Assume single sense data 321 * descriptor. Ignore ILI from SBC-2 READ LONG and WRITE LONG. 322 */ 323 if ((sshdr.additional_length > 3) && 324 (scmd->sense_buffer[8] == 0x4) && 325 (scmd->sense_buffer[11] & 0xe0)) 326 return SUCCESS; 327 } 328 329 switch (sshdr.sense_key) { 330 case NO_SENSE: 331 return SUCCESS; 332 case RECOVERED_ERROR: 333 return /* soft_error */ SUCCESS; 334 335 case ABORTED_COMMAND: 336 return NEEDS_RETRY; 337 case NOT_READY: 338 case UNIT_ATTENTION: 339 /* 340 * if we are expecting a cc/ua because of a bus reset that we 341 * performed, treat this just as a retry. otherwise this is 342 * information that we should pass up to the upper-level driver 343 * so that we can deal with it there. 344 */ 345 if (scmd->device->expecting_cc_ua) { 346 scmd->device->expecting_cc_ua = 0; 347 return NEEDS_RETRY; 348 } 349 /* 350 * if the device is in the process of becoming ready, we 351 * should retry. 352 */ 353 if ((sshdr.asc == 0x04) && (sshdr.ascq == 0x01)) 354 return NEEDS_RETRY; 355 /* 356 * if the device is not started, we need to wake 357 * the error handler to start the motor 358 */ 359 if (scmd->device->allow_restart && 360 (sshdr.asc == 0x04) && (sshdr.ascq == 0x02)) 361 return FAILED; 362 return SUCCESS; 363 364 /* these three are not supported */ 365 case COPY_ABORTED: 366 case VOLUME_OVERFLOW: 367 case MISCOMPARE: 368 return SUCCESS; 369 370 case MEDIUM_ERROR: 371 if (sshdr.asc == 0x11 || /* UNRECOVERED READ ERR */ 372 sshdr.asc == 0x13 || /* AMNF DATA FIELD */ 373 sshdr.asc == 0x14) { /* RECORD NOT FOUND */ 374 return SUCCESS; 375 } 376 return NEEDS_RETRY; 377 378 case HARDWARE_ERROR: 379 if (scmd->device->retry_hwerror) 380 return NEEDS_RETRY; 381 else 382 return SUCCESS; 383 384 case ILLEGAL_REQUEST: 385 case BLANK_CHECK: 386 case DATA_PROTECT: 387 default: 388 return SUCCESS; 389 } 390 } 391 392 /** 393 * scsi_eh_completed_normally - Disposition a eh cmd on return from LLD. 394 * @scmd: SCSI cmd to examine. 395 * 396 * Notes: 397 * This is *only* called when we are examining the status of commands 398 * queued during error recovery. the main difference here is that we 399 * don't allow for the possibility of retries here, and we are a lot 400 * more restrictive about what we consider acceptable. 401 */ 402 static int scsi_eh_completed_normally(struct scsi_cmnd *scmd) 403 { 404 /* 405 * first check the host byte, to see if there is anything in there 406 * that would indicate what we need to do. 407 */ 408 if (host_byte(scmd->result) == DID_RESET) { 409 /* 410 * rats. we are already in the error handler, so we now 411 * get to try and figure out what to do next. if the sense 412 * is valid, we have a pretty good idea of what to do. 413 * if not, we mark it as FAILED. 414 */ 415 return scsi_check_sense(scmd); 416 } 417 if (host_byte(scmd->result) != DID_OK) 418 return FAILED; 419 420 /* 421 * next, check the message byte. 422 */ 423 if (msg_byte(scmd->result) != COMMAND_COMPLETE) 424 return FAILED; 425 426 /* 427 * now, check the status byte to see if this indicates 428 * anything special. 429 */ 430 switch (status_byte(scmd->result)) { 431 case GOOD: 432 case COMMAND_TERMINATED: 433 return SUCCESS; 434 case CHECK_CONDITION: 435 return scsi_check_sense(scmd); 436 case CONDITION_GOOD: 437 case INTERMEDIATE_GOOD: 438 case INTERMEDIATE_C_GOOD: 439 /* 440 * who knows? FIXME(eric) 441 */ 442 return SUCCESS; 443 case BUSY: 444 case QUEUE_FULL: 445 case RESERVATION_CONFLICT: 446 default: 447 return FAILED; 448 } 449 return FAILED; 450 } 451 452 /** 453 * scsi_eh_done - Completion function for error handling. 454 * @scmd: Cmd that is done. 455 */ 456 static void scsi_eh_done(struct scsi_cmnd *scmd) 457 { 458 struct completion *eh_action; 459 460 SCSI_LOG_ERROR_RECOVERY(3, 461 printk("%s scmd: %p result: %x\n", 462 __FUNCTION__, scmd, scmd->result)); 463 464 eh_action = scmd->device->host->eh_action; 465 if (eh_action) 466 complete(eh_action); 467 } 468 469 /** 470 * scsi_try_host_reset - ask host adapter to reset itself 471 * @scmd: SCSI cmd to send hsot reset. 472 */ 473 static int scsi_try_host_reset(struct scsi_cmnd *scmd) 474 { 475 unsigned long flags; 476 int rtn; 477 478 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Snd Host RST\n", 479 __FUNCTION__)); 480 481 if (!scmd->device->host->hostt->eh_host_reset_handler) 482 return FAILED; 483 484 rtn = scmd->device->host->hostt->eh_host_reset_handler(scmd); 485 486 if (rtn == SUCCESS) { 487 if (!scmd->device->host->hostt->skip_settle_delay) 488 ssleep(HOST_RESET_SETTLE_TIME); 489 spin_lock_irqsave(scmd->device->host->host_lock, flags); 490 scsi_report_bus_reset(scmd->device->host, 491 scmd_channel(scmd)); 492 spin_unlock_irqrestore(scmd->device->host->host_lock, flags); 493 } 494 495 return rtn; 496 } 497 498 /** 499 * scsi_try_bus_reset - ask host to perform a bus reset 500 * @scmd: SCSI cmd to send bus reset. 501 */ 502 static int scsi_try_bus_reset(struct scsi_cmnd *scmd) 503 { 504 unsigned long flags; 505 int rtn; 506 507 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Snd Bus RST\n", 508 __FUNCTION__)); 509 510 if (!scmd->device->host->hostt->eh_bus_reset_handler) 511 return FAILED; 512 513 rtn = scmd->device->host->hostt->eh_bus_reset_handler(scmd); 514 515 if (rtn == SUCCESS) { 516 if (!scmd->device->host->hostt->skip_settle_delay) 517 ssleep(BUS_RESET_SETTLE_TIME); 518 spin_lock_irqsave(scmd->device->host->host_lock, flags); 519 scsi_report_bus_reset(scmd->device->host, 520 scmd_channel(scmd)); 521 spin_unlock_irqrestore(scmd->device->host->host_lock, flags); 522 } 523 524 return rtn; 525 } 526 527 /** 528 * scsi_try_bus_device_reset - Ask host to perform a BDR on a dev 529 * @scmd: SCSI cmd used to send BDR 530 * 531 * Notes: 532 * There is no timeout for this operation. if this operation is 533 * unreliable for a given host, then the host itself needs to put a 534 * timer on it, and set the host back to a consistent state prior to 535 * returning. 536 */ 537 static int scsi_try_bus_device_reset(struct scsi_cmnd *scmd) 538 { 539 int rtn; 540 541 if (!scmd->device->host->hostt->eh_device_reset_handler) 542 return FAILED; 543 544 rtn = scmd->device->host->hostt->eh_device_reset_handler(scmd); 545 if (rtn == SUCCESS) { 546 scmd->device->was_reset = 1; 547 scmd->device->expecting_cc_ua = 1; 548 } 549 550 return rtn; 551 } 552 553 static int __scsi_try_to_abort_cmd(struct scsi_cmnd *scmd) 554 { 555 if (!scmd->device->host->hostt->eh_abort_handler) 556 return FAILED; 557 558 return scmd->device->host->hostt->eh_abort_handler(scmd); 559 } 560 561 /** 562 * scsi_try_to_abort_cmd - Ask host to abort a running command. 563 * @scmd: SCSI cmd to abort from Lower Level. 564 * 565 * Notes: 566 * This function will not return until the user's completion function 567 * has been called. there is no timeout on this operation. if the 568 * author of the low-level driver wishes this operation to be timed, 569 * they can provide this facility themselves. helper functions in 570 * scsi_error.c can be supplied to make this easier to do. 571 */ 572 static int scsi_try_to_abort_cmd(struct scsi_cmnd *scmd) 573 { 574 /* 575 * scsi_done was called just after the command timed out and before 576 * we had a chance to process it. (db) 577 */ 578 if (scmd->serial_number == 0) 579 return SUCCESS; 580 return __scsi_try_to_abort_cmd(scmd); 581 } 582 583 static void scsi_abort_eh_cmnd(struct scsi_cmnd *scmd) 584 { 585 if (__scsi_try_to_abort_cmd(scmd) != SUCCESS) 586 if (scsi_try_bus_device_reset(scmd) != SUCCESS) 587 if (scsi_try_bus_reset(scmd) != SUCCESS) 588 scsi_try_host_reset(scmd); 589 } 590 591 /** 592 * scsi_eh_prep_cmnd - Save a scsi command info as part of error recory 593 * @scmd: SCSI command structure to hijack 594 * @ses: structure to save restore information 595 * @cmnd: CDB to send. Can be NULL if no new cmnd is needed 596 * @cmnd_size: size in bytes of @cmnd 597 * @sense_bytes: size of sense data to copy. or 0 (if != 0 @cmnd is ignored) 598 * 599 * This function is used to save a scsi command information before re-execution 600 * as part of the error recovery process. If @sense_bytes is 0 the command 601 * sent must be one that does not transfer any data. If @sense_bytes != 0 602 * @cmnd is ignored and this functions sets up a REQUEST_SENSE command 603 * and cmnd buffers to read @sense_bytes into @scmd->sense_buffer. 604 */ 605 void scsi_eh_prep_cmnd(struct scsi_cmnd *scmd, struct scsi_eh_save *ses, 606 unsigned char *cmnd, int cmnd_size, unsigned sense_bytes) 607 { 608 struct scsi_device *sdev = scmd->device; 609 610 /* 611 * We need saved copies of a number of fields - this is because 612 * error handling may need to overwrite these with different values 613 * to run different commands, and once error handling is complete, 614 * we will need to restore these values prior to running the actual 615 * command. 616 */ 617 ses->cmd_len = scmd->cmd_len; 618 memcpy(ses->cmnd, scmd->cmnd, sizeof(scmd->cmnd)); 619 ses->data_direction = scmd->sc_data_direction; 620 ses->sdb = scmd->sdb; 621 ses->next_rq = scmd->request->next_rq; 622 ses->result = scmd->result; 623 624 memset(&scmd->sdb, 0, sizeof(scmd->sdb)); 625 scmd->request->next_rq = NULL; 626 627 if (sense_bytes) { 628 scmd->sdb.length = min_t(unsigned, SCSI_SENSE_BUFFERSIZE, 629 sense_bytes); 630 sg_init_one(&ses->sense_sgl, scmd->sense_buffer, 631 scmd->sdb.length); 632 scmd->sdb.table.sgl = &ses->sense_sgl; 633 scmd->sc_data_direction = DMA_FROM_DEVICE; 634 scmd->sdb.table.nents = 1; 635 memset(scmd->cmnd, 0, sizeof(scmd->cmnd)); 636 scmd->cmnd[0] = REQUEST_SENSE; 637 scmd->cmnd[4] = scmd->sdb.length; 638 scmd->cmd_len = COMMAND_SIZE(scmd->cmnd[0]); 639 } else { 640 scmd->sc_data_direction = DMA_NONE; 641 if (cmnd) { 642 memset(scmd->cmnd, 0, sizeof(scmd->cmnd)); 643 memcpy(scmd->cmnd, cmnd, cmnd_size); 644 scmd->cmd_len = COMMAND_SIZE(scmd->cmnd[0]); 645 } 646 } 647 648 scmd->underflow = 0; 649 650 if (sdev->scsi_level <= SCSI_2 && sdev->scsi_level != SCSI_UNKNOWN) 651 scmd->cmnd[1] = (scmd->cmnd[1] & 0x1f) | 652 (sdev->lun << 5 & 0xe0); 653 654 /* 655 * Zero the sense buffer. The scsi spec mandates that any 656 * untransferred sense data should be interpreted as being zero. 657 */ 658 memset(scmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 659 } 660 EXPORT_SYMBOL(scsi_eh_prep_cmnd); 661 662 /** 663 * scsi_eh_restore_cmnd - Restore a scsi command info as part of error recory 664 * @scmd: SCSI command structure to restore 665 * @ses: saved information from a coresponding call to scsi_prep_eh_cmnd 666 * 667 * Undo any damage done by above scsi_prep_eh_cmnd(). 668 */ 669 void scsi_eh_restore_cmnd(struct scsi_cmnd* scmd, struct scsi_eh_save *ses) 670 { 671 /* 672 * Restore original data 673 */ 674 scmd->cmd_len = ses->cmd_len; 675 memcpy(scmd->cmnd, ses->cmnd, sizeof(scmd->cmnd)); 676 scmd->sc_data_direction = ses->data_direction; 677 scmd->sdb = ses->sdb; 678 scmd->request->next_rq = ses->next_rq; 679 scmd->result = ses->result; 680 } 681 EXPORT_SYMBOL(scsi_eh_restore_cmnd); 682 683 /** 684 * scsi_send_eh_cmnd - submit a scsi command as part of error recory 685 * @scmd: SCSI command structure to hijack 686 * @cmnd: CDB to send 687 * @cmnd_size: size in bytes of @cmnd 688 * @timeout: timeout for this request 689 * @sense_bytes: size of sense data to copy or 0 690 * 691 * This function is used to send a scsi command down to a target device 692 * as part of the error recovery process. See also scsi_eh_prep_cmnd() above. 693 * 694 * Return value: 695 * SUCCESS or FAILED or NEEDS_RETRY 696 */ 697 static int scsi_send_eh_cmnd(struct scsi_cmnd *scmd, unsigned char *cmnd, 698 int cmnd_size, int timeout, unsigned sense_bytes) 699 { 700 struct scsi_device *sdev = scmd->device; 701 struct Scsi_Host *shost = sdev->host; 702 DECLARE_COMPLETION_ONSTACK(done); 703 unsigned long timeleft; 704 unsigned long flags; 705 struct scsi_eh_save ses; 706 int rtn; 707 708 scsi_eh_prep_cmnd(scmd, &ses, cmnd, cmnd_size, sense_bytes); 709 shost->eh_action = &done; 710 711 spin_lock_irqsave(shost->host_lock, flags); 712 scsi_log_send(scmd); 713 shost->hostt->queuecommand(scmd, scsi_eh_done); 714 spin_unlock_irqrestore(shost->host_lock, flags); 715 716 timeleft = wait_for_completion_timeout(&done, timeout); 717 718 shost->eh_action = NULL; 719 720 scsi_log_completion(scmd, SUCCESS); 721 722 SCSI_LOG_ERROR_RECOVERY(3, 723 printk("%s: scmd: %p, timeleft: %ld\n", 724 __FUNCTION__, scmd, timeleft)); 725 726 /* 727 * If there is time left scsi_eh_done got called, and we will 728 * examine the actual status codes to see whether the command 729 * actually did complete normally, else tell the host to forget 730 * about this command. 731 */ 732 if (timeleft) { 733 rtn = scsi_eh_completed_normally(scmd); 734 SCSI_LOG_ERROR_RECOVERY(3, 735 printk("%s: scsi_eh_completed_normally %x\n", 736 __FUNCTION__, rtn)); 737 738 switch (rtn) { 739 case SUCCESS: 740 case NEEDS_RETRY: 741 case FAILED: 742 break; 743 default: 744 rtn = FAILED; 745 break; 746 } 747 } else { 748 scsi_abort_eh_cmnd(scmd); 749 rtn = FAILED; 750 } 751 752 scsi_eh_restore_cmnd(scmd, &ses); 753 return rtn; 754 } 755 756 /** 757 * scsi_request_sense - Request sense data from a particular target. 758 * @scmd: SCSI cmd for request sense. 759 * 760 * Notes: 761 * Some hosts automatically obtain this information, others require 762 * that we obtain it on our own. This function will *not* return until 763 * the command either times out, or it completes. 764 */ 765 static int scsi_request_sense(struct scsi_cmnd *scmd) 766 { 767 return scsi_send_eh_cmnd(scmd, NULL, 0, SENSE_TIMEOUT, ~0); 768 } 769 770 /** 771 * scsi_eh_finish_cmd - Handle a cmd that eh is finished with. 772 * @scmd: Original SCSI cmd that eh has finished. 773 * @done_q: Queue for processed commands. 774 * 775 * Notes: 776 * We don't want to use the normal command completion while we are are 777 * still handling errors - it may cause other commands to be queued, 778 * and that would disturb what we are doing. Thus we really want to 779 * keep a list of pending commands for final completion, and once we 780 * are ready to leave error handling we handle completion for real. 781 */ 782 void scsi_eh_finish_cmd(struct scsi_cmnd *scmd, struct list_head *done_q) 783 { 784 scmd->device->host->host_failed--; 785 scmd->eh_eflags = 0; 786 list_move_tail(&scmd->eh_entry, done_q); 787 } 788 EXPORT_SYMBOL(scsi_eh_finish_cmd); 789 790 /** 791 * scsi_eh_get_sense - Get device sense data. 792 * @work_q: Queue of commands to process. 793 * @done_q: Queue of processed commands. 794 * 795 * Description: 796 * See if we need to request sense information. if so, then get it 797 * now, so we have a better idea of what to do. 798 * 799 * Notes: 800 * This has the unfortunate side effect that if a shost adapter does 801 * not automatically request sense information, we end up shutting 802 * it down before we request it. 803 * 804 * All drivers should request sense information internally these days, 805 * so for now all I have to say is tough noogies if you end up in here. 806 * 807 * XXX: Long term this code should go away, but that needs an audit of 808 * all LLDDs first. 809 */ 810 int scsi_eh_get_sense(struct list_head *work_q, 811 struct list_head *done_q) 812 { 813 struct scsi_cmnd *scmd, *next; 814 int rtn; 815 816 list_for_each_entry_safe(scmd, next, work_q, eh_entry) { 817 if ((scmd->eh_eflags & SCSI_EH_CANCEL_CMD) || 818 SCSI_SENSE_VALID(scmd)) 819 continue; 820 821 SCSI_LOG_ERROR_RECOVERY(2, scmd_printk(KERN_INFO, scmd, 822 "%s: requesting sense\n", 823 current->comm)); 824 rtn = scsi_request_sense(scmd); 825 if (rtn != SUCCESS) 826 continue; 827 828 SCSI_LOG_ERROR_RECOVERY(3, printk("sense requested for %p" 829 " result %x\n", scmd, 830 scmd->result)); 831 SCSI_LOG_ERROR_RECOVERY(3, scsi_print_sense("bh", scmd)); 832 833 rtn = scsi_decide_disposition(scmd); 834 835 /* 836 * if the result was normal, then just pass it along to the 837 * upper level. 838 */ 839 if (rtn == SUCCESS) 840 /* we don't want this command reissued, just 841 * finished with the sense data, so set 842 * retries to the max allowed to ensure it 843 * won't get reissued */ 844 scmd->retries = scmd->allowed; 845 else if (rtn != NEEDS_RETRY) 846 continue; 847 848 scsi_eh_finish_cmd(scmd, done_q); 849 } 850 851 return list_empty(work_q); 852 } 853 EXPORT_SYMBOL_GPL(scsi_eh_get_sense); 854 855 /** 856 * scsi_eh_tur - Send TUR to device. 857 * @scmd: &scsi_cmnd to send TUR 858 * 859 * Return value: 860 * 0 - Device is ready. 1 - Device NOT ready. 861 */ 862 static int scsi_eh_tur(struct scsi_cmnd *scmd) 863 { 864 static unsigned char tur_command[6] = {TEST_UNIT_READY, 0, 0, 0, 0, 0}; 865 int retry_cnt = 1, rtn; 866 867 retry_tur: 868 rtn = scsi_send_eh_cmnd(scmd, tur_command, 6, SENSE_TIMEOUT, 0); 869 870 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: scmd %p rtn %x\n", 871 __FUNCTION__, scmd, rtn)); 872 873 switch (rtn) { 874 case NEEDS_RETRY: 875 if (retry_cnt--) 876 goto retry_tur; 877 /*FALLTHRU*/ 878 case SUCCESS: 879 return 0; 880 default: 881 return 1; 882 } 883 } 884 885 /** 886 * scsi_eh_abort_cmds - abort pending commands. 887 * @work_q: &list_head for pending commands. 888 * @done_q: &list_head for processed commands. 889 * 890 * Decription: 891 * Try and see whether or not it makes sense to try and abort the 892 * running command. This only works out to be the case if we have one 893 * command that has timed out. If the command simply failed, it makes 894 * no sense to try and abort the command, since as far as the shost 895 * adapter is concerned, it isn't running. 896 */ 897 static int scsi_eh_abort_cmds(struct list_head *work_q, 898 struct list_head *done_q) 899 { 900 struct scsi_cmnd *scmd, *next; 901 int rtn; 902 903 list_for_each_entry_safe(scmd, next, work_q, eh_entry) { 904 if (!(scmd->eh_eflags & SCSI_EH_CANCEL_CMD)) 905 continue; 906 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: aborting cmd:" 907 "0x%p\n", current->comm, 908 scmd)); 909 rtn = scsi_try_to_abort_cmd(scmd); 910 if (rtn == SUCCESS) { 911 scmd->eh_eflags &= ~SCSI_EH_CANCEL_CMD; 912 if (!scsi_device_online(scmd->device) || 913 !scsi_eh_tur(scmd)) { 914 scsi_eh_finish_cmd(scmd, done_q); 915 } 916 917 } else 918 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: aborting" 919 " cmd failed:" 920 "0x%p\n", 921 current->comm, 922 scmd)); 923 } 924 925 return list_empty(work_q); 926 } 927 928 /** 929 * scsi_eh_try_stu - Send START_UNIT to device. 930 * @scmd: &scsi_cmnd to send START_UNIT 931 * 932 * Return value: 933 * 0 - Device is ready. 1 - Device NOT ready. 934 */ 935 static int scsi_eh_try_stu(struct scsi_cmnd *scmd) 936 { 937 static unsigned char stu_command[6] = {START_STOP, 0, 0, 0, 1, 0}; 938 939 if (scmd->device->allow_restart) { 940 int i, rtn = NEEDS_RETRY; 941 942 for (i = 0; rtn == NEEDS_RETRY && i < 2; i++) 943 rtn = scsi_send_eh_cmnd(scmd, stu_command, 6, 944 scmd->device->timeout, 0); 945 946 if (rtn == SUCCESS) 947 return 0; 948 } 949 950 return 1; 951 } 952 953 /** 954 * scsi_eh_stu - send START_UNIT if needed 955 * @shost: &scsi host being recovered. 956 * @work_q: &list_head for pending commands. 957 * @done_q: &list_head for processed commands. 958 * 959 * Notes: 960 * If commands are failing due to not ready, initializing command required, 961 * try revalidating the device, which will end up sending a start unit. 962 */ 963 static int scsi_eh_stu(struct Scsi_Host *shost, 964 struct list_head *work_q, 965 struct list_head *done_q) 966 { 967 struct scsi_cmnd *scmd, *stu_scmd, *next; 968 struct scsi_device *sdev; 969 970 shost_for_each_device(sdev, shost) { 971 stu_scmd = NULL; 972 list_for_each_entry(scmd, work_q, eh_entry) 973 if (scmd->device == sdev && SCSI_SENSE_VALID(scmd) && 974 scsi_check_sense(scmd) == FAILED ) { 975 stu_scmd = scmd; 976 break; 977 } 978 979 if (!stu_scmd) 980 continue; 981 982 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending START_UNIT to sdev:" 983 " 0x%p\n", current->comm, sdev)); 984 985 if (!scsi_eh_try_stu(stu_scmd)) { 986 if (!scsi_device_online(sdev) || 987 !scsi_eh_tur(stu_scmd)) { 988 list_for_each_entry_safe(scmd, next, 989 work_q, eh_entry) { 990 if (scmd->device == sdev) 991 scsi_eh_finish_cmd(scmd, done_q); 992 } 993 } 994 } else { 995 SCSI_LOG_ERROR_RECOVERY(3, 996 printk("%s: START_UNIT failed to sdev:" 997 " 0x%p\n", current->comm, sdev)); 998 } 999 } 1000 1001 return list_empty(work_q); 1002 } 1003 1004 1005 /** 1006 * scsi_eh_bus_device_reset - send bdr if needed 1007 * @shost: scsi host being recovered. 1008 * @work_q: &list_head for pending commands. 1009 * @done_q: &list_head for processed commands. 1010 * 1011 * Notes: 1012 * Try a bus device reset. Still, look to see whether we have multiple 1013 * devices that are jammed or not - if we have multiple devices, it 1014 * makes no sense to try bus_device_reset - we really would need to try 1015 * a bus_reset instead. 1016 */ 1017 static int scsi_eh_bus_device_reset(struct Scsi_Host *shost, 1018 struct list_head *work_q, 1019 struct list_head *done_q) 1020 { 1021 struct scsi_cmnd *scmd, *bdr_scmd, *next; 1022 struct scsi_device *sdev; 1023 int rtn; 1024 1025 shost_for_each_device(sdev, shost) { 1026 bdr_scmd = NULL; 1027 list_for_each_entry(scmd, work_q, eh_entry) 1028 if (scmd->device == sdev) { 1029 bdr_scmd = scmd; 1030 break; 1031 } 1032 1033 if (!bdr_scmd) 1034 continue; 1035 1036 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending BDR sdev:" 1037 " 0x%p\n", current->comm, 1038 sdev)); 1039 rtn = scsi_try_bus_device_reset(bdr_scmd); 1040 if (rtn == SUCCESS) { 1041 if (!scsi_device_online(sdev) || 1042 !scsi_eh_tur(bdr_scmd)) { 1043 list_for_each_entry_safe(scmd, next, 1044 work_q, eh_entry) { 1045 if (scmd->device == sdev) 1046 scsi_eh_finish_cmd(scmd, 1047 done_q); 1048 } 1049 } 1050 } else { 1051 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: BDR" 1052 " failed sdev:" 1053 "0x%p\n", 1054 current->comm, 1055 sdev)); 1056 } 1057 } 1058 1059 return list_empty(work_q); 1060 } 1061 1062 /** 1063 * scsi_eh_bus_reset - send a bus reset 1064 * @shost: &scsi host being recovered. 1065 * @work_q: &list_head for pending commands. 1066 * @done_q: &list_head for processed commands. 1067 */ 1068 static int scsi_eh_bus_reset(struct Scsi_Host *shost, 1069 struct list_head *work_q, 1070 struct list_head *done_q) 1071 { 1072 struct scsi_cmnd *scmd, *chan_scmd, *next; 1073 unsigned int channel; 1074 int rtn; 1075 1076 /* 1077 * we really want to loop over the various channels, and do this on 1078 * a channel by channel basis. we should also check to see if any 1079 * of the failed commands are on soft_reset devices, and if so, skip 1080 * the reset. 1081 */ 1082 1083 for (channel = 0; channel <= shost->max_channel; channel++) { 1084 chan_scmd = NULL; 1085 list_for_each_entry(scmd, work_q, eh_entry) { 1086 if (channel == scmd_channel(scmd)) { 1087 chan_scmd = scmd; 1088 break; 1089 /* 1090 * FIXME add back in some support for 1091 * soft_reset devices. 1092 */ 1093 } 1094 } 1095 1096 if (!chan_scmd) 1097 continue; 1098 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending BRST chan:" 1099 " %d\n", current->comm, 1100 channel)); 1101 rtn = scsi_try_bus_reset(chan_scmd); 1102 if (rtn == SUCCESS) { 1103 list_for_each_entry_safe(scmd, next, work_q, eh_entry) { 1104 if (channel == scmd_channel(scmd)) 1105 if (!scsi_device_online(scmd->device) || 1106 !scsi_eh_tur(scmd)) 1107 scsi_eh_finish_cmd(scmd, 1108 done_q); 1109 } 1110 } else { 1111 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: BRST" 1112 " failed chan: %d\n", 1113 current->comm, 1114 channel)); 1115 } 1116 } 1117 return list_empty(work_q); 1118 } 1119 1120 /** 1121 * scsi_eh_host_reset - send a host reset 1122 * @work_q: list_head for processed commands. 1123 * @done_q: list_head for processed commands. 1124 */ 1125 static int scsi_eh_host_reset(struct list_head *work_q, 1126 struct list_head *done_q) 1127 { 1128 struct scsi_cmnd *scmd, *next; 1129 int rtn; 1130 1131 if (!list_empty(work_q)) { 1132 scmd = list_entry(work_q->next, 1133 struct scsi_cmnd, eh_entry); 1134 1135 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending HRST\n" 1136 , current->comm)); 1137 1138 rtn = scsi_try_host_reset(scmd); 1139 if (rtn == SUCCESS) { 1140 list_for_each_entry_safe(scmd, next, work_q, eh_entry) { 1141 if (!scsi_device_online(scmd->device) || 1142 (!scsi_eh_try_stu(scmd) && !scsi_eh_tur(scmd)) || 1143 !scsi_eh_tur(scmd)) 1144 scsi_eh_finish_cmd(scmd, done_q); 1145 } 1146 } else { 1147 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: HRST" 1148 " failed\n", 1149 current->comm)); 1150 } 1151 } 1152 return list_empty(work_q); 1153 } 1154 1155 /** 1156 * scsi_eh_offline_sdevs - offline scsi devices that fail to recover 1157 * @work_q: list_head for processed commands. 1158 * @done_q: list_head for processed commands. 1159 */ 1160 static void scsi_eh_offline_sdevs(struct list_head *work_q, 1161 struct list_head *done_q) 1162 { 1163 struct scsi_cmnd *scmd, *next; 1164 1165 list_for_each_entry_safe(scmd, next, work_q, eh_entry) { 1166 sdev_printk(KERN_INFO, scmd->device, "Device offlined - " 1167 "not ready after error recovery\n"); 1168 scsi_device_set_state(scmd->device, SDEV_OFFLINE); 1169 if (scmd->eh_eflags & SCSI_EH_CANCEL_CMD) { 1170 /* 1171 * FIXME: Handle lost cmds. 1172 */ 1173 } 1174 scsi_eh_finish_cmd(scmd, done_q); 1175 } 1176 return; 1177 } 1178 1179 /** 1180 * scsi_decide_disposition - Disposition a cmd on return from LLD. 1181 * @scmd: SCSI cmd to examine. 1182 * 1183 * Notes: 1184 * This is *only* called when we are examining the status after sending 1185 * out the actual data command. any commands that are queued for error 1186 * recovery (e.g. test_unit_ready) do *not* come through here. 1187 * 1188 * When this routine returns failed, it means the error handler thread 1189 * is woken. In cases where the error code indicates an error that 1190 * doesn't require the error handler read (i.e. we don't need to 1191 * abort/reset), this function should return SUCCESS. 1192 */ 1193 int scsi_decide_disposition(struct scsi_cmnd *scmd) 1194 { 1195 int rtn; 1196 1197 /* 1198 * if the device is offline, then we clearly just pass the result back 1199 * up to the top level. 1200 */ 1201 if (!scsi_device_online(scmd->device)) { 1202 SCSI_LOG_ERROR_RECOVERY(5, printk("%s: device offline - report" 1203 " as SUCCESS\n", 1204 __FUNCTION__)); 1205 return SUCCESS; 1206 } 1207 1208 /* 1209 * first check the host byte, to see if there is anything in there 1210 * that would indicate what we need to do. 1211 */ 1212 switch (host_byte(scmd->result)) { 1213 case DID_PASSTHROUGH: 1214 /* 1215 * no matter what, pass this through to the upper layer. 1216 * nuke this special code so that it looks like we are saying 1217 * did_ok. 1218 */ 1219 scmd->result &= 0xff00ffff; 1220 return SUCCESS; 1221 case DID_OK: 1222 /* 1223 * looks good. drop through, and check the next byte. 1224 */ 1225 break; 1226 case DID_NO_CONNECT: 1227 case DID_BAD_TARGET: 1228 case DID_ABORT: 1229 /* 1230 * note - this means that we just report the status back 1231 * to the top level driver, not that we actually think 1232 * that it indicates SUCCESS. 1233 */ 1234 return SUCCESS; 1235 /* 1236 * when the low level driver returns did_soft_error, 1237 * it is responsible for keeping an internal retry counter 1238 * in order to avoid endless loops (db) 1239 * 1240 * actually this is a bug in this function here. we should 1241 * be mindful of the maximum number of retries specified 1242 * and not get stuck in a loop. 1243 */ 1244 case DID_SOFT_ERROR: 1245 goto maybe_retry; 1246 case DID_IMM_RETRY: 1247 return NEEDS_RETRY; 1248 1249 case DID_REQUEUE: 1250 return ADD_TO_MLQUEUE; 1251 1252 case DID_ERROR: 1253 if (msg_byte(scmd->result) == COMMAND_COMPLETE && 1254 status_byte(scmd->result) == RESERVATION_CONFLICT) 1255 /* 1256 * execute reservation conflict processing code 1257 * lower down 1258 */ 1259 break; 1260 /* fallthrough */ 1261 1262 case DID_BUS_BUSY: 1263 case DID_PARITY: 1264 goto maybe_retry; 1265 case DID_TIME_OUT: 1266 /* 1267 * when we scan the bus, we get timeout messages for 1268 * these commands if there is no device available. 1269 * other hosts report did_no_connect for the same thing. 1270 */ 1271 if ((scmd->cmnd[0] == TEST_UNIT_READY || 1272 scmd->cmnd[0] == INQUIRY)) { 1273 return SUCCESS; 1274 } else { 1275 return FAILED; 1276 } 1277 case DID_RESET: 1278 return SUCCESS; 1279 default: 1280 return FAILED; 1281 } 1282 1283 /* 1284 * next, check the message byte. 1285 */ 1286 if (msg_byte(scmd->result) != COMMAND_COMPLETE) 1287 return FAILED; 1288 1289 /* 1290 * check the status byte to see if this indicates anything special. 1291 */ 1292 switch (status_byte(scmd->result)) { 1293 case QUEUE_FULL: 1294 /* 1295 * the case of trying to send too many commands to a 1296 * tagged queueing device. 1297 */ 1298 case BUSY: 1299 /* 1300 * device can't talk to us at the moment. Should only 1301 * occur (SAM-3) when the task queue is empty, so will cause 1302 * the empty queue handling to trigger a stall in the 1303 * device. 1304 */ 1305 return ADD_TO_MLQUEUE; 1306 case GOOD: 1307 case COMMAND_TERMINATED: 1308 case TASK_ABORTED: 1309 return SUCCESS; 1310 case CHECK_CONDITION: 1311 rtn = scsi_check_sense(scmd); 1312 if (rtn == NEEDS_RETRY) 1313 goto maybe_retry; 1314 /* if rtn == FAILED, we have no sense information; 1315 * returning FAILED will wake the error handler thread 1316 * to collect the sense and redo the decide 1317 * disposition */ 1318 return rtn; 1319 case CONDITION_GOOD: 1320 case INTERMEDIATE_GOOD: 1321 case INTERMEDIATE_C_GOOD: 1322 case ACA_ACTIVE: 1323 /* 1324 * who knows? FIXME(eric) 1325 */ 1326 return SUCCESS; 1327 1328 case RESERVATION_CONFLICT: 1329 sdev_printk(KERN_INFO, scmd->device, 1330 "reservation conflict\n"); 1331 return SUCCESS; /* causes immediate i/o error */ 1332 default: 1333 return FAILED; 1334 } 1335 return FAILED; 1336 1337 maybe_retry: 1338 1339 /* we requeue for retry because the error was retryable, and 1340 * the request was not marked fast fail. Note that above, 1341 * even if the request is marked fast fail, we still requeue 1342 * for queue congestion conditions (QUEUE_FULL or BUSY) */ 1343 if ((++scmd->retries) <= scmd->allowed 1344 && !blk_noretry_request(scmd->request)) { 1345 return NEEDS_RETRY; 1346 } else { 1347 /* 1348 * no more retries - report this one back to upper level. 1349 */ 1350 return SUCCESS; 1351 } 1352 } 1353 1354 /** 1355 * scsi_eh_lock_door - Prevent medium removal for the specified device 1356 * @sdev: SCSI device to prevent medium removal 1357 * 1358 * Locking: 1359 * We must be called from process context; scsi_allocate_request() 1360 * may sleep. 1361 * 1362 * Notes: 1363 * We queue up an asynchronous "ALLOW MEDIUM REMOVAL" request on the 1364 * head of the devices request queue, and continue. 1365 * 1366 * Bugs: 1367 * scsi_allocate_request() may sleep waiting for existing requests to 1368 * be processed. However, since we haven't kicked off any request 1369 * processing for this host, this may deadlock. 1370 * 1371 * If scsi_allocate_request() fails for what ever reason, we 1372 * completely forget to lock the door. 1373 */ 1374 static void scsi_eh_lock_door(struct scsi_device *sdev) 1375 { 1376 unsigned char cmnd[MAX_COMMAND_SIZE]; 1377 1378 cmnd[0] = ALLOW_MEDIUM_REMOVAL; 1379 cmnd[1] = 0; 1380 cmnd[2] = 0; 1381 cmnd[3] = 0; 1382 cmnd[4] = SCSI_REMOVAL_PREVENT; 1383 cmnd[5] = 0; 1384 1385 scsi_execute_async(sdev, cmnd, 6, DMA_NONE, NULL, 0, 0, 10 * HZ, 1386 5, NULL, NULL, GFP_KERNEL); 1387 } 1388 1389 1390 /** 1391 * scsi_restart_operations - restart io operations to the specified host. 1392 * @shost: Host we are restarting. 1393 * 1394 * Notes: 1395 * When we entered the error handler, we blocked all further i/o to 1396 * this device. we need to 'reverse' this process. 1397 */ 1398 static void scsi_restart_operations(struct Scsi_Host *shost) 1399 { 1400 struct scsi_device *sdev; 1401 unsigned long flags; 1402 1403 /* 1404 * If the door was locked, we need to insert a door lock request 1405 * onto the head of the SCSI request queue for the device. There 1406 * is no point trying to lock the door of an off-line device. 1407 */ 1408 shost_for_each_device(sdev, shost) { 1409 if (scsi_device_online(sdev) && sdev->locked) 1410 scsi_eh_lock_door(sdev); 1411 } 1412 1413 /* 1414 * next free up anything directly waiting upon the host. this 1415 * will be requests for character device operations, and also for 1416 * ioctls to queued block devices. 1417 */ 1418 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: waking up host to restart\n", 1419 __FUNCTION__)); 1420 1421 spin_lock_irqsave(shost->host_lock, flags); 1422 if (scsi_host_set_state(shost, SHOST_RUNNING)) 1423 if (scsi_host_set_state(shost, SHOST_CANCEL)) 1424 BUG_ON(scsi_host_set_state(shost, SHOST_DEL)); 1425 spin_unlock_irqrestore(shost->host_lock, flags); 1426 1427 wake_up(&shost->host_wait); 1428 1429 /* 1430 * finally we need to re-initiate requests that may be pending. we will 1431 * have had everything blocked while error handling is taking place, and 1432 * now that error recovery is done, we will need to ensure that these 1433 * requests are started. 1434 */ 1435 scsi_run_host_queues(shost); 1436 } 1437 1438 /** 1439 * scsi_eh_ready_devs - check device ready state and recover if not. 1440 * @shost: host to be recovered. 1441 * @work_q: &list_head for pending commands. 1442 * @done_q: &list_head for processed commands. 1443 */ 1444 void scsi_eh_ready_devs(struct Scsi_Host *shost, 1445 struct list_head *work_q, 1446 struct list_head *done_q) 1447 { 1448 if (!scsi_eh_stu(shost, work_q, done_q)) 1449 if (!scsi_eh_bus_device_reset(shost, work_q, done_q)) 1450 if (!scsi_eh_bus_reset(shost, work_q, done_q)) 1451 if (!scsi_eh_host_reset(work_q, done_q)) 1452 scsi_eh_offline_sdevs(work_q, done_q); 1453 } 1454 EXPORT_SYMBOL_GPL(scsi_eh_ready_devs); 1455 1456 /** 1457 * scsi_eh_flush_done_q - finish processed commands or retry them. 1458 * @done_q: list_head of processed commands. 1459 */ 1460 void scsi_eh_flush_done_q(struct list_head *done_q) 1461 { 1462 struct scsi_cmnd *scmd, *next; 1463 1464 list_for_each_entry_safe(scmd, next, done_q, eh_entry) { 1465 list_del_init(&scmd->eh_entry); 1466 if (scsi_device_online(scmd->device) && 1467 !blk_noretry_request(scmd->request) && 1468 (++scmd->retries <= scmd->allowed)) { 1469 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: flush" 1470 " retry cmd: %p\n", 1471 current->comm, 1472 scmd)); 1473 scsi_queue_insert(scmd, SCSI_MLQUEUE_EH_RETRY); 1474 } else { 1475 /* 1476 * If just we got sense for the device (called 1477 * scsi_eh_get_sense), scmd->result is already 1478 * set, do not set DRIVER_TIMEOUT. 1479 */ 1480 if (!scmd->result) 1481 scmd->result |= (DRIVER_TIMEOUT << 24); 1482 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: flush finish" 1483 " cmd: %p\n", 1484 current->comm, scmd)); 1485 scsi_finish_command(scmd); 1486 } 1487 } 1488 } 1489 EXPORT_SYMBOL(scsi_eh_flush_done_q); 1490 1491 /** 1492 * scsi_unjam_host - Attempt to fix a host which has a cmd that failed. 1493 * @shost: Host to unjam. 1494 * 1495 * Notes: 1496 * When we come in here, we *know* that all commands on the bus have 1497 * either completed, failed or timed out. we also know that no further 1498 * commands are being sent to the host, so things are relatively quiet 1499 * and we have freedom to fiddle with things as we wish. 1500 * 1501 * This is only the *default* implementation. it is possible for 1502 * individual drivers to supply their own version of this function, and 1503 * if the maintainer wishes to do this, it is strongly suggested that 1504 * this function be taken as a template and modified. this function 1505 * was designed to correctly handle problems for about 95% of the 1506 * different cases out there, and it should always provide at least a 1507 * reasonable amount of error recovery. 1508 * 1509 * Any command marked 'failed' or 'timeout' must eventually have 1510 * scsi_finish_cmd() called for it. we do all of the retry stuff 1511 * here, so when we restart the host after we return it should have an 1512 * empty queue. 1513 */ 1514 static void scsi_unjam_host(struct Scsi_Host *shost) 1515 { 1516 unsigned long flags; 1517 LIST_HEAD(eh_work_q); 1518 LIST_HEAD(eh_done_q); 1519 1520 spin_lock_irqsave(shost->host_lock, flags); 1521 list_splice_init(&shost->eh_cmd_q, &eh_work_q); 1522 spin_unlock_irqrestore(shost->host_lock, flags); 1523 1524 SCSI_LOG_ERROR_RECOVERY(1, scsi_eh_prt_fail_stats(shost, &eh_work_q)); 1525 1526 if (!scsi_eh_get_sense(&eh_work_q, &eh_done_q)) 1527 if (!scsi_eh_abort_cmds(&eh_work_q, &eh_done_q)) 1528 scsi_eh_ready_devs(shost, &eh_work_q, &eh_done_q); 1529 1530 scsi_eh_flush_done_q(&eh_done_q); 1531 } 1532 1533 /** 1534 * scsi_error_handler - SCSI error handler thread 1535 * @data: Host for which we are running. 1536 * 1537 * Notes: 1538 * This is the main error handling loop. This is run as a kernel thread 1539 * for every SCSI host and handles all error handling activity. 1540 */ 1541 int scsi_error_handler(void *data) 1542 { 1543 struct Scsi_Host *shost = data; 1544 1545 /* 1546 * We use TASK_INTERRUPTIBLE so that the thread is not 1547 * counted against the load average as a running process. 1548 * We never actually get interrupted because kthread_run 1549 * disables singal delivery for the created thread. 1550 */ 1551 set_current_state(TASK_INTERRUPTIBLE); 1552 while (!kthread_should_stop()) { 1553 if ((shost->host_failed == 0 && shost->host_eh_scheduled == 0) || 1554 shost->host_failed != shost->host_busy) { 1555 SCSI_LOG_ERROR_RECOVERY(1, 1556 printk("Error handler scsi_eh_%d sleeping\n", 1557 shost->host_no)); 1558 schedule(); 1559 set_current_state(TASK_INTERRUPTIBLE); 1560 continue; 1561 } 1562 1563 __set_current_state(TASK_RUNNING); 1564 SCSI_LOG_ERROR_RECOVERY(1, 1565 printk("Error handler scsi_eh_%d waking up\n", 1566 shost->host_no)); 1567 1568 /* 1569 * We have a host that is failing for some reason. Figure out 1570 * what we need to do to get it up and online again (if we can). 1571 * If we fail, we end up taking the thing offline. 1572 */ 1573 if (shost->transportt->eh_strategy_handler) 1574 shost->transportt->eh_strategy_handler(shost); 1575 else 1576 scsi_unjam_host(shost); 1577 1578 /* 1579 * Note - if the above fails completely, the action is to take 1580 * individual devices offline and flush the queue of any 1581 * outstanding requests that may have been pending. When we 1582 * restart, we restart any I/O to any other devices on the bus 1583 * which are still online. 1584 */ 1585 scsi_restart_operations(shost); 1586 set_current_state(TASK_INTERRUPTIBLE); 1587 } 1588 __set_current_state(TASK_RUNNING); 1589 1590 SCSI_LOG_ERROR_RECOVERY(1, 1591 printk("Error handler scsi_eh_%d exiting\n", shost->host_no)); 1592 shost->ehandler = NULL; 1593 return 0; 1594 } 1595 1596 /* 1597 * Function: scsi_report_bus_reset() 1598 * 1599 * Purpose: Utility function used by low-level drivers to report that 1600 * they have observed a bus reset on the bus being handled. 1601 * 1602 * Arguments: shost - Host in question 1603 * channel - channel on which reset was observed. 1604 * 1605 * Returns: Nothing 1606 * 1607 * Lock status: Host lock must be held. 1608 * 1609 * Notes: This only needs to be called if the reset is one which 1610 * originates from an unknown location. Resets originated 1611 * by the mid-level itself don't need to call this, but there 1612 * should be no harm. 1613 * 1614 * The main purpose of this is to make sure that a CHECK_CONDITION 1615 * is properly treated. 1616 */ 1617 void scsi_report_bus_reset(struct Scsi_Host *shost, int channel) 1618 { 1619 struct scsi_device *sdev; 1620 1621 __shost_for_each_device(sdev, shost) { 1622 if (channel == sdev_channel(sdev)) { 1623 sdev->was_reset = 1; 1624 sdev->expecting_cc_ua = 1; 1625 } 1626 } 1627 } 1628 EXPORT_SYMBOL(scsi_report_bus_reset); 1629 1630 /* 1631 * Function: scsi_report_device_reset() 1632 * 1633 * Purpose: Utility function used by low-level drivers to report that 1634 * they have observed a device reset on the device being handled. 1635 * 1636 * Arguments: shost - Host in question 1637 * channel - channel on which reset was observed 1638 * target - target on which reset was observed 1639 * 1640 * Returns: Nothing 1641 * 1642 * Lock status: Host lock must be held 1643 * 1644 * Notes: This only needs to be called if the reset is one which 1645 * originates from an unknown location. Resets originated 1646 * by the mid-level itself don't need to call this, but there 1647 * should be no harm. 1648 * 1649 * The main purpose of this is to make sure that a CHECK_CONDITION 1650 * is properly treated. 1651 */ 1652 void scsi_report_device_reset(struct Scsi_Host *shost, int channel, int target) 1653 { 1654 struct scsi_device *sdev; 1655 1656 __shost_for_each_device(sdev, shost) { 1657 if (channel == sdev_channel(sdev) && 1658 target == sdev_id(sdev)) { 1659 sdev->was_reset = 1; 1660 sdev->expecting_cc_ua = 1; 1661 } 1662 } 1663 } 1664 EXPORT_SYMBOL(scsi_report_device_reset); 1665 1666 static void 1667 scsi_reset_provider_done_command(struct scsi_cmnd *scmd) 1668 { 1669 } 1670 1671 /* 1672 * Function: scsi_reset_provider 1673 * 1674 * Purpose: Send requested reset to a bus or device at any phase. 1675 * 1676 * Arguments: device - device to send reset to 1677 * flag - reset type (see scsi.h) 1678 * 1679 * Returns: SUCCESS/FAILURE. 1680 * 1681 * Notes: This is used by the SCSI Generic driver to provide 1682 * Bus/Device reset capability. 1683 */ 1684 int 1685 scsi_reset_provider(struct scsi_device *dev, int flag) 1686 { 1687 struct scsi_cmnd *scmd = scsi_get_command(dev, GFP_KERNEL); 1688 struct Scsi_Host *shost = dev->host; 1689 struct request req; 1690 unsigned long flags; 1691 int rtn; 1692 1693 scmd->request = &req; 1694 memset(&scmd->eh_timeout, 0, sizeof(scmd->eh_timeout)); 1695 1696 memset(&scmd->cmnd, '\0', sizeof(scmd->cmnd)); 1697 1698 scmd->scsi_done = scsi_reset_provider_done_command; 1699 memset(&scmd->sdb, 0, sizeof(scmd->sdb)); 1700 1701 scmd->cmd_len = 0; 1702 1703 scmd->sc_data_direction = DMA_BIDIRECTIONAL; 1704 1705 init_timer(&scmd->eh_timeout); 1706 1707 spin_lock_irqsave(shost->host_lock, flags); 1708 shost->tmf_in_progress = 1; 1709 spin_unlock_irqrestore(shost->host_lock, flags); 1710 1711 switch (flag) { 1712 case SCSI_TRY_RESET_DEVICE: 1713 rtn = scsi_try_bus_device_reset(scmd); 1714 if (rtn == SUCCESS) 1715 break; 1716 /* FALLTHROUGH */ 1717 case SCSI_TRY_RESET_BUS: 1718 rtn = scsi_try_bus_reset(scmd); 1719 if (rtn == SUCCESS) 1720 break; 1721 /* FALLTHROUGH */ 1722 case SCSI_TRY_RESET_HOST: 1723 rtn = scsi_try_host_reset(scmd); 1724 break; 1725 default: 1726 rtn = FAILED; 1727 } 1728 1729 spin_lock_irqsave(shost->host_lock, flags); 1730 shost->tmf_in_progress = 0; 1731 spin_unlock_irqrestore(shost->host_lock, flags); 1732 1733 /* 1734 * be sure to wake up anyone who was sleeping or had their queue 1735 * suspended while we performed the TMF. 1736 */ 1737 SCSI_LOG_ERROR_RECOVERY(3, 1738 printk("%s: waking up host to restart after TMF\n", 1739 __FUNCTION__)); 1740 1741 wake_up(&shost->host_wait); 1742 1743 scsi_run_host_queues(shost); 1744 1745 scsi_next_command(scmd); 1746 return rtn; 1747 } 1748 EXPORT_SYMBOL(scsi_reset_provider); 1749 1750 /** 1751 * scsi_normalize_sense - normalize main elements from either fixed or 1752 * descriptor sense data format into a common format. 1753 * 1754 * @sense_buffer: byte array containing sense data returned by device 1755 * @sb_len: number of valid bytes in sense_buffer 1756 * @sshdr: pointer to instance of structure that common 1757 * elements are written to. 1758 * 1759 * Notes: 1760 * The "main elements" from sense data are: response_code, sense_key, 1761 * asc, ascq and additional_length (only for descriptor format). 1762 * 1763 * Typically this function can be called after a device has 1764 * responded to a SCSI command with the CHECK_CONDITION status. 1765 * 1766 * Return value: 1767 * 1 if valid sense data information found, else 0; 1768 */ 1769 int scsi_normalize_sense(const u8 *sense_buffer, int sb_len, 1770 struct scsi_sense_hdr *sshdr) 1771 { 1772 if (!sense_buffer || !sb_len) 1773 return 0; 1774 1775 memset(sshdr, 0, sizeof(struct scsi_sense_hdr)); 1776 1777 sshdr->response_code = (sense_buffer[0] & 0x7f); 1778 1779 if (!scsi_sense_valid(sshdr)) 1780 return 0; 1781 1782 if (sshdr->response_code >= 0x72) { 1783 /* 1784 * descriptor format 1785 */ 1786 if (sb_len > 1) 1787 sshdr->sense_key = (sense_buffer[1] & 0xf); 1788 if (sb_len > 2) 1789 sshdr->asc = sense_buffer[2]; 1790 if (sb_len > 3) 1791 sshdr->ascq = sense_buffer[3]; 1792 if (sb_len > 7) 1793 sshdr->additional_length = sense_buffer[7]; 1794 } else { 1795 /* 1796 * fixed format 1797 */ 1798 if (sb_len > 2) 1799 sshdr->sense_key = (sense_buffer[2] & 0xf); 1800 if (sb_len > 7) { 1801 sb_len = (sb_len < (sense_buffer[7] + 8)) ? 1802 sb_len : (sense_buffer[7] + 8); 1803 if (sb_len > 12) 1804 sshdr->asc = sense_buffer[12]; 1805 if (sb_len > 13) 1806 sshdr->ascq = sense_buffer[13]; 1807 } 1808 } 1809 1810 return 1; 1811 } 1812 EXPORT_SYMBOL(scsi_normalize_sense); 1813 1814 int scsi_command_normalize_sense(struct scsi_cmnd *cmd, 1815 struct scsi_sense_hdr *sshdr) 1816 { 1817 return scsi_normalize_sense(cmd->sense_buffer, 1818 SCSI_SENSE_BUFFERSIZE, sshdr); 1819 } 1820 EXPORT_SYMBOL(scsi_command_normalize_sense); 1821 1822 /** 1823 * scsi_sense_desc_find - search for a given descriptor type in descriptor sense data format. 1824 * @sense_buffer: byte array of descriptor format sense data 1825 * @sb_len: number of valid bytes in sense_buffer 1826 * @desc_type: value of descriptor type to find 1827 * (e.g. 0 -> information) 1828 * 1829 * Notes: 1830 * only valid when sense data is in descriptor format 1831 * 1832 * Return value: 1833 * pointer to start of (first) descriptor if found else NULL 1834 */ 1835 const u8 * scsi_sense_desc_find(const u8 * sense_buffer, int sb_len, 1836 int desc_type) 1837 { 1838 int add_sen_len, add_len, desc_len, k; 1839 const u8 * descp; 1840 1841 if ((sb_len < 8) || (0 == (add_sen_len = sense_buffer[7]))) 1842 return NULL; 1843 if ((sense_buffer[0] < 0x72) || (sense_buffer[0] > 0x73)) 1844 return NULL; 1845 add_sen_len = (add_sen_len < (sb_len - 8)) ? 1846 add_sen_len : (sb_len - 8); 1847 descp = &sense_buffer[8]; 1848 for (desc_len = 0, k = 0; k < add_sen_len; k += desc_len) { 1849 descp += desc_len; 1850 add_len = (k < (add_sen_len - 1)) ? descp[1]: -1; 1851 desc_len = add_len + 2; 1852 if (descp[0] == desc_type) 1853 return descp; 1854 if (add_len < 0) // short descriptor ?? 1855 break; 1856 } 1857 return NULL; 1858 } 1859 EXPORT_SYMBOL(scsi_sense_desc_find); 1860 1861 /** 1862 * scsi_get_sense_info_fld - get information field from sense data (either fixed or descriptor format) 1863 * @sense_buffer: byte array of sense data 1864 * @sb_len: number of valid bytes in sense_buffer 1865 * @info_out: pointer to 64 integer where 8 or 4 byte information 1866 * field will be placed if found. 1867 * 1868 * Return value: 1869 * 1 if information field found, 0 if not found. 1870 */ 1871 int scsi_get_sense_info_fld(const u8 * sense_buffer, int sb_len, 1872 u64 * info_out) 1873 { 1874 int j; 1875 const u8 * ucp; 1876 u64 ull; 1877 1878 if (sb_len < 7) 1879 return 0; 1880 switch (sense_buffer[0] & 0x7f) { 1881 case 0x70: 1882 case 0x71: 1883 if (sense_buffer[0] & 0x80) { 1884 *info_out = (sense_buffer[3] << 24) + 1885 (sense_buffer[4] << 16) + 1886 (sense_buffer[5] << 8) + sense_buffer[6]; 1887 return 1; 1888 } else 1889 return 0; 1890 case 0x72: 1891 case 0x73: 1892 ucp = scsi_sense_desc_find(sense_buffer, sb_len, 1893 0 /* info desc */); 1894 if (ucp && (0xa == ucp[1])) { 1895 ull = 0; 1896 for (j = 0; j < 8; ++j) { 1897 if (j > 0) 1898 ull <<= 8; 1899 ull |= ucp[4 + j]; 1900 } 1901 *info_out = ull; 1902 return 1; 1903 } else 1904 return 0; 1905 default: 1906 return 0; 1907 } 1908 } 1909 EXPORT_SYMBOL(scsi_get_sense_info_fld); 1910