1 /* 2 * scsi_error.c Copyright (C) 1997 Eric Youngdale 3 * 4 * SCSI error/timeout handling 5 * Initial versions: Eric Youngdale. Based upon conversations with 6 * Leonard Zubkoff and David Miller at Linux Expo, 7 * ideas originating from all over the place. 8 * 9 * Restructured scsi_unjam_host and associated functions. 10 * September 04, 2002 Mike Anderson (andmike@us.ibm.com) 11 * 12 * Forward port of Russell King's (rmk@arm.linux.org.uk) changes and 13 * minor cleanups. 14 * September 30, 2002 Mike Anderson (andmike@us.ibm.com) 15 */ 16 17 #include <linux/module.h> 18 #include <linux/sched.h> 19 #include <linux/gfp.h> 20 #include <linux/timer.h> 21 #include <linux/string.h> 22 #include <linux/kernel.h> 23 #include <linux/freezer.h> 24 #include <linux/kthread.h> 25 #include <linux/interrupt.h> 26 #include <linux/blkdev.h> 27 #include <linux/delay.h> 28 29 #include <scsi/scsi.h> 30 #include <scsi/scsi_cmnd.h> 31 #include <scsi/scsi_dbg.h> 32 #include <scsi/scsi_device.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_transport.h> 35 #include <scsi/scsi_host.h> 36 #include <scsi/scsi_ioctl.h> 37 38 #include "scsi_priv.h" 39 #include "scsi_logging.h" 40 #include "scsi_transport_api.h" 41 42 #include <trace/events/scsi.h> 43 44 #define SENSE_TIMEOUT (10*HZ) 45 46 /* 47 * These should *probably* be handled by the host itself. 48 * Since it is allowed to sleep, it probably should. 49 */ 50 #define BUS_RESET_SETTLE_TIME (10) 51 #define HOST_RESET_SETTLE_TIME (10) 52 53 static int scsi_eh_try_stu(struct scsi_cmnd *scmd); 54 55 /* called with shost->host_lock held */ 56 void scsi_eh_wakeup(struct Scsi_Host *shost) 57 { 58 if (shost->host_busy == shost->host_failed) { 59 trace_scsi_eh_wakeup(shost); 60 wake_up_process(shost->ehandler); 61 SCSI_LOG_ERROR_RECOVERY(5, 62 printk("Waking error handler thread\n")); 63 } 64 } 65 66 /** 67 * scsi_schedule_eh - schedule EH for SCSI host 68 * @shost: SCSI host to invoke error handling on. 69 * 70 * Schedule SCSI EH without scmd. 71 */ 72 void scsi_schedule_eh(struct Scsi_Host *shost) 73 { 74 unsigned long flags; 75 76 spin_lock_irqsave(shost->host_lock, flags); 77 78 if (scsi_host_set_state(shost, SHOST_RECOVERY) == 0 || 79 scsi_host_set_state(shost, SHOST_CANCEL_RECOVERY) == 0) { 80 shost->host_eh_scheduled++; 81 scsi_eh_wakeup(shost); 82 } 83 84 spin_unlock_irqrestore(shost->host_lock, flags); 85 } 86 EXPORT_SYMBOL_GPL(scsi_schedule_eh); 87 88 /** 89 * scsi_eh_scmd_add - add scsi cmd to error handling. 90 * @scmd: scmd to run eh on. 91 * @eh_flag: optional SCSI_EH flag. 92 * 93 * Return value: 94 * 0 on failure. 95 */ 96 int scsi_eh_scmd_add(struct scsi_cmnd *scmd, int eh_flag) 97 { 98 struct Scsi_Host *shost = scmd->device->host; 99 unsigned long flags; 100 int ret = 0; 101 102 if (!shost->ehandler) 103 return 0; 104 105 spin_lock_irqsave(shost->host_lock, flags); 106 if (scsi_host_set_state(shost, SHOST_RECOVERY)) 107 if (scsi_host_set_state(shost, SHOST_CANCEL_RECOVERY)) 108 goto out_unlock; 109 110 ret = 1; 111 scmd->eh_eflags |= eh_flag; 112 list_add_tail(&scmd->eh_entry, &shost->eh_cmd_q); 113 shost->host_failed++; 114 scsi_eh_wakeup(shost); 115 out_unlock: 116 spin_unlock_irqrestore(shost->host_lock, flags); 117 return ret; 118 } 119 120 /** 121 * scsi_times_out - Timeout function for normal scsi commands. 122 * @req: request that is timing out. 123 * 124 * Notes: 125 * We do not need to lock this. There is the potential for a race 126 * only in that the normal completion handling might run, but if the 127 * normal completion function determines that the timer has already 128 * fired, then it mustn't do anything. 129 */ 130 enum blk_eh_timer_return scsi_times_out(struct request *req) 131 { 132 struct scsi_cmnd *scmd = req->special; 133 enum blk_eh_timer_return rtn = BLK_EH_NOT_HANDLED; 134 struct Scsi_Host *host = scmd->device->host; 135 136 trace_scsi_dispatch_cmd_timeout(scmd); 137 scsi_log_completion(scmd, TIMEOUT_ERROR); 138 139 if (host->transportt->eh_timed_out) 140 rtn = host->transportt->eh_timed_out(scmd); 141 else if (host->hostt->eh_timed_out) 142 rtn = host->hostt->eh_timed_out(scmd); 143 144 if (unlikely(rtn == BLK_EH_NOT_HANDLED && 145 !scsi_eh_scmd_add(scmd, SCSI_EH_CANCEL_CMD))) { 146 scmd->result |= DID_TIME_OUT << 16; 147 rtn = BLK_EH_HANDLED; 148 } 149 150 return rtn; 151 } 152 153 /** 154 * scsi_block_when_processing_errors - Prevent cmds from being queued. 155 * @sdev: Device on which we are performing recovery. 156 * 157 * Description: 158 * We block until the host is out of error recovery, and then check to 159 * see whether the host or the device is offline. 160 * 161 * Return value: 162 * 0 when dev was taken offline by error recovery. 1 OK to proceed. 163 */ 164 int scsi_block_when_processing_errors(struct scsi_device *sdev) 165 { 166 int online; 167 168 wait_event(sdev->host->host_wait, !scsi_host_in_recovery(sdev->host)); 169 170 online = scsi_device_online(sdev); 171 172 SCSI_LOG_ERROR_RECOVERY(5, printk("%s: rtn: %d\n", __func__, 173 online)); 174 175 return online; 176 } 177 EXPORT_SYMBOL(scsi_block_when_processing_errors); 178 179 #ifdef CONFIG_SCSI_LOGGING 180 /** 181 * scsi_eh_prt_fail_stats - Log info on failures. 182 * @shost: scsi host being recovered. 183 * @work_q: Queue of scsi cmds to process. 184 */ 185 static inline void scsi_eh_prt_fail_stats(struct Scsi_Host *shost, 186 struct list_head *work_q) 187 { 188 struct scsi_cmnd *scmd; 189 struct scsi_device *sdev; 190 int total_failures = 0; 191 int cmd_failed = 0; 192 int cmd_cancel = 0; 193 int devices_failed = 0; 194 195 shost_for_each_device(sdev, shost) { 196 list_for_each_entry(scmd, work_q, eh_entry) { 197 if (scmd->device == sdev) { 198 ++total_failures; 199 if (scmd->eh_eflags & SCSI_EH_CANCEL_CMD) 200 ++cmd_cancel; 201 else 202 ++cmd_failed; 203 } 204 } 205 206 if (cmd_cancel || cmd_failed) { 207 SCSI_LOG_ERROR_RECOVERY(3, 208 sdev_printk(KERN_INFO, sdev, 209 "%s: cmds failed: %d, cancel: %d\n", 210 __func__, cmd_failed, 211 cmd_cancel)); 212 cmd_cancel = 0; 213 cmd_failed = 0; 214 ++devices_failed; 215 } 216 } 217 218 SCSI_LOG_ERROR_RECOVERY(2, printk("Total of %d commands on %d" 219 " devices require eh work\n", 220 total_failures, devices_failed)); 221 } 222 #endif 223 224 /** 225 * scsi_check_sense - Examine scsi cmd sense 226 * @scmd: Cmd to have sense checked. 227 * 228 * Return value: 229 * SUCCESS or FAILED or NEEDS_RETRY or TARGET_ERROR 230 * 231 * Notes: 232 * When a deferred error is detected the current command has 233 * not been executed and needs retrying. 234 */ 235 static int scsi_check_sense(struct scsi_cmnd *scmd) 236 { 237 struct scsi_device *sdev = scmd->device; 238 struct scsi_sense_hdr sshdr; 239 240 if (! scsi_command_normalize_sense(scmd, &sshdr)) 241 return FAILED; /* no valid sense data */ 242 243 if (scsi_sense_is_deferred(&sshdr)) 244 return NEEDS_RETRY; 245 246 if (sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh && 247 sdev->scsi_dh_data->scsi_dh->check_sense) { 248 int rc; 249 250 rc = sdev->scsi_dh_data->scsi_dh->check_sense(sdev, &sshdr); 251 if (rc != SCSI_RETURN_NOT_HANDLED) 252 return rc; 253 /* handler does not care. Drop down to default handling */ 254 } 255 256 /* 257 * Previous logic looked for FILEMARK, EOM or ILI which are 258 * mainly associated with tapes and returned SUCCESS. 259 */ 260 if (sshdr.response_code == 0x70) { 261 /* fixed format */ 262 if (scmd->sense_buffer[2] & 0xe0) 263 return SUCCESS; 264 } else { 265 /* 266 * descriptor format: look for "stream commands sense data 267 * descriptor" (see SSC-3). Assume single sense data 268 * descriptor. Ignore ILI from SBC-2 READ LONG and WRITE LONG. 269 */ 270 if ((sshdr.additional_length > 3) && 271 (scmd->sense_buffer[8] == 0x4) && 272 (scmd->sense_buffer[11] & 0xe0)) 273 return SUCCESS; 274 } 275 276 switch (sshdr.sense_key) { 277 case NO_SENSE: 278 return SUCCESS; 279 case RECOVERED_ERROR: 280 return /* soft_error */ SUCCESS; 281 282 case ABORTED_COMMAND: 283 if (sshdr.asc == 0x10) /* DIF */ 284 return SUCCESS; 285 286 return NEEDS_RETRY; 287 case NOT_READY: 288 case UNIT_ATTENTION: 289 /* 290 * if we are expecting a cc/ua because of a bus reset that we 291 * performed, treat this just as a retry. otherwise this is 292 * information that we should pass up to the upper-level driver 293 * so that we can deal with it there. 294 */ 295 if (scmd->device->expecting_cc_ua) { 296 /* 297 * Because some device does not queue unit 298 * attentions correctly, we carefully check 299 * additional sense code and qualifier so as 300 * not to squash media change unit attention. 301 */ 302 if (sshdr.asc != 0x28 || sshdr.ascq != 0x00) { 303 scmd->device->expecting_cc_ua = 0; 304 return NEEDS_RETRY; 305 } 306 } 307 /* 308 * if the device is in the process of becoming ready, we 309 * should retry. 310 */ 311 if ((sshdr.asc == 0x04) && (sshdr.ascq == 0x01)) 312 return NEEDS_RETRY; 313 /* 314 * if the device is not started, we need to wake 315 * the error handler to start the motor 316 */ 317 if (scmd->device->allow_restart && 318 (sshdr.asc == 0x04) && (sshdr.ascq == 0x02)) 319 return FAILED; 320 321 if (sshdr.asc == 0x3f && sshdr.ascq == 0x0e) 322 scmd_printk(KERN_WARNING, scmd, 323 "Warning! Received an indication that the " 324 "LUN assignments on this target have " 325 "changed. The Linux SCSI layer does not " 326 "automatically remap LUN assignments.\n"); 327 else if (sshdr.asc == 0x3f) 328 scmd_printk(KERN_WARNING, scmd, 329 "Warning! Received an indication that the " 330 "operating parameters on this target have " 331 "changed. The Linux SCSI layer does not " 332 "automatically adjust these parameters.\n"); 333 334 if (sshdr.asc == 0x38 && sshdr.ascq == 0x07) 335 scmd_printk(KERN_WARNING, scmd, 336 "Warning! Received an indication that the " 337 "LUN reached a thin provisioning soft " 338 "threshold.\n"); 339 340 /* 341 * Pass the UA upwards for a determination in the completion 342 * functions. 343 */ 344 return SUCCESS; 345 346 /* these are not supported */ 347 case COPY_ABORTED: 348 case VOLUME_OVERFLOW: 349 case MISCOMPARE: 350 case BLANK_CHECK: 351 case DATA_PROTECT: 352 return TARGET_ERROR; 353 354 case MEDIUM_ERROR: 355 if (sshdr.asc == 0x11 || /* UNRECOVERED READ ERR */ 356 sshdr.asc == 0x13 || /* AMNF DATA FIELD */ 357 sshdr.asc == 0x14) { /* RECORD NOT FOUND */ 358 return TARGET_ERROR; 359 } 360 return NEEDS_RETRY; 361 362 case HARDWARE_ERROR: 363 if (scmd->device->retry_hwerror) 364 return ADD_TO_MLQUEUE; 365 else 366 return TARGET_ERROR; 367 368 case ILLEGAL_REQUEST: 369 default: 370 return SUCCESS; 371 } 372 } 373 374 static void scsi_handle_queue_ramp_up(struct scsi_device *sdev) 375 { 376 struct scsi_host_template *sht = sdev->host->hostt; 377 struct scsi_device *tmp_sdev; 378 379 if (!sht->change_queue_depth || 380 sdev->queue_depth >= sdev->max_queue_depth) 381 return; 382 383 if (time_before(jiffies, 384 sdev->last_queue_ramp_up + sdev->queue_ramp_up_period)) 385 return; 386 387 if (time_before(jiffies, 388 sdev->last_queue_full_time + sdev->queue_ramp_up_period)) 389 return; 390 391 /* 392 * Walk all devices of a target and do 393 * ramp up on them. 394 */ 395 shost_for_each_device(tmp_sdev, sdev->host) { 396 if (tmp_sdev->channel != sdev->channel || 397 tmp_sdev->id != sdev->id || 398 tmp_sdev->queue_depth == sdev->max_queue_depth) 399 continue; 400 /* 401 * call back into LLD to increase queue_depth by one 402 * with ramp up reason code. 403 */ 404 sht->change_queue_depth(tmp_sdev, tmp_sdev->queue_depth + 1, 405 SCSI_QDEPTH_RAMP_UP); 406 sdev->last_queue_ramp_up = jiffies; 407 } 408 } 409 410 static void scsi_handle_queue_full(struct scsi_device *sdev) 411 { 412 struct scsi_host_template *sht = sdev->host->hostt; 413 struct scsi_device *tmp_sdev; 414 415 if (!sht->change_queue_depth) 416 return; 417 418 shost_for_each_device(tmp_sdev, sdev->host) { 419 if (tmp_sdev->channel != sdev->channel || 420 tmp_sdev->id != sdev->id) 421 continue; 422 /* 423 * We do not know the number of commands that were at 424 * the device when we got the queue full so we start 425 * from the highest possible value and work our way down. 426 */ 427 sht->change_queue_depth(tmp_sdev, tmp_sdev->queue_depth - 1, 428 SCSI_QDEPTH_QFULL); 429 } 430 } 431 432 /** 433 * scsi_eh_completed_normally - Disposition a eh cmd on return from LLD. 434 * @scmd: SCSI cmd to examine. 435 * 436 * Notes: 437 * This is *only* called when we are examining the status of commands 438 * queued during error recovery. the main difference here is that we 439 * don't allow for the possibility of retries here, and we are a lot 440 * more restrictive about what we consider acceptable. 441 */ 442 static int scsi_eh_completed_normally(struct scsi_cmnd *scmd) 443 { 444 /* 445 * first check the host byte, to see if there is anything in there 446 * that would indicate what we need to do. 447 */ 448 if (host_byte(scmd->result) == DID_RESET) { 449 /* 450 * rats. we are already in the error handler, so we now 451 * get to try and figure out what to do next. if the sense 452 * is valid, we have a pretty good idea of what to do. 453 * if not, we mark it as FAILED. 454 */ 455 return scsi_check_sense(scmd); 456 } 457 if (host_byte(scmd->result) != DID_OK) 458 return FAILED; 459 460 /* 461 * next, check the message byte. 462 */ 463 if (msg_byte(scmd->result) != COMMAND_COMPLETE) 464 return FAILED; 465 466 /* 467 * now, check the status byte to see if this indicates 468 * anything special. 469 */ 470 switch (status_byte(scmd->result)) { 471 case GOOD: 472 scsi_handle_queue_ramp_up(scmd->device); 473 case COMMAND_TERMINATED: 474 return SUCCESS; 475 case CHECK_CONDITION: 476 return scsi_check_sense(scmd); 477 case CONDITION_GOOD: 478 case INTERMEDIATE_GOOD: 479 case INTERMEDIATE_C_GOOD: 480 /* 481 * who knows? FIXME(eric) 482 */ 483 return SUCCESS; 484 case RESERVATION_CONFLICT: 485 if (scmd->cmnd[0] == TEST_UNIT_READY) 486 /* it is a success, we probed the device and 487 * found it */ 488 return SUCCESS; 489 /* otherwise, we failed to send the command */ 490 return FAILED; 491 case QUEUE_FULL: 492 scsi_handle_queue_full(scmd->device); 493 /* fall through */ 494 case BUSY: 495 return NEEDS_RETRY; 496 default: 497 return FAILED; 498 } 499 return FAILED; 500 } 501 502 /** 503 * scsi_eh_done - Completion function for error handling. 504 * @scmd: Cmd that is done. 505 */ 506 static void scsi_eh_done(struct scsi_cmnd *scmd) 507 { 508 struct completion *eh_action; 509 510 SCSI_LOG_ERROR_RECOVERY(3, 511 printk("%s scmd: %p result: %x\n", 512 __func__, scmd, scmd->result)); 513 514 eh_action = scmd->device->host->eh_action; 515 if (eh_action) 516 complete(eh_action); 517 } 518 519 /** 520 * scsi_try_host_reset - ask host adapter to reset itself 521 * @scmd: SCSI cmd to send hsot reset. 522 */ 523 static int scsi_try_host_reset(struct scsi_cmnd *scmd) 524 { 525 unsigned long flags; 526 int rtn; 527 struct Scsi_Host *host = scmd->device->host; 528 struct scsi_host_template *hostt = host->hostt; 529 530 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Snd Host RST\n", 531 __func__)); 532 533 if (!hostt->eh_host_reset_handler) 534 return FAILED; 535 536 rtn = hostt->eh_host_reset_handler(scmd); 537 538 if (rtn == SUCCESS) { 539 if (!hostt->skip_settle_delay) 540 ssleep(HOST_RESET_SETTLE_TIME); 541 spin_lock_irqsave(host->host_lock, flags); 542 scsi_report_bus_reset(host, scmd_channel(scmd)); 543 spin_unlock_irqrestore(host->host_lock, flags); 544 } 545 546 return rtn; 547 } 548 549 /** 550 * scsi_try_bus_reset - ask host to perform a bus reset 551 * @scmd: SCSI cmd to send bus reset. 552 */ 553 static int scsi_try_bus_reset(struct scsi_cmnd *scmd) 554 { 555 unsigned long flags; 556 int rtn; 557 struct Scsi_Host *host = scmd->device->host; 558 struct scsi_host_template *hostt = host->hostt; 559 560 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Snd Bus RST\n", 561 __func__)); 562 563 if (!hostt->eh_bus_reset_handler) 564 return FAILED; 565 566 rtn = hostt->eh_bus_reset_handler(scmd); 567 568 if (rtn == SUCCESS) { 569 if (!hostt->skip_settle_delay) 570 ssleep(BUS_RESET_SETTLE_TIME); 571 spin_lock_irqsave(host->host_lock, flags); 572 scsi_report_bus_reset(host, scmd_channel(scmd)); 573 spin_unlock_irqrestore(host->host_lock, flags); 574 } 575 576 return rtn; 577 } 578 579 static void __scsi_report_device_reset(struct scsi_device *sdev, void *data) 580 { 581 sdev->was_reset = 1; 582 sdev->expecting_cc_ua = 1; 583 } 584 585 /** 586 * scsi_try_target_reset - Ask host to perform a target reset 587 * @scmd: SCSI cmd used to send a target reset 588 * 589 * Notes: 590 * There is no timeout for this operation. if this operation is 591 * unreliable for a given host, then the host itself needs to put a 592 * timer on it, and set the host back to a consistent state prior to 593 * returning. 594 */ 595 static int scsi_try_target_reset(struct scsi_cmnd *scmd) 596 { 597 unsigned long flags; 598 int rtn; 599 struct Scsi_Host *host = scmd->device->host; 600 struct scsi_host_template *hostt = host->hostt; 601 602 if (!hostt->eh_target_reset_handler) 603 return FAILED; 604 605 rtn = hostt->eh_target_reset_handler(scmd); 606 if (rtn == SUCCESS) { 607 spin_lock_irqsave(host->host_lock, flags); 608 __starget_for_each_device(scsi_target(scmd->device), NULL, 609 __scsi_report_device_reset); 610 spin_unlock_irqrestore(host->host_lock, flags); 611 } 612 613 return rtn; 614 } 615 616 /** 617 * scsi_try_bus_device_reset - Ask host to perform a BDR on a dev 618 * @scmd: SCSI cmd used to send BDR 619 * 620 * Notes: 621 * There is no timeout for this operation. if this operation is 622 * unreliable for a given host, then the host itself needs to put a 623 * timer on it, and set the host back to a consistent state prior to 624 * returning. 625 */ 626 static int scsi_try_bus_device_reset(struct scsi_cmnd *scmd) 627 { 628 int rtn; 629 struct scsi_host_template *hostt = scmd->device->host->hostt; 630 631 if (!hostt->eh_device_reset_handler) 632 return FAILED; 633 634 rtn = hostt->eh_device_reset_handler(scmd); 635 if (rtn == SUCCESS) 636 __scsi_report_device_reset(scmd->device, NULL); 637 return rtn; 638 } 639 640 static int scsi_try_to_abort_cmd(struct scsi_host_template *hostt, struct scsi_cmnd *scmd) 641 { 642 if (!hostt->eh_abort_handler) 643 return FAILED; 644 645 return hostt->eh_abort_handler(scmd); 646 } 647 648 static void scsi_abort_eh_cmnd(struct scsi_cmnd *scmd) 649 { 650 if (scsi_try_to_abort_cmd(scmd->device->host->hostt, scmd) != SUCCESS) 651 if (scsi_try_bus_device_reset(scmd) != SUCCESS) 652 if (scsi_try_target_reset(scmd) != SUCCESS) 653 if (scsi_try_bus_reset(scmd) != SUCCESS) 654 scsi_try_host_reset(scmd); 655 } 656 657 /** 658 * scsi_eh_prep_cmnd - Save a scsi command info as part of error recory 659 * @scmd: SCSI command structure to hijack 660 * @ses: structure to save restore information 661 * @cmnd: CDB to send. Can be NULL if no new cmnd is needed 662 * @cmnd_size: size in bytes of @cmnd (must be <= BLK_MAX_CDB) 663 * @sense_bytes: size of sense data to copy. or 0 (if != 0 @cmnd is ignored) 664 * 665 * This function is used to save a scsi command information before re-execution 666 * as part of the error recovery process. If @sense_bytes is 0 the command 667 * sent must be one that does not transfer any data. If @sense_bytes != 0 668 * @cmnd is ignored and this functions sets up a REQUEST_SENSE command 669 * and cmnd buffers to read @sense_bytes into @scmd->sense_buffer. 670 */ 671 void scsi_eh_prep_cmnd(struct scsi_cmnd *scmd, struct scsi_eh_save *ses, 672 unsigned char *cmnd, int cmnd_size, unsigned sense_bytes) 673 { 674 struct scsi_device *sdev = scmd->device; 675 676 /* 677 * We need saved copies of a number of fields - this is because 678 * error handling may need to overwrite these with different values 679 * to run different commands, and once error handling is complete, 680 * we will need to restore these values prior to running the actual 681 * command. 682 */ 683 ses->cmd_len = scmd->cmd_len; 684 ses->cmnd = scmd->cmnd; 685 ses->data_direction = scmd->sc_data_direction; 686 ses->sdb = scmd->sdb; 687 ses->next_rq = scmd->request->next_rq; 688 ses->result = scmd->result; 689 ses->underflow = scmd->underflow; 690 ses->prot_op = scmd->prot_op; 691 692 scmd->prot_op = SCSI_PROT_NORMAL; 693 scmd->cmnd = ses->eh_cmnd; 694 memset(scmd->cmnd, 0, BLK_MAX_CDB); 695 memset(&scmd->sdb, 0, sizeof(scmd->sdb)); 696 scmd->request->next_rq = NULL; 697 698 if (sense_bytes) { 699 scmd->sdb.length = min_t(unsigned, SCSI_SENSE_BUFFERSIZE, 700 sense_bytes); 701 sg_init_one(&ses->sense_sgl, scmd->sense_buffer, 702 scmd->sdb.length); 703 scmd->sdb.table.sgl = &ses->sense_sgl; 704 scmd->sc_data_direction = DMA_FROM_DEVICE; 705 scmd->sdb.table.nents = 1; 706 scmd->cmnd[0] = REQUEST_SENSE; 707 scmd->cmnd[4] = scmd->sdb.length; 708 scmd->cmd_len = COMMAND_SIZE(scmd->cmnd[0]); 709 } else { 710 scmd->sc_data_direction = DMA_NONE; 711 if (cmnd) { 712 BUG_ON(cmnd_size > BLK_MAX_CDB); 713 memcpy(scmd->cmnd, cmnd, cmnd_size); 714 scmd->cmd_len = COMMAND_SIZE(scmd->cmnd[0]); 715 } 716 } 717 718 scmd->underflow = 0; 719 720 if (sdev->scsi_level <= SCSI_2 && sdev->scsi_level != SCSI_UNKNOWN) 721 scmd->cmnd[1] = (scmd->cmnd[1] & 0x1f) | 722 (sdev->lun << 5 & 0xe0); 723 724 /* 725 * Zero the sense buffer. The scsi spec mandates that any 726 * untransferred sense data should be interpreted as being zero. 727 */ 728 memset(scmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 729 } 730 EXPORT_SYMBOL(scsi_eh_prep_cmnd); 731 732 /** 733 * scsi_eh_restore_cmnd - Restore a scsi command info as part of error recory 734 * @scmd: SCSI command structure to restore 735 * @ses: saved information from a coresponding call to scsi_eh_prep_cmnd 736 * 737 * Undo any damage done by above scsi_eh_prep_cmnd(). 738 */ 739 void scsi_eh_restore_cmnd(struct scsi_cmnd* scmd, struct scsi_eh_save *ses) 740 { 741 /* 742 * Restore original data 743 */ 744 scmd->cmd_len = ses->cmd_len; 745 scmd->cmnd = ses->cmnd; 746 scmd->sc_data_direction = ses->data_direction; 747 scmd->sdb = ses->sdb; 748 scmd->request->next_rq = ses->next_rq; 749 scmd->result = ses->result; 750 scmd->underflow = ses->underflow; 751 scmd->prot_op = ses->prot_op; 752 } 753 EXPORT_SYMBOL(scsi_eh_restore_cmnd); 754 755 /** 756 * scsi_send_eh_cmnd - submit a scsi command as part of error recory 757 * @scmd: SCSI command structure to hijack 758 * @cmnd: CDB to send 759 * @cmnd_size: size in bytes of @cmnd 760 * @timeout: timeout for this request 761 * @sense_bytes: size of sense data to copy or 0 762 * 763 * This function is used to send a scsi command down to a target device 764 * as part of the error recovery process. See also scsi_eh_prep_cmnd() above. 765 * 766 * Return value: 767 * SUCCESS or FAILED or NEEDS_RETRY 768 */ 769 static int scsi_send_eh_cmnd(struct scsi_cmnd *scmd, unsigned char *cmnd, 770 int cmnd_size, int timeout, unsigned sense_bytes) 771 { 772 struct scsi_device *sdev = scmd->device; 773 struct Scsi_Host *shost = sdev->host; 774 DECLARE_COMPLETION_ONSTACK(done); 775 unsigned long timeleft; 776 struct scsi_eh_save ses; 777 int rtn; 778 779 scsi_eh_prep_cmnd(scmd, &ses, cmnd, cmnd_size, sense_bytes); 780 shost->eh_action = &done; 781 782 scsi_log_send(scmd); 783 scmd->scsi_done = scsi_eh_done; 784 shost->hostt->queuecommand(shost, scmd); 785 786 timeleft = wait_for_completion_timeout(&done, timeout); 787 788 shost->eh_action = NULL; 789 790 scsi_log_completion(scmd, SUCCESS); 791 792 SCSI_LOG_ERROR_RECOVERY(3, 793 printk("%s: scmd: %p, timeleft: %ld\n", 794 __func__, scmd, timeleft)); 795 796 /* 797 * If there is time left scsi_eh_done got called, and we will 798 * examine the actual status codes to see whether the command 799 * actually did complete normally, else tell the host to forget 800 * about this command. 801 */ 802 if (timeleft) { 803 rtn = scsi_eh_completed_normally(scmd); 804 SCSI_LOG_ERROR_RECOVERY(3, 805 printk("%s: scsi_eh_completed_normally %x\n", 806 __func__, rtn)); 807 808 switch (rtn) { 809 case SUCCESS: 810 case NEEDS_RETRY: 811 case FAILED: 812 case TARGET_ERROR: 813 break; 814 case ADD_TO_MLQUEUE: 815 rtn = NEEDS_RETRY; 816 break; 817 default: 818 rtn = FAILED; 819 break; 820 } 821 } else { 822 scsi_abort_eh_cmnd(scmd); 823 rtn = FAILED; 824 } 825 826 scsi_eh_restore_cmnd(scmd, &ses); 827 return rtn; 828 } 829 830 /** 831 * scsi_request_sense - Request sense data from a particular target. 832 * @scmd: SCSI cmd for request sense. 833 * 834 * Notes: 835 * Some hosts automatically obtain this information, others require 836 * that we obtain it on our own. This function will *not* return until 837 * the command either times out, or it completes. 838 */ 839 static int scsi_request_sense(struct scsi_cmnd *scmd) 840 { 841 return scsi_send_eh_cmnd(scmd, NULL, 0, SENSE_TIMEOUT, ~0); 842 } 843 844 /** 845 * scsi_eh_finish_cmd - Handle a cmd that eh is finished with. 846 * @scmd: Original SCSI cmd that eh has finished. 847 * @done_q: Queue for processed commands. 848 * 849 * Notes: 850 * We don't want to use the normal command completion while we are are 851 * still handling errors - it may cause other commands to be queued, 852 * and that would disturb what we are doing. Thus we really want to 853 * keep a list of pending commands for final completion, and once we 854 * are ready to leave error handling we handle completion for real. 855 */ 856 void scsi_eh_finish_cmd(struct scsi_cmnd *scmd, struct list_head *done_q) 857 { 858 scmd->device->host->host_failed--; 859 scmd->eh_eflags = 0; 860 list_move_tail(&scmd->eh_entry, done_q); 861 } 862 EXPORT_SYMBOL(scsi_eh_finish_cmd); 863 864 /** 865 * scsi_eh_get_sense - Get device sense data. 866 * @work_q: Queue of commands to process. 867 * @done_q: Queue of processed commands. 868 * 869 * Description: 870 * See if we need to request sense information. if so, then get it 871 * now, so we have a better idea of what to do. 872 * 873 * Notes: 874 * This has the unfortunate side effect that if a shost adapter does 875 * not automatically request sense information, we end up shutting 876 * it down before we request it. 877 * 878 * All drivers should request sense information internally these days, 879 * so for now all I have to say is tough noogies if you end up in here. 880 * 881 * XXX: Long term this code should go away, but that needs an audit of 882 * all LLDDs first. 883 */ 884 int scsi_eh_get_sense(struct list_head *work_q, 885 struct list_head *done_q) 886 { 887 struct scsi_cmnd *scmd, *next; 888 int rtn; 889 890 list_for_each_entry_safe(scmd, next, work_q, eh_entry) { 891 if ((scmd->eh_eflags & SCSI_EH_CANCEL_CMD) || 892 SCSI_SENSE_VALID(scmd)) 893 continue; 894 895 SCSI_LOG_ERROR_RECOVERY(2, scmd_printk(KERN_INFO, scmd, 896 "%s: requesting sense\n", 897 current->comm)); 898 rtn = scsi_request_sense(scmd); 899 if (rtn != SUCCESS) 900 continue; 901 902 SCSI_LOG_ERROR_RECOVERY(3, printk("sense requested for %p" 903 " result %x\n", scmd, 904 scmd->result)); 905 SCSI_LOG_ERROR_RECOVERY(3, scsi_print_sense("bh", scmd)); 906 907 rtn = scsi_decide_disposition(scmd); 908 909 /* 910 * if the result was normal, then just pass it along to the 911 * upper level. 912 */ 913 if (rtn == SUCCESS) 914 /* we don't want this command reissued, just 915 * finished with the sense data, so set 916 * retries to the max allowed to ensure it 917 * won't get reissued */ 918 scmd->retries = scmd->allowed; 919 else if (rtn != NEEDS_RETRY) 920 continue; 921 922 scsi_eh_finish_cmd(scmd, done_q); 923 } 924 925 return list_empty(work_q); 926 } 927 EXPORT_SYMBOL_GPL(scsi_eh_get_sense); 928 929 /** 930 * scsi_eh_tur - Send TUR to device. 931 * @scmd: &scsi_cmnd to send TUR 932 * 933 * Return value: 934 * 0 - Device is ready. 1 - Device NOT ready. 935 */ 936 static int scsi_eh_tur(struct scsi_cmnd *scmd) 937 { 938 static unsigned char tur_command[6] = {TEST_UNIT_READY, 0, 0, 0, 0, 0}; 939 int retry_cnt = 1, rtn; 940 941 retry_tur: 942 rtn = scsi_send_eh_cmnd(scmd, tur_command, 6, SENSE_TIMEOUT, 0); 943 944 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: scmd %p rtn %x\n", 945 __func__, scmd, rtn)); 946 947 switch (rtn) { 948 case NEEDS_RETRY: 949 if (retry_cnt--) 950 goto retry_tur; 951 /*FALLTHRU*/ 952 case SUCCESS: 953 return 0; 954 default: 955 return 1; 956 } 957 } 958 959 /** 960 * scsi_eh_test_devices - check if devices are responding from error recovery. 961 * @cmd_list: scsi commands in error recovery. 962 * @work_q: queue for commands which still need more error recovery 963 * @done_q: queue for commands which are finished 964 * @try_stu: boolean on if a STU command should be tried in addition to TUR. 965 * 966 * Decription: 967 * Tests if devices are in a working state. Commands to devices now in 968 * a working state are sent to the done_q while commands to devices which 969 * are still failing to respond are returned to the work_q for more 970 * processing. 971 **/ 972 static int scsi_eh_test_devices(struct list_head *cmd_list, 973 struct list_head *work_q, 974 struct list_head *done_q, int try_stu) 975 { 976 struct scsi_cmnd *scmd, *next; 977 struct scsi_device *sdev; 978 int finish_cmds; 979 980 while (!list_empty(cmd_list)) { 981 scmd = list_entry(cmd_list->next, struct scsi_cmnd, eh_entry); 982 sdev = scmd->device; 983 984 finish_cmds = !scsi_device_online(scmd->device) || 985 (try_stu && !scsi_eh_try_stu(scmd) && 986 !scsi_eh_tur(scmd)) || 987 !scsi_eh_tur(scmd); 988 989 list_for_each_entry_safe(scmd, next, cmd_list, eh_entry) 990 if (scmd->device == sdev) { 991 if (finish_cmds) 992 scsi_eh_finish_cmd(scmd, done_q); 993 else 994 list_move_tail(&scmd->eh_entry, work_q); 995 } 996 } 997 return list_empty(work_q); 998 } 999 1000 1001 /** 1002 * scsi_eh_abort_cmds - abort pending commands. 1003 * @work_q: &list_head for pending commands. 1004 * @done_q: &list_head for processed commands. 1005 * 1006 * Decription: 1007 * Try and see whether or not it makes sense to try and abort the 1008 * running command. This only works out to be the case if we have one 1009 * command that has timed out. If the command simply failed, it makes 1010 * no sense to try and abort the command, since as far as the shost 1011 * adapter is concerned, it isn't running. 1012 */ 1013 static int scsi_eh_abort_cmds(struct list_head *work_q, 1014 struct list_head *done_q) 1015 { 1016 struct scsi_cmnd *scmd, *next; 1017 LIST_HEAD(check_list); 1018 int rtn; 1019 1020 list_for_each_entry_safe(scmd, next, work_q, eh_entry) { 1021 if (!(scmd->eh_eflags & SCSI_EH_CANCEL_CMD)) 1022 continue; 1023 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: aborting cmd:" 1024 "0x%p\n", current->comm, 1025 scmd)); 1026 rtn = scsi_try_to_abort_cmd(scmd->device->host->hostt, scmd); 1027 if (rtn == SUCCESS || rtn == FAST_IO_FAIL) { 1028 scmd->eh_eflags &= ~SCSI_EH_CANCEL_CMD; 1029 if (rtn == FAST_IO_FAIL) 1030 scsi_eh_finish_cmd(scmd, done_q); 1031 else 1032 list_move_tail(&scmd->eh_entry, &check_list); 1033 } else 1034 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: aborting" 1035 " cmd failed:" 1036 "0x%p\n", 1037 current->comm, 1038 scmd)); 1039 } 1040 1041 return scsi_eh_test_devices(&check_list, work_q, done_q, 0); 1042 } 1043 1044 /** 1045 * scsi_eh_try_stu - Send START_UNIT to device. 1046 * @scmd: &scsi_cmnd to send START_UNIT 1047 * 1048 * Return value: 1049 * 0 - Device is ready. 1 - Device NOT ready. 1050 */ 1051 static int scsi_eh_try_stu(struct scsi_cmnd *scmd) 1052 { 1053 static unsigned char stu_command[6] = {START_STOP, 0, 0, 0, 1, 0}; 1054 1055 if (scmd->device->allow_restart) { 1056 int i, rtn = NEEDS_RETRY; 1057 1058 for (i = 0; rtn == NEEDS_RETRY && i < 2; i++) 1059 rtn = scsi_send_eh_cmnd(scmd, stu_command, 6, scmd->device->request_queue->rq_timeout, 0); 1060 1061 if (rtn == SUCCESS) 1062 return 0; 1063 } 1064 1065 return 1; 1066 } 1067 1068 /** 1069 * scsi_eh_stu - send START_UNIT if needed 1070 * @shost: &scsi host being recovered. 1071 * @work_q: &list_head for pending commands. 1072 * @done_q: &list_head for processed commands. 1073 * 1074 * Notes: 1075 * If commands are failing due to not ready, initializing command required, 1076 * try revalidating the device, which will end up sending a start unit. 1077 */ 1078 static int scsi_eh_stu(struct Scsi_Host *shost, 1079 struct list_head *work_q, 1080 struct list_head *done_q) 1081 { 1082 struct scsi_cmnd *scmd, *stu_scmd, *next; 1083 struct scsi_device *sdev; 1084 1085 shost_for_each_device(sdev, shost) { 1086 stu_scmd = NULL; 1087 list_for_each_entry(scmd, work_q, eh_entry) 1088 if (scmd->device == sdev && SCSI_SENSE_VALID(scmd) && 1089 scsi_check_sense(scmd) == FAILED ) { 1090 stu_scmd = scmd; 1091 break; 1092 } 1093 1094 if (!stu_scmd) 1095 continue; 1096 1097 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending START_UNIT to sdev:" 1098 " 0x%p\n", current->comm, sdev)); 1099 1100 if (!scsi_eh_try_stu(stu_scmd)) { 1101 if (!scsi_device_online(sdev) || 1102 !scsi_eh_tur(stu_scmd)) { 1103 list_for_each_entry_safe(scmd, next, 1104 work_q, eh_entry) { 1105 if (scmd->device == sdev) 1106 scsi_eh_finish_cmd(scmd, done_q); 1107 } 1108 } 1109 } else { 1110 SCSI_LOG_ERROR_RECOVERY(3, 1111 printk("%s: START_UNIT failed to sdev:" 1112 " 0x%p\n", current->comm, sdev)); 1113 } 1114 } 1115 1116 return list_empty(work_q); 1117 } 1118 1119 1120 /** 1121 * scsi_eh_bus_device_reset - send bdr if needed 1122 * @shost: scsi host being recovered. 1123 * @work_q: &list_head for pending commands. 1124 * @done_q: &list_head for processed commands. 1125 * 1126 * Notes: 1127 * Try a bus device reset. Still, look to see whether we have multiple 1128 * devices that are jammed or not - if we have multiple devices, it 1129 * makes no sense to try bus_device_reset - we really would need to try 1130 * a bus_reset instead. 1131 */ 1132 static int scsi_eh_bus_device_reset(struct Scsi_Host *shost, 1133 struct list_head *work_q, 1134 struct list_head *done_q) 1135 { 1136 struct scsi_cmnd *scmd, *bdr_scmd, *next; 1137 struct scsi_device *sdev; 1138 int rtn; 1139 1140 shost_for_each_device(sdev, shost) { 1141 bdr_scmd = NULL; 1142 list_for_each_entry(scmd, work_q, eh_entry) 1143 if (scmd->device == sdev) { 1144 bdr_scmd = scmd; 1145 break; 1146 } 1147 1148 if (!bdr_scmd) 1149 continue; 1150 1151 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending BDR sdev:" 1152 " 0x%p\n", current->comm, 1153 sdev)); 1154 rtn = scsi_try_bus_device_reset(bdr_scmd); 1155 if (rtn == SUCCESS || rtn == FAST_IO_FAIL) { 1156 if (!scsi_device_online(sdev) || 1157 rtn == FAST_IO_FAIL || 1158 !scsi_eh_tur(bdr_scmd)) { 1159 list_for_each_entry_safe(scmd, next, 1160 work_q, eh_entry) { 1161 if (scmd->device == sdev) 1162 scsi_eh_finish_cmd(scmd, 1163 done_q); 1164 } 1165 } 1166 } else { 1167 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: BDR" 1168 " failed sdev:" 1169 "0x%p\n", 1170 current->comm, 1171 sdev)); 1172 } 1173 } 1174 1175 return list_empty(work_q); 1176 } 1177 1178 /** 1179 * scsi_eh_target_reset - send target reset if needed 1180 * @shost: scsi host being recovered. 1181 * @work_q: &list_head for pending commands. 1182 * @done_q: &list_head for processed commands. 1183 * 1184 * Notes: 1185 * Try a target reset. 1186 */ 1187 static int scsi_eh_target_reset(struct Scsi_Host *shost, 1188 struct list_head *work_q, 1189 struct list_head *done_q) 1190 { 1191 LIST_HEAD(tmp_list); 1192 LIST_HEAD(check_list); 1193 1194 list_splice_init(work_q, &tmp_list); 1195 1196 while (!list_empty(&tmp_list)) { 1197 struct scsi_cmnd *next, *scmd; 1198 int rtn; 1199 unsigned int id; 1200 1201 scmd = list_entry(tmp_list.next, struct scsi_cmnd, eh_entry); 1202 id = scmd_id(scmd); 1203 1204 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending target reset " 1205 "to target %d\n", 1206 current->comm, id)); 1207 rtn = scsi_try_target_reset(scmd); 1208 if (rtn != SUCCESS && rtn != FAST_IO_FAIL) 1209 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Target reset" 1210 " failed target: " 1211 "%d\n", 1212 current->comm, id)); 1213 list_for_each_entry_safe(scmd, next, &tmp_list, eh_entry) { 1214 if (scmd_id(scmd) != id) 1215 continue; 1216 1217 if (rtn == SUCCESS) 1218 list_move_tail(&scmd->eh_entry, &check_list); 1219 else if (rtn == FAST_IO_FAIL) 1220 scsi_eh_finish_cmd(scmd, done_q); 1221 else 1222 /* push back on work queue for further processing */ 1223 list_move(&scmd->eh_entry, work_q); 1224 } 1225 } 1226 1227 return scsi_eh_test_devices(&check_list, work_q, done_q, 0); 1228 } 1229 1230 /** 1231 * scsi_eh_bus_reset - send a bus reset 1232 * @shost: &scsi host being recovered. 1233 * @work_q: &list_head for pending commands. 1234 * @done_q: &list_head for processed commands. 1235 */ 1236 static int scsi_eh_bus_reset(struct Scsi_Host *shost, 1237 struct list_head *work_q, 1238 struct list_head *done_q) 1239 { 1240 struct scsi_cmnd *scmd, *chan_scmd, *next; 1241 LIST_HEAD(check_list); 1242 unsigned int channel; 1243 int rtn; 1244 1245 /* 1246 * we really want to loop over the various channels, and do this on 1247 * a channel by channel basis. we should also check to see if any 1248 * of the failed commands are on soft_reset devices, and if so, skip 1249 * the reset. 1250 */ 1251 1252 for (channel = 0; channel <= shost->max_channel; channel++) { 1253 chan_scmd = NULL; 1254 list_for_each_entry(scmd, work_q, eh_entry) { 1255 if (channel == scmd_channel(scmd)) { 1256 chan_scmd = scmd; 1257 break; 1258 /* 1259 * FIXME add back in some support for 1260 * soft_reset devices. 1261 */ 1262 } 1263 } 1264 1265 if (!chan_scmd) 1266 continue; 1267 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending BRST chan:" 1268 " %d\n", current->comm, 1269 channel)); 1270 rtn = scsi_try_bus_reset(chan_scmd); 1271 if (rtn == SUCCESS || rtn == FAST_IO_FAIL) { 1272 list_for_each_entry_safe(scmd, next, work_q, eh_entry) { 1273 if (channel == scmd_channel(scmd)) { 1274 if (rtn == FAST_IO_FAIL) 1275 scsi_eh_finish_cmd(scmd, 1276 done_q); 1277 else 1278 list_move_tail(&scmd->eh_entry, 1279 &check_list); 1280 } 1281 } 1282 } else { 1283 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: BRST" 1284 " failed chan: %d\n", 1285 current->comm, 1286 channel)); 1287 } 1288 } 1289 return scsi_eh_test_devices(&check_list, work_q, done_q, 0); 1290 } 1291 1292 /** 1293 * scsi_eh_host_reset - send a host reset 1294 * @work_q: list_head for processed commands. 1295 * @done_q: list_head for processed commands. 1296 */ 1297 static int scsi_eh_host_reset(struct list_head *work_q, 1298 struct list_head *done_q) 1299 { 1300 struct scsi_cmnd *scmd, *next; 1301 LIST_HEAD(check_list); 1302 int rtn; 1303 1304 if (!list_empty(work_q)) { 1305 scmd = list_entry(work_q->next, 1306 struct scsi_cmnd, eh_entry); 1307 1308 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending HRST\n" 1309 , current->comm)); 1310 1311 rtn = scsi_try_host_reset(scmd); 1312 if (rtn == SUCCESS) { 1313 list_splice_init(work_q, &check_list); 1314 } else if (rtn == FAST_IO_FAIL) { 1315 list_for_each_entry_safe(scmd, next, work_q, eh_entry) { 1316 scsi_eh_finish_cmd(scmd, done_q); 1317 } 1318 } else { 1319 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: HRST" 1320 " failed\n", 1321 current->comm)); 1322 } 1323 } 1324 return scsi_eh_test_devices(&check_list, work_q, done_q, 1); 1325 } 1326 1327 /** 1328 * scsi_eh_offline_sdevs - offline scsi devices that fail to recover 1329 * @work_q: list_head for processed commands. 1330 * @done_q: list_head for processed commands. 1331 */ 1332 static void scsi_eh_offline_sdevs(struct list_head *work_q, 1333 struct list_head *done_q) 1334 { 1335 struct scsi_cmnd *scmd, *next; 1336 1337 list_for_each_entry_safe(scmd, next, work_q, eh_entry) { 1338 sdev_printk(KERN_INFO, scmd->device, "Device offlined - " 1339 "not ready after error recovery\n"); 1340 scsi_device_set_state(scmd->device, SDEV_OFFLINE); 1341 if (scmd->eh_eflags & SCSI_EH_CANCEL_CMD) { 1342 /* 1343 * FIXME: Handle lost cmds. 1344 */ 1345 } 1346 scsi_eh_finish_cmd(scmd, done_q); 1347 } 1348 return; 1349 } 1350 1351 /** 1352 * scsi_noretry_cmd - determinte if command should be failed fast 1353 * @scmd: SCSI cmd to examine. 1354 */ 1355 int scsi_noretry_cmd(struct scsi_cmnd *scmd) 1356 { 1357 switch (host_byte(scmd->result)) { 1358 case DID_OK: 1359 break; 1360 case DID_BUS_BUSY: 1361 return (scmd->request->cmd_flags & REQ_FAILFAST_TRANSPORT); 1362 case DID_PARITY: 1363 return (scmd->request->cmd_flags & REQ_FAILFAST_DEV); 1364 case DID_ERROR: 1365 if (msg_byte(scmd->result) == COMMAND_COMPLETE && 1366 status_byte(scmd->result) == RESERVATION_CONFLICT) 1367 return 0; 1368 /* fall through */ 1369 case DID_SOFT_ERROR: 1370 return (scmd->request->cmd_flags & REQ_FAILFAST_DRIVER); 1371 } 1372 1373 switch (status_byte(scmd->result)) { 1374 case CHECK_CONDITION: 1375 /* 1376 * assume caller has checked sense and determinted 1377 * the check condition was retryable. 1378 */ 1379 if (scmd->request->cmd_flags & REQ_FAILFAST_DEV || 1380 scmd->request->cmd_type == REQ_TYPE_BLOCK_PC) 1381 return 1; 1382 } 1383 1384 return 0; 1385 } 1386 1387 /** 1388 * scsi_decide_disposition - Disposition a cmd on return from LLD. 1389 * @scmd: SCSI cmd to examine. 1390 * 1391 * Notes: 1392 * This is *only* called when we are examining the status after sending 1393 * out the actual data command. any commands that are queued for error 1394 * recovery (e.g. test_unit_ready) do *not* come through here. 1395 * 1396 * When this routine returns failed, it means the error handler thread 1397 * is woken. In cases where the error code indicates an error that 1398 * doesn't require the error handler read (i.e. we don't need to 1399 * abort/reset), this function should return SUCCESS. 1400 */ 1401 int scsi_decide_disposition(struct scsi_cmnd *scmd) 1402 { 1403 int rtn; 1404 1405 /* 1406 * if the device is offline, then we clearly just pass the result back 1407 * up to the top level. 1408 */ 1409 if (!scsi_device_online(scmd->device)) { 1410 SCSI_LOG_ERROR_RECOVERY(5, printk("%s: device offline - report" 1411 " as SUCCESS\n", 1412 __func__)); 1413 return SUCCESS; 1414 } 1415 1416 /* 1417 * first check the host byte, to see if there is anything in there 1418 * that would indicate what we need to do. 1419 */ 1420 switch (host_byte(scmd->result)) { 1421 case DID_PASSTHROUGH: 1422 /* 1423 * no matter what, pass this through to the upper layer. 1424 * nuke this special code so that it looks like we are saying 1425 * did_ok. 1426 */ 1427 scmd->result &= 0xff00ffff; 1428 return SUCCESS; 1429 case DID_OK: 1430 /* 1431 * looks good. drop through, and check the next byte. 1432 */ 1433 break; 1434 case DID_NO_CONNECT: 1435 case DID_BAD_TARGET: 1436 case DID_ABORT: 1437 /* 1438 * note - this means that we just report the status back 1439 * to the top level driver, not that we actually think 1440 * that it indicates SUCCESS. 1441 */ 1442 return SUCCESS; 1443 /* 1444 * when the low level driver returns did_soft_error, 1445 * it is responsible for keeping an internal retry counter 1446 * in order to avoid endless loops (db) 1447 * 1448 * actually this is a bug in this function here. we should 1449 * be mindful of the maximum number of retries specified 1450 * and not get stuck in a loop. 1451 */ 1452 case DID_SOFT_ERROR: 1453 goto maybe_retry; 1454 case DID_IMM_RETRY: 1455 return NEEDS_RETRY; 1456 1457 case DID_REQUEUE: 1458 return ADD_TO_MLQUEUE; 1459 case DID_TRANSPORT_DISRUPTED: 1460 /* 1461 * LLD/transport was disrupted during processing of the IO. 1462 * The transport class is now blocked/blocking, 1463 * and the transport will decide what to do with the IO 1464 * based on its timers and recovery capablilities if 1465 * there are enough retries. 1466 */ 1467 goto maybe_retry; 1468 case DID_TRANSPORT_FAILFAST: 1469 /* 1470 * The transport decided to failfast the IO (most likely 1471 * the fast io fail tmo fired), so send IO directly upwards. 1472 */ 1473 return SUCCESS; 1474 case DID_ERROR: 1475 if (msg_byte(scmd->result) == COMMAND_COMPLETE && 1476 status_byte(scmd->result) == RESERVATION_CONFLICT) 1477 /* 1478 * execute reservation conflict processing code 1479 * lower down 1480 */ 1481 break; 1482 /* fallthrough */ 1483 case DID_BUS_BUSY: 1484 case DID_PARITY: 1485 goto maybe_retry; 1486 case DID_TIME_OUT: 1487 /* 1488 * when we scan the bus, we get timeout messages for 1489 * these commands if there is no device available. 1490 * other hosts report did_no_connect for the same thing. 1491 */ 1492 if ((scmd->cmnd[0] == TEST_UNIT_READY || 1493 scmd->cmnd[0] == INQUIRY)) { 1494 return SUCCESS; 1495 } else { 1496 return FAILED; 1497 } 1498 case DID_RESET: 1499 return SUCCESS; 1500 default: 1501 return FAILED; 1502 } 1503 1504 /* 1505 * next, check the message byte. 1506 */ 1507 if (msg_byte(scmd->result) != COMMAND_COMPLETE) 1508 return FAILED; 1509 1510 /* 1511 * check the status byte to see if this indicates anything special. 1512 */ 1513 switch (status_byte(scmd->result)) { 1514 case QUEUE_FULL: 1515 scsi_handle_queue_full(scmd->device); 1516 /* 1517 * the case of trying to send too many commands to a 1518 * tagged queueing device. 1519 */ 1520 case BUSY: 1521 /* 1522 * device can't talk to us at the moment. Should only 1523 * occur (SAM-3) when the task queue is empty, so will cause 1524 * the empty queue handling to trigger a stall in the 1525 * device. 1526 */ 1527 return ADD_TO_MLQUEUE; 1528 case GOOD: 1529 scsi_handle_queue_ramp_up(scmd->device); 1530 case COMMAND_TERMINATED: 1531 return SUCCESS; 1532 case TASK_ABORTED: 1533 goto maybe_retry; 1534 case CHECK_CONDITION: 1535 rtn = scsi_check_sense(scmd); 1536 if (rtn == NEEDS_RETRY) 1537 goto maybe_retry; 1538 else if (rtn == TARGET_ERROR) { 1539 /* 1540 * Need to modify host byte to signal a 1541 * permanent target failure 1542 */ 1543 scmd->result |= (DID_TARGET_FAILURE << 16); 1544 rtn = SUCCESS; 1545 } 1546 /* if rtn == FAILED, we have no sense information; 1547 * returning FAILED will wake the error handler thread 1548 * to collect the sense and redo the decide 1549 * disposition */ 1550 return rtn; 1551 case CONDITION_GOOD: 1552 case INTERMEDIATE_GOOD: 1553 case INTERMEDIATE_C_GOOD: 1554 case ACA_ACTIVE: 1555 /* 1556 * who knows? FIXME(eric) 1557 */ 1558 return SUCCESS; 1559 1560 case RESERVATION_CONFLICT: 1561 sdev_printk(KERN_INFO, scmd->device, 1562 "reservation conflict\n"); 1563 scmd->result |= (DID_NEXUS_FAILURE << 16); 1564 return SUCCESS; /* causes immediate i/o error */ 1565 default: 1566 return FAILED; 1567 } 1568 return FAILED; 1569 1570 maybe_retry: 1571 1572 /* we requeue for retry because the error was retryable, and 1573 * the request was not marked fast fail. Note that above, 1574 * even if the request is marked fast fail, we still requeue 1575 * for queue congestion conditions (QUEUE_FULL or BUSY) */ 1576 if ((++scmd->retries) <= scmd->allowed 1577 && !scsi_noretry_cmd(scmd)) { 1578 return NEEDS_RETRY; 1579 } else { 1580 /* 1581 * no more retries - report this one back to upper level. 1582 */ 1583 return SUCCESS; 1584 } 1585 } 1586 1587 static void eh_lock_door_done(struct request *req, int uptodate) 1588 { 1589 __blk_put_request(req->q, req); 1590 } 1591 1592 /** 1593 * scsi_eh_lock_door - Prevent medium removal for the specified device 1594 * @sdev: SCSI device to prevent medium removal 1595 * 1596 * Locking: 1597 * We must be called from process context. 1598 * 1599 * Notes: 1600 * We queue up an asynchronous "ALLOW MEDIUM REMOVAL" request on the 1601 * head of the devices request queue, and continue. 1602 */ 1603 static void scsi_eh_lock_door(struct scsi_device *sdev) 1604 { 1605 struct request *req; 1606 1607 /* 1608 * blk_get_request with GFP_KERNEL (__GFP_WAIT) sleeps until a 1609 * request becomes available 1610 */ 1611 req = blk_get_request(sdev->request_queue, READ, GFP_KERNEL); 1612 1613 req->cmd[0] = ALLOW_MEDIUM_REMOVAL; 1614 req->cmd[1] = 0; 1615 req->cmd[2] = 0; 1616 req->cmd[3] = 0; 1617 req->cmd[4] = SCSI_REMOVAL_PREVENT; 1618 req->cmd[5] = 0; 1619 1620 req->cmd_len = COMMAND_SIZE(req->cmd[0]); 1621 1622 req->cmd_type = REQ_TYPE_BLOCK_PC; 1623 req->cmd_flags |= REQ_QUIET; 1624 req->timeout = 10 * HZ; 1625 req->retries = 5; 1626 1627 blk_execute_rq_nowait(req->q, NULL, req, 1, eh_lock_door_done); 1628 } 1629 1630 /** 1631 * scsi_restart_operations - restart io operations to the specified host. 1632 * @shost: Host we are restarting. 1633 * 1634 * Notes: 1635 * When we entered the error handler, we blocked all further i/o to 1636 * this device. we need to 'reverse' this process. 1637 */ 1638 static void scsi_restart_operations(struct Scsi_Host *shost) 1639 { 1640 struct scsi_device *sdev; 1641 unsigned long flags; 1642 1643 /* 1644 * If the door was locked, we need to insert a door lock request 1645 * onto the head of the SCSI request queue for the device. There 1646 * is no point trying to lock the door of an off-line device. 1647 */ 1648 shost_for_each_device(sdev, shost) { 1649 if (scsi_device_online(sdev) && sdev->locked) 1650 scsi_eh_lock_door(sdev); 1651 } 1652 1653 /* 1654 * next free up anything directly waiting upon the host. this 1655 * will be requests for character device operations, and also for 1656 * ioctls to queued block devices. 1657 */ 1658 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: waking up host to restart\n", 1659 __func__)); 1660 1661 spin_lock_irqsave(shost->host_lock, flags); 1662 if (scsi_host_set_state(shost, SHOST_RUNNING)) 1663 if (scsi_host_set_state(shost, SHOST_CANCEL)) 1664 BUG_ON(scsi_host_set_state(shost, SHOST_DEL)); 1665 spin_unlock_irqrestore(shost->host_lock, flags); 1666 1667 wake_up(&shost->host_wait); 1668 1669 /* 1670 * finally we need to re-initiate requests that may be pending. we will 1671 * have had everything blocked while error handling is taking place, and 1672 * now that error recovery is done, we will need to ensure that these 1673 * requests are started. 1674 */ 1675 scsi_run_host_queues(shost); 1676 } 1677 1678 /** 1679 * scsi_eh_ready_devs - check device ready state and recover if not. 1680 * @shost: host to be recovered. 1681 * @work_q: &list_head for pending commands. 1682 * @done_q: &list_head for processed commands. 1683 */ 1684 void scsi_eh_ready_devs(struct Scsi_Host *shost, 1685 struct list_head *work_q, 1686 struct list_head *done_q) 1687 { 1688 if (!scsi_eh_stu(shost, work_q, done_q)) 1689 if (!scsi_eh_bus_device_reset(shost, work_q, done_q)) 1690 if (!scsi_eh_target_reset(shost, work_q, done_q)) 1691 if (!scsi_eh_bus_reset(shost, work_q, done_q)) 1692 if (!scsi_eh_host_reset(work_q, done_q)) 1693 scsi_eh_offline_sdevs(work_q, 1694 done_q); 1695 } 1696 EXPORT_SYMBOL_GPL(scsi_eh_ready_devs); 1697 1698 /** 1699 * scsi_eh_flush_done_q - finish processed commands or retry them. 1700 * @done_q: list_head of processed commands. 1701 */ 1702 void scsi_eh_flush_done_q(struct list_head *done_q) 1703 { 1704 struct scsi_cmnd *scmd, *next; 1705 1706 list_for_each_entry_safe(scmd, next, done_q, eh_entry) { 1707 list_del_init(&scmd->eh_entry); 1708 if (scsi_device_online(scmd->device) && 1709 !scsi_noretry_cmd(scmd) && 1710 (++scmd->retries <= scmd->allowed)) { 1711 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: flush" 1712 " retry cmd: %p\n", 1713 current->comm, 1714 scmd)); 1715 scsi_queue_insert(scmd, SCSI_MLQUEUE_EH_RETRY); 1716 } else { 1717 /* 1718 * If just we got sense for the device (called 1719 * scsi_eh_get_sense), scmd->result is already 1720 * set, do not set DRIVER_TIMEOUT. 1721 */ 1722 if (!scmd->result) 1723 scmd->result |= (DRIVER_TIMEOUT << 24); 1724 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: flush finish" 1725 " cmd: %p\n", 1726 current->comm, scmd)); 1727 scsi_finish_command(scmd); 1728 } 1729 } 1730 } 1731 EXPORT_SYMBOL(scsi_eh_flush_done_q); 1732 1733 /** 1734 * scsi_unjam_host - Attempt to fix a host which has a cmd that failed. 1735 * @shost: Host to unjam. 1736 * 1737 * Notes: 1738 * When we come in here, we *know* that all commands on the bus have 1739 * either completed, failed or timed out. we also know that no further 1740 * commands are being sent to the host, so things are relatively quiet 1741 * and we have freedom to fiddle with things as we wish. 1742 * 1743 * This is only the *default* implementation. it is possible for 1744 * individual drivers to supply their own version of this function, and 1745 * if the maintainer wishes to do this, it is strongly suggested that 1746 * this function be taken as a template and modified. this function 1747 * was designed to correctly handle problems for about 95% of the 1748 * different cases out there, and it should always provide at least a 1749 * reasonable amount of error recovery. 1750 * 1751 * Any command marked 'failed' or 'timeout' must eventually have 1752 * scsi_finish_cmd() called for it. we do all of the retry stuff 1753 * here, so when we restart the host after we return it should have an 1754 * empty queue. 1755 */ 1756 static void scsi_unjam_host(struct Scsi_Host *shost) 1757 { 1758 unsigned long flags; 1759 LIST_HEAD(eh_work_q); 1760 LIST_HEAD(eh_done_q); 1761 1762 spin_lock_irqsave(shost->host_lock, flags); 1763 list_splice_init(&shost->eh_cmd_q, &eh_work_q); 1764 spin_unlock_irqrestore(shost->host_lock, flags); 1765 1766 SCSI_LOG_ERROR_RECOVERY(1, scsi_eh_prt_fail_stats(shost, &eh_work_q)); 1767 1768 if (!scsi_eh_get_sense(&eh_work_q, &eh_done_q)) 1769 if (!scsi_eh_abort_cmds(&eh_work_q, &eh_done_q)) 1770 scsi_eh_ready_devs(shost, &eh_work_q, &eh_done_q); 1771 1772 scsi_eh_flush_done_q(&eh_done_q); 1773 } 1774 1775 /** 1776 * scsi_error_handler - SCSI error handler thread 1777 * @data: Host for which we are running. 1778 * 1779 * Notes: 1780 * This is the main error handling loop. This is run as a kernel thread 1781 * for every SCSI host and handles all error handling activity. 1782 */ 1783 int scsi_error_handler(void *data) 1784 { 1785 struct Scsi_Host *shost = data; 1786 1787 /* 1788 * We use TASK_INTERRUPTIBLE so that the thread is not 1789 * counted against the load average as a running process. 1790 * We never actually get interrupted because kthread_run 1791 * disables signal delivery for the created thread. 1792 */ 1793 set_current_state(TASK_INTERRUPTIBLE); 1794 while (!kthread_should_stop()) { 1795 if ((shost->host_failed == 0 && shost->host_eh_scheduled == 0) || 1796 shost->host_failed != shost->host_busy) { 1797 SCSI_LOG_ERROR_RECOVERY(1, 1798 printk("Error handler scsi_eh_%d sleeping\n", 1799 shost->host_no)); 1800 schedule(); 1801 set_current_state(TASK_INTERRUPTIBLE); 1802 continue; 1803 } 1804 1805 __set_current_state(TASK_RUNNING); 1806 SCSI_LOG_ERROR_RECOVERY(1, 1807 printk("Error handler scsi_eh_%d waking up\n", 1808 shost->host_no)); 1809 1810 /* 1811 * We have a host that is failing for some reason. Figure out 1812 * what we need to do to get it up and online again (if we can). 1813 * If we fail, we end up taking the thing offline. 1814 */ 1815 if (scsi_autopm_get_host(shost) != 0) { 1816 SCSI_LOG_ERROR_RECOVERY(1, 1817 printk(KERN_ERR "Error handler scsi_eh_%d " 1818 "unable to autoresume\n", 1819 shost->host_no)); 1820 continue; 1821 } 1822 1823 if (shost->transportt->eh_strategy_handler) 1824 shost->transportt->eh_strategy_handler(shost); 1825 else 1826 scsi_unjam_host(shost); 1827 1828 /* 1829 * Note - if the above fails completely, the action is to take 1830 * individual devices offline and flush the queue of any 1831 * outstanding requests that may have been pending. When we 1832 * restart, we restart any I/O to any other devices on the bus 1833 * which are still online. 1834 */ 1835 scsi_restart_operations(shost); 1836 scsi_autopm_put_host(shost); 1837 set_current_state(TASK_INTERRUPTIBLE); 1838 } 1839 __set_current_state(TASK_RUNNING); 1840 1841 SCSI_LOG_ERROR_RECOVERY(1, 1842 printk("Error handler scsi_eh_%d exiting\n", shost->host_no)); 1843 shost->ehandler = NULL; 1844 return 0; 1845 } 1846 1847 /* 1848 * Function: scsi_report_bus_reset() 1849 * 1850 * Purpose: Utility function used by low-level drivers to report that 1851 * they have observed a bus reset on the bus being handled. 1852 * 1853 * Arguments: shost - Host in question 1854 * channel - channel on which reset was observed. 1855 * 1856 * Returns: Nothing 1857 * 1858 * Lock status: Host lock must be held. 1859 * 1860 * Notes: This only needs to be called if the reset is one which 1861 * originates from an unknown location. Resets originated 1862 * by the mid-level itself don't need to call this, but there 1863 * should be no harm. 1864 * 1865 * The main purpose of this is to make sure that a CHECK_CONDITION 1866 * is properly treated. 1867 */ 1868 void scsi_report_bus_reset(struct Scsi_Host *shost, int channel) 1869 { 1870 struct scsi_device *sdev; 1871 1872 __shost_for_each_device(sdev, shost) { 1873 if (channel == sdev_channel(sdev)) 1874 __scsi_report_device_reset(sdev, NULL); 1875 } 1876 } 1877 EXPORT_SYMBOL(scsi_report_bus_reset); 1878 1879 /* 1880 * Function: scsi_report_device_reset() 1881 * 1882 * Purpose: Utility function used by low-level drivers to report that 1883 * they have observed a device reset on the device being handled. 1884 * 1885 * Arguments: shost - Host in question 1886 * channel - channel on which reset was observed 1887 * target - target on which reset was observed 1888 * 1889 * Returns: Nothing 1890 * 1891 * Lock status: Host lock must be held 1892 * 1893 * Notes: This only needs to be called if the reset is one which 1894 * originates from an unknown location. Resets originated 1895 * by the mid-level itself don't need to call this, but there 1896 * should be no harm. 1897 * 1898 * The main purpose of this is to make sure that a CHECK_CONDITION 1899 * is properly treated. 1900 */ 1901 void scsi_report_device_reset(struct Scsi_Host *shost, int channel, int target) 1902 { 1903 struct scsi_device *sdev; 1904 1905 __shost_for_each_device(sdev, shost) { 1906 if (channel == sdev_channel(sdev) && 1907 target == sdev_id(sdev)) 1908 __scsi_report_device_reset(sdev, NULL); 1909 } 1910 } 1911 EXPORT_SYMBOL(scsi_report_device_reset); 1912 1913 static void 1914 scsi_reset_provider_done_command(struct scsi_cmnd *scmd) 1915 { 1916 } 1917 1918 /* 1919 * Function: scsi_reset_provider 1920 * 1921 * Purpose: Send requested reset to a bus or device at any phase. 1922 * 1923 * Arguments: device - device to send reset to 1924 * flag - reset type (see scsi.h) 1925 * 1926 * Returns: SUCCESS/FAILURE. 1927 * 1928 * Notes: This is used by the SCSI Generic driver to provide 1929 * Bus/Device reset capability. 1930 */ 1931 int 1932 scsi_reset_provider(struct scsi_device *dev, int flag) 1933 { 1934 struct scsi_cmnd *scmd; 1935 struct Scsi_Host *shost = dev->host; 1936 struct request req; 1937 unsigned long flags; 1938 int rtn; 1939 1940 if (scsi_autopm_get_host(shost) < 0) 1941 return FAILED; 1942 1943 scmd = scsi_get_command(dev, GFP_KERNEL); 1944 blk_rq_init(NULL, &req); 1945 scmd->request = &req; 1946 1947 scmd->cmnd = req.cmd; 1948 1949 scmd->scsi_done = scsi_reset_provider_done_command; 1950 memset(&scmd->sdb, 0, sizeof(scmd->sdb)); 1951 1952 scmd->cmd_len = 0; 1953 1954 scmd->sc_data_direction = DMA_BIDIRECTIONAL; 1955 1956 spin_lock_irqsave(shost->host_lock, flags); 1957 shost->tmf_in_progress = 1; 1958 spin_unlock_irqrestore(shost->host_lock, flags); 1959 1960 switch (flag) { 1961 case SCSI_TRY_RESET_DEVICE: 1962 rtn = scsi_try_bus_device_reset(scmd); 1963 if (rtn == SUCCESS) 1964 break; 1965 /* FALLTHROUGH */ 1966 case SCSI_TRY_RESET_TARGET: 1967 rtn = scsi_try_target_reset(scmd); 1968 if (rtn == SUCCESS) 1969 break; 1970 /* FALLTHROUGH */ 1971 case SCSI_TRY_RESET_BUS: 1972 rtn = scsi_try_bus_reset(scmd); 1973 if (rtn == SUCCESS) 1974 break; 1975 /* FALLTHROUGH */ 1976 case SCSI_TRY_RESET_HOST: 1977 rtn = scsi_try_host_reset(scmd); 1978 break; 1979 default: 1980 rtn = FAILED; 1981 } 1982 1983 spin_lock_irqsave(shost->host_lock, flags); 1984 shost->tmf_in_progress = 0; 1985 spin_unlock_irqrestore(shost->host_lock, flags); 1986 1987 /* 1988 * be sure to wake up anyone who was sleeping or had their queue 1989 * suspended while we performed the TMF. 1990 */ 1991 SCSI_LOG_ERROR_RECOVERY(3, 1992 printk("%s: waking up host to restart after TMF\n", 1993 __func__)); 1994 1995 wake_up(&shost->host_wait); 1996 1997 scsi_run_host_queues(shost); 1998 1999 scsi_next_command(scmd); 2000 scsi_autopm_put_host(shost); 2001 return rtn; 2002 } 2003 EXPORT_SYMBOL(scsi_reset_provider); 2004 2005 /** 2006 * scsi_normalize_sense - normalize main elements from either fixed or 2007 * descriptor sense data format into a common format. 2008 * 2009 * @sense_buffer: byte array containing sense data returned by device 2010 * @sb_len: number of valid bytes in sense_buffer 2011 * @sshdr: pointer to instance of structure that common 2012 * elements are written to. 2013 * 2014 * Notes: 2015 * The "main elements" from sense data are: response_code, sense_key, 2016 * asc, ascq and additional_length (only for descriptor format). 2017 * 2018 * Typically this function can be called after a device has 2019 * responded to a SCSI command with the CHECK_CONDITION status. 2020 * 2021 * Return value: 2022 * 1 if valid sense data information found, else 0; 2023 */ 2024 int scsi_normalize_sense(const u8 *sense_buffer, int sb_len, 2025 struct scsi_sense_hdr *sshdr) 2026 { 2027 if (!sense_buffer || !sb_len) 2028 return 0; 2029 2030 memset(sshdr, 0, sizeof(struct scsi_sense_hdr)); 2031 2032 sshdr->response_code = (sense_buffer[0] & 0x7f); 2033 2034 if (!scsi_sense_valid(sshdr)) 2035 return 0; 2036 2037 if (sshdr->response_code >= 0x72) { 2038 /* 2039 * descriptor format 2040 */ 2041 if (sb_len > 1) 2042 sshdr->sense_key = (sense_buffer[1] & 0xf); 2043 if (sb_len > 2) 2044 sshdr->asc = sense_buffer[2]; 2045 if (sb_len > 3) 2046 sshdr->ascq = sense_buffer[3]; 2047 if (sb_len > 7) 2048 sshdr->additional_length = sense_buffer[7]; 2049 } else { 2050 /* 2051 * fixed format 2052 */ 2053 if (sb_len > 2) 2054 sshdr->sense_key = (sense_buffer[2] & 0xf); 2055 if (sb_len > 7) { 2056 sb_len = (sb_len < (sense_buffer[7] + 8)) ? 2057 sb_len : (sense_buffer[7] + 8); 2058 if (sb_len > 12) 2059 sshdr->asc = sense_buffer[12]; 2060 if (sb_len > 13) 2061 sshdr->ascq = sense_buffer[13]; 2062 } 2063 } 2064 2065 return 1; 2066 } 2067 EXPORT_SYMBOL(scsi_normalize_sense); 2068 2069 int scsi_command_normalize_sense(struct scsi_cmnd *cmd, 2070 struct scsi_sense_hdr *sshdr) 2071 { 2072 return scsi_normalize_sense(cmd->sense_buffer, 2073 SCSI_SENSE_BUFFERSIZE, sshdr); 2074 } 2075 EXPORT_SYMBOL(scsi_command_normalize_sense); 2076 2077 /** 2078 * scsi_sense_desc_find - search for a given descriptor type in descriptor sense data format. 2079 * @sense_buffer: byte array of descriptor format sense data 2080 * @sb_len: number of valid bytes in sense_buffer 2081 * @desc_type: value of descriptor type to find 2082 * (e.g. 0 -> information) 2083 * 2084 * Notes: 2085 * only valid when sense data is in descriptor format 2086 * 2087 * Return value: 2088 * pointer to start of (first) descriptor if found else NULL 2089 */ 2090 const u8 * scsi_sense_desc_find(const u8 * sense_buffer, int sb_len, 2091 int desc_type) 2092 { 2093 int add_sen_len, add_len, desc_len, k; 2094 const u8 * descp; 2095 2096 if ((sb_len < 8) || (0 == (add_sen_len = sense_buffer[7]))) 2097 return NULL; 2098 if ((sense_buffer[0] < 0x72) || (sense_buffer[0] > 0x73)) 2099 return NULL; 2100 add_sen_len = (add_sen_len < (sb_len - 8)) ? 2101 add_sen_len : (sb_len - 8); 2102 descp = &sense_buffer[8]; 2103 for (desc_len = 0, k = 0; k < add_sen_len; k += desc_len) { 2104 descp += desc_len; 2105 add_len = (k < (add_sen_len - 1)) ? descp[1]: -1; 2106 desc_len = add_len + 2; 2107 if (descp[0] == desc_type) 2108 return descp; 2109 if (add_len < 0) // short descriptor ?? 2110 break; 2111 } 2112 return NULL; 2113 } 2114 EXPORT_SYMBOL(scsi_sense_desc_find); 2115 2116 /** 2117 * scsi_get_sense_info_fld - get information field from sense data (either fixed or descriptor format) 2118 * @sense_buffer: byte array of sense data 2119 * @sb_len: number of valid bytes in sense_buffer 2120 * @info_out: pointer to 64 integer where 8 or 4 byte information 2121 * field will be placed if found. 2122 * 2123 * Return value: 2124 * 1 if information field found, 0 if not found. 2125 */ 2126 int scsi_get_sense_info_fld(const u8 * sense_buffer, int sb_len, 2127 u64 * info_out) 2128 { 2129 int j; 2130 const u8 * ucp; 2131 u64 ull; 2132 2133 if (sb_len < 7) 2134 return 0; 2135 switch (sense_buffer[0] & 0x7f) { 2136 case 0x70: 2137 case 0x71: 2138 if (sense_buffer[0] & 0x80) { 2139 *info_out = (sense_buffer[3] << 24) + 2140 (sense_buffer[4] << 16) + 2141 (sense_buffer[5] << 8) + sense_buffer[6]; 2142 return 1; 2143 } else 2144 return 0; 2145 case 0x72: 2146 case 0x73: 2147 ucp = scsi_sense_desc_find(sense_buffer, sb_len, 2148 0 /* info desc */); 2149 if (ucp && (0xa == ucp[1])) { 2150 ull = 0; 2151 for (j = 0; j < 8; ++j) { 2152 if (j > 0) 2153 ull <<= 8; 2154 ull |= ucp[4 + j]; 2155 } 2156 *info_out = ull; 2157 return 1; 2158 } else 2159 return 0; 2160 default: 2161 return 0; 2162 } 2163 } 2164 EXPORT_SYMBOL(scsi_get_sense_info_fld); 2165 2166 /** 2167 * scsi_build_sense_buffer - build sense data in a buffer 2168 * @desc: Sense format (non zero == descriptor format, 2169 * 0 == fixed format) 2170 * @buf: Where to build sense data 2171 * @key: Sense key 2172 * @asc: Additional sense code 2173 * @ascq: Additional sense code qualifier 2174 * 2175 **/ 2176 void scsi_build_sense_buffer(int desc, u8 *buf, u8 key, u8 asc, u8 ascq) 2177 { 2178 if (desc) { 2179 buf[0] = 0x72; /* descriptor, current */ 2180 buf[1] = key; 2181 buf[2] = asc; 2182 buf[3] = ascq; 2183 buf[7] = 0; 2184 } else { 2185 buf[0] = 0x70; /* fixed, current */ 2186 buf[2] = key; 2187 buf[7] = 0xa; 2188 buf[12] = asc; 2189 buf[13] = ascq; 2190 } 2191 } 2192 EXPORT_SYMBOL(scsi_build_sense_buffer); 2193