1 /* 2 * scsi_error.c Copyright (C) 1997 Eric Youngdale 3 * 4 * SCSI error/timeout handling 5 * Initial versions: Eric Youngdale. Based upon conversations with 6 * Leonard Zubkoff and David Miller at Linux Expo, 7 * ideas originating from all over the place. 8 * 9 * Restructured scsi_unjam_host and associated functions. 10 * September 04, 2002 Mike Anderson (andmike@us.ibm.com) 11 * 12 * Forward port of Russell King's (rmk@arm.linux.org.uk) changes and 13 * minor cleanups. 14 * September 30, 2002 Mike Anderson (andmike@us.ibm.com) 15 */ 16 17 #include <linux/module.h> 18 #include <linux/sched.h> 19 #include <linux/timer.h> 20 #include <linux/string.h> 21 #include <linux/slab.h> 22 #include <linux/kernel.h> 23 #include <linux/interrupt.h> 24 #include <linux/blkdev.h> 25 #include <linux/delay.h> 26 27 #include <scsi/scsi.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_eh.h> 31 #include <scsi/scsi_host.h> 32 #include <scsi/scsi_ioctl.h> 33 #include <scsi/scsi_request.h> 34 35 #include "scsi_priv.h" 36 #include "scsi_logging.h" 37 38 #define SENSE_TIMEOUT (10*HZ) 39 #define START_UNIT_TIMEOUT (30*HZ) 40 41 /* 42 * These should *probably* be handled by the host itself. 43 * Since it is allowed to sleep, it probably should. 44 */ 45 #define BUS_RESET_SETTLE_TIME (10) 46 #define HOST_RESET_SETTLE_TIME (10) 47 48 /* called with shost->host_lock held */ 49 void scsi_eh_wakeup(struct Scsi_Host *shost) 50 { 51 if (shost->host_busy == shost->host_failed) { 52 up(shost->eh_wait); 53 SCSI_LOG_ERROR_RECOVERY(5, 54 printk("Waking error handler thread\n")); 55 } 56 } 57 58 /** 59 * scsi_eh_scmd_add - add scsi cmd to error handling. 60 * @scmd: scmd to run eh on. 61 * @eh_flag: optional SCSI_EH flag. 62 * 63 * Return value: 64 * 0 on failure. 65 **/ 66 int scsi_eh_scmd_add(struct scsi_cmnd *scmd, int eh_flag) 67 { 68 struct Scsi_Host *shost = scmd->device->host; 69 unsigned long flags; 70 71 if (shost->eh_wait == NULL) 72 return 0; 73 74 spin_lock_irqsave(shost->host_lock, flags); 75 76 scsi_eh_eflags_set(scmd, eh_flag); 77 /* 78 * FIXME: Can we stop setting owner and state. 79 */ 80 scmd->owner = SCSI_OWNER_ERROR_HANDLER; 81 scmd->state = SCSI_STATE_FAILED; 82 /* 83 * Set the serial_number_at_timeout to the current 84 * serial_number 85 */ 86 scmd->serial_number_at_timeout = scmd->serial_number; 87 list_add_tail(&scmd->eh_entry, &shost->eh_cmd_q); 88 set_bit(SHOST_RECOVERY, &shost->shost_state); 89 shost->host_failed++; 90 scsi_eh_wakeup(shost); 91 spin_unlock_irqrestore(shost->host_lock, flags); 92 return 1; 93 } 94 95 /** 96 * scsi_add_timer - Start timeout timer for a single scsi command. 97 * @scmd: scsi command that is about to start running. 98 * @timeout: amount of time to allow this command to run. 99 * @complete: timeout function to call if timer isn't canceled. 100 * 101 * Notes: 102 * This should be turned into an inline function. Each scsi command 103 * has its own timer, and as it is added to the queue, we set up the 104 * timer. When the command completes, we cancel the timer. 105 **/ 106 void scsi_add_timer(struct scsi_cmnd *scmd, int timeout, 107 void (*complete)(struct scsi_cmnd *)) 108 { 109 110 /* 111 * If the clock was already running for this command, then 112 * first delete the timer. The timer handling code gets rather 113 * confused if we don't do this. 114 */ 115 if (scmd->eh_timeout.function) 116 del_timer(&scmd->eh_timeout); 117 118 scmd->eh_timeout.data = (unsigned long)scmd; 119 scmd->eh_timeout.expires = jiffies + timeout; 120 scmd->eh_timeout.function = (void (*)(unsigned long)) complete; 121 122 SCSI_LOG_ERROR_RECOVERY(5, printk("%s: scmd: %p, time:" 123 " %d, (%p)\n", __FUNCTION__, 124 scmd, timeout, complete)); 125 126 add_timer(&scmd->eh_timeout); 127 } 128 EXPORT_SYMBOL(scsi_add_timer); 129 130 /** 131 * scsi_delete_timer - Delete/cancel timer for a given function. 132 * @scmd: Cmd that we are canceling timer for 133 * 134 * Notes: 135 * This should be turned into an inline function. 136 * 137 * Return value: 138 * 1 if we were able to detach the timer. 0 if we blew it, and the 139 * timer function has already started to run. 140 **/ 141 int scsi_delete_timer(struct scsi_cmnd *scmd) 142 { 143 int rtn; 144 145 rtn = del_timer(&scmd->eh_timeout); 146 147 SCSI_LOG_ERROR_RECOVERY(5, printk("%s: scmd: %p," 148 " rtn: %d\n", __FUNCTION__, 149 scmd, rtn)); 150 151 scmd->eh_timeout.data = (unsigned long)NULL; 152 scmd->eh_timeout.function = NULL; 153 154 return rtn; 155 } 156 EXPORT_SYMBOL(scsi_delete_timer); 157 158 /** 159 * scsi_times_out - Timeout function for normal scsi commands. 160 * @scmd: Cmd that is timing out. 161 * 162 * Notes: 163 * We do not need to lock this. There is the potential for a race 164 * only in that the normal completion handling might run, but if the 165 * normal completion function determines that the timer has already 166 * fired, then it mustn't do anything. 167 **/ 168 void scsi_times_out(struct scsi_cmnd *scmd) 169 { 170 scsi_log_completion(scmd, TIMEOUT_ERROR); 171 172 if (scmd->device->host->hostt->eh_timed_out) 173 switch (scmd->device->host->hostt->eh_timed_out(scmd)) { 174 case EH_HANDLED: 175 __scsi_done(scmd); 176 return; 177 case EH_RESET_TIMER: 178 /* This allows a single retry even of a command 179 * with allowed == 0 */ 180 if (scmd->retries++ > scmd->allowed) 181 break; 182 scsi_add_timer(scmd, scmd->timeout_per_command, 183 scsi_times_out); 184 return; 185 case EH_NOT_HANDLED: 186 break; 187 } 188 189 if (unlikely(!scsi_eh_scmd_add(scmd, SCSI_EH_CANCEL_CMD))) { 190 panic("Error handler thread not present at %p %p %s %d", 191 scmd, scmd->device->host, __FILE__, __LINE__); 192 } 193 } 194 195 /** 196 * scsi_block_when_processing_errors - Prevent cmds from being queued. 197 * @sdev: Device on which we are performing recovery. 198 * 199 * Description: 200 * We block until the host is out of error recovery, and then check to 201 * see whether the host or the device is offline. 202 * 203 * Return value: 204 * 0 when dev was taken offline by error recovery. 1 OK to proceed. 205 **/ 206 int scsi_block_when_processing_errors(struct scsi_device *sdev) 207 { 208 int online; 209 210 wait_event(sdev->host->host_wait, (!test_bit(SHOST_RECOVERY, &sdev->host->shost_state))); 211 212 online = scsi_device_online(sdev); 213 214 SCSI_LOG_ERROR_RECOVERY(5, printk("%s: rtn: %d\n", __FUNCTION__, 215 online)); 216 217 return online; 218 } 219 EXPORT_SYMBOL(scsi_block_when_processing_errors); 220 221 #ifdef CONFIG_SCSI_LOGGING 222 /** 223 * scsi_eh_prt_fail_stats - Log info on failures. 224 * @shost: scsi host being recovered. 225 * @work_q: Queue of scsi cmds to process. 226 **/ 227 static inline void scsi_eh_prt_fail_stats(struct Scsi_Host *shost, 228 struct list_head *work_q) 229 { 230 struct scsi_cmnd *scmd; 231 struct scsi_device *sdev; 232 int total_failures = 0; 233 int cmd_failed = 0; 234 int cmd_cancel = 0; 235 int devices_failed = 0; 236 237 shost_for_each_device(sdev, shost) { 238 list_for_each_entry(scmd, work_q, eh_entry) { 239 if (scmd->device == sdev) { 240 ++total_failures; 241 if (scsi_eh_eflags_chk(scmd, 242 SCSI_EH_CANCEL_CMD)) 243 ++cmd_cancel; 244 else 245 ++cmd_failed; 246 } 247 } 248 249 if (cmd_cancel || cmd_failed) { 250 SCSI_LOG_ERROR_RECOVERY(3, 251 printk("%s: %d:%d:%d:%d cmds failed: %d," 252 " cancel: %d\n", 253 __FUNCTION__, shost->host_no, 254 sdev->channel, sdev->id, sdev->lun, 255 cmd_failed, cmd_cancel)); 256 cmd_cancel = 0; 257 cmd_failed = 0; 258 ++devices_failed; 259 } 260 } 261 262 SCSI_LOG_ERROR_RECOVERY(2, printk("Total of %d commands on %d" 263 " devices require eh work\n", 264 total_failures, devices_failed)); 265 } 266 #endif 267 268 /** 269 * scsi_check_sense - Examine scsi cmd sense 270 * @scmd: Cmd to have sense checked. 271 * 272 * Return value: 273 * SUCCESS or FAILED or NEEDS_RETRY 274 * 275 * Notes: 276 * When a deferred error is detected the current command has 277 * not been executed and needs retrying. 278 **/ 279 static int scsi_check_sense(struct scsi_cmnd *scmd) 280 { 281 struct scsi_sense_hdr sshdr; 282 283 if (! scsi_command_normalize_sense(scmd, &sshdr)) 284 return FAILED; /* no valid sense data */ 285 286 if (scsi_sense_is_deferred(&sshdr)) 287 return NEEDS_RETRY; 288 289 /* 290 * Previous logic looked for FILEMARK, EOM or ILI which are 291 * mainly associated with tapes and returned SUCCESS. 292 */ 293 if (sshdr.response_code == 0x70) { 294 /* fixed format */ 295 if (scmd->sense_buffer[2] & 0xe0) 296 return SUCCESS; 297 } else { 298 /* 299 * descriptor format: look for "stream commands sense data 300 * descriptor" (see SSC-3). Assume single sense data 301 * descriptor. Ignore ILI from SBC-2 READ LONG and WRITE LONG. 302 */ 303 if ((sshdr.additional_length > 3) && 304 (scmd->sense_buffer[8] == 0x4) && 305 (scmd->sense_buffer[11] & 0xe0)) 306 return SUCCESS; 307 } 308 309 switch (sshdr.sense_key) { 310 case NO_SENSE: 311 return SUCCESS; 312 case RECOVERED_ERROR: 313 return /* soft_error */ SUCCESS; 314 315 case ABORTED_COMMAND: 316 return NEEDS_RETRY; 317 case NOT_READY: 318 case UNIT_ATTENTION: 319 /* 320 * if we are expecting a cc/ua because of a bus reset that we 321 * performed, treat this just as a retry. otherwise this is 322 * information that we should pass up to the upper-level driver 323 * so that we can deal with it there. 324 */ 325 if (scmd->device->expecting_cc_ua) { 326 scmd->device->expecting_cc_ua = 0; 327 return NEEDS_RETRY; 328 } 329 /* 330 * if the device is in the process of becoming ready, we 331 * should retry. 332 */ 333 if ((sshdr.asc == 0x04) && (sshdr.ascq == 0x01)) 334 return NEEDS_RETRY; 335 /* 336 * if the device is not started, we need to wake 337 * the error handler to start the motor 338 */ 339 if (scmd->device->allow_restart && 340 (sshdr.asc == 0x04) && (sshdr.ascq == 0x02)) 341 return FAILED; 342 return SUCCESS; 343 344 /* these three are not supported */ 345 case COPY_ABORTED: 346 case VOLUME_OVERFLOW: 347 case MISCOMPARE: 348 return SUCCESS; 349 350 case MEDIUM_ERROR: 351 return NEEDS_RETRY; 352 353 case HARDWARE_ERROR: 354 if (scmd->device->retry_hwerror) 355 return NEEDS_RETRY; 356 else 357 return SUCCESS; 358 359 case ILLEGAL_REQUEST: 360 case BLANK_CHECK: 361 case DATA_PROTECT: 362 default: 363 return SUCCESS; 364 } 365 } 366 367 /** 368 * scsi_eh_completed_normally - Disposition a eh cmd on return from LLD. 369 * @scmd: SCSI cmd to examine. 370 * 371 * Notes: 372 * This is *only* called when we are examining the status of commands 373 * queued during error recovery. the main difference here is that we 374 * don't allow for the possibility of retries here, and we are a lot 375 * more restrictive about what we consider acceptable. 376 **/ 377 static int scsi_eh_completed_normally(struct scsi_cmnd *scmd) 378 { 379 /* 380 * first check the host byte, to see if there is anything in there 381 * that would indicate what we need to do. 382 */ 383 if (host_byte(scmd->result) == DID_RESET) { 384 /* 385 * rats. we are already in the error handler, so we now 386 * get to try and figure out what to do next. if the sense 387 * is valid, we have a pretty good idea of what to do. 388 * if not, we mark it as FAILED. 389 */ 390 return scsi_check_sense(scmd); 391 } 392 if (host_byte(scmd->result) != DID_OK) 393 return FAILED; 394 395 /* 396 * next, check the message byte. 397 */ 398 if (msg_byte(scmd->result) != COMMAND_COMPLETE) 399 return FAILED; 400 401 /* 402 * now, check the status byte to see if this indicates 403 * anything special. 404 */ 405 switch (status_byte(scmd->result)) { 406 case GOOD: 407 case COMMAND_TERMINATED: 408 return SUCCESS; 409 case CHECK_CONDITION: 410 return scsi_check_sense(scmd); 411 case CONDITION_GOOD: 412 case INTERMEDIATE_GOOD: 413 case INTERMEDIATE_C_GOOD: 414 /* 415 * who knows? FIXME(eric) 416 */ 417 return SUCCESS; 418 case BUSY: 419 case QUEUE_FULL: 420 case RESERVATION_CONFLICT: 421 default: 422 return FAILED; 423 } 424 return FAILED; 425 } 426 427 /** 428 * scsi_eh_times_out - timeout function for error handling. 429 * @scmd: Cmd that is timing out. 430 * 431 * Notes: 432 * During error handling, the kernel thread will be sleeping waiting 433 * for some action to complete on the device. our only job is to 434 * record that it timed out, and to wake up the thread. 435 **/ 436 static void scsi_eh_times_out(struct scsi_cmnd *scmd) 437 { 438 scsi_eh_eflags_set(scmd, SCSI_EH_REC_TIMEOUT); 439 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: scmd:%p\n", __FUNCTION__, 440 scmd)); 441 442 if (scmd->device->host->eh_action) 443 up(scmd->device->host->eh_action); 444 } 445 446 /** 447 * scsi_eh_done - Completion function for error handling. 448 * @scmd: Cmd that is done. 449 **/ 450 static void scsi_eh_done(struct scsi_cmnd *scmd) 451 { 452 /* 453 * if the timeout handler is already running, then just set the 454 * flag which says we finished late, and return. we have no 455 * way of stopping the timeout handler from running, so we must 456 * always defer to it. 457 */ 458 if (del_timer(&scmd->eh_timeout)) { 459 scmd->request->rq_status = RQ_SCSI_DONE; 460 scmd->owner = SCSI_OWNER_ERROR_HANDLER; 461 462 SCSI_LOG_ERROR_RECOVERY(3, printk("%s scmd: %p result: %x\n", 463 __FUNCTION__, scmd, scmd->result)); 464 465 if (scmd->device->host->eh_action) 466 up(scmd->device->host->eh_action); 467 } 468 } 469 470 /** 471 * scsi_send_eh_cmnd - send a cmd to a device as part of error recovery. 472 * @scmd: SCSI Cmd to send. 473 * @timeout: Timeout for cmd. 474 * 475 * Notes: 476 * The initialization of the structures is quite a bit different in 477 * this case, and furthermore, there is a different completion handler 478 * vs scsi_dispatch_cmd. 479 * Return value: 480 * SUCCESS or FAILED or NEEDS_RETRY 481 **/ 482 static int scsi_send_eh_cmnd(struct scsi_cmnd *scmd, int timeout) 483 { 484 struct Scsi_Host *host = scmd->device->host; 485 DECLARE_MUTEX_LOCKED(sem); 486 unsigned long flags; 487 int rtn = SUCCESS; 488 489 /* 490 * we will use a queued command if possible, otherwise we will 491 * emulate the queuing and calling of completion function ourselves. 492 */ 493 scmd->owner = SCSI_OWNER_LOWLEVEL; 494 495 if (scmd->device->scsi_level <= SCSI_2) 496 scmd->cmnd[1] = (scmd->cmnd[1] & 0x1f) | 497 (scmd->device->lun << 5 & 0xe0); 498 499 scsi_add_timer(scmd, timeout, scsi_eh_times_out); 500 501 /* 502 * set up the semaphore so we wait for the command to complete. 503 */ 504 scmd->device->host->eh_action = &sem; 505 scmd->request->rq_status = RQ_SCSI_BUSY; 506 507 spin_lock_irqsave(scmd->device->host->host_lock, flags); 508 scsi_log_send(scmd); 509 host->hostt->queuecommand(scmd, scsi_eh_done); 510 spin_unlock_irqrestore(scmd->device->host->host_lock, flags); 511 512 down(&sem); 513 scsi_log_completion(scmd, SUCCESS); 514 515 scmd->device->host->eh_action = NULL; 516 517 /* 518 * see if timeout. if so, tell the host to forget about it. 519 * in other words, we don't want a callback any more. 520 */ 521 if (scsi_eh_eflags_chk(scmd, SCSI_EH_REC_TIMEOUT)) { 522 scsi_eh_eflags_clr(scmd, SCSI_EH_REC_TIMEOUT); 523 scmd->owner = SCSI_OWNER_LOWLEVEL; 524 525 /* 526 * as far as the low level driver is 527 * concerned, this command is still active, so 528 * we must give the low level driver a chance 529 * to abort it. (db) 530 * 531 * FIXME(eric) - we are not tracking whether we could 532 * abort a timed out command or not. not sure how 533 * we should treat them differently anyways. 534 */ 535 spin_lock_irqsave(scmd->device->host->host_lock, flags); 536 if (scmd->device->host->hostt->eh_abort_handler) 537 scmd->device->host->hostt->eh_abort_handler(scmd); 538 spin_unlock_irqrestore(scmd->device->host->host_lock, flags); 539 540 scmd->request->rq_status = RQ_SCSI_DONE; 541 scmd->owner = SCSI_OWNER_ERROR_HANDLER; 542 543 rtn = FAILED; 544 } 545 546 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: scmd: %p, rtn:%x\n", 547 __FUNCTION__, scmd, rtn)); 548 549 /* 550 * now examine the actual status codes to see whether the command 551 * actually did complete normally. 552 */ 553 if (rtn == SUCCESS) { 554 rtn = scsi_eh_completed_normally(scmd); 555 SCSI_LOG_ERROR_RECOVERY(3, 556 printk("%s: scsi_eh_completed_normally %x\n", 557 __FUNCTION__, rtn)); 558 switch (rtn) { 559 case SUCCESS: 560 case NEEDS_RETRY: 561 case FAILED: 562 break; 563 default: 564 rtn = FAILED; 565 break; 566 } 567 } 568 569 return rtn; 570 } 571 572 /** 573 * scsi_request_sense - Request sense data from a particular target. 574 * @scmd: SCSI cmd for request sense. 575 * 576 * Notes: 577 * Some hosts automatically obtain this information, others require 578 * that we obtain it on our own. This function will *not* return until 579 * the command either times out, or it completes. 580 **/ 581 static int scsi_request_sense(struct scsi_cmnd *scmd) 582 { 583 static unsigned char generic_sense[6] = 584 {REQUEST_SENSE, 0, 0, 0, 252, 0}; 585 unsigned char *scsi_result; 586 int saved_result; 587 int rtn; 588 589 memcpy(scmd->cmnd, generic_sense, sizeof(generic_sense)); 590 591 scsi_result = kmalloc(252, GFP_ATOMIC | (scmd->device->host->hostt->unchecked_isa_dma) ? __GFP_DMA : 0); 592 593 594 if (unlikely(!scsi_result)) { 595 printk(KERN_ERR "%s: cannot allocate scsi_result.\n", 596 __FUNCTION__); 597 return FAILED; 598 } 599 600 /* 601 * zero the sense buffer. some host adapters automatically always 602 * request sense, so it is not a good idea that 603 * scmd->request_buffer and scmd->sense_buffer point to the same 604 * address (db). 0 is not a valid sense code. 605 */ 606 memset(scmd->sense_buffer, 0, sizeof(scmd->sense_buffer)); 607 memset(scsi_result, 0, 252); 608 609 saved_result = scmd->result; 610 scmd->request_buffer = scsi_result; 611 scmd->request_bufflen = 252; 612 scmd->use_sg = 0; 613 scmd->cmd_len = COMMAND_SIZE(scmd->cmnd[0]); 614 scmd->sc_data_direction = DMA_FROM_DEVICE; 615 scmd->underflow = 0; 616 617 rtn = scsi_send_eh_cmnd(scmd, SENSE_TIMEOUT); 618 619 /* last chance to have valid sense data */ 620 if(!SCSI_SENSE_VALID(scmd)) { 621 memcpy(scmd->sense_buffer, scmd->request_buffer, 622 sizeof(scmd->sense_buffer)); 623 } 624 625 kfree(scsi_result); 626 627 /* 628 * when we eventually call scsi_finish, we really wish to complete 629 * the original request, so let's restore the original data. (db) 630 */ 631 scsi_setup_cmd_retry(scmd); 632 scmd->result = saved_result; 633 return rtn; 634 } 635 636 /** 637 * scsi_eh_finish_cmd - Handle a cmd that eh is finished with. 638 * @scmd: Original SCSI cmd that eh has finished. 639 * @done_q: Queue for processed commands. 640 * 641 * Notes: 642 * We don't want to use the normal command completion while we are are 643 * still handling errors - it may cause other commands to be queued, 644 * and that would disturb what we are doing. thus we really want to 645 * keep a list of pending commands for final completion, and once we 646 * are ready to leave error handling we handle completion for real. 647 **/ 648 static void scsi_eh_finish_cmd(struct scsi_cmnd *scmd, 649 struct list_head *done_q) 650 { 651 scmd->device->host->host_failed--; 652 scmd->state = SCSI_STATE_BHQUEUE; 653 654 scsi_eh_eflags_clr_all(scmd); 655 656 /* 657 * set this back so that the upper level can correctly free up 658 * things. 659 */ 660 scsi_setup_cmd_retry(scmd); 661 list_move_tail(&scmd->eh_entry, done_q); 662 } 663 664 /** 665 * scsi_eh_get_sense - Get device sense data. 666 * @work_q: Queue of commands to process. 667 * @done_q: Queue of proccessed commands.. 668 * 669 * Description: 670 * See if we need to request sense information. if so, then get it 671 * now, so we have a better idea of what to do. 672 * 673 * Notes: 674 * This has the unfortunate side effect that if a shost adapter does 675 * not automatically request sense information, that we end up shutting 676 * it down before we request it. 677 * 678 * All drivers should request sense information internally these days, 679 * so for now all I have to say is tough noogies if you end up in here. 680 * 681 * XXX: Long term this code should go away, but that needs an audit of 682 * all LLDDs first. 683 **/ 684 static int scsi_eh_get_sense(struct list_head *work_q, 685 struct list_head *done_q) 686 { 687 struct list_head *lh, *lh_sf; 688 struct scsi_cmnd *scmd; 689 int rtn; 690 691 list_for_each_safe(lh, lh_sf, work_q) { 692 scmd = list_entry(lh, struct scsi_cmnd, eh_entry); 693 if (scsi_eh_eflags_chk(scmd, SCSI_EH_CANCEL_CMD) || 694 SCSI_SENSE_VALID(scmd)) 695 continue; 696 697 SCSI_LOG_ERROR_RECOVERY(2, printk("%s: requesting sense" 698 " for id: %d\n", 699 current->comm, 700 scmd->device->id)); 701 rtn = scsi_request_sense(scmd); 702 if (rtn != SUCCESS) 703 continue; 704 705 SCSI_LOG_ERROR_RECOVERY(3, printk("sense requested for %p" 706 " result %x\n", scmd, 707 scmd->result)); 708 SCSI_LOG_ERROR_RECOVERY(3, scsi_print_sense("bh", scmd)); 709 710 rtn = scsi_decide_disposition(scmd); 711 712 /* 713 * if the result was normal, then just pass it along to the 714 * upper level. 715 */ 716 if (rtn == SUCCESS) 717 /* we don't want this command reissued, just 718 * finished with the sense data, so set 719 * retries to the max allowed to ensure it 720 * won't get reissued */ 721 scmd->retries = scmd->allowed; 722 else if (rtn != NEEDS_RETRY) 723 continue; 724 725 scsi_eh_finish_cmd(scmd, done_q); 726 } 727 728 return list_empty(work_q); 729 } 730 731 /** 732 * scsi_try_to_abort_cmd - Ask host to abort a running command. 733 * @scmd: SCSI cmd to abort from Lower Level. 734 * 735 * Notes: 736 * This function will not return until the user's completion function 737 * has been called. there is no timeout on this operation. if the 738 * author of the low-level driver wishes this operation to be timed, 739 * they can provide this facility themselves. helper functions in 740 * scsi_error.c can be supplied to make this easier to do. 741 **/ 742 static int scsi_try_to_abort_cmd(struct scsi_cmnd *scmd) 743 { 744 unsigned long flags; 745 int rtn = FAILED; 746 747 if (!scmd->device->host->hostt->eh_abort_handler) 748 return rtn; 749 750 /* 751 * scsi_done was called just after the command timed out and before 752 * we had a chance to process it. (db) 753 */ 754 if (scmd->serial_number == 0) 755 return SUCCESS; 756 757 scmd->owner = SCSI_OWNER_LOWLEVEL; 758 759 spin_lock_irqsave(scmd->device->host->host_lock, flags); 760 rtn = scmd->device->host->hostt->eh_abort_handler(scmd); 761 spin_unlock_irqrestore(scmd->device->host->host_lock, flags); 762 763 return rtn; 764 } 765 766 /** 767 * scsi_eh_tur - Send TUR to device. 768 * @scmd: Scsi cmd to send TUR 769 * 770 * Return value: 771 * 0 - Device is ready. 1 - Device NOT ready. 772 **/ 773 static int scsi_eh_tur(struct scsi_cmnd *scmd) 774 { 775 static unsigned char tur_command[6] = {TEST_UNIT_READY, 0, 0, 0, 0, 0}; 776 int retry_cnt = 1, rtn; 777 778 retry_tur: 779 memcpy(scmd->cmnd, tur_command, sizeof(tur_command)); 780 781 /* 782 * zero the sense buffer. the scsi spec mandates that any 783 * untransferred sense data should be interpreted as being zero. 784 */ 785 memset(scmd->sense_buffer, 0, sizeof(scmd->sense_buffer)); 786 787 scmd->request_buffer = NULL; 788 scmd->request_bufflen = 0; 789 scmd->use_sg = 0; 790 scmd->cmd_len = COMMAND_SIZE(scmd->cmnd[0]); 791 scmd->underflow = 0; 792 scmd->sc_data_direction = DMA_NONE; 793 794 rtn = scsi_send_eh_cmnd(scmd, SENSE_TIMEOUT); 795 796 /* 797 * when we eventually call scsi_finish, we really wish to complete 798 * the original request, so let's restore the original data. (db) 799 */ 800 scsi_setup_cmd_retry(scmd); 801 802 /* 803 * hey, we are done. let's look to see what happened. 804 */ 805 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: scmd %p rtn %x\n", 806 __FUNCTION__, scmd, rtn)); 807 if (rtn == SUCCESS) 808 return 0; 809 else if (rtn == NEEDS_RETRY) 810 if (retry_cnt--) 811 goto retry_tur; 812 return 1; 813 } 814 815 /** 816 * scsi_eh_abort_cmds - abort canceled commands. 817 * @shost: scsi host being recovered. 818 * @eh_done_q: list_head for processed commands. 819 * 820 * Decription: 821 * Try and see whether or not it makes sense to try and abort the 822 * running command. this only works out to be the case if we have one 823 * command that has timed out. if the command simply failed, it makes 824 * no sense to try and abort the command, since as far as the shost 825 * adapter is concerned, it isn't running. 826 **/ 827 static int scsi_eh_abort_cmds(struct list_head *work_q, 828 struct list_head *done_q) 829 { 830 struct list_head *lh, *lh_sf; 831 struct scsi_cmnd *scmd; 832 int rtn; 833 834 list_for_each_safe(lh, lh_sf, work_q) { 835 scmd = list_entry(lh, struct scsi_cmnd, eh_entry); 836 if (!scsi_eh_eflags_chk(scmd, SCSI_EH_CANCEL_CMD)) 837 continue; 838 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: aborting cmd:" 839 "0x%p\n", current->comm, 840 scmd)); 841 rtn = scsi_try_to_abort_cmd(scmd); 842 if (rtn == SUCCESS) { 843 scsi_eh_eflags_clr(scmd, SCSI_EH_CANCEL_CMD); 844 if (!scsi_device_online(scmd->device) || 845 !scsi_eh_tur(scmd)) { 846 scsi_eh_finish_cmd(scmd, done_q); 847 } 848 849 } else 850 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: aborting" 851 " cmd failed:" 852 "0x%p\n", 853 current->comm, 854 scmd)); 855 } 856 857 return list_empty(work_q); 858 } 859 860 /** 861 * scsi_try_bus_device_reset - Ask host to perform a BDR on a dev 862 * @scmd: SCSI cmd used to send BDR 863 * 864 * Notes: 865 * There is no timeout for this operation. if this operation is 866 * unreliable for a given host, then the host itself needs to put a 867 * timer on it, and set the host back to a consistent state prior to 868 * returning. 869 **/ 870 static int scsi_try_bus_device_reset(struct scsi_cmnd *scmd) 871 { 872 unsigned long flags; 873 int rtn = FAILED; 874 875 if (!scmd->device->host->hostt->eh_device_reset_handler) 876 return rtn; 877 878 scmd->owner = SCSI_OWNER_LOWLEVEL; 879 880 spin_lock_irqsave(scmd->device->host->host_lock, flags); 881 rtn = scmd->device->host->hostt->eh_device_reset_handler(scmd); 882 spin_unlock_irqrestore(scmd->device->host->host_lock, flags); 883 884 if (rtn == SUCCESS) { 885 scmd->device->was_reset = 1; 886 scmd->device->expecting_cc_ua = 1; 887 } 888 889 return rtn; 890 } 891 892 /** 893 * scsi_eh_try_stu - Send START_UNIT to device. 894 * @scmd: Scsi cmd to send START_UNIT 895 * 896 * Return value: 897 * 0 - Device is ready. 1 - Device NOT ready. 898 **/ 899 static int scsi_eh_try_stu(struct scsi_cmnd *scmd) 900 { 901 static unsigned char stu_command[6] = {START_STOP, 0, 0, 0, 1, 0}; 902 int rtn; 903 904 if (!scmd->device->allow_restart) 905 return 1; 906 907 memcpy(scmd->cmnd, stu_command, sizeof(stu_command)); 908 909 /* 910 * zero the sense buffer. the scsi spec mandates that any 911 * untransferred sense data should be interpreted as being zero. 912 */ 913 memset(scmd->sense_buffer, 0, sizeof(scmd->sense_buffer)); 914 915 scmd->request_buffer = NULL; 916 scmd->request_bufflen = 0; 917 scmd->use_sg = 0; 918 scmd->cmd_len = COMMAND_SIZE(scmd->cmnd[0]); 919 scmd->underflow = 0; 920 scmd->sc_data_direction = DMA_NONE; 921 922 rtn = scsi_send_eh_cmnd(scmd, START_UNIT_TIMEOUT); 923 924 /* 925 * when we eventually call scsi_finish, we really wish to complete 926 * the original request, so let's restore the original data. (db) 927 */ 928 scsi_setup_cmd_retry(scmd); 929 930 /* 931 * hey, we are done. let's look to see what happened. 932 */ 933 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: scmd %p rtn %x\n", 934 __FUNCTION__, scmd, rtn)); 935 if (rtn == SUCCESS) 936 return 0; 937 return 1; 938 } 939 940 /** 941 * scsi_eh_stu - send START_UNIT if needed 942 * @shost: scsi host being recovered. 943 * @eh_done_q: list_head for processed commands. 944 * 945 * Notes: 946 * If commands are failing due to not ready, initializing command required, 947 * try revalidating the device, which will end up sending a start unit. 948 **/ 949 static int scsi_eh_stu(struct Scsi_Host *shost, 950 struct list_head *work_q, 951 struct list_head *done_q) 952 { 953 struct list_head *lh, *lh_sf; 954 struct scsi_cmnd *scmd, *stu_scmd; 955 struct scsi_device *sdev; 956 957 shost_for_each_device(sdev, shost) { 958 stu_scmd = NULL; 959 list_for_each_entry(scmd, work_q, eh_entry) 960 if (scmd->device == sdev && SCSI_SENSE_VALID(scmd) && 961 scsi_check_sense(scmd) == FAILED ) { 962 stu_scmd = scmd; 963 break; 964 } 965 966 if (!stu_scmd) 967 continue; 968 969 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending START_UNIT to sdev:" 970 " 0x%p\n", current->comm, sdev)); 971 972 if (!scsi_eh_try_stu(stu_scmd)) { 973 if (!scsi_device_online(sdev) || 974 !scsi_eh_tur(stu_scmd)) { 975 list_for_each_safe(lh, lh_sf, work_q) { 976 scmd = list_entry(lh, struct scsi_cmnd, eh_entry); 977 if (scmd->device == sdev) 978 scsi_eh_finish_cmd(scmd, done_q); 979 } 980 } 981 } else { 982 SCSI_LOG_ERROR_RECOVERY(3, 983 printk("%s: START_UNIT failed to sdev:" 984 " 0x%p\n", current->comm, sdev)); 985 } 986 } 987 988 return list_empty(work_q); 989 } 990 991 992 /** 993 * scsi_eh_bus_device_reset - send bdr if needed 994 * @shost: scsi host being recovered. 995 * @eh_done_q: list_head for processed commands. 996 * 997 * Notes: 998 * Try a bus device reset. still, look to see whether we have multiple 999 * devices that are jammed or not - if we have multiple devices, it 1000 * makes no sense to try bus_device_reset - we really would need to try 1001 * a bus_reset instead. 1002 **/ 1003 static int scsi_eh_bus_device_reset(struct Scsi_Host *shost, 1004 struct list_head *work_q, 1005 struct list_head *done_q) 1006 { 1007 struct list_head *lh, *lh_sf; 1008 struct scsi_cmnd *scmd, *bdr_scmd; 1009 struct scsi_device *sdev; 1010 int rtn; 1011 1012 shost_for_each_device(sdev, shost) { 1013 bdr_scmd = NULL; 1014 list_for_each_entry(scmd, work_q, eh_entry) 1015 if (scmd->device == sdev) { 1016 bdr_scmd = scmd; 1017 break; 1018 } 1019 1020 if (!bdr_scmd) 1021 continue; 1022 1023 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending BDR sdev:" 1024 " 0x%p\n", current->comm, 1025 sdev)); 1026 rtn = scsi_try_bus_device_reset(bdr_scmd); 1027 if (rtn == SUCCESS) { 1028 if (!scsi_device_online(sdev) || 1029 !scsi_eh_tur(bdr_scmd)) { 1030 list_for_each_safe(lh, lh_sf, 1031 work_q) { 1032 scmd = list_entry(lh, struct 1033 scsi_cmnd, 1034 eh_entry); 1035 if (scmd->device == sdev) 1036 scsi_eh_finish_cmd(scmd, 1037 done_q); 1038 } 1039 } 1040 } else { 1041 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: BDR" 1042 " failed sdev:" 1043 "0x%p\n", 1044 current->comm, 1045 sdev)); 1046 } 1047 } 1048 1049 return list_empty(work_q); 1050 } 1051 1052 /** 1053 * scsi_try_bus_reset - ask host to perform a bus reset 1054 * @scmd: SCSI cmd to send bus reset. 1055 **/ 1056 static int scsi_try_bus_reset(struct scsi_cmnd *scmd) 1057 { 1058 unsigned long flags; 1059 int rtn; 1060 1061 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Snd Bus RST\n", 1062 __FUNCTION__)); 1063 scmd->owner = SCSI_OWNER_LOWLEVEL; 1064 scmd->serial_number_at_timeout = scmd->serial_number; 1065 1066 if (!scmd->device->host->hostt->eh_bus_reset_handler) 1067 return FAILED; 1068 1069 spin_lock_irqsave(scmd->device->host->host_lock, flags); 1070 rtn = scmd->device->host->hostt->eh_bus_reset_handler(scmd); 1071 spin_unlock_irqrestore(scmd->device->host->host_lock, flags); 1072 1073 if (rtn == SUCCESS) { 1074 if (!scmd->device->host->hostt->skip_settle_delay) 1075 ssleep(BUS_RESET_SETTLE_TIME); 1076 spin_lock_irqsave(scmd->device->host->host_lock, flags); 1077 scsi_report_bus_reset(scmd->device->host, scmd->device->channel); 1078 spin_unlock_irqrestore(scmd->device->host->host_lock, flags); 1079 } 1080 1081 return rtn; 1082 } 1083 1084 /** 1085 * scsi_try_host_reset - ask host adapter to reset itself 1086 * @scmd: SCSI cmd to send hsot reset. 1087 **/ 1088 static int scsi_try_host_reset(struct scsi_cmnd *scmd) 1089 { 1090 unsigned long flags; 1091 int rtn; 1092 1093 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Snd Host RST\n", 1094 __FUNCTION__)); 1095 scmd->owner = SCSI_OWNER_LOWLEVEL; 1096 scmd->serial_number_at_timeout = scmd->serial_number; 1097 1098 if (!scmd->device->host->hostt->eh_host_reset_handler) 1099 return FAILED; 1100 1101 spin_lock_irqsave(scmd->device->host->host_lock, flags); 1102 rtn = scmd->device->host->hostt->eh_host_reset_handler(scmd); 1103 spin_unlock_irqrestore(scmd->device->host->host_lock, flags); 1104 1105 if (rtn == SUCCESS) { 1106 if (!scmd->device->host->hostt->skip_settle_delay) 1107 ssleep(HOST_RESET_SETTLE_TIME); 1108 spin_lock_irqsave(scmd->device->host->host_lock, flags); 1109 scsi_report_bus_reset(scmd->device->host, scmd->device->channel); 1110 spin_unlock_irqrestore(scmd->device->host->host_lock, flags); 1111 } 1112 1113 return rtn; 1114 } 1115 1116 /** 1117 * scsi_eh_bus_reset - send a bus reset 1118 * @shost: scsi host being recovered. 1119 * @eh_done_q: list_head for processed commands. 1120 **/ 1121 static int scsi_eh_bus_reset(struct Scsi_Host *shost, 1122 struct list_head *work_q, 1123 struct list_head *done_q) 1124 { 1125 struct list_head *lh, *lh_sf; 1126 struct scsi_cmnd *scmd; 1127 struct scsi_cmnd *chan_scmd; 1128 unsigned int channel; 1129 int rtn; 1130 1131 /* 1132 * we really want to loop over the various channels, and do this on 1133 * a channel by channel basis. we should also check to see if any 1134 * of the failed commands are on soft_reset devices, and if so, skip 1135 * the reset. 1136 */ 1137 1138 for (channel = 0; channel <= shost->max_channel; channel++) { 1139 chan_scmd = NULL; 1140 list_for_each_entry(scmd, work_q, eh_entry) { 1141 if (channel == scmd->device->channel) { 1142 chan_scmd = scmd; 1143 break; 1144 /* 1145 * FIXME add back in some support for 1146 * soft_reset devices. 1147 */ 1148 } 1149 } 1150 1151 if (!chan_scmd) 1152 continue; 1153 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending BRST chan:" 1154 " %d\n", current->comm, 1155 channel)); 1156 rtn = scsi_try_bus_reset(chan_scmd); 1157 if (rtn == SUCCESS) { 1158 list_for_each_safe(lh, lh_sf, work_q) { 1159 scmd = list_entry(lh, struct scsi_cmnd, 1160 eh_entry); 1161 if (channel == scmd->device->channel) 1162 if (!scsi_device_online(scmd->device) || 1163 !scsi_eh_tur(scmd)) 1164 scsi_eh_finish_cmd(scmd, 1165 done_q); 1166 } 1167 } else { 1168 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: BRST" 1169 " failed chan: %d\n", 1170 current->comm, 1171 channel)); 1172 } 1173 } 1174 return list_empty(work_q); 1175 } 1176 1177 /** 1178 * scsi_eh_host_reset - send a host reset 1179 * @work_q: list_head for processed commands. 1180 * @done_q: list_head for processed commands. 1181 **/ 1182 static int scsi_eh_host_reset(struct list_head *work_q, 1183 struct list_head *done_q) 1184 { 1185 int rtn; 1186 struct list_head *lh, *lh_sf; 1187 struct scsi_cmnd *scmd; 1188 1189 if (!list_empty(work_q)) { 1190 scmd = list_entry(work_q->next, 1191 struct scsi_cmnd, eh_entry); 1192 1193 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending HRST\n" 1194 , current->comm)); 1195 1196 rtn = scsi_try_host_reset(scmd); 1197 if (rtn == SUCCESS) { 1198 list_for_each_safe(lh, lh_sf, work_q) { 1199 scmd = list_entry(lh, struct scsi_cmnd, eh_entry); 1200 if (!scsi_device_online(scmd->device) || 1201 (!scsi_eh_try_stu(scmd) && !scsi_eh_tur(scmd)) || 1202 !scsi_eh_tur(scmd)) 1203 scsi_eh_finish_cmd(scmd, done_q); 1204 } 1205 } else { 1206 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: HRST" 1207 " failed\n", 1208 current->comm)); 1209 } 1210 } 1211 return list_empty(work_q); 1212 } 1213 1214 /** 1215 * scsi_eh_offline_sdevs - offline scsi devices that fail to recover 1216 * @work_q: list_head for processed commands. 1217 * @done_q: list_head for processed commands. 1218 * 1219 **/ 1220 static void scsi_eh_offline_sdevs(struct list_head *work_q, 1221 struct list_head *done_q) 1222 { 1223 struct list_head *lh, *lh_sf; 1224 struct scsi_cmnd *scmd; 1225 1226 list_for_each_safe(lh, lh_sf, work_q) { 1227 scmd = list_entry(lh, struct scsi_cmnd, eh_entry); 1228 printk(KERN_INFO "scsi: Device offlined - not" 1229 " ready after error recovery: host" 1230 " %d channel %d id %d lun %d\n", 1231 scmd->device->host->host_no, 1232 scmd->device->channel, 1233 scmd->device->id, 1234 scmd->device->lun); 1235 scsi_device_set_state(scmd->device, SDEV_OFFLINE); 1236 if (scsi_eh_eflags_chk(scmd, SCSI_EH_CANCEL_CMD)) { 1237 /* 1238 * FIXME: Handle lost cmds. 1239 */ 1240 } 1241 scsi_eh_finish_cmd(scmd, done_q); 1242 } 1243 return; 1244 } 1245 1246 /** 1247 * scsi_decide_disposition - Disposition a cmd on return from LLD. 1248 * @scmd: SCSI cmd to examine. 1249 * 1250 * Notes: 1251 * This is *only* called when we are examining the status after sending 1252 * out the actual data command. any commands that are queued for error 1253 * recovery (e.g. test_unit_ready) do *not* come through here. 1254 * 1255 * When this routine returns failed, it means the error handler thread 1256 * is woken. In cases where the error code indicates an error that 1257 * doesn't require the error handler read (i.e. we don't need to 1258 * abort/reset), this function should return SUCCESS. 1259 **/ 1260 int scsi_decide_disposition(struct scsi_cmnd *scmd) 1261 { 1262 int rtn; 1263 1264 /* 1265 * if the device is offline, then we clearly just pass the result back 1266 * up to the top level. 1267 */ 1268 if (!scsi_device_online(scmd->device)) { 1269 SCSI_LOG_ERROR_RECOVERY(5, printk("%s: device offline - report" 1270 " as SUCCESS\n", 1271 __FUNCTION__)); 1272 return SUCCESS; 1273 } 1274 1275 /* 1276 * first check the host byte, to see if there is anything in there 1277 * that would indicate what we need to do. 1278 */ 1279 switch (host_byte(scmd->result)) { 1280 case DID_PASSTHROUGH: 1281 /* 1282 * no matter what, pass this through to the upper layer. 1283 * nuke this special code so that it looks like we are saying 1284 * did_ok. 1285 */ 1286 scmd->result &= 0xff00ffff; 1287 return SUCCESS; 1288 case DID_OK: 1289 /* 1290 * looks good. drop through, and check the next byte. 1291 */ 1292 break; 1293 case DID_NO_CONNECT: 1294 case DID_BAD_TARGET: 1295 case DID_ABORT: 1296 /* 1297 * note - this means that we just report the status back 1298 * to the top level driver, not that we actually think 1299 * that it indicates SUCCESS. 1300 */ 1301 return SUCCESS; 1302 /* 1303 * when the low level driver returns did_soft_error, 1304 * it is responsible for keeping an internal retry counter 1305 * in order to avoid endless loops (db) 1306 * 1307 * actually this is a bug in this function here. we should 1308 * be mindful of the maximum number of retries specified 1309 * and not get stuck in a loop. 1310 */ 1311 case DID_SOFT_ERROR: 1312 goto maybe_retry; 1313 case DID_IMM_RETRY: 1314 return NEEDS_RETRY; 1315 1316 case DID_ERROR: 1317 if (msg_byte(scmd->result) == COMMAND_COMPLETE && 1318 status_byte(scmd->result) == RESERVATION_CONFLICT) 1319 /* 1320 * execute reservation conflict processing code 1321 * lower down 1322 */ 1323 break; 1324 /* fallthrough */ 1325 1326 case DID_BUS_BUSY: 1327 case DID_PARITY: 1328 goto maybe_retry; 1329 case DID_TIME_OUT: 1330 /* 1331 * when we scan the bus, we get timeout messages for 1332 * these commands if there is no device available. 1333 * other hosts report did_no_connect for the same thing. 1334 */ 1335 if ((scmd->cmnd[0] == TEST_UNIT_READY || 1336 scmd->cmnd[0] == INQUIRY)) { 1337 return SUCCESS; 1338 } else { 1339 return FAILED; 1340 } 1341 case DID_RESET: 1342 return SUCCESS; 1343 default: 1344 return FAILED; 1345 } 1346 1347 /* 1348 * next, check the message byte. 1349 */ 1350 if (msg_byte(scmd->result) != COMMAND_COMPLETE) 1351 return FAILED; 1352 1353 /* 1354 * check the status byte to see if this indicates anything special. 1355 */ 1356 switch (status_byte(scmd->result)) { 1357 case QUEUE_FULL: 1358 /* 1359 * the case of trying to send too many commands to a 1360 * tagged queueing device. 1361 */ 1362 case BUSY: 1363 /* 1364 * device can't talk to us at the moment. Should only 1365 * occur (SAM-3) when the task queue is empty, so will cause 1366 * the empty queue handling to trigger a stall in the 1367 * device. 1368 */ 1369 return ADD_TO_MLQUEUE; 1370 case GOOD: 1371 case COMMAND_TERMINATED: 1372 case TASK_ABORTED: 1373 return SUCCESS; 1374 case CHECK_CONDITION: 1375 rtn = scsi_check_sense(scmd); 1376 if (rtn == NEEDS_RETRY) 1377 goto maybe_retry; 1378 /* if rtn == FAILED, we have no sense information; 1379 * returning FAILED will wake the error handler thread 1380 * to collect the sense and redo the decide 1381 * disposition */ 1382 return rtn; 1383 case CONDITION_GOOD: 1384 case INTERMEDIATE_GOOD: 1385 case INTERMEDIATE_C_GOOD: 1386 case ACA_ACTIVE: 1387 /* 1388 * who knows? FIXME(eric) 1389 */ 1390 return SUCCESS; 1391 1392 case RESERVATION_CONFLICT: 1393 printk(KERN_INFO "scsi: reservation conflict: host" 1394 " %d channel %d id %d lun %d\n", 1395 scmd->device->host->host_no, scmd->device->channel, 1396 scmd->device->id, scmd->device->lun); 1397 return SUCCESS; /* causes immediate i/o error */ 1398 default: 1399 return FAILED; 1400 } 1401 return FAILED; 1402 1403 maybe_retry: 1404 1405 /* we requeue for retry because the error was retryable, and 1406 * the request was not marked fast fail. Note that above, 1407 * even if the request is marked fast fail, we still requeue 1408 * for queue congestion conditions (QUEUE_FULL or BUSY) */ 1409 if ((++scmd->retries) < scmd->allowed 1410 && !blk_noretry_request(scmd->request)) { 1411 return NEEDS_RETRY; 1412 } else { 1413 /* 1414 * no more retries - report this one back to upper level. 1415 */ 1416 return SUCCESS; 1417 } 1418 } 1419 1420 /** 1421 * scsi_eh_lock_done - done function for eh door lock request 1422 * @scmd: SCSI command block for the door lock request 1423 * 1424 * Notes: 1425 * We completed the asynchronous door lock request, and it has either 1426 * locked the door or failed. We must free the command structures 1427 * associated with this request. 1428 **/ 1429 static void scsi_eh_lock_done(struct scsi_cmnd *scmd) 1430 { 1431 struct scsi_request *sreq = scmd->sc_request; 1432 1433 scsi_release_request(sreq); 1434 } 1435 1436 1437 /** 1438 * scsi_eh_lock_door - Prevent medium removal for the specified device 1439 * @sdev: SCSI device to prevent medium removal 1440 * 1441 * Locking: 1442 * We must be called from process context; scsi_allocate_request() 1443 * may sleep. 1444 * 1445 * Notes: 1446 * We queue up an asynchronous "ALLOW MEDIUM REMOVAL" request on the 1447 * head of the devices request queue, and continue. 1448 * 1449 * Bugs: 1450 * scsi_allocate_request() may sleep waiting for existing requests to 1451 * be processed. However, since we haven't kicked off any request 1452 * processing for this host, this may deadlock. 1453 * 1454 * If scsi_allocate_request() fails for what ever reason, we 1455 * completely forget to lock the door. 1456 **/ 1457 static void scsi_eh_lock_door(struct scsi_device *sdev) 1458 { 1459 struct scsi_request *sreq = scsi_allocate_request(sdev, GFP_KERNEL); 1460 1461 if (unlikely(!sreq)) { 1462 printk(KERN_ERR "%s: request allocate failed," 1463 "prevent media removal cmd not sent\n", __FUNCTION__); 1464 return; 1465 } 1466 1467 sreq->sr_cmnd[0] = ALLOW_MEDIUM_REMOVAL; 1468 sreq->sr_cmnd[1] = 0; 1469 sreq->sr_cmnd[2] = 0; 1470 sreq->sr_cmnd[3] = 0; 1471 sreq->sr_cmnd[4] = SCSI_REMOVAL_PREVENT; 1472 sreq->sr_cmnd[5] = 0; 1473 sreq->sr_data_direction = DMA_NONE; 1474 sreq->sr_bufflen = 0; 1475 sreq->sr_buffer = NULL; 1476 sreq->sr_allowed = 5; 1477 sreq->sr_done = scsi_eh_lock_done; 1478 sreq->sr_timeout_per_command = 10 * HZ; 1479 sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]); 1480 1481 scsi_insert_special_req(sreq, 1); 1482 } 1483 1484 1485 /** 1486 * scsi_restart_operations - restart io operations to the specified host. 1487 * @shost: Host we are restarting. 1488 * 1489 * Notes: 1490 * When we entered the error handler, we blocked all further i/o to 1491 * this device. we need to 'reverse' this process. 1492 **/ 1493 static void scsi_restart_operations(struct Scsi_Host *shost) 1494 { 1495 struct scsi_device *sdev; 1496 1497 /* 1498 * If the door was locked, we need to insert a door lock request 1499 * onto the head of the SCSI request queue for the device. There 1500 * is no point trying to lock the door of an off-line device. 1501 */ 1502 shost_for_each_device(sdev, shost) { 1503 if (scsi_device_online(sdev) && sdev->locked) 1504 scsi_eh_lock_door(sdev); 1505 } 1506 1507 /* 1508 * next free up anything directly waiting upon the host. this 1509 * will be requests for character device operations, and also for 1510 * ioctls to queued block devices. 1511 */ 1512 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: waking up host to restart\n", 1513 __FUNCTION__)); 1514 1515 clear_bit(SHOST_RECOVERY, &shost->shost_state); 1516 1517 wake_up(&shost->host_wait); 1518 1519 /* 1520 * finally we need to re-initiate requests that may be pending. we will 1521 * have had everything blocked while error handling is taking place, and 1522 * now that error recovery is done, we will need to ensure that these 1523 * requests are started. 1524 */ 1525 scsi_run_host_queues(shost); 1526 } 1527 1528 /** 1529 * scsi_eh_ready_devs - check device ready state and recover if not. 1530 * @shost: host to be recovered. 1531 * @eh_done_q: list_head for processed commands. 1532 * 1533 **/ 1534 static void scsi_eh_ready_devs(struct Scsi_Host *shost, 1535 struct list_head *work_q, 1536 struct list_head *done_q) 1537 { 1538 if (!scsi_eh_stu(shost, work_q, done_q)) 1539 if (!scsi_eh_bus_device_reset(shost, work_q, done_q)) 1540 if (!scsi_eh_bus_reset(shost, work_q, done_q)) 1541 if (!scsi_eh_host_reset(work_q, done_q)) 1542 scsi_eh_offline_sdevs(work_q, done_q); 1543 } 1544 1545 /** 1546 * scsi_eh_flush_done_q - finish processed commands or retry them. 1547 * @done_q: list_head of processed commands. 1548 * 1549 **/ 1550 static void scsi_eh_flush_done_q(struct list_head *done_q) 1551 { 1552 struct list_head *lh, *lh_sf; 1553 struct scsi_cmnd *scmd; 1554 1555 list_for_each_safe(lh, lh_sf, done_q) { 1556 scmd = list_entry(lh, struct scsi_cmnd, eh_entry); 1557 list_del_init(lh); 1558 if (scsi_device_online(scmd->device) && 1559 !blk_noretry_request(scmd->request) && 1560 (++scmd->retries < scmd->allowed)) { 1561 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: flush" 1562 " retry cmd: %p\n", 1563 current->comm, 1564 scmd)); 1565 scsi_queue_insert(scmd, SCSI_MLQUEUE_EH_RETRY); 1566 } else { 1567 if (!scmd->result) 1568 scmd->result |= (DRIVER_TIMEOUT << 24); 1569 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: flush finish" 1570 " cmd: %p\n", 1571 current->comm, scmd)); 1572 scsi_finish_command(scmd); 1573 } 1574 } 1575 } 1576 1577 /** 1578 * scsi_unjam_host - Attempt to fix a host which has a cmd that failed. 1579 * @shost: Host to unjam. 1580 * 1581 * Notes: 1582 * When we come in here, we *know* that all commands on the bus have 1583 * either completed, failed or timed out. we also know that no further 1584 * commands are being sent to the host, so things are relatively quiet 1585 * and we have freedom to fiddle with things as we wish. 1586 * 1587 * This is only the *default* implementation. it is possible for 1588 * individual drivers to supply their own version of this function, and 1589 * if the maintainer wishes to do this, it is strongly suggested that 1590 * this function be taken as a template and modified. this function 1591 * was designed to correctly handle problems for about 95% of the 1592 * different cases out there, and it should always provide at least a 1593 * reasonable amount of error recovery. 1594 * 1595 * Any command marked 'failed' or 'timeout' must eventually have 1596 * scsi_finish_cmd() called for it. we do all of the retry stuff 1597 * here, so when we restart the host after we return it should have an 1598 * empty queue. 1599 **/ 1600 static void scsi_unjam_host(struct Scsi_Host *shost) 1601 { 1602 unsigned long flags; 1603 LIST_HEAD(eh_work_q); 1604 LIST_HEAD(eh_done_q); 1605 1606 spin_lock_irqsave(shost->host_lock, flags); 1607 list_splice_init(&shost->eh_cmd_q, &eh_work_q); 1608 spin_unlock_irqrestore(shost->host_lock, flags); 1609 1610 SCSI_LOG_ERROR_RECOVERY(1, scsi_eh_prt_fail_stats(shost, &eh_work_q)); 1611 1612 if (!scsi_eh_get_sense(&eh_work_q, &eh_done_q)) 1613 if (!scsi_eh_abort_cmds(&eh_work_q, &eh_done_q)) 1614 scsi_eh_ready_devs(shost, &eh_work_q, &eh_done_q); 1615 1616 scsi_eh_flush_done_q(&eh_done_q); 1617 } 1618 1619 /** 1620 * scsi_error_handler - Handle errors/timeouts of SCSI cmds. 1621 * @data: Host for which we are running. 1622 * 1623 * Notes: 1624 * This is always run in the context of a kernel thread. The idea is 1625 * that we start this thing up when the kernel starts up (one per host 1626 * that we detect), and it immediately goes to sleep and waits for some 1627 * event (i.e. failure). When this takes place, we have the job of 1628 * trying to unjam the bus and restarting things. 1629 **/ 1630 int scsi_error_handler(void *data) 1631 { 1632 struct Scsi_Host *shost = (struct Scsi_Host *) data; 1633 int rtn; 1634 DECLARE_MUTEX_LOCKED(sem); 1635 1636 /* 1637 * Flush resources 1638 */ 1639 1640 daemonize("scsi_eh_%d", shost->host_no); 1641 1642 current->flags |= PF_NOFREEZE; 1643 1644 shost->eh_wait = &sem; 1645 shost->ehandler = current; 1646 1647 /* 1648 * Wake up the thread that created us. 1649 */ 1650 SCSI_LOG_ERROR_RECOVERY(3, printk("Wake up parent of" 1651 " scsi_eh_%d\n",shost->host_no)); 1652 1653 complete(shost->eh_notify); 1654 1655 while (1) { 1656 /* 1657 * If we get a signal, it means we are supposed to go 1658 * away and die. This typically happens if the user is 1659 * trying to unload a module. 1660 */ 1661 SCSI_LOG_ERROR_RECOVERY(1, printk("Error handler" 1662 " scsi_eh_%d" 1663 " sleeping\n",shost->host_no)); 1664 1665 /* 1666 * Note - we always use down_interruptible with the semaphore 1667 * even if the module was loaded as part of the kernel. The 1668 * reason is that down() will cause this thread to be counted 1669 * in the load average as a running process, and down 1670 * interruptible doesn't. Given that we need to allow this 1671 * thread to die if the driver was loaded as a module, using 1672 * semaphores isn't unreasonable. 1673 */ 1674 down_interruptible(&sem); 1675 if (shost->eh_kill) 1676 break; 1677 1678 SCSI_LOG_ERROR_RECOVERY(1, printk("Error handler" 1679 " scsi_eh_%d waking" 1680 " up\n",shost->host_no)); 1681 1682 shost->eh_active = 1; 1683 1684 /* 1685 * We have a host that is failing for some reason. Figure out 1686 * what we need to do to get it up and online again (if we can). 1687 * If we fail, we end up taking the thing offline. 1688 */ 1689 if (shost->hostt->eh_strategy_handler) 1690 rtn = shost->hostt->eh_strategy_handler(shost); 1691 else 1692 scsi_unjam_host(shost); 1693 1694 shost->eh_active = 0; 1695 1696 /* 1697 * Note - if the above fails completely, the action is to take 1698 * individual devices offline and flush the queue of any 1699 * outstanding requests that may have been pending. When we 1700 * restart, we restart any I/O to any other devices on the bus 1701 * which are still online. 1702 */ 1703 scsi_restart_operations(shost); 1704 1705 } 1706 1707 SCSI_LOG_ERROR_RECOVERY(1, printk("Error handler scsi_eh_%d" 1708 " exiting\n",shost->host_no)); 1709 1710 /* 1711 * Make sure that nobody tries to wake us up again. 1712 */ 1713 shost->eh_wait = NULL; 1714 1715 /* 1716 * Knock this down too. From this point on, the host is flying 1717 * without a pilot. If this is because the module is being unloaded, 1718 * that's fine. If the user sent a signal to this thing, we are 1719 * potentially in real danger. 1720 */ 1721 shost->eh_active = 0; 1722 shost->ehandler = NULL; 1723 1724 /* 1725 * If anyone is waiting for us to exit (i.e. someone trying to unload 1726 * a driver), then wake up that process to let them know we are on 1727 * the way out the door. 1728 */ 1729 complete_and_exit(shost->eh_notify, 0); 1730 return 0; 1731 } 1732 1733 /* 1734 * Function: scsi_report_bus_reset() 1735 * 1736 * Purpose: Utility function used by low-level drivers to report that 1737 * they have observed a bus reset on the bus being handled. 1738 * 1739 * Arguments: shost - Host in question 1740 * channel - channel on which reset was observed. 1741 * 1742 * Returns: Nothing 1743 * 1744 * Lock status: Host lock must be held. 1745 * 1746 * Notes: This only needs to be called if the reset is one which 1747 * originates from an unknown location. Resets originated 1748 * by the mid-level itself don't need to call this, but there 1749 * should be no harm. 1750 * 1751 * The main purpose of this is to make sure that a CHECK_CONDITION 1752 * is properly treated. 1753 */ 1754 void scsi_report_bus_reset(struct Scsi_Host *shost, int channel) 1755 { 1756 struct scsi_device *sdev; 1757 1758 __shost_for_each_device(sdev, shost) { 1759 if (channel == sdev->channel) { 1760 sdev->was_reset = 1; 1761 sdev->expecting_cc_ua = 1; 1762 } 1763 } 1764 } 1765 EXPORT_SYMBOL(scsi_report_bus_reset); 1766 1767 /* 1768 * Function: scsi_report_device_reset() 1769 * 1770 * Purpose: Utility function used by low-level drivers to report that 1771 * they have observed a device reset on the device being handled. 1772 * 1773 * Arguments: shost - Host in question 1774 * channel - channel on which reset was observed 1775 * target - target on which reset was observed 1776 * 1777 * Returns: Nothing 1778 * 1779 * Lock status: Host lock must be held 1780 * 1781 * Notes: This only needs to be called if the reset is one which 1782 * originates from an unknown location. Resets originated 1783 * by the mid-level itself don't need to call this, but there 1784 * should be no harm. 1785 * 1786 * The main purpose of this is to make sure that a CHECK_CONDITION 1787 * is properly treated. 1788 */ 1789 void scsi_report_device_reset(struct Scsi_Host *shost, int channel, int target) 1790 { 1791 struct scsi_device *sdev; 1792 1793 __shost_for_each_device(sdev, shost) { 1794 if (channel == sdev->channel && 1795 target == sdev->id) { 1796 sdev->was_reset = 1; 1797 sdev->expecting_cc_ua = 1; 1798 } 1799 } 1800 } 1801 EXPORT_SYMBOL(scsi_report_device_reset); 1802 1803 static void 1804 scsi_reset_provider_done_command(struct scsi_cmnd *scmd) 1805 { 1806 } 1807 1808 /* 1809 * Function: scsi_reset_provider 1810 * 1811 * Purpose: Send requested reset to a bus or device at any phase. 1812 * 1813 * Arguments: device - device to send reset to 1814 * flag - reset type (see scsi.h) 1815 * 1816 * Returns: SUCCESS/FAILURE. 1817 * 1818 * Notes: This is used by the SCSI Generic driver to provide 1819 * Bus/Device reset capability. 1820 */ 1821 int 1822 scsi_reset_provider(struct scsi_device *dev, int flag) 1823 { 1824 struct scsi_cmnd *scmd = scsi_get_command(dev, GFP_KERNEL); 1825 struct request req; 1826 int rtn; 1827 1828 scmd->request = &req; 1829 memset(&scmd->eh_timeout, 0, sizeof(scmd->eh_timeout)); 1830 scmd->request->rq_status = RQ_SCSI_BUSY; 1831 scmd->state = SCSI_STATE_INITIALIZING; 1832 scmd->owner = SCSI_OWNER_MIDLEVEL; 1833 1834 memset(&scmd->cmnd, '\0', sizeof(scmd->cmnd)); 1835 1836 scmd->scsi_done = scsi_reset_provider_done_command; 1837 scmd->done = NULL; 1838 scmd->buffer = NULL; 1839 scmd->bufflen = 0; 1840 scmd->request_buffer = NULL; 1841 scmd->request_bufflen = 0; 1842 scmd->internal_timeout = NORMAL_TIMEOUT; 1843 scmd->abort_reason = DID_ABORT; 1844 1845 scmd->cmd_len = 0; 1846 1847 scmd->sc_data_direction = DMA_BIDIRECTIONAL; 1848 scmd->sc_request = NULL; 1849 scmd->sc_magic = SCSI_CMND_MAGIC; 1850 1851 init_timer(&scmd->eh_timeout); 1852 1853 /* 1854 * Sometimes the command can get back into the timer chain, 1855 * so use the pid as an identifier. 1856 */ 1857 scmd->pid = 0; 1858 1859 switch (flag) { 1860 case SCSI_TRY_RESET_DEVICE: 1861 rtn = scsi_try_bus_device_reset(scmd); 1862 if (rtn == SUCCESS) 1863 break; 1864 /* FALLTHROUGH */ 1865 case SCSI_TRY_RESET_BUS: 1866 rtn = scsi_try_bus_reset(scmd); 1867 if (rtn == SUCCESS) 1868 break; 1869 /* FALLTHROUGH */ 1870 case SCSI_TRY_RESET_HOST: 1871 rtn = scsi_try_host_reset(scmd); 1872 break; 1873 default: 1874 rtn = FAILED; 1875 } 1876 1877 scsi_delete_timer(scmd); 1878 scsi_next_command(scmd); 1879 return rtn; 1880 } 1881 EXPORT_SYMBOL(scsi_reset_provider); 1882 1883 /** 1884 * scsi_normalize_sense - normalize main elements from either fixed or 1885 * descriptor sense data format into a common format. 1886 * 1887 * @sense_buffer: byte array containing sense data returned by device 1888 * @sb_len: number of valid bytes in sense_buffer 1889 * @sshdr: pointer to instance of structure that common 1890 * elements are written to. 1891 * 1892 * Notes: 1893 * The "main elements" from sense data are: response_code, sense_key, 1894 * asc, ascq and additional_length (only for descriptor format). 1895 * 1896 * Typically this function can be called after a device has 1897 * responded to a SCSI command with the CHECK_CONDITION status. 1898 * 1899 * Return value: 1900 * 1 if valid sense data information found, else 0; 1901 **/ 1902 int scsi_normalize_sense(const u8 *sense_buffer, int sb_len, 1903 struct scsi_sense_hdr *sshdr) 1904 { 1905 if (!sense_buffer || !sb_len || (sense_buffer[0] & 0x70) != 0x70) 1906 return 0; 1907 1908 memset(sshdr, 0, sizeof(struct scsi_sense_hdr)); 1909 1910 sshdr->response_code = (sense_buffer[0] & 0x7f); 1911 if (sshdr->response_code >= 0x72) { 1912 /* 1913 * descriptor format 1914 */ 1915 if (sb_len > 1) 1916 sshdr->sense_key = (sense_buffer[1] & 0xf); 1917 if (sb_len > 2) 1918 sshdr->asc = sense_buffer[2]; 1919 if (sb_len > 3) 1920 sshdr->ascq = sense_buffer[3]; 1921 if (sb_len > 7) 1922 sshdr->additional_length = sense_buffer[7]; 1923 } else { 1924 /* 1925 * fixed format 1926 */ 1927 if (sb_len > 2) 1928 sshdr->sense_key = (sense_buffer[2] & 0xf); 1929 if (sb_len > 7) { 1930 sb_len = (sb_len < (sense_buffer[7] + 8)) ? 1931 sb_len : (sense_buffer[7] + 8); 1932 if (sb_len > 12) 1933 sshdr->asc = sense_buffer[12]; 1934 if (sb_len > 13) 1935 sshdr->ascq = sense_buffer[13]; 1936 } 1937 } 1938 1939 return 1; 1940 } 1941 EXPORT_SYMBOL(scsi_normalize_sense); 1942 1943 int scsi_request_normalize_sense(struct scsi_request *sreq, 1944 struct scsi_sense_hdr *sshdr) 1945 { 1946 return scsi_normalize_sense(sreq->sr_sense_buffer, 1947 sizeof(sreq->sr_sense_buffer), sshdr); 1948 } 1949 EXPORT_SYMBOL(scsi_request_normalize_sense); 1950 1951 int scsi_command_normalize_sense(struct scsi_cmnd *cmd, 1952 struct scsi_sense_hdr *sshdr) 1953 { 1954 return scsi_normalize_sense(cmd->sense_buffer, 1955 sizeof(cmd->sense_buffer), sshdr); 1956 } 1957 EXPORT_SYMBOL(scsi_command_normalize_sense); 1958 1959 /** 1960 * scsi_sense_desc_find - search for a given descriptor type in 1961 * descriptor sense data format. 1962 * 1963 * @sense_buffer: byte array of descriptor format sense data 1964 * @sb_len: number of valid bytes in sense_buffer 1965 * @desc_type: value of descriptor type to find 1966 * (e.g. 0 -> information) 1967 * 1968 * Notes: 1969 * only valid when sense data is in descriptor format 1970 * 1971 * Return value: 1972 * pointer to start of (first) descriptor if found else NULL 1973 **/ 1974 const u8 * scsi_sense_desc_find(const u8 * sense_buffer, int sb_len, 1975 int desc_type) 1976 { 1977 int add_sen_len, add_len, desc_len, k; 1978 const u8 * descp; 1979 1980 if ((sb_len < 8) || (0 == (add_sen_len = sense_buffer[7]))) 1981 return NULL; 1982 if ((sense_buffer[0] < 0x72) || (sense_buffer[0] > 0x73)) 1983 return NULL; 1984 add_sen_len = (add_sen_len < (sb_len - 8)) ? 1985 add_sen_len : (sb_len - 8); 1986 descp = &sense_buffer[8]; 1987 for (desc_len = 0, k = 0; k < add_sen_len; k += desc_len) { 1988 descp += desc_len; 1989 add_len = (k < (add_sen_len - 1)) ? descp[1]: -1; 1990 desc_len = add_len + 2; 1991 if (descp[0] == desc_type) 1992 return descp; 1993 if (add_len < 0) // short descriptor ?? 1994 break; 1995 } 1996 return NULL; 1997 } 1998 EXPORT_SYMBOL(scsi_sense_desc_find); 1999 2000 /** 2001 * scsi_get_sense_info_fld - attempts to get information field from 2002 * sense data (either fixed or descriptor format) 2003 * 2004 * @sense_buffer: byte array of sense data 2005 * @sb_len: number of valid bytes in sense_buffer 2006 * @info_out: pointer to 64 integer where 8 or 4 byte information 2007 * field will be placed if found. 2008 * 2009 * Return value: 2010 * 1 if information field found, 0 if not found. 2011 **/ 2012 int scsi_get_sense_info_fld(const u8 * sense_buffer, int sb_len, 2013 u64 * info_out) 2014 { 2015 int j; 2016 const u8 * ucp; 2017 u64 ull; 2018 2019 if (sb_len < 7) 2020 return 0; 2021 switch (sense_buffer[0] & 0x7f) { 2022 case 0x70: 2023 case 0x71: 2024 if (sense_buffer[0] & 0x80) { 2025 *info_out = (sense_buffer[3] << 24) + 2026 (sense_buffer[4] << 16) + 2027 (sense_buffer[5] << 8) + sense_buffer[6]; 2028 return 1; 2029 } else 2030 return 0; 2031 case 0x72: 2032 case 0x73: 2033 ucp = scsi_sense_desc_find(sense_buffer, sb_len, 2034 0 /* info desc */); 2035 if (ucp && (0xa == ucp[1])) { 2036 ull = 0; 2037 for (j = 0; j < 8; ++j) { 2038 if (j > 0) 2039 ull <<= 8; 2040 ull |= ucp[4 + j]; 2041 } 2042 *info_out = ull; 2043 return 1; 2044 } else 2045 return 0; 2046 default: 2047 return 0; 2048 } 2049 } 2050 EXPORT_SYMBOL(scsi_get_sense_info_fld); 2051