xref: /openbmc/linux/drivers/scsi/qla2xxx/qla_sup.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * QLogic Fibre Channel HBA Driver
3  * Copyright (c)  2003-2010 QLogic Corporation
4  *
5  * See LICENSE.qla2xxx for copyright and licensing details.
6  */
7 #include "qla_def.h"
8 
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/vmalloc.h>
12 #include <asm/uaccess.h>
13 
14 /*
15  * NVRAM support routines
16  */
17 
18 /**
19  * qla2x00_lock_nvram_access() -
20  * @ha: HA context
21  */
22 static void
23 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
24 {
25 	uint16_t data;
26 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
27 
28 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
29 		data = RD_REG_WORD(&reg->nvram);
30 		while (data & NVR_BUSY) {
31 			udelay(100);
32 			data = RD_REG_WORD(&reg->nvram);
33 		}
34 
35 		/* Lock resource */
36 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
37 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
38 		udelay(5);
39 		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
40 		while ((data & BIT_0) == 0) {
41 			/* Lock failed */
42 			udelay(100);
43 			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
44 			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
45 			udelay(5);
46 			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
47 		}
48 	}
49 }
50 
51 /**
52  * qla2x00_unlock_nvram_access() -
53  * @ha: HA context
54  */
55 static void
56 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
57 {
58 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
59 
60 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
61 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
62 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
63 	}
64 }
65 
66 /**
67  * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
68  * @ha: HA context
69  * @data: Serial interface selector
70  */
71 static void
72 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
73 {
74 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
75 
76 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
77 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
78 	NVRAM_DELAY();
79 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
80 	    NVR_WRT_ENABLE);
81 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
82 	NVRAM_DELAY();
83 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
84 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
85 	NVRAM_DELAY();
86 }
87 
88 /**
89  * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
90  *	NVRAM.
91  * @ha: HA context
92  * @nv_cmd: NVRAM command
93  *
94  * Bit definitions for NVRAM command:
95  *
96  *	Bit 26     = start bit
97  *	Bit 25, 24 = opcode
98  *	Bit 23-16  = address
99  *	Bit 15-0   = write data
100  *
101  * Returns the word read from nvram @addr.
102  */
103 static uint16_t
104 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
105 {
106 	uint8_t		cnt;
107 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
108 	uint16_t	data = 0;
109 	uint16_t	reg_data;
110 
111 	/* Send command to NVRAM. */
112 	nv_cmd <<= 5;
113 	for (cnt = 0; cnt < 11; cnt++) {
114 		if (nv_cmd & BIT_31)
115 			qla2x00_nv_write(ha, NVR_DATA_OUT);
116 		else
117 			qla2x00_nv_write(ha, 0);
118 		nv_cmd <<= 1;
119 	}
120 
121 	/* Read data from NVRAM. */
122 	for (cnt = 0; cnt < 16; cnt++) {
123 		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
124 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
125 		NVRAM_DELAY();
126 		data <<= 1;
127 		reg_data = RD_REG_WORD(&reg->nvram);
128 		if (reg_data & NVR_DATA_IN)
129 			data |= BIT_0;
130 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
131 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
132 		NVRAM_DELAY();
133 	}
134 
135 	/* Deselect chip. */
136 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
137 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
138 	NVRAM_DELAY();
139 
140 	return data;
141 }
142 
143 
144 /**
145  * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
146  *	request routine to get the word from NVRAM.
147  * @ha: HA context
148  * @addr: Address in NVRAM to read
149  *
150  * Returns the word read from nvram @addr.
151  */
152 static uint16_t
153 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
154 {
155 	uint16_t	data;
156 	uint32_t	nv_cmd;
157 
158 	nv_cmd = addr << 16;
159 	nv_cmd |= NV_READ_OP;
160 	data = qla2x00_nvram_request(ha, nv_cmd);
161 
162 	return (data);
163 }
164 
165 /**
166  * qla2x00_nv_deselect() - Deselect NVRAM operations.
167  * @ha: HA context
168  */
169 static void
170 qla2x00_nv_deselect(struct qla_hw_data *ha)
171 {
172 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
173 
174 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
175 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
176 	NVRAM_DELAY();
177 }
178 
179 /**
180  * qla2x00_write_nvram_word() - Write NVRAM data.
181  * @ha: HA context
182  * @addr: Address in NVRAM to write
183  * @data: word to program
184  */
185 static void
186 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
187 {
188 	int count;
189 	uint16_t word;
190 	uint32_t nv_cmd, wait_cnt;
191 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
192 
193 	qla2x00_nv_write(ha, NVR_DATA_OUT);
194 	qla2x00_nv_write(ha, 0);
195 	qla2x00_nv_write(ha, 0);
196 
197 	for (word = 0; word < 8; word++)
198 		qla2x00_nv_write(ha, NVR_DATA_OUT);
199 
200 	qla2x00_nv_deselect(ha);
201 
202 	/* Write data */
203 	nv_cmd = (addr << 16) | NV_WRITE_OP;
204 	nv_cmd |= data;
205 	nv_cmd <<= 5;
206 	for (count = 0; count < 27; count++) {
207 		if (nv_cmd & BIT_31)
208 			qla2x00_nv_write(ha, NVR_DATA_OUT);
209 		else
210 			qla2x00_nv_write(ha, 0);
211 
212 		nv_cmd <<= 1;
213 	}
214 
215 	qla2x00_nv_deselect(ha);
216 
217 	/* Wait for NVRAM to become ready */
218 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
219 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
220 	wait_cnt = NVR_WAIT_CNT;
221 	do {
222 		if (!--wait_cnt) {
223 			DEBUG9_10(qla_printk(KERN_WARNING, ha,
224 			    "NVRAM didn't go ready...\n"));
225 			break;
226 		}
227 		NVRAM_DELAY();
228 		word = RD_REG_WORD(&reg->nvram);
229 	} while ((word & NVR_DATA_IN) == 0);
230 
231 	qla2x00_nv_deselect(ha);
232 
233 	/* Disable writes */
234 	qla2x00_nv_write(ha, NVR_DATA_OUT);
235 	for (count = 0; count < 10; count++)
236 		qla2x00_nv_write(ha, 0);
237 
238 	qla2x00_nv_deselect(ha);
239 }
240 
241 static int
242 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
243 	uint16_t data, uint32_t tmo)
244 {
245 	int ret, count;
246 	uint16_t word;
247 	uint32_t nv_cmd;
248 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
249 
250 	ret = QLA_SUCCESS;
251 
252 	qla2x00_nv_write(ha, NVR_DATA_OUT);
253 	qla2x00_nv_write(ha, 0);
254 	qla2x00_nv_write(ha, 0);
255 
256 	for (word = 0; word < 8; word++)
257 		qla2x00_nv_write(ha, NVR_DATA_OUT);
258 
259 	qla2x00_nv_deselect(ha);
260 
261 	/* Write data */
262 	nv_cmd = (addr << 16) | NV_WRITE_OP;
263 	nv_cmd |= data;
264 	nv_cmd <<= 5;
265 	for (count = 0; count < 27; count++) {
266 		if (nv_cmd & BIT_31)
267 			qla2x00_nv_write(ha, NVR_DATA_OUT);
268 		else
269 			qla2x00_nv_write(ha, 0);
270 
271 		nv_cmd <<= 1;
272 	}
273 
274 	qla2x00_nv_deselect(ha);
275 
276 	/* Wait for NVRAM to become ready */
277 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
278 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
279 	do {
280 		NVRAM_DELAY();
281 		word = RD_REG_WORD(&reg->nvram);
282 		if (!--tmo) {
283 			ret = QLA_FUNCTION_FAILED;
284 			break;
285 		}
286 	} while ((word & NVR_DATA_IN) == 0);
287 
288 	qla2x00_nv_deselect(ha);
289 
290 	/* Disable writes */
291 	qla2x00_nv_write(ha, NVR_DATA_OUT);
292 	for (count = 0; count < 10; count++)
293 		qla2x00_nv_write(ha, 0);
294 
295 	qla2x00_nv_deselect(ha);
296 
297 	return ret;
298 }
299 
300 /**
301  * qla2x00_clear_nvram_protection() -
302  * @ha: HA context
303  */
304 static int
305 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
306 {
307 	int ret, stat;
308 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
309 	uint32_t word, wait_cnt;
310 	uint16_t wprot, wprot_old;
311 
312 	/* Clear NVRAM write protection. */
313 	ret = QLA_FUNCTION_FAILED;
314 
315 	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
316 	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
317 	    __constant_cpu_to_le16(0x1234), 100000);
318 	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
319 	if (stat != QLA_SUCCESS || wprot != 0x1234) {
320 		/* Write enable. */
321 		qla2x00_nv_write(ha, NVR_DATA_OUT);
322 		qla2x00_nv_write(ha, 0);
323 		qla2x00_nv_write(ha, 0);
324 		for (word = 0; word < 8; word++)
325 			qla2x00_nv_write(ha, NVR_DATA_OUT);
326 
327 		qla2x00_nv_deselect(ha);
328 
329 		/* Enable protection register. */
330 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
331 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
332 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
333 		for (word = 0; word < 8; word++)
334 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
335 
336 		qla2x00_nv_deselect(ha);
337 
338 		/* Clear protection register (ffff is cleared). */
339 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
340 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
341 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 		for (word = 0; word < 8; word++)
343 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
344 
345 		qla2x00_nv_deselect(ha);
346 
347 		/* Wait for NVRAM to become ready. */
348 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
349 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
350 		wait_cnt = NVR_WAIT_CNT;
351 		do {
352 			if (!--wait_cnt) {
353 				DEBUG9_10(qla_printk(KERN_WARNING, ha,
354 				    "NVRAM didn't go ready...\n"));
355 				break;
356 			}
357 			NVRAM_DELAY();
358 			word = RD_REG_WORD(&reg->nvram);
359 		} while ((word & NVR_DATA_IN) == 0);
360 
361 		if (wait_cnt)
362 			ret = QLA_SUCCESS;
363 	} else
364 		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
365 
366 	return ret;
367 }
368 
369 static void
370 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
371 {
372 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
373 	uint32_t word, wait_cnt;
374 
375 	if (stat != QLA_SUCCESS)
376 		return;
377 
378 	/* Set NVRAM write protection. */
379 	/* Write enable. */
380 	qla2x00_nv_write(ha, NVR_DATA_OUT);
381 	qla2x00_nv_write(ha, 0);
382 	qla2x00_nv_write(ha, 0);
383 	for (word = 0; word < 8; word++)
384 		qla2x00_nv_write(ha, NVR_DATA_OUT);
385 
386 	qla2x00_nv_deselect(ha);
387 
388 	/* Enable protection register. */
389 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
390 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
391 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
392 	for (word = 0; word < 8; word++)
393 		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
394 
395 	qla2x00_nv_deselect(ha);
396 
397 	/* Enable protection register. */
398 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
399 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
400 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
401 	for (word = 0; word < 8; word++)
402 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
403 
404 	qla2x00_nv_deselect(ha);
405 
406 	/* Wait for NVRAM to become ready. */
407 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
408 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
409 	wait_cnt = NVR_WAIT_CNT;
410 	do {
411 		if (!--wait_cnt) {
412 			DEBUG9_10(qla_printk(KERN_WARNING, ha,
413 			    "NVRAM didn't go ready...\n"));
414 			break;
415 		}
416 		NVRAM_DELAY();
417 		word = RD_REG_WORD(&reg->nvram);
418 	} while ((word & NVR_DATA_IN) == 0);
419 }
420 
421 
422 /*****************************************************************************/
423 /* Flash Manipulation Routines                                               */
424 /*****************************************************************************/
425 
426 static inline uint32_t
427 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
428 {
429 	return ha->flash_conf_off | faddr;
430 }
431 
432 static inline uint32_t
433 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
434 {
435 	return ha->flash_data_off | faddr;
436 }
437 
438 static inline uint32_t
439 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
440 {
441 	return ha->nvram_conf_off | naddr;
442 }
443 
444 static inline uint32_t
445 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
446 {
447 	return ha->nvram_data_off | naddr;
448 }
449 
450 static uint32_t
451 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
452 {
453 	int rval;
454 	uint32_t cnt, data;
455 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
456 
457 	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
458 	/* Wait for READ cycle to complete. */
459 	rval = QLA_SUCCESS;
460 	for (cnt = 3000;
461 	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
462 	    rval == QLA_SUCCESS; cnt--) {
463 		if (cnt)
464 			udelay(10);
465 		else
466 			rval = QLA_FUNCTION_TIMEOUT;
467 		cond_resched();
468 	}
469 
470 	/* TODO: What happens if we time out? */
471 	data = 0xDEADDEAD;
472 	if (rval == QLA_SUCCESS)
473 		data = RD_REG_DWORD(&reg->flash_data);
474 
475 	return data;
476 }
477 
478 uint32_t *
479 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
480     uint32_t dwords)
481 {
482 	uint32_t i;
483 	struct qla_hw_data *ha = vha->hw;
484 
485 	/* Dword reads to flash. */
486 	for (i = 0; i < dwords; i++, faddr++)
487 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
488 		    flash_data_addr(ha, faddr)));
489 
490 	return dwptr;
491 }
492 
493 static int
494 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
495 {
496 	int rval;
497 	uint32_t cnt;
498 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
499 
500 	WRT_REG_DWORD(&reg->flash_data, data);
501 	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
502 	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
503 	/* Wait for Write cycle to complete. */
504 	rval = QLA_SUCCESS;
505 	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
506 	    rval == QLA_SUCCESS; cnt--) {
507 		if (cnt)
508 			udelay(10);
509 		else
510 			rval = QLA_FUNCTION_TIMEOUT;
511 		cond_resched();
512 	}
513 	return rval;
514 }
515 
516 static void
517 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
518     uint8_t *flash_id)
519 {
520 	uint32_t ids;
521 
522 	ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
523 	*man_id = LSB(ids);
524 	*flash_id = MSB(ids);
525 
526 	/* Check if man_id and flash_id are valid. */
527 	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
528 		/* Read information using 0x9f opcode
529 		 * Device ID, Mfg ID would be read in the format:
530 		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
531 		 * Example: ATMEL 0x00 01 45 1F
532 		 * Extract MFG and Dev ID from last two bytes.
533 		 */
534 		ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
535 		*man_id = LSB(ids);
536 		*flash_id = MSB(ids);
537 	}
538 }
539 
540 static int
541 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
542 {
543 	const char *loc, *locations[] = { "DEF", "PCI" };
544 	uint32_t pcihdr, pcids;
545 	uint32_t *dcode;
546 	uint8_t *buf, *bcode, last_image;
547 	uint16_t cnt, chksum, *wptr;
548 	struct qla_flt_location *fltl;
549 	struct qla_hw_data *ha = vha->hw;
550 	struct req_que *req = ha->req_q_map[0];
551 
552 	/*
553 	 * FLT-location structure resides after the last PCI region.
554 	 */
555 
556 	/* Begin with sane defaults. */
557 	loc = locations[0];
558 	*start = 0;
559 	if (IS_QLA24XX_TYPE(ha))
560 		*start = FA_FLASH_LAYOUT_ADDR_24;
561 	else if (IS_QLA25XX(ha))
562 		*start = FA_FLASH_LAYOUT_ADDR;
563 	else if (IS_QLA81XX(ha))
564 		*start = FA_FLASH_LAYOUT_ADDR_81;
565 	else if (IS_QLA82XX(ha)) {
566 		*start = FA_FLASH_LAYOUT_ADDR_82;
567 		goto end;
568 	}
569 	/* Begin with first PCI expansion ROM header. */
570 	buf = (uint8_t *)req->ring;
571 	dcode = (uint32_t *)req->ring;
572 	pcihdr = 0;
573 	last_image = 1;
574 	do {
575 		/* Verify PCI expansion ROM header. */
576 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
577 		bcode = buf + (pcihdr % 4);
578 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
579 			goto end;
580 
581 		/* Locate PCI data structure. */
582 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
583 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
584 		bcode = buf + (pcihdr % 4);
585 
586 		/* Validate signature of PCI data structure. */
587 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
588 		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
589 			goto end;
590 
591 		last_image = bcode[0x15] & BIT_7;
592 
593 		/* Locate next PCI expansion ROM. */
594 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
595 	} while (!last_image);
596 
597 	/* Now verify FLT-location structure. */
598 	fltl = (struct qla_flt_location *)req->ring;
599 	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
600 	    sizeof(struct qla_flt_location) >> 2);
601 	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
602 	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
603 		goto end;
604 
605 	wptr = (uint16_t *)req->ring;
606 	cnt = sizeof(struct qla_flt_location) >> 1;
607 	for (chksum = 0; cnt; cnt--)
608 		chksum += le16_to_cpu(*wptr++);
609 	if (chksum) {
610 		qla_printk(KERN_ERR, ha,
611 		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
612 		qla2x00_dump_buffer(buf, sizeof(struct qla_flt_location));
613 		return QLA_FUNCTION_FAILED;
614 	}
615 
616 	/* Good data.  Use specified location. */
617 	loc = locations[1];
618 	*start = (le16_to_cpu(fltl->start_hi) << 16 |
619 	    le16_to_cpu(fltl->start_lo)) >> 2;
620 end:
621 	DEBUG2(qla_printk(KERN_DEBUG, ha, "FLTL[%s] = 0x%x.\n", loc, *start));
622 	return QLA_SUCCESS;
623 }
624 
625 static void
626 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
627 {
628 	const char *loc, *locations[] = { "DEF", "FLT" };
629 	const uint32_t def_fw[] =
630 		{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
631 	const uint32_t def_boot[] =
632 		{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
633 	const uint32_t def_vpd_nvram[] =
634 		{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
635 	const uint32_t def_vpd0[] =
636 		{ 0, 0, FA_VPD0_ADDR_81 };
637 	const uint32_t def_vpd1[] =
638 		{ 0, 0, FA_VPD1_ADDR_81 };
639 	const uint32_t def_nvram0[] =
640 		{ 0, 0, FA_NVRAM0_ADDR_81 };
641 	const uint32_t def_nvram1[] =
642 		{ 0, 0, FA_NVRAM1_ADDR_81 };
643 	const uint32_t def_fdt[] =
644 		{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
645 			FA_FLASH_DESCR_ADDR_81 };
646 	const uint32_t def_npiv_conf0[] =
647 		{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
648 			FA_NPIV_CONF0_ADDR_81 };
649 	const uint32_t def_npiv_conf1[] =
650 		{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
651 			FA_NPIV_CONF1_ADDR_81 };
652 	const uint32_t fcp_prio_cfg0[] =
653 		{ FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25,
654 			0 };
655 	const uint32_t fcp_prio_cfg1[] =
656 		{ FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25,
657 			0 };
658 	uint32_t def;
659 	uint16_t *wptr;
660 	uint16_t cnt, chksum;
661 	uint32_t start;
662 	struct qla_flt_header *flt;
663 	struct qla_flt_region *region;
664 	struct qla_hw_data *ha = vha->hw;
665 	struct req_que *req = ha->req_q_map[0];
666 
667 	def = 0;
668 	if (IS_QLA25XX(ha))
669 		def = 1;
670 	else if (IS_QLA81XX(ha))
671 		def = 2;
672 	ha->flt_region_flt = flt_addr;
673 	wptr = (uint16_t *)req->ring;
674 	flt = (struct qla_flt_header *)req->ring;
675 	region = (struct qla_flt_region *)&flt[1];
676 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
677 	    flt_addr << 2, OPTROM_BURST_SIZE);
678 	if (*wptr == __constant_cpu_to_le16(0xffff))
679 		goto no_flash_data;
680 	if (flt->version != __constant_cpu_to_le16(1)) {
681 		DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported FLT detected: "
682 		    "version=0x%x length=0x%x checksum=0x%x.\n",
683 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
684 		    le16_to_cpu(flt->checksum)));
685 		goto no_flash_data;
686 	}
687 
688 	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
689 	for (chksum = 0; cnt; cnt--)
690 		chksum += le16_to_cpu(*wptr++);
691 	if (chksum) {
692 		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FLT detected: "
693 		    "version=0x%x length=0x%x checksum=0x%x.\n",
694 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
695 		    chksum));
696 		goto no_flash_data;
697 	}
698 
699 	/* Assign FCP prio region since older FLT's may not have it */
700 	ha->flt_region_fcp_prio = ha->flags.port0 ?
701 	    fcp_prio_cfg0[def] : fcp_prio_cfg1[def];
702 
703 	loc = locations[1];
704 	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
705 	for ( ; cnt; cnt--, region++) {
706 		/* Store addresses as DWORD offsets. */
707 		start = le32_to_cpu(region->start) >> 2;
708 
709 		DEBUG3(qla_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x "
710 		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start,
711 		    le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size)));
712 
713 		switch (le32_to_cpu(region->code) & 0xff) {
714 		case FLT_REG_FW:
715 			ha->flt_region_fw = start;
716 			break;
717 		case FLT_REG_BOOT_CODE:
718 			ha->flt_region_boot = start;
719 			break;
720 		case FLT_REG_VPD_0:
721 			ha->flt_region_vpd_nvram = start;
722 			if (IS_QLA82XX(ha))
723 				break;
724 			if (ha->flags.port0)
725 				ha->flt_region_vpd = start;
726 			break;
727 		case FLT_REG_VPD_1:
728 			if (IS_QLA82XX(ha))
729 				break;
730 			if (!ha->flags.port0)
731 				ha->flt_region_vpd = start;
732 			break;
733 		case FLT_REG_NVRAM_0:
734 			if (ha->flags.port0)
735 				ha->flt_region_nvram = start;
736 			break;
737 		case FLT_REG_NVRAM_1:
738 			if (!ha->flags.port0)
739 				ha->flt_region_nvram = start;
740 			break;
741 		case FLT_REG_FDT:
742 			ha->flt_region_fdt = start;
743 			break;
744 		case FLT_REG_NPIV_CONF_0:
745 			if (ha->flags.port0)
746 				ha->flt_region_npiv_conf = start;
747 			break;
748 		case FLT_REG_NPIV_CONF_1:
749 			if (!ha->flags.port0)
750 				ha->flt_region_npiv_conf = start;
751 			break;
752 		case FLT_REG_GOLD_FW:
753 			ha->flt_region_gold_fw = start;
754 			break;
755 		case FLT_REG_FCP_PRIO_0:
756 			if (ha->flags.port0)
757 				ha->flt_region_fcp_prio = start;
758 			break;
759 		case FLT_REG_FCP_PRIO_1:
760 			if (!ha->flags.port0)
761 				ha->flt_region_fcp_prio = start;
762 			break;
763 		case FLT_REG_BOOT_CODE_82XX:
764 			ha->flt_region_boot = start;
765 			break;
766 		case FLT_REG_FW_82XX:
767 			ha->flt_region_fw = start;
768 			break;
769 		case FLT_REG_GOLD_FW_82XX:
770 			ha->flt_region_gold_fw = start;
771 			break;
772 		case FLT_REG_BOOTLOAD_82XX:
773 			ha->flt_region_bootload = start;
774 			break;
775 		case FLT_REG_VPD_82XX:
776 			ha->flt_region_vpd = start;
777 			break;
778 		}
779 	}
780 	goto done;
781 
782 no_flash_data:
783 	/* Use hardcoded defaults. */
784 	loc = locations[0];
785 	ha->flt_region_fw = def_fw[def];
786 	ha->flt_region_boot = def_boot[def];
787 	ha->flt_region_vpd_nvram = def_vpd_nvram[def];
788 	ha->flt_region_vpd = ha->flags.port0 ?
789 	    def_vpd0[def] : def_vpd1[def];
790 	ha->flt_region_nvram = ha->flags.port0 ?
791 	    def_nvram0[def] : def_nvram1[def];
792 	ha->flt_region_fdt = def_fdt[def];
793 	ha->flt_region_npiv_conf = ha->flags.port0 ?
794 	    def_npiv_conf0[def] : def_npiv_conf1[def];
795 done:
796 	DEBUG2(qla_printk(KERN_DEBUG, ha, "FLT[%s]: boot=0x%x fw=0x%x "
797 	    "vpd_nvram=0x%x vpd=0x%x nvram=0x%x fdt=0x%x flt=0x%x "
798 	    "npiv=0x%x. fcp_prio_cfg=0x%x\n", loc, ha->flt_region_boot,
799 	    ha->flt_region_fw, ha->flt_region_vpd_nvram, ha->flt_region_vpd,
800 	    ha->flt_region_nvram, ha->flt_region_fdt, ha->flt_region_flt,
801 	    ha->flt_region_npiv_conf, ha->flt_region_fcp_prio));
802 }
803 
804 static void
805 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
806 {
807 #define FLASH_BLK_SIZE_4K	0x1000
808 #define FLASH_BLK_SIZE_32K	0x8000
809 #define FLASH_BLK_SIZE_64K	0x10000
810 	const char *loc, *locations[] = { "MID", "FDT" };
811 	uint16_t cnt, chksum;
812 	uint16_t *wptr;
813 	struct qla_fdt_layout *fdt;
814 	uint8_t	man_id, flash_id;
815 	uint16_t mid = 0, fid = 0;
816 	struct qla_hw_data *ha = vha->hw;
817 	struct req_que *req = ha->req_q_map[0];
818 
819 	wptr = (uint16_t *)req->ring;
820 	fdt = (struct qla_fdt_layout *)req->ring;
821 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
822 	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
823 	if (*wptr == __constant_cpu_to_le16(0xffff))
824 		goto no_flash_data;
825 	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
826 	    fdt->sig[3] != 'D')
827 		goto no_flash_data;
828 
829 	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
830 	    cnt++)
831 		chksum += le16_to_cpu(*wptr++);
832 	if (chksum) {
833 		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
834 		    "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
835 		    le16_to_cpu(fdt->version)));
836 		DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt)));
837 		goto no_flash_data;
838 	}
839 
840 	loc = locations[1];
841 	mid = le16_to_cpu(fdt->man_id);
842 	fid = le16_to_cpu(fdt->id);
843 	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
844 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
845 	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
846 	if (fdt->unprotect_sec_cmd) {
847 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
848 		    fdt->unprotect_sec_cmd);
849 		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
850 		    flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
851 		    flash_conf_addr(ha, 0x0336);
852 	}
853 	goto done;
854 no_flash_data:
855 	loc = locations[0];
856 	if (IS_QLA82XX(ha)) {
857 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
858 		goto done;
859 	}
860 	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
861 	mid = man_id;
862 	fid = flash_id;
863 	ha->fdt_wrt_disable = 0x9c;
864 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
865 	switch (man_id) {
866 	case 0xbf: /* STT flash. */
867 		if (flash_id == 0x8e)
868 			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
869 		else
870 			ha->fdt_block_size = FLASH_BLK_SIZE_32K;
871 
872 		if (flash_id == 0x80)
873 			ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
874 		break;
875 	case 0x13: /* ST M25P80. */
876 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
877 		break;
878 	case 0x1f: /* Atmel 26DF081A. */
879 		ha->fdt_block_size = FLASH_BLK_SIZE_4K;
880 		ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
881 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
882 		ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
883 		break;
884 	default:
885 		/* Default to 64 kb sector size. */
886 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
887 		break;
888 	}
889 done:
890 	DEBUG2(qla_printk(KERN_DEBUG, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x "
891 	    "pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
892 	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
893 	    ha->fdt_unprotect_sec_cmd, ha->fdt_wrt_disable,
894 	    ha->fdt_block_size));
895 }
896 
897 static void
898 qla2xxx_get_idc_param(scsi_qla_host_t *vha)
899 {
900 #define QLA82XX_IDC_PARAM_ADDR       0x003e885c
901 	uint32_t *wptr;
902 	struct qla_hw_data *ha = vha->hw;
903 	struct req_que *req = ha->req_q_map[0];
904 
905 	if (!IS_QLA82XX(ha))
906 		return;
907 
908 	wptr = (uint32_t *)req->ring;
909 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
910 		QLA82XX_IDC_PARAM_ADDR , 8);
911 
912 	if (*wptr == __constant_cpu_to_le32(0xffffffff)) {
913 		ha->nx_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT;
914 		ha->nx_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT;
915 	} else {
916 		ha->nx_dev_init_timeout = le32_to_cpu(*wptr++);
917 		ha->nx_reset_timeout = le32_to_cpu(*wptr);
918 	}
919 	return;
920 }
921 
922 int
923 qla2xxx_get_flash_info(scsi_qla_host_t *vha)
924 {
925 	int ret;
926 	uint32_t flt_addr;
927 	struct qla_hw_data *ha = vha->hw;
928 
929 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA8XXX_TYPE(ha))
930 		return QLA_SUCCESS;
931 
932 	ret = qla2xxx_find_flt_start(vha, &flt_addr);
933 	if (ret != QLA_SUCCESS)
934 		return ret;
935 
936 	qla2xxx_get_flt_info(vha, flt_addr);
937 	qla2xxx_get_fdt_info(vha);
938 	qla2xxx_get_idc_param(vha);
939 
940 	return QLA_SUCCESS;
941 }
942 
943 void
944 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
945 {
946 #define NPIV_CONFIG_SIZE	(16*1024)
947 	void *data;
948 	uint16_t *wptr;
949 	uint16_t cnt, chksum;
950 	int i;
951 	struct qla_npiv_header hdr;
952 	struct qla_npiv_entry *entry;
953 	struct qla_hw_data *ha = vha->hw;
954 
955 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA8XXX_TYPE(ha))
956 		return;
957 
958 	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
959 	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
960 	if (hdr.version == __constant_cpu_to_le16(0xffff))
961 		return;
962 	if (hdr.version != __constant_cpu_to_le16(1)) {
963 		DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported NPIV-Config "
964 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
965 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
966 		    le16_to_cpu(hdr.checksum)));
967 		return;
968 	}
969 
970 	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
971 	if (!data) {
972 		DEBUG2(qla_printk(KERN_INFO, ha, "NPIV-Config: Unable to "
973 		    "allocate memory.\n"));
974 		return;
975 	}
976 
977 	ha->isp_ops->read_optrom(vha, (uint8_t *)data,
978 	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
979 
980 	cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
981 	    sizeof(struct qla_npiv_entry)) >> 1;
982 	for (wptr = data, chksum = 0; cnt; cnt--)
983 		chksum += le16_to_cpu(*wptr++);
984 	if (chksum) {
985 		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent NPIV-Config "
986 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
987 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
988 		    chksum));
989 		goto done;
990 	}
991 
992 	entry = data + sizeof(struct qla_npiv_header);
993 	cnt = le16_to_cpu(hdr.entries);
994 	for (i = 0; cnt; cnt--, entry++, i++) {
995 		uint16_t flags;
996 		struct fc_vport_identifiers vid;
997 		struct fc_vport *vport;
998 
999 		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
1000 
1001 		flags = le16_to_cpu(entry->flags);
1002 		if (flags == 0xffff)
1003 			continue;
1004 		if ((flags & BIT_0) == 0)
1005 			continue;
1006 
1007 		memset(&vid, 0, sizeof(vid));
1008 		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
1009 		vid.vport_type = FC_PORTTYPE_NPIV;
1010 		vid.disable = false;
1011 		vid.port_name = wwn_to_u64(entry->port_name);
1012 		vid.node_name = wwn_to_u64(entry->node_name);
1013 
1014 		DEBUG2(qla_printk(KERN_INFO, ha, "NPIV[%02x]: wwpn=%llx "
1015 			"wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
1016 			(unsigned long long)vid.port_name,
1017 			(unsigned long long)vid.node_name,
1018 			le16_to_cpu(entry->vf_id),
1019 			entry->q_qos, entry->f_qos));
1020 
1021 		if (i < QLA_PRECONFIG_VPORTS) {
1022 			vport = fc_vport_create(vha->host, 0, &vid);
1023 			if (!vport)
1024 				qla_printk(KERN_INFO, ha,
1025 				"NPIV-Config: Failed to create vport [%02x]: "
1026 				"wwpn=%llx wwnn=%llx.\n", cnt,
1027 				(unsigned long long)vid.port_name,
1028 				(unsigned long long)vid.node_name);
1029 		}
1030 	}
1031 done:
1032 	kfree(data);
1033 }
1034 
1035 static int
1036 qla24xx_unprotect_flash(scsi_qla_host_t *vha)
1037 {
1038 	struct qla_hw_data *ha = vha->hw;
1039 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1040 
1041 	if (ha->flags.fac_supported)
1042 		return qla81xx_fac_do_write_enable(vha, 1);
1043 
1044 	/* Enable flash write. */
1045 	WRT_REG_DWORD(&reg->ctrl_status,
1046 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1047 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1048 
1049 	if (!ha->fdt_wrt_disable)
1050 		goto done;
1051 
1052 	/* Disable flash write-protection, first clear SR protection bit */
1053 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1054 	/* Then write zero again to clear remaining SR bits.*/
1055 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1056 done:
1057 	return QLA_SUCCESS;
1058 }
1059 
1060 static int
1061 qla24xx_protect_flash(scsi_qla_host_t *vha)
1062 {
1063 	uint32_t cnt;
1064 	struct qla_hw_data *ha = vha->hw;
1065 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1066 
1067 	if (ha->flags.fac_supported)
1068 		return qla81xx_fac_do_write_enable(vha, 0);
1069 
1070 	if (!ha->fdt_wrt_disable)
1071 		goto skip_wrt_protect;
1072 
1073 	/* Enable flash write-protection and wait for completion. */
1074 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1075 	    ha->fdt_wrt_disable);
1076 	for (cnt = 300; cnt &&
1077 	    qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1078 	    cnt--) {
1079 		udelay(10);
1080 	}
1081 
1082 skip_wrt_protect:
1083 	/* Disable flash write. */
1084 	WRT_REG_DWORD(&reg->ctrl_status,
1085 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1086 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1087 
1088 	return QLA_SUCCESS;
1089 }
1090 
1091 static int
1092 qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
1093 {
1094 	struct qla_hw_data *ha = vha->hw;
1095 	uint32_t start, finish;
1096 
1097 	if (ha->flags.fac_supported) {
1098 		start = fdata >> 2;
1099 		finish = start + (ha->fdt_block_size >> 2) - 1;
1100 		return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
1101 		    start), flash_data_addr(ha, finish));
1102 	}
1103 
1104 	return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1105 	    (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
1106 	    ((fdata >> 16) & 0xff));
1107 }
1108 
1109 static int
1110 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1111     uint32_t dwords)
1112 {
1113 	int ret;
1114 	uint32_t liter;
1115 	uint32_t sec_mask, rest_addr;
1116 	uint32_t fdata;
1117 	dma_addr_t optrom_dma;
1118 	void *optrom = NULL;
1119 	struct qla_hw_data *ha = vha->hw;
1120 
1121 	/* Prepare burst-capable write on supported ISPs. */
1122 	if ((IS_QLA25XX(ha) || IS_QLA81XX(ha)) && !(faddr & 0xfff) &&
1123 	    dwords > OPTROM_BURST_DWORDS) {
1124 		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1125 		    &optrom_dma, GFP_KERNEL);
1126 		if (!optrom) {
1127 			qla_printk(KERN_DEBUG, ha,
1128 			    "Unable to allocate memory for optrom burst write "
1129 			    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
1130 		}
1131 	}
1132 
1133 	rest_addr = (ha->fdt_block_size >> 2) - 1;
1134 	sec_mask = ~rest_addr;
1135 
1136 	ret = qla24xx_unprotect_flash(vha);
1137 	if (ret != QLA_SUCCESS) {
1138 		qla_printk(KERN_WARNING, ha,
1139 		    "Unable to unprotect flash for update.\n");
1140 		goto done;
1141 	}
1142 
1143 	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1144 		fdata = (faddr & sec_mask) << 2;
1145 
1146 		/* Are we at the beginning of a sector? */
1147 		if ((faddr & rest_addr) == 0) {
1148 			/* Do sector unprotect. */
1149 			if (ha->fdt_unprotect_sec_cmd)
1150 				qla24xx_write_flash_dword(ha,
1151 				    ha->fdt_unprotect_sec_cmd,
1152 				    (fdata & 0xff00) | ((fdata << 16) &
1153 				    0xff0000) | ((fdata >> 16) & 0xff));
1154 			ret = qla24xx_erase_sector(vha, fdata);
1155 			if (ret != QLA_SUCCESS) {
1156 				DEBUG9(qla_printk(KERN_WARNING, ha,
1157 				    "Unable to erase sector: address=%x.\n",
1158 				    faddr));
1159 				break;
1160 			}
1161 		}
1162 
1163 		/* Go with burst-write. */
1164 		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1165 			/* Copy data to DMA'ble buffer. */
1166 			memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1167 
1168 			ret = qla2x00_load_ram(vha, optrom_dma,
1169 			    flash_data_addr(ha, faddr),
1170 			    OPTROM_BURST_DWORDS);
1171 			if (ret != QLA_SUCCESS) {
1172 				qla_printk(KERN_WARNING, ha,
1173 				    "Unable to burst-write optrom segment "
1174 				    "(%x/%x/%llx).\n", ret,
1175 				    flash_data_addr(ha, faddr),
1176 				    (unsigned long long)optrom_dma);
1177 				qla_printk(KERN_WARNING, ha,
1178 				    "Reverting to slow-write.\n");
1179 
1180 				dma_free_coherent(&ha->pdev->dev,
1181 				    OPTROM_BURST_SIZE, optrom, optrom_dma);
1182 				optrom = NULL;
1183 			} else {
1184 				liter += OPTROM_BURST_DWORDS - 1;
1185 				faddr += OPTROM_BURST_DWORDS - 1;
1186 				dwptr += OPTROM_BURST_DWORDS - 1;
1187 				continue;
1188 			}
1189 		}
1190 
1191 		ret = qla24xx_write_flash_dword(ha,
1192 		    flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1193 		if (ret != QLA_SUCCESS) {
1194 			DEBUG9(printk("%s(%ld) Unable to program flash "
1195 			    "address=%x data=%x.\n", __func__,
1196 			    vha->host_no, faddr, *dwptr));
1197 			break;
1198 		}
1199 
1200 		/* Do sector protect. */
1201 		if (ha->fdt_unprotect_sec_cmd &&
1202 		    ((faddr & rest_addr) == rest_addr))
1203 			qla24xx_write_flash_dword(ha,
1204 			    ha->fdt_protect_sec_cmd,
1205 			    (fdata & 0xff00) | ((fdata << 16) &
1206 			    0xff0000) | ((fdata >> 16) & 0xff));
1207 	}
1208 
1209 	ret = qla24xx_protect_flash(vha);
1210 	if (ret != QLA_SUCCESS)
1211 		qla_printk(KERN_WARNING, ha,
1212 		    "Unable to protect flash after update.\n");
1213 done:
1214 	if (optrom)
1215 		dma_free_coherent(&ha->pdev->dev,
1216 		    OPTROM_BURST_SIZE, optrom, optrom_dma);
1217 
1218 	return ret;
1219 }
1220 
1221 uint8_t *
1222 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1223     uint32_t bytes)
1224 {
1225 	uint32_t i;
1226 	uint16_t *wptr;
1227 	struct qla_hw_data *ha = vha->hw;
1228 
1229 	/* Word reads to NVRAM via registers. */
1230 	wptr = (uint16_t *)buf;
1231 	qla2x00_lock_nvram_access(ha);
1232 	for (i = 0; i < bytes >> 1; i++, naddr++)
1233 		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1234 		    naddr));
1235 	qla2x00_unlock_nvram_access(ha);
1236 
1237 	return buf;
1238 }
1239 
1240 uint8_t *
1241 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1242     uint32_t bytes)
1243 {
1244 	uint32_t i;
1245 	uint32_t *dwptr;
1246 	struct qla_hw_data *ha = vha->hw;
1247 
1248 	if (IS_QLA82XX(ha))
1249 		return  buf;
1250 
1251 	/* Dword reads to flash. */
1252 	dwptr = (uint32_t *)buf;
1253 	for (i = 0; i < bytes >> 2; i++, naddr++)
1254 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1255 		    nvram_data_addr(ha, naddr)));
1256 
1257 	return buf;
1258 }
1259 
1260 int
1261 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1262     uint32_t bytes)
1263 {
1264 	int ret, stat;
1265 	uint32_t i;
1266 	uint16_t *wptr;
1267 	unsigned long flags;
1268 	struct qla_hw_data *ha = vha->hw;
1269 
1270 	ret = QLA_SUCCESS;
1271 
1272 	spin_lock_irqsave(&ha->hardware_lock, flags);
1273 	qla2x00_lock_nvram_access(ha);
1274 
1275 	/* Disable NVRAM write-protection. */
1276 	stat = qla2x00_clear_nvram_protection(ha);
1277 
1278 	wptr = (uint16_t *)buf;
1279 	for (i = 0; i < bytes >> 1; i++, naddr++) {
1280 		qla2x00_write_nvram_word(ha, naddr,
1281 		    cpu_to_le16(*wptr));
1282 		wptr++;
1283 	}
1284 
1285 	/* Enable NVRAM write-protection. */
1286 	qla2x00_set_nvram_protection(ha, stat);
1287 
1288 	qla2x00_unlock_nvram_access(ha);
1289 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1290 
1291 	return ret;
1292 }
1293 
1294 int
1295 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1296     uint32_t bytes)
1297 {
1298 	int ret;
1299 	uint32_t i;
1300 	uint32_t *dwptr;
1301 	struct qla_hw_data *ha = vha->hw;
1302 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1303 
1304 	ret = QLA_SUCCESS;
1305 
1306 	if (IS_QLA82XX(ha))
1307 		return ret;
1308 
1309 	/* Enable flash write. */
1310 	WRT_REG_DWORD(&reg->ctrl_status,
1311 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1312 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1313 
1314 	/* Disable NVRAM write-protection. */
1315 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1316 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1317 
1318 	/* Dword writes to flash. */
1319 	dwptr = (uint32_t *)buf;
1320 	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1321 		ret = qla24xx_write_flash_dword(ha,
1322 		    nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1323 		if (ret != QLA_SUCCESS) {
1324 			DEBUG9(qla_printk(KERN_WARNING, ha,
1325 			    "Unable to program nvram address=%x data=%x.\n",
1326 			    naddr, *dwptr));
1327 			break;
1328 		}
1329 	}
1330 
1331 	/* Enable NVRAM write-protection. */
1332 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1333 
1334 	/* Disable flash write. */
1335 	WRT_REG_DWORD(&reg->ctrl_status,
1336 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1337 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1338 
1339 	return ret;
1340 }
1341 
1342 uint8_t *
1343 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1344     uint32_t bytes)
1345 {
1346 	uint32_t i;
1347 	uint32_t *dwptr;
1348 	struct qla_hw_data *ha = vha->hw;
1349 
1350 	/* Dword reads to flash. */
1351 	dwptr = (uint32_t *)buf;
1352 	for (i = 0; i < bytes >> 2; i++, naddr++)
1353 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1354 		    flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1355 
1356 	return buf;
1357 }
1358 
1359 int
1360 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1361     uint32_t bytes)
1362 {
1363 	struct qla_hw_data *ha = vha->hw;
1364 #define RMW_BUFFER_SIZE	(64 * 1024)
1365 	uint8_t *dbuf;
1366 
1367 	dbuf = vmalloc(RMW_BUFFER_SIZE);
1368 	if (!dbuf)
1369 		return QLA_MEMORY_ALLOC_FAILED;
1370 	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1371 	    RMW_BUFFER_SIZE);
1372 	memcpy(dbuf + (naddr << 2), buf, bytes);
1373 	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1374 	    RMW_BUFFER_SIZE);
1375 	vfree(dbuf);
1376 
1377 	return QLA_SUCCESS;
1378 }
1379 
1380 static inline void
1381 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1382 {
1383 	if (IS_QLA2322(ha)) {
1384 		/* Flip all colors. */
1385 		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1386 			/* Turn off. */
1387 			ha->beacon_color_state = 0;
1388 			*pflags = GPIO_LED_ALL_OFF;
1389 		} else {
1390 			/* Turn on. */
1391 			ha->beacon_color_state = QLA_LED_ALL_ON;
1392 			*pflags = GPIO_LED_RGA_ON;
1393 		}
1394 	} else {
1395 		/* Flip green led only. */
1396 		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1397 			/* Turn off. */
1398 			ha->beacon_color_state = 0;
1399 			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1400 		} else {
1401 			/* Turn on. */
1402 			ha->beacon_color_state = QLA_LED_GRN_ON;
1403 			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1404 		}
1405 	}
1406 }
1407 
1408 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1409 
1410 void
1411 qla2x00_beacon_blink(struct scsi_qla_host *vha)
1412 {
1413 	uint16_t gpio_enable;
1414 	uint16_t gpio_data;
1415 	uint16_t led_color = 0;
1416 	unsigned long flags;
1417 	struct qla_hw_data *ha = vha->hw;
1418 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1419 
1420 	if (IS_QLA82XX(ha))
1421 		return;
1422 
1423 	spin_lock_irqsave(&ha->hardware_lock, flags);
1424 
1425 	/* Save the Original GPIOE. */
1426 	if (ha->pio_address) {
1427 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1428 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1429 	} else {
1430 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1431 		gpio_data = RD_REG_WORD(&reg->gpiod);
1432 	}
1433 
1434 	/* Set the modified gpio_enable values */
1435 	gpio_enable |= GPIO_LED_MASK;
1436 
1437 	if (ha->pio_address) {
1438 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1439 	} else {
1440 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1441 		RD_REG_WORD(&reg->gpioe);
1442 	}
1443 
1444 	qla2x00_flip_colors(ha, &led_color);
1445 
1446 	/* Clear out any previously set LED color. */
1447 	gpio_data &= ~GPIO_LED_MASK;
1448 
1449 	/* Set the new input LED color to GPIOD. */
1450 	gpio_data |= led_color;
1451 
1452 	/* Set the modified gpio_data values */
1453 	if (ha->pio_address) {
1454 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1455 	} else {
1456 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1457 		RD_REG_WORD(&reg->gpiod);
1458 	}
1459 
1460 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1461 }
1462 
1463 int
1464 qla2x00_beacon_on(struct scsi_qla_host *vha)
1465 {
1466 	uint16_t gpio_enable;
1467 	uint16_t gpio_data;
1468 	unsigned long flags;
1469 	struct qla_hw_data *ha = vha->hw;
1470 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1471 
1472 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1473 	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1474 
1475 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1476 		qla_printk(KERN_WARNING, ha,
1477 		    "Unable to update fw options (beacon on).\n");
1478 		return QLA_FUNCTION_FAILED;
1479 	}
1480 
1481 	/* Turn off LEDs. */
1482 	spin_lock_irqsave(&ha->hardware_lock, flags);
1483 	if (ha->pio_address) {
1484 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1485 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1486 	} else {
1487 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1488 		gpio_data = RD_REG_WORD(&reg->gpiod);
1489 	}
1490 	gpio_enable |= GPIO_LED_MASK;
1491 
1492 	/* Set the modified gpio_enable values. */
1493 	if (ha->pio_address) {
1494 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1495 	} else {
1496 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1497 		RD_REG_WORD(&reg->gpioe);
1498 	}
1499 
1500 	/* Clear out previously set LED colour. */
1501 	gpio_data &= ~GPIO_LED_MASK;
1502 	if (ha->pio_address) {
1503 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1504 	} else {
1505 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1506 		RD_REG_WORD(&reg->gpiod);
1507 	}
1508 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1509 
1510 	/*
1511 	 * Let the per HBA timer kick off the blinking process based on
1512 	 * the following flags. No need to do anything else now.
1513 	 */
1514 	ha->beacon_blink_led = 1;
1515 	ha->beacon_color_state = 0;
1516 
1517 	return QLA_SUCCESS;
1518 }
1519 
1520 int
1521 qla2x00_beacon_off(struct scsi_qla_host *vha)
1522 {
1523 	int rval = QLA_SUCCESS;
1524 	struct qla_hw_data *ha = vha->hw;
1525 
1526 	ha->beacon_blink_led = 0;
1527 
1528 	/* Set the on flag so when it gets flipped it will be off. */
1529 	if (IS_QLA2322(ha))
1530 		ha->beacon_color_state = QLA_LED_ALL_ON;
1531 	else
1532 		ha->beacon_color_state = QLA_LED_GRN_ON;
1533 
1534 	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */
1535 
1536 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1537 	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1538 
1539 	rval = qla2x00_set_fw_options(vha, ha->fw_options);
1540 	if (rval != QLA_SUCCESS)
1541 		qla_printk(KERN_WARNING, ha,
1542 		    "Unable to update fw options (beacon off).\n");
1543 	return rval;
1544 }
1545 
1546 
1547 static inline void
1548 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1549 {
1550 	/* Flip all colors. */
1551 	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1552 		/* Turn off. */
1553 		ha->beacon_color_state = 0;
1554 		*pflags = 0;
1555 	} else {
1556 		/* Turn on. */
1557 		ha->beacon_color_state = QLA_LED_ALL_ON;
1558 		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1559 	}
1560 }
1561 
1562 void
1563 qla24xx_beacon_blink(struct scsi_qla_host *vha)
1564 {
1565 	uint16_t led_color = 0;
1566 	uint32_t gpio_data;
1567 	unsigned long flags;
1568 	struct qla_hw_data *ha = vha->hw;
1569 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1570 
1571 	/* Save the Original GPIOD. */
1572 	spin_lock_irqsave(&ha->hardware_lock, flags);
1573 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1574 
1575 	/* Enable the gpio_data reg for update. */
1576 	gpio_data |= GPDX_LED_UPDATE_MASK;
1577 
1578 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1579 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1580 
1581 	/* Set the color bits. */
1582 	qla24xx_flip_colors(ha, &led_color);
1583 
1584 	/* Clear out any previously set LED color. */
1585 	gpio_data &= ~GPDX_LED_COLOR_MASK;
1586 
1587 	/* Set the new input LED color to GPIOD. */
1588 	gpio_data |= led_color;
1589 
1590 	/* Set the modified gpio_data values. */
1591 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1592 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1593 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1594 }
1595 
1596 int
1597 qla24xx_beacon_on(struct scsi_qla_host *vha)
1598 {
1599 	uint32_t gpio_data;
1600 	unsigned long flags;
1601 	struct qla_hw_data *ha = vha->hw;
1602 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1603 
1604 	if (IS_QLA82XX(ha))
1605 		return QLA_SUCCESS;
1606 
1607 	if (ha->beacon_blink_led == 0) {
1608 		/* Enable firmware for update */
1609 		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1610 
1611 		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1612 			return QLA_FUNCTION_FAILED;
1613 
1614 		if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1615 		    QLA_SUCCESS) {
1616 			qla_printk(KERN_WARNING, ha,
1617 			    "Unable to update fw options (beacon on).\n");
1618 			return QLA_FUNCTION_FAILED;
1619 		}
1620 
1621 		spin_lock_irqsave(&ha->hardware_lock, flags);
1622 		gpio_data = RD_REG_DWORD(&reg->gpiod);
1623 
1624 		/* Enable the gpio_data reg for update. */
1625 		gpio_data |= GPDX_LED_UPDATE_MASK;
1626 		WRT_REG_DWORD(&reg->gpiod, gpio_data);
1627 		RD_REG_DWORD(&reg->gpiod);
1628 
1629 		spin_unlock_irqrestore(&ha->hardware_lock, flags);
1630 	}
1631 
1632 	/* So all colors blink together. */
1633 	ha->beacon_color_state = 0;
1634 
1635 	/* Let the per HBA timer kick off the blinking process. */
1636 	ha->beacon_blink_led = 1;
1637 
1638 	return QLA_SUCCESS;
1639 }
1640 
1641 int
1642 qla24xx_beacon_off(struct scsi_qla_host *vha)
1643 {
1644 	uint32_t gpio_data;
1645 	unsigned long flags;
1646 	struct qla_hw_data *ha = vha->hw;
1647 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1648 
1649 	if (IS_QLA82XX(ha))
1650 		return QLA_SUCCESS;
1651 
1652 	ha->beacon_blink_led = 0;
1653 	ha->beacon_color_state = QLA_LED_ALL_ON;
1654 
1655 	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */
1656 
1657 	/* Give control back to firmware. */
1658 	spin_lock_irqsave(&ha->hardware_lock, flags);
1659 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1660 
1661 	/* Disable the gpio_data reg for update. */
1662 	gpio_data &= ~GPDX_LED_UPDATE_MASK;
1663 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1664 	RD_REG_DWORD(&reg->gpiod);
1665 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1666 
1667 	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1668 
1669 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1670 		qla_printk(KERN_WARNING, ha,
1671 		    "Unable to update fw options (beacon off).\n");
1672 		return QLA_FUNCTION_FAILED;
1673 	}
1674 
1675 	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1676 		qla_printk(KERN_WARNING, ha,
1677 		    "Unable to get fw options (beacon off).\n");
1678 		return QLA_FUNCTION_FAILED;
1679 	}
1680 
1681 	return QLA_SUCCESS;
1682 }
1683 
1684 
1685 /*
1686  * Flash support routines
1687  */
1688 
1689 /**
1690  * qla2x00_flash_enable() - Setup flash for reading and writing.
1691  * @ha: HA context
1692  */
1693 static void
1694 qla2x00_flash_enable(struct qla_hw_data *ha)
1695 {
1696 	uint16_t data;
1697 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1698 
1699 	data = RD_REG_WORD(&reg->ctrl_status);
1700 	data |= CSR_FLASH_ENABLE;
1701 	WRT_REG_WORD(&reg->ctrl_status, data);
1702 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1703 }
1704 
1705 /**
1706  * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1707  * @ha: HA context
1708  */
1709 static void
1710 qla2x00_flash_disable(struct qla_hw_data *ha)
1711 {
1712 	uint16_t data;
1713 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1714 
1715 	data = RD_REG_WORD(&reg->ctrl_status);
1716 	data &= ~(CSR_FLASH_ENABLE);
1717 	WRT_REG_WORD(&reg->ctrl_status, data);
1718 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1719 }
1720 
1721 /**
1722  * qla2x00_read_flash_byte() - Reads a byte from flash
1723  * @ha: HA context
1724  * @addr: Address in flash to read
1725  *
1726  * A word is read from the chip, but, only the lower byte is valid.
1727  *
1728  * Returns the byte read from flash @addr.
1729  */
1730 static uint8_t
1731 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1732 {
1733 	uint16_t data;
1734 	uint16_t bank_select;
1735 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1736 
1737 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1738 
1739 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1740 		/* Specify 64K address range: */
1741 		/*  clear out Module Select and Flash Address bits [19:16]. */
1742 		bank_select &= ~0xf8;
1743 		bank_select |= addr >> 12 & 0xf0;
1744 		bank_select |= CSR_FLASH_64K_BANK;
1745 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1746 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1747 
1748 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1749 		data = RD_REG_WORD(&reg->flash_data);
1750 
1751 		return (uint8_t)data;
1752 	}
1753 
1754 	/* Setup bit 16 of flash address. */
1755 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1756 		bank_select |= CSR_FLASH_64K_BANK;
1757 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1758 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1759 	} else if (((addr & BIT_16) == 0) &&
1760 	    (bank_select & CSR_FLASH_64K_BANK)) {
1761 		bank_select &= ~(CSR_FLASH_64K_BANK);
1762 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1763 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1764 	}
1765 
1766 	/* Always perform IO mapped accesses to the FLASH registers. */
1767 	if (ha->pio_address) {
1768 		uint16_t data2;
1769 
1770 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1771 		do {
1772 			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1773 			barrier();
1774 			cpu_relax();
1775 			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1776 		} while (data != data2);
1777 	} else {
1778 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1779 		data = qla2x00_debounce_register(&reg->flash_data);
1780 	}
1781 
1782 	return (uint8_t)data;
1783 }
1784 
1785 /**
1786  * qla2x00_write_flash_byte() - Write a byte to flash
1787  * @ha: HA context
1788  * @addr: Address in flash to write
1789  * @data: Data to write
1790  */
1791 static void
1792 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1793 {
1794 	uint16_t bank_select;
1795 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1796 
1797 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1798 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1799 		/* Specify 64K address range: */
1800 		/*  clear out Module Select and Flash Address bits [19:16]. */
1801 		bank_select &= ~0xf8;
1802 		bank_select |= addr >> 12 & 0xf0;
1803 		bank_select |= CSR_FLASH_64K_BANK;
1804 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1805 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1806 
1807 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1808 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1809 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1810 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1811 
1812 		return;
1813 	}
1814 
1815 	/* Setup bit 16 of flash address. */
1816 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1817 		bank_select |= CSR_FLASH_64K_BANK;
1818 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1819 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1820 	} else if (((addr & BIT_16) == 0) &&
1821 	    (bank_select & CSR_FLASH_64K_BANK)) {
1822 		bank_select &= ~(CSR_FLASH_64K_BANK);
1823 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1824 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1825 	}
1826 
1827 	/* Always perform IO mapped accesses to the FLASH registers. */
1828 	if (ha->pio_address) {
1829 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1830 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1831 	} else {
1832 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1833 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1834 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1835 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1836 	}
1837 }
1838 
1839 /**
1840  * qla2x00_poll_flash() - Polls flash for completion.
1841  * @ha: HA context
1842  * @addr: Address in flash to poll
1843  * @poll_data: Data to be polled
1844  * @man_id: Flash manufacturer ID
1845  * @flash_id: Flash ID
1846  *
1847  * This function polls the device until bit 7 of what is read matches data
1848  * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
1849  * out (a fatal error).  The flash book recommeds reading bit 7 again after
1850  * reading bit 5 as a 1.
1851  *
1852  * Returns 0 on success, else non-zero.
1853  */
1854 static int
1855 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
1856     uint8_t man_id, uint8_t flash_id)
1857 {
1858 	int status;
1859 	uint8_t flash_data;
1860 	uint32_t cnt;
1861 
1862 	status = 1;
1863 
1864 	/* Wait for 30 seconds for command to finish. */
1865 	poll_data &= BIT_7;
1866 	for (cnt = 3000000; cnt; cnt--) {
1867 		flash_data = qla2x00_read_flash_byte(ha, addr);
1868 		if ((flash_data & BIT_7) == poll_data) {
1869 			status = 0;
1870 			break;
1871 		}
1872 
1873 		if (man_id != 0x40 && man_id != 0xda) {
1874 			if ((flash_data & BIT_5) && cnt > 2)
1875 				cnt = 2;
1876 		}
1877 		udelay(10);
1878 		barrier();
1879 		cond_resched();
1880 	}
1881 	return status;
1882 }
1883 
1884 /**
1885  * qla2x00_program_flash_address() - Programs a flash address
1886  * @ha: HA context
1887  * @addr: Address in flash to program
1888  * @data: Data to be written in flash
1889  * @man_id: Flash manufacturer ID
1890  * @flash_id: Flash ID
1891  *
1892  * Returns 0 on success, else non-zero.
1893  */
1894 static int
1895 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
1896     uint8_t data, uint8_t man_id, uint8_t flash_id)
1897 {
1898 	/* Write Program Command Sequence. */
1899 	if (IS_OEM_001(ha)) {
1900 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1901 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1902 		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1903 		qla2x00_write_flash_byte(ha, addr, data);
1904 	} else {
1905 		if (man_id == 0xda && flash_id == 0xc1) {
1906 			qla2x00_write_flash_byte(ha, addr, data);
1907 			if (addr & 0x7e)
1908 				return 0;
1909 		} else {
1910 			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1911 			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1912 			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1913 			qla2x00_write_flash_byte(ha, addr, data);
1914 		}
1915 	}
1916 
1917 	udelay(150);
1918 
1919 	/* Wait for write to complete. */
1920 	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1921 }
1922 
1923 /**
1924  * qla2x00_erase_flash() - Erase the flash.
1925  * @ha: HA context
1926  * @man_id: Flash manufacturer ID
1927  * @flash_id: Flash ID
1928  *
1929  * Returns 0 on success, else non-zero.
1930  */
1931 static int
1932 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
1933 {
1934 	/* Individual Sector Erase Command Sequence */
1935 	if (IS_OEM_001(ha)) {
1936 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1937 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1938 		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1939 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1940 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1941 		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1942 	} else {
1943 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1944 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1945 		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1946 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1947 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1948 		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1949 	}
1950 
1951 	udelay(150);
1952 
1953 	/* Wait for erase to complete. */
1954 	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1955 }
1956 
1957 /**
1958  * qla2x00_erase_flash_sector() - Erase a flash sector.
1959  * @ha: HA context
1960  * @addr: Flash sector to erase
1961  * @sec_mask: Sector address mask
1962  * @man_id: Flash manufacturer ID
1963  * @flash_id: Flash ID
1964  *
1965  * Returns 0 on success, else non-zero.
1966  */
1967 static int
1968 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
1969     uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1970 {
1971 	/* Individual Sector Erase Command Sequence */
1972 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1973 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1974 	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1975 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1976 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1977 	if (man_id == 0x1f && flash_id == 0x13)
1978 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
1979 	else
1980 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
1981 
1982 	udelay(150);
1983 
1984 	/* Wait for erase to complete. */
1985 	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
1986 }
1987 
1988 /**
1989  * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
1990  * @man_id: Flash manufacturer ID
1991  * @flash_id: Flash ID
1992  */
1993 static void
1994 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
1995     uint8_t *flash_id)
1996 {
1997 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1998 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1999 	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
2000 	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
2001 	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
2002 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2003 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2004 	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
2005 }
2006 
2007 static void
2008 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
2009 	uint32_t saddr, uint32_t length)
2010 {
2011 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2012 	uint32_t midpoint, ilength;
2013 	uint8_t data;
2014 
2015 	midpoint = length / 2;
2016 
2017 	WRT_REG_WORD(&reg->nvram, 0);
2018 	RD_REG_WORD(&reg->nvram);
2019 	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
2020 		if (ilength == midpoint) {
2021 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2022 			RD_REG_WORD(&reg->nvram);
2023 		}
2024 		data = qla2x00_read_flash_byte(ha, saddr);
2025 		if (saddr % 100)
2026 			udelay(10);
2027 		*tmp_buf = data;
2028 		cond_resched();
2029 	}
2030 }
2031 
2032 static inline void
2033 qla2x00_suspend_hba(struct scsi_qla_host *vha)
2034 {
2035 	int cnt;
2036 	unsigned long flags;
2037 	struct qla_hw_data *ha = vha->hw;
2038 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2039 
2040 	/* Suspend HBA. */
2041 	scsi_block_requests(vha->host);
2042 	ha->isp_ops->disable_intrs(ha);
2043 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2044 
2045 	/* Pause RISC. */
2046 	spin_lock_irqsave(&ha->hardware_lock, flags);
2047 	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
2048 	RD_REG_WORD(&reg->hccr);
2049 	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
2050 		for (cnt = 0; cnt < 30000; cnt++) {
2051 			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
2052 				break;
2053 			udelay(100);
2054 		}
2055 	} else {
2056 		udelay(10);
2057 	}
2058 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
2059 }
2060 
2061 static inline void
2062 qla2x00_resume_hba(struct scsi_qla_host *vha)
2063 {
2064 	struct qla_hw_data *ha = vha->hw;
2065 
2066 	/* Resume HBA. */
2067 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2068 	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
2069 	qla2xxx_wake_dpc(vha);
2070 	qla2x00_wait_for_chip_reset(vha);
2071 	scsi_unblock_requests(vha->host);
2072 }
2073 
2074 uint8_t *
2075 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2076     uint32_t offset, uint32_t length)
2077 {
2078 	uint32_t addr, midpoint;
2079 	uint8_t *data;
2080 	struct qla_hw_data *ha = vha->hw;
2081 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2082 
2083 	/* Suspend HBA. */
2084 	qla2x00_suspend_hba(vha);
2085 
2086 	/* Go with read. */
2087 	midpoint = ha->optrom_size / 2;
2088 
2089 	qla2x00_flash_enable(ha);
2090 	WRT_REG_WORD(&reg->nvram, 0);
2091 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
2092 	for (addr = offset, data = buf; addr < length; addr++, data++) {
2093 		if (addr == midpoint) {
2094 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2095 			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
2096 		}
2097 
2098 		*data = qla2x00_read_flash_byte(ha, addr);
2099 	}
2100 	qla2x00_flash_disable(ha);
2101 
2102 	/* Resume HBA. */
2103 	qla2x00_resume_hba(vha);
2104 
2105 	return buf;
2106 }
2107 
2108 int
2109 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2110     uint32_t offset, uint32_t length)
2111 {
2112 
2113 	int rval;
2114 	uint8_t man_id, flash_id, sec_number, data;
2115 	uint16_t wd;
2116 	uint32_t addr, liter, sec_mask, rest_addr;
2117 	struct qla_hw_data *ha = vha->hw;
2118 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2119 
2120 	/* Suspend HBA. */
2121 	qla2x00_suspend_hba(vha);
2122 
2123 	rval = QLA_SUCCESS;
2124 	sec_number = 0;
2125 
2126 	/* Reset ISP chip. */
2127 	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
2128 	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
2129 
2130 	/* Go with write. */
2131 	qla2x00_flash_enable(ha);
2132 	do {	/* Loop once to provide quick error exit */
2133 		/* Structure of flash memory based on manufacturer */
2134 		if (IS_OEM_001(ha)) {
2135 			/* OEM variant with special flash part. */
2136 			man_id = flash_id = 0;
2137 			rest_addr = 0xffff;
2138 			sec_mask   = 0x10000;
2139 			goto update_flash;
2140 		}
2141 		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
2142 		switch (man_id) {
2143 		case 0x20: /* ST flash. */
2144 			if (flash_id == 0xd2 || flash_id == 0xe3) {
2145 				/*
2146 				 * ST m29w008at part - 64kb sector size with
2147 				 * 32kb,8kb,8kb,16kb sectors at memory address
2148 				 * 0xf0000.
2149 				 */
2150 				rest_addr = 0xffff;
2151 				sec_mask = 0x10000;
2152 				break;
2153 			}
2154 			/*
2155 			 * ST m29w010b part - 16kb sector size
2156 			 * Default to 16kb sectors
2157 			 */
2158 			rest_addr = 0x3fff;
2159 			sec_mask = 0x1c000;
2160 			break;
2161 		case 0x40: /* Mostel flash. */
2162 			/* Mostel v29c51001 part - 512 byte sector size. */
2163 			rest_addr = 0x1ff;
2164 			sec_mask = 0x1fe00;
2165 			break;
2166 		case 0xbf: /* SST flash. */
2167 			/* SST39sf10 part - 4kb sector size. */
2168 			rest_addr = 0xfff;
2169 			sec_mask = 0x1f000;
2170 			break;
2171 		case 0xda: /* Winbond flash. */
2172 			/* Winbond W29EE011 part - 256 byte sector size. */
2173 			rest_addr = 0x7f;
2174 			sec_mask = 0x1ff80;
2175 			break;
2176 		case 0xc2: /* Macronix flash. */
2177 			/* 64k sector size. */
2178 			if (flash_id == 0x38 || flash_id == 0x4f) {
2179 				rest_addr = 0xffff;
2180 				sec_mask = 0x10000;
2181 				break;
2182 			}
2183 			/* Fall through... */
2184 
2185 		case 0x1f: /* Atmel flash. */
2186 			/* 512k sector size. */
2187 			if (flash_id == 0x13) {
2188 				rest_addr = 0x7fffffff;
2189 				sec_mask =   0x80000000;
2190 				break;
2191 			}
2192 			/* Fall through... */
2193 
2194 		case 0x01: /* AMD flash. */
2195 			if (flash_id == 0x38 || flash_id == 0x40 ||
2196 			    flash_id == 0x4f) {
2197 				/* Am29LV081 part - 64kb sector size. */
2198 				/* Am29LV002BT part - 64kb sector size. */
2199 				rest_addr = 0xffff;
2200 				sec_mask = 0x10000;
2201 				break;
2202 			} else if (flash_id == 0x3e) {
2203 				/*
2204 				 * Am29LV008b part - 64kb sector size with
2205 				 * 32kb,8kb,8kb,16kb sector at memory address
2206 				 * h0xf0000.
2207 				 */
2208 				rest_addr = 0xffff;
2209 				sec_mask = 0x10000;
2210 				break;
2211 			} else if (flash_id == 0x20 || flash_id == 0x6e) {
2212 				/*
2213 				 * Am29LV010 part or AM29f010 - 16kb sector
2214 				 * size.
2215 				 */
2216 				rest_addr = 0x3fff;
2217 				sec_mask = 0x1c000;
2218 				break;
2219 			} else if (flash_id == 0x6d) {
2220 				/* Am29LV001 part - 8kb sector size. */
2221 				rest_addr = 0x1fff;
2222 				sec_mask = 0x1e000;
2223 				break;
2224 			}
2225 		default:
2226 			/* Default to 16 kb sector size. */
2227 			rest_addr = 0x3fff;
2228 			sec_mask = 0x1c000;
2229 			break;
2230 		}
2231 
2232 update_flash:
2233 		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2234 			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2235 				rval = QLA_FUNCTION_FAILED;
2236 				break;
2237 			}
2238 		}
2239 
2240 		for (addr = offset, liter = 0; liter < length; liter++,
2241 		    addr++) {
2242 			data = buf[liter];
2243 			/* Are we at the beginning of a sector? */
2244 			if ((addr & rest_addr) == 0) {
2245 				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2246 					if (addr >= 0x10000UL) {
2247 						if (((addr >> 12) & 0xf0) &&
2248 						    ((man_id == 0x01 &&
2249 							flash_id == 0x3e) ||
2250 						     (man_id == 0x20 &&
2251 							 flash_id == 0xd2))) {
2252 							sec_number++;
2253 							if (sec_number == 1) {
2254 								rest_addr =
2255 								    0x7fff;
2256 								sec_mask =
2257 								    0x18000;
2258 							} else if (
2259 							    sec_number == 2 ||
2260 							    sec_number == 3) {
2261 								rest_addr =
2262 								    0x1fff;
2263 								sec_mask =
2264 								    0x1e000;
2265 							} else if (
2266 							    sec_number == 4) {
2267 								rest_addr =
2268 								    0x3fff;
2269 								sec_mask =
2270 								    0x1c000;
2271 							}
2272 						}
2273 					}
2274 				} else if (addr == ha->optrom_size / 2) {
2275 					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2276 					RD_REG_WORD(&reg->nvram);
2277 				}
2278 
2279 				if (flash_id == 0xda && man_id == 0xc1) {
2280 					qla2x00_write_flash_byte(ha, 0x5555,
2281 					    0xaa);
2282 					qla2x00_write_flash_byte(ha, 0x2aaa,
2283 					    0x55);
2284 					qla2x00_write_flash_byte(ha, 0x5555,
2285 					    0xa0);
2286 				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2287 					/* Then erase it */
2288 					if (qla2x00_erase_flash_sector(ha,
2289 					    addr, sec_mask, man_id,
2290 					    flash_id)) {
2291 						rval = QLA_FUNCTION_FAILED;
2292 						break;
2293 					}
2294 					if (man_id == 0x01 && flash_id == 0x6d)
2295 						sec_number++;
2296 				}
2297 			}
2298 
2299 			if (man_id == 0x01 && flash_id == 0x6d) {
2300 				if (sec_number == 1 &&
2301 				    addr == (rest_addr - 1)) {
2302 					rest_addr = 0x0fff;
2303 					sec_mask   = 0x1f000;
2304 				} else if (sec_number == 3 && (addr & 0x7ffe)) {
2305 					rest_addr = 0x3fff;
2306 					sec_mask   = 0x1c000;
2307 				}
2308 			}
2309 
2310 			if (qla2x00_program_flash_address(ha, addr, data,
2311 			    man_id, flash_id)) {
2312 				rval = QLA_FUNCTION_FAILED;
2313 				break;
2314 			}
2315 			cond_resched();
2316 		}
2317 	} while (0);
2318 	qla2x00_flash_disable(ha);
2319 
2320 	/* Resume HBA. */
2321 	qla2x00_resume_hba(vha);
2322 
2323 	return rval;
2324 }
2325 
2326 uint8_t *
2327 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2328     uint32_t offset, uint32_t length)
2329 {
2330 	struct qla_hw_data *ha = vha->hw;
2331 
2332 	/* Suspend HBA. */
2333 	scsi_block_requests(vha->host);
2334 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2335 
2336 	/* Go with read. */
2337 	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2338 
2339 	/* Resume HBA. */
2340 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2341 	scsi_unblock_requests(vha->host);
2342 
2343 	return buf;
2344 }
2345 
2346 int
2347 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2348     uint32_t offset, uint32_t length)
2349 {
2350 	int rval;
2351 	struct qla_hw_data *ha = vha->hw;
2352 
2353 	/* Suspend HBA. */
2354 	scsi_block_requests(vha->host);
2355 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2356 
2357 	/* Go with write. */
2358 	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2359 	    length >> 2);
2360 
2361 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2362 	scsi_unblock_requests(vha->host);
2363 
2364 	return rval;
2365 }
2366 
2367 uint8_t *
2368 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2369     uint32_t offset, uint32_t length)
2370 {
2371 	int rval;
2372 	dma_addr_t optrom_dma;
2373 	void *optrom;
2374 	uint8_t *pbuf;
2375 	uint32_t faddr, left, burst;
2376 	struct qla_hw_data *ha = vha->hw;
2377 
2378 	if (IS_QLA25XX(ha) || IS_QLA81XX(ha))
2379 		goto try_fast;
2380 	if (offset & 0xfff)
2381 		goto slow_read;
2382 	if (length < OPTROM_BURST_SIZE)
2383 		goto slow_read;
2384 
2385 try_fast:
2386 	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2387 	    &optrom_dma, GFP_KERNEL);
2388 	if (!optrom) {
2389 		qla_printk(KERN_DEBUG, ha,
2390 		    "Unable to allocate memory for optrom burst read "
2391 		    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
2392 
2393 		goto slow_read;
2394 	}
2395 
2396 	pbuf = buf;
2397 	faddr = offset >> 2;
2398 	left = length >> 2;
2399 	burst = OPTROM_BURST_DWORDS;
2400 	while (left != 0) {
2401 		if (burst > left)
2402 			burst = left;
2403 
2404 		rval = qla2x00_dump_ram(vha, optrom_dma,
2405 		    flash_data_addr(ha, faddr), burst);
2406 		if (rval) {
2407 			qla_printk(KERN_WARNING, ha,
2408 			    "Unable to burst-read optrom segment "
2409 			    "(%x/%x/%llx).\n", rval,
2410 			    flash_data_addr(ha, faddr),
2411 			    (unsigned long long)optrom_dma);
2412 			qla_printk(KERN_WARNING, ha,
2413 			    "Reverting to slow-read.\n");
2414 
2415 			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2416 			    optrom, optrom_dma);
2417 			goto slow_read;
2418 		}
2419 
2420 		memcpy(pbuf, optrom, burst * 4);
2421 
2422 		left -= burst;
2423 		faddr += burst;
2424 		pbuf += burst * 4;
2425 	}
2426 
2427 	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2428 	    optrom_dma);
2429 
2430 	return buf;
2431 
2432 slow_read:
2433     return qla24xx_read_optrom_data(vha, buf, offset, length);
2434 }
2435 
2436 /**
2437  * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2438  * @ha: HA context
2439  * @pcids: Pointer to the FCODE PCI data structure
2440  *
2441  * The process of retrieving the FCODE version information is at best
2442  * described as interesting.
2443  *
2444  * Within the first 100h bytes of the image an ASCII string is present
2445  * which contains several pieces of information including the FCODE
2446  * version.  Unfortunately it seems the only reliable way to retrieve
2447  * the version is by scanning for another sentinel within the string,
2448  * the FCODE build date:
2449  *
2450  *	... 2.00.02 10/17/02 ...
2451  *
2452  * Returns QLA_SUCCESS on successful retrieval of version.
2453  */
2454 static void
2455 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2456 {
2457 	int ret = QLA_FUNCTION_FAILED;
2458 	uint32_t istart, iend, iter, vend;
2459 	uint8_t do_next, rbyte, *vbyte;
2460 
2461 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2462 
2463 	/* Skip the PCI data structure. */
2464 	istart = pcids +
2465 	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2466 		qla2x00_read_flash_byte(ha, pcids + 0x0A));
2467 	iend = istart + 0x100;
2468 	do {
2469 		/* Scan for the sentinel date string...eeewww. */
2470 		do_next = 0;
2471 		iter = istart;
2472 		while ((iter < iend) && !do_next) {
2473 			iter++;
2474 			if (qla2x00_read_flash_byte(ha, iter) == '/') {
2475 				if (qla2x00_read_flash_byte(ha, iter + 2) ==
2476 				    '/')
2477 					do_next++;
2478 				else if (qla2x00_read_flash_byte(ha,
2479 				    iter + 3) == '/')
2480 					do_next++;
2481 			}
2482 		}
2483 		if (!do_next)
2484 			break;
2485 
2486 		/* Backtrack to previous ' ' (space). */
2487 		do_next = 0;
2488 		while ((iter > istart) && !do_next) {
2489 			iter--;
2490 			if (qla2x00_read_flash_byte(ha, iter) == ' ')
2491 				do_next++;
2492 		}
2493 		if (!do_next)
2494 			break;
2495 
2496 		/*
2497 		 * Mark end of version tag, and find previous ' ' (space) or
2498 		 * string length (recent FCODE images -- major hack ahead!!!).
2499 		 */
2500 		vend = iter - 1;
2501 		do_next = 0;
2502 		while ((iter > istart) && !do_next) {
2503 			iter--;
2504 			rbyte = qla2x00_read_flash_byte(ha, iter);
2505 			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2506 				do_next++;
2507 		}
2508 		if (!do_next)
2509 			break;
2510 
2511 		/* Mark beginning of version tag, and copy data. */
2512 		iter++;
2513 		if ((vend - iter) &&
2514 		    ((vend - iter) < sizeof(ha->fcode_revision))) {
2515 			vbyte = ha->fcode_revision;
2516 			while (iter <= vend) {
2517 				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
2518 				iter++;
2519 			}
2520 			ret = QLA_SUCCESS;
2521 		}
2522 	} while (0);
2523 
2524 	if (ret != QLA_SUCCESS)
2525 		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2526 }
2527 
2528 int
2529 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2530 {
2531 	int ret = QLA_SUCCESS;
2532 	uint8_t code_type, last_image;
2533 	uint32_t pcihdr, pcids;
2534 	uint8_t *dbyte;
2535 	uint16_t *dcode;
2536 	struct qla_hw_data *ha = vha->hw;
2537 
2538 	if (!ha->pio_address || !mbuf)
2539 		return QLA_FUNCTION_FAILED;
2540 
2541 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2542 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2543 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2544 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2545 
2546 	qla2x00_flash_enable(ha);
2547 
2548 	/* Begin with first PCI expansion ROM header. */
2549 	pcihdr = 0;
2550 	last_image = 1;
2551 	do {
2552 		/* Verify PCI expansion ROM header. */
2553 		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2554 		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2555 			/* No signature */
2556 			DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
2557 			    "signature.\n"));
2558 			ret = QLA_FUNCTION_FAILED;
2559 			break;
2560 		}
2561 
2562 		/* Locate PCI data structure. */
2563 		pcids = pcihdr +
2564 		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2565 			qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2566 
2567 		/* Validate signature of PCI data structure. */
2568 		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2569 		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2570 		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2571 		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2572 			/* Incorrect header. */
2573 			DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
2574 			    "found pcir_adr=%x.\n", pcids));
2575 			ret = QLA_FUNCTION_FAILED;
2576 			break;
2577 		}
2578 
2579 		/* Read version */
2580 		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2581 		switch (code_type) {
2582 		case ROM_CODE_TYPE_BIOS:
2583 			/* Intel x86, PC-AT compatible. */
2584 			ha->bios_revision[0] =
2585 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2586 			ha->bios_revision[1] =
2587 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2588 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2589 			    ha->bios_revision[1], ha->bios_revision[0]));
2590 			break;
2591 		case ROM_CODE_TYPE_FCODE:
2592 			/* Open Firmware standard for PCI (FCode). */
2593 			/* Eeeewww... */
2594 			qla2x00_get_fcode_version(ha, pcids);
2595 			break;
2596 		case ROM_CODE_TYPE_EFI:
2597 			/* Extensible Firmware Interface (EFI). */
2598 			ha->efi_revision[0] =
2599 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2600 			ha->efi_revision[1] =
2601 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2602 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2603 			    ha->efi_revision[1], ha->efi_revision[0]));
2604 			break;
2605 		default:
2606 			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
2607 			    "type %x at pcids %x.\n", code_type, pcids));
2608 			break;
2609 		}
2610 
2611 		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2612 
2613 		/* Locate next PCI expansion ROM. */
2614 		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2615 		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2616 	} while (!last_image);
2617 
2618 	if (IS_QLA2322(ha)) {
2619 		/* Read firmware image information. */
2620 		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2621 		dbyte = mbuf;
2622 		memset(dbyte, 0, 8);
2623 		dcode = (uint16_t *)dbyte;
2624 
2625 		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2626 		    8);
2627 		DEBUG3(qla_printk(KERN_DEBUG, ha, "dumping fw ver from "
2628 		    "flash:\n"));
2629 		DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
2630 
2631 		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2632 		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2633 		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2634 		    dcode[3] == 0)) {
2635 			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
2636 			    "revision at %x.\n", ha->flt_region_fw * 4));
2637 		} else {
2638 			/* values are in big endian */
2639 			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2640 			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2641 			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2642 		}
2643 	}
2644 
2645 	qla2x00_flash_disable(ha);
2646 
2647 	return ret;
2648 }
2649 
2650 int
2651 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2652 {
2653 	int ret = QLA_SUCCESS;
2654 	uint32_t pcihdr, pcids;
2655 	uint32_t *dcode;
2656 	uint8_t *bcode;
2657 	uint8_t code_type, last_image;
2658 	int i;
2659 	struct qla_hw_data *ha = vha->hw;
2660 
2661 	if (IS_QLA82XX(ha))
2662 		return ret;
2663 
2664 	if (!mbuf)
2665 		return QLA_FUNCTION_FAILED;
2666 
2667 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2668 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2669 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2670 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2671 
2672 	dcode = mbuf;
2673 
2674 	/* Begin with first PCI expansion ROM header. */
2675 	pcihdr = ha->flt_region_boot << 2;
2676 	last_image = 1;
2677 	do {
2678 		/* Verify PCI expansion ROM header. */
2679 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2680 		bcode = mbuf + (pcihdr % 4);
2681 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2682 			/* No signature */
2683 			DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
2684 			    "signature.\n"));
2685 			ret = QLA_FUNCTION_FAILED;
2686 			break;
2687 		}
2688 
2689 		/* Locate PCI data structure. */
2690 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2691 
2692 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2693 		bcode = mbuf + (pcihdr % 4);
2694 
2695 		/* Validate signature of PCI data structure. */
2696 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2697 		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2698 			/* Incorrect header. */
2699 			DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
2700 			    "found pcir_adr=%x.\n", pcids));
2701 			ret = QLA_FUNCTION_FAILED;
2702 			break;
2703 		}
2704 
2705 		/* Read version */
2706 		code_type = bcode[0x14];
2707 		switch (code_type) {
2708 		case ROM_CODE_TYPE_BIOS:
2709 			/* Intel x86, PC-AT compatible. */
2710 			ha->bios_revision[0] = bcode[0x12];
2711 			ha->bios_revision[1] = bcode[0x13];
2712 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2713 			    ha->bios_revision[1], ha->bios_revision[0]));
2714 			break;
2715 		case ROM_CODE_TYPE_FCODE:
2716 			/* Open Firmware standard for PCI (FCode). */
2717 			ha->fcode_revision[0] = bcode[0x12];
2718 			ha->fcode_revision[1] = bcode[0x13];
2719 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read FCODE %d.%d.\n",
2720 			    ha->fcode_revision[1], ha->fcode_revision[0]));
2721 			break;
2722 		case ROM_CODE_TYPE_EFI:
2723 			/* Extensible Firmware Interface (EFI). */
2724 			ha->efi_revision[0] = bcode[0x12];
2725 			ha->efi_revision[1] = bcode[0x13];
2726 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2727 			    ha->efi_revision[1], ha->efi_revision[0]));
2728 			break;
2729 		default:
2730 			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
2731 			    "type %x at pcids %x.\n", code_type, pcids));
2732 			break;
2733 		}
2734 
2735 		last_image = bcode[0x15] & BIT_7;
2736 
2737 		/* Locate next PCI expansion ROM. */
2738 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2739 	} while (!last_image);
2740 
2741 	/* Read firmware image information. */
2742 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2743 	dcode = mbuf;
2744 
2745 	qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2746 	for (i = 0; i < 4; i++)
2747 		dcode[i] = be32_to_cpu(dcode[i]);
2748 
2749 	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2750 	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2751 	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2752 	    dcode[3] == 0)) {
2753 		DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
2754 		    "revision at %x.\n", ha->flt_region_fw * 4));
2755 	} else {
2756 		ha->fw_revision[0] = dcode[0];
2757 		ha->fw_revision[1] = dcode[1];
2758 		ha->fw_revision[2] = dcode[2];
2759 		ha->fw_revision[3] = dcode[3];
2760 	}
2761 
2762 	/* Check for golden firmware and get version if available */
2763 	if (!IS_QLA81XX(ha)) {
2764 		/* Golden firmware is not present in non 81XX adapters */
2765 		return ret;
2766 	}
2767 
2768 	memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version));
2769 	dcode = mbuf;
2770 	ha->isp_ops->read_optrom(vha, (uint8_t *)dcode,
2771 	    ha->flt_region_gold_fw << 2, 32);
2772 
2773 	if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF &&
2774 	    dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) {
2775 		DEBUG2(qla_printk(KERN_INFO, ha,
2776 		    "%s(%ld): Unrecognized golden fw at 0x%x.\n",
2777 		    __func__, vha->host_no, ha->flt_region_gold_fw * 4));
2778 		return ret;
2779 	}
2780 
2781 	for (i = 4; i < 8; i++)
2782 		ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]);
2783 
2784 	return ret;
2785 }
2786 
2787 static int
2788 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
2789 {
2790 	if (pos >= end || *pos != 0x82)
2791 		return 0;
2792 
2793 	pos += 3 + pos[1];
2794 	if (pos >= end || *pos != 0x90)
2795 		return 0;
2796 
2797 	pos += 3 + pos[1];
2798 	if (pos >= end || *pos != 0x78)
2799 		return 0;
2800 
2801 	return 1;
2802 }
2803 
2804 int
2805 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2806 {
2807 	struct qla_hw_data *ha = vha->hw;
2808 	uint8_t *pos = ha->vpd;
2809 	uint8_t *end = pos + ha->vpd_size;
2810 	int len = 0;
2811 
2812 	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
2813 		return 0;
2814 
2815 	while (pos < end && *pos != 0x78) {
2816 		len = (*pos == 0x82) ? pos[1] : pos[2];
2817 
2818 		if (!strncmp(pos, key, strlen(key)))
2819 			break;
2820 
2821 		if (*pos != 0x90 && *pos != 0x91)
2822 			pos += len;
2823 
2824 		pos += 3;
2825 	}
2826 
2827 	if (pos < end - len && *pos != 0x78)
2828 		return snprintf(str, size, "%.*s", len, pos + 3);
2829 
2830 	return 0;
2831 }
2832 
2833 int
2834 qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha)
2835 {
2836 	int len, max_len;
2837 	uint32_t fcp_prio_addr;
2838 	struct qla_hw_data *ha = vha->hw;
2839 
2840 	if (!ha->fcp_prio_cfg) {
2841 		ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE);
2842 		if (!ha->fcp_prio_cfg) {
2843 			qla_printk(KERN_WARNING, ha,
2844 			"Unable to allocate memory for fcp priority data "
2845 					"(%x).\n", FCP_PRIO_CFG_SIZE);
2846 			return QLA_FUNCTION_FAILED;
2847 		}
2848 	}
2849 	memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE);
2850 
2851 	fcp_prio_addr = ha->flt_region_fcp_prio;
2852 
2853 	/* first read the fcp priority data header from flash */
2854 	ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
2855 			fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);
2856 
2857 	if (!qla24xx_fcp_prio_cfg_valid(ha->fcp_prio_cfg, 0))
2858 		goto fail;
2859 
2860 	/* read remaining FCP CMD config data from flash */
2861 	fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
2862 	len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
2863 	max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE;
2864 
2865 	ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
2866 			fcp_prio_addr << 2, (len < max_len ? len : max_len));
2867 
2868 	/* revalidate the entire FCP priority config data, including entries */
2869 	if (!qla24xx_fcp_prio_cfg_valid(ha->fcp_prio_cfg, 1))
2870 		goto fail;
2871 
2872 	ha->flags.fcp_prio_enabled = 1;
2873 	return QLA_SUCCESS;
2874 fail:
2875 	vfree(ha->fcp_prio_cfg);
2876 	ha->fcp_prio_cfg = NULL;
2877 	return QLA_FUNCTION_FAILED;
2878 }
2879