xref: /openbmc/linux/drivers/scsi/qla2xxx/qla_sup.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * QLogic Fibre Channel HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  *
5  * See LICENSE.qla2xxx for copyright and licensing details.
6  */
7 #include "qla_def.h"
8 
9 #include <linux/delay.h>
10 #include <linux/vmalloc.h>
11 #include <asm/uaccess.h>
12 
13 /*
14  * NVRAM support routines
15  */
16 
17 /**
18  * qla2x00_lock_nvram_access() -
19  * @ha: HA context
20  */
21 static void
22 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
23 {
24 	uint16_t data;
25 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
26 
27 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
28 		data = RD_REG_WORD(&reg->nvram);
29 		while (data & NVR_BUSY) {
30 			udelay(100);
31 			data = RD_REG_WORD(&reg->nvram);
32 		}
33 
34 		/* Lock resource */
35 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
36 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
37 		udelay(5);
38 		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
39 		while ((data & BIT_0) == 0) {
40 			/* Lock failed */
41 			udelay(100);
42 			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
43 			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
44 			udelay(5);
45 			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
46 		}
47 	}
48 }
49 
50 /**
51  * qla2x00_unlock_nvram_access() -
52  * @ha: HA context
53  */
54 static void
55 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
56 {
57 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
58 
59 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
60 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
61 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
62 	}
63 }
64 
65 /**
66  * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
67  * @ha: HA context
68  * @data: Serial interface selector
69  */
70 static void
71 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
72 {
73 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
74 
75 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
76 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
77 	NVRAM_DELAY();
78 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
79 	    NVR_WRT_ENABLE);
80 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
81 	NVRAM_DELAY();
82 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
83 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
84 	NVRAM_DELAY();
85 }
86 
87 /**
88  * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
89  *	NVRAM.
90  * @ha: HA context
91  * @nv_cmd: NVRAM command
92  *
93  * Bit definitions for NVRAM command:
94  *
95  *	Bit 26     = start bit
96  *	Bit 25, 24 = opcode
97  *	Bit 23-16  = address
98  *	Bit 15-0   = write data
99  *
100  * Returns the word read from nvram @addr.
101  */
102 static uint16_t
103 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
104 {
105 	uint8_t		cnt;
106 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
107 	uint16_t	data = 0;
108 	uint16_t	reg_data;
109 
110 	/* Send command to NVRAM. */
111 	nv_cmd <<= 5;
112 	for (cnt = 0; cnt < 11; cnt++) {
113 		if (nv_cmd & BIT_31)
114 			qla2x00_nv_write(ha, NVR_DATA_OUT);
115 		else
116 			qla2x00_nv_write(ha, 0);
117 		nv_cmd <<= 1;
118 	}
119 
120 	/* Read data from NVRAM. */
121 	for (cnt = 0; cnt < 16; cnt++) {
122 		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
123 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
124 		NVRAM_DELAY();
125 		data <<= 1;
126 		reg_data = RD_REG_WORD(&reg->nvram);
127 		if (reg_data & NVR_DATA_IN)
128 			data |= BIT_0;
129 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
130 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
131 		NVRAM_DELAY();
132 	}
133 
134 	/* Deselect chip. */
135 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
136 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
137 	NVRAM_DELAY();
138 
139 	return data;
140 }
141 
142 
143 /**
144  * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
145  *	request routine to get the word from NVRAM.
146  * @ha: HA context
147  * @addr: Address in NVRAM to read
148  *
149  * Returns the word read from nvram @addr.
150  */
151 static uint16_t
152 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
153 {
154 	uint16_t	data;
155 	uint32_t	nv_cmd;
156 
157 	nv_cmd = addr << 16;
158 	nv_cmd |= NV_READ_OP;
159 	data = qla2x00_nvram_request(ha, nv_cmd);
160 
161 	return (data);
162 }
163 
164 /**
165  * qla2x00_nv_deselect() - Deselect NVRAM operations.
166  * @ha: HA context
167  */
168 static void
169 qla2x00_nv_deselect(struct qla_hw_data *ha)
170 {
171 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
172 
173 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
174 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
175 	NVRAM_DELAY();
176 }
177 
178 /**
179  * qla2x00_write_nvram_word() - Write NVRAM data.
180  * @ha: HA context
181  * @addr: Address in NVRAM to write
182  * @data: word to program
183  */
184 static void
185 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
186 {
187 	int count;
188 	uint16_t word;
189 	uint32_t nv_cmd, wait_cnt;
190 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
191 
192 	qla2x00_nv_write(ha, NVR_DATA_OUT);
193 	qla2x00_nv_write(ha, 0);
194 	qla2x00_nv_write(ha, 0);
195 
196 	for (word = 0; word < 8; word++)
197 		qla2x00_nv_write(ha, NVR_DATA_OUT);
198 
199 	qla2x00_nv_deselect(ha);
200 
201 	/* Write data */
202 	nv_cmd = (addr << 16) | NV_WRITE_OP;
203 	nv_cmd |= data;
204 	nv_cmd <<= 5;
205 	for (count = 0; count < 27; count++) {
206 		if (nv_cmd & BIT_31)
207 			qla2x00_nv_write(ha, NVR_DATA_OUT);
208 		else
209 			qla2x00_nv_write(ha, 0);
210 
211 		nv_cmd <<= 1;
212 	}
213 
214 	qla2x00_nv_deselect(ha);
215 
216 	/* Wait for NVRAM to become ready */
217 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
218 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
219 	wait_cnt = NVR_WAIT_CNT;
220 	do {
221 		if (!--wait_cnt) {
222 			DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
223 			    __func__, vha->host_no));
224 			break;
225 		}
226 		NVRAM_DELAY();
227 		word = RD_REG_WORD(&reg->nvram);
228 	} while ((word & NVR_DATA_IN) == 0);
229 
230 	qla2x00_nv_deselect(ha);
231 
232 	/* Disable writes */
233 	qla2x00_nv_write(ha, NVR_DATA_OUT);
234 	for (count = 0; count < 10; count++)
235 		qla2x00_nv_write(ha, 0);
236 
237 	qla2x00_nv_deselect(ha);
238 }
239 
240 static int
241 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
242 	uint16_t data, uint32_t tmo)
243 {
244 	int ret, count;
245 	uint16_t word;
246 	uint32_t nv_cmd;
247 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
248 
249 	ret = QLA_SUCCESS;
250 
251 	qla2x00_nv_write(ha, NVR_DATA_OUT);
252 	qla2x00_nv_write(ha, 0);
253 	qla2x00_nv_write(ha, 0);
254 
255 	for (word = 0; word < 8; word++)
256 		qla2x00_nv_write(ha, NVR_DATA_OUT);
257 
258 	qla2x00_nv_deselect(ha);
259 
260 	/* Write data */
261 	nv_cmd = (addr << 16) | NV_WRITE_OP;
262 	nv_cmd |= data;
263 	nv_cmd <<= 5;
264 	for (count = 0; count < 27; count++) {
265 		if (nv_cmd & BIT_31)
266 			qla2x00_nv_write(ha, NVR_DATA_OUT);
267 		else
268 			qla2x00_nv_write(ha, 0);
269 
270 		nv_cmd <<= 1;
271 	}
272 
273 	qla2x00_nv_deselect(ha);
274 
275 	/* Wait for NVRAM to become ready */
276 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
277 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
278 	do {
279 		NVRAM_DELAY();
280 		word = RD_REG_WORD(&reg->nvram);
281 		if (!--tmo) {
282 			ret = QLA_FUNCTION_FAILED;
283 			break;
284 		}
285 	} while ((word & NVR_DATA_IN) == 0);
286 
287 	qla2x00_nv_deselect(ha);
288 
289 	/* Disable writes */
290 	qla2x00_nv_write(ha, NVR_DATA_OUT);
291 	for (count = 0; count < 10; count++)
292 		qla2x00_nv_write(ha, 0);
293 
294 	qla2x00_nv_deselect(ha);
295 
296 	return ret;
297 }
298 
299 /**
300  * qla2x00_clear_nvram_protection() -
301  * @ha: HA context
302  */
303 static int
304 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
305 {
306 	int ret, stat;
307 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
308 	uint32_t word, wait_cnt;
309 	uint16_t wprot, wprot_old;
310 
311 	/* Clear NVRAM write protection. */
312 	ret = QLA_FUNCTION_FAILED;
313 
314 	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
315 	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
316 	    __constant_cpu_to_le16(0x1234), 100000);
317 	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 	if (stat != QLA_SUCCESS || wprot != 0x1234) {
319 		/* Write enable. */
320 		qla2x00_nv_write(ha, NVR_DATA_OUT);
321 		qla2x00_nv_write(ha, 0);
322 		qla2x00_nv_write(ha, 0);
323 		for (word = 0; word < 8; word++)
324 			qla2x00_nv_write(ha, NVR_DATA_OUT);
325 
326 		qla2x00_nv_deselect(ha);
327 
328 		/* Enable protection register. */
329 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
330 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
331 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
332 		for (word = 0; word < 8; word++)
333 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
334 
335 		qla2x00_nv_deselect(ha);
336 
337 		/* Clear protection register (ffff is cleared). */
338 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
339 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
340 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
341 		for (word = 0; word < 8; word++)
342 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
343 
344 		qla2x00_nv_deselect(ha);
345 
346 		/* Wait for NVRAM to become ready. */
347 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
348 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
349 		wait_cnt = NVR_WAIT_CNT;
350 		do {
351 			if (!--wait_cnt) {
352 				DEBUG9_10(qla_printk(
353 				    "NVRAM didn't go ready...\n"));
354 				break;
355 			}
356 			NVRAM_DELAY();
357 			word = RD_REG_WORD(&reg->nvram);
358 		} while ((word & NVR_DATA_IN) == 0);
359 
360 		if (wait_cnt)
361 			ret = QLA_SUCCESS;
362 	} else
363 		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
364 
365 	return ret;
366 }
367 
368 static void
369 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
370 {
371 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
372 	uint32_t word, wait_cnt;
373 
374 	if (stat != QLA_SUCCESS)
375 		return;
376 
377 	/* Set NVRAM write protection. */
378 	/* Write enable. */
379 	qla2x00_nv_write(ha, NVR_DATA_OUT);
380 	qla2x00_nv_write(ha, 0);
381 	qla2x00_nv_write(ha, 0);
382 	for (word = 0; word < 8; word++)
383 		qla2x00_nv_write(ha, NVR_DATA_OUT);
384 
385 	qla2x00_nv_deselect(ha);
386 
387 	/* Enable protection register. */
388 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
389 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
390 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
391 	for (word = 0; word < 8; word++)
392 		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
393 
394 	qla2x00_nv_deselect(ha);
395 
396 	/* Enable protection register. */
397 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
398 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
399 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
400 	for (word = 0; word < 8; word++)
401 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
402 
403 	qla2x00_nv_deselect(ha);
404 
405 	/* Wait for NVRAM to become ready. */
406 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
407 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
408 	wait_cnt = NVR_WAIT_CNT;
409 	do {
410 		if (!--wait_cnt) {
411 			DEBUG9_10(qla_printk("NVRAM didn't go ready...\n"));
412 			break;
413 		}
414 		NVRAM_DELAY();
415 		word = RD_REG_WORD(&reg->nvram);
416 	} while ((word & NVR_DATA_IN) == 0);
417 }
418 
419 
420 /*****************************************************************************/
421 /* Flash Manipulation Routines                                               */
422 /*****************************************************************************/
423 
424 #define OPTROM_BURST_SIZE	0x1000
425 #define OPTROM_BURST_DWORDS	(OPTROM_BURST_SIZE / 4)
426 
427 static inline uint32_t
428 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
429 {
430 	return ha->flash_conf_off | faddr;
431 }
432 
433 static inline uint32_t
434 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
435 {
436 	return ha->flash_data_off | faddr;
437 }
438 
439 static inline uint32_t
440 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
441 {
442 	return ha->nvram_conf_off | naddr;
443 }
444 
445 static inline uint32_t
446 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
447 {
448 	return ha->nvram_data_off | naddr;
449 }
450 
451 static uint32_t
452 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
453 {
454 	int rval;
455 	uint32_t cnt, data;
456 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
457 
458 	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
459 	/* Wait for READ cycle to complete. */
460 	rval = QLA_SUCCESS;
461 	for (cnt = 3000;
462 	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
463 	    rval == QLA_SUCCESS; cnt--) {
464 		if (cnt)
465 			udelay(10);
466 		else
467 			rval = QLA_FUNCTION_TIMEOUT;
468 		cond_resched();
469 	}
470 
471 	/* TODO: What happens if we time out? */
472 	data = 0xDEADDEAD;
473 	if (rval == QLA_SUCCESS)
474 		data = RD_REG_DWORD(&reg->flash_data);
475 
476 	return data;
477 }
478 
479 uint32_t *
480 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
481     uint32_t dwords)
482 {
483 	uint32_t i;
484 	struct qla_hw_data *ha = vha->hw;
485 
486 	/* Dword reads to flash. */
487 	for (i = 0; i < dwords; i++, faddr++)
488 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
489 		    flash_data_addr(ha, faddr)));
490 
491 	return dwptr;
492 }
493 
494 static int
495 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
496 {
497 	int rval;
498 	uint32_t cnt;
499 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
500 
501 	WRT_REG_DWORD(&reg->flash_data, data);
502 	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
503 	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
504 	/* Wait for Write cycle to complete. */
505 	rval = QLA_SUCCESS;
506 	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
507 	    rval == QLA_SUCCESS; cnt--) {
508 		if (cnt)
509 			udelay(10);
510 		else
511 			rval = QLA_FUNCTION_TIMEOUT;
512 		cond_resched();
513 	}
514 	return rval;
515 }
516 
517 static void
518 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
519     uint8_t *flash_id)
520 {
521 	uint32_t ids;
522 
523 	ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
524 	*man_id = LSB(ids);
525 	*flash_id = MSB(ids);
526 
527 	/* Check if man_id and flash_id are valid. */
528 	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
529 		/* Read information using 0x9f opcode
530 		 * Device ID, Mfg ID would be read in the format:
531 		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
532 		 * Example: ATMEL 0x00 01 45 1F
533 		 * Extract MFG and Dev ID from last two bytes.
534 		 */
535 		ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
536 		*man_id = LSB(ids);
537 		*flash_id = MSB(ids);
538 	}
539 }
540 
541 static int
542 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
543 {
544 	const char *loc, *locations[] = { "DEF", "PCI" };
545 	uint32_t pcihdr, pcids;
546 	uint32_t *dcode;
547 	uint8_t *buf, *bcode, last_image;
548 	uint16_t cnt, chksum, *wptr;
549 	struct qla_flt_location *fltl;
550 	struct qla_hw_data *ha = vha->hw;
551 	struct req_que *req = ha->req_q_map[0];
552 
553 	/*
554 	 * FLT-location structure resides after the last PCI region.
555 	 */
556 
557 	/* Begin with sane defaults. */
558 	loc = locations[0];
559 	*start = 0;
560 	if (IS_QLA24XX_TYPE(ha))
561 		*start = FA_FLASH_LAYOUT_ADDR_24;
562 	else if (IS_QLA25XX(ha))
563 		*start = FA_FLASH_LAYOUT_ADDR;
564 	else if (IS_QLA81XX(ha))
565 		*start = FA_FLASH_LAYOUT_ADDR_81;
566 	/* Begin with first PCI expansion ROM header. */
567 	buf = (uint8_t *)req->ring;
568 	dcode = (uint32_t *)req->ring;
569 	pcihdr = 0;
570 	last_image = 1;
571 	do {
572 		/* Verify PCI expansion ROM header. */
573 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
574 		bcode = buf + (pcihdr % 4);
575 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
576 			goto end;
577 
578 		/* Locate PCI data structure. */
579 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
580 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
581 		bcode = buf + (pcihdr % 4);
582 
583 		/* Validate signature of PCI data structure. */
584 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
585 		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
586 			goto end;
587 
588 		last_image = bcode[0x15] & BIT_7;
589 
590 		/* Locate next PCI expansion ROM. */
591 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
592 	} while (!last_image);
593 
594 	/* Now verify FLT-location structure. */
595 	fltl = (struct qla_flt_location *)req->ring;
596 	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
597 	    sizeof(struct qla_flt_location) >> 2);
598 	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
599 	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
600 		goto end;
601 
602 	wptr = (uint16_t *)req->ring;
603 	cnt = sizeof(struct qla_flt_location) >> 1;
604 	for (chksum = 0; cnt; cnt--)
605 		chksum += le16_to_cpu(*wptr++);
606 	if (chksum) {
607 		qla_printk(KERN_ERR, ha,
608 		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
609 		qla2x00_dump_buffer(buf, sizeof(struct qla_flt_location));
610 		return QLA_FUNCTION_FAILED;
611 	}
612 
613 	/* Good data.  Use specified location. */
614 	loc = locations[1];
615 	*start = le16_to_cpu(fltl->start_hi) << 16 |
616 	    le16_to_cpu(fltl->start_lo);
617 end:
618 	DEBUG2(qla_printk(KERN_DEBUG, ha, "FLTL[%s] = 0x%x.\n", loc, *start));
619 	return QLA_SUCCESS;
620 }
621 
622 static void
623 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
624 {
625 	const char *loc, *locations[] = { "DEF", "FLT" };
626 	const uint32_t def_fw[] =
627 		{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
628 	const uint32_t def_boot[] =
629 		{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
630 	const uint32_t def_vpd_nvram[] =
631 		{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
632 	const uint32_t def_fdt[] =
633 		{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
634 			FA_FLASH_DESCR_ADDR_81 };
635 	const uint32_t def_npiv_conf0[] =
636 		{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
637 			FA_NPIV_CONF0_ADDR_81 };
638 	const uint32_t def_npiv_conf1[] =
639 		{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
640 			FA_NPIV_CONF1_ADDR_81 };
641 	uint32_t def;
642 	uint16_t *wptr;
643 	uint16_t cnt, chksum;
644 	uint32_t start;
645 	struct qla_flt_header *flt;
646 	struct qla_flt_region *region;
647 	struct qla_hw_data *ha = vha->hw;
648 	struct req_que *req = ha->req_q_map[0];
649 
650 	ha->flt_region_flt = flt_addr;
651 	wptr = (uint16_t *)req->ring;
652 	flt = (struct qla_flt_header *)req->ring;
653 	region = (struct qla_flt_region *)&flt[1];
654 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
655 	    flt_addr << 2, OPTROM_BURST_SIZE);
656 	if (*wptr == __constant_cpu_to_le16(0xffff))
657 		goto no_flash_data;
658 	if (flt->version != __constant_cpu_to_le16(1)) {
659 		DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported FLT detected: "
660 		    "version=0x%x length=0x%x checksum=0x%x.\n",
661 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
662 		    le16_to_cpu(flt->checksum)));
663 		goto no_flash_data;
664 	}
665 
666 	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
667 	for (chksum = 0; cnt; cnt--)
668 		chksum += le16_to_cpu(*wptr++);
669 	if (chksum) {
670 		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FLT detected: "
671 		    "version=0x%x length=0x%x checksum=0x%x.\n",
672 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
673 		    chksum));
674 		goto no_flash_data;
675 	}
676 
677 	loc = locations[1];
678 	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
679 	for ( ; cnt; cnt--, region++) {
680 		/* Store addresses as DWORD offsets. */
681 		start = le32_to_cpu(region->start) >> 2;
682 
683 		DEBUG3(qla_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x "
684 		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start,
685 		    le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size)));
686 
687 		switch (le32_to_cpu(region->code) & 0xff) {
688 		case FLT_REG_FW:
689 			ha->flt_region_fw = start;
690 			break;
691 		case FLT_REG_BOOT_CODE:
692 			ha->flt_region_boot = start;
693 			break;
694 		case FLT_REG_VPD_0:
695 			ha->flt_region_vpd_nvram = start;
696 			break;
697 		case FLT_REG_FDT:
698 			ha->flt_region_fdt = start;
699 			break;
700 		case FLT_REG_NPIV_CONF_0:
701 			if (!(PCI_FUNC(ha->pdev->devfn) & 1))
702 				ha->flt_region_npiv_conf = start;
703 			break;
704 		case FLT_REG_NPIV_CONF_1:
705 			if (PCI_FUNC(ha->pdev->devfn) & 1)
706 				ha->flt_region_npiv_conf = start;
707 			break;
708 		}
709 	}
710 	goto done;
711 
712 no_flash_data:
713 	/* Use hardcoded defaults. */
714 	loc = locations[0];
715 	def = 0;
716 	if (IS_QLA24XX_TYPE(ha))
717 		def = 0;
718 	else if (IS_QLA25XX(ha))
719 		def = 1;
720 	else if (IS_QLA81XX(ha))
721 		def = 2;
722 	ha->flt_region_fw = def_fw[def];
723 	ha->flt_region_boot = def_boot[def];
724 	ha->flt_region_vpd_nvram = def_vpd_nvram[def];
725 	ha->flt_region_fdt = def_fdt[def];
726 	ha->flt_region_npiv_conf = !(PCI_FUNC(ha->pdev->devfn) & 1) ?
727 	    def_npiv_conf0[def]: def_npiv_conf1[def];
728 done:
729 	DEBUG2(qla_printk(KERN_DEBUG, ha, "FLT[%s]: boot=0x%x fw=0x%x "
730 	    "vpd_nvram=0x%x fdt=0x%x flt=0x%x npiv=0x%x.\n", loc,
731 	    ha->flt_region_boot, ha->flt_region_fw, ha->flt_region_vpd_nvram,
732 	    ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf));
733 }
734 
735 static void
736 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
737 {
738 #define FLASH_BLK_SIZE_4K	0x1000
739 #define FLASH_BLK_SIZE_32K	0x8000
740 #define FLASH_BLK_SIZE_64K	0x10000
741 	const char *loc, *locations[] = { "MID", "FDT" };
742 	uint16_t cnt, chksum;
743 	uint16_t *wptr;
744 	struct qla_fdt_layout *fdt;
745 	uint8_t	man_id, flash_id;
746 	uint16_t mid, fid;
747 	struct qla_hw_data *ha = vha->hw;
748 	struct req_que *req = ha->req_q_map[0];
749 
750 	wptr = (uint16_t *)req->ring;
751 	fdt = (struct qla_fdt_layout *)req->ring;
752 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
753 	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
754 	if (*wptr == __constant_cpu_to_le16(0xffff))
755 		goto no_flash_data;
756 	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
757 	    fdt->sig[3] != 'D')
758 		goto no_flash_data;
759 
760 	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
761 	    cnt++)
762 		chksum += le16_to_cpu(*wptr++);
763 	if (chksum) {
764 		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
765 		    "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
766 		    le16_to_cpu(fdt->version)));
767 		DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt)));
768 		goto no_flash_data;
769 	}
770 
771 	loc = locations[1];
772 	mid = le16_to_cpu(fdt->man_id);
773 	fid = le16_to_cpu(fdt->id);
774 	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
775 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
776 	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
777 	if (fdt->unprotect_sec_cmd) {
778 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
779 		    fdt->unprotect_sec_cmd);
780 		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
781 		    flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
782 		    flash_conf_addr(ha, 0x0336);
783 	}
784 	goto done;
785 no_flash_data:
786 	loc = locations[0];
787 	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
788 	mid = man_id;
789 	fid = flash_id;
790 	ha->fdt_wrt_disable = 0x9c;
791 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
792 	switch (man_id) {
793 	case 0xbf: /* STT flash. */
794 		if (flash_id == 0x8e)
795 			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
796 		else
797 			ha->fdt_block_size = FLASH_BLK_SIZE_32K;
798 
799 		if (flash_id == 0x80)
800 			ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
801 		break;
802 	case 0x13: /* ST M25P80. */
803 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
804 		break;
805 	case 0x1f: /* Atmel 26DF081A. */
806 		ha->fdt_block_size = FLASH_BLK_SIZE_4K;
807 		ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
808 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
809 		ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
810 		break;
811 	default:
812 		/* Default to 64 kb sector size. */
813 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
814 		break;
815 	}
816 done:
817 	DEBUG2(qla_printk(KERN_DEBUG, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x "
818 	    "pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
819 	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
820 	    ha->fdt_unprotect_sec_cmd, ha->fdt_wrt_disable,
821 	    ha->fdt_block_size));
822 }
823 
824 int
825 qla2xxx_get_flash_info(scsi_qla_host_t *vha)
826 {
827 	int ret;
828 	uint32_t flt_addr;
829 	struct qla_hw_data *ha = vha->hw;
830 
831 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA81XX(ha))
832 		return QLA_SUCCESS;
833 
834 	ret = qla2xxx_find_flt_start(vha, &flt_addr);
835 	if (ret != QLA_SUCCESS)
836 		return ret;
837 
838 	qla2xxx_get_flt_info(vha, flt_addr);
839 	qla2xxx_get_fdt_info(vha);
840 
841 	return QLA_SUCCESS;
842 }
843 
844 void
845 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
846 {
847 #define NPIV_CONFIG_SIZE	(16*1024)
848 	void *data;
849 	uint16_t *wptr;
850 	uint16_t cnt, chksum;
851 	int i;
852 	struct qla_npiv_header hdr;
853 	struct qla_npiv_entry *entry;
854 	struct qla_hw_data *ha = vha->hw;
855 
856 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA81XX(ha))
857 		return;
858 
859 	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
860 	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
861 	if (hdr.version == __constant_cpu_to_le16(0xffff))
862 		return;
863 	if (hdr.version != __constant_cpu_to_le16(1)) {
864 		DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported NPIV-Config "
865 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
866 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
867 		    le16_to_cpu(hdr.checksum)));
868 		return;
869 	}
870 
871 	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
872 	if (!data) {
873 		DEBUG2(qla_printk(KERN_INFO, ha, "NPIV-Config: Unable to "
874 		    "allocate memory.\n"));
875 		return;
876 	}
877 
878 	ha->isp_ops->read_optrom(vha, (uint8_t *)data,
879 	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
880 
881 	cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
882 	    sizeof(struct qla_npiv_entry)) >> 1;
883 	for (wptr = data, chksum = 0; cnt; cnt--)
884 		chksum += le16_to_cpu(*wptr++);
885 	if (chksum) {
886 		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent NPIV-Config "
887 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
888 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
889 		    chksum));
890 		goto done;
891 	}
892 
893 	entry = data + sizeof(struct qla_npiv_header);
894 	cnt = le16_to_cpu(hdr.entries);
895 	for (i = 0; cnt; cnt--, entry++, i++) {
896 		uint16_t flags;
897 		struct fc_vport_identifiers vid;
898 		struct fc_vport *vport;
899 
900 		flags = le16_to_cpu(entry->flags);
901 		if (flags == 0xffff)
902 			continue;
903 		if ((flags & BIT_0) == 0)
904 			continue;
905 
906 		memset(&vid, 0, sizeof(vid));
907 		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
908 		vid.vport_type = FC_PORTTYPE_NPIV;
909 		vid.disable = false;
910 		vid.port_name = wwn_to_u64(entry->port_name);
911 		vid.node_name = wwn_to_u64(entry->node_name);
912 
913 		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
914 
915 		DEBUG2(qla_printk(KERN_DEBUG, ha, "NPIV[%02x]: wwpn=%llx "
916 			"wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
917 			vid.port_name, vid.node_name, le16_to_cpu(entry->vf_id),
918 			entry->q_qos, entry->f_qos));
919 
920 		if (i < QLA_PRECONFIG_VPORTS) {
921 			vport = fc_vport_create(vha->host, 0, &vid);
922 			if (!vport)
923 				qla_printk(KERN_INFO, ha,
924 				"NPIV-Config: Failed to create vport [%02x]: "
925 				"wwpn=%llx wwnn=%llx.\n", cnt,
926 				vid.port_name, vid.node_name);
927 		}
928 	}
929 done:
930 	kfree(data);
931 	ha->npiv_info = NULL;
932 }
933 
934 static void
935 qla24xx_unprotect_flash(struct qla_hw_data *ha)
936 {
937 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
938 
939 	/* Enable flash write. */
940 	WRT_REG_DWORD(&reg->ctrl_status,
941 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
942 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
943 
944 	if (!ha->fdt_wrt_disable)
945 		return;
946 
947 	/* Disable flash write-protection, first clear SR protection bit */
948 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
949 	/* Then write zero again to clear remaining SR bits.*/
950 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
951 }
952 
953 static void
954 qla24xx_protect_flash(struct qla_hw_data *ha)
955 {
956 	uint32_t cnt;
957 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
958 
959 	if (!ha->fdt_wrt_disable)
960 		goto skip_wrt_protect;
961 
962 	/* Enable flash write-protection and wait for completion. */
963 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
964 	    ha->fdt_wrt_disable);
965 	for (cnt = 300; cnt &&
966 	    qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
967 	    cnt--) {
968 		udelay(10);
969 	}
970 
971 skip_wrt_protect:
972 	/* Disable flash write. */
973 	WRT_REG_DWORD(&reg->ctrl_status,
974 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
975 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
976 }
977 
978 static int
979 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
980     uint32_t dwords)
981 {
982 	int ret;
983 	uint32_t liter;
984 	uint32_t sec_mask, rest_addr;
985 	uint32_t fdata;
986 	dma_addr_t optrom_dma;
987 	void *optrom = NULL;
988 	struct qla_hw_data *ha = vha->hw;
989 
990 	ret = QLA_SUCCESS;
991 
992 	/* Prepare burst-capable write on supported ISPs. */
993 	if ((IS_QLA25XX(ha) || IS_QLA81XX(ha)) && !(faddr & 0xfff) &&
994 	    dwords > OPTROM_BURST_DWORDS) {
995 		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
996 		    &optrom_dma, GFP_KERNEL);
997 		if (!optrom) {
998 			qla_printk(KERN_DEBUG, ha,
999 			    "Unable to allocate memory for optrom burst write "
1000 			    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
1001 		}
1002 	}
1003 
1004 	rest_addr = (ha->fdt_block_size >> 2) - 1;
1005 	sec_mask = ~rest_addr;
1006 
1007 	qla24xx_unprotect_flash(ha);
1008 
1009 	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1010 		fdata = (faddr & sec_mask) << 2;
1011 
1012 		/* Are we at the beginning of a sector? */
1013 		if ((faddr & rest_addr) == 0) {
1014 			/* Do sector unprotect. */
1015 			if (ha->fdt_unprotect_sec_cmd)
1016 				qla24xx_write_flash_dword(ha,
1017 				    ha->fdt_unprotect_sec_cmd,
1018 				    (fdata & 0xff00) | ((fdata << 16) &
1019 				    0xff0000) | ((fdata >> 16) & 0xff));
1020 			ret = qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1021 			    (fdata & 0xff00) |((fdata << 16) &
1022 			    0xff0000) | ((fdata >> 16) & 0xff));
1023 			if (ret != QLA_SUCCESS) {
1024 				DEBUG9(qla_printk("Unable to erase sector: "
1025 				    "address=%x.\n", faddr));
1026 				break;
1027 			}
1028 		}
1029 
1030 		/* Go with burst-write. */
1031 		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1032 			/* Copy data to DMA'ble buffer. */
1033 			memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1034 
1035 			ret = qla2x00_load_ram(vha, optrom_dma,
1036 			    flash_data_addr(ha, faddr),
1037 			    OPTROM_BURST_DWORDS);
1038 			if (ret != QLA_SUCCESS) {
1039 				qla_printk(KERN_WARNING, ha,
1040 				    "Unable to burst-write optrom segment "
1041 				    "(%x/%x/%llx).\n", ret,
1042 				    flash_data_addr(ha, faddr),
1043 				    (unsigned long long)optrom_dma);
1044 				qla_printk(KERN_WARNING, ha,
1045 				    "Reverting to slow-write.\n");
1046 
1047 				dma_free_coherent(&ha->pdev->dev,
1048 				    OPTROM_BURST_SIZE, optrom, optrom_dma);
1049 				optrom = NULL;
1050 			} else {
1051 				liter += OPTROM_BURST_DWORDS - 1;
1052 				faddr += OPTROM_BURST_DWORDS - 1;
1053 				dwptr += OPTROM_BURST_DWORDS - 1;
1054 				continue;
1055 			}
1056 		}
1057 
1058 		ret = qla24xx_write_flash_dword(ha,
1059 		    flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1060 		if (ret != QLA_SUCCESS) {
1061 			DEBUG9(printk("%s(%ld) Unable to program flash "
1062 			    "address=%x data=%x.\n", __func__,
1063 			    vha->host_no, faddr, *dwptr));
1064 			break;
1065 		}
1066 
1067 		/* Do sector protect. */
1068 		if (ha->fdt_unprotect_sec_cmd &&
1069 		    ((faddr & rest_addr) == rest_addr))
1070 			qla24xx_write_flash_dword(ha,
1071 			    ha->fdt_protect_sec_cmd,
1072 			    (fdata & 0xff00) | ((fdata << 16) &
1073 			    0xff0000) | ((fdata >> 16) & 0xff));
1074 	}
1075 
1076 	qla24xx_protect_flash(ha);
1077 
1078 	if (optrom)
1079 		dma_free_coherent(&ha->pdev->dev,
1080 		    OPTROM_BURST_SIZE, optrom, optrom_dma);
1081 
1082 	return ret;
1083 }
1084 
1085 uint8_t *
1086 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1087     uint32_t bytes)
1088 {
1089 	uint32_t i;
1090 	uint16_t *wptr;
1091 	struct qla_hw_data *ha = vha->hw;
1092 
1093 	/* Word reads to NVRAM via registers. */
1094 	wptr = (uint16_t *)buf;
1095 	qla2x00_lock_nvram_access(ha);
1096 	for (i = 0; i < bytes >> 1; i++, naddr++)
1097 		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1098 		    naddr));
1099 	qla2x00_unlock_nvram_access(ha);
1100 
1101 	return buf;
1102 }
1103 
1104 uint8_t *
1105 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1106     uint32_t bytes)
1107 {
1108 	uint32_t i;
1109 	uint32_t *dwptr;
1110 	struct qla_hw_data *ha = vha->hw;
1111 
1112 	/* Dword reads to flash. */
1113 	dwptr = (uint32_t *)buf;
1114 	for (i = 0; i < bytes >> 2; i++, naddr++)
1115 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1116 		    nvram_data_addr(ha, naddr)));
1117 
1118 	return buf;
1119 }
1120 
1121 int
1122 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1123     uint32_t bytes)
1124 {
1125 	int ret, stat;
1126 	uint32_t i;
1127 	uint16_t *wptr;
1128 	unsigned long flags;
1129 	struct qla_hw_data *ha = vha->hw;
1130 
1131 	ret = QLA_SUCCESS;
1132 
1133 	spin_lock_irqsave(&ha->hardware_lock, flags);
1134 	qla2x00_lock_nvram_access(ha);
1135 
1136 	/* Disable NVRAM write-protection. */
1137 	stat = qla2x00_clear_nvram_protection(ha);
1138 
1139 	wptr = (uint16_t *)buf;
1140 	for (i = 0; i < bytes >> 1; i++, naddr++) {
1141 		qla2x00_write_nvram_word(ha, naddr,
1142 		    cpu_to_le16(*wptr));
1143 		wptr++;
1144 	}
1145 
1146 	/* Enable NVRAM write-protection. */
1147 	qla2x00_set_nvram_protection(ha, stat);
1148 
1149 	qla2x00_unlock_nvram_access(ha);
1150 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1151 
1152 	return ret;
1153 }
1154 
1155 int
1156 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1157     uint32_t bytes)
1158 {
1159 	int ret;
1160 	uint32_t i;
1161 	uint32_t *dwptr;
1162 	struct qla_hw_data *ha = vha->hw;
1163 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1164 
1165 	ret = QLA_SUCCESS;
1166 
1167 	/* Enable flash write. */
1168 	WRT_REG_DWORD(&reg->ctrl_status,
1169 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1170 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1171 
1172 	/* Disable NVRAM write-protection. */
1173 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1174 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1175 
1176 	/* Dword writes to flash. */
1177 	dwptr = (uint32_t *)buf;
1178 	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1179 		ret = qla24xx_write_flash_dword(ha,
1180 		    nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1181 		if (ret != QLA_SUCCESS) {
1182 			DEBUG9(qla_printk("Unable to program nvram address=%x "
1183 			    "data=%x.\n", naddr, *dwptr));
1184 			break;
1185 		}
1186 	}
1187 
1188 	/* Enable NVRAM write-protection. */
1189 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1190 
1191 	/* Disable flash write. */
1192 	WRT_REG_DWORD(&reg->ctrl_status,
1193 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1194 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1195 
1196 	return ret;
1197 }
1198 
1199 uint8_t *
1200 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1201     uint32_t bytes)
1202 {
1203 	uint32_t i;
1204 	uint32_t *dwptr;
1205 	struct qla_hw_data *ha = vha->hw;
1206 
1207 	/* Dword reads to flash. */
1208 	dwptr = (uint32_t *)buf;
1209 	for (i = 0; i < bytes >> 2; i++, naddr++)
1210 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1211 		    flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1212 
1213 	return buf;
1214 }
1215 
1216 int
1217 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1218     uint32_t bytes)
1219 {
1220 	struct qla_hw_data *ha = vha->hw;
1221 #define RMW_BUFFER_SIZE	(64 * 1024)
1222 	uint8_t *dbuf;
1223 
1224 	dbuf = vmalloc(RMW_BUFFER_SIZE);
1225 	if (!dbuf)
1226 		return QLA_MEMORY_ALLOC_FAILED;
1227 	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1228 	    RMW_BUFFER_SIZE);
1229 	memcpy(dbuf + (naddr << 2), buf, bytes);
1230 	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1231 	    RMW_BUFFER_SIZE);
1232 	vfree(dbuf);
1233 
1234 	return QLA_SUCCESS;
1235 }
1236 
1237 static inline void
1238 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1239 {
1240 	if (IS_QLA2322(ha)) {
1241 		/* Flip all colors. */
1242 		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1243 			/* Turn off. */
1244 			ha->beacon_color_state = 0;
1245 			*pflags = GPIO_LED_ALL_OFF;
1246 		} else {
1247 			/* Turn on. */
1248 			ha->beacon_color_state = QLA_LED_ALL_ON;
1249 			*pflags = GPIO_LED_RGA_ON;
1250 		}
1251 	} else {
1252 		/* Flip green led only. */
1253 		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1254 			/* Turn off. */
1255 			ha->beacon_color_state = 0;
1256 			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1257 		} else {
1258 			/* Turn on. */
1259 			ha->beacon_color_state = QLA_LED_GRN_ON;
1260 			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1261 		}
1262 	}
1263 }
1264 
1265 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1266 
1267 void
1268 qla2x00_beacon_blink(struct scsi_qla_host *vha)
1269 {
1270 	uint16_t gpio_enable;
1271 	uint16_t gpio_data;
1272 	uint16_t led_color = 0;
1273 	unsigned long flags;
1274 	struct qla_hw_data *ha = vha->hw;
1275 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1276 
1277 	spin_lock_irqsave(&ha->hardware_lock, flags);
1278 
1279 	/* Save the Original GPIOE. */
1280 	if (ha->pio_address) {
1281 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1282 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1283 	} else {
1284 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1285 		gpio_data = RD_REG_WORD(&reg->gpiod);
1286 	}
1287 
1288 	/* Set the modified gpio_enable values */
1289 	gpio_enable |= GPIO_LED_MASK;
1290 
1291 	if (ha->pio_address) {
1292 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1293 	} else {
1294 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1295 		RD_REG_WORD(&reg->gpioe);
1296 	}
1297 
1298 	qla2x00_flip_colors(ha, &led_color);
1299 
1300 	/* Clear out any previously set LED color. */
1301 	gpio_data &= ~GPIO_LED_MASK;
1302 
1303 	/* Set the new input LED color to GPIOD. */
1304 	gpio_data |= led_color;
1305 
1306 	/* Set the modified gpio_data values */
1307 	if (ha->pio_address) {
1308 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1309 	} else {
1310 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1311 		RD_REG_WORD(&reg->gpiod);
1312 	}
1313 
1314 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1315 }
1316 
1317 int
1318 qla2x00_beacon_on(struct scsi_qla_host *vha)
1319 {
1320 	uint16_t gpio_enable;
1321 	uint16_t gpio_data;
1322 	unsigned long flags;
1323 	struct qla_hw_data *ha = vha->hw;
1324 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1325 
1326 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1327 	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1328 
1329 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1330 		qla_printk(KERN_WARNING, ha,
1331 		    "Unable to update fw options (beacon on).\n");
1332 		return QLA_FUNCTION_FAILED;
1333 	}
1334 
1335 	/* Turn off LEDs. */
1336 	spin_lock_irqsave(&ha->hardware_lock, flags);
1337 	if (ha->pio_address) {
1338 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1339 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1340 	} else {
1341 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1342 		gpio_data = RD_REG_WORD(&reg->gpiod);
1343 	}
1344 	gpio_enable |= GPIO_LED_MASK;
1345 
1346 	/* Set the modified gpio_enable values. */
1347 	if (ha->pio_address) {
1348 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1349 	} else {
1350 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1351 		RD_REG_WORD(&reg->gpioe);
1352 	}
1353 
1354 	/* Clear out previously set LED colour. */
1355 	gpio_data &= ~GPIO_LED_MASK;
1356 	if (ha->pio_address) {
1357 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1358 	} else {
1359 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1360 		RD_REG_WORD(&reg->gpiod);
1361 	}
1362 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1363 
1364 	/*
1365 	 * Let the per HBA timer kick off the blinking process based on
1366 	 * the following flags. No need to do anything else now.
1367 	 */
1368 	ha->beacon_blink_led = 1;
1369 	ha->beacon_color_state = 0;
1370 
1371 	return QLA_SUCCESS;
1372 }
1373 
1374 int
1375 qla2x00_beacon_off(struct scsi_qla_host *vha)
1376 {
1377 	int rval = QLA_SUCCESS;
1378 	struct qla_hw_data *ha = vha->hw;
1379 
1380 	ha->beacon_blink_led = 0;
1381 
1382 	/* Set the on flag so when it gets flipped it will be off. */
1383 	if (IS_QLA2322(ha))
1384 		ha->beacon_color_state = QLA_LED_ALL_ON;
1385 	else
1386 		ha->beacon_color_state = QLA_LED_GRN_ON;
1387 
1388 	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */
1389 
1390 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1391 	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1392 
1393 	rval = qla2x00_set_fw_options(vha, ha->fw_options);
1394 	if (rval != QLA_SUCCESS)
1395 		qla_printk(KERN_WARNING, ha,
1396 		    "Unable to update fw options (beacon off).\n");
1397 	return rval;
1398 }
1399 
1400 
1401 static inline void
1402 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1403 {
1404 	/* Flip all colors. */
1405 	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1406 		/* Turn off. */
1407 		ha->beacon_color_state = 0;
1408 		*pflags = 0;
1409 	} else {
1410 		/* Turn on. */
1411 		ha->beacon_color_state = QLA_LED_ALL_ON;
1412 		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1413 	}
1414 }
1415 
1416 void
1417 qla24xx_beacon_blink(struct scsi_qla_host *vha)
1418 {
1419 	uint16_t led_color = 0;
1420 	uint32_t gpio_data;
1421 	unsigned long flags;
1422 	struct qla_hw_data *ha = vha->hw;
1423 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1424 
1425 	/* Save the Original GPIOD. */
1426 	spin_lock_irqsave(&ha->hardware_lock, flags);
1427 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1428 
1429 	/* Enable the gpio_data reg for update. */
1430 	gpio_data |= GPDX_LED_UPDATE_MASK;
1431 
1432 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1433 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1434 
1435 	/* Set the color bits. */
1436 	qla24xx_flip_colors(ha, &led_color);
1437 
1438 	/* Clear out any previously set LED color. */
1439 	gpio_data &= ~GPDX_LED_COLOR_MASK;
1440 
1441 	/* Set the new input LED color to GPIOD. */
1442 	gpio_data |= led_color;
1443 
1444 	/* Set the modified gpio_data values. */
1445 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1446 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1447 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1448 }
1449 
1450 int
1451 qla24xx_beacon_on(struct scsi_qla_host *vha)
1452 {
1453 	uint32_t gpio_data;
1454 	unsigned long flags;
1455 	struct qla_hw_data *ha = vha->hw;
1456 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1457 
1458 	if (ha->beacon_blink_led == 0) {
1459 		/* Enable firmware for update */
1460 		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1461 
1462 		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1463 			return QLA_FUNCTION_FAILED;
1464 
1465 		if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1466 		    QLA_SUCCESS) {
1467 			qla_printk(KERN_WARNING, ha,
1468 			    "Unable to update fw options (beacon on).\n");
1469 			return QLA_FUNCTION_FAILED;
1470 		}
1471 
1472 		spin_lock_irqsave(&ha->hardware_lock, flags);
1473 		gpio_data = RD_REG_DWORD(&reg->gpiod);
1474 
1475 		/* Enable the gpio_data reg for update. */
1476 		gpio_data |= GPDX_LED_UPDATE_MASK;
1477 		WRT_REG_DWORD(&reg->gpiod, gpio_data);
1478 		RD_REG_DWORD(&reg->gpiod);
1479 
1480 		spin_unlock_irqrestore(&ha->hardware_lock, flags);
1481 	}
1482 
1483 	/* So all colors blink together. */
1484 	ha->beacon_color_state = 0;
1485 
1486 	/* Let the per HBA timer kick off the blinking process. */
1487 	ha->beacon_blink_led = 1;
1488 
1489 	return QLA_SUCCESS;
1490 }
1491 
1492 int
1493 qla24xx_beacon_off(struct scsi_qla_host *vha)
1494 {
1495 	uint32_t gpio_data;
1496 	unsigned long flags;
1497 	struct qla_hw_data *ha = vha->hw;
1498 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1499 
1500 	ha->beacon_blink_led = 0;
1501 	ha->beacon_color_state = QLA_LED_ALL_ON;
1502 
1503 	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */
1504 
1505 	/* Give control back to firmware. */
1506 	spin_lock_irqsave(&ha->hardware_lock, flags);
1507 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1508 
1509 	/* Disable the gpio_data reg for update. */
1510 	gpio_data &= ~GPDX_LED_UPDATE_MASK;
1511 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1512 	RD_REG_DWORD(&reg->gpiod);
1513 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1514 
1515 	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1516 
1517 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1518 		qla_printk(KERN_WARNING, ha,
1519 		    "Unable to update fw options (beacon off).\n");
1520 		return QLA_FUNCTION_FAILED;
1521 	}
1522 
1523 	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1524 		qla_printk(KERN_WARNING, ha,
1525 		    "Unable to get fw options (beacon off).\n");
1526 		return QLA_FUNCTION_FAILED;
1527 	}
1528 
1529 	return QLA_SUCCESS;
1530 }
1531 
1532 
1533 /*
1534  * Flash support routines
1535  */
1536 
1537 /**
1538  * qla2x00_flash_enable() - Setup flash for reading and writing.
1539  * @ha: HA context
1540  */
1541 static void
1542 qla2x00_flash_enable(struct qla_hw_data *ha)
1543 {
1544 	uint16_t data;
1545 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1546 
1547 	data = RD_REG_WORD(&reg->ctrl_status);
1548 	data |= CSR_FLASH_ENABLE;
1549 	WRT_REG_WORD(&reg->ctrl_status, data);
1550 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1551 }
1552 
1553 /**
1554  * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1555  * @ha: HA context
1556  */
1557 static void
1558 qla2x00_flash_disable(struct qla_hw_data *ha)
1559 {
1560 	uint16_t data;
1561 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1562 
1563 	data = RD_REG_WORD(&reg->ctrl_status);
1564 	data &= ~(CSR_FLASH_ENABLE);
1565 	WRT_REG_WORD(&reg->ctrl_status, data);
1566 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1567 }
1568 
1569 /**
1570  * qla2x00_read_flash_byte() - Reads a byte from flash
1571  * @ha: HA context
1572  * @addr: Address in flash to read
1573  *
1574  * A word is read from the chip, but, only the lower byte is valid.
1575  *
1576  * Returns the byte read from flash @addr.
1577  */
1578 static uint8_t
1579 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1580 {
1581 	uint16_t data;
1582 	uint16_t bank_select;
1583 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1584 
1585 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1586 
1587 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1588 		/* Specify 64K address range: */
1589 		/*  clear out Module Select and Flash Address bits [19:16]. */
1590 		bank_select &= ~0xf8;
1591 		bank_select |= addr >> 12 & 0xf0;
1592 		bank_select |= CSR_FLASH_64K_BANK;
1593 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1594 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1595 
1596 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1597 		data = RD_REG_WORD(&reg->flash_data);
1598 
1599 		return (uint8_t)data;
1600 	}
1601 
1602 	/* Setup bit 16 of flash address. */
1603 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1604 		bank_select |= CSR_FLASH_64K_BANK;
1605 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1606 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1607 	} else if (((addr & BIT_16) == 0) &&
1608 	    (bank_select & CSR_FLASH_64K_BANK)) {
1609 		bank_select &= ~(CSR_FLASH_64K_BANK);
1610 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1611 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1612 	}
1613 
1614 	/* Always perform IO mapped accesses to the FLASH registers. */
1615 	if (ha->pio_address) {
1616 		uint16_t data2;
1617 
1618 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1619 		do {
1620 			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1621 			barrier();
1622 			cpu_relax();
1623 			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1624 		} while (data != data2);
1625 	} else {
1626 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1627 		data = qla2x00_debounce_register(&reg->flash_data);
1628 	}
1629 
1630 	return (uint8_t)data;
1631 }
1632 
1633 /**
1634  * qla2x00_write_flash_byte() - Write a byte to flash
1635  * @ha: HA context
1636  * @addr: Address in flash to write
1637  * @data: Data to write
1638  */
1639 static void
1640 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1641 {
1642 	uint16_t bank_select;
1643 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1644 
1645 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1646 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1647 		/* Specify 64K address range: */
1648 		/*  clear out Module Select and Flash Address bits [19:16]. */
1649 		bank_select &= ~0xf8;
1650 		bank_select |= addr >> 12 & 0xf0;
1651 		bank_select |= CSR_FLASH_64K_BANK;
1652 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1653 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1654 
1655 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1656 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1657 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1658 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1659 
1660 		return;
1661 	}
1662 
1663 	/* Setup bit 16 of flash address. */
1664 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1665 		bank_select |= CSR_FLASH_64K_BANK;
1666 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1667 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1668 	} else if (((addr & BIT_16) == 0) &&
1669 	    (bank_select & CSR_FLASH_64K_BANK)) {
1670 		bank_select &= ~(CSR_FLASH_64K_BANK);
1671 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1672 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1673 	}
1674 
1675 	/* Always perform IO mapped accesses to the FLASH registers. */
1676 	if (ha->pio_address) {
1677 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1678 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1679 	} else {
1680 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1681 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1682 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1683 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1684 	}
1685 }
1686 
1687 /**
1688  * qla2x00_poll_flash() - Polls flash for completion.
1689  * @ha: HA context
1690  * @addr: Address in flash to poll
1691  * @poll_data: Data to be polled
1692  * @man_id: Flash manufacturer ID
1693  * @flash_id: Flash ID
1694  *
1695  * This function polls the device until bit 7 of what is read matches data
1696  * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
1697  * out (a fatal error).  The flash book recommeds reading bit 7 again after
1698  * reading bit 5 as a 1.
1699  *
1700  * Returns 0 on success, else non-zero.
1701  */
1702 static int
1703 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
1704     uint8_t man_id, uint8_t flash_id)
1705 {
1706 	int status;
1707 	uint8_t flash_data;
1708 	uint32_t cnt;
1709 
1710 	status = 1;
1711 
1712 	/* Wait for 30 seconds for command to finish. */
1713 	poll_data &= BIT_7;
1714 	for (cnt = 3000000; cnt; cnt--) {
1715 		flash_data = qla2x00_read_flash_byte(ha, addr);
1716 		if ((flash_data & BIT_7) == poll_data) {
1717 			status = 0;
1718 			break;
1719 		}
1720 
1721 		if (man_id != 0x40 && man_id != 0xda) {
1722 			if ((flash_data & BIT_5) && cnt > 2)
1723 				cnt = 2;
1724 		}
1725 		udelay(10);
1726 		barrier();
1727 		cond_resched();
1728 	}
1729 	return status;
1730 }
1731 
1732 /**
1733  * qla2x00_program_flash_address() - Programs a flash address
1734  * @ha: HA context
1735  * @addr: Address in flash to program
1736  * @data: Data to be written in flash
1737  * @man_id: Flash manufacturer ID
1738  * @flash_id: Flash ID
1739  *
1740  * Returns 0 on success, else non-zero.
1741  */
1742 static int
1743 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
1744     uint8_t data, uint8_t man_id, uint8_t flash_id)
1745 {
1746 	/* Write Program Command Sequence. */
1747 	if (IS_OEM_001(ha)) {
1748 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1749 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1750 		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1751 		qla2x00_write_flash_byte(ha, addr, data);
1752 	} else {
1753 		if (man_id == 0xda && flash_id == 0xc1) {
1754 			qla2x00_write_flash_byte(ha, addr, data);
1755 			if (addr & 0x7e)
1756 				return 0;
1757 		} else {
1758 			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1759 			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1760 			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1761 			qla2x00_write_flash_byte(ha, addr, data);
1762 		}
1763 	}
1764 
1765 	udelay(150);
1766 
1767 	/* Wait for write to complete. */
1768 	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1769 }
1770 
1771 /**
1772  * qla2x00_erase_flash() - Erase the flash.
1773  * @ha: HA context
1774  * @man_id: Flash manufacturer ID
1775  * @flash_id: Flash ID
1776  *
1777  * Returns 0 on success, else non-zero.
1778  */
1779 static int
1780 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
1781 {
1782 	/* Individual Sector Erase Command Sequence */
1783 	if (IS_OEM_001(ha)) {
1784 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1785 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1786 		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1787 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1788 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1789 		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1790 	} else {
1791 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1792 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1793 		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1794 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1795 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1796 		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1797 	}
1798 
1799 	udelay(150);
1800 
1801 	/* Wait for erase to complete. */
1802 	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1803 }
1804 
1805 /**
1806  * qla2x00_erase_flash_sector() - Erase a flash sector.
1807  * @ha: HA context
1808  * @addr: Flash sector to erase
1809  * @sec_mask: Sector address mask
1810  * @man_id: Flash manufacturer ID
1811  * @flash_id: Flash ID
1812  *
1813  * Returns 0 on success, else non-zero.
1814  */
1815 static int
1816 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
1817     uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1818 {
1819 	/* Individual Sector Erase Command Sequence */
1820 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1821 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1822 	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1823 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1824 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1825 	if (man_id == 0x1f && flash_id == 0x13)
1826 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
1827 	else
1828 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
1829 
1830 	udelay(150);
1831 
1832 	/* Wait for erase to complete. */
1833 	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
1834 }
1835 
1836 /**
1837  * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
1838  * @man_id: Flash manufacturer ID
1839  * @flash_id: Flash ID
1840  */
1841 static void
1842 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
1843     uint8_t *flash_id)
1844 {
1845 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1846 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1847 	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
1848 	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
1849 	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
1850 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1851 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1852 	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
1853 }
1854 
1855 static void
1856 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
1857 	uint32_t saddr, uint32_t length)
1858 {
1859 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1860 	uint32_t midpoint, ilength;
1861 	uint8_t data;
1862 
1863 	midpoint = length / 2;
1864 
1865 	WRT_REG_WORD(&reg->nvram, 0);
1866 	RD_REG_WORD(&reg->nvram);
1867 	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
1868 		if (ilength == midpoint) {
1869 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1870 			RD_REG_WORD(&reg->nvram);
1871 		}
1872 		data = qla2x00_read_flash_byte(ha, saddr);
1873 		if (saddr % 100)
1874 			udelay(10);
1875 		*tmp_buf = data;
1876 		cond_resched();
1877 	}
1878 }
1879 
1880 static inline void
1881 qla2x00_suspend_hba(struct scsi_qla_host *vha)
1882 {
1883 	int cnt;
1884 	unsigned long flags;
1885 	struct qla_hw_data *ha = vha->hw;
1886 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1887 
1888 	/* Suspend HBA. */
1889 	scsi_block_requests(vha->host);
1890 	ha->isp_ops->disable_intrs(ha);
1891 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1892 
1893 	/* Pause RISC. */
1894 	spin_lock_irqsave(&ha->hardware_lock, flags);
1895 	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
1896 	RD_REG_WORD(&reg->hccr);
1897 	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
1898 		for (cnt = 0; cnt < 30000; cnt++) {
1899 			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
1900 				break;
1901 			udelay(100);
1902 		}
1903 	} else {
1904 		udelay(10);
1905 	}
1906 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1907 }
1908 
1909 static inline void
1910 qla2x00_resume_hba(struct scsi_qla_host *vha)
1911 {
1912 	struct qla_hw_data *ha = vha->hw;
1913 
1914 	/* Resume HBA. */
1915 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1916 	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
1917 	qla2xxx_wake_dpc(vha);
1918 	qla2x00_wait_for_hba_online(vha);
1919 	scsi_unblock_requests(vha->host);
1920 }
1921 
1922 uint8_t *
1923 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
1924     uint32_t offset, uint32_t length)
1925 {
1926 	uint32_t addr, midpoint;
1927 	uint8_t *data;
1928 	struct qla_hw_data *ha = vha->hw;
1929 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1930 
1931 	/* Suspend HBA. */
1932 	qla2x00_suspend_hba(vha);
1933 
1934 	/* Go with read. */
1935 	midpoint = ha->optrom_size / 2;
1936 
1937 	qla2x00_flash_enable(ha);
1938 	WRT_REG_WORD(&reg->nvram, 0);
1939 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
1940 	for (addr = offset, data = buf; addr < length; addr++, data++) {
1941 		if (addr == midpoint) {
1942 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1943 			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
1944 		}
1945 
1946 		*data = qla2x00_read_flash_byte(ha, addr);
1947 	}
1948 	qla2x00_flash_disable(ha);
1949 
1950 	/* Resume HBA. */
1951 	qla2x00_resume_hba(vha);
1952 
1953 	return buf;
1954 }
1955 
1956 int
1957 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
1958     uint32_t offset, uint32_t length)
1959 {
1960 
1961 	int rval;
1962 	uint8_t man_id, flash_id, sec_number, data;
1963 	uint16_t wd;
1964 	uint32_t addr, liter, sec_mask, rest_addr;
1965 	struct qla_hw_data *ha = vha->hw;
1966 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1967 
1968 	/* Suspend HBA. */
1969 	qla2x00_suspend_hba(vha);
1970 
1971 	rval = QLA_SUCCESS;
1972 	sec_number = 0;
1973 
1974 	/* Reset ISP chip. */
1975 	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
1976 	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
1977 
1978 	/* Go with write. */
1979 	qla2x00_flash_enable(ha);
1980 	do {	/* Loop once to provide quick error exit */
1981 		/* Structure of flash memory based on manufacturer */
1982 		if (IS_OEM_001(ha)) {
1983 			/* OEM variant with special flash part. */
1984 			man_id = flash_id = 0;
1985 			rest_addr = 0xffff;
1986 			sec_mask   = 0x10000;
1987 			goto update_flash;
1988 		}
1989 		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
1990 		switch (man_id) {
1991 		case 0x20: /* ST flash. */
1992 			if (flash_id == 0xd2 || flash_id == 0xe3) {
1993 				/*
1994 				 * ST m29w008at part - 64kb sector size with
1995 				 * 32kb,8kb,8kb,16kb sectors at memory address
1996 				 * 0xf0000.
1997 				 */
1998 				rest_addr = 0xffff;
1999 				sec_mask = 0x10000;
2000 				break;
2001 			}
2002 			/*
2003 			 * ST m29w010b part - 16kb sector size
2004 			 * Default to 16kb sectors
2005 			 */
2006 			rest_addr = 0x3fff;
2007 			sec_mask = 0x1c000;
2008 			break;
2009 		case 0x40: /* Mostel flash. */
2010 			/* Mostel v29c51001 part - 512 byte sector size. */
2011 			rest_addr = 0x1ff;
2012 			sec_mask = 0x1fe00;
2013 			break;
2014 		case 0xbf: /* SST flash. */
2015 			/* SST39sf10 part - 4kb sector size. */
2016 			rest_addr = 0xfff;
2017 			sec_mask = 0x1f000;
2018 			break;
2019 		case 0xda: /* Winbond flash. */
2020 			/* Winbond W29EE011 part - 256 byte sector size. */
2021 			rest_addr = 0x7f;
2022 			sec_mask = 0x1ff80;
2023 			break;
2024 		case 0xc2: /* Macronix flash. */
2025 			/* 64k sector size. */
2026 			if (flash_id == 0x38 || flash_id == 0x4f) {
2027 				rest_addr = 0xffff;
2028 				sec_mask = 0x10000;
2029 				break;
2030 			}
2031 			/* Fall through... */
2032 
2033 		case 0x1f: /* Atmel flash. */
2034 			/* 512k sector size. */
2035 			if (flash_id == 0x13) {
2036 				rest_addr = 0x7fffffff;
2037 				sec_mask =   0x80000000;
2038 				break;
2039 			}
2040 			/* Fall through... */
2041 
2042 		case 0x01: /* AMD flash. */
2043 			if (flash_id == 0x38 || flash_id == 0x40 ||
2044 			    flash_id == 0x4f) {
2045 				/* Am29LV081 part - 64kb sector size. */
2046 				/* Am29LV002BT part - 64kb sector size. */
2047 				rest_addr = 0xffff;
2048 				sec_mask = 0x10000;
2049 				break;
2050 			} else if (flash_id == 0x3e) {
2051 				/*
2052 				 * Am29LV008b part - 64kb sector size with
2053 				 * 32kb,8kb,8kb,16kb sector at memory address
2054 				 * h0xf0000.
2055 				 */
2056 				rest_addr = 0xffff;
2057 				sec_mask = 0x10000;
2058 				break;
2059 			} else if (flash_id == 0x20 || flash_id == 0x6e) {
2060 				/*
2061 				 * Am29LV010 part or AM29f010 - 16kb sector
2062 				 * size.
2063 				 */
2064 				rest_addr = 0x3fff;
2065 				sec_mask = 0x1c000;
2066 				break;
2067 			} else if (flash_id == 0x6d) {
2068 				/* Am29LV001 part - 8kb sector size. */
2069 				rest_addr = 0x1fff;
2070 				sec_mask = 0x1e000;
2071 				break;
2072 			}
2073 		default:
2074 			/* Default to 16 kb sector size. */
2075 			rest_addr = 0x3fff;
2076 			sec_mask = 0x1c000;
2077 			break;
2078 		}
2079 
2080 update_flash:
2081 		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2082 			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2083 				rval = QLA_FUNCTION_FAILED;
2084 				break;
2085 			}
2086 		}
2087 
2088 		for (addr = offset, liter = 0; liter < length; liter++,
2089 		    addr++) {
2090 			data = buf[liter];
2091 			/* Are we at the beginning of a sector? */
2092 			if ((addr & rest_addr) == 0) {
2093 				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2094 					if (addr >= 0x10000UL) {
2095 						if (((addr >> 12) & 0xf0) &&
2096 						    ((man_id == 0x01 &&
2097 							flash_id == 0x3e) ||
2098 						     (man_id == 0x20 &&
2099 							 flash_id == 0xd2))) {
2100 							sec_number++;
2101 							if (sec_number == 1) {
2102 								rest_addr =
2103 								    0x7fff;
2104 								sec_mask =
2105 								    0x18000;
2106 							} else if (
2107 							    sec_number == 2 ||
2108 							    sec_number == 3) {
2109 								rest_addr =
2110 								    0x1fff;
2111 								sec_mask =
2112 								    0x1e000;
2113 							} else if (
2114 							    sec_number == 4) {
2115 								rest_addr =
2116 								    0x3fff;
2117 								sec_mask =
2118 								    0x1c000;
2119 							}
2120 						}
2121 					}
2122 				} else if (addr == ha->optrom_size / 2) {
2123 					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2124 					RD_REG_WORD(&reg->nvram);
2125 				}
2126 
2127 				if (flash_id == 0xda && man_id == 0xc1) {
2128 					qla2x00_write_flash_byte(ha, 0x5555,
2129 					    0xaa);
2130 					qla2x00_write_flash_byte(ha, 0x2aaa,
2131 					    0x55);
2132 					qla2x00_write_flash_byte(ha, 0x5555,
2133 					    0xa0);
2134 				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2135 					/* Then erase it */
2136 					if (qla2x00_erase_flash_sector(ha,
2137 					    addr, sec_mask, man_id,
2138 					    flash_id)) {
2139 						rval = QLA_FUNCTION_FAILED;
2140 						break;
2141 					}
2142 					if (man_id == 0x01 && flash_id == 0x6d)
2143 						sec_number++;
2144 				}
2145 			}
2146 
2147 			if (man_id == 0x01 && flash_id == 0x6d) {
2148 				if (sec_number == 1 &&
2149 				    addr == (rest_addr - 1)) {
2150 					rest_addr = 0x0fff;
2151 					sec_mask   = 0x1f000;
2152 				} else if (sec_number == 3 && (addr & 0x7ffe)) {
2153 					rest_addr = 0x3fff;
2154 					sec_mask   = 0x1c000;
2155 				}
2156 			}
2157 
2158 			if (qla2x00_program_flash_address(ha, addr, data,
2159 			    man_id, flash_id)) {
2160 				rval = QLA_FUNCTION_FAILED;
2161 				break;
2162 			}
2163 			cond_resched();
2164 		}
2165 	} while (0);
2166 	qla2x00_flash_disable(ha);
2167 
2168 	/* Resume HBA. */
2169 	qla2x00_resume_hba(vha);
2170 
2171 	return rval;
2172 }
2173 
2174 uint8_t *
2175 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2176     uint32_t offset, uint32_t length)
2177 {
2178 	struct qla_hw_data *ha = vha->hw;
2179 
2180 	/* Suspend HBA. */
2181 	scsi_block_requests(vha->host);
2182 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2183 
2184 	/* Go with read. */
2185 	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2186 
2187 	/* Resume HBA. */
2188 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2189 	scsi_unblock_requests(vha->host);
2190 
2191 	return buf;
2192 }
2193 
2194 int
2195 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2196     uint32_t offset, uint32_t length)
2197 {
2198 	int rval;
2199 	struct qla_hw_data *ha = vha->hw;
2200 
2201 	/* Suspend HBA. */
2202 	scsi_block_requests(vha->host);
2203 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2204 
2205 	/* Go with write. */
2206 	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2207 	    length >> 2);
2208 
2209 	/* Resume HBA -- RISC reset needed. */
2210 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2211 	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
2212 	qla2xxx_wake_dpc(vha);
2213 	qla2x00_wait_for_hba_online(vha);
2214 	scsi_unblock_requests(vha->host);
2215 
2216 	return rval;
2217 }
2218 
2219 uint8_t *
2220 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2221     uint32_t offset, uint32_t length)
2222 {
2223 	int rval;
2224 	dma_addr_t optrom_dma;
2225 	void *optrom;
2226 	uint8_t *pbuf;
2227 	uint32_t faddr, left, burst;
2228 	struct qla_hw_data *ha = vha->hw;
2229 
2230 	if (offset & 0xfff)
2231 		goto slow_read;
2232 	if (length < OPTROM_BURST_SIZE)
2233 		goto slow_read;
2234 
2235 	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2236 	    &optrom_dma, GFP_KERNEL);
2237 	if (!optrom) {
2238 		qla_printk(KERN_DEBUG, ha,
2239 		    "Unable to allocate memory for optrom burst read "
2240 		    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
2241 
2242 		goto slow_read;
2243 	}
2244 
2245 	pbuf = buf;
2246 	faddr = offset >> 2;
2247 	left = length >> 2;
2248 	burst = OPTROM_BURST_DWORDS;
2249 	while (left != 0) {
2250 		if (burst > left)
2251 			burst = left;
2252 
2253 		rval = qla2x00_dump_ram(vha, optrom_dma,
2254 		    flash_data_addr(ha, faddr), burst);
2255 		if (rval) {
2256 			qla_printk(KERN_WARNING, ha,
2257 			    "Unable to burst-read optrom segment "
2258 			    "(%x/%x/%llx).\n", rval,
2259 			    flash_data_addr(ha, faddr),
2260 			    (unsigned long long)optrom_dma);
2261 			qla_printk(KERN_WARNING, ha,
2262 			    "Reverting to slow-read.\n");
2263 
2264 			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2265 			    optrom, optrom_dma);
2266 			goto slow_read;
2267 		}
2268 
2269 		memcpy(pbuf, optrom, burst * 4);
2270 
2271 		left -= burst;
2272 		faddr += burst;
2273 		pbuf += burst * 4;
2274 	}
2275 
2276 	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2277 	    optrom_dma);
2278 
2279 	return buf;
2280 
2281 slow_read:
2282     return qla24xx_read_optrom_data(vha, buf, offset, length);
2283 }
2284 
2285 /**
2286  * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2287  * @ha: HA context
2288  * @pcids: Pointer to the FCODE PCI data structure
2289  *
2290  * The process of retrieving the FCODE version information is at best
2291  * described as interesting.
2292  *
2293  * Within the first 100h bytes of the image an ASCII string is present
2294  * which contains several pieces of information including the FCODE
2295  * version.  Unfortunately it seems the only reliable way to retrieve
2296  * the version is by scanning for another sentinel within the string,
2297  * the FCODE build date:
2298  *
2299  *	... 2.00.02 10/17/02 ...
2300  *
2301  * Returns QLA_SUCCESS on successful retrieval of version.
2302  */
2303 static void
2304 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2305 {
2306 	int ret = QLA_FUNCTION_FAILED;
2307 	uint32_t istart, iend, iter, vend;
2308 	uint8_t do_next, rbyte, *vbyte;
2309 
2310 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2311 
2312 	/* Skip the PCI data structure. */
2313 	istart = pcids +
2314 	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2315 		qla2x00_read_flash_byte(ha, pcids + 0x0A));
2316 	iend = istart + 0x100;
2317 	do {
2318 		/* Scan for the sentinel date string...eeewww. */
2319 		do_next = 0;
2320 		iter = istart;
2321 		while ((iter < iend) && !do_next) {
2322 			iter++;
2323 			if (qla2x00_read_flash_byte(ha, iter) == '/') {
2324 				if (qla2x00_read_flash_byte(ha, iter + 2) ==
2325 				    '/')
2326 					do_next++;
2327 				else if (qla2x00_read_flash_byte(ha,
2328 				    iter + 3) == '/')
2329 					do_next++;
2330 			}
2331 		}
2332 		if (!do_next)
2333 			break;
2334 
2335 		/* Backtrack to previous ' ' (space). */
2336 		do_next = 0;
2337 		while ((iter > istart) && !do_next) {
2338 			iter--;
2339 			if (qla2x00_read_flash_byte(ha, iter) == ' ')
2340 				do_next++;
2341 		}
2342 		if (!do_next)
2343 			break;
2344 
2345 		/*
2346 		 * Mark end of version tag, and find previous ' ' (space) or
2347 		 * string length (recent FCODE images -- major hack ahead!!!).
2348 		 */
2349 		vend = iter - 1;
2350 		do_next = 0;
2351 		while ((iter > istart) && !do_next) {
2352 			iter--;
2353 			rbyte = qla2x00_read_flash_byte(ha, iter);
2354 			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2355 				do_next++;
2356 		}
2357 		if (!do_next)
2358 			break;
2359 
2360 		/* Mark beginning of version tag, and copy data. */
2361 		iter++;
2362 		if ((vend - iter) &&
2363 		    ((vend - iter) < sizeof(ha->fcode_revision))) {
2364 			vbyte = ha->fcode_revision;
2365 			while (iter <= vend) {
2366 				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
2367 				iter++;
2368 			}
2369 			ret = QLA_SUCCESS;
2370 		}
2371 	} while (0);
2372 
2373 	if (ret != QLA_SUCCESS)
2374 		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2375 }
2376 
2377 int
2378 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2379 {
2380 	int ret = QLA_SUCCESS;
2381 	uint8_t code_type, last_image;
2382 	uint32_t pcihdr, pcids;
2383 	uint8_t *dbyte;
2384 	uint16_t *dcode;
2385 	struct qla_hw_data *ha = vha->hw;
2386 
2387 	if (!ha->pio_address || !mbuf)
2388 		return QLA_FUNCTION_FAILED;
2389 
2390 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2391 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2392 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2393 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2394 
2395 	qla2x00_flash_enable(ha);
2396 
2397 	/* Begin with first PCI expansion ROM header. */
2398 	pcihdr = 0;
2399 	last_image = 1;
2400 	do {
2401 		/* Verify PCI expansion ROM header. */
2402 		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2403 		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2404 			/* No signature */
2405 			DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
2406 			    "signature.\n"));
2407 			ret = QLA_FUNCTION_FAILED;
2408 			break;
2409 		}
2410 
2411 		/* Locate PCI data structure. */
2412 		pcids = pcihdr +
2413 		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2414 			qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2415 
2416 		/* Validate signature of PCI data structure. */
2417 		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2418 		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2419 		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2420 		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2421 			/* Incorrect header. */
2422 			DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
2423 			    "found pcir_adr=%x.\n", pcids));
2424 			ret = QLA_FUNCTION_FAILED;
2425 			break;
2426 		}
2427 
2428 		/* Read version */
2429 		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2430 		switch (code_type) {
2431 		case ROM_CODE_TYPE_BIOS:
2432 			/* Intel x86, PC-AT compatible. */
2433 			ha->bios_revision[0] =
2434 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2435 			ha->bios_revision[1] =
2436 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2437 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2438 			    ha->bios_revision[1], ha->bios_revision[0]));
2439 			break;
2440 		case ROM_CODE_TYPE_FCODE:
2441 			/* Open Firmware standard for PCI (FCode). */
2442 			/* Eeeewww... */
2443 			qla2x00_get_fcode_version(ha, pcids);
2444 			break;
2445 		case ROM_CODE_TYPE_EFI:
2446 			/* Extensible Firmware Interface (EFI). */
2447 			ha->efi_revision[0] =
2448 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2449 			ha->efi_revision[1] =
2450 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2451 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2452 			    ha->efi_revision[1], ha->efi_revision[0]));
2453 			break;
2454 		default:
2455 			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
2456 			    "type %x at pcids %x.\n", code_type, pcids));
2457 			break;
2458 		}
2459 
2460 		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2461 
2462 		/* Locate next PCI expansion ROM. */
2463 		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2464 		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2465 	} while (!last_image);
2466 
2467 	if (IS_QLA2322(ha)) {
2468 		/* Read firmware image information. */
2469 		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2470 		dbyte = mbuf;
2471 		memset(dbyte, 0, 8);
2472 		dcode = (uint16_t *)dbyte;
2473 
2474 		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2475 		    8);
2476 		DEBUG3(qla_printk(KERN_DEBUG, ha, "dumping fw ver from "
2477 		    "flash:\n"));
2478 		DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
2479 
2480 		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2481 		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2482 		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2483 		    dcode[3] == 0)) {
2484 			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
2485 			    "revision at %x.\n", ha->flt_region_fw * 4));
2486 		} else {
2487 			/* values are in big endian */
2488 			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2489 			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2490 			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2491 		}
2492 	}
2493 
2494 	qla2x00_flash_disable(ha);
2495 
2496 	return ret;
2497 }
2498 
2499 int
2500 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2501 {
2502 	int ret = QLA_SUCCESS;
2503 	uint32_t pcihdr, pcids;
2504 	uint32_t *dcode;
2505 	uint8_t *bcode;
2506 	uint8_t code_type, last_image;
2507 	int i;
2508 	struct qla_hw_data *ha = vha->hw;
2509 
2510 	if (!mbuf)
2511 		return QLA_FUNCTION_FAILED;
2512 
2513 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2514 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2515 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2516 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2517 
2518 	dcode = mbuf;
2519 
2520 	/* Begin with first PCI expansion ROM header. */
2521 	pcihdr = ha->flt_region_boot;
2522 	last_image = 1;
2523 	do {
2524 		/* Verify PCI expansion ROM header. */
2525 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2526 		bcode = mbuf + (pcihdr % 4);
2527 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2528 			/* No signature */
2529 			DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
2530 			    "signature.\n"));
2531 			ret = QLA_FUNCTION_FAILED;
2532 			break;
2533 		}
2534 
2535 		/* Locate PCI data structure. */
2536 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2537 
2538 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2539 		bcode = mbuf + (pcihdr % 4);
2540 
2541 		/* Validate signature of PCI data structure. */
2542 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2543 		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2544 			/* Incorrect header. */
2545 			DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
2546 			    "found pcir_adr=%x.\n", pcids));
2547 			ret = QLA_FUNCTION_FAILED;
2548 			break;
2549 		}
2550 
2551 		/* Read version */
2552 		code_type = bcode[0x14];
2553 		switch (code_type) {
2554 		case ROM_CODE_TYPE_BIOS:
2555 			/* Intel x86, PC-AT compatible. */
2556 			ha->bios_revision[0] = bcode[0x12];
2557 			ha->bios_revision[1] = bcode[0x13];
2558 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2559 			    ha->bios_revision[1], ha->bios_revision[0]));
2560 			break;
2561 		case ROM_CODE_TYPE_FCODE:
2562 			/* Open Firmware standard for PCI (FCode). */
2563 			ha->fcode_revision[0] = bcode[0x12];
2564 			ha->fcode_revision[1] = bcode[0x13];
2565 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read FCODE %d.%d.\n",
2566 			    ha->fcode_revision[1], ha->fcode_revision[0]));
2567 			break;
2568 		case ROM_CODE_TYPE_EFI:
2569 			/* Extensible Firmware Interface (EFI). */
2570 			ha->efi_revision[0] = bcode[0x12];
2571 			ha->efi_revision[1] = bcode[0x13];
2572 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2573 			    ha->efi_revision[1], ha->efi_revision[0]));
2574 			break;
2575 		default:
2576 			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
2577 			    "type %x at pcids %x.\n", code_type, pcids));
2578 			break;
2579 		}
2580 
2581 		last_image = bcode[0x15] & BIT_7;
2582 
2583 		/* Locate next PCI expansion ROM. */
2584 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2585 	} while (!last_image);
2586 
2587 	/* Read firmware image information. */
2588 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2589 	dcode = mbuf;
2590 
2591 	qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2592 	for (i = 0; i < 4; i++)
2593 		dcode[i] = be32_to_cpu(dcode[i]);
2594 
2595 	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2596 	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2597 	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2598 	    dcode[3] == 0)) {
2599 		DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
2600 		    "revision at %x.\n", ha->flt_region_fw * 4));
2601 	} else {
2602 		ha->fw_revision[0] = dcode[0];
2603 		ha->fw_revision[1] = dcode[1];
2604 		ha->fw_revision[2] = dcode[2];
2605 		ha->fw_revision[3] = dcode[3];
2606 	}
2607 
2608 	return ret;
2609 }
2610 
2611 static int
2612 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
2613 {
2614 	if (pos >= end || *pos != 0x82)
2615 		return 0;
2616 
2617 	pos += 3 + pos[1];
2618 	if (pos >= end || *pos != 0x90)
2619 		return 0;
2620 
2621 	pos += 3 + pos[1];
2622 	if (pos >= end || *pos != 0x78)
2623 		return 0;
2624 
2625 	return 1;
2626 }
2627 
2628 int
2629 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2630 {
2631 	struct qla_hw_data *ha = vha->hw;
2632 	uint8_t *pos = ha->vpd;
2633 	uint8_t *end = pos + ha->vpd_size;
2634 	int len = 0;
2635 
2636 	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
2637 		return 0;
2638 
2639 	while (pos < end && *pos != 0x78) {
2640 		len = (*pos == 0x82) ? pos[1] : pos[2];
2641 
2642 		if (!strncmp(pos, key, strlen(key)))
2643 			break;
2644 
2645 		if (*pos != 0x90 && *pos != 0x91)
2646 			pos += len;
2647 
2648 		pos += 3;
2649 	}
2650 
2651 	if (pos < end - len && *pos != 0x78)
2652 		return snprintf(str, size, "%.*s", len, pos + 3);
2653 
2654 	return 0;
2655 }
2656