xref: /openbmc/linux/drivers/scsi/qla2xxx/qla_sup.c (revision b04b4f78)
1 /*
2  * QLogic Fibre Channel HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  *
5  * See LICENSE.qla2xxx for copyright and licensing details.
6  */
7 #include "qla_def.h"
8 
9 #include <linux/delay.h>
10 #include <linux/vmalloc.h>
11 #include <asm/uaccess.h>
12 
13 /*
14  * NVRAM support routines
15  */
16 
17 /**
18  * qla2x00_lock_nvram_access() -
19  * @ha: HA context
20  */
21 static void
22 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
23 {
24 	uint16_t data;
25 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
26 
27 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
28 		data = RD_REG_WORD(&reg->nvram);
29 		while (data & NVR_BUSY) {
30 			udelay(100);
31 			data = RD_REG_WORD(&reg->nvram);
32 		}
33 
34 		/* Lock resource */
35 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
36 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
37 		udelay(5);
38 		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
39 		while ((data & BIT_0) == 0) {
40 			/* Lock failed */
41 			udelay(100);
42 			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
43 			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
44 			udelay(5);
45 			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
46 		}
47 	}
48 }
49 
50 /**
51  * qla2x00_unlock_nvram_access() -
52  * @ha: HA context
53  */
54 static void
55 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
56 {
57 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
58 
59 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
60 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
61 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
62 	}
63 }
64 
65 /**
66  * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
67  * @ha: HA context
68  * @data: Serial interface selector
69  */
70 static void
71 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
72 {
73 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
74 
75 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
76 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
77 	NVRAM_DELAY();
78 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
79 	    NVR_WRT_ENABLE);
80 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
81 	NVRAM_DELAY();
82 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
83 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
84 	NVRAM_DELAY();
85 }
86 
87 /**
88  * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
89  *	NVRAM.
90  * @ha: HA context
91  * @nv_cmd: NVRAM command
92  *
93  * Bit definitions for NVRAM command:
94  *
95  *	Bit 26     = start bit
96  *	Bit 25, 24 = opcode
97  *	Bit 23-16  = address
98  *	Bit 15-0   = write data
99  *
100  * Returns the word read from nvram @addr.
101  */
102 static uint16_t
103 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
104 {
105 	uint8_t		cnt;
106 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
107 	uint16_t	data = 0;
108 	uint16_t	reg_data;
109 
110 	/* Send command to NVRAM. */
111 	nv_cmd <<= 5;
112 	for (cnt = 0; cnt < 11; cnt++) {
113 		if (nv_cmd & BIT_31)
114 			qla2x00_nv_write(ha, NVR_DATA_OUT);
115 		else
116 			qla2x00_nv_write(ha, 0);
117 		nv_cmd <<= 1;
118 	}
119 
120 	/* Read data from NVRAM. */
121 	for (cnt = 0; cnt < 16; cnt++) {
122 		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
123 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
124 		NVRAM_DELAY();
125 		data <<= 1;
126 		reg_data = RD_REG_WORD(&reg->nvram);
127 		if (reg_data & NVR_DATA_IN)
128 			data |= BIT_0;
129 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
130 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
131 		NVRAM_DELAY();
132 	}
133 
134 	/* Deselect chip. */
135 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
136 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
137 	NVRAM_DELAY();
138 
139 	return data;
140 }
141 
142 
143 /**
144  * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
145  *	request routine to get the word from NVRAM.
146  * @ha: HA context
147  * @addr: Address in NVRAM to read
148  *
149  * Returns the word read from nvram @addr.
150  */
151 static uint16_t
152 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
153 {
154 	uint16_t	data;
155 	uint32_t	nv_cmd;
156 
157 	nv_cmd = addr << 16;
158 	nv_cmd |= NV_READ_OP;
159 	data = qla2x00_nvram_request(ha, nv_cmd);
160 
161 	return (data);
162 }
163 
164 /**
165  * qla2x00_nv_deselect() - Deselect NVRAM operations.
166  * @ha: HA context
167  */
168 static void
169 qla2x00_nv_deselect(struct qla_hw_data *ha)
170 {
171 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
172 
173 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
174 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
175 	NVRAM_DELAY();
176 }
177 
178 /**
179  * qla2x00_write_nvram_word() - Write NVRAM data.
180  * @ha: HA context
181  * @addr: Address in NVRAM to write
182  * @data: word to program
183  */
184 static void
185 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
186 {
187 	int count;
188 	uint16_t word;
189 	uint32_t nv_cmd, wait_cnt;
190 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
191 
192 	qla2x00_nv_write(ha, NVR_DATA_OUT);
193 	qla2x00_nv_write(ha, 0);
194 	qla2x00_nv_write(ha, 0);
195 
196 	for (word = 0; word < 8; word++)
197 		qla2x00_nv_write(ha, NVR_DATA_OUT);
198 
199 	qla2x00_nv_deselect(ha);
200 
201 	/* Write data */
202 	nv_cmd = (addr << 16) | NV_WRITE_OP;
203 	nv_cmd |= data;
204 	nv_cmd <<= 5;
205 	for (count = 0; count < 27; count++) {
206 		if (nv_cmd & BIT_31)
207 			qla2x00_nv_write(ha, NVR_DATA_OUT);
208 		else
209 			qla2x00_nv_write(ha, 0);
210 
211 		nv_cmd <<= 1;
212 	}
213 
214 	qla2x00_nv_deselect(ha);
215 
216 	/* Wait for NVRAM to become ready */
217 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
218 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
219 	wait_cnt = NVR_WAIT_CNT;
220 	do {
221 		if (!--wait_cnt) {
222 			DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
223 			    __func__, vha->host_no));
224 			break;
225 		}
226 		NVRAM_DELAY();
227 		word = RD_REG_WORD(&reg->nvram);
228 	} while ((word & NVR_DATA_IN) == 0);
229 
230 	qla2x00_nv_deselect(ha);
231 
232 	/* Disable writes */
233 	qla2x00_nv_write(ha, NVR_DATA_OUT);
234 	for (count = 0; count < 10; count++)
235 		qla2x00_nv_write(ha, 0);
236 
237 	qla2x00_nv_deselect(ha);
238 }
239 
240 static int
241 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
242 	uint16_t data, uint32_t tmo)
243 {
244 	int ret, count;
245 	uint16_t word;
246 	uint32_t nv_cmd;
247 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
248 
249 	ret = QLA_SUCCESS;
250 
251 	qla2x00_nv_write(ha, NVR_DATA_OUT);
252 	qla2x00_nv_write(ha, 0);
253 	qla2x00_nv_write(ha, 0);
254 
255 	for (word = 0; word < 8; word++)
256 		qla2x00_nv_write(ha, NVR_DATA_OUT);
257 
258 	qla2x00_nv_deselect(ha);
259 
260 	/* Write data */
261 	nv_cmd = (addr << 16) | NV_WRITE_OP;
262 	nv_cmd |= data;
263 	nv_cmd <<= 5;
264 	for (count = 0; count < 27; count++) {
265 		if (nv_cmd & BIT_31)
266 			qla2x00_nv_write(ha, NVR_DATA_OUT);
267 		else
268 			qla2x00_nv_write(ha, 0);
269 
270 		nv_cmd <<= 1;
271 	}
272 
273 	qla2x00_nv_deselect(ha);
274 
275 	/* Wait for NVRAM to become ready */
276 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
277 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
278 	do {
279 		NVRAM_DELAY();
280 		word = RD_REG_WORD(&reg->nvram);
281 		if (!--tmo) {
282 			ret = QLA_FUNCTION_FAILED;
283 			break;
284 		}
285 	} while ((word & NVR_DATA_IN) == 0);
286 
287 	qla2x00_nv_deselect(ha);
288 
289 	/* Disable writes */
290 	qla2x00_nv_write(ha, NVR_DATA_OUT);
291 	for (count = 0; count < 10; count++)
292 		qla2x00_nv_write(ha, 0);
293 
294 	qla2x00_nv_deselect(ha);
295 
296 	return ret;
297 }
298 
299 /**
300  * qla2x00_clear_nvram_protection() -
301  * @ha: HA context
302  */
303 static int
304 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
305 {
306 	int ret, stat;
307 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
308 	uint32_t word, wait_cnt;
309 	uint16_t wprot, wprot_old;
310 
311 	/* Clear NVRAM write protection. */
312 	ret = QLA_FUNCTION_FAILED;
313 
314 	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
315 	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
316 	    __constant_cpu_to_le16(0x1234), 100000);
317 	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 	if (stat != QLA_SUCCESS || wprot != 0x1234) {
319 		/* Write enable. */
320 		qla2x00_nv_write(ha, NVR_DATA_OUT);
321 		qla2x00_nv_write(ha, 0);
322 		qla2x00_nv_write(ha, 0);
323 		for (word = 0; word < 8; word++)
324 			qla2x00_nv_write(ha, NVR_DATA_OUT);
325 
326 		qla2x00_nv_deselect(ha);
327 
328 		/* Enable protection register. */
329 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
330 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
331 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
332 		for (word = 0; word < 8; word++)
333 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
334 
335 		qla2x00_nv_deselect(ha);
336 
337 		/* Clear protection register (ffff is cleared). */
338 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
339 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
340 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
341 		for (word = 0; word < 8; word++)
342 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
343 
344 		qla2x00_nv_deselect(ha);
345 
346 		/* Wait for NVRAM to become ready. */
347 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
348 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
349 		wait_cnt = NVR_WAIT_CNT;
350 		do {
351 			if (!--wait_cnt) {
352 				DEBUG9_10(qla_printk(
353 				    "NVRAM didn't go ready...\n"));
354 				break;
355 			}
356 			NVRAM_DELAY();
357 			word = RD_REG_WORD(&reg->nvram);
358 		} while ((word & NVR_DATA_IN) == 0);
359 
360 		if (wait_cnt)
361 			ret = QLA_SUCCESS;
362 	} else
363 		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
364 
365 	return ret;
366 }
367 
368 static void
369 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
370 {
371 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
372 	uint32_t word, wait_cnt;
373 
374 	if (stat != QLA_SUCCESS)
375 		return;
376 
377 	/* Set NVRAM write protection. */
378 	/* Write enable. */
379 	qla2x00_nv_write(ha, NVR_DATA_OUT);
380 	qla2x00_nv_write(ha, 0);
381 	qla2x00_nv_write(ha, 0);
382 	for (word = 0; word < 8; word++)
383 		qla2x00_nv_write(ha, NVR_DATA_OUT);
384 
385 	qla2x00_nv_deselect(ha);
386 
387 	/* Enable protection register. */
388 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
389 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
390 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
391 	for (word = 0; word < 8; word++)
392 		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
393 
394 	qla2x00_nv_deselect(ha);
395 
396 	/* Enable protection register. */
397 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
398 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
399 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
400 	for (word = 0; word < 8; word++)
401 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
402 
403 	qla2x00_nv_deselect(ha);
404 
405 	/* Wait for NVRAM to become ready. */
406 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
407 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
408 	wait_cnt = NVR_WAIT_CNT;
409 	do {
410 		if (!--wait_cnt) {
411 			DEBUG9_10(qla_printk("NVRAM didn't go ready...\n"));
412 			break;
413 		}
414 		NVRAM_DELAY();
415 		word = RD_REG_WORD(&reg->nvram);
416 	} while ((word & NVR_DATA_IN) == 0);
417 }
418 
419 
420 /*****************************************************************************/
421 /* Flash Manipulation Routines                                               */
422 /*****************************************************************************/
423 
424 #define OPTROM_BURST_SIZE	0x1000
425 #define OPTROM_BURST_DWORDS	(OPTROM_BURST_SIZE / 4)
426 
427 static inline uint32_t
428 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
429 {
430 	return ha->flash_conf_off | faddr;
431 }
432 
433 static inline uint32_t
434 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
435 {
436 	return ha->flash_data_off | faddr;
437 }
438 
439 static inline uint32_t
440 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
441 {
442 	return ha->nvram_conf_off | naddr;
443 }
444 
445 static inline uint32_t
446 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
447 {
448 	return ha->nvram_data_off | naddr;
449 }
450 
451 static uint32_t
452 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
453 {
454 	int rval;
455 	uint32_t cnt, data;
456 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
457 
458 	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
459 	/* Wait for READ cycle to complete. */
460 	rval = QLA_SUCCESS;
461 	for (cnt = 3000;
462 	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
463 	    rval == QLA_SUCCESS; cnt--) {
464 		if (cnt)
465 			udelay(10);
466 		else
467 			rval = QLA_FUNCTION_TIMEOUT;
468 		cond_resched();
469 	}
470 
471 	/* TODO: What happens if we time out? */
472 	data = 0xDEADDEAD;
473 	if (rval == QLA_SUCCESS)
474 		data = RD_REG_DWORD(&reg->flash_data);
475 
476 	return data;
477 }
478 
479 uint32_t *
480 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
481     uint32_t dwords)
482 {
483 	uint32_t i;
484 	struct qla_hw_data *ha = vha->hw;
485 
486 	/* Dword reads to flash. */
487 	for (i = 0; i < dwords; i++, faddr++)
488 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
489 		    flash_data_addr(ha, faddr)));
490 
491 	return dwptr;
492 }
493 
494 static int
495 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
496 {
497 	int rval;
498 	uint32_t cnt;
499 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
500 
501 	WRT_REG_DWORD(&reg->flash_data, data);
502 	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
503 	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
504 	/* Wait for Write cycle to complete. */
505 	rval = QLA_SUCCESS;
506 	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
507 	    rval == QLA_SUCCESS; cnt--) {
508 		if (cnt)
509 			udelay(10);
510 		else
511 			rval = QLA_FUNCTION_TIMEOUT;
512 		cond_resched();
513 	}
514 	return rval;
515 }
516 
517 static void
518 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
519     uint8_t *flash_id)
520 {
521 	uint32_t ids;
522 
523 	ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
524 	*man_id = LSB(ids);
525 	*flash_id = MSB(ids);
526 
527 	/* Check if man_id and flash_id are valid. */
528 	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
529 		/* Read information using 0x9f opcode
530 		 * Device ID, Mfg ID would be read in the format:
531 		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
532 		 * Example: ATMEL 0x00 01 45 1F
533 		 * Extract MFG and Dev ID from last two bytes.
534 		 */
535 		ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
536 		*man_id = LSB(ids);
537 		*flash_id = MSB(ids);
538 	}
539 }
540 
541 static int
542 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
543 {
544 	const char *loc, *locations[] = { "DEF", "PCI" };
545 	uint32_t pcihdr, pcids;
546 	uint32_t *dcode;
547 	uint8_t *buf, *bcode, last_image;
548 	uint16_t cnt, chksum, *wptr;
549 	struct qla_flt_location *fltl;
550 	struct qla_hw_data *ha = vha->hw;
551 	struct req_que *req = ha->req_q_map[0];
552 
553 	/*
554 	 * FLT-location structure resides after the last PCI region.
555 	 */
556 
557 	/* Begin with sane defaults. */
558 	loc = locations[0];
559 	*start = 0;
560 	if (IS_QLA24XX_TYPE(ha))
561 		*start = FA_FLASH_LAYOUT_ADDR_24;
562 	else if (IS_QLA25XX(ha))
563 		*start = FA_FLASH_LAYOUT_ADDR;
564 	else if (IS_QLA81XX(ha))
565 		*start = FA_FLASH_LAYOUT_ADDR_81;
566 	/* Begin with first PCI expansion ROM header. */
567 	buf = (uint8_t *)req->ring;
568 	dcode = (uint32_t *)req->ring;
569 	pcihdr = 0;
570 	last_image = 1;
571 	do {
572 		/* Verify PCI expansion ROM header. */
573 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
574 		bcode = buf + (pcihdr % 4);
575 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
576 			goto end;
577 
578 		/* Locate PCI data structure. */
579 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
580 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
581 		bcode = buf + (pcihdr % 4);
582 
583 		/* Validate signature of PCI data structure. */
584 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
585 		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
586 			goto end;
587 
588 		last_image = bcode[0x15] & BIT_7;
589 
590 		/* Locate next PCI expansion ROM. */
591 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
592 	} while (!last_image);
593 
594 	/* Now verify FLT-location structure. */
595 	fltl = (struct qla_flt_location *)req->ring;
596 	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
597 	    sizeof(struct qla_flt_location) >> 2);
598 	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
599 	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
600 		goto end;
601 
602 	wptr = (uint16_t *)req->ring;
603 	cnt = sizeof(struct qla_flt_location) >> 1;
604 	for (chksum = 0; cnt; cnt--)
605 		chksum += le16_to_cpu(*wptr++);
606 	if (chksum) {
607 		qla_printk(KERN_ERR, ha,
608 		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
609 		qla2x00_dump_buffer(buf, sizeof(struct qla_flt_location));
610 		return QLA_FUNCTION_FAILED;
611 	}
612 
613 	/* Good data.  Use specified location. */
614 	loc = locations[1];
615 	*start = (le16_to_cpu(fltl->start_hi) << 16 |
616 	    le16_to_cpu(fltl->start_lo)) >> 2;
617 end:
618 	DEBUG2(qla_printk(KERN_DEBUG, ha, "FLTL[%s] = 0x%x.\n", loc, *start));
619 	return QLA_SUCCESS;
620 }
621 
622 static void
623 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
624 {
625 	const char *loc, *locations[] = { "DEF", "FLT" };
626 	const uint32_t def_fw[] =
627 		{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
628 	const uint32_t def_boot[] =
629 		{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
630 	const uint32_t def_vpd_nvram[] =
631 		{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
632 	const uint32_t def_vpd0[] =
633 		{ 0, 0, FA_VPD0_ADDR_81 };
634 	const uint32_t def_vpd1[] =
635 		{ 0, 0, FA_VPD1_ADDR_81 };
636 	const uint32_t def_nvram0[] =
637 		{ 0, 0, FA_NVRAM0_ADDR_81 };
638 	const uint32_t def_nvram1[] =
639 		{ 0, 0, FA_NVRAM1_ADDR_81 };
640 	const uint32_t def_fdt[] =
641 		{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
642 			FA_FLASH_DESCR_ADDR_81 };
643 	const uint32_t def_npiv_conf0[] =
644 		{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
645 			FA_NPIV_CONF0_ADDR_81 };
646 	const uint32_t def_npiv_conf1[] =
647 		{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
648 			FA_NPIV_CONF1_ADDR_81 };
649 	uint32_t def;
650 	uint16_t *wptr;
651 	uint16_t cnt, chksum;
652 	uint32_t start;
653 	struct qla_flt_header *flt;
654 	struct qla_flt_region *region;
655 	struct qla_hw_data *ha = vha->hw;
656 	struct req_que *req = ha->req_q_map[0];
657 
658 	ha->flt_region_flt = flt_addr;
659 	wptr = (uint16_t *)req->ring;
660 	flt = (struct qla_flt_header *)req->ring;
661 	region = (struct qla_flt_region *)&flt[1];
662 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
663 	    flt_addr << 2, OPTROM_BURST_SIZE);
664 	if (*wptr == __constant_cpu_to_le16(0xffff))
665 		goto no_flash_data;
666 	if (flt->version != __constant_cpu_to_le16(1)) {
667 		DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported FLT detected: "
668 		    "version=0x%x length=0x%x checksum=0x%x.\n",
669 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
670 		    le16_to_cpu(flt->checksum)));
671 		goto no_flash_data;
672 	}
673 
674 	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
675 	for (chksum = 0; cnt; cnt--)
676 		chksum += le16_to_cpu(*wptr++);
677 	if (chksum) {
678 		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FLT detected: "
679 		    "version=0x%x length=0x%x checksum=0x%x.\n",
680 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
681 		    chksum));
682 		goto no_flash_data;
683 	}
684 
685 	loc = locations[1];
686 	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
687 	for ( ; cnt; cnt--, region++) {
688 		/* Store addresses as DWORD offsets. */
689 		start = le32_to_cpu(region->start) >> 2;
690 
691 		DEBUG3(qla_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x "
692 		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start,
693 		    le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size)));
694 
695 		switch (le32_to_cpu(region->code) & 0xff) {
696 		case FLT_REG_FW:
697 			ha->flt_region_fw = start;
698 			break;
699 		case FLT_REG_BOOT_CODE:
700 			ha->flt_region_boot = start;
701 			break;
702 		case FLT_REG_VPD_0:
703 			ha->flt_region_vpd_nvram = start;
704 			if (!(PCI_FUNC(ha->pdev->devfn) & 1))
705 				ha->flt_region_vpd = start;
706 			break;
707 		case FLT_REG_VPD_1:
708 			if (PCI_FUNC(ha->pdev->devfn) & 1)
709 				ha->flt_region_vpd = start;
710 			break;
711 		case FLT_REG_NVRAM_0:
712 			if (!(PCI_FUNC(ha->pdev->devfn) & 1))
713 				ha->flt_region_nvram = start;
714 			break;
715 		case FLT_REG_NVRAM_1:
716 			if (PCI_FUNC(ha->pdev->devfn) & 1)
717 				ha->flt_region_nvram = start;
718 			break;
719 		case FLT_REG_FDT:
720 			ha->flt_region_fdt = start;
721 			break;
722 		case FLT_REG_NPIV_CONF_0:
723 			if (!(PCI_FUNC(ha->pdev->devfn) & 1))
724 				ha->flt_region_npiv_conf = start;
725 			break;
726 		case FLT_REG_NPIV_CONF_1:
727 			if (PCI_FUNC(ha->pdev->devfn) & 1)
728 				ha->flt_region_npiv_conf = start;
729 			break;
730 		}
731 	}
732 	goto done;
733 
734 no_flash_data:
735 	/* Use hardcoded defaults. */
736 	loc = locations[0];
737 	def = 0;
738 	if (IS_QLA24XX_TYPE(ha))
739 		def = 0;
740 	else if (IS_QLA25XX(ha))
741 		def = 1;
742 	else if (IS_QLA81XX(ha))
743 		def = 2;
744 	ha->flt_region_fw = def_fw[def];
745 	ha->flt_region_boot = def_boot[def];
746 	ha->flt_region_vpd_nvram = def_vpd_nvram[def];
747 	ha->flt_region_vpd = !(PCI_FUNC(ha->pdev->devfn) & 1) ?
748 	    def_vpd0[def]: def_vpd1[def];
749 	ha->flt_region_nvram = !(PCI_FUNC(ha->pdev->devfn) & 1) ?
750 	    def_nvram0[def]: def_nvram1[def];
751 	ha->flt_region_fdt = def_fdt[def];
752 	ha->flt_region_npiv_conf = !(PCI_FUNC(ha->pdev->devfn) & 1) ?
753 	    def_npiv_conf0[def]: def_npiv_conf1[def];
754 done:
755 	DEBUG2(qla_printk(KERN_DEBUG, ha, "FLT[%s]: boot=0x%x fw=0x%x "
756 	    "vpd_nvram=0x%x vpd=0x%x nvram=0x%x fdt=0x%x flt=0x%x "
757 	    "npiv=0x%x.\n", loc, ha->flt_region_boot, ha->flt_region_fw,
758 	    ha->flt_region_vpd_nvram, ha->flt_region_vpd, ha->flt_region_nvram,
759 	    ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf));
760 }
761 
762 static void
763 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
764 {
765 #define FLASH_BLK_SIZE_4K	0x1000
766 #define FLASH_BLK_SIZE_32K	0x8000
767 #define FLASH_BLK_SIZE_64K	0x10000
768 	const char *loc, *locations[] = { "MID", "FDT" };
769 	uint16_t cnt, chksum;
770 	uint16_t *wptr;
771 	struct qla_fdt_layout *fdt;
772 	uint8_t	man_id, flash_id;
773 	uint16_t mid, fid;
774 	struct qla_hw_data *ha = vha->hw;
775 	struct req_que *req = ha->req_q_map[0];
776 
777 	wptr = (uint16_t *)req->ring;
778 	fdt = (struct qla_fdt_layout *)req->ring;
779 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
780 	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
781 	if (*wptr == __constant_cpu_to_le16(0xffff))
782 		goto no_flash_data;
783 	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
784 	    fdt->sig[3] != 'D')
785 		goto no_flash_data;
786 
787 	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
788 	    cnt++)
789 		chksum += le16_to_cpu(*wptr++);
790 	if (chksum) {
791 		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
792 		    "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
793 		    le16_to_cpu(fdt->version)));
794 		DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt)));
795 		goto no_flash_data;
796 	}
797 
798 	loc = locations[1];
799 	mid = le16_to_cpu(fdt->man_id);
800 	fid = le16_to_cpu(fdt->id);
801 	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
802 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
803 	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
804 	if (fdt->unprotect_sec_cmd) {
805 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
806 		    fdt->unprotect_sec_cmd);
807 		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
808 		    flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
809 		    flash_conf_addr(ha, 0x0336);
810 	}
811 	goto done;
812 no_flash_data:
813 	loc = locations[0];
814 	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
815 	mid = man_id;
816 	fid = flash_id;
817 	ha->fdt_wrt_disable = 0x9c;
818 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
819 	switch (man_id) {
820 	case 0xbf: /* STT flash. */
821 		if (flash_id == 0x8e)
822 			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
823 		else
824 			ha->fdt_block_size = FLASH_BLK_SIZE_32K;
825 
826 		if (flash_id == 0x80)
827 			ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
828 		break;
829 	case 0x13: /* ST M25P80. */
830 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
831 		break;
832 	case 0x1f: /* Atmel 26DF081A. */
833 		ha->fdt_block_size = FLASH_BLK_SIZE_4K;
834 		ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
835 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
836 		ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
837 		break;
838 	default:
839 		/* Default to 64 kb sector size. */
840 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
841 		break;
842 	}
843 done:
844 	DEBUG2(qla_printk(KERN_DEBUG, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x "
845 	    "pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
846 	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
847 	    ha->fdt_unprotect_sec_cmd, ha->fdt_wrt_disable,
848 	    ha->fdt_block_size));
849 }
850 
851 int
852 qla2xxx_get_flash_info(scsi_qla_host_t *vha)
853 {
854 	int ret;
855 	uint32_t flt_addr;
856 	struct qla_hw_data *ha = vha->hw;
857 
858 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA81XX(ha))
859 		return QLA_SUCCESS;
860 
861 	ret = qla2xxx_find_flt_start(vha, &flt_addr);
862 	if (ret != QLA_SUCCESS)
863 		return ret;
864 
865 	qla2xxx_get_flt_info(vha, flt_addr);
866 	qla2xxx_get_fdt_info(vha);
867 
868 	return QLA_SUCCESS;
869 }
870 
871 void
872 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
873 {
874 #define NPIV_CONFIG_SIZE	(16*1024)
875 	void *data;
876 	uint16_t *wptr;
877 	uint16_t cnt, chksum;
878 	int i;
879 	struct qla_npiv_header hdr;
880 	struct qla_npiv_entry *entry;
881 	struct qla_hw_data *ha = vha->hw;
882 
883 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA81XX(ha))
884 		return;
885 
886 	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
887 	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
888 	if (hdr.version == __constant_cpu_to_le16(0xffff))
889 		return;
890 	if (hdr.version != __constant_cpu_to_le16(1)) {
891 		DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported NPIV-Config "
892 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
893 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
894 		    le16_to_cpu(hdr.checksum)));
895 		return;
896 	}
897 
898 	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
899 	if (!data) {
900 		DEBUG2(qla_printk(KERN_INFO, ha, "NPIV-Config: Unable to "
901 		    "allocate memory.\n"));
902 		return;
903 	}
904 
905 	ha->isp_ops->read_optrom(vha, (uint8_t *)data,
906 	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
907 
908 	cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
909 	    sizeof(struct qla_npiv_entry)) >> 1;
910 	for (wptr = data, chksum = 0; cnt; cnt--)
911 		chksum += le16_to_cpu(*wptr++);
912 	if (chksum) {
913 		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent NPIV-Config "
914 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
915 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
916 		    chksum));
917 		goto done;
918 	}
919 
920 	entry = data + sizeof(struct qla_npiv_header);
921 	cnt = le16_to_cpu(hdr.entries);
922 	for (i = 0; cnt; cnt--, entry++, i++) {
923 		uint16_t flags;
924 		struct fc_vport_identifiers vid;
925 		struct fc_vport *vport;
926 
927 		flags = le16_to_cpu(entry->flags);
928 		if (flags == 0xffff)
929 			continue;
930 		if ((flags & BIT_0) == 0)
931 			continue;
932 
933 		memset(&vid, 0, sizeof(vid));
934 		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
935 		vid.vport_type = FC_PORTTYPE_NPIV;
936 		vid.disable = false;
937 		vid.port_name = wwn_to_u64(entry->port_name);
938 		vid.node_name = wwn_to_u64(entry->node_name);
939 
940 		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
941 
942 		DEBUG2(qla_printk(KERN_DEBUG, ha, "NPIV[%02x]: wwpn=%llx "
943 			"wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
944 			vid.port_name, vid.node_name, le16_to_cpu(entry->vf_id),
945 			entry->q_qos, entry->f_qos));
946 
947 		if (i < QLA_PRECONFIG_VPORTS) {
948 			vport = fc_vport_create(vha->host, 0, &vid);
949 			if (!vport)
950 				qla_printk(KERN_INFO, ha,
951 				"NPIV-Config: Failed to create vport [%02x]: "
952 				"wwpn=%llx wwnn=%llx.\n", cnt,
953 				vid.port_name, vid.node_name);
954 		}
955 	}
956 done:
957 	kfree(data);
958 	ha->npiv_info = NULL;
959 }
960 
961 static int
962 qla24xx_unprotect_flash(scsi_qla_host_t *vha)
963 {
964 	struct qla_hw_data *ha = vha->hw;
965 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
966 
967 	if (ha->flags.fac_supported)
968 		return qla81xx_fac_do_write_enable(vha, 1);
969 
970 	/* Enable flash write. */
971 	WRT_REG_DWORD(&reg->ctrl_status,
972 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
973 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
974 
975 	if (!ha->fdt_wrt_disable)
976 		goto done;
977 
978 	/* Disable flash write-protection, first clear SR protection bit */
979 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
980 	/* Then write zero again to clear remaining SR bits.*/
981 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
982 done:
983 	return QLA_SUCCESS;
984 }
985 
986 static int
987 qla24xx_protect_flash(scsi_qla_host_t *vha)
988 {
989 	uint32_t cnt;
990 	struct qla_hw_data *ha = vha->hw;
991 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
992 
993 	if (ha->flags.fac_supported)
994 		return qla81xx_fac_do_write_enable(vha, 0);
995 
996 	if (!ha->fdt_wrt_disable)
997 		goto skip_wrt_protect;
998 
999 	/* Enable flash write-protection and wait for completion. */
1000 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1001 	    ha->fdt_wrt_disable);
1002 	for (cnt = 300; cnt &&
1003 	    qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1004 	    cnt--) {
1005 		udelay(10);
1006 	}
1007 
1008 skip_wrt_protect:
1009 	/* Disable flash write. */
1010 	WRT_REG_DWORD(&reg->ctrl_status,
1011 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1012 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1013 
1014 	return QLA_SUCCESS;
1015 }
1016 
1017 static int
1018 qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
1019 {
1020 	struct qla_hw_data *ha = vha->hw;
1021 	uint32_t start, finish;
1022 
1023 	if (ha->flags.fac_supported) {
1024 		start = fdata >> 2;
1025 		finish = start + (ha->fdt_block_size >> 2) - 1;
1026 		return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
1027 		    start), flash_data_addr(ha, finish));
1028 	}
1029 
1030 	return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1031 	    (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
1032 	    ((fdata >> 16) & 0xff));
1033 }
1034 
1035 static int
1036 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1037     uint32_t dwords)
1038 {
1039 	int ret;
1040 	uint32_t liter;
1041 	uint32_t sec_mask, rest_addr;
1042 	uint32_t fdata;
1043 	dma_addr_t optrom_dma;
1044 	void *optrom = NULL;
1045 	struct qla_hw_data *ha = vha->hw;
1046 
1047 	/* Prepare burst-capable write on supported ISPs. */
1048 	if ((IS_QLA25XX(ha) || IS_QLA81XX(ha)) && !(faddr & 0xfff) &&
1049 	    dwords > OPTROM_BURST_DWORDS) {
1050 		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1051 		    &optrom_dma, GFP_KERNEL);
1052 		if (!optrom) {
1053 			qla_printk(KERN_DEBUG, ha,
1054 			    "Unable to allocate memory for optrom burst write "
1055 			    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
1056 		}
1057 	}
1058 
1059 	rest_addr = (ha->fdt_block_size >> 2) - 1;
1060 	sec_mask = ~rest_addr;
1061 
1062 	ret = qla24xx_unprotect_flash(vha);
1063 	if (ret != QLA_SUCCESS) {
1064 		qla_printk(KERN_WARNING, ha,
1065 		    "Unable to unprotect flash for update.\n");
1066 		goto done;
1067 	}
1068 
1069 	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1070 		fdata = (faddr & sec_mask) << 2;
1071 
1072 		/* Are we at the beginning of a sector? */
1073 		if ((faddr & rest_addr) == 0) {
1074 			/* Do sector unprotect. */
1075 			if (ha->fdt_unprotect_sec_cmd)
1076 				qla24xx_write_flash_dword(ha,
1077 				    ha->fdt_unprotect_sec_cmd,
1078 				    (fdata & 0xff00) | ((fdata << 16) &
1079 				    0xff0000) | ((fdata >> 16) & 0xff));
1080 			ret = qla24xx_erase_sector(vha, fdata);
1081 			if (ret != QLA_SUCCESS) {
1082 				DEBUG9(qla_printk("Unable to erase sector: "
1083 				    "address=%x.\n", faddr));
1084 				break;
1085 			}
1086 		}
1087 
1088 		/* Go with burst-write. */
1089 		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1090 			/* Copy data to DMA'ble buffer. */
1091 			memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1092 
1093 			ret = qla2x00_load_ram(vha, optrom_dma,
1094 			    flash_data_addr(ha, faddr),
1095 			    OPTROM_BURST_DWORDS);
1096 			if (ret != QLA_SUCCESS) {
1097 				qla_printk(KERN_WARNING, ha,
1098 				    "Unable to burst-write optrom segment "
1099 				    "(%x/%x/%llx).\n", ret,
1100 				    flash_data_addr(ha, faddr),
1101 				    (unsigned long long)optrom_dma);
1102 				qla_printk(KERN_WARNING, ha,
1103 				    "Reverting to slow-write.\n");
1104 
1105 				dma_free_coherent(&ha->pdev->dev,
1106 				    OPTROM_BURST_SIZE, optrom, optrom_dma);
1107 				optrom = NULL;
1108 			} else {
1109 				liter += OPTROM_BURST_DWORDS - 1;
1110 				faddr += OPTROM_BURST_DWORDS - 1;
1111 				dwptr += OPTROM_BURST_DWORDS - 1;
1112 				continue;
1113 			}
1114 		}
1115 
1116 		ret = qla24xx_write_flash_dword(ha,
1117 		    flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1118 		if (ret != QLA_SUCCESS) {
1119 			DEBUG9(printk("%s(%ld) Unable to program flash "
1120 			    "address=%x data=%x.\n", __func__,
1121 			    vha->host_no, faddr, *dwptr));
1122 			break;
1123 		}
1124 
1125 		/* Do sector protect. */
1126 		if (ha->fdt_unprotect_sec_cmd &&
1127 		    ((faddr & rest_addr) == rest_addr))
1128 			qla24xx_write_flash_dword(ha,
1129 			    ha->fdt_protect_sec_cmd,
1130 			    (fdata & 0xff00) | ((fdata << 16) &
1131 			    0xff0000) | ((fdata >> 16) & 0xff));
1132 	}
1133 
1134 	ret = qla24xx_protect_flash(vha);
1135 	if (ret != QLA_SUCCESS)
1136 		qla_printk(KERN_WARNING, ha,
1137 		    "Unable to protect flash after update.\n");
1138 done:
1139 	if (optrom)
1140 		dma_free_coherent(&ha->pdev->dev,
1141 		    OPTROM_BURST_SIZE, optrom, optrom_dma);
1142 
1143 	return ret;
1144 }
1145 
1146 uint8_t *
1147 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1148     uint32_t bytes)
1149 {
1150 	uint32_t i;
1151 	uint16_t *wptr;
1152 	struct qla_hw_data *ha = vha->hw;
1153 
1154 	/* Word reads to NVRAM via registers. */
1155 	wptr = (uint16_t *)buf;
1156 	qla2x00_lock_nvram_access(ha);
1157 	for (i = 0; i < bytes >> 1; i++, naddr++)
1158 		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1159 		    naddr));
1160 	qla2x00_unlock_nvram_access(ha);
1161 
1162 	return buf;
1163 }
1164 
1165 uint8_t *
1166 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1167     uint32_t bytes)
1168 {
1169 	uint32_t i;
1170 	uint32_t *dwptr;
1171 	struct qla_hw_data *ha = vha->hw;
1172 
1173 	/* Dword reads to flash. */
1174 	dwptr = (uint32_t *)buf;
1175 	for (i = 0; i < bytes >> 2; i++, naddr++)
1176 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1177 		    nvram_data_addr(ha, naddr)));
1178 
1179 	return buf;
1180 }
1181 
1182 int
1183 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1184     uint32_t bytes)
1185 {
1186 	int ret, stat;
1187 	uint32_t i;
1188 	uint16_t *wptr;
1189 	unsigned long flags;
1190 	struct qla_hw_data *ha = vha->hw;
1191 
1192 	ret = QLA_SUCCESS;
1193 
1194 	spin_lock_irqsave(&ha->hardware_lock, flags);
1195 	qla2x00_lock_nvram_access(ha);
1196 
1197 	/* Disable NVRAM write-protection. */
1198 	stat = qla2x00_clear_nvram_protection(ha);
1199 
1200 	wptr = (uint16_t *)buf;
1201 	for (i = 0; i < bytes >> 1; i++, naddr++) {
1202 		qla2x00_write_nvram_word(ha, naddr,
1203 		    cpu_to_le16(*wptr));
1204 		wptr++;
1205 	}
1206 
1207 	/* Enable NVRAM write-protection. */
1208 	qla2x00_set_nvram_protection(ha, stat);
1209 
1210 	qla2x00_unlock_nvram_access(ha);
1211 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1212 
1213 	return ret;
1214 }
1215 
1216 int
1217 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1218     uint32_t bytes)
1219 {
1220 	int ret;
1221 	uint32_t i;
1222 	uint32_t *dwptr;
1223 	struct qla_hw_data *ha = vha->hw;
1224 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1225 
1226 	ret = QLA_SUCCESS;
1227 
1228 	/* Enable flash write. */
1229 	WRT_REG_DWORD(&reg->ctrl_status,
1230 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1231 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1232 
1233 	/* Disable NVRAM write-protection. */
1234 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1235 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1236 
1237 	/* Dword writes to flash. */
1238 	dwptr = (uint32_t *)buf;
1239 	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1240 		ret = qla24xx_write_flash_dword(ha,
1241 		    nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1242 		if (ret != QLA_SUCCESS) {
1243 			DEBUG9(qla_printk("Unable to program nvram address=%x "
1244 			    "data=%x.\n", naddr, *dwptr));
1245 			break;
1246 		}
1247 	}
1248 
1249 	/* Enable NVRAM write-protection. */
1250 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1251 
1252 	/* Disable flash write. */
1253 	WRT_REG_DWORD(&reg->ctrl_status,
1254 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1255 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1256 
1257 	return ret;
1258 }
1259 
1260 uint8_t *
1261 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1262     uint32_t bytes)
1263 {
1264 	uint32_t i;
1265 	uint32_t *dwptr;
1266 	struct qla_hw_data *ha = vha->hw;
1267 
1268 	/* Dword reads to flash. */
1269 	dwptr = (uint32_t *)buf;
1270 	for (i = 0; i < bytes >> 2; i++, naddr++)
1271 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1272 		    flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1273 
1274 	return buf;
1275 }
1276 
1277 int
1278 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1279     uint32_t bytes)
1280 {
1281 	struct qla_hw_data *ha = vha->hw;
1282 #define RMW_BUFFER_SIZE	(64 * 1024)
1283 	uint8_t *dbuf;
1284 
1285 	dbuf = vmalloc(RMW_BUFFER_SIZE);
1286 	if (!dbuf)
1287 		return QLA_MEMORY_ALLOC_FAILED;
1288 	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1289 	    RMW_BUFFER_SIZE);
1290 	memcpy(dbuf + (naddr << 2), buf, bytes);
1291 	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1292 	    RMW_BUFFER_SIZE);
1293 	vfree(dbuf);
1294 
1295 	return QLA_SUCCESS;
1296 }
1297 
1298 static inline void
1299 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1300 {
1301 	if (IS_QLA2322(ha)) {
1302 		/* Flip all colors. */
1303 		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1304 			/* Turn off. */
1305 			ha->beacon_color_state = 0;
1306 			*pflags = GPIO_LED_ALL_OFF;
1307 		} else {
1308 			/* Turn on. */
1309 			ha->beacon_color_state = QLA_LED_ALL_ON;
1310 			*pflags = GPIO_LED_RGA_ON;
1311 		}
1312 	} else {
1313 		/* Flip green led only. */
1314 		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1315 			/* Turn off. */
1316 			ha->beacon_color_state = 0;
1317 			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1318 		} else {
1319 			/* Turn on. */
1320 			ha->beacon_color_state = QLA_LED_GRN_ON;
1321 			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1322 		}
1323 	}
1324 }
1325 
1326 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1327 
1328 void
1329 qla2x00_beacon_blink(struct scsi_qla_host *vha)
1330 {
1331 	uint16_t gpio_enable;
1332 	uint16_t gpio_data;
1333 	uint16_t led_color = 0;
1334 	unsigned long flags;
1335 	struct qla_hw_data *ha = vha->hw;
1336 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1337 
1338 	spin_lock_irqsave(&ha->hardware_lock, flags);
1339 
1340 	/* Save the Original GPIOE. */
1341 	if (ha->pio_address) {
1342 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1343 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1344 	} else {
1345 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1346 		gpio_data = RD_REG_WORD(&reg->gpiod);
1347 	}
1348 
1349 	/* Set the modified gpio_enable values */
1350 	gpio_enable |= GPIO_LED_MASK;
1351 
1352 	if (ha->pio_address) {
1353 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1354 	} else {
1355 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1356 		RD_REG_WORD(&reg->gpioe);
1357 	}
1358 
1359 	qla2x00_flip_colors(ha, &led_color);
1360 
1361 	/* Clear out any previously set LED color. */
1362 	gpio_data &= ~GPIO_LED_MASK;
1363 
1364 	/* Set the new input LED color to GPIOD. */
1365 	gpio_data |= led_color;
1366 
1367 	/* Set the modified gpio_data values */
1368 	if (ha->pio_address) {
1369 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1370 	} else {
1371 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1372 		RD_REG_WORD(&reg->gpiod);
1373 	}
1374 
1375 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1376 }
1377 
1378 int
1379 qla2x00_beacon_on(struct scsi_qla_host *vha)
1380 {
1381 	uint16_t gpio_enable;
1382 	uint16_t gpio_data;
1383 	unsigned long flags;
1384 	struct qla_hw_data *ha = vha->hw;
1385 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1386 
1387 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1388 	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1389 
1390 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1391 		qla_printk(KERN_WARNING, ha,
1392 		    "Unable to update fw options (beacon on).\n");
1393 		return QLA_FUNCTION_FAILED;
1394 	}
1395 
1396 	/* Turn off LEDs. */
1397 	spin_lock_irqsave(&ha->hardware_lock, flags);
1398 	if (ha->pio_address) {
1399 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1400 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1401 	} else {
1402 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1403 		gpio_data = RD_REG_WORD(&reg->gpiod);
1404 	}
1405 	gpio_enable |= GPIO_LED_MASK;
1406 
1407 	/* Set the modified gpio_enable values. */
1408 	if (ha->pio_address) {
1409 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1410 	} else {
1411 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1412 		RD_REG_WORD(&reg->gpioe);
1413 	}
1414 
1415 	/* Clear out previously set LED colour. */
1416 	gpio_data &= ~GPIO_LED_MASK;
1417 	if (ha->pio_address) {
1418 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1419 	} else {
1420 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1421 		RD_REG_WORD(&reg->gpiod);
1422 	}
1423 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1424 
1425 	/*
1426 	 * Let the per HBA timer kick off the blinking process based on
1427 	 * the following flags. No need to do anything else now.
1428 	 */
1429 	ha->beacon_blink_led = 1;
1430 	ha->beacon_color_state = 0;
1431 
1432 	return QLA_SUCCESS;
1433 }
1434 
1435 int
1436 qla2x00_beacon_off(struct scsi_qla_host *vha)
1437 {
1438 	int rval = QLA_SUCCESS;
1439 	struct qla_hw_data *ha = vha->hw;
1440 
1441 	ha->beacon_blink_led = 0;
1442 
1443 	/* Set the on flag so when it gets flipped it will be off. */
1444 	if (IS_QLA2322(ha))
1445 		ha->beacon_color_state = QLA_LED_ALL_ON;
1446 	else
1447 		ha->beacon_color_state = QLA_LED_GRN_ON;
1448 
1449 	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */
1450 
1451 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1452 	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1453 
1454 	rval = qla2x00_set_fw_options(vha, ha->fw_options);
1455 	if (rval != QLA_SUCCESS)
1456 		qla_printk(KERN_WARNING, ha,
1457 		    "Unable to update fw options (beacon off).\n");
1458 	return rval;
1459 }
1460 
1461 
1462 static inline void
1463 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1464 {
1465 	/* Flip all colors. */
1466 	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1467 		/* Turn off. */
1468 		ha->beacon_color_state = 0;
1469 		*pflags = 0;
1470 	} else {
1471 		/* Turn on. */
1472 		ha->beacon_color_state = QLA_LED_ALL_ON;
1473 		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1474 	}
1475 }
1476 
1477 void
1478 qla24xx_beacon_blink(struct scsi_qla_host *vha)
1479 {
1480 	uint16_t led_color = 0;
1481 	uint32_t gpio_data;
1482 	unsigned long flags;
1483 	struct qla_hw_data *ha = vha->hw;
1484 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1485 
1486 	/* Save the Original GPIOD. */
1487 	spin_lock_irqsave(&ha->hardware_lock, flags);
1488 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1489 
1490 	/* Enable the gpio_data reg for update. */
1491 	gpio_data |= GPDX_LED_UPDATE_MASK;
1492 
1493 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1494 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1495 
1496 	/* Set the color bits. */
1497 	qla24xx_flip_colors(ha, &led_color);
1498 
1499 	/* Clear out any previously set LED color. */
1500 	gpio_data &= ~GPDX_LED_COLOR_MASK;
1501 
1502 	/* Set the new input LED color to GPIOD. */
1503 	gpio_data |= led_color;
1504 
1505 	/* Set the modified gpio_data values. */
1506 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1507 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1508 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1509 }
1510 
1511 int
1512 qla24xx_beacon_on(struct scsi_qla_host *vha)
1513 {
1514 	uint32_t gpio_data;
1515 	unsigned long flags;
1516 	struct qla_hw_data *ha = vha->hw;
1517 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1518 
1519 	if (ha->beacon_blink_led == 0) {
1520 		/* Enable firmware for update */
1521 		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1522 
1523 		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1524 			return QLA_FUNCTION_FAILED;
1525 
1526 		if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1527 		    QLA_SUCCESS) {
1528 			qla_printk(KERN_WARNING, ha,
1529 			    "Unable to update fw options (beacon on).\n");
1530 			return QLA_FUNCTION_FAILED;
1531 		}
1532 
1533 		spin_lock_irqsave(&ha->hardware_lock, flags);
1534 		gpio_data = RD_REG_DWORD(&reg->gpiod);
1535 
1536 		/* Enable the gpio_data reg for update. */
1537 		gpio_data |= GPDX_LED_UPDATE_MASK;
1538 		WRT_REG_DWORD(&reg->gpiod, gpio_data);
1539 		RD_REG_DWORD(&reg->gpiod);
1540 
1541 		spin_unlock_irqrestore(&ha->hardware_lock, flags);
1542 	}
1543 
1544 	/* So all colors blink together. */
1545 	ha->beacon_color_state = 0;
1546 
1547 	/* Let the per HBA timer kick off the blinking process. */
1548 	ha->beacon_blink_led = 1;
1549 
1550 	return QLA_SUCCESS;
1551 }
1552 
1553 int
1554 qla24xx_beacon_off(struct scsi_qla_host *vha)
1555 {
1556 	uint32_t gpio_data;
1557 	unsigned long flags;
1558 	struct qla_hw_data *ha = vha->hw;
1559 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1560 
1561 	ha->beacon_blink_led = 0;
1562 	ha->beacon_color_state = QLA_LED_ALL_ON;
1563 
1564 	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */
1565 
1566 	/* Give control back to firmware. */
1567 	spin_lock_irqsave(&ha->hardware_lock, flags);
1568 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1569 
1570 	/* Disable the gpio_data reg for update. */
1571 	gpio_data &= ~GPDX_LED_UPDATE_MASK;
1572 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1573 	RD_REG_DWORD(&reg->gpiod);
1574 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1575 
1576 	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1577 
1578 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1579 		qla_printk(KERN_WARNING, ha,
1580 		    "Unable to update fw options (beacon off).\n");
1581 		return QLA_FUNCTION_FAILED;
1582 	}
1583 
1584 	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1585 		qla_printk(KERN_WARNING, ha,
1586 		    "Unable to get fw options (beacon off).\n");
1587 		return QLA_FUNCTION_FAILED;
1588 	}
1589 
1590 	return QLA_SUCCESS;
1591 }
1592 
1593 
1594 /*
1595  * Flash support routines
1596  */
1597 
1598 /**
1599  * qla2x00_flash_enable() - Setup flash for reading and writing.
1600  * @ha: HA context
1601  */
1602 static void
1603 qla2x00_flash_enable(struct qla_hw_data *ha)
1604 {
1605 	uint16_t data;
1606 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1607 
1608 	data = RD_REG_WORD(&reg->ctrl_status);
1609 	data |= CSR_FLASH_ENABLE;
1610 	WRT_REG_WORD(&reg->ctrl_status, data);
1611 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1612 }
1613 
1614 /**
1615  * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1616  * @ha: HA context
1617  */
1618 static void
1619 qla2x00_flash_disable(struct qla_hw_data *ha)
1620 {
1621 	uint16_t data;
1622 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1623 
1624 	data = RD_REG_WORD(&reg->ctrl_status);
1625 	data &= ~(CSR_FLASH_ENABLE);
1626 	WRT_REG_WORD(&reg->ctrl_status, data);
1627 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1628 }
1629 
1630 /**
1631  * qla2x00_read_flash_byte() - Reads a byte from flash
1632  * @ha: HA context
1633  * @addr: Address in flash to read
1634  *
1635  * A word is read from the chip, but, only the lower byte is valid.
1636  *
1637  * Returns the byte read from flash @addr.
1638  */
1639 static uint8_t
1640 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1641 {
1642 	uint16_t data;
1643 	uint16_t bank_select;
1644 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1645 
1646 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1647 
1648 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1649 		/* Specify 64K address range: */
1650 		/*  clear out Module Select and Flash Address bits [19:16]. */
1651 		bank_select &= ~0xf8;
1652 		bank_select |= addr >> 12 & 0xf0;
1653 		bank_select |= CSR_FLASH_64K_BANK;
1654 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1655 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1656 
1657 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1658 		data = RD_REG_WORD(&reg->flash_data);
1659 
1660 		return (uint8_t)data;
1661 	}
1662 
1663 	/* Setup bit 16 of flash address. */
1664 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1665 		bank_select |= CSR_FLASH_64K_BANK;
1666 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1667 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1668 	} else if (((addr & BIT_16) == 0) &&
1669 	    (bank_select & CSR_FLASH_64K_BANK)) {
1670 		bank_select &= ~(CSR_FLASH_64K_BANK);
1671 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1672 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1673 	}
1674 
1675 	/* Always perform IO mapped accesses to the FLASH registers. */
1676 	if (ha->pio_address) {
1677 		uint16_t data2;
1678 
1679 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1680 		do {
1681 			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1682 			barrier();
1683 			cpu_relax();
1684 			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1685 		} while (data != data2);
1686 	} else {
1687 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1688 		data = qla2x00_debounce_register(&reg->flash_data);
1689 	}
1690 
1691 	return (uint8_t)data;
1692 }
1693 
1694 /**
1695  * qla2x00_write_flash_byte() - Write a byte to flash
1696  * @ha: HA context
1697  * @addr: Address in flash to write
1698  * @data: Data to write
1699  */
1700 static void
1701 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1702 {
1703 	uint16_t bank_select;
1704 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1705 
1706 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1707 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1708 		/* Specify 64K address range: */
1709 		/*  clear out Module Select and Flash Address bits [19:16]. */
1710 		bank_select &= ~0xf8;
1711 		bank_select |= addr >> 12 & 0xf0;
1712 		bank_select |= CSR_FLASH_64K_BANK;
1713 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1714 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1715 
1716 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1717 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1718 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1719 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1720 
1721 		return;
1722 	}
1723 
1724 	/* Setup bit 16 of flash address. */
1725 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1726 		bank_select |= CSR_FLASH_64K_BANK;
1727 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1728 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1729 	} else if (((addr & BIT_16) == 0) &&
1730 	    (bank_select & CSR_FLASH_64K_BANK)) {
1731 		bank_select &= ~(CSR_FLASH_64K_BANK);
1732 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1733 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1734 	}
1735 
1736 	/* Always perform IO mapped accesses to the FLASH registers. */
1737 	if (ha->pio_address) {
1738 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1739 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1740 	} else {
1741 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1742 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1743 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1744 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1745 	}
1746 }
1747 
1748 /**
1749  * qla2x00_poll_flash() - Polls flash for completion.
1750  * @ha: HA context
1751  * @addr: Address in flash to poll
1752  * @poll_data: Data to be polled
1753  * @man_id: Flash manufacturer ID
1754  * @flash_id: Flash ID
1755  *
1756  * This function polls the device until bit 7 of what is read matches data
1757  * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
1758  * out (a fatal error).  The flash book recommeds reading bit 7 again after
1759  * reading bit 5 as a 1.
1760  *
1761  * Returns 0 on success, else non-zero.
1762  */
1763 static int
1764 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
1765     uint8_t man_id, uint8_t flash_id)
1766 {
1767 	int status;
1768 	uint8_t flash_data;
1769 	uint32_t cnt;
1770 
1771 	status = 1;
1772 
1773 	/* Wait for 30 seconds for command to finish. */
1774 	poll_data &= BIT_7;
1775 	for (cnt = 3000000; cnt; cnt--) {
1776 		flash_data = qla2x00_read_flash_byte(ha, addr);
1777 		if ((flash_data & BIT_7) == poll_data) {
1778 			status = 0;
1779 			break;
1780 		}
1781 
1782 		if (man_id != 0x40 && man_id != 0xda) {
1783 			if ((flash_data & BIT_5) && cnt > 2)
1784 				cnt = 2;
1785 		}
1786 		udelay(10);
1787 		barrier();
1788 		cond_resched();
1789 	}
1790 	return status;
1791 }
1792 
1793 /**
1794  * qla2x00_program_flash_address() - Programs a flash address
1795  * @ha: HA context
1796  * @addr: Address in flash to program
1797  * @data: Data to be written in flash
1798  * @man_id: Flash manufacturer ID
1799  * @flash_id: Flash ID
1800  *
1801  * Returns 0 on success, else non-zero.
1802  */
1803 static int
1804 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
1805     uint8_t data, uint8_t man_id, uint8_t flash_id)
1806 {
1807 	/* Write Program Command Sequence. */
1808 	if (IS_OEM_001(ha)) {
1809 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1810 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1811 		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1812 		qla2x00_write_flash_byte(ha, addr, data);
1813 	} else {
1814 		if (man_id == 0xda && flash_id == 0xc1) {
1815 			qla2x00_write_flash_byte(ha, addr, data);
1816 			if (addr & 0x7e)
1817 				return 0;
1818 		} else {
1819 			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1820 			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1821 			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1822 			qla2x00_write_flash_byte(ha, addr, data);
1823 		}
1824 	}
1825 
1826 	udelay(150);
1827 
1828 	/* Wait for write to complete. */
1829 	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1830 }
1831 
1832 /**
1833  * qla2x00_erase_flash() - Erase the flash.
1834  * @ha: HA context
1835  * @man_id: Flash manufacturer ID
1836  * @flash_id: Flash ID
1837  *
1838  * Returns 0 on success, else non-zero.
1839  */
1840 static int
1841 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
1842 {
1843 	/* Individual Sector Erase Command Sequence */
1844 	if (IS_OEM_001(ha)) {
1845 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1846 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1847 		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1848 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1849 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1850 		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1851 	} else {
1852 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1853 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1854 		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1855 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1856 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1857 		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1858 	}
1859 
1860 	udelay(150);
1861 
1862 	/* Wait for erase to complete. */
1863 	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1864 }
1865 
1866 /**
1867  * qla2x00_erase_flash_sector() - Erase a flash sector.
1868  * @ha: HA context
1869  * @addr: Flash sector to erase
1870  * @sec_mask: Sector address mask
1871  * @man_id: Flash manufacturer ID
1872  * @flash_id: Flash ID
1873  *
1874  * Returns 0 on success, else non-zero.
1875  */
1876 static int
1877 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
1878     uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1879 {
1880 	/* Individual Sector Erase Command Sequence */
1881 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1882 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1883 	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1884 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1885 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1886 	if (man_id == 0x1f && flash_id == 0x13)
1887 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
1888 	else
1889 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
1890 
1891 	udelay(150);
1892 
1893 	/* Wait for erase to complete. */
1894 	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
1895 }
1896 
1897 /**
1898  * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
1899  * @man_id: Flash manufacturer ID
1900  * @flash_id: Flash ID
1901  */
1902 static void
1903 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
1904     uint8_t *flash_id)
1905 {
1906 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1907 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1908 	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
1909 	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
1910 	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
1911 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1912 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1913 	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
1914 }
1915 
1916 static void
1917 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
1918 	uint32_t saddr, uint32_t length)
1919 {
1920 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1921 	uint32_t midpoint, ilength;
1922 	uint8_t data;
1923 
1924 	midpoint = length / 2;
1925 
1926 	WRT_REG_WORD(&reg->nvram, 0);
1927 	RD_REG_WORD(&reg->nvram);
1928 	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
1929 		if (ilength == midpoint) {
1930 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1931 			RD_REG_WORD(&reg->nvram);
1932 		}
1933 		data = qla2x00_read_flash_byte(ha, saddr);
1934 		if (saddr % 100)
1935 			udelay(10);
1936 		*tmp_buf = data;
1937 		cond_resched();
1938 	}
1939 }
1940 
1941 static inline void
1942 qla2x00_suspend_hba(struct scsi_qla_host *vha)
1943 {
1944 	int cnt;
1945 	unsigned long flags;
1946 	struct qla_hw_data *ha = vha->hw;
1947 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1948 
1949 	/* Suspend HBA. */
1950 	scsi_block_requests(vha->host);
1951 	ha->isp_ops->disable_intrs(ha);
1952 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1953 
1954 	/* Pause RISC. */
1955 	spin_lock_irqsave(&ha->hardware_lock, flags);
1956 	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
1957 	RD_REG_WORD(&reg->hccr);
1958 	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
1959 		for (cnt = 0; cnt < 30000; cnt++) {
1960 			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
1961 				break;
1962 			udelay(100);
1963 		}
1964 	} else {
1965 		udelay(10);
1966 	}
1967 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1968 }
1969 
1970 static inline void
1971 qla2x00_resume_hba(struct scsi_qla_host *vha)
1972 {
1973 	struct qla_hw_data *ha = vha->hw;
1974 
1975 	/* Resume HBA. */
1976 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1977 	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
1978 	qla2xxx_wake_dpc(vha);
1979 	qla2x00_wait_for_chip_reset(vha);
1980 	scsi_unblock_requests(vha->host);
1981 }
1982 
1983 uint8_t *
1984 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
1985     uint32_t offset, uint32_t length)
1986 {
1987 	uint32_t addr, midpoint;
1988 	uint8_t *data;
1989 	struct qla_hw_data *ha = vha->hw;
1990 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1991 
1992 	/* Suspend HBA. */
1993 	qla2x00_suspend_hba(vha);
1994 
1995 	/* Go with read. */
1996 	midpoint = ha->optrom_size / 2;
1997 
1998 	qla2x00_flash_enable(ha);
1999 	WRT_REG_WORD(&reg->nvram, 0);
2000 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
2001 	for (addr = offset, data = buf; addr < length; addr++, data++) {
2002 		if (addr == midpoint) {
2003 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2004 			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
2005 		}
2006 
2007 		*data = qla2x00_read_flash_byte(ha, addr);
2008 	}
2009 	qla2x00_flash_disable(ha);
2010 
2011 	/* Resume HBA. */
2012 	qla2x00_resume_hba(vha);
2013 
2014 	return buf;
2015 }
2016 
2017 int
2018 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2019     uint32_t offset, uint32_t length)
2020 {
2021 
2022 	int rval;
2023 	uint8_t man_id, flash_id, sec_number, data;
2024 	uint16_t wd;
2025 	uint32_t addr, liter, sec_mask, rest_addr;
2026 	struct qla_hw_data *ha = vha->hw;
2027 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2028 
2029 	/* Suspend HBA. */
2030 	qla2x00_suspend_hba(vha);
2031 
2032 	rval = QLA_SUCCESS;
2033 	sec_number = 0;
2034 
2035 	/* Reset ISP chip. */
2036 	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
2037 	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
2038 
2039 	/* Go with write. */
2040 	qla2x00_flash_enable(ha);
2041 	do {	/* Loop once to provide quick error exit */
2042 		/* Structure of flash memory based on manufacturer */
2043 		if (IS_OEM_001(ha)) {
2044 			/* OEM variant with special flash part. */
2045 			man_id = flash_id = 0;
2046 			rest_addr = 0xffff;
2047 			sec_mask   = 0x10000;
2048 			goto update_flash;
2049 		}
2050 		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
2051 		switch (man_id) {
2052 		case 0x20: /* ST flash. */
2053 			if (flash_id == 0xd2 || flash_id == 0xe3) {
2054 				/*
2055 				 * ST m29w008at part - 64kb sector size with
2056 				 * 32kb,8kb,8kb,16kb sectors at memory address
2057 				 * 0xf0000.
2058 				 */
2059 				rest_addr = 0xffff;
2060 				sec_mask = 0x10000;
2061 				break;
2062 			}
2063 			/*
2064 			 * ST m29w010b part - 16kb sector size
2065 			 * Default to 16kb sectors
2066 			 */
2067 			rest_addr = 0x3fff;
2068 			sec_mask = 0x1c000;
2069 			break;
2070 		case 0x40: /* Mostel flash. */
2071 			/* Mostel v29c51001 part - 512 byte sector size. */
2072 			rest_addr = 0x1ff;
2073 			sec_mask = 0x1fe00;
2074 			break;
2075 		case 0xbf: /* SST flash. */
2076 			/* SST39sf10 part - 4kb sector size. */
2077 			rest_addr = 0xfff;
2078 			sec_mask = 0x1f000;
2079 			break;
2080 		case 0xda: /* Winbond flash. */
2081 			/* Winbond W29EE011 part - 256 byte sector size. */
2082 			rest_addr = 0x7f;
2083 			sec_mask = 0x1ff80;
2084 			break;
2085 		case 0xc2: /* Macronix flash. */
2086 			/* 64k sector size. */
2087 			if (flash_id == 0x38 || flash_id == 0x4f) {
2088 				rest_addr = 0xffff;
2089 				sec_mask = 0x10000;
2090 				break;
2091 			}
2092 			/* Fall through... */
2093 
2094 		case 0x1f: /* Atmel flash. */
2095 			/* 512k sector size. */
2096 			if (flash_id == 0x13) {
2097 				rest_addr = 0x7fffffff;
2098 				sec_mask =   0x80000000;
2099 				break;
2100 			}
2101 			/* Fall through... */
2102 
2103 		case 0x01: /* AMD flash. */
2104 			if (flash_id == 0x38 || flash_id == 0x40 ||
2105 			    flash_id == 0x4f) {
2106 				/* Am29LV081 part - 64kb sector size. */
2107 				/* Am29LV002BT part - 64kb sector size. */
2108 				rest_addr = 0xffff;
2109 				sec_mask = 0x10000;
2110 				break;
2111 			} else if (flash_id == 0x3e) {
2112 				/*
2113 				 * Am29LV008b part - 64kb sector size with
2114 				 * 32kb,8kb,8kb,16kb sector at memory address
2115 				 * h0xf0000.
2116 				 */
2117 				rest_addr = 0xffff;
2118 				sec_mask = 0x10000;
2119 				break;
2120 			} else if (flash_id == 0x20 || flash_id == 0x6e) {
2121 				/*
2122 				 * Am29LV010 part or AM29f010 - 16kb sector
2123 				 * size.
2124 				 */
2125 				rest_addr = 0x3fff;
2126 				sec_mask = 0x1c000;
2127 				break;
2128 			} else if (flash_id == 0x6d) {
2129 				/* Am29LV001 part - 8kb sector size. */
2130 				rest_addr = 0x1fff;
2131 				sec_mask = 0x1e000;
2132 				break;
2133 			}
2134 		default:
2135 			/* Default to 16 kb sector size. */
2136 			rest_addr = 0x3fff;
2137 			sec_mask = 0x1c000;
2138 			break;
2139 		}
2140 
2141 update_flash:
2142 		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2143 			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2144 				rval = QLA_FUNCTION_FAILED;
2145 				break;
2146 			}
2147 		}
2148 
2149 		for (addr = offset, liter = 0; liter < length; liter++,
2150 		    addr++) {
2151 			data = buf[liter];
2152 			/* Are we at the beginning of a sector? */
2153 			if ((addr & rest_addr) == 0) {
2154 				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2155 					if (addr >= 0x10000UL) {
2156 						if (((addr >> 12) & 0xf0) &&
2157 						    ((man_id == 0x01 &&
2158 							flash_id == 0x3e) ||
2159 						     (man_id == 0x20 &&
2160 							 flash_id == 0xd2))) {
2161 							sec_number++;
2162 							if (sec_number == 1) {
2163 								rest_addr =
2164 								    0x7fff;
2165 								sec_mask =
2166 								    0x18000;
2167 							} else if (
2168 							    sec_number == 2 ||
2169 							    sec_number == 3) {
2170 								rest_addr =
2171 								    0x1fff;
2172 								sec_mask =
2173 								    0x1e000;
2174 							} else if (
2175 							    sec_number == 4) {
2176 								rest_addr =
2177 								    0x3fff;
2178 								sec_mask =
2179 								    0x1c000;
2180 							}
2181 						}
2182 					}
2183 				} else if (addr == ha->optrom_size / 2) {
2184 					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2185 					RD_REG_WORD(&reg->nvram);
2186 				}
2187 
2188 				if (flash_id == 0xda && man_id == 0xc1) {
2189 					qla2x00_write_flash_byte(ha, 0x5555,
2190 					    0xaa);
2191 					qla2x00_write_flash_byte(ha, 0x2aaa,
2192 					    0x55);
2193 					qla2x00_write_flash_byte(ha, 0x5555,
2194 					    0xa0);
2195 				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2196 					/* Then erase it */
2197 					if (qla2x00_erase_flash_sector(ha,
2198 					    addr, sec_mask, man_id,
2199 					    flash_id)) {
2200 						rval = QLA_FUNCTION_FAILED;
2201 						break;
2202 					}
2203 					if (man_id == 0x01 && flash_id == 0x6d)
2204 						sec_number++;
2205 				}
2206 			}
2207 
2208 			if (man_id == 0x01 && flash_id == 0x6d) {
2209 				if (sec_number == 1 &&
2210 				    addr == (rest_addr - 1)) {
2211 					rest_addr = 0x0fff;
2212 					sec_mask   = 0x1f000;
2213 				} else if (sec_number == 3 && (addr & 0x7ffe)) {
2214 					rest_addr = 0x3fff;
2215 					sec_mask   = 0x1c000;
2216 				}
2217 			}
2218 
2219 			if (qla2x00_program_flash_address(ha, addr, data,
2220 			    man_id, flash_id)) {
2221 				rval = QLA_FUNCTION_FAILED;
2222 				break;
2223 			}
2224 			cond_resched();
2225 		}
2226 	} while (0);
2227 	qla2x00_flash_disable(ha);
2228 
2229 	/* Resume HBA. */
2230 	qla2x00_resume_hba(vha);
2231 
2232 	return rval;
2233 }
2234 
2235 uint8_t *
2236 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2237     uint32_t offset, uint32_t length)
2238 {
2239 	struct qla_hw_data *ha = vha->hw;
2240 
2241 	/* Suspend HBA. */
2242 	scsi_block_requests(vha->host);
2243 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2244 
2245 	/* Go with read. */
2246 	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2247 
2248 	/* Resume HBA. */
2249 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2250 	scsi_unblock_requests(vha->host);
2251 
2252 	return buf;
2253 }
2254 
2255 int
2256 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2257     uint32_t offset, uint32_t length)
2258 {
2259 	int rval;
2260 	struct qla_hw_data *ha = vha->hw;
2261 
2262 	/* Suspend HBA. */
2263 	scsi_block_requests(vha->host);
2264 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2265 
2266 	/* Go with write. */
2267 	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2268 	    length >> 2);
2269 
2270 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2271 	scsi_unblock_requests(vha->host);
2272 
2273 	return rval;
2274 }
2275 
2276 uint8_t *
2277 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2278     uint32_t offset, uint32_t length)
2279 {
2280 	int rval;
2281 	dma_addr_t optrom_dma;
2282 	void *optrom;
2283 	uint8_t *pbuf;
2284 	uint32_t faddr, left, burst;
2285 	struct qla_hw_data *ha = vha->hw;
2286 
2287 	if (offset & 0xfff)
2288 		goto slow_read;
2289 	if (length < OPTROM_BURST_SIZE)
2290 		goto slow_read;
2291 
2292 	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2293 	    &optrom_dma, GFP_KERNEL);
2294 	if (!optrom) {
2295 		qla_printk(KERN_DEBUG, ha,
2296 		    "Unable to allocate memory for optrom burst read "
2297 		    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
2298 
2299 		goto slow_read;
2300 	}
2301 
2302 	pbuf = buf;
2303 	faddr = offset >> 2;
2304 	left = length >> 2;
2305 	burst = OPTROM_BURST_DWORDS;
2306 	while (left != 0) {
2307 		if (burst > left)
2308 			burst = left;
2309 
2310 		rval = qla2x00_dump_ram(vha, optrom_dma,
2311 		    flash_data_addr(ha, faddr), burst);
2312 		if (rval) {
2313 			qla_printk(KERN_WARNING, ha,
2314 			    "Unable to burst-read optrom segment "
2315 			    "(%x/%x/%llx).\n", rval,
2316 			    flash_data_addr(ha, faddr),
2317 			    (unsigned long long)optrom_dma);
2318 			qla_printk(KERN_WARNING, ha,
2319 			    "Reverting to slow-read.\n");
2320 
2321 			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2322 			    optrom, optrom_dma);
2323 			goto slow_read;
2324 		}
2325 
2326 		memcpy(pbuf, optrom, burst * 4);
2327 
2328 		left -= burst;
2329 		faddr += burst;
2330 		pbuf += burst * 4;
2331 	}
2332 
2333 	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2334 	    optrom_dma);
2335 
2336 	return buf;
2337 
2338 slow_read:
2339     return qla24xx_read_optrom_data(vha, buf, offset, length);
2340 }
2341 
2342 /**
2343  * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2344  * @ha: HA context
2345  * @pcids: Pointer to the FCODE PCI data structure
2346  *
2347  * The process of retrieving the FCODE version information is at best
2348  * described as interesting.
2349  *
2350  * Within the first 100h bytes of the image an ASCII string is present
2351  * which contains several pieces of information including the FCODE
2352  * version.  Unfortunately it seems the only reliable way to retrieve
2353  * the version is by scanning for another sentinel within the string,
2354  * the FCODE build date:
2355  *
2356  *	... 2.00.02 10/17/02 ...
2357  *
2358  * Returns QLA_SUCCESS on successful retrieval of version.
2359  */
2360 static void
2361 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2362 {
2363 	int ret = QLA_FUNCTION_FAILED;
2364 	uint32_t istart, iend, iter, vend;
2365 	uint8_t do_next, rbyte, *vbyte;
2366 
2367 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2368 
2369 	/* Skip the PCI data structure. */
2370 	istart = pcids +
2371 	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2372 		qla2x00_read_flash_byte(ha, pcids + 0x0A));
2373 	iend = istart + 0x100;
2374 	do {
2375 		/* Scan for the sentinel date string...eeewww. */
2376 		do_next = 0;
2377 		iter = istart;
2378 		while ((iter < iend) && !do_next) {
2379 			iter++;
2380 			if (qla2x00_read_flash_byte(ha, iter) == '/') {
2381 				if (qla2x00_read_flash_byte(ha, iter + 2) ==
2382 				    '/')
2383 					do_next++;
2384 				else if (qla2x00_read_flash_byte(ha,
2385 				    iter + 3) == '/')
2386 					do_next++;
2387 			}
2388 		}
2389 		if (!do_next)
2390 			break;
2391 
2392 		/* Backtrack to previous ' ' (space). */
2393 		do_next = 0;
2394 		while ((iter > istart) && !do_next) {
2395 			iter--;
2396 			if (qla2x00_read_flash_byte(ha, iter) == ' ')
2397 				do_next++;
2398 		}
2399 		if (!do_next)
2400 			break;
2401 
2402 		/*
2403 		 * Mark end of version tag, and find previous ' ' (space) or
2404 		 * string length (recent FCODE images -- major hack ahead!!!).
2405 		 */
2406 		vend = iter - 1;
2407 		do_next = 0;
2408 		while ((iter > istart) && !do_next) {
2409 			iter--;
2410 			rbyte = qla2x00_read_flash_byte(ha, iter);
2411 			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2412 				do_next++;
2413 		}
2414 		if (!do_next)
2415 			break;
2416 
2417 		/* Mark beginning of version tag, and copy data. */
2418 		iter++;
2419 		if ((vend - iter) &&
2420 		    ((vend - iter) < sizeof(ha->fcode_revision))) {
2421 			vbyte = ha->fcode_revision;
2422 			while (iter <= vend) {
2423 				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
2424 				iter++;
2425 			}
2426 			ret = QLA_SUCCESS;
2427 		}
2428 	} while (0);
2429 
2430 	if (ret != QLA_SUCCESS)
2431 		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2432 }
2433 
2434 int
2435 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2436 {
2437 	int ret = QLA_SUCCESS;
2438 	uint8_t code_type, last_image;
2439 	uint32_t pcihdr, pcids;
2440 	uint8_t *dbyte;
2441 	uint16_t *dcode;
2442 	struct qla_hw_data *ha = vha->hw;
2443 
2444 	if (!ha->pio_address || !mbuf)
2445 		return QLA_FUNCTION_FAILED;
2446 
2447 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2448 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2449 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2450 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2451 
2452 	qla2x00_flash_enable(ha);
2453 
2454 	/* Begin with first PCI expansion ROM header. */
2455 	pcihdr = 0;
2456 	last_image = 1;
2457 	do {
2458 		/* Verify PCI expansion ROM header. */
2459 		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2460 		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2461 			/* No signature */
2462 			DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
2463 			    "signature.\n"));
2464 			ret = QLA_FUNCTION_FAILED;
2465 			break;
2466 		}
2467 
2468 		/* Locate PCI data structure. */
2469 		pcids = pcihdr +
2470 		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2471 			qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2472 
2473 		/* Validate signature of PCI data structure. */
2474 		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2475 		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2476 		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2477 		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2478 			/* Incorrect header. */
2479 			DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
2480 			    "found pcir_adr=%x.\n", pcids));
2481 			ret = QLA_FUNCTION_FAILED;
2482 			break;
2483 		}
2484 
2485 		/* Read version */
2486 		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2487 		switch (code_type) {
2488 		case ROM_CODE_TYPE_BIOS:
2489 			/* Intel x86, PC-AT compatible. */
2490 			ha->bios_revision[0] =
2491 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2492 			ha->bios_revision[1] =
2493 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2494 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2495 			    ha->bios_revision[1], ha->bios_revision[0]));
2496 			break;
2497 		case ROM_CODE_TYPE_FCODE:
2498 			/* Open Firmware standard for PCI (FCode). */
2499 			/* Eeeewww... */
2500 			qla2x00_get_fcode_version(ha, pcids);
2501 			break;
2502 		case ROM_CODE_TYPE_EFI:
2503 			/* Extensible Firmware Interface (EFI). */
2504 			ha->efi_revision[0] =
2505 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2506 			ha->efi_revision[1] =
2507 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2508 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2509 			    ha->efi_revision[1], ha->efi_revision[0]));
2510 			break;
2511 		default:
2512 			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
2513 			    "type %x at pcids %x.\n", code_type, pcids));
2514 			break;
2515 		}
2516 
2517 		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2518 
2519 		/* Locate next PCI expansion ROM. */
2520 		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2521 		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2522 	} while (!last_image);
2523 
2524 	if (IS_QLA2322(ha)) {
2525 		/* Read firmware image information. */
2526 		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2527 		dbyte = mbuf;
2528 		memset(dbyte, 0, 8);
2529 		dcode = (uint16_t *)dbyte;
2530 
2531 		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2532 		    8);
2533 		DEBUG3(qla_printk(KERN_DEBUG, ha, "dumping fw ver from "
2534 		    "flash:\n"));
2535 		DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
2536 
2537 		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2538 		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2539 		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2540 		    dcode[3] == 0)) {
2541 			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
2542 			    "revision at %x.\n", ha->flt_region_fw * 4));
2543 		} else {
2544 			/* values are in big endian */
2545 			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2546 			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2547 			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2548 		}
2549 	}
2550 
2551 	qla2x00_flash_disable(ha);
2552 
2553 	return ret;
2554 }
2555 
2556 int
2557 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2558 {
2559 	int ret = QLA_SUCCESS;
2560 	uint32_t pcihdr, pcids;
2561 	uint32_t *dcode;
2562 	uint8_t *bcode;
2563 	uint8_t code_type, last_image;
2564 	int i;
2565 	struct qla_hw_data *ha = vha->hw;
2566 
2567 	if (!mbuf)
2568 		return QLA_FUNCTION_FAILED;
2569 
2570 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2571 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2572 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2573 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2574 
2575 	dcode = mbuf;
2576 
2577 	/* Begin with first PCI expansion ROM header. */
2578 	pcihdr = ha->flt_region_boot << 2;
2579 	last_image = 1;
2580 	do {
2581 		/* Verify PCI expansion ROM header. */
2582 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2583 		bcode = mbuf + (pcihdr % 4);
2584 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2585 			/* No signature */
2586 			DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
2587 			    "signature.\n"));
2588 			ret = QLA_FUNCTION_FAILED;
2589 			break;
2590 		}
2591 
2592 		/* Locate PCI data structure. */
2593 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2594 
2595 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2596 		bcode = mbuf + (pcihdr % 4);
2597 
2598 		/* Validate signature of PCI data structure. */
2599 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2600 		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2601 			/* Incorrect header. */
2602 			DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
2603 			    "found pcir_adr=%x.\n", pcids));
2604 			ret = QLA_FUNCTION_FAILED;
2605 			break;
2606 		}
2607 
2608 		/* Read version */
2609 		code_type = bcode[0x14];
2610 		switch (code_type) {
2611 		case ROM_CODE_TYPE_BIOS:
2612 			/* Intel x86, PC-AT compatible. */
2613 			ha->bios_revision[0] = bcode[0x12];
2614 			ha->bios_revision[1] = bcode[0x13];
2615 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2616 			    ha->bios_revision[1], ha->bios_revision[0]));
2617 			break;
2618 		case ROM_CODE_TYPE_FCODE:
2619 			/* Open Firmware standard for PCI (FCode). */
2620 			ha->fcode_revision[0] = bcode[0x12];
2621 			ha->fcode_revision[1] = bcode[0x13];
2622 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read FCODE %d.%d.\n",
2623 			    ha->fcode_revision[1], ha->fcode_revision[0]));
2624 			break;
2625 		case ROM_CODE_TYPE_EFI:
2626 			/* Extensible Firmware Interface (EFI). */
2627 			ha->efi_revision[0] = bcode[0x12];
2628 			ha->efi_revision[1] = bcode[0x13];
2629 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2630 			    ha->efi_revision[1], ha->efi_revision[0]));
2631 			break;
2632 		default:
2633 			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
2634 			    "type %x at pcids %x.\n", code_type, pcids));
2635 			break;
2636 		}
2637 
2638 		last_image = bcode[0x15] & BIT_7;
2639 
2640 		/* Locate next PCI expansion ROM. */
2641 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2642 	} while (!last_image);
2643 
2644 	/* Read firmware image information. */
2645 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2646 	dcode = mbuf;
2647 
2648 	qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2649 	for (i = 0; i < 4; i++)
2650 		dcode[i] = be32_to_cpu(dcode[i]);
2651 
2652 	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2653 	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2654 	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2655 	    dcode[3] == 0)) {
2656 		DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
2657 		    "revision at %x.\n", ha->flt_region_fw * 4));
2658 	} else {
2659 		ha->fw_revision[0] = dcode[0];
2660 		ha->fw_revision[1] = dcode[1];
2661 		ha->fw_revision[2] = dcode[2];
2662 		ha->fw_revision[3] = dcode[3];
2663 	}
2664 
2665 	return ret;
2666 }
2667 
2668 static int
2669 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
2670 {
2671 	if (pos >= end || *pos != 0x82)
2672 		return 0;
2673 
2674 	pos += 3 + pos[1];
2675 	if (pos >= end || *pos != 0x90)
2676 		return 0;
2677 
2678 	pos += 3 + pos[1];
2679 	if (pos >= end || *pos != 0x78)
2680 		return 0;
2681 
2682 	return 1;
2683 }
2684 
2685 int
2686 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2687 {
2688 	struct qla_hw_data *ha = vha->hw;
2689 	uint8_t *pos = ha->vpd;
2690 	uint8_t *end = pos + ha->vpd_size;
2691 	int len = 0;
2692 
2693 	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
2694 		return 0;
2695 
2696 	while (pos < end && *pos != 0x78) {
2697 		len = (*pos == 0x82) ? pos[1] : pos[2];
2698 
2699 		if (!strncmp(pos, key, strlen(key)))
2700 			break;
2701 
2702 		if (*pos != 0x90 && *pos != 0x91)
2703 			pos += len;
2704 
2705 		pos += 3;
2706 	}
2707 
2708 	if (pos < end - len && *pos != 0x78)
2709 		return snprintf(str, size, "%.*s", len, pos + 3);
2710 
2711 	return 0;
2712 }
2713