xref: /openbmc/linux/drivers/scsi/qla2xxx/qla_sup.c (revision a2cce7a9)
1 /*
2  * QLogic Fibre Channel HBA Driver
3  * Copyright (c)  2003-2014 QLogic Corporation
4  *
5  * See LICENSE.qla2xxx for copyright and licensing details.
6  */
7 #include "qla_def.h"
8 
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/vmalloc.h>
12 #include <asm/uaccess.h>
13 
14 /*
15  * NVRAM support routines
16  */
17 
18 /**
19  * qla2x00_lock_nvram_access() -
20  * @ha: HA context
21  */
22 static void
23 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
24 {
25 	uint16_t data;
26 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
27 
28 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
29 		data = RD_REG_WORD(&reg->nvram);
30 		while (data & NVR_BUSY) {
31 			udelay(100);
32 			data = RD_REG_WORD(&reg->nvram);
33 		}
34 
35 		/* Lock resource */
36 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
37 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
38 		udelay(5);
39 		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
40 		while ((data & BIT_0) == 0) {
41 			/* Lock failed */
42 			udelay(100);
43 			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
44 			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
45 			udelay(5);
46 			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
47 		}
48 	}
49 }
50 
51 /**
52  * qla2x00_unlock_nvram_access() -
53  * @ha: HA context
54  */
55 static void
56 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
57 {
58 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
59 
60 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
61 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
62 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
63 	}
64 }
65 
66 /**
67  * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
68  * @ha: HA context
69  * @data: Serial interface selector
70  */
71 static void
72 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
73 {
74 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
75 
76 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
77 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
78 	NVRAM_DELAY();
79 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
80 	    NVR_WRT_ENABLE);
81 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
82 	NVRAM_DELAY();
83 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
84 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
85 	NVRAM_DELAY();
86 }
87 
88 /**
89  * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
90  *	NVRAM.
91  * @ha: HA context
92  * @nv_cmd: NVRAM command
93  *
94  * Bit definitions for NVRAM command:
95  *
96  *	Bit 26     = start bit
97  *	Bit 25, 24 = opcode
98  *	Bit 23-16  = address
99  *	Bit 15-0   = write data
100  *
101  * Returns the word read from nvram @addr.
102  */
103 static uint16_t
104 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
105 {
106 	uint8_t		cnt;
107 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
108 	uint16_t	data = 0;
109 	uint16_t	reg_data;
110 
111 	/* Send command to NVRAM. */
112 	nv_cmd <<= 5;
113 	for (cnt = 0; cnt < 11; cnt++) {
114 		if (nv_cmd & BIT_31)
115 			qla2x00_nv_write(ha, NVR_DATA_OUT);
116 		else
117 			qla2x00_nv_write(ha, 0);
118 		nv_cmd <<= 1;
119 	}
120 
121 	/* Read data from NVRAM. */
122 	for (cnt = 0; cnt < 16; cnt++) {
123 		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
124 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
125 		NVRAM_DELAY();
126 		data <<= 1;
127 		reg_data = RD_REG_WORD(&reg->nvram);
128 		if (reg_data & NVR_DATA_IN)
129 			data |= BIT_0;
130 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
131 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
132 		NVRAM_DELAY();
133 	}
134 
135 	/* Deselect chip. */
136 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
137 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
138 	NVRAM_DELAY();
139 
140 	return data;
141 }
142 
143 
144 /**
145  * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
146  *	request routine to get the word from NVRAM.
147  * @ha: HA context
148  * @addr: Address in NVRAM to read
149  *
150  * Returns the word read from nvram @addr.
151  */
152 static uint16_t
153 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
154 {
155 	uint16_t	data;
156 	uint32_t	nv_cmd;
157 
158 	nv_cmd = addr << 16;
159 	nv_cmd |= NV_READ_OP;
160 	data = qla2x00_nvram_request(ha, nv_cmd);
161 
162 	return (data);
163 }
164 
165 /**
166  * qla2x00_nv_deselect() - Deselect NVRAM operations.
167  * @ha: HA context
168  */
169 static void
170 qla2x00_nv_deselect(struct qla_hw_data *ha)
171 {
172 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
173 
174 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
175 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
176 	NVRAM_DELAY();
177 }
178 
179 /**
180  * qla2x00_write_nvram_word() - Write NVRAM data.
181  * @ha: HA context
182  * @addr: Address in NVRAM to write
183  * @data: word to program
184  */
185 static void
186 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
187 {
188 	int count;
189 	uint16_t word;
190 	uint32_t nv_cmd, wait_cnt;
191 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
192 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
193 
194 	qla2x00_nv_write(ha, NVR_DATA_OUT);
195 	qla2x00_nv_write(ha, 0);
196 	qla2x00_nv_write(ha, 0);
197 
198 	for (word = 0; word < 8; word++)
199 		qla2x00_nv_write(ha, NVR_DATA_OUT);
200 
201 	qla2x00_nv_deselect(ha);
202 
203 	/* Write data */
204 	nv_cmd = (addr << 16) | NV_WRITE_OP;
205 	nv_cmd |= data;
206 	nv_cmd <<= 5;
207 	for (count = 0; count < 27; count++) {
208 		if (nv_cmd & BIT_31)
209 			qla2x00_nv_write(ha, NVR_DATA_OUT);
210 		else
211 			qla2x00_nv_write(ha, 0);
212 
213 		nv_cmd <<= 1;
214 	}
215 
216 	qla2x00_nv_deselect(ha);
217 
218 	/* Wait for NVRAM to become ready */
219 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
220 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
221 	wait_cnt = NVR_WAIT_CNT;
222 	do {
223 		if (!--wait_cnt) {
224 			ql_dbg(ql_dbg_user, vha, 0x708d,
225 			    "NVRAM didn't go ready...\n");
226 			break;
227 		}
228 		NVRAM_DELAY();
229 		word = RD_REG_WORD(&reg->nvram);
230 	} while ((word & NVR_DATA_IN) == 0);
231 
232 	qla2x00_nv_deselect(ha);
233 
234 	/* Disable writes */
235 	qla2x00_nv_write(ha, NVR_DATA_OUT);
236 	for (count = 0; count < 10; count++)
237 		qla2x00_nv_write(ha, 0);
238 
239 	qla2x00_nv_deselect(ha);
240 }
241 
242 static int
243 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
244 	uint16_t data, uint32_t tmo)
245 {
246 	int ret, count;
247 	uint16_t word;
248 	uint32_t nv_cmd;
249 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
250 
251 	ret = QLA_SUCCESS;
252 
253 	qla2x00_nv_write(ha, NVR_DATA_OUT);
254 	qla2x00_nv_write(ha, 0);
255 	qla2x00_nv_write(ha, 0);
256 
257 	for (word = 0; word < 8; word++)
258 		qla2x00_nv_write(ha, NVR_DATA_OUT);
259 
260 	qla2x00_nv_deselect(ha);
261 
262 	/* Write data */
263 	nv_cmd = (addr << 16) | NV_WRITE_OP;
264 	nv_cmd |= data;
265 	nv_cmd <<= 5;
266 	for (count = 0; count < 27; count++) {
267 		if (nv_cmd & BIT_31)
268 			qla2x00_nv_write(ha, NVR_DATA_OUT);
269 		else
270 			qla2x00_nv_write(ha, 0);
271 
272 		nv_cmd <<= 1;
273 	}
274 
275 	qla2x00_nv_deselect(ha);
276 
277 	/* Wait for NVRAM to become ready */
278 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
279 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
280 	do {
281 		NVRAM_DELAY();
282 		word = RD_REG_WORD(&reg->nvram);
283 		if (!--tmo) {
284 			ret = QLA_FUNCTION_FAILED;
285 			break;
286 		}
287 	} while ((word & NVR_DATA_IN) == 0);
288 
289 	qla2x00_nv_deselect(ha);
290 
291 	/* Disable writes */
292 	qla2x00_nv_write(ha, NVR_DATA_OUT);
293 	for (count = 0; count < 10; count++)
294 		qla2x00_nv_write(ha, 0);
295 
296 	qla2x00_nv_deselect(ha);
297 
298 	return ret;
299 }
300 
301 /**
302  * qla2x00_clear_nvram_protection() -
303  * @ha: HA context
304  */
305 static int
306 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
307 {
308 	int ret, stat;
309 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
310 	uint32_t word, wait_cnt;
311 	uint16_t wprot, wprot_old;
312 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
313 
314 	/* Clear NVRAM write protection. */
315 	ret = QLA_FUNCTION_FAILED;
316 
317 	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319 					    cpu_to_le16(0x1234), 100000);
320 	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
321 	if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 		/* Write enable. */
323 		qla2x00_nv_write(ha, NVR_DATA_OUT);
324 		qla2x00_nv_write(ha, 0);
325 		qla2x00_nv_write(ha, 0);
326 		for (word = 0; word < 8; word++)
327 			qla2x00_nv_write(ha, NVR_DATA_OUT);
328 
329 		qla2x00_nv_deselect(ha);
330 
331 		/* Enable protection register. */
332 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
333 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
334 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
335 		for (word = 0; word < 8; word++)
336 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
337 
338 		qla2x00_nv_deselect(ha);
339 
340 		/* Clear protection register (ffff is cleared). */
341 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
343 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
344 		for (word = 0; word < 8; word++)
345 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
346 
347 		qla2x00_nv_deselect(ha);
348 
349 		/* Wait for NVRAM to become ready. */
350 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
352 		wait_cnt = NVR_WAIT_CNT;
353 		do {
354 			if (!--wait_cnt) {
355 				ql_dbg(ql_dbg_user, vha, 0x708e,
356 				    "NVRAM didn't go ready...\n");
357 				break;
358 			}
359 			NVRAM_DELAY();
360 			word = RD_REG_WORD(&reg->nvram);
361 		} while ((word & NVR_DATA_IN) == 0);
362 
363 		if (wait_cnt)
364 			ret = QLA_SUCCESS;
365 	} else
366 		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
367 
368 	return ret;
369 }
370 
371 static void
372 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
373 {
374 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
375 	uint32_t word, wait_cnt;
376 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
377 
378 	if (stat != QLA_SUCCESS)
379 		return;
380 
381 	/* Set NVRAM write protection. */
382 	/* Write enable. */
383 	qla2x00_nv_write(ha, NVR_DATA_OUT);
384 	qla2x00_nv_write(ha, 0);
385 	qla2x00_nv_write(ha, 0);
386 	for (word = 0; word < 8; word++)
387 		qla2x00_nv_write(ha, NVR_DATA_OUT);
388 
389 	qla2x00_nv_deselect(ha);
390 
391 	/* Enable protection register. */
392 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
393 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
394 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
395 	for (word = 0; word < 8; word++)
396 		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
397 
398 	qla2x00_nv_deselect(ha);
399 
400 	/* Enable protection register. */
401 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
402 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
403 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
404 	for (word = 0; word < 8; word++)
405 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
406 
407 	qla2x00_nv_deselect(ha);
408 
409 	/* Wait for NVRAM to become ready. */
410 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
412 	wait_cnt = NVR_WAIT_CNT;
413 	do {
414 		if (!--wait_cnt) {
415 			ql_dbg(ql_dbg_user, vha, 0x708f,
416 			    "NVRAM didn't go ready...\n");
417 			break;
418 		}
419 		NVRAM_DELAY();
420 		word = RD_REG_WORD(&reg->nvram);
421 	} while ((word & NVR_DATA_IN) == 0);
422 }
423 
424 
425 /*****************************************************************************/
426 /* Flash Manipulation Routines                                               */
427 /*****************************************************************************/
428 
429 static inline uint32_t
430 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
431 {
432 	return ha->flash_conf_off | faddr;
433 }
434 
435 static inline uint32_t
436 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
437 {
438 	return ha->flash_data_off | faddr;
439 }
440 
441 static inline uint32_t
442 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
443 {
444 	return ha->nvram_conf_off | naddr;
445 }
446 
447 static inline uint32_t
448 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
449 {
450 	return ha->nvram_data_off | naddr;
451 }
452 
453 static uint32_t
454 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
455 {
456 	int rval;
457 	uint32_t cnt, data;
458 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
459 
460 	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
461 	/* Wait for READ cycle to complete. */
462 	rval = QLA_SUCCESS;
463 	for (cnt = 3000;
464 	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
465 	    rval == QLA_SUCCESS; cnt--) {
466 		if (cnt)
467 			udelay(10);
468 		else
469 			rval = QLA_FUNCTION_TIMEOUT;
470 		cond_resched();
471 	}
472 
473 	/* TODO: What happens if we time out? */
474 	data = 0xDEADDEAD;
475 	if (rval == QLA_SUCCESS)
476 		data = RD_REG_DWORD(&reg->flash_data);
477 
478 	return data;
479 }
480 
481 uint32_t *
482 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
483     uint32_t dwords)
484 {
485 	uint32_t i;
486 	struct qla_hw_data *ha = vha->hw;
487 
488 	/* Dword reads to flash. */
489 	for (i = 0; i < dwords; i++, faddr++)
490 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
491 		    flash_data_addr(ha, faddr)));
492 
493 	return dwptr;
494 }
495 
496 static int
497 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
498 {
499 	int rval;
500 	uint32_t cnt;
501 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
502 
503 	WRT_REG_DWORD(&reg->flash_data, data);
504 	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
505 	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
506 	/* Wait for Write cycle to complete. */
507 	rval = QLA_SUCCESS;
508 	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
509 	    rval == QLA_SUCCESS; cnt--) {
510 		if (cnt)
511 			udelay(10);
512 		else
513 			rval = QLA_FUNCTION_TIMEOUT;
514 		cond_resched();
515 	}
516 	return rval;
517 }
518 
519 static void
520 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
521     uint8_t *flash_id)
522 {
523 	uint32_t ids;
524 
525 	ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
526 	*man_id = LSB(ids);
527 	*flash_id = MSB(ids);
528 
529 	/* Check if man_id and flash_id are valid. */
530 	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
531 		/* Read information using 0x9f opcode
532 		 * Device ID, Mfg ID would be read in the format:
533 		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
534 		 * Example: ATMEL 0x00 01 45 1F
535 		 * Extract MFG and Dev ID from last two bytes.
536 		 */
537 		ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
538 		*man_id = LSB(ids);
539 		*flash_id = MSB(ids);
540 	}
541 }
542 
543 static int
544 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
545 {
546 	const char *loc, *locations[] = { "DEF", "PCI" };
547 	uint32_t pcihdr, pcids;
548 	uint32_t *dcode;
549 	uint8_t *buf, *bcode, last_image;
550 	uint16_t cnt, chksum, *wptr;
551 	struct qla_flt_location *fltl;
552 	struct qla_hw_data *ha = vha->hw;
553 	struct req_que *req = ha->req_q_map[0];
554 
555 	/*
556 	 * FLT-location structure resides after the last PCI region.
557 	 */
558 
559 	/* Begin with sane defaults. */
560 	loc = locations[0];
561 	*start = 0;
562 	if (IS_QLA24XX_TYPE(ha))
563 		*start = FA_FLASH_LAYOUT_ADDR_24;
564 	else if (IS_QLA25XX(ha))
565 		*start = FA_FLASH_LAYOUT_ADDR;
566 	else if (IS_QLA81XX(ha))
567 		*start = FA_FLASH_LAYOUT_ADDR_81;
568 	else if (IS_P3P_TYPE(ha)) {
569 		*start = FA_FLASH_LAYOUT_ADDR_82;
570 		goto end;
571 	} else if (IS_QLA83XX(ha) || IS_QLA27XX(ha)) {
572 		*start = FA_FLASH_LAYOUT_ADDR_83;
573 		goto end;
574 	}
575 	/* Begin with first PCI expansion ROM header. */
576 	buf = (uint8_t *)req->ring;
577 	dcode = (uint32_t *)req->ring;
578 	pcihdr = 0;
579 	last_image = 1;
580 	do {
581 		/* Verify PCI expansion ROM header. */
582 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
583 		bcode = buf + (pcihdr % 4);
584 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
585 			goto end;
586 
587 		/* Locate PCI data structure. */
588 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
589 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
590 		bcode = buf + (pcihdr % 4);
591 
592 		/* Validate signature of PCI data structure. */
593 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
594 		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
595 			goto end;
596 
597 		last_image = bcode[0x15] & BIT_7;
598 
599 		/* Locate next PCI expansion ROM. */
600 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
601 	} while (!last_image);
602 
603 	/* Now verify FLT-location structure. */
604 	fltl = (struct qla_flt_location *)req->ring;
605 	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
606 	    sizeof(struct qla_flt_location) >> 2);
607 	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
608 	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
609 		goto end;
610 
611 	wptr = (uint16_t *)req->ring;
612 	cnt = sizeof(struct qla_flt_location) >> 1;
613 	for (chksum = 0; cnt; cnt--)
614 		chksum += le16_to_cpu(*wptr++);
615 	if (chksum) {
616 		ql_log(ql_log_fatal, vha, 0x0045,
617 		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
618 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010e,
619 		    buf, sizeof(struct qla_flt_location));
620 		return QLA_FUNCTION_FAILED;
621 	}
622 
623 	/* Good data.  Use specified location. */
624 	loc = locations[1];
625 	*start = (le16_to_cpu(fltl->start_hi) << 16 |
626 	    le16_to_cpu(fltl->start_lo)) >> 2;
627 end:
628 	ql_dbg(ql_dbg_init, vha, 0x0046,
629 	    "FLTL[%s] = 0x%x.\n",
630 	    loc, *start);
631 	return QLA_SUCCESS;
632 }
633 
634 static void
635 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
636 {
637 	const char *loc, *locations[] = { "DEF", "FLT" };
638 	const uint32_t def_fw[] =
639 		{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
640 	const uint32_t def_boot[] =
641 		{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
642 	const uint32_t def_vpd_nvram[] =
643 		{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
644 	const uint32_t def_vpd0[] =
645 		{ 0, 0, FA_VPD0_ADDR_81 };
646 	const uint32_t def_vpd1[] =
647 		{ 0, 0, FA_VPD1_ADDR_81 };
648 	const uint32_t def_nvram0[] =
649 		{ 0, 0, FA_NVRAM0_ADDR_81 };
650 	const uint32_t def_nvram1[] =
651 		{ 0, 0, FA_NVRAM1_ADDR_81 };
652 	const uint32_t def_fdt[] =
653 		{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
654 			FA_FLASH_DESCR_ADDR_81 };
655 	const uint32_t def_npiv_conf0[] =
656 		{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
657 			FA_NPIV_CONF0_ADDR_81 };
658 	const uint32_t def_npiv_conf1[] =
659 		{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
660 			FA_NPIV_CONF1_ADDR_81 };
661 	const uint32_t fcp_prio_cfg0[] =
662 		{ FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25,
663 			0 };
664 	const uint32_t fcp_prio_cfg1[] =
665 		{ FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25,
666 			0 };
667 	uint32_t def;
668 	uint16_t *wptr;
669 	uint16_t cnt, chksum;
670 	uint32_t start;
671 	struct qla_flt_header *flt;
672 	struct qla_flt_region *region;
673 	struct qla_hw_data *ha = vha->hw;
674 	struct req_que *req = ha->req_q_map[0];
675 
676 	def = 0;
677 	if (IS_QLA25XX(ha))
678 		def = 1;
679 	else if (IS_QLA81XX(ha))
680 		def = 2;
681 
682 	/* Assign FCP prio region since older adapters may not have FLT, or
683 	   FCP prio region in it's FLT.
684 	 */
685 	ha->flt_region_fcp_prio = (ha->port_no == 0) ?
686 	    fcp_prio_cfg0[def] : fcp_prio_cfg1[def];
687 
688 	ha->flt_region_flt = flt_addr;
689 	wptr = (uint16_t *)req->ring;
690 	flt = (struct qla_flt_header *)req->ring;
691 	region = (struct qla_flt_region *)&flt[1];
692 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
693 	    flt_addr << 2, OPTROM_BURST_SIZE);
694 	if (*wptr == cpu_to_le16(0xffff))
695 		goto no_flash_data;
696 	if (flt->version != cpu_to_le16(1)) {
697 		ql_log(ql_log_warn, vha, 0x0047,
698 		    "Unsupported FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
699 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
700 		    le16_to_cpu(flt->checksum));
701 		goto no_flash_data;
702 	}
703 
704 	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
705 	for (chksum = 0; cnt; cnt--)
706 		chksum += le16_to_cpu(*wptr++);
707 	if (chksum) {
708 		ql_log(ql_log_fatal, vha, 0x0048,
709 		    "Inconsistent FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
710 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
711 		    le16_to_cpu(flt->checksum));
712 		goto no_flash_data;
713 	}
714 
715 	loc = locations[1];
716 	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
717 	for ( ; cnt; cnt--, region++) {
718 		/* Store addresses as DWORD offsets. */
719 		start = le32_to_cpu(region->start) >> 2;
720 		ql_dbg(ql_dbg_init, vha, 0x0049,
721 		    "FLT[%02x]: start=0x%x "
722 		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code) & 0xff,
723 		    start, le32_to_cpu(region->end) >> 2,
724 		    le32_to_cpu(region->size));
725 
726 		switch (le32_to_cpu(region->code) & 0xff) {
727 		case FLT_REG_FCOE_FW:
728 			if (!IS_QLA8031(ha))
729 				break;
730 			ha->flt_region_fw = start;
731 			break;
732 		case FLT_REG_FW:
733 			if (IS_QLA8031(ha))
734 				break;
735 			ha->flt_region_fw = start;
736 			break;
737 		case FLT_REG_BOOT_CODE:
738 			ha->flt_region_boot = start;
739 			break;
740 		case FLT_REG_VPD_0:
741 			if (IS_QLA8031(ha))
742 				break;
743 			ha->flt_region_vpd_nvram = start;
744 			if (IS_P3P_TYPE(ha))
745 				break;
746 			if (ha->port_no == 0)
747 				ha->flt_region_vpd = start;
748 			break;
749 		case FLT_REG_VPD_1:
750 			if (IS_P3P_TYPE(ha) || IS_QLA8031(ha))
751 				break;
752 			if (ha->port_no == 1)
753 				ha->flt_region_vpd = start;
754 			break;
755 		case FLT_REG_VPD_2:
756 			if (!IS_QLA27XX(ha))
757 				break;
758 			if (ha->port_no == 2)
759 				ha->flt_region_vpd = start;
760 			break;
761 		case FLT_REG_VPD_3:
762 			if (!IS_QLA27XX(ha))
763 				break;
764 			if (ha->port_no == 3)
765 				ha->flt_region_vpd = start;
766 			break;
767 		case FLT_REG_NVRAM_0:
768 			if (IS_QLA8031(ha))
769 				break;
770 			if (ha->port_no == 0)
771 				ha->flt_region_nvram = start;
772 			break;
773 		case FLT_REG_NVRAM_1:
774 			if (IS_QLA8031(ha))
775 				break;
776 			if (ha->port_no == 1)
777 				ha->flt_region_nvram = start;
778 			break;
779 		case FLT_REG_NVRAM_2:
780 			if (!IS_QLA27XX(ha))
781 				break;
782 			if (ha->port_no == 2)
783 				ha->flt_region_nvram = start;
784 			break;
785 		case FLT_REG_NVRAM_3:
786 			if (!IS_QLA27XX(ha))
787 				break;
788 			if (ha->port_no == 3)
789 				ha->flt_region_nvram = start;
790 			break;
791 		case FLT_REG_FDT:
792 			ha->flt_region_fdt = start;
793 			break;
794 		case FLT_REG_NPIV_CONF_0:
795 			if (ha->port_no == 0)
796 				ha->flt_region_npiv_conf = start;
797 			break;
798 		case FLT_REG_NPIV_CONF_1:
799 			if (ha->port_no == 1)
800 				ha->flt_region_npiv_conf = start;
801 			break;
802 		case FLT_REG_GOLD_FW:
803 			ha->flt_region_gold_fw = start;
804 			break;
805 		case FLT_REG_FCP_PRIO_0:
806 			if (ha->port_no == 0)
807 				ha->flt_region_fcp_prio = start;
808 			break;
809 		case FLT_REG_FCP_PRIO_1:
810 			if (ha->port_no == 1)
811 				ha->flt_region_fcp_prio = start;
812 			break;
813 		case FLT_REG_BOOT_CODE_82XX:
814 			ha->flt_region_boot = start;
815 			break;
816 		case FLT_REG_BOOT_CODE_8044:
817 			if (IS_QLA8044(ha))
818 				ha->flt_region_boot = start;
819 			break;
820 		case FLT_REG_FW_82XX:
821 			ha->flt_region_fw = start;
822 			break;
823 		case FLT_REG_CNA_FW:
824 			if (IS_CNA_CAPABLE(ha))
825 				ha->flt_region_fw = start;
826 			break;
827 		case FLT_REG_GOLD_FW_82XX:
828 			ha->flt_region_gold_fw = start;
829 			break;
830 		case FLT_REG_BOOTLOAD_82XX:
831 			ha->flt_region_bootload = start;
832 			break;
833 		case FLT_REG_VPD_8XXX:
834 			if (IS_CNA_CAPABLE(ha))
835 				ha->flt_region_vpd = start;
836 			break;
837 		case FLT_REG_FCOE_NVRAM_0:
838 			if (!(IS_QLA8031(ha) || IS_QLA8044(ha)))
839 				break;
840 			if (ha->port_no == 0)
841 				ha->flt_region_nvram = start;
842 			break;
843 		case FLT_REG_FCOE_NVRAM_1:
844 			if (!(IS_QLA8031(ha) || IS_QLA8044(ha)))
845 				break;
846 			if (ha->port_no == 1)
847 				ha->flt_region_nvram = start;
848 			break;
849 		}
850 	}
851 	goto done;
852 
853 no_flash_data:
854 	/* Use hardcoded defaults. */
855 	loc = locations[0];
856 	ha->flt_region_fw = def_fw[def];
857 	ha->flt_region_boot = def_boot[def];
858 	ha->flt_region_vpd_nvram = def_vpd_nvram[def];
859 	ha->flt_region_vpd = (ha->port_no == 0) ?
860 	    def_vpd0[def] : def_vpd1[def];
861 	ha->flt_region_nvram = (ha->port_no == 0) ?
862 	    def_nvram0[def] : def_nvram1[def];
863 	ha->flt_region_fdt = def_fdt[def];
864 	ha->flt_region_npiv_conf = (ha->port_no == 0) ?
865 	    def_npiv_conf0[def] : def_npiv_conf1[def];
866 done:
867 	ql_dbg(ql_dbg_init, vha, 0x004a,
868 	    "FLT[%s]: boot=0x%x fw=0x%x vpd_nvram=0x%x vpd=0x%x nvram=0x%x "
869 	    "fdt=0x%x flt=0x%x npiv=0x%x fcp_prif_cfg=0x%x.\n",
870 	    loc, ha->flt_region_boot, ha->flt_region_fw,
871 	    ha->flt_region_vpd_nvram, ha->flt_region_vpd, ha->flt_region_nvram,
872 	    ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf,
873 	    ha->flt_region_fcp_prio);
874 }
875 
876 static void
877 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
878 {
879 #define FLASH_BLK_SIZE_4K	0x1000
880 #define FLASH_BLK_SIZE_32K	0x8000
881 #define FLASH_BLK_SIZE_64K	0x10000
882 	const char *loc, *locations[] = { "MID", "FDT" };
883 	uint16_t cnt, chksum;
884 	uint16_t *wptr;
885 	struct qla_fdt_layout *fdt;
886 	uint8_t	man_id, flash_id;
887 	uint16_t mid = 0, fid = 0;
888 	struct qla_hw_data *ha = vha->hw;
889 	struct req_que *req = ha->req_q_map[0];
890 
891 	wptr = (uint16_t *)req->ring;
892 	fdt = (struct qla_fdt_layout *)req->ring;
893 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
894 	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
895 	if (*wptr == cpu_to_le16(0xffff))
896 		goto no_flash_data;
897 	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
898 	    fdt->sig[3] != 'D')
899 		goto no_flash_data;
900 
901 	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
902 	    cnt++)
903 		chksum += le16_to_cpu(*wptr++);
904 	if (chksum) {
905 		ql_dbg(ql_dbg_init, vha, 0x004c,
906 		    "Inconsistent FDT detected:"
907 		    " checksum=0x%x id=%c version0x%x.\n", chksum,
908 		    fdt->sig[0], le16_to_cpu(fdt->version));
909 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x0113,
910 		    (uint8_t *)fdt, sizeof(*fdt));
911 		goto no_flash_data;
912 	}
913 
914 	loc = locations[1];
915 	mid = le16_to_cpu(fdt->man_id);
916 	fid = le16_to_cpu(fdt->id);
917 	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
918 	ha->fdt_wrt_enable = fdt->wrt_enable_bits;
919 	ha->fdt_wrt_sts_reg_cmd = fdt->wrt_sts_reg_cmd;
920 	if (IS_QLA8044(ha))
921 		ha->fdt_erase_cmd = fdt->erase_cmd;
922 	else
923 		ha->fdt_erase_cmd =
924 		    flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
925 	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
926 	if (fdt->unprotect_sec_cmd) {
927 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
928 		    fdt->unprotect_sec_cmd);
929 		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
930 		    flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
931 		    flash_conf_addr(ha, 0x0336);
932 	}
933 	goto done;
934 no_flash_data:
935 	loc = locations[0];
936 	if (IS_P3P_TYPE(ha)) {
937 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
938 		goto done;
939 	}
940 	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
941 	mid = man_id;
942 	fid = flash_id;
943 	ha->fdt_wrt_disable = 0x9c;
944 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
945 	switch (man_id) {
946 	case 0xbf: /* STT flash. */
947 		if (flash_id == 0x8e)
948 			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
949 		else
950 			ha->fdt_block_size = FLASH_BLK_SIZE_32K;
951 
952 		if (flash_id == 0x80)
953 			ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
954 		break;
955 	case 0x13: /* ST M25P80. */
956 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
957 		break;
958 	case 0x1f: /* Atmel 26DF081A. */
959 		ha->fdt_block_size = FLASH_BLK_SIZE_4K;
960 		ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
961 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
962 		ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
963 		break;
964 	default:
965 		/* Default to 64 kb sector size. */
966 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
967 		break;
968 	}
969 done:
970 	ql_dbg(ql_dbg_init, vha, 0x004d,
971 	    "FDT[%s]: (0x%x/0x%x) erase=0x%x "
972 	    "pr=%x wrtd=0x%x blk=0x%x.\n",
973 	    loc, mid, fid,
974 	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
975 	    ha->fdt_wrt_disable, ha->fdt_block_size);
976 
977 }
978 
979 static void
980 qla2xxx_get_idc_param(scsi_qla_host_t *vha)
981 {
982 #define QLA82XX_IDC_PARAM_ADDR       0x003e885c
983 	uint32_t *wptr;
984 	struct qla_hw_data *ha = vha->hw;
985 	struct req_que *req = ha->req_q_map[0];
986 
987 	if (!(IS_P3P_TYPE(ha)))
988 		return;
989 
990 	wptr = (uint32_t *)req->ring;
991 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
992 		QLA82XX_IDC_PARAM_ADDR , 8);
993 
994 	if (*wptr == cpu_to_le32(0xffffffff)) {
995 		ha->fcoe_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT;
996 		ha->fcoe_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT;
997 	} else {
998 		ha->fcoe_dev_init_timeout = le32_to_cpu(*wptr++);
999 		ha->fcoe_reset_timeout = le32_to_cpu(*wptr);
1000 	}
1001 	ql_dbg(ql_dbg_init, vha, 0x004e,
1002 	    "fcoe_dev_init_timeout=%d "
1003 	    "fcoe_reset_timeout=%d.\n", ha->fcoe_dev_init_timeout,
1004 	    ha->fcoe_reset_timeout);
1005 	return;
1006 }
1007 
1008 int
1009 qla2xxx_get_flash_info(scsi_qla_host_t *vha)
1010 {
1011 	int ret;
1012 	uint32_t flt_addr;
1013 	struct qla_hw_data *ha = vha->hw;
1014 
1015 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
1016 	    !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha) && !IS_QLA27XX(ha))
1017 		return QLA_SUCCESS;
1018 
1019 	ret = qla2xxx_find_flt_start(vha, &flt_addr);
1020 	if (ret != QLA_SUCCESS)
1021 		return ret;
1022 
1023 	qla2xxx_get_flt_info(vha, flt_addr);
1024 	qla2xxx_get_fdt_info(vha);
1025 	qla2xxx_get_idc_param(vha);
1026 
1027 	return QLA_SUCCESS;
1028 }
1029 
1030 void
1031 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
1032 {
1033 #define NPIV_CONFIG_SIZE	(16*1024)
1034 	void *data;
1035 	uint16_t *wptr;
1036 	uint16_t cnt, chksum;
1037 	int i;
1038 	struct qla_npiv_header hdr;
1039 	struct qla_npiv_entry *entry;
1040 	struct qla_hw_data *ha = vha->hw;
1041 
1042 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
1043 	    !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha))
1044 		return;
1045 
1046 	if (ha->flags.nic_core_reset_hdlr_active)
1047 		return;
1048 
1049 	if (IS_QLA8044(ha))
1050 		return;
1051 
1052 	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
1053 	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
1054 	if (hdr.version == cpu_to_le16(0xffff))
1055 		return;
1056 	if (hdr.version != cpu_to_le16(1)) {
1057 		ql_dbg(ql_dbg_user, vha, 0x7090,
1058 		    "Unsupported NPIV-Config "
1059 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1060 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1061 		    le16_to_cpu(hdr.checksum));
1062 		return;
1063 	}
1064 
1065 	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
1066 	if (!data) {
1067 		ql_log(ql_log_warn, vha, 0x7091,
1068 		    "Unable to allocate memory for data.\n");
1069 		return;
1070 	}
1071 
1072 	ha->isp_ops->read_optrom(vha, (uint8_t *)data,
1073 	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
1074 
1075 	cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
1076 	    sizeof(struct qla_npiv_entry)) >> 1;
1077 	for (wptr = data, chksum = 0; cnt; cnt--)
1078 		chksum += le16_to_cpu(*wptr++);
1079 	if (chksum) {
1080 		ql_dbg(ql_dbg_user, vha, 0x7092,
1081 		    "Inconsistent NPIV-Config "
1082 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1083 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1084 		    le16_to_cpu(hdr.checksum));
1085 		goto done;
1086 	}
1087 
1088 	entry = data + sizeof(struct qla_npiv_header);
1089 	cnt = le16_to_cpu(hdr.entries);
1090 	for (i = 0; cnt; cnt--, entry++, i++) {
1091 		uint16_t flags;
1092 		struct fc_vport_identifiers vid;
1093 		struct fc_vport *vport;
1094 
1095 		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
1096 
1097 		flags = le16_to_cpu(entry->flags);
1098 		if (flags == 0xffff)
1099 			continue;
1100 		if ((flags & BIT_0) == 0)
1101 			continue;
1102 
1103 		memset(&vid, 0, sizeof(vid));
1104 		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
1105 		vid.vport_type = FC_PORTTYPE_NPIV;
1106 		vid.disable = false;
1107 		vid.port_name = wwn_to_u64(entry->port_name);
1108 		vid.node_name = wwn_to_u64(entry->node_name);
1109 
1110 		ql_dbg(ql_dbg_user, vha, 0x7093,
1111 		    "NPIV[%02x]: wwpn=%llx "
1112 		    "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
1113 		    (unsigned long long)vid.port_name,
1114 		    (unsigned long long)vid.node_name,
1115 		    le16_to_cpu(entry->vf_id),
1116 		    entry->q_qos, entry->f_qos);
1117 
1118 		if (i < QLA_PRECONFIG_VPORTS) {
1119 			vport = fc_vport_create(vha->host, 0, &vid);
1120 			if (!vport)
1121 				ql_log(ql_log_warn, vha, 0x7094,
1122 				    "NPIV-Config Failed to create vport [%02x]: "
1123 				    "wwpn=%llx wwnn=%llx.\n", cnt,
1124 				    (unsigned long long)vid.port_name,
1125 				    (unsigned long long)vid.node_name);
1126 		}
1127 	}
1128 done:
1129 	kfree(data);
1130 }
1131 
1132 static int
1133 qla24xx_unprotect_flash(scsi_qla_host_t *vha)
1134 {
1135 	struct qla_hw_data *ha = vha->hw;
1136 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1137 
1138 	if (ha->flags.fac_supported)
1139 		return qla81xx_fac_do_write_enable(vha, 1);
1140 
1141 	/* Enable flash write. */
1142 	WRT_REG_DWORD(&reg->ctrl_status,
1143 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1144 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1145 
1146 	if (!ha->fdt_wrt_disable)
1147 		goto done;
1148 
1149 	/* Disable flash write-protection, first clear SR protection bit */
1150 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1151 	/* Then write zero again to clear remaining SR bits.*/
1152 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1153 done:
1154 	return QLA_SUCCESS;
1155 }
1156 
1157 static int
1158 qla24xx_protect_flash(scsi_qla_host_t *vha)
1159 {
1160 	uint32_t cnt;
1161 	struct qla_hw_data *ha = vha->hw;
1162 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1163 
1164 	if (ha->flags.fac_supported)
1165 		return qla81xx_fac_do_write_enable(vha, 0);
1166 
1167 	if (!ha->fdt_wrt_disable)
1168 		goto skip_wrt_protect;
1169 
1170 	/* Enable flash write-protection and wait for completion. */
1171 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1172 	    ha->fdt_wrt_disable);
1173 	for (cnt = 300; cnt &&
1174 	    qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1175 	    cnt--) {
1176 		udelay(10);
1177 	}
1178 
1179 skip_wrt_protect:
1180 	/* Disable flash write. */
1181 	WRT_REG_DWORD(&reg->ctrl_status,
1182 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1183 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1184 
1185 	return QLA_SUCCESS;
1186 }
1187 
1188 static int
1189 qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
1190 {
1191 	struct qla_hw_data *ha = vha->hw;
1192 	uint32_t start, finish;
1193 
1194 	if (ha->flags.fac_supported) {
1195 		start = fdata >> 2;
1196 		finish = start + (ha->fdt_block_size >> 2) - 1;
1197 		return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
1198 		    start), flash_data_addr(ha, finish));
1199 	}
1200 
1201 	return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1202 	    (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
1203 	    ((fdata >> 16) & 0xff));
1204 }
1205 
1206 static int
1207 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1208     uint32_t dwords)
1209 {
1210 	int ret;
1211 	uint32_t liter;
1212 	uint32_t sec_mask, rest_addr;
1213 	uint32_t fdata;
1214 	dma_addr_t optrom_dma;
1215 	void *optrom = NULL;
1216 	struct qla_hw_data *ha = vha->hw;
1217 
1218 	/* Prepare burst-capable write on supported ISPs. */
1219 	if ((IS_QLA25XX(ha) || IS_QLA81XX(ha) || IS_QLA83XX(ha) ||
1220 	    IS_QLA27XX(ha)) &&
1221 	    !(faddr & 0xfff) && dwords > OPTROM_BURST_DWORDS) {
1222 		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1223 		    &optrom_dma, GFP_KERNEL);
1224 		if (!optrom) {
1225 			ql_log(ql_log_warn, vha, 0x7095,
1226 			    "Unable to allocate "
1227 			    "memory for optrom burst write (%x KB).\n",
1228 			    OPTROM_BURST_SIZE / 1024);
1229 		}
1230 	}
1231 
1232 	rest_addr = (ha->fdt_block_size >> 2) - 1;
1233 	sec_mask = ~rest_addr;
1234 
1235 	ret = qla24xx_unprotect_flash(vha);
1236 	if (ret != QLA_SUCCESS) {
1237 		ql_log(ql_log_warn, vha, 0x7096,
1238 		    "Unable to unprotect flash for update.\n");
1239 		goto done;
1240 	}
1241 
1242 	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1243 		fdata = (faddr & sec_mask) << 2;
1244 
1245 		/* Are we at the beginning of a sector? */
1246 		if ((faddr & rest_addr) == 0) {
1247 			/* Do sector unprotect. */
1248 			if (ha->fdt_unprotect_sec_cmd)
1249 				qla24xx_write_flash_dword(ha,
1250 				    ha->fdt_unprotect_sec_cmd,
1251 				    (fdata & 0xff00) | ((fdata << 16) &
1252 				    0xff0000) | ((fdata >> 16) & 0xff));
1253 			ret = qla24xx_erase_sector(vha, fdata);
1254 			if (ret != QLA_SUCCESS) {
1255 				ql_dbg(ql_dbg_user, vha, 0x7007,
1256 				    "Unable to erase erase sector: address=%x.\n",
1257 				    faddr);
1258 				break;
1259 			}
1260 		}
1261 
1262 		/* Go with burst-write. */
1263 		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1264 			/* Copy data to DMA'ble buffer. */
1265 			memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1266 
1267 			ret = qla2x00_load_ram(vha, optrom_dma,
1268 			    flash_data_addr(ha, faddr),
1269 			    OPTROM_BURST_DWORDS);
1270 			if (ret != QLA_SUCCESS) {
1271 				ql_log(ql_log_warn, vha, 0x7097,
1272 				    "Unable to burst-write optrom segment "
1273 				    "(%x/%x/%llx).\n", ret,
1274 				    flash_data_addr(ha, faddr),
1275 				    (unsigned long long)optrom_dma);
1276 				ql_log(ql_log_warn, vha, 0x7098,
1277 				    "Reverting to slow-write.\n");
1278 
1279 				dma_free_coherent(&ha->pdev->dev,
1280 				    OPTROM_BURST_SIZE, optrom, optrom_dma);
1281 				optrom = NULL;
1282 			} else {
1283 				liter += OPTROM_BURST_DWORDS - 1;
1284 				faddr += OPTROM_BURST_DWORDS - 1;
1285 				dwptr += OPTROM_BURST_DWORDS - 1;
1286 				continue;
1287 			}
1288 		}
1289 
1290 		ret = qla24xx_write_flash_dword(ha,
1291 		    flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1292 		if (ret != QLA_SUCCESS) {
1293 			ql_dbg(ql_dbg_user, vha, 0x7006,
1294 			    "Unable to program flash address=%x data=%x.\n",
1295 			    faddr, *dwptr);
1296 			break;
1297 		}
1298 
1299 		/* Do sector protect. */
1300 		if (ha->fdt_unprotect_sec_cmd &&
1301 		    ((faddr & rest_addr) == rest_addr))
1302 			qla24xx_write_flash_dword(ha,
1303 			    ha->fdt_protect_sec_cmd,
1304 			    (fdata & 0xff00) | ((fdata << 16) &
1305 			    0xff0000) | ((fdata >> 16) & 0xff));
1306 	}
1307 
1308 	ret = qla24xx_protect_flash(vha);
1309 	if (ret != QLA_SUCCESS)
1310 		ql_log(ql_log_warn, vha, 0x7099,
1311 		    "Unable to protect flash after update.\n");
1312 done:
1313 	if (optrom)
1314 		dma_free_coherent(&ha->pdev->dev,
1315 		    OPTROM_BURST_SIZE, optrom, optrom_dma);
1316 
1317 	return ret;
1318 }
1319 
1320 uint8_t *
1321 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1322     uint32_t bytes)
1323 {
1324 	uint32_t i;
1325 	uint16_t *wptr;
1326 	struct qla_hw_data *ha = vha->hw;
1327 
1328 	/* Word reads to NVRAM via registers. */
1329 	wptr = (uint16_t *)buf;
1330 	qla2x00_lock_nvram_access(ha);
1331 	for (i = 0; i < bytes >> 1; i++, naddr++)
1332 		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1333 		    naddr));
1334 	qla2x00_unlock_nvram_access(ha);
1335 
1336 	return buf;
1337 }
1338 
1339 uint8_t *
1340 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1341     uint32_t bytes)
1342 {
1343 	uint32_t i;
1344 	uint32_t *dwptr;
1345 	struct qla_hw_data *ha = vha->hw;
1346 
1347 	if (IS_P3P_TYPE(ha))
1348 		return  buf;
1349 
1350 	/* Dword reads to flash. */
1351 	dwptr = (uint32_t *)buf;
1352 	for (i = 0; i < bytes >> 2; i++, naddr++)
1353 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1354 		    nvram_data_addr(ha, naddr)));
1355 
1356 	return buf;
1357 }
1358 
1359 int
1360 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1361     uint32_t bytes)
1362 {
1363 	int ret, stat;
1364 	uint32_t i;
1365 	uint16_t *wptr;
1366 	unsigned long flags;
1367 	struct qla_hw_data *ha = vha->hw;
1368 
1369 	ret = QLA_SUCCESS;
1370 
1371 	spin_lock_irqsave(&ha->hardware_lock, flags);
1372 	qla2x00_lock_nvram_access(ha);
1373 
1374 	/* Disable NVRAM write-protection. */
1375 	stat = qla2x00_clear_nvram_protection(ha);
1376 
1377 	wptr = (uint16_t *)buf;
1378 	for (i = 0; i < bytes >> 1; i++, naddr++) {
1379 		qla2x00_write_nvram_word(ha, naddr,
1380 		    cpu_to_le16(*wptr));
1381 		wptr++;
1382 	}
1383 
1384 	/* Enable NVRAM write-protection. */
1385 	qla2x00_set_nvram_protection(ha, stat);
1386 
1387 	qla2x00_unlock_nvram_access(ha);
1388 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1389 
1390 	return ret;
1391 }
1392 
1393 int
1394 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1395     uint32_t bytes)
1396 {
1397 	int ret;
1398 	uint32_t i;
1399 	uint32_t *dwptr;
1400 	struct qla_hw_data *ha = vha->hw;
1401 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1402 
1403 	ret = QLA_SUCCESS;
1404 
1405 	if (IS_P3P_TYPE(ha))
1406 		return ret;
1407 
1408 	/* Enable flash write. */
1409 	WRT_REG_DWORD(&reg->ctrl_status,
1410 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1411 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1412 
1413 	/* Disable NVRAM write-protection. */
1414 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1415 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1416 
1417 	/* Dword writes to flash. */
1418 	dwptr = (uint32_t *)buf;
1419 	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1420 		ret = qla24xx_write_flash_dword(ha,
1421 		    nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1422 		if (ret != QLA_SUCCESS) {
1423 			ql_dbg(ql_dbg_user, vha, 0x709a,
1424 			    "Unable to program nvram address=%x data=%x.\n",
1425 			    naddr, *dwptr);
1426 			break;
1427 		}
1428 	}
1429 
1430 	/* Enable NVRAM write-protection. */
1431 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1432 
1433 	/* Disable flash write. */
1434 	WRT_REG_DWORD(&reg->ctrl_status,
1435 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1436 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1437 
1438 	return ret;
1439 }
1440 
1441 uint8_t *
1442 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1443     uint32_t bytes)
1444 {
1445 	uint32_t i;
1446 	uint32_t *dwptr;
1447 	struct qla_hw_data *ha = vha->hw;
1448 
1449 	/* Dword reads to flash. */
1450 	dwptr = (uint32_t *)buf;
1451 	for (i = 0; i < bytes >> 2; i++, naddr++)
1452 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1453 		    flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1454 
1455 	return buf;
1456 }
1457 
1458 int
1459 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1460     uint32_t bytes)
1461 {
1462 	struct qla_hw_data *ha = vha->hw;
1463 #define RMW_BUFFER_SIZE	(64 * 1024)
1464 	uint8_t *dbuf;
1465 
1466 	dbuf = vmalloc(RMW_BUFFER_SIZE);
1467 	if (!dbuf)
1468 		return QLA_MEMORY_ALLOC_FAILED;
1469 	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1470 	    RMW_BUFFER_SIZE);
1471 	memcpy(dbuf + (naddr << 2), buf, bytes);
1472 	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1473 	    RMW_BUFFER_SIZE);
1474 	vfree(dbuf);
1475 
1476 	return QLA_SUCCESS;
1477 }
1478 
1479 static inline void
1480 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1481 {
1482 	if (IS_QLA2322(ha)) {
1483 		/* Flip all colors. */
1484 		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1485 			/* Turn off. */
1486 			ha->beacon_color_state = 0;
1487 			*pflags = GPIO_LED_ALL_OFF;
1488 		} else {
1489 			/* Turn on. */
1490 			ha->beacon_color_state = QLA_LED_ALL_ON;
1491 			*pflags = GPIO_LED_RGA_ON;
1492 		}
1493 	} else {
1494 		/* Flip green led only. */
1495 		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1496 			/* Turn off. */
1497 			ha->beacon_color_state = 0;
1498 			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1499 		} else {
1500 			/* Turn on. */
1501 			ha->beacon_color_state = QLA_LED_GRN_ON;
1502 			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1503 		}
1504 	}
1505 }
1506 
1507 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1508 
1509 void
1510 qla2x00_beacon_blink(struct scsi_qla_host *vha)
1511 {
1512 	uint16_t gpio_enable;
1513 	uint16_t gpio_data;
1514 	uint16_t led_color = 0;
1515 	unsigned long flags;
1516 	struct qla_hw_data *ha = vha->hw;
1517 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1518 
1519 	if (IS_P3P_TYPE(ha))
1520 		return;
1521 
1522 	spin_lock_irqsave(&ha->hardware_lock, flags);
1523 
1524 	/* Save the Original GPIOE. */
1525 	if (ha->pio_address) {
1526 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1527 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1528 	} else {
1529 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1530 		gpio_data = RD_REG_WORD(&reg->gpiod);
1531 	}
1532 
1533 	/* Set the modified gpio_enable values */
1534 	gpio_enable |= GPIO_LED_MASK;
1535 
1536 	if (ha->pio_address) {
1537 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1538 	} else {
1539 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1540 		RD_REG_WORD(&reg->gpioe);
1541 	}
1542 
1543 	qla2x00_flip_colors(ha, &led_color);
1544 
1545 	/* Clear out any previously set LED color. */
1546 	gpio_data &= ~GPIO_LED_MASK;
1547 
1548 	/* Set the new input LED color to GPIOD. */
1549 	gpio_data |= led_color;
1550 
1551 	/* Set the modified gpio_data values */
1552 	if (ha->pio_address) {
1553 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1554 	} else {
1555 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1556 		RD_REG_WORD(&reg->gpiod);
1557 	}
1558 
1559 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1560 }
1561 
1562 int
1563 qla2x00_beacon_on(struct scsi_qla_host *vha)
1564 {
1565 	uint16_t gpio_enable;
1566 	uint16_t gpio_data;
1567 	unsigned long flags;
1568 	struct qla_hw_data *ha = vha->hw;
1569 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1570 
1571 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1572 	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1573 
1574 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1575 		ql_log(ql_log_warn, vha, 0x709b,
1576 		    "Unable to update fw options (beacon on).\n");
1577 		return QLA_FUNCTION_FAILED;
1578 	}
1579 
1580 	/* Turn off LEDs. */
1581 	spin_lock_irqsave(&ha->hardware_lock, flags);
1582 	if (ha->pio_address) {
1583 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1584 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1585 	} else {
1586 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1587 		gpio_data = RD_REG_WORD(&reg->gpiod);
1588 	}
1589 	gpio_enable |= GPIO_LED_MASK;
1590 
1591 	/* Set the modified gpio_enable values. */
1592 	if (ha->pio_address) {
1593 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1594 	} else {
1595 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1596 		RD_REG_WORD(&reg->gpioe);
1597 	}
1598 
1599 	/* Clear out previously set LED colour. */
1600 	gpio_data &= ~GPIO_LED_MASK;
1601 	if (ha->pio_address) {
1602 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1603 	} else {
1604 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1605 		RD_REG_WORD(&reg->gpiod);
1606 	}
1607 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1608 
1609 	/*
1610 	 * Let the per HBA timer kick off the blinking process based on
1611 	 * the following flags. No need to do anything else now.
1612 	 */
1613 	ha->beacon_blink_led = 1;
1614 	ha->beacon_color_state = 0;
1615 
1616 	return QLA_SUCCESS;
1617 }
1618 
1619 int
1620 qla2x00_beacon_off(struct scsi_qla_host *vha)
1621 {
1622 	int rval = QLA_SUCCESS;
1623 	struct qla_hw_data *ha = vha->hw;
1624 
1625 	ha->beacon_blink_led = 0;
1626 
1627 	/* Set the on flag so when it gets flipped it will be off. */
1628 	if (IS_QLA2322(ha))
1629 		ha->beacon_color_state = QLA_LED_ALL_ON;
1630 	else
1631 		ha->beacon_color_state = QLA_LED_GRN_ON;
1632 
1633 	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */
1634 
1635 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1636 	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1637 
1638 	rval = qla2x00_set_fw_options(vha, ha->fw_options);
1639 	if (rval != QLA_SUCCESS)
1640 		ql_log(ql_log_warn, vha, 0x709c,
1641 		    "Unable to update fw options (beacon off).\n");
1642 	return rval;
1643 }
1644 
1645 
1646 static inline void
1647 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1648 {
1649 	/* Flip all colors. */
1650 	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1651 		/* Turn off. */
1652 		ha->beacon_color_state = 0;
1653 		*pflags = 0;
1654 	} else {
1655 		/* Turn on. */
1656 		ha->beacon_color_state = QLA_LED_ALL_ON;
1657 		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1658 	}
1659 }
1660 
1661 void
1662 qla24xx_beacon_blink(struct scsi_qla_host *vha)
1663 {
1664 	uint16_t led_color = 0;
1665 	uint32_t gpio_data;
1666 	unsigned long flags;
1667 	struct qla_hw_data *ha = vha->hw;
1668 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1669 
1670 	/* Save the Original GPIOD. */
1671 	spin_lock_irqsave(&ha->hardware_lock, flags);
1672 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1673 
1674 	/* Enable the gpio_data reg for update. */
1675 	gpio_data |= GPDX_LED_UPDATE_MASK;
1676 
1677 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1678 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1679 
1680 	/* Set the color bits. */
1681 	qla24xx_flip_colors(ha, &led_color);
1682 
1683 	/* Clear out any previously set LED color. */
1684 	gpio_data &= ~GPDX_LED_COLOR_MASK;
1685 
1686 	/* Set the new input LED color to GPIOD. */
1687 	gpio_data |= led_color;
1688 
1689 	/* Set the modified gpio_data values. */
1690 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1691 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1692 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1693 }
1694 
1695 static uint32_t
1696 qla83xx_select_led_port(struct qla_hw_data *ha)
1697 {
1698 	uint32_t led_select_value = 0;
1699 
1700 	if (!IS_QLA83XX(ha) && !IS_QLA27XX(ha))
1701 		goto out;
1702 
1703 	if (ha->port_no == 0)
1704 		led_select_value = QLA83XX_LED_PORT0;
1705 	else
1706 		led_select_value = QLA83XX_LED_PORT1;
1707 
1708 out:
1709 	return led_select_value;
1710 }
1711 
1712 void
1713 qla83xx_beacon_blink(struct scsi_qla_host *vha)
1714 {
1715 	uint32_t led_select_value;
1716 	struct qla_hw_data *ha = vha->hw;
1717 	uint16_t led_cfg[6];
1718 	uint16_t orig_led_cfg[6];
1719 	uint32_t led_10_value, led_43_value;
1720 
1721 	if (!IS_QLA83XX(ha) && !IS_QLA81XX(ha) && !IS_QLA27XX(ha))
1722 		return;
1723 
1724 	if (!ha->beacon_blink_led)
1725 		return;
1726 
1727 	if (IS_QLA27XX(ha)) {
1728 		qla2x00_write_ram_word(vha, 0x1003, 0x40000230);
1729 		qla2x00_write_ram_word(vha, 0x1004, 0x40000230);
1730 	} else if (IS_QLA2031(ha)) {
1731 		led_select_value = qla83xx_select_led_port(ha);
1732 
1733 		qla83xx_wr_reg(vha, led_select_value, 0x40000230);
1734 		qla83xx_wr_reg(vha, led_select_value + 4, 0x40000230);
1735 	} else if (IS_QLA8031(ha)) {
1736 		led_select_value = qla83xx_select_led_port(ha);
1737 
1738 		qla83xx_rd_reg(vha, led_select_value, &led_10_value);
1739 		qla83xx_rd_reg(vha, led_select_value + 0x10, &led_43_value);
1740 		qla83xx_wr_reg(vha, led_select_value, 0x01f44000);
1741 		msleep(500);
1742 		qla83xx_wr_reg(vha, led_select_value, 0x400001f4);
1743 		msleep(1000);
1744 		qla83xx_wr_reg(vha, led_select_value, led_10_value);
1745 		qla83xx_wr_reg(vha, led_select_value + 0x10, led_43_value);
1746 	} else if (IS_QLA81XX(ha)) {
1747 		int rval;
1748 
1749 		/* Save Current */
1750 		rval = qla81xx_get_led_config(vha, orig_led_cfg);
1751 		/* Do the blink */
1752 		if (rval == QLA_SUCCESS) {
1753 			if (IS_QLA81XX(ha)) {
1754 				led_cfg[0] = 0x4000;
1755 				led_cfg[1] = 0x2000;
1756 				led_cfg[2] = 0;
1757 				led_cfg[3] = 0;
1758 				led_cfg[4] = 0;
1759 				led_cfg[5] = 0;
1760 			} else {
1761 				led_cfg[0] = 0x4000;
1762 				led_cfg[1] = 0x4000;
1763 				led_cfg[2] = 0x4000;
1764 				led_cfg[3] = 0x2000;
1765 				led_cfg[4] = 0;
1766 				led_cfg[5] = 0x2000;
1767 			}
1768 			rval = qla81xx_set_led_config(vha, led_cfg);
1769 			msleep(1000);
1770 			if (IS_QLA81XX(ha)) {
1771 				led_cfg[0] = 0x4000;
1772 				led_cfg[1] = 0x2000;
1773 				led_cfg[2] = 0;
1774 			} else {
1775 				led_cfg[0] = 0x4000;
1776 				led_cfg[1] = 0x2000;
1777 				led_cfg[2] = 0x4000;
1778 				led_cfg[3] = 0x4000;
1779 				led_cfg[4] = 0;
1780 				led_cfg[5] = 0x2000;
1781 			}
1782 			rval = qla81xx_set_led_config(vha, led_cfg);
1783 		}
1784 		/* On exit, restore original (presumes no status change) */
1785 		qla81xx_set_led_config(vha, orig_led_cfg);
1786 	}
1787 }
1788 
1789 int
1790 qla24xx_beacon_on(struct scsi_qla_host *vha)
1791 {
1792 	uint32_t gpio_data;
1793 	unsigned long flags;
1794 	struct qla_hw_data *ha = vha->hw;
1795 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1796 
1797 	if (IS_P3P_TYPE(ha))
1798 		return QLA_SUCCESS;
1799 
1800 	if (IS_QLA8031(ha) || IS_QLA81XX(ha))
1801 		goto skip_gpio; /* let blink handle it */
1802 
1803 	if (ha->beacon_blink_led == 0) {
1804 		/* Enable firmware for update */
1805 		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1806 
1807 		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1808 			return QLA_FUNCTION_FAILED;
1809 
1810 		if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1811 		    QLA_SUCCESS) {
1812 			ql_log(ql_log_warn, vha, 0x7009,
1813 			    "Unable to update fw options (beacon on).\n");
1814 			return QLA_FUNCTION_FAILED;
1815 		}
1816 
1817 		if (IS_QLA2031(ha) || IS_QLA27XX(ha))
1818 			goto skip_gpio;
1819 
1820 		spin_lock_irqsave(&ha->hardware_lock, flags);
1821 		gpio_data = RD_REG_DWORD(&reg->gpiod);
1822 
1823 		/* Enable the gpio_data reg for update. */
1824 		gpio_data |= GPDX_LED_UPDATE_MASK;
1825 		WRT_REG_DWORD(&reg->gpiod, gpio_data);
1826 		RD_REG_DWORD(&reg->gpiod);
1827 
1828 		spin_unlock_irqrestore(&ha->hardware_lock, flags);
1829 	}
1830 
1831 	/* So all colors blink together. */
1832 	ha->beacon_color_state = 0;
1833 
1834 skip_gpio:
1835 	/* Let the per HBA timer kick off the blinking process. */
1836 	ha->beacon_blink_led = 1;
1837 
1838 	return QLA_SUCCESS;
1839 }
1840 
1841 int
1842 qla24xx_beacon_off(struct scsi_qla_host *vha)
1843 {
1844 	uint32_t gpio_data;
1845 	unsigned long flags;
1846 	struct qla_hw_data *ha = vha->hw;
1847 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1848 
1849 	if (IS_P3P_TYPE(ha))
1850 		return QLA_SUCCESS;
1851 
1852 	ha->beacon_blink_led = 0;
1853 
1854 	if (IS_QLA2031(ha) || IS_QLA27XX(ha))
1855 		goto set_fw_options;
1856 
1857 	if (IS_QLA8031(ha) || IS_QLA81XX(ha))
1858 		return QLA_SUCCESS;
1859 
1860 	ha->beacon_color_state = QLA_LED_ALL_ON;
1861 
1862 	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */
1863 
1864 	/* Give control back to firmware. */
1865 	spin_lock_irqsave(&ha->hardware_lock, flags);
1866 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1867 
1868 	/* Disable the gpio_data reg for update. */
1869 	gpio_data &= ~GPDX_LED_UPDATE_MASK;
1870 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1871 	RD_REG_DWORD(&reg->gpiod);
1872 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1873 
1874 set_fw_options:
1875 	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1876 
1877 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1878 		ql_log(ql_log_warn, vha, 0x704d,
1879 		    "Unable to update fw options (beacon on).\n");
1880 		return QLA_FUNCTION_FAILED;
1881 	}
1882 
1883 	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1884 		ql_log(ql_log_warn, vha, 0x704e,
1885 		    "Unable to update fw options (beacon on).\n");
1886 		return QLA_FUNCTION_FAILED;
1887 	}
1888 
1889 	return QLA_SUCCESS;
1890 }
1891 
1892 
1893 /*
1894  * Flash support routines
1895  */
1896 
1897 /**
1898  * qla2x00_flash_enable() - Setup flash for reading and writing.
1899  * @ha: HA context
1900  */
1901 static void
1902 qla2x00_flash_enable(struct qla_hw_data *ha)
1903 {
1904 	uint16_t data;
1905 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1906 
1907 	data = RD_REG_WORD(&reg->ctrl_status);
1908 	data |= CSR_FLASH_ENABLE;
1909 	WRT_REG_WORD(&reg->ctrl_status, data);
1910 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1911 }
1912 
1913 /**
1914  * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1915  * @ha: HA context
1916  */
1917 static void
1918 qla2x00_flash_disable(struct qla_hw_data *ha)
1919 {
1920 	uint16_t data;
1921 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1922 
1923 	data = RD_REG_WORD(&reg->ctrl_status);
1924 	data &= ~(CSR_FLASH_ENABLE);
1925 	WRT_REG_WORD(&reg->ctrl_status, data);
1926 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1927 }
1928 
1929 /**
1930  * qla2x00_read_flash_byte() - Reads a byte from flash
1931  * @ha: HA context
1932  * @addr: Address in flash to read
1933  *
1934  * A word is read from the chip, but, only the lower byte is valid.
1935  *
1936  * Returns the byte read from flash @addr.
1937  */
1938 static uint8_t
1939 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1940 {
1941 	uint16_t data;
1942 	uint16_t bank_select;
1943 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1944 
1945 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1946 
1947 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1948 		/* Specify 64K address range: */
1949 		/*  clear out Module Select and Flash Address bits [19:16]. */
1950 		bank_select &= ~0xf8;
1951 		bank_select |= addr >> 12 & 0xf0;
1952 		bank_select |= CSR_FLASH_64K_BANK;
1953 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1954 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1955 
1956 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1957 		data = RD_REG_WORD(&reg->flash_data);
1958 
1959 		return (uint8_t)data;
1960 	}
1961 
1962 	/* Setup bit 16 of flash address. */
1963 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1964 		bank_select |= CSR_FLASH_64K_BANK;
1965 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1966 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1967 	} else if (((addr & BIT_16) == 0) &&
1968 	    (bank_select & CSR_FLASH_64K_BANK)) {
1969 		bank_select &= ~(CSR_FLASH_64K_BANK);
1970 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1971 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1972 	}
1973 
1974 	/* Always perform IO mapped accesses to the FLASH registers. */
1975 	if (ha->pio_address) {
1976 		uint16_t data2;
1977 
1978 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1979 		do {
1980 			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1981 			barrier();
1982 			cpu_relax();
1983 			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1984 		} while (data != data2);
1985 	} else {
1986 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1987 		data = qla2x00_debounce_register(&reg->flash_data);
1988 	}
1989 
1990 	return (uint8_t)data;
1991 }
1992 
1993 /**
1994  * qla2x00_write_flash_byte() - Write a byte to flash
1995  * @ha: HA context
1996  * @addr: Address in flash to write
1997  * @data: Data to write
1998  */
1999 static void
2000 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
2001 {
2002 	uint16_t bank_select;
2003 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2004 
2005 	bank_select = RD_REG_WORD(&reg->ctrl_status);
2006 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2007 		/* Specify 64K address range: */
2008 		/*  clear out Module Select and Flash Address bits [19:16]. */
2009 		bank_select &= ~0xf8;
2010 		bank_select |= addr >> 12 & 0xf0;
2011 		bank_select |= CSR_FLASH_64K_BANK;
2012 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
2013 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
2014 
2015 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
2016 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
2017 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
2018 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
2019 
2020 		return;
2021 	}
2022 
2023 	/* Setup bit 16 of flash address. */
2024 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
2025 		bank_select |= CSR_FLASH_64K_BANK;
2026 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
2027 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
2028 	} else if (((addr & BIT_16) == 0) &&
2029 	    (bank_select & CSR_FLASH_64K_BANK)) {
2030 		bank_select &= ~(CSR_FLASH_64K_BANK);
2031 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
2032 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
2033 	}
2034 
2035 	/* Always perform IO mapped accesses to the FLASH registers. */
2036 	if (ha->pio_address) {
2037 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
2038 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
2039 	} else {
2040 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
2041 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
2042 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
2043 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
2044 	}
2045 }
2046 
2047 /**
2048  * qla2x00_poll_flash() - Polls flash for completion.
2049  * @ha: HA context
2050  * @addr: Address in flash to poll
2051  * @poll_data: Data to be polled
2052  * @man_id: Flash manufacturer ID
2053  * @flash_id: Flash ID
2054  *
2055  * This function polls the device until bit 7 of what is read matches data
2056  * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
2057  * out (a fatal error).  The flash book recommeds reading bit 7 again after
2058  * reading bit 5 as a 1.
2059  *
2060  * Returns 0 on success, else non-zero.
2061  */
2062 static int
2063 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
2064     uint8_t man_id, uint8_t flash_id)
2065 {
2066 	int status;
2067 	uint8_t flash_data;
2068 	uint32_t cnt;
2069 
2070 	status = 1;
2071 
2072 	/* Wait for 30 seconds for command to finish. */
2073 	poll_data &= BIT_7;
2074 	for (cnt = 3000000; cnt; cnt--) {
2075 		flash_data = qla2x00_read_flash_byte(ha, addr);
2076 		if ((flash_data & BIT_7) == poll_data) {
2077 			status = 0;
2078 			break;
2079 		}
2080 
2081 		if (man_id != 0x40 && man_id != 0xda) {
2082 			if ((flash_data & BIT_5) && cnt > 2)
2083 				cnt = 2;
2084 		}
2085 		udelay(10);
2086 		barrier();
2087 		cond_resched();
2088 	}
2089 	return status;
2090 }
2091 
2092 /**
2093  * qla2x00_program_flash_address() - Programs a flash address
2094  * @ha: HA context
2095  * @addr: Address in flash to program
2096  * @data: Data to be written in flash
2097  * @man_id: Flash manufacturer ID
2098  * @flash_id: Flash ID
2099  *
2100  * Returns 0 on success, else non-zero.
2101  */
2102 static int
2103 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
2104     uint8_t data, uint8_t man_id, uint8_t flash_id)
2105 {
2106 	/* Write Program Command Sequence. */
2107 	if (IS_OEM_001(ha)) {
2108 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2109 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
2110 		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
2111 		qla2x00_write_flash_byte(ha, addr, data);
2112 	} else {
2113 		if (man_id == 0xda && flash_id == 0xc1) {
2114 			qla2x00_write_flash_byte(ha, addr, data);
2115 			if (addr & 0x7e)
2116 				return 0;
2117 		} else {
2118 			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2119 			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2120 			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
2121 			qla2x00_write_flash_byte(ha, addr, data);
2122 		}
2123 	}
2124 
2125 	udelay(150);
2126 
2127 	/* Wait for write to complete. */
2128 	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
2129 }
2130 
2131 /**
2132  * qla2x00_erase_flash() - Erase the flash.
2133  * @ha: HA context
2134  * @man_id: Flash manufacturer ID
2135  * @flash_id: Flash ID
2136  *
2137  * Returns 0 on success, else non-zero.
2138  */
2139 static int
2140 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
2141 {
2142 	/* Individual Sector Erase Command Sequence */
2143 	if (IS_OEM_001(ha)) {
2144 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2145 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
2146 		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
2147 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2148 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
2149 		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
2150 	} else {
2151 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2152 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2153 		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
2154 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2155 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2156 		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
2157 	}
2158 
2159 	udelay(150);
2160 
2161 	/* Wait for erase to complete. */
2162 	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
2163 }
2164 
2165 /**
2166  * qla2x00_erase_flash_sector() - Erase a flash sector.
2167  * @ha: HA context
2168  * @addr: Flash sector to erase
2169  * @sec_mask: Sector address mask
2170  * @man_id: Flash manufacturer ID
2171  * @flash_id: Flash ID
2172  *
2173  * Returns 0 on success, else non-zero.
2174  */
2175 static int
2176 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
2177     uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
2178 {
2179 	/* Individual Sector Erase Command Sequence */
2180 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2181 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2182 	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
2183 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2184 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2185 	if (man_id == 0x1f && flash_id == 0x13)
2186 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
2187 	else
2188 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
2189 
2190 	udelay(150);
2191 
2192 	/* Wait for erase to complete. */
2193 	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
2194 }
2195 
2196 /**
2197  * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
2198  * @man_id: Flash manufacturer ID
2199  * @flash_id: Flash ID
2200  */
2201 static void
2202 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
2203     uint8_t *flash_id)
2204 {
2205 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2206 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2207 	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
2208 	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
2209 	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
2210 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2211 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2212 	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
2213 }
2214 
2215 static void
2216 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
2217 	uint32_t saddr, uint32_t length)
2218 {
2219 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2220 	uint32_t midpoint, ilength;
2221 	uint8_t data;
2222 
2223 	midpoint = length / 2;
2224 
2225 	WRT_REG_WORD(&reg->nvram, 0);
2226 	RD_REG_WORD(&reg->nvram);
2227 	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
2228 		if (ilength == midpoint) {
2229 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2230 			RD_REG_WORD(&reg->nvram);
2231 		}
2232 		data = qla2x00_read_flash_byte(ha, saddr);
2233 		if (saddr % 100)
2234 			udelay(10);
2235 		*tmp_buf = data;
2236 		cond_resched();
2237 	}
2238 }
2239 
2240 static inline void
2241 qla2x00_suspend_hba(struct scsi_qla_host *vha)
2242 {
2243 	int cnt;
2244 	unsigned long flags;
2245 	struct qla_hw_data *ha = vha->hw;
2246 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2247 
2248 	/* Suspend HBA. */
2249 	scsi_block_requests(vha->host);
2250 	ha->isp_ops->disable_intrs(ha);
2251 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2252 
2253 	/* Pause RISC. */
2254 	spin_lock_irqsave(&ha->hardware_lock, flags);
2255 	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
2256 	RD_REG_WORD(&reg->hccr);
2257 	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
2258 		for (cnt = 0; cnt < 30000; cnt++) {
2259 			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
2260 				break;
2261 			udelay(100);
2262 		}
2263 	} else {
2264 		udelay(10);
2265 	}
2266 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
2267 }
2268 
2269 static inline void
2270 qla2x00_resume_hba(struct scsi_qla_host *vha)
2271 {
2272 	struct qla_hw_data *ha = vha->hw;
2273 
2274 	/* Resume HBA. */
2275 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2276 	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
2277 	qla2xxx_wake_dpc(vha);
2278 	qla2x00_wait_for_chip_reset(vha);
2279 	scsi_unblock_requests(vha->host);
2280 }
2281 
2282 uint8_t *
2283 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2284     uint32_t offset, uint32_t length)
2285 {
2286 	uint32_t addr, midpoint;
2287 	uint8_t *data;
2288 	struct qla_hw_data *ha = vha->hw;
2289 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2290 
2291 	/* Suspend HBA. */
2292 	qla2x00_suspend_hba(vha);
2293 
2294 	/* Go with read. */
2295 	midpoint = ha->optrom_size / 2;
2296 
2297 	qla2x00_flash_enable(ha);
2298 	WRT_REG_WORD(&reg->nvram, 0);
2299 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
2300 	for (addr = offset, data = buf; addr < length; addr++, data++) {
2301 		if (addr == midpoint) {
2302 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2303 			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
2304 		}
2305 
2306 		*data = qla2x00_read_flash_byte(ha, addr);
2307 	}
2308 	qla2x00_flash_disable(ha);
2309 
2310 	/* Resume HBA. */
2311 	qla2x00_resume_hba(vha);
2312 
2313 	return buf;
2314 }
2315 
2316 int
2317 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2318     uint32_t offset, uint32_t length)
2319 {
2320 
2321 	int rval;
2322 	uint8_t man_id, flash_id, sec_number, data;
2323 	uint16_t wd;
2324 	uint32_t addr, liter, sec_mask, rest_addr;
2325 	struct qla_hw_data *ha = vha->hw;
2326 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2327 
2328 	/* Suspend HBA. */
2329 	qla2x00_suspend_hba(vha);
2330 
2331 	rval = QLA_SUCCESS;
2332 	sec_number = 0;
2333 
2334 	/* Reset ISP chip. */
2335 	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
2336 	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
2337 
2338 	/* Go with write. */
2339 	qla2x00_flash_enable(ha);
2340 	do {	/* Loop once to provide quick error exit */
2341 		/* Structure of flash memory based on manufacturer */
2342 		if (IS_OEM_001(ha)) {
2343 			/* OEM variant with special flash part. */
2344 			man_id = flash_id = 0;
2345 			rest_addr = 0xffff;
2346 			sec_mask   = 0x10000;
2347 			goto update_flash;
2348 		}
2349 		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
2350 		switch (man_id) {
2351 		case 0x20: /* ST flash. */
2352 			if (flash_id == 0xd2 || flash_id == 0xe3) {
2353 				/*
2354 				 * ST m29w008at part - 64kb sector size with
2355 				 * 32kb,8kb,8kb,16kb sectors at memory address
2356 				 * 0xf0000.
2357 				 */
2358 				rest_addr = 0xffff;
2359 				sec_mask = 0x10000;
2360 				break;
2361 			}
2362 			/*
2363 			 * ST m29w010b part - 16kb sector size
2364 			 * Default to 16kb sectors
2365 			 */
2366 			rest_addr = 0x3fff;
2367 			sec_mask = 0x1c000;
2368 			break;
2369 		case 0x40: /* Mostel flash. */
2370 			/* Mostel v29c51001 part - 512 byte sector size. */
2371 			rest_addr = 0x1ff;
2372 			sec_mask = 0x1fe00;
2373 			break;
2374 		case 0xbf: /* SST flash. */
2375 			/* SST39sf10 part - 4kb sector size. */
2376 			rest_addr = 0xfff;
2377 			sec_mask = 0x1f000;
2378 			break;
2379 		case 0xda: /* Winbond flash. */
2380 			/* Winbond W29EE011 part - 256 byte sector size. */
2381 			rest_addr = 0x7f;
2382 			sec_mask = 0x1ff80;
2383 			break;
2384 		case 0xc2: /* Macronix flash. */
2385 			/* 64k sector size. */
2386 			if (flash_id == 0x38 || flash_id == 0x4f) {
2387 				rest_addr = 0xffff;
2388 				sec_mask = 0x10000;
2389 				break;
2390 			}
2391 			/* Fall through... */
2392 
2393 		case 0x1f: /* Atmel flash. */
2394 			/* 512k sector size. */
2395 			if (flash_id == 0x13) {
2396 				rest_addr = 0x7fffffff;
2397 				sec_mask =   0x80000000;
2398 				break;
2399 			}
2400 			/* Fall through... */
2401 
2402 		case 0x01: /* AMD flash. */
2403 			if (flash_id == 0x38 || flash_id == 0x40 ||
2404 			    flash_id == 0x4f) {
2405 				/* Am29LV081 part - 64kb sector size. */
2406 				/* Am29LV002BT part - 64kb sector size. */
2407 				rest_addr = 0xffff;
2408 				sec_mask = 0x10000;
2409 				break;
2410 			} else if (flash_id == 0x3e) {
2411 				/*
2412 				 * Am29LV008b part - 64kb sector size with
2413 				 * 32kb,8kb,8kb,16kb sector at memory address
2414 				 * h0xf0000.
2415 				 */
2416 				rest_addr = 0xffff;
2417 				sec_mask = 0x10000;
2418 				break;
2419 			} else if (flash_id == 0x20 || flash_id == 0x6e) {
2420 				/*
2421 				 * Am29LV010 part or AM29f010 - 16kb sector
2422 				 * size.
2423 				 */
2424 				rest_addr = 0x3fff;
2425 				sec_mask = 0x1c000;
2426 				break;
2427 			} else if (flash_id == 0x6d) {
2428 				/* Am29LV001 part - 8kb sector size. */
2429 				rest_addr = 0x1fff;
2430 				sec_mask = 0x1e000;
2431 				break;
2432 			}
2433 		default:
2434 			/* Default to 16 kb sector size. */
2435 			rest_addr = 0x3fff;
2436 			sec_mask = 0x1c000;
2437 			break;
2438 		}
2439 
2440 update_flash:
2441 		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2442 			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2443 				rval = QLA_FUNCTION_FAILED;
2444 				break;
2445 			}
2446 		}
2447 
2448 		for (addr = offset, liter = 0; liter < length; liter++,
2449 		    addr++) {
2450 			data = buf[liter];
2451 			/* Are we at the beginning of a sector? */
2452 			if ((addr & rest_addr) == 0) {
2453 				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2454 					if (addr >= 0x10000UL) {
2455 						if (((addr >> 12) & 0xf0) &&
2456 						    ((man_id == 0x01 &&
2457 							flash_id == 0x3e) ||
2458 						     (man_id == 0x20 &&
2459 							 flash_id == 0xd2))) {
2460 							sec_number++;
2461 							if (sec_number == 1) {
2462 								rest_addr =
2463 								    0x7fff;
2464 								sec_mask =
2465 								    0x18000;
2466 							} else if (
2467 							    sec_number == 2 ||
2468 							    sec_number == 3) {
2469 								rest_addr =
2470 								    0x1fff;
2471 								sec_mask =
2472 								    0x1e000;
2473 							} else if (
2474 							    sec_number == 4) {
2475 								rest_addr =
2476 								    0x3fff;
2477 								sec_mask =
2478 								    0x1c000;
2479 							}
2480 						}
2481 					}
2482 				} else if (addr == ha->optrom_size / 2) {
2483 					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2484 					RD_REG_WORD(&reg->nvram);
2485 				}
2486 
2487 				if (flash_id == 0xda && man_id == 0xc1) {
2488 					qla2x00_write_flash_byte(ha, 0x5555,
2489 					    0xaa);
2490 					qla2x00_write_flash_byte(ha, 0x2aaa,
2491 					    0x55);
2492 					qla2x00_write_flash_byte(ha, 0x5555,
2493 					    0xa0);
2494 				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2495 					/* Then erase it */
2496 					if (qla2x00_erase_flash_sector(ha,
2497 					    addr, sec_mask, man_id,
2498 					    flash_id)) {
2499 						rval = QLA_FUNCTION_FAILED;
2500 						break;
2501 					}
2502 					if (man_id == 0x01 && flash_id == 0x6d)
2503 						sec_number++;
2504 				}
2505 			}
2506 
2507 			if (man_id == 0x01 && flash_id == 0x6d) {
2508 				if (sec_number == 1 &&
2509 				    addr == (rest_addr - 1)) {
2510 					rest_addr = 0x0fff;
2511 					sec_mask   = 0x1f000;
2512 				} else if (sec_number == 3 && (addr & 0x7ffe)) {
2513 					rest_addr = 0x3fff;
2514 					sec_mask   = 0x1c000;
2515 				}
2516 			}
2517 
2518 			if (qla2x00_program_flash_address(ha, addr, data,
2519 			    man_id, flash_id)) {
2520 				rval = QLA_FUNCTION_FAILED;
2521 				break;
2522 			}
2523 			cond_resched();
2524 		}
2525 	} while (0);
2526 	qla2x00_flash_disable(ha);
2527 
2528 	/* Resume HBA. */
2529 	qla2x00_resume_hba(vha);
2530 
2531 	return rval;
2532 }
2533 
2534 uint8_t *
2535 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2536     uint32_t offset, uint32_t length)
2537 {
2538 	struct qla_hw_data *ha = vha->hw;
2539 
2540 	/* Suspend HBA. */
2541 	scsi_block_requests(vha->host);
2542 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2543 
2544 	/* Go with read. */
2545 	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2546 
2547 	/* Resume HBA. */
2548 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2549 	scsi_unblock_requests(vha->host);
2550 
2551 	return buf;
2552 }
2553 
2554 int
2555 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2556     uint32_t offset, uint32_t length)
2557 {
2558 	int rval;
2559 	struct qla_hw_data *ha = vha->hw;
2560 
2561 	/* Suspend HBA. */
2562 	scsi_block_requests(vha->host);
2563 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2564 
2565 	/* Go with write. */
2566 	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2567 	    length >> 2);
2568 
2569 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2570 	scsi_unblock_requests(vha->host);
2571 
2572 	return rval;
2573 }
2574 
2575 uint8_t *
2576 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2577     uint32_t offset, uint32_t length)
2578 {
2579 	int rval;
2580 	dma_addr_t optrom_dma;
2581 	void *optrom;
2582 	uint8_t *pbuf;
2583 	uint32_t faddr, left, burst;
2584 	struct qla_hw_data *ha = vha->hw;
2585 
2586 	if (IS_QLA25XX(ha) || IS_QLA81XX(ha) || IS_QLA83XX(ha) ||
2587 	    IS_QLA27XX(ha))
2588 		goto try_fast;
2589 	if (offset & 0xfff)
2590 		goto slow_read;
2591 	if (length < OPTROM_BURST_SIZE)
2592 		goto slow_read;
2593 
2594 try_fast:
2595 	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2596 	    &optrom_dma, GFP_KERNEL);
2597 	if (!optrom) {
2598 		ql_log(ql_log_warn, vha, 0x00cc,
2599 		    "Unable to allocate memory for optrom burst read (%x KB).\n",
2600 		    OPTROM_BURST_SIZE / 1024);
2601 		goto slow_read;
2602 	}
2603 
2604 	pbuf = buf;
2605 	faddr = offset >> 2;
2606 	left = length >> 2;
2607 	burst = OPTROM_BURST_DWORDS;
2608 	while (left != 0) {
2609 		if (burst > left)
2610 			burst = left;
2611 
2612 		rval = qla2x00_dump_ram(vha, optrom_dma,
2613 		    flash_data_addr(ha, faddr), burst);
2614 		if (rval) {
2615 			ql_log(ql_log_warn, vha, 0x00f5,
2616 			    "Unable to burst-read optrom segment (%x/%x/%llx).\n",
2617 			    rval, flash_data_addr(ha, faddr),
2618 			    (unsigned long long)optrom_dma);
2619 			ql_log(ql_log_warn, vha, 0x00f6,
2620 			    "Reverting to slow-read.\n");
2621 
2622 			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2623 			    optrom, optrom_dma);
2624 			goto slow_read;
2625 		}
2626 
2627 		memcpy(pbuf, optrom, burst * 4);
2628 
2629 		left -= burst;
2630 		faddr += burst;
2631 		pbuf += burst * 4;
2632 	}
2633 
2634 	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2635 	    optrom_dma);
2636 
2637 	return buf;
2638 
2639 slow_read:
2640     return qla24xx_read_optrom_data(vha, buf, offset, length);
2641 }
2642 
2643 /**
2644  * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2645  * @ha: HA context
2646  * @pcids: Pointer to the FCODE PCI data structure
2647  *
2648  * The process of retrieving the FCODE version information is at best
2649  * described as interesting.
2650  *
2651  * Within the first 100h bytes of the image an ASCII string is present
2652  * which contains several pieces of information including the FCODE
2653  * version.  Unfortunately it seems the only reliable way to retrieve
2654  * the version is by scanning for another sentinel within the string,
2655  * the FCODE build date:
2656  *
2657  *	... 2.00.02 10/17/02 ...
2658  *
2659  * Returns QLA_SUCCESS on successful retrieval of version.
2660  */
2661 static void
2662 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2663 {
2664 	int ret = QLA_FUNCTION_FAILED;
2665 	uint32_t istart, iend, iter, vend;
2666 	uint8_t do_next, rbyte, *vbyte;
2667 
2668 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2669 
2670 	/* Skip the PCI data structure. */
2671 	istart = pcids +
2672 	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2673 		qla2x00_read_flash_byte(ha, pcids + 0x0A));
2674 	iend = istart + 0x100;
2675 	do {
2676 		/* Scan for the sentinel date string...eeewww. */
2677 		do_next = 0;
2678 		iter = istart;
2679 		while ((iter < iend) && !do_next) {
2680 			iter++;
2681 			if (qla2x00_read_flash_byte(ha, iter) == '/') {
2682 				if (qla2x00_read_flash_byte(ha, iter + 2) ==
2683 				    '/')
2684 					do_next++;
2685 				else if (qla2x00_read_flash_byte(ha,
2686 				    iter + 3) == '/')
2687 					do_next++;
2688 			}
2689 		}
2690 		if (!do_next)
2691 			break;
2692 
2693 		/* Backtrack to previous ' ' (space). */
2694 		do_next = 0;
2695 		while ((iter > istart) && !do_next) {
2696 			iter--;
2697 			if (qla2x00_read_flash_byte(ha, iter) == ' ')
2698 				do_next++;
2699 		}
2700 		if (!do_next)
2701 			break;
2702 
2703 		/*
2704 		 * Mark end of version tag, and find previous ' ' (space) or
2705 		 * string length (recent FCODE images -- major hack ahead!!!).
2706 		 */
2707 		vend = iter - 1;
2708 		do_next = 0;
2709 		while ((iter > istart) && !do_next) {
2710 			iter--;
2711 			rbyte = qla2x00_read_flash_byte(ha, iter);
2712 			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2713 				do_next++;
2714 		}
2715 		if (!do_next)
2716 			break;
2717 
2718 		/* Mark beginning of version tag, and copy data. */
2719 		iter++;
2720 		if ((vend - iter) &&
2721 		    ((vend - iter) < sizeof(ha->fcode_revision))) {
2722 			vbyte = ha->fcode_revision;
2723 			while (iter <= vend) {
2724 				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
2725 				iter++;
2726 			}
2727 			ret = QLA_SUCCESS;
2728 		}
2729 	} while (0);
2730 
2731 	if (ret != QLA_SUCCESS)
2732 		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2733 }
2734 
2735 int
2736 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2737 {
2738 	int ret = QLA_SUCCESS;
2739 	uint8_t code_type, last_image;
2740 	uint32_t pcihdr, pcids;
2741 	uint8_t *dbyte;
2742 	uint16_t *dcode;
2743 	struct qla_hw_data *ha = vha->hw;
2744 
2745 	if (!ha->pio_address || !mbuf)
2746 		return QLA_FUNCTION_FAILED;
2747 
2748 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2749 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2750 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2751 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2752 
2753 	qla2x00_flash_enable(ha);
2754 
2755 	/* Begin with first PCI expansion ROM header. */
2756 	pcihdr = 0;
2757 	last_image = 1;
2758 	do {
2759 		/* Verify PCI expansion ROM header. */
2760 		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2761 		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2762 			/* No signature */
2763 			ql_log(ql_log_fatal, vha, 0x0050,
2764 			    "No matching ROM signature.\n");
2765 			ret = QLA_FUNCTION_FAILED;
2766 			break;
2767 		}
2768 
2769 		/* Locate PCI data structure. */
2770 		pcids = pcihdr +
2771 		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2772 			qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2773 
2774 		/* Validate signature of PCI data structure. */
2775 		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2776 		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2777 		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2778 		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2779 			/* Incorrect header. */
2780 			ql_log(ql_log_fatal, vha, 0x0051,
2781 			    "PCI data struct not found pcir_adr=%x.\n", pcids);
2782 			ret = QLA_FUNCTION_FAILED;
2783 			break;
2784 		}
2785 
2786 		/* Read version */
2787 		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2788 		switch (code_type) {
2789 		case ROM_CODE_TYPE_BIOS:
2790 			/* Intel x86, PC-AT compatible. */
2791 			ha->bios_revision[0] =
2792 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2793 			ha->bios_revision[1] =
2794 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2795 			ql_dbg(ql_dbg_init, vha, 0x0052,
2796 			    "Read BIOS %d.%d.\n",
2797 			    ha->bios_revision[1], ha->bios_revision[0]);
2798 			break;
2799 		case ROM_CODE_TYPE_FCODE:
2800 			/* Open Firmware standard for PCI (FCode). */
2801 			/* Eeeewww... */
2802 			qla2x00_get_fcode_version(ha, pcids);
2803 			break;
2804 		case ROM_CODE_TYPE_EFI:
2805 			/* Extensible Firmware Interface (EFI). */
2806 			ha->efi_revision[0] =
2807 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2808 			ha->efi_revision[1] =
2809 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2810 			ql_dbg(ql_dbg_init, vha, 0x0053,
2811 			    "Read EFI %d.%d.\n",
2812 			    ha->efi_revision[1], ha->efi_revision[0]);
2813 			break;
2814 		default:
2815 			ql_log(ql_log_warn, vha, 0x0054,
2816 			    "Unrecognized code type %x at pcids %x.\n",
2817 			    code_type, pcids);
2818 			break;
2819 		}
2820 
2821 		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2822 
2823 		/* Locate next PCI expansion ROM. */
2824 		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2825 		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2826 	} while (!last_image);
2827 
2828 	if (IS_QLA2322(ha)) {
2829 		/* Read firmware image information. */
2830 		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2831 		dbyte = mbuf;
2832 		memset(dbyte, 0, 8);
2833 		dcode = (uint16_t *)dbyte;
2834 
2835 		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2836 		    8);
2837 		ql_dbg(ql_dbg_init + ql_dbg_buffer, vha, 0x010a,
2838 		    "Dumping fw "
2839 		    "ver from flash:.\n");
2840 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010b,
2841 		    (uint8_t *)dbyte, 8);
2842 
2843 		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2844 		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2845 		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2846 		    dcode[3] == 0)) {
2847 			ql_log(ql_log_warn, vha, 0x0057,
2848 			    "Unrecognized fw revision at %x.\n",
2849 			    ha->flt_region_fw * 4);
2850 		} else {
2851 			/* values are in big endian */
2852 			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2853 			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2854 			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2855 			ql_dbg(ql_dbg_init, vha, 0x0058,
2856 			    "FW Version: "
2857 			    "%d.%d.%d.\n", ha->fw_revision[0],
2858 			    ha->fw_revision[1], ha->fw_revision[2]);
2859 		}
2860 	}
2861 
2862 	qla2x00_flash_disable(ha);
2863 
2864 	return ret;
2865 }
2866 
2867 int
2868 qla82xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2869 {
2870 	int ret = QLA_SUCCESS;
2871 	uint32_t pcihdr, pcids;
2872 	uint32_t *dcode;
2873 	uint8_t *bcode;
2874 	uint8_t code_type, last_image;
2875 	struct qla_hw_data *ha = vha->hw;
2876 
2877 	if (!mbuf)
2878 		return QLA_FUNCTION_FAILED;
2879 
2880 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2881 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2882 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2883 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2884 
2885 	dcode = mbuf;
2886 
2887 	/* Begin with first PCI expansion ROM header. */
2888 	pcihdr = ha->flt_region_boot << 2;
2889 	last_image = 1;
2890 	do {
2891 		/* Verify PCI expansion ROM header. */
2892 		ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, pcihdr,
2893 		    0x20 * 4);
2894 		bcode = mbuf + (pcihdr % 4);
2895 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2896 			/* No signature */
2897 			ql_log(ql_log_fatal, vha, 0x0154,
2898 			    "No matching ROM signature.\n");
2899 			ret = QLA_FUNCTION_FAILED;
2900 			break;
2901 		}
2902 
2903 		/* Locate PCI data structure. */
2904 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2905 
2906 		ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, pcids,
2907 		    0x20 * 4);
2908 		bcode = mbuf + (pcihdr % 4);
2909 
2910 		/* Validate signature of PCI data structure. */
2911 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2912 		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2913 			/* Incorrect header. */
2914 			ql_log(ql_log_fatal, vha, 0x0155,
2915 			    "PCI data struct not found pcir_adr=%x.\n", pcids);
2916 			ret = QLA_FUNCTION_FAILED;
2917 			break;
2918 		}
2919 
2920 		/* Read version */
2921 		code_type = bcode[0x14];
2922 		switch (code_type) {
2923 		case ROM_CODE_TYPE_BIOS:
2924 			/* Intel x86, PC-AT compatible. */
2925 			ha->bios_revision[0] = bcode[0x12];
2926 			ha->bios_revision[1] = bcode[0x13];
2927 			ql_dbg(ql_dbg_init, vha, 0x0156,
2928 			    "Read BIOS %d.%d.\n",
2929 			    ha->bios_revision[1], ha->bios_revision[0]);
2930 			break;
2931 		case ROM_CODE_TYPE_FCODE:
2932 			/* Open Firmware standard for PCI (FCode). */
2933 			ha->fcode_revision[0] = bcode[0x12];
2934 			ha->fcode_revision[1] = bcode[0x13];
2935 			ql_dbg(ql_dbg_init, vha, 0x0157,
2936 			    "Read FCODE %d.%d.\n",
2937 			    ha->fcode_revision[1], ha->fcode_revision[0]);
2938 			break;
2939 		case ROM_CODE_TYPE_EFI:
2940 			/* Extensible Firmware Interface (EFI). */
2941 			ha->efi_revision[0] = bcode[0x12];
2942 			ha->efi_revision[1] = bcode[0x13];
2943 			ql_dbg(ql_dbg_init, vha, 0x0158,
2944 			    "Read EFI %d.%d.\n",
2945 			    ha->efi_revision[1], ha->efi_revision[0]);
2946 			break;
2947 		default:
2948 			ql_log(ql_log_warn, vha, 0x0159,
2949 			    "Unrecognized code type %x at pcids %x.\n",
2950 			    code_type, pcids);
2951 			break;
2952 		}
2953 
2954 		last_image = bcode[0x15] & BIT_7;
2955 
2956 		/* Locate next PCI expansion ROM. */
2957 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2958 	} while (!last_image);
2959 
2960 	/* Read firmware image information. */
2961 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2962 	dcode = mbuf;
2963 	ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, ha->flt_region_fw << 2,
2964 	    0x20);
2965 	bcode = mbuf + (pcihdr % 4);
2966 
2967 	/* Validate signature of PCI data structure. */
2968 	if (bcode[0x0] == 0x3 && bcode[0x1] == 0x0 &&
2969 	    bcode[0x2] == 0x40 && bcode[0x3] == 0x40) {
2970 		ha->fw_revision[0] = bcode[0x4];
2971 		ha->fw_revision[1] = bcode[0x5];
2972 		ha->fw_revision[2] = bcode[0x6];
2973 		ql_dbg(ql_dbg_init, vha, 0x0153,
2974 		    "Firmware revision %d.%d.%d\n",
2975 		    ha->fw_revision[0], ha->fw_revision[1],
2976 		    ha->fw_revision[2]);
2977 	}
2978 
2979 	return ret;
2980 }
2981 
2982 int
2983 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2984 {
2985 	int ret = QLA_SUCCESS;
2986 	uint32_t pcihdr, pcids;
2987 	uint32_t *dcode;
2988 	uint8_t *bcode;
2989 	uint8_t code_type, last_image;
2990 	int i;
2991 	struct qla_hw_data *ha = vha->hw;
2992 
2993 	if (IS_P3P_TYPE(ha))
2994 		return ret;
2995 
2996 	if (!mbuf)
2997 		return QLA_FUNCTION_FAILED;
2998 
2999 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
3000 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
3001 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
3002 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
3003 
3004 	dcode = mbuf;
3005 
3006 	/* Begin with first PCI expansion ROM header. */
3007 	pcihdr = ha->flt_region_boot << 2;
3008 	last_image = 1;
3009 	do {
3010 		/* Verify PCI expansion ROM header. */
3011 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
3012 		bcode = mbuf + (pcihdr % 4);
3013 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
3014 			/* No signature */
3015 			ql_log(ql_log_fatal, vha, 0x0059,
3016 			    "No matching ROM signature.\n");
3017 			ret = QLA_FUNCTION_FAILED;
3018 			break;
3019 		}
3020 
3021 		/* Locate PCI data structure. */
3022 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
3023 
3024 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
3025 		bcode = mbuf + (pcihdr % 4);
3026 
3027 		/* Validate signature of PCI data structure. */
3028 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
3029 		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
3030 			/* Incorrect header. */
3031 			ql_log(ql_log_fatal, vha, 0x005a,
3032 			    "PCI data struct not found pcir_adr=%x.\n", pcids);
3033 			ret = QLA_FUNCTION_FAILED;
3034 			break;
3035 		}
3036 
3037 		/* Read version */
3038 		code_type = bcode[0x14];
3039 		switch (code_type) {
3040 		case ROM_CODE_TYPE_BIOS:
3041 			/* Intel x86, PC-AT compatible. */
3042 			ha->bios_revision[0] = bcode[0x12];
3043 			ha->bios_revision[1] = bcode[0x13];
3044 			ql_dbg(ql_dbg_init, vha, 0x005b,
3045 			    "Read BIOS %d.%d.\n",
3046 			    ha->bios_revision[1], ha->bios_revision[0]);
3047 			break;
3048 		case ROM_CODE_TYPE_FCODE:
3049 			/* Open Firmware standard for PCI (FCode). */
3050 			ha->fcode_revision[0] = bcode[0x12];
3051 			ha->fcode_revision[1] = bcode[0x13];
3052 			ql_dbg(ql_dbg_init, vha, 0x005c,
3053 			    "Read FCODE %d.%d.\n",
3054 			    ha->fcode_revision[1], ha->fcode_revision[0]);
3055 			break;
3056 		case ROM_CODE_TYPE_EFI:
3057 			/* Extensible Firmware Interface (EFI). */
3058 			ha->efi_revision[0] = bcode[0x12];
3059 			ha->efi_revision[1] = bcode[0x13];
3060 			ql_dbg(ql_dbg_init, vha, 0x005d,
3061 			    "Read EFI %d.%d.\n",
3062 			    ha->efi_revision[1], ha->efi_revision[0]);
3063 			break;
3064 		default:
3065 			ql_log(ql_log_warn, vha, 0x005e,
3066 			    "Unrecognized code type %x at pcids %x.\n",
3067 			    code_type, pcids);
3068 			break;
3069 		}
3070 
3071 		last_image = bcode[0x15] & BIT_7;
3072 
3073 		/* Locate next PCI expansion ROM. */
3074 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
3075 	} while (!last_image);
3076 
3077 	/* Read firmware image information. */
3078 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
3079 	dcode = mbuf;
3080 
3081 	qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
3082 	for (i = 0; i < 4; i++)
3083 		dcode[i] = be32_to_cpu(dcode[i]);
3084 
3085 	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
3086 	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
3087 	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
3088 	    dcode[3] == 0)) {
3089 		ql_log(ql_log_warn, vha, 0x005f,
3090 		    "Unrecognized fw revision at %x.\n",
3091 		    ha->flt_region_fw * 4);
3092 	} else {
3093 		ha->fw_revision[0] = dcode[0];
3094 		ha->fw_revision[1] = dcode[1];
3095 		ha->fw_revision[2] = dcode[2];
3096 		ha->fw_revision[3] = dcode[3];
3097 		ql_dbg(ql_dbg_init, vha, 0x0060,
3098 		    "Firmware revision %d.%d.%d (%x).\n",
3099 		    ha->fw_revision[0], ha->fw_revision[1],
3100 		    ha->fw_revision[2], ha->fw_revision[3]);
3101 	}
3102 
3103 	/* Check for golden firmware and get version if available */
3104 	if (!IS_QLA81XX(ha)) {
3105 		/* Golden firmware is not present in non 81XX adapters */
3106 		return ret;
3107 	}
3108 
3109 	memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version));
3110 	dcode = mbuf;
3111 	ha->isp_ops->read_optrom(vha, (uint8_t *)dcode,
3112 	    ha->flt_region_gold_fw << 2, 32);
3113 
3114 	if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF &&
3115 	    dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) {
3116 		ql_log(ql_log_warn, vha, 0x0056,
3117 		    "Unrecognized golden fw at 0x%x.\n",
3118 		    ha->flt_region_gold_fw * 4);
3119 		return ret;
3120 	}
3121 
3122 	for (i = 4; i < 8; i++)
3123 		ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]);
3124 
3125 	return ret;
3126 }
3127 
3128 static int
3129 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
3130 {
3131 	if (pos >= end || *pos != 0x82)
3132 		return 0;
3133 
3134 	pos += 3 + pos[1];
3135 	if (pos >= end || *pos != 0x90)
3136 		return 0;
3137 
3138 	pos += 3 + pos[1];
3139 	if (pos >= end || *pos != 0x78)
3140 		return 0;
3141 
3142 	return 1;
3143 }
3144 
3145 int
3146 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
3147 {
3148 	struct qla_hw_data *ha = vha->hw;
3149 	uint8_t *pos = ha->vpd;
3150 	uint8_t *end = pos + ha->vpd_size;
3151 	int len = 0;
3152 
3153 	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
3154 		return 0;
3155 
3156 	while (pos < end && *pos != 0x78) {
3157 		len = (*pos == 0x82) ? pos[1] : pos[2];
3158 
3159 		if (!strncmp(pos, key, strlen(key)))
3160 			break;
3161 
3162 		if (*pos != 0x90 && *pos != 0x91)
3163 			pos += len;
3164 
3165 		pos += 3;
3166 	}
3167 
3168 	if (pos < end - len && *pos != 0x78)
3169 		return scnprintf(str, size, "%.*s", len, pos + 3);
3170 
3171 	return 0;
3172 }
3173 
3174 int
3175 qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha)
3176 {
3177 	int len, max_len;
3178 	uint32_t fcp_prio_addr;
3179 	struct qla_hw_data *ha = vha->hw;
3180 
3181 	if (!ha->fcp_prio_cfg) {
3182 		ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE);
3183 		if (!ha->fcp_prio_cfg) {
3184 			ql_log(ql_log_warn, vha, 0x00d5,
3185 			    "Unable to allocate memory for fcp priorty data (%x).\n",
3186 			    FCP_PRIO_CFG_SIZE);
3187 			return QLA_FUNCTION_FAILED;
3188 		}
3189 	}
3190 	memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE);
3191 
3192 	fcp_prio_addr = ha->flt_region_fcp_prio;
3193 
3194 	/* first read the fcp priority data header from flash */
3195 	ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
3196 			fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);
3197 
3198 	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 0))
3199 		goto fail;
3200 
3201 	/* read remaining FCP CMD config data from flash */
3202 	fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
3203 	len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
3204 	max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE;
3205 
3206 	ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
3207 			fcp_prio_addr << 2, (len < max_len ? len : max_len));
3208 
3209 	/* revalidate the entire FCP priority config data, including entries */
3210 	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 1))
3211 		goto fail;
3212 
3213 	ha->flags.fcp_prio_enabled = 1;
3214 	return QLA_SUCCESS;
3215 fail:
3216 	vfree(ha->fcp_prio_cfg);
3217 	ha->fcp_prio_cfg = NULL;
3218 	return QLA_FUNCTION_FAILED;
3219 }
3220