1 /* 2 * QLogic Fibre Channel HBA Driver 3 * Copyright (c) 2003-2014 QLogic Corporation 4 * 5 * See LICENSE.qla2xxx for copyright and licensing details. 6 */ 7 #include "qla_def.h" 8 9 #include <linux/delay.h> 10 #include <linux/slab.h> 11 #include <linux/vmalloc.h> 12 #include <asm/uaccess.h> 13 14 /* 15 * NVRAM support routines 16 */ 17 18 /** 19 * qla2x00_lock_nvram_access() - 20 * @ha: HA context 21 */ 22 static void 23 qla2x00_lock_nvram_access(struct qla_hw_data *ha) 24 { 25 uint16_t data; 26 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; 27 28 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) { 29 data = RD_REG_WORD(®->nvram); 30 while (data & NVR_BUSY) { 31 udelay(100); 32 data = RD_REG_WORD(®->nvram); 33 } 34 35 /* Lock resource */ 36 WRT_REG_WORD(®->u.isp2300.host_semaphore, 0x1); 37 RD_REG_WORD(®->u.isp2300.host_semaphore); 38 udelay(5); 39 data = RD_REG_WORD(®->u.isp2300.host_semaphore); 40 while ((data & BIT_0) == 0) { 41 /* Lock failed */ 42 udelay(100); 43 WRT_REG_WORD(®->u.isp2300.host_semaphore, 0x1); 44 RD_REG_WORD(®->u.isp2300.host_semaphore); 45 udelay(5); 46 data = RD_REG_WORD(®->u.isp2300.host_semaphore); 47 } 48 } 49 } 50 51 /** 52 * qla2x00_unlock_nvram_access() - 53 * @ha: HA context 54 */ 55 static void 56 qla2x00_unlock_nvram_access(struct qla_hw_data *ha) 57 { 58 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; 59 60 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) { 61 WRT_REG_WORD(®->u.isp2300.host_semaphore, 0); 62 RD_REG_WORD(®->u.isp2300.host_semaphore); 63 } 64 } 65 66 /** 67 * qla2x00_nv_write() - Prepare for NVRAM read/write operation. 68 * @ha: HA context 69 * @data: Serial interface selector 70 */ 71 static void 72 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data) 73 { 74 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; 75 76 WRT_REG_WORD(®->nvram, data | NVR_SELECT | NVR_WRT_ENABLE); 77 RD_REG_WORD(®->nvram); /* PCI Posting. */ 78 NVRAM_DELAY(); 79 WRT_REG_WORD(®->nvram, data | NVR_SELECT | NVR_CLOCK | 80 NVR_WRT_ENABLE); 81 RD_REG_WORD(®->nvram); /* PCI Posting. */ 82 NVRAM_DELAY(); 83 WRT_REG_WORD(®->nvram, data | NVR_SELECT | NVR_WRT_ENABLE); 84 RD_REG_WORD(®->nvram); /* PCI Posting. */ 85 NVRAM_DELAY(); 86 } 87 88 /** 89 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from 90 * NVRAM. 91 * @ha: HA context 92 * @nv_cmd: NVRAM command 93 * 94 * Bit definitions for NVRAM command: 95 * 96 * Bit 26 = start bit 97 * Bit 25, 24 = opcode 98 * Bit 23-16 = address 99 * Bit 15-0 = write data 100 * 101 * Returns the word read from nvram @addr. 102 */ 103 static uint16_t 104 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd) 105 { 106 uint8_t cnt; 107 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; 108 uint16_t data = 0; 109 uint16_t reg_data; 110 111 /* Send command to NVRAM. */ 112 nv_cmd <<= 5; 113 for (cnt = 0; cnt < 11; cnt++) { 114 if (nv_cmd & BIT_31) 115 qla2x00_nv_write(ha, NVR_DATA_OUT); 116 else 117 qla2x00_nv_write(ha, 0); 118 nv_cmd <<= 1; 119 } 120 121 /* Read data from NVRAM. */ 122 for (cnt = 0; cnt < 16; cnt++) { 123 WRT_REG_WORD(®->nvram, NVR_SELECT | NVR_CLOCK); 124 RD_REG_WORD(®->nvram); /* PCI Posting. */ 125 NVRAM_DELAY(); 126 data <<= 1; 127 reg_data = RD_REG_WORD(®->nvram); 128 if (reg_data & NVR_DATA_IN) 129 data |= BIT_0; 130 WRT_REG_WORD(®->nvram, NVR_SELECT); 131 RD_REG_WORD(®->nvram); /* PCI Posting. */ 132 NVRAM_DELAY(); 133 } 134 135 /* Deselect chip. */ 136 WRT_REG_WORD(®->nvram, NVR_DESELECT); 137 RD_REG_WORD(®->nvram); /* PCI Posting. */ 138 NVRAM_DELAY(); 139 140 return data; 141 } 142 143 144 /** 145 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the 146 * request routine to get the word from NVRAM. 147 * @ha: HA context 148 * @addr: Address in NVRAM to read 149 * 150 * Returns the word read from nvram @addr. 151 */ 152 static uint16_t 153 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr) 154 { 155 uint16_t data; 156 uint32_t nv_cmd; 157 158 nv_cmd = addr << 16; 159 nv_cmd |= NV_READ_OP; 160 data = qla2x00_nvram_request(ha, nv_cmd); 161 162 return (data); 163 } 164 165 /** 166 * qla2x00_nv_deselect() - Deselect NVRAM operations. 167 * @ha: HA context 168 */ 169 static void 170 qla2x00_nv_deselect(struct qla_hw_data *ha) 171 { 172 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; 173 174 WRT_REG_WORD(®->nvram, NVR_DESELECT); 175 RD_REG_WORD(®->nvram); /* PCI Posting. */ 176 NVRAM_DELAY(); 177 } 178 179 /** 180 * qla2x00_write_nvram_word() - Write NVRAM data. 181 * @ha: HA context 182 * @addr: Address in NVRAM to write 183 * @data: word to program 184 */ 185 static void 186 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data) 187 { 188 int count; 189 uint16_t word; 190 uint32_t nv_cmd, wait_cnt; 191 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; 192 scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev); 193 194 qla2x00_nv_write(ha, NVR_DATA_OUT); 195 qla2x00_nv_write(ha, 0); 196 qla2x00_nv_write(ha, 0); 197 198 for (word = 0; word < 8; word++) 199 qla2x00_nv_write(ha, NVR_DATA_OUT); 200 201 qla2x00_nv_deselect(ha); 202 203 /* Write data */ 204 nv_cmd = (addr << 16) | NV_WRITE_OP; 205 nv_cmd |= data; 206 nv_cmd <<= 5; 207 for (count = 0; count < 27; count++) { 208 if (nv_cmd & BIT_31) 209 qla2x00_nv_write(ha, NVR_DATA_OUT); 210 else 211 qla2x00_nv_write(ha, 0); 212 213 nv_cmd <<= 1; 214 } 215 216 qla2x00_nv_deselect(ha); 217 218 /* Wait for NVRAM to become ready */ 219 WRT_REG_WORD(®->nvram, NVR_SELECT); 220 RD_REG_WORD(®->nvram); /* PCI Posting. */ 221 wait_cnt = NVR_WAIT_CNT; 222 do { 223 if (!--wait_cnt) { 224 ql_dbg(ql_dbg_user, vha, 0x708d, 225 "NVRAM didn't go ready...\n"); 226 break; 227 } 228 NVRAM_DELAY(); 229 word = RD_REG_WORD(®->nvram); 230 } while ((word & NVR_DATA_IN) == 0); 231 232 qla2x00_nv_deselect(ha); 233 234 /* Disable writes */ 235 qla2x00_nv_write(ha, NVR_DATA_OUT); 236 for (count = 0; count < 10; count++) 237 qla2x00_nv_write(ha, 0); 238 239 qla2x00_nv_deselect(ha); 240 } 241 242 static int 243 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr, 244 uint16_t data, uint32_t tmo) 245 { 246 int ret, count; 247 uint16_t word; 248 uint32_t nv_cmd; 249 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; 250 251 ret = QLA_SUCCESS; 252 253 qla2x00_nv_write(ha, NVR_DATA_OUT); 254 qla2x00_nv_write(ha, 0); 255 qla2x00_nv_write(ha, 0); 256 257 for (word = 0; word < 8; word++) 258 qla2x00_nv_write(ha, NVR_DATA_OUT); 259 260 qla2x00_nv_deselect(ha); 261 262 /* Write data */ 263 nv_cmd = (addr << 16) | NV_WRITE_OP; 264 nv_cmd |= data; 265 nv_cmd <<= 5; 266 for (count = 0; count < 27; count++) { 267 if (nv_cmd & BIT_31) 268 qla2x00_nv_write(ha, NVR_DATA_OUT); 269 else 270 qla2x00_nv_write(ha, 0); 271 272 nv_cmd <<= 1; 273 } 274 275 qla2x00_nv_deselect(ha); 276 277 /* Wait for NVRAM to become ready */ 278 WRT_REG_WORD(®->nvram, NVR_SELECT); 279 RD_REG_WORD(®->nvram); /* PCI Posting. */ 280 do { 281 NVRAM_DELAY(); 282 word = RD_REG_WORD(®->nvram); 283 if (!--tmo) { 284 ret = QLA_FUNCTION_FAILED; 285 break; 286 } 287 } while ((word & NVR_DATA_IN) == 0); 288 289 qla2x00_nv_deselect(ha); 290 291 /* Disable writes */ 292 qla2x00_nv_write(ha, NVR_DATA_OUT); 293 for (count = 0; count < 10; count++) 294 qla2x00_nv_write(ha, 0); 295 296 qla2x00_nv_deselect(ha); 297 298 return ret; 299 } 300 301 /** 302 * qla2x00_clear_nvram_protection() - 303 * @ha: HA context 304 */ 305 static int 306 qla2x00_clear_nvram_protection(struct qla_hw_data *ha) 307 { 308 int ret, stat; 309 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; 310 uint32_t word, wait_cnt; 311 uint16_t wprot, wprot_old; 312 scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev); 313 314 /* Clear NVRAM write protection. */ 315 ret = QLA_FUNCTION_FAILED; 316 317 wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base)); 318 stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base, 319 cpu_to_le16(0x1234), 100000); 320 wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base)); 321 if (stat != QLA_SUCCESS || wprot != 0x1234) { 322 /* Write enable. */ 323 qla2x00_nv_write(ha, NVR_DATA_OUT); 324 qla2x00_nv_write(ha, 0); 325 qla2x00_nv_write(ha, 0); 326 for (word = 0; word < 8; word++) 327 qla2x00_nv_write(ha, NVR_DATA_OUT); 328 329 qla2x00_nv_deselect(ha); 330 331 /* Enable protection register. */ 332 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); 333 qla2x00_nv_write(ha, NVR_PR_ENABLE); 334 qla2x00_nv_write(ha, NVR_PR_ENABLE); 335 for (word = 0; word < 8; word++) 336 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE); 337 338 qla2x00_nv_deselect(ha); 339 340 /* Clear protection register (ffff is cleared). */ 341 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); 342 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); 343 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); 344 for (word = 0; word < 8; word++) 345 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE); 346 347 qla2x00_nv_deselect(ha); 348 349 /* Wait for NVRAM to become ready. */ 350 WRT_REG_WORD(®->nvram, NVR_SELECT); 351 RD_REG_WORD(®->nvram); /* PCI Posting. */ 352 wait_cnt = NVR_WAIT_CNT; 353 do { 354 if (!--wait_cnt) { 355 ql_dbg(ql_dbg_user, vha, 0x708e, 356 "NVRAM didn't go ready...\n"); 357 break; 358 } 359 NVRAM_DELAY(); 360 word = RD_REG_WORD(®->nvram); 361 } while ((word & NVR_DATA_IN) == 0); 362 363 if (wait_cnt) 364 ret = QLA_SUCCESS; 365 } else 366 qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old); 367 368 return ret; 369 } 370 371 static void 372 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat) 373 { 374 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; 375 uint32_t word, wait_cnt; 376 scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev); 377 378 if (stat != QLA_SUCCESS) 379 return; 380 381 /* Set NVRAM write protection. */ 382 /* Write enable. */ 383 qla2x00_nv_write(ha, NVR_DATA_OUT); 384 qla2x00_nv_write(ha, 0); 385 qla2x00_nv_write(ha, 0); 386 for (word = 0; word < 8; word++) 387 qla2x00_nv_write(ha, NVR_DATA_OUT); 388 389 qla2x00_nv_deselect(ha); 390 391 /* Enable protection register. */ 392 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); 393 qla2x00_nv_write(ha, NVR_PR_ENABLE); 394 qla2x00_nv_write(ha, NVR_PR_ENABLE); 395 for (word = 0; word < 8; word++) 396 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE); 397 398 qla2x00_nv_deselect(ha); 399 400 /* Enable protection register. */ 401 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); 402 qla2x00_nv_write(ha, NVR_PR_ENABLE); 403 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); 404 for (word = 0; word < 8; word++) 405 qla2x00_nv_write(ha, NVR_PR_ENABLE); 406 407 qla2x00_nv_deselect(ha); 408 409 /* Wait for NVRAM to become ready. */ 410 WRT_REG_WORD(®->nvram, NVR_SELECT); 411 RD_REG_WORD(®->nvram); /* PCI Posting. */ 412 wait_cnt = NVR_WAIT_CNT; 413 do { 414 if (!--wait_cnt) { 415 ql_dbg(ql_dbg_user, vha, 0x708f, 416 "NVRAM didn't go ready...\n"); 417 break; 418 } 419 NVRAM_DELAY(); 420 word = RD_REG_WORD(®->nvram); 421 } while ((word & NVR_DATA_IN) == 0); 422 } 423 424 425 /*****************************************************************************/ 426 /* Flash Manipulation Routines */ 427 /*****************************************************************************/ 428 429 static inline uint32_t 430 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr) 431 { 432 return ha->flash_conf_off | faddr; 433 } 434 435 static inline uint32_t 436 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr) 437 { 438 return ha->flash_data_off | faddr; 439 } 440 441 static inline uint32_t 442 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr) 443 { 444 return ha->nvram_conf_off | naddr; 445 } 446 447 static inline uint32_t 448 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr) 449 { 450 return ha->nvram_data_off | naddr; 451 } 452 453 static uint32_t 454 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr) 455 { 456 int rval; 457 uint32_t cnt, data; 458 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; 459 460 WRT_REG_DWORD(®->flash_addr, addr & ~FARX_DATA_FLAG); 461 /* Wait for READ cycle to complete. */ 462 rval = QLA_SUCCESS; 463 for (cnt = 3000; 464 (RD_REG_DWORD(®->flash_addr) & FARX_DATA_FLAG) == 0 && 465 rval == QLA_SUCCESS; cnt--) { 466 if (cnt) 467 udelay(10); 468 else 469 rval = QLA_FUNCTION_TIMEOUT; 470 cond_resched(); 471 } 472 473 /* TODO: What happens if we time out? */ 474 data = 0xDEADDEAD; 475 if (rval == QLA_SUCCESS) 476 data = RD_REG_DWORD(®->flash_data); 477 478 return data; 479 } 480 481 uint32_t * 482 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr, 483 uint32_t dwords) 484 { 485 uint32_t i; 486 struct qla_hw_data *ha = vha->hw; 487 488 /* Dword reads to flash. */ 489 for (i = 0; i < dwords; i++, faddr++) 490 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha, 491 flash_data_addr(ha, faddr))); 492 493 return dwptr; 494 } 495 496 static int 497 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data) 498 { 499 int rval; 500 uint32_t cnt; 501 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; 502 503 WRT_REG_DWORD(®->flash_data, data); 504 RD_REG_DWORD(®->flash_data); /* PCI Posting. */ 505 WRT_REG_DWORD(®->flash_addr, addr | FARX_DATA_FLAG); 506 /* Wait for Write cycle to complete. */ 507 rval = QLA_SUCCESS; 508 for (cnt = 500000; (RD_REG_DWORD(®->flash_addr) & FARX_DATA_FLAG) && 509 rval == QLA_SUCCESS; cnt--) { 510 if (cnt) 511 udelay(10); 512 else 513 rval = QLA_FUNCTION_TIMEOUT; 514 cond_resched(); 515 } 516 return rval; 517 } 518 519 static void 520 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id, 521 uint8_t *flash_id) 522 { 523 uint32_t ids; 524 525 ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab)); 526 *man_id = LSB(ids); 527 *flash_id = MSB(ids); 528 529 /* Check if man_id and flash_id are valid. */ 530 if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) { 531 /* Read information using 0x9f opcode 532 * Device ID, Mfg ID would be read in the format: 533 * <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID> 534 * Example: ATMEL 0x00 01 45 1F 535 * Extract MFG and Dev ID from last two bytes. 536 */ 537 ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f)); 538 *man_id = LSB(ids); 539 *flash_id = MSB(ids); 540 } 541 } 542 543 static int 544 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start) 545 { 546 const char *loc, *locations[] = { "DEF", "PCI" }; 547 uint32_t pcihdr, pcids; 548 uint32_t *dcode; 549 uint8_t *buf, *bcode, last_image; 550 uint16_t cnt, chksum, *wptr; 551 struct qla_flt_location *fltl; 552 struct qla_hw_data *ha = vha->hw; 553 struct req_que *req = ha->req_q_map[0]; 554 555 /* 556 * FLT-location structure resides after the last PCI region. 557 */ 558 559 /* Begin with sane defaults. */ 560 loc = locations[0]; 561 *start = 0; 562 if (IS_QLA24XX_TYPE(ha)) 563 *start = FA_FLASH_LAYOUT_ADDR_24; 564 else if (IS_QLA25XX(ha)) 565 *start = FA_FLASH_LAYOUT_ADDR; 566 else if (IS_QLA81XX(ha)) 567 *start = FA_FLASH_LAYOUT_ADDR_81; 568 else if (IS_P3P_TYPE(ha)) { 569 *start = FA_FLASH_LAYOUT_ADDR_82; 570 goto end; 571 } else if (IS_QLA83XX(ha) || IS_QLA27XX(ha)) { 572 *start = FA_FLASH_LAYOUT_ADDR_83; 573 goto end; 574 } 575 /* Begin with first PCI expansion ROM header. */ 576 buf = (uint8_t *)req->ring; 577 dcode = (uint32_t *)req->ring; 578 pcihdr = 0; 579 last_image = 1; 580 do { 581 /* Verify PCI expansion ROM header. */ 582 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20); 583 bcode = buf + (pcihdr % 4); 584 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) 585 goto end; 586 587 /* Locate PCI data structure. */ 588 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]); 589 qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20); 590 bcode = buf + (pcihdr % 4); 591 592 /* Validate signature of PCI data structure. */ 593 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' || 594 bcode[0x2] != 'I' || bcode[0x3] != 'R') 595 goto end; 596 597 last_image = bcode[0x15] & BIT_7; 598 599 /* Locate next PCI expansion ROM. */ 600 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512; 601 } while (!last_image); 602 603 /* Now verify FLT-location structure. */ 604 fltl = (struct qla_flt_location *)req->ring; 605 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 606 sizeof(struct qla_flt_location) >> 2); 607 if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' || 608 fltl->sig[2] != 'L' || fltl->sig[3] != 'T') 609 goto end; 610 611 wptr = (uint16_t *)req->ring; 612 cnt = sizeof(struct qla_flt_location) >> 1; 613 for (chksum = 0; cnt; cnt--) 614 chksum += le16_to_cpu(*wptr++); 615 if (chksum) { 616 ql_log(ql_log_fatal, vha, 0x0045, 617 "Inconsistent FLTL detected: checksum=0x%x.\n", chksum); 618 ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010e, 619 buf, sizeof(struct qla_flt_location)); 620 return QLA_FUNCTION_FAILED; 621 } 622 623 /* Good data. Use specified location. */ 624 loc = locations[1]; 625 *start = (le16_to_cpu(fltl->start_hi) << 16 | 626 le16_to_cpu(fltl->start_lo)) >> 2; 627 end: 628 ql_dbg(ql_dbg_init, vha, 0x0046, 629 "FLTL[%s] = 0x%x.\n", 630 loc, *start); 631 return QLA_SUCCESS; 632 } 633 634 static void 635 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr) 636 { 637 const char *loc, *locations[] = { "DEF", "FLT" }; 638 const uint32_t def_fw[] = 639 { FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 }; 640 const uint32_t def_boot[] = 641 { FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 }; 642 const uint32_t def_vpd_nvram[] = 643 { FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 }; 644 const uint32_t def_vpd0[] = 645 { 0, 0, FA_VPD0_ADDR_81 }; 646 const uint32_t def_vpd1[] = 647 { 0, 0, FA_VPD1_ADDR_81 }; 648 const uint32_t def_nvram0[] = 649 { 0, 0, FA_NVRAM0_ADDR_81 }; 650 const uint32_t def_nvram1[] = 651 { 0, 0, FA_NVRAM1_ADDR_81 }; 652 const uint32_t def_fdt[] = 653 { FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR, 654 FA_FLASH_DESCR_ADDR_81 }; 655 const uint32_t def_npiv_conf0[] = 656 { FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR, 657 FA_NPIV_CONF0_ADDR_81 }; 658 const uint32_t def_npiv_conf1[] = 659 { FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR, 660 FA_NPIV_CONF1_ADDR_81 }; 661 const uint32_t fcp_prio_cfg0[] = 662 { FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25, 663 0 }; 664 const uint32_t fcp_prio_cfg1[] = 665 { FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25, 666 0 }; 667 uint32_t def; 668 uint16_t *wptr; 669 uint16_t cnt, chksum; 670 uint32_t start; 671 struct qla_flt_header *flt; 672 struct qla_flt_region *region; 673 struct qla_hw_data *ha = vha->hw; 674 struct req_que *req = ha->req_q_map[0]; 675 676 def = 0; 677 if (IS_QLA25XX(ha)) 678 def = 1; 679 else if (IS_QLA81XX(ha)) 680 def = 2; 681 682 /* Assign FCP prio region since older adapters may not have FLT, or 683 FCP prio region in it's FLT. 684 */ 685 ha->flt_region_fcp_prio = (ha->port_no == 0) ? 686 fcp_prio_cfg0[def] : fcp_prio_cfg1[def]; 687 688 ha->flt_region_flt = flt_addr; 689 wptr = (uint16_t *)req->ring; 690 flt = (struct qla_flt_header *)req->ring; 691 region = (struct qla_flt_region *)&flt[1]; 692 ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring, 693 flt_addr << 2, OPTROM_BURST_SIZE); 694 if (*wptr == cpu_to_le16(0xffff)) 695 goto no_flash_data; 696 if (flt->version != cpu_to_le16(1)) { 697 ql_log(ql_log_warn, vha, 0x0047, 698 "Unsupported FLT detected: version=0x%x length=0x%x checksum=0x%x.\n", 699 le16_to_cpu(flt->version), le16_to_cpu(flt->length), 700 le16_to_cpu(flt->checksum)); 701 goto no_flash_data; 702 } 703 704 cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1; 705 for (chksum = 0; cnt; cnt--) 706 chksum += le16_to_cpu(*wptr++); 707 if (chksum) { 708 ql_log(ql_log_fatal, vha, 0x0048, 709 "Inconsistent FLT detected: version=0x%x length=0x%x checksum=0x%x.\n", 710 le16_to_cpu(flt->version), le16_to_cpu(flt->length), 711 le16_to_cpu(flt->checksum)); 712 goto no_flash_data; 713 } 714 715 loc = locations[1]; 716 cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region); 717 for ( ; cnt; cnt--, region++) { 718 /* Store addresses as DWORD offsets. */ 719 start = le32_to_cpu(region->start) >> 2; 720 ql_dbg(ql_dbg_init, vha, 0x0049, 721 "FLT[%02x]: start=0x%x " 722 "end=0x%x size=0x%x.\n", le32_to_cpu(region->code) & 0xff, 723 start, le32_to_cpu(region->end) >> 2, 724 le32_to_cpu(region->size)); 725 726 switch (le32_to_cpu(region->code) & 0xff) { 727 case FLT_REG_FCOE_FW: 728 if (!IS_QLA8031(ha)) 729 break; 730 ha->flt_region_fw = start; 731 break; 732 case FLT_REG_FW: 733 if (IS_QLA8031(ha)) 734 break; 735 ha->flt_region_fw = start; 736 break; 737 case FLT_REG_BOOT_CODE: 738 ha->flt_region_boot = start; 739 break; 740 case FLT_REG_VPD_0: 741 if (IS_QLA8031(ha)) 742 break; 743 ha->flt_region_vpd_nvram = start; 744 if (IS_P3P_TYPE(ha)) 745 break; 746 if (ha->port_no == 0) 747 ha->flt_region_vpd = start; 748 break; 749 case FLT_REG_VPD_1: 750 if (IS_P3P_TYPE(ha) || IS_QLA8031(ha)) 751 break; 752 if (ha->port_no == 1) 753 ha->flt_region_vpd = start; 754 break; 755 case FLT_REG_VPD_2: 756 if (!IS_QLA27XX(ha)) 757 break; 758 if (ha->port_no == 2) 759 ha->flt_region_vpd = start; 760 break; 761 case FLT_REG_VPD_3: 762 if (!IS_QLA27XX(ha)) 763 break; 764 if (ha->port_no == 3) 765 ha->flt_region_vpd = start; 766 break; 767 case FLT_REG_NVRAM_0: 768 if (IS_QLA8031(ha)) 769 break; 770 if (ha->port_no == 0) 771 ha->flt_region_nvram = start; 772 break; 773 case FLT_REG_NVRAM_1: 774 if (IS_QLA8031(ha)) 775 break; 776 if (ha->port_no == 1) 777 ha->flt_region_nvram = start; 778 break; 779 case FLT_REG_NVRAM_2: 780 if (!IS_QLA27XX(ha)) 781 break; 782 if (ha->port_no == 2) 783 ha->flt_region_nvram = start; 784 break; 785 case FLT_REG_NVRAM_3: 786 if (!IS_QLA27XX(ha)) 787 break; 788 if (ha->port_no == 3) 789 ha->flt_region_nvram = start; 790 break; 791 case FLT_REG_FDT: 792 ha->flt_region_fdt = start; 793 break; 794 case FLT_REG_NPIV_CONF_0: 795 if (ha->port_no == 0) 796 ha->flt_region_npiv_conf = start; 797 break; 798 case FLT_REG_NPIV_CONF_1: 799 if (ha->port_no == 1) 800 ha->flt_region_npiv_conf = start; 801 break; 802 case FLT_REG_GOLD_FW: 803 ha->flt_region_gold_fw = start; 804 break; 805 case FLT_REG_FCP_PRIO_0: 806 if (ha->port_no == 0) 807 ha->flt_region_fcp_prio = start; 808 break; 809 case FLT_REG_FCP_PRIO_1: 810 if (ha->port_no == 1) 811 ha->flt_region_fcp_prio = start; 812 break; 813 case FLT_REG_BOOT_CODE_82XX: 814 ha->flt_region_boot = start; 815 break; 816 case FLT_REG_BOOT_CODE_8044: 817 if (IS_QLA8044(ha)) 818 ha->flt_region_boot = start; 819 break; 820 case FLT_REG_FW_82XX: 821 ha->flt_region_fw = start; 822 break; 823 case FLT_REG_CNA_FW: 824 if (IS_CNA_CAPABLE(ha)) 825 ha->flt_region_fw = start; 826 break; 827 case FLT_REG_GOLD_FW_82XX: 828 ha->flt_region_gold_fw = start; 829 break; 830 case FLT_REG_BOOTLOAD_82XX: 831 ha->flt_region_bootload = start; 832 break; 833 case FLT_REG_VPD_8XXX: 834 if (IS_CNA_CAPABLE(ha)) 835 ha->flt_region_vpd = start; 836 break; 837 case FLT_REG_FCOE_NVRAM_0: 838 if (!(IS_QLA8031(ha) || IS_QLA8044(ha))) 839 break; 840 if (ha->port_no == 0) 841 ha->flt_region_nvram = start; 842 break; 843 case FLT_REG_FCOE_NVRAM_1: 844 if (!(IS_QLA8031(ha) || IS_QLA8044(ha))) 845 break; 846 if (ha->port_no == 1) 847 ha->flt_region_nvram = start; 848 break; 849 } 850 } 851 goto done; 852 853 no_flash_data: 854 /* Use hardcoded defaults. */ 855 loc = locations[0]; 856 ha->flt_region_fw = def_fw[def]; 857 ha->flt_region_boot = def_boot[def]; 858 ha->flt_region_vpd_nvram = def_vpd_nvram[def]; 859 ha->flt_region_vpd = (ha->port_no == 0) ? 860 def_vpd0[def] : def_vpd1[def]; 861 ha->flt_region_nvram = (ha->port_no == 0) ? 862 def_nvram0[def] : def_nvram1[def]; 863 ha->flt_region_fdt = def_fdt[def]; 864 ha->flt_region_npiv_conf = (ha->port_no == 0) ? 865 def_npiv_conf0[def] : def_npiv_conf1[def]; 866 done: 867 ql_dbg(ql_dbg_init, vha, 0x004a, 868 "FLT[%s]: boot=0x%x fw=0x%x vpd_nvram=0x%x vpd=0x%x nvram=0x%x " 869 "fdt=0x%x flt=0x%x npiv=0x%x fcp_prif_cfg=0x%x.\n", 870 loc, ha->flt_region_boot, ha->flt_region_fw, 871 ha->flt_region_vpd_nvram, ha->flt_region_vpd, ha->flt_region_nvram, 872 ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf, 873 ha->flt_region_fcp_prio); 874 } 875 876 static void 877 qla2xxx_get_fdt_info(scsi_qla_host_t *vha) 878 { 879 #define FLASH_BLK_SIZE_4K 0x1000 880 #define FLASH_BLK_SIZE_32K 0x8000 881 #define FLASH_BLK_SIZE_64K 0x10000 882 const char *loc, *locations[] = { "MID", "FDT" }; 883 uint16_t cnt, chksum; 884 uint16_t *wptr; 885 struct qla_fdt_layout *fdt; 886 uint8_t man_id, flash_id; 887 uint16_t mid = 0, fid = 0; 888 struct qla_hw_data *ha = vha->hw; 889 struct req_que *req = ha->req_q_map[0]; 890 891 wptr = (uint16_t *)req->ring; 892 fdt = (struct qla_fdt_layout *)req->ring; 893 ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring, 894 ha->flt_region_fdt << 2, OPTROM_BURST_SIZE); 895 if (*wptr == cpu_to_le16(0xffff)) 896 goto no_flash_data; 897 if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' || 898 fdt->sig[3] != 'D') 899 goto no_flash_data; 900 901 for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1; 902 cnt++) 903 chksum += le16_to_cpu(*wptr++); 904 if (chksum) { 905 ql_dbg(ql_dbg_init, vha, 0x004c, 906 "Inconsistent FDT detected:" 907 " checksum=0x%x id=%c version0x%x.\n", chksum, 908 fdt->sig[0], le16_to_cpu(fdt->version)); 909 ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x0113, 910 (uint8_t *)fdt, sizeof(*fdt)); 911 goto no_flash_data; 912 } 913 914 loc = locations[1]; 915 mid = le16_to_cpu(fdt->man_id); 916 fid = le16_to_cpu(fdt->id); 917 ha->fdt_wrt_disable = fdt->wrt_disable_bits; 918 ha->fdt_wrt_enable = fdt->wrt_enable_bits; 919 ha->fdt_wrt_sts_reg_cmd = fdt->wrt_sts_reg_cmd; 920 if (IS_QLA8044(ha)) 921 ha->fdt_erase_cmd = fdt->erase_cmd; 922 else 923 ha->fdt_erase_cmd = 924 flash_conf_addr(ha, 0x0300 | fdt->erase_cmd); 925 ha->fdt_block_size = le32_to_cpu(fdt->block_size); 926 if (fdt->unprotect_sec_cmd) { 927 ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 | 928 fdt->unprotect_sec_cmd); 929 ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ? 930 flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd): 931 flash_conf_addr(ha, 0x0336); 932 } 933 goto done; 934 no_flash_data: 935 loc = locations[0]; 936 if (IS_P3P_TYPE(ha)) { 937 ha->fdt_block_size = FLASH_BLK_SIZE_64K; 938 goto done; 939 } 940 qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id); 941 mid = man_id; 942 fid = flash_id; 943 ha->fdt_wrt_disable = 0x9c; 944 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8); 945 switch (man_id) { 946 case 0xbf: /* STT flash. */ 947 if (flash_id == 0x8e) 948 ha->fdt_block_size = FLASH_BLK_SIZE_64K; 949 else 950 ha->fdt_block_size = FLASH_BLK_SIZE_32K; 951 952 if (flash_id == 0x80) 953 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352); 954 break; 955 case 0x13: /* ST M25P80. */ 956 ha->fdt_block_size = FLASH_BLK_SIZE_64K; 957 break; 958 case 0x1f: /* Atmel 26DF081A. */ 959 ha->fdt_block_size = FLASH_BLK_SIZE_4K; 960 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320); 961 ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339); 962 ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336); 963 break; 964 default: 965 /* Default to 64 kb sector size. */ 966 ha->fdt_block_size = FLASH_BLK_SIZE_64K; 967 break; 968 } 969 done: 970 ql_dbg(ql_dbg_init, vha, 0x004d, 971 "FDT[%s]: (0x%x/0x%x) erase=0x%x " 972 "pr=%x wrtd=0x%x blk=0x%x.\n", 973 loc, mid, fid, 974 ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd, 975 ha->fdt_wrt_disable, ha->fdt_block_size); 976 977 } 978 979 static void 980 qla2xxx_get_idc_param(scsi_qla_host_t *vha) 981 { 982 #define QLA82XX_IDC_PARAM_ADDR 0x003e885c 983 uint32_t *wptr; 984 struct qla_hw_data *ha = vha->hw; 985 struct req_que *req = ha->req_q_map[0]; 986 987 if (!(IS_P3P_TYPE(ha))) 988 return; 989 990 wptr = (uint32_t *)req->ring; 991 ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring, 992 QLA82XX_IDC_PARAM_ADDR , 8); 993 994 if (*wptr == cpu_to_le32(0xffffffff)) { 995 ha->fcoe_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT; 996 ha->fcoe_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT; 997 } else { 998 ha->fcoe_dev_init_timeout = le32_to_cpu(*wptr++); 999 ha->fcoe_reset_timeout = le32_to_cpu(*wptr); 1000 } 1001 ql_dbg(ql_dbg_init, vha, 0x004e, 1002 "fcoe_dev_init_timeout=%d " 1003 "fcoe_reset_timeout=%d.\n", ha->fcoe_dev_init_timeout, 1004 ha->fcoe_reset_timeout); 1005 return; 1006 } 1007 1008 int 1009 qla2xxx_get_flash_info(scsi_qla_host_t *vha) 1010 { 1011 int ret; 1012 uint32_t flt_addr; 1013 struct qla_hw_data *ha = vha->hw; 1014 1015 if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && 1016 !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha) && !IS_QLA27XX(ha)) 1017 return QLA_SUCCESS; 1018 1019 ret = qla2xxx_find_flt_start(vha, &flt_addr); 1020 if (ret != QLA_SUCCESS) 1021 return ret; 1022 1023 qla2xxx_get_flt_info(vha, flt_addr); 1024 qla2xxx_get_fdt_info(vha); 1025 qla2xxx_get_idc_param(vha); 1026 1027 return QLA_SUCCESS; 1028 } 1029 1030 void 1031 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha) 1032 { 1033 #define NPIV_CONFIG_SIZE (16*1024) 1034 void *data; 1035 uint16_t *wptr; 1036 uint16_t cnt, chksum; 1037 int i; 1038 struct qla_npiv_header hdr; 1039 struct qla_npiv_entry *entry; 1040 struct qla_hw_data *ha = vha->hw; 1041 1042 if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && 1043 !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha)) 1044 return; 1045 1046 if (ha->flags.nic_core_reset_hdlr_active) 1047 return; 1048 1049 if (IS_QLA8044(ha)) 1050 return; 1051 1052 ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr, 1053 ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header)); 1054 if (hdr.version == cpu_to_le16(0xffff)) 1055 return; 1056 if (hdr.version != cpu_to_le16(1)) { 1057 ql_dbg(ql_dbg_user, vha, 0x7090, 1058 "Unsupported NPIV-Config " 1059 "detected: version=0x%x entries=0x%x checksum=0x%x.\n", 1060 le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries), 1061 le16_to_cpu(hdr.checksum)); 1062 return; 1063 } 1064 1065 data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL); 1066 if (!data) { 1067 ql_log(ql_log_warn, vha, 0x7091, 1068 "Unable to allocate memory for data.\n"); 1069 return; 1070 } 1071 1072 ha->isp_ops->read_optrom(vha, (uint8_t *)data, 1073 ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE); 1074 1075 cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) * 1076 sizeof(struct qla_npiv_entry)) >> 1; 1077 for (wptr = data, chksum = 0; cnt; cnt--) 1078 chksum += le16_to_cpu(*wptr++); 1079 if (chksum) { 1080 ql_dbg(ql_dbg_user, vha, 0x7092, 1081 "Inconsistent NPIV-Config " 1082 "detected: version=0x%x entries=0x%x checksum=0x%x.\n", 1083 le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries), 1084 le16_to_cpu(hdr.checksum)); 1085 goto done; 1086 } 1087 1088 entry = data + sizeof(struct qla_npiv_header); 1089 cnt = le16_to_cpu(hdr.entries); 1090 for (i = 0; cnt; cnt--, entry++, i++) { 1091 uint16_t flags; 1092 struct fc_vport_identifiers vid; 1093 struct fc_vport *vport; 1094 1095 memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry)); 1096 1097 flags = le16_to_cpu(entry->flags); 1098 if (flags == 0xffff) 1099 continue; 1100 if ((flags & BIT_0) == 0) 1101 continue; 1102 1103 memset(&vid, 0, sizeof(vid)); 1104 vid.roles = FC_PORT_ROLE_FCP_INITIATOR; 1105 vid.vport_type = FC_PORTTYPE_NPIV; 1106 vid.disable = false; 1107 vid.port_name = wwn_to_u64(entry->port_name); 1108 vid.node_name = wwn_to_u64(entry->node_name); 1109 1110 ql_dbg(ql_dbg_user, vha, 0x7093, 1111 "NPIV[%02x]: wwpn=%llx " 1112 "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt, 1113 (unsigned long long)vid.port_name, 1114 (unsigned long long)vid.node_name, 1115 le16_to_cpu(entry->vf_id), 1116 entry->q_qos, entry->f_qos); 1117 1118 if (i < QLA_PRECONFIG_VPORTS) { 1119 vport = fc_vport_create(vha->host, 0, &vid); 1120 if (!vport) 1121 ql_log(ql_log_warn, vha, 0x7094, 1122 "NPIV-Config Failed to create vport [%02x]: " 1123 "wwpn=%llx wwnn=%llx.\n", cnt, 1124 (unsigned long long)vid.port_name, 1125 (unsigned long long)vid.node_name); 1126 } 1127 } 1128 done: 1129 kfree(data); 1130 } 1131 1132 static int 1133 qla24xx_unprotect_flash(scsi_qla_host_t *vha) 1134 { 1135 struct qla_hw_data *ha = vha->hw; 1136 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; 1137 1138 if (ha->flags.fac_supported) 1139 return qla81xx_fac_do_write_enable(vha, 1); 1140 1141 /* Enable flash write. */ 1142 WRT_REG_DWORD(®->ctrl_status, 1143 RD_REG_DWORD(®->ctrl_status) | CSRX_FLASH_ENABLE); 1144 RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */ 1145 1146 if (!ha->fdt_wrt_disable) 1147 goto done; 1148 1149 /* Disable flash write-protection, first clear SR protection bit */ 1150 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0); 1151 /* Then write zero again to clear remaining SR bits.*/ 1152 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0); 1153 done: 1154 return QLA_SUCCESS; 1155 } 1156 1157 static int 1158 qla24xx_protect_flash(scsi_qla_host_t *vha) 1159 { 1160 uint32_t cnt; 1161 struct qla_hw_data *ha = vha->hw; 1162 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; 1163 1164 if (ha->flags.fac_supported) 1165 return qla81xx_fac_do_write_enable(vha, 0); 1166 1167 if (!ha->fdt_wrt_disable) 1168 goto skip_wrt_protect; 1169 1170 /* Enable flash write-protection and wait for completion. */ 1171 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 1172 ha->fdt_wrt_disable); 1173 for (cnt = 300; cnt && 1174 qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0; 1175 cnt--) { 1176 udelay(10); 1177 } 1178 1179 skip_wrt_protect: 1180 /* Disable flash write. */ 1181 WRT_REG_DWORD(®->ctrl_status, 1182 RD_REG_DWORD(®->ctrl_status) & ~CSRX_FLASH_ENABLE); 1183 RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */ 1184 1185 return QLA_SUCCESS; 1186 } 1187 1188 static int 1189 qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata) 1190 { 1191 struct qla_hw_data *ha = vha->hw; 1192 uint32_t start, finish; 1193 1194 if (ha->flags.fac_supported) { 1195 start = fdata >> 2; 1196 finish = start + (ha->fdt_block_size >> 2) - 1; 1197 return qla81xx_fac_erase_sector(vha, flash_data_addr(ha, 1198 start), flash_data_addr(ha, finish)); 1199 } 1200 1201 return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd, 1202 (fdata & 0xff00) | ((fdata << 16) & 0xff0000) | 1203 ((fdata >> 16) & 0xff)); 1204 } 1205 1206 static int 1207 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr, 1208 uint32_t dwords) 1209 { 1210 int ret; 1211 uint32_t liter; 1212 uint32_t sec_mask, rest_addr; 1213 uint32_t fdata; 1214 dma_addr_t optrom_dma; 1215 void *optrom = NULL; 1216 struct qla_hw_data *ha = vha->hw; 1217 1218 /* Prepare burst-capable write on supported ISPs. */ 1219 if ((IS_QLA25XX(ha) || IS_QLA81XX(ha) || IS_QLA83XX(ha) || 1220 IS_QLA27XX(ha)) && 1221 !(faddr & 0xfff) && dwords > OPTROM_BURST_DWORDS) { 1222 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, 1223 &optrom_dma, GFP_KERNEL); 1224 if (!optrom) { 1225 ql_log(ql_log_warn, vha, 0x7095, 1226 "Unable to allocate " 1227 "memory for optrom burst write (%x KB).\n", 1228 OPTROM_BURST_SIZE / 1024); 1229 } 1230 } 1231 1232 rest_addr = (ha->fdt_block_size >> 2) - 1; 1233 sec_mask = ~rest_addr; 1234 1235 ret = qla24xx_unprotect_flash(vha); 1236 if (ret != QLA_SUCCESS) { 1237 ql_log(ql_log_warn, vha, 0x7096, 1238 "Unable to unprotect flash for update.\n"); 1239 goto done; 1240 } 1241 1242 for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) { 1243 fdata = (faddr & sec_mask) << 2; 1244 1245 /* Are we at the beginning of a sector? */ 1246 if ((faddr & rest_addr) == 0) { 1247 /* Do sector unprotect. */ 1248 if (ha->fdt_unprotect_sec_cmd) 1249 qla24xx_write_flash_dword(ha, 1250 ha->fdt_unprotect_sec_cmd, 1251 (fdata & 0xff00) | ((fdata << 16) & 1252 0xff0000) | ((fdata >> 16) & 0xff)); 1253 ret = qla24xx_erase_sector(vha, fdata); 1254 if (ret != QLA_SUCCESS) { 1255 ql_dbg(ql_dbg_user, vha, 0x7007, 1256 "Unable to erase erase sector: address=%x.\n", 1257 faddr); 1258 break; 1259 } 1260 } 1261 1262 /* Go with burst-write. */ 1263 if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) { 1264 /* Copy data to DMA'ble buffer. */ 1265 memcpy(optrom, dwptr, OPTROM_BURST_SIZE); 1266 1267 ret = qla2x00_load_ram(vha, optrom_dma, 1268 flash_data_addr(ha, faddr), 1269 OPTROM_BURST_DWORDS); 1270 if (ret != QLA_SUCCESS) { 1271 ql_log(ql_log_warn, vha, 0x7097, 1272 "Unable to burst-write optrom segment " 1273 "(%x/%x/%llx).\n", ret, 1274 flash_data_addr(ha, faddr), 1275 (unsigned long long)optrom_dma); 1276 ql_log(ql_log_warn, vha, 0x7098, 1277 "Reverting to slow-write.\n"); 1278 1279 dma_free_coherent(&ha->pdev->dev, 1280 OPTROM_BURST_SIZE, optrom, optrom_dma); 1281 optrom = NULL; 1282 } else { 1283 liter += OPTROM_BURST_DWORDS - 1; 1284 faddr += OPTROM_BURST_DWORDS - 1; 1285 dwptr += OPTROM_BURST_DWORDS - 1; 1286 continue; 1287 } 1288 } 1289 1290 ret = qla24xx_write_flash_dword(ha, 1291 flash_data_addr(ha, faddr), cpu_to_le32(*dwptr)); 1292 if (ret != QLA_SUCCESS) { 1293 ql_dbg(ql_dbg_user, vha, 0x7006, 1294 "Unable to program flash address=%x data=%x.\n", 1295 faddr, *dwptr); 1296 break; 1297 } 1298 1299 /* Do sector protect. */ 1300 if (ha->fdt_unprotect_sec_cmd && 1301 ((faddr & rest_addr) == rest_addr)) 1302 qla24xx_write_flash_dword(ha, 1303 ha->fdt_protect_sec_cmd, 1304 (fdata & 0xff00) | ((fdata << 16) & 1305 0xff0000) | ((fdata >> 16) & 0xff)); 1306 } 1307 1308 ret = qla24xx_protect_flash(vha); 1309 if (ret != QLA_SUCCESS) 1310 ql_log(ql_log_warn, vha, 0x7099, 1311 "Unable to protect flash after update.\n"); 1312 done: 1313 if (optrom) 1314 dma_free_coherent(&ha->pdev->dev, 1315 OPTROM_BURST_SIZE, optrom, optrom_dma); 1316 1317 return ret; 1318 } 1319 1320 uint8_t * 1321 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, 1322 uint32_t bytes) 1323 { 1324 uint32_t i; 1325 uint16_t *wptr; 1326 struct qla_hw_data *ha = vha->hw; 1327 1328 /* Word reads to NVRAM via registers. */ 1329 wptr = (uint16_t *)buf; 1330 qla2x00_lock_nvram_access(ha); 1331 for (i = 0; i < bytes >> 1; i++, naddr++) 1332 wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha, 1333 naddr)); 1334 qla2x00_unlock_nvram_access(ha); 1335 1336 return buf; 1337 } 1338 1339 uint8_t * 1340 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, 1341 uint32_t bytes) 1342 { 1343 uint32_t i; 1344 uint32_t *dwptr; 1345 struct qla_hw_data *ha = vha->hw; 1346 1347 if (IS_P3P_TYPE(ha)) 1348 return buf; 1349 1350 /* Dword reads to flash. */ 1351 dwptr = (uint32_t *)buf; 1352 for (i = 0; i < bytes >> 2; i++, naddr++) 1353 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha, 1354 nvram_data_addr(ha, naddr))); 1355 1356 return buf; 1357 } 1358 1359 int 1360 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, 1361 uint32_t bytes) 1362 { 1363 int ret, stat; 1364 uint32_t i; 1365 uint16_t *wptr; 1366 unsigned long flags; 1367 struct qla_hw_data *ha = vha->hw; 1368 1369 ret = QLA_SUCCESS; 1370 1371 spin_lock_irqsave(&ha->hardware_lock, flags); 1372 qla2x00_lock_nvram_access(ha); 1373 1374 /* Disable NVRAM write-protection. */ 1375 stat = qla2x00_clear_nvram_protection(ha); 1376 1377 wptr = (uint16_t *)buf; 1378 for (i = 0; i < bytes >> 1; i++, naddr++) { 1379 qla2x00_write_nvram_word(ha, naddr, 1380 cpu_to_le16(*wptr)); 1381 wptr++; 1382 } 1383 1384 /* Enable NVRAM write-protection. */ 1385 qla2x00_set_nvram_protection(ha, stat); 1386 1387 qla2x00_unlock_nvram_access(ha); 1388 spin_unlock_irqrestore(&ha->hardware_lock, flags); 1389 1390 return ret; 1391 } 1392 1393 int 1394 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, 1395 uint32_t bytes) 1396 { 1397 int ret; 1398 uint32_t i; 1399 uint32_t *dwptr; 1400 struct qla_hw_data *ha = vha->hw; 1401 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; 1402 1403 ret = QLA_SUCCESS; 1404 1405 if (IS_P3P_TYPE(ha)) 1406 return ret; 1407 1408 /* Enable flash write. */ 1409 WRT_REG_DWORD(®->ctrl_status, 1410 RD_REG_DWORD(®->ctrl_status) | CSRX_FLASH_ENABLE); 1411 RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */ 1412 1413 /* Disable NVRAM write-protection. */ 1414 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0); 1415 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0); 1416 1417 /* Dword writes to flash. */ 1418 dwptr = (uint32_t *)buf; 1419 for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) { 1420 ret = qla24xx_write_flash_dword(ha, 1421 nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr)); 1422 if (ret != QLA_SUCCESS) { 1423 ql_dbg(ql_dbg_user, vha, 0x709a, 1424 "Unable to program nvram address=%x data=%x.\n", 1425 naddr, *dwptr); 1426 break; 1427 } 1428 } 1429 1430 /* Enable NVRAM write-protection. */ 1431 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c); 1432 1433 /* Disable flash write. */ 1434 WRT_REG_DWORD(®->ctrl_status, 1435 RD_REG_DWORD(®->ctrl_status) & ~CSRX_FLASH_ENABLE); 1436 RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */ 1437 1438 return ret; 1439 } 1440 1441 uint8_t * 1442 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, 1443 uint32_t bytes) 1444 { 1445 uint32_t i; 1446 uint32_t *dwptr; 1447 struct qla_hw_data *ha = vha->hw; 1448 1449 /* Dword reads to flash. */ 1450 dwptr = (uint32_t *)buf; 1451 for (i = 0; i < bytes >> 2; i++, naddr++) 1452 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha, 1453 flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr))); 1454 1455 return buf; 1456 } 1457 1458 int 1459 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, 1460 uint32_t bytes) 1461 { 1462 struct qla_hw_data *ha = vha->hw; 1463 #define RMW_BUFFER_SIZE (64 * 1024) 1464 uint8_t *dbuf; 1465 1466 dbuf = vmalloc(RMW_BUFFER_SIZE); 1467 if (!dbuf) 1468 return QLA_MEMORY_ALLOC_FAILED; 1469 ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2, 1470 RMW_BUFFER_SIZE); 1471 memcpy(dbuf + (naddr << 2), buf, bytes); 1472 ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2, 1473 RMW_BUFFER_SIZE); 1474 vfree(dbuf); 1475 1476 return QLA_SUCCESS; 1477 } 1478 1479 static inline void 1480 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags) 1481 { 1482 if (IS_QLA2322(ha)) { 1483 /* Flip all colors. */ 1484 if (ha->beacon_color_state == QLA_LED_ALL_ON) { 1485 /* Turn off. */ 1486 ha->beacon_color_state = 0; 1487 *pflags = GPIO_LED_ALL_OFF; 1488 } else { 1489 /* Turn on. */ 1490 ha->beacon_color_state = QLA_LED_ALL_ON; 1491 *pflags = GPIO_LED_RGA_ON; 1492 } 1493 } else { 1494 /* Flip green led only. */ 1495 if (ha->beacon_color_state == QLA_LED_GRN_ON) { 1496 /* Turn off. */ 1497 ha->beacon_color_state = 0; 1498 *pflags = GPIO_LED_GREEN_OFF_AMBER_OFF; 1499 } else { 1500 /* Turn on. */ 1501 ha->beacon_color_state = QLA_LED_GRN_ON; 1502 *pflags = GPIO_LED_GREEN_ON_AMBER_OFF; 1503 } 1504 } 1505 } 1506 1507 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r)) 1508 1509 void 1510 qla2x00_beacon_blink(struct scsi_qla_host *vha) 1511 { 1512 uint16_t gpio_enable; 1513 uint16_t gpio_data; 1514 uint16_t led_color = 0; 1515 unsigned long flags; 1516 struct qla_hw_data *ha = vha->hw; 1517 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; 1518 1519 if (IS_P3P_TYPE(ha)) 1520 return; 1521 1522 spin_lock_irqsave(&ha->hardware_lock, flags); 1523 1524 /* Save the Original GPIOE. */ 1525 if (ha->pio_address) { 1526 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe)); 1527 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod)); 1528 } else { 1529 gpio_enable = RD_REG_WORD(®->gpioe); 1530 gpio_data = RD_REG_WORD(®->gpiod); 1531 } 1532 1533 /* Set the modified gpio_enable values */ 1534 gpio_enable |= GPIO_LED_MASK; 1535 1536 if (ha->pio_address) { 1537 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable); 1538 } else { 1539 WRT_REG_WORD(®->gpioe, gpio_enable); 1540 RD_REG_WORD(®->gpioe); 1541 } 1542 1543 qla2x00_flip_colors(ha, &led_color); 1544 1545 /* Clear out any previously set LED color. */ 1546 gpio_data &= ~GPIO_LED_MASK; 1547 1548 /* Set the new input LED color to GPIOD. */ 1549 gpio_data |= led_color; 1550 1551 /* Set the modified gpio_data values */ 1552 if (ha->pio_address) { 1553 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data); 1554 } else { 1555 WRT_REG_WORD(®->gpiod, gpio_data); 1556 RD_REG_WORD(®->gpiod); 1557 } 1558 1559 spin_unlock_irqrestore(&ha->hardware_lock, flags); 1560 } 1561 1562 int 1563 qla2x00_beacon_on(struct scsi_qla_host *vha) 1564 { 1565 uint16_t gpio_enable; 1566 uint16_t gpio_data; 1567 unsigned long flags; 1568 struct qla_hw_data *ha = vha->hw; 1569 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; 1570 1571 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING; 1572 ha->fw_options[1] |= FO1_DISABLE_GPIO6_7; 1573 1574 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) { 1575 ql_log(ql_log_warn, vha, 0x709b, 1576 "Unable to update fw options (beacon on).\n"); 1577 return QLA_FUNCTION_FAILED; 1578 } 1579 1580 /* Turn off LEDs. */ 1581 spin_lock_irqsave(&ha->hardware_lock, flags); 1582 if (ha->pio_address) { 1583 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe)); 1584 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod)); 1585 } else { 1586 gpio_enable = RD_REG_WORD(®->gpioe); 1587 gpio_data = RD_REG_WORD(®->gpiod); 1588 } 1589 gpio_enable |= GPIO_LED_MASK; 1590 1591 /* Set the modified gpio_enable values. */ 1592 if (ha->pio_address) { 1593 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable); 1594 } else { 1595 WRT_REG_WORD(®->gpioe, gpio_enable); 1596 RD_REG_WORD(®->gpioe); 1597 } 1598 1599 /* Clear out previously set LED colour. */ 1600 gpio_data &= ~GPIO_LED_MASK; 1601 if (ha->pio_address) { 1602 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data); 1603 } else { 1604 WRT_REG_WORD(®->gpiod, gpio_data); 1605 RD_REG_WORD(®->gpiod); 1606 } 1607 spin_unlock_irqrestore(&ha->hardware_lock, flags); 1608 1609 /* 1610 * Let the per HBA timer kick off the blinking process based on 1611 * the following flags. No need to do anything else now. 1612 */ 1613 ha->beacon_blink_led = 1; 1614 ha->beacon_color_state = 0; 1615 1616 return QLA_SUCCESS; 1617 } 1618 1619 int 1620 qla2x00_beacon_off(struct scsi_qla_host *vha) 1621 { 1622 int rval = QLA_SUCCESS; 1623 struct qla_hw_data *ha = vha->hw; 1624 1625 ha->beacon_blink_led = 0; 1626 1627 /* Set the on flag so when it gets flipped it will be off. */ 1628 if (IS_QLA2322(ha)) 1629 ha->beacon_color_state = QLA_LED_ALL_ON; 1630 else 1631 ha->beacon_color_state = QLA_LED_GRN_ON; 1632 1633 ha->isp_ops->beacon_blink(vha); /* This turns green LED off */ 1634 1635 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING; 1636 ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7; 1637 1638 rval = qla2x00_set_fw_options(vha, ha->fw_options); 1639 if (rval != QLA_SUCCESS) 1640 ql_log(ql_log_warn, vha, 0x709c, 1641 "Unable to update fw options (beacon off).\n"); 1642 return rval; 1643 } 1644 1645 1646 static inline void 1647 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags) 1648 { 1649 /* Flip all colors. */ 1650 if (ha->beacon_color_state == QLA_LED_ALL_ON) { 1651 /* Turn off. */ 1652 ha->beacon_color_state = 0; 1653 *pflags = 0; 1654 } else { 1655 /* Turn on. */ 1656 ha->beacon_color_state = QLA_LED_ALL_ON; 1657 *pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON; 1658 } 1659 } 1660 1661 void 1662 qla24xx_beacon_blink(struct scsi_qla_host *vha) 1663 { 1664 uint16_t led_color = 0; 1665 uint32_t gpio_data; 1666 unsigned long flags; 1667 struct qla_hw_data *ha = vha->hw; 1668 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; 1669 1670 /* Save the Original GPIOD. */ 1671 spin_lock_irqsave(&ha->hardware_lock, flags); 1672 gpio_data = RD_REG_DWORD(®->gpiod); 1673 1674 /* Enable the gpio_data reg for update. */ 1675 gpio_data |= GPDX_LED_UPDATE_MASK; 1676 1677 WRT_REG_DWORD(®->gpiod, gpio_data); 1678 gpio_data = RD_REG_DWORD(®->gpiod); 1679 1680 /* Set the color bits. */ 1681 qla24xx_flip_colors(ha, &led_color); 1682 1683 /* Clear out any previously set LED color. */ 1684 gpio_data &= ~GPDX_LED_COLOR_MASK; 1685 1686 /* Set the new input LED color to GPIOD. */ 1687 gpio_data |= led_color; 1688 1689 /* Set the modified gpio_data values. */ 1690 WRT_REG_DWORD(®->gpiod, gpio_data); 1691 gpio_data = RD_REG_DWORD(®->gpiod); 1692 spin_unlock_irqrestore(&ha->hardware_lock, flags); 1693 } 1694 1695 static uint32_t 1696 qla83xx_select_led_port(struct qla_hw_data *ha) 1697 { 1698 uint32_t led_select_value = 0; 1699 1700 if (!IS_QLA83XX(ha) && !IS_QLA27XX(ha)) 1701 goto out; 1702 1703 if (ha->port_no == 0) 1704 led_select_value = QLA83XX_LED_PORT0; 1705 else 1706 led_select_value = QLA83XX_LED_PORT1; 1707 1708 out: 1709 return led_select_value; 1710 } 1711 1712 void 1713 qla83xx_beacon_blink(struct scsi_qla_host *vha) 1714 { 1715 uint32_t led_select_value; 1716 struct qla_hw_data *ha = vha->hw; 1717 uint16_t led_cfg[6]; 1718 uint16_t orig_led_cfg[6]; 1719 uint32_t led_10_value, led_43_value; 1720 1721 if (!IS_QLA83XX(ha) && !IS_QLA81XX(ha) && !IS_QLA27XX(ha)) 1722 return; 1723 1724 if (!ha->beacon_blink_led) 1725 return; 1726 1727 if (IS_QLA27XX(ha)) { 1728 qla2x00_write_ram_word(vha, 0x1003, 0x40000230); 1729 qla2x00_write_ram_word(vha, 0x1004, 0x40000230); 1730 } else if (IS_QLA2031(ha)) { 1731 led_select_value = qla83xx_select_led_port(ha); 1732 1733 qla83xx_wr_reg(vha, led_select_value, 0x40000230); 1734 qla83xx_wr_reg(vha, led_select_value + 4, 0x40000230); 1735 } else if (IS_QLA8031(ha)) { 1736 led_select_value = qla83xx_select_led_port(ha); 1737 1738 qla83xx_rd_reg(vha, led_select_value, &led_10_value); 1739 qla83xx_rd_reg(vha, led_select_value + 0x10, &led_43_value); 1740 qla83xx_wr_reg(vha, led_select_value, 0x01f44000); 1741 msleep(500); 1742 qla83xx_wr_reg(vha, led_select_value, 0x400001f4); 1743 msleep(1000); 1744 qla83xx_wr_reg(vha, led_select_value, led_10_value); 1745 qla83xx_wr_reg(vha, led_select_value + 0x10, led_43_value); 1746 } else if (IS_QLA81XX(ha)) { 1747 int rval; 1748 1749 /* Save Current */ 1750 rval = qla81xx_get_led_config(vha, orig_led_cfg); 1751 /* Do the blink */ 1752 if (rval == QLA_SUCCESS) { 1753 if (IS_QLA81XX(ha)) { 1754 led_cfg[0] = 0x4000; 1755 led_cfg[1] = 0x2000; 1756 led_cfg[2] = 0; 1757 led_cfg[3] = 0; 1758 led_cfg[4] = 0; 1759 led_cfg[5] = 0; 1760 } else { 1761 led_cfg[0] = 0x4000; 1762 led_cfg[1] = 0x4000; 1763 led_cfg[2] = 0x4000; 1764 led_cfg[3] = 0x2000; 1765 led_cfg[4] = 0; 1766 led_cfg[5] = 0x2000; 1767 } 1768 rval = qla81xx_set_led_config(vha, led_cfg); 1769 msleep(1000); 1770 if (IS_QLA81XX(ha)) { 1771 led_cfg[0] = 0x4000; 1772 led_cfg[1] = 0x2000; 1773 led_cfg[2] = 0; 1774 } else { 1775 led_cfg[0] = 0x4000; 1776 led_cfg[1] = 0x2000; 1777 led_cfg[2] = 0x4000; 1778 led_cfg[3] = 0x4000; 1779 led_cfg[4] = 0; 1780 led_cfg[5] = 0x2000; 1781 } 1782 rval = qla81xx_set_led_config(vha, led_cfg); 1783 } 1784 /* On exit, restore original (presumes no status change) */ 1785 qla81xx_set_led_config(vha, orig_led_cfg); 1786 } 1787 } 1788 1789 int 1790 qla24xx_beacon_on(struct scsi_qla_host *vha) 1791 { 1792 uint32_t gpio_data; 1793 unsigned long flags; 1794 struct qla_hw_data *ha = vha->hw; 1795 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; 1796 1797 if (IS_P3P_TYPE(ha)) 1798 return QLA_SUCCESS; 1799 1800 if (IS_QLA8031(ha) || IS_QLA81XX(ha)) 1801 goto skip_gpio; /* let blink handle it */ 1802 1803 if (ha->beacon_blink_led == 0) { 1804 /* Enable firmware for update */ 1805 ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL; 1806 1807 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) 1808 return QLA_FUNCTION_FAILED; 1809 1810 if (qla2x00_get_fw_options(vha, ha->fw_options) != 1811 QLA_SUCCESS) { 1812 ql_log(ql_log_warn, vha, 0x7009, 1813 "Unable to update fw options (beacon on).\n"); 1814 return QLA_FUNCTION_FAILED; 1815 } 1816 1817 if (IS_QLA2031(ha) || IS_QLA27XX(ha)) 1818 goto skip_gpio; 1819 1820 spin_lock_irqsave(&ha->hardware_lock, flags); 1821 gpio_data = RD_REG_DWORD(®->gpiod); 1822 1823 /* Enable the gpio_data reg for update. */ 1824 gpio_data |= GPDX_LED_UPDATE_MASK; 1825 WRT_REG_DWORD(®->gpiod, gpio_data); 1826 RD_REG_DWORD(®->gpiod); 1827 1828 spin_unlock_irqrestore(&ha->hardware_lock, flags); 1829 } 1830 1831 /* So all colors blink together. */ 1832 ha->beacon_color_state = 0; 1833 1834 skip_gpio: 1835 /* Let the per HBA timer kick off the blinking process. */ 1836 ha->beacon_blink_led = 1; 1837 1838 return QLA_SUCCESS; 1839 } 1840 1841 int 1842 qla24xx_beacon_off(struct scsi_qla_host *vha) 1843 { 1844 uint32_t gpio_data; 1845 unsigned long flags; 1846 struct qla_hw_data *ha = vha->hw; 1847 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; 1848 1849 if (IS_P3P_TYPE(ha)) 1850 return QLA_SUCCESS; 1851 1852 ha->beacon_blink_led = 0; 1853 1854 if (IS_QLA2031(ha) || IS_QLA27XX(ha)) 1855 goto set_fw_options; 1856 1857 if (IS_QLA8031(ha) || IS_QLA81XX(ha)) 1858 return QLA_SUCCESS; 1859 1860 ha->beacon_color_state = QLA_LED_ALL_ON; 1861 1862 ha->isp_ops->beacon_blink(vha); /* Will flip to all off. */ 1863 1864 /* Give control back to firmware. */ 1865 spin_lock_irqsave(&ha->hardware_lock, flags); 1866 gpio_data = RD_REG_DWORD(®->gpiod); 1867 1868 /* Disable the gpio_data reg for update. */ 1869 gpio_data &= ~GPDX_LED_UPDATE_MASK; 1870 WRT_REG_DWORD(®->gpiod, gpio_data); 1871 RD_REG_DWORD(®->gpiod); 1872 spin_unlock_irqrestore(&ha->hardware_lock, flags); 1873 1874 set_fw_options: 1875 ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL; 1876 1877 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) { 1878 ql_log(ql_log_warn, vha, 0x704d, 1879 "Unable to update fw options (beacon on).\n"); 1880 return QLA_FUNCTION_FAILED; 1881 } 1882 1883 if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) { 1884 ql_log(ql_log_warn, vha, 0x704e, 1885 "Unable to update fw options (beacon on).\n"); 1886 return QLA_FUNCTION_FAILED; 1887 } 1888 1889 return QLA_SUCCESS; 1890 } 1891 1892 1893 /* 1894 * Flash support routines 1895 */ 1896 1897 /** 1898 * qla2x00_flash_enable() - Setup flash for reading and writing. 1899 * @ha: HA context 1900 */ 1901 static void 1902 qla2x00_flash_enable(struct qla_hw_data *ha) 1903 { 1904 uint16_t data; 1905 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; 1906 1907 data = RD_REG_WORD(®->ctrl_status); 1908 data |= CSR_FLASH_ENABLE; 1909 WRT_REG_WORD(®->ctrl_status, data); 1910 RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ 1911 } 1912 1913 /** 1914 * qla2x00_flash_disable() - Disable flash and allow RISC to run. 1915 * @ha: HA context 1916 */ 1917 static void 1918 qla2x00_flash_disable(struct qla_hw_data *ha) 1919 { 1920 uint16_t data; 1921 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; 1922 1923 data = RD_REG_WORD(®->ctrl_status); 1924 data &= ~(CSR_FLASH_ENABLE); 1925 WRT_REG_WORD(®->ctrl_status, data); 1926 RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ 1927 } 1928 1929 /** 1930 * qla2x00_read_flash_byte() - Reads a byte from flash 1931 * @ha: HA context 1932 * @addr: Address in flash to read 1933 * 1934 * A word is read from the chip, but, only the lower byte is valid. 1935 * 1936 * Returns the byte read from flash @addr. 1937 */ 1938 static uint8_t 1939 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr) 1940 { 1941 uint16_t data; 1942 uint16_t bank_select; 1943 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; 1944 1945 bank_select = RD_REG_WORD(®->ctrl_status); 1946 1947 if (IS_QLA2322(ha) || IS_QLA6322(ha)) { 1948 /* Specify 64K address range: */ 1949 /* clear out Module Select and Flash Address bits [19:16]. */ 1950 bank_select &= ~0xf8; 1951 bank_select |= addr >> 12 & 0xf0; 1952 bank_select |= CSR_FLASH_64K_BANK; 1953 WRT_REG_WORD(®->ctrl_status, bank_select); 1954 RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ 1955 1956 WRT_REG_WORD(®->flash_address, (uint16_t)addr); 1957 data = RD_REG_WORD(®->flash_data); 1958 1959 return (uint8_t)data; 1960 } 1961 1962 /* Setup bit 16 of flash address. */ 1963 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) { 1964 bank_select |= CSR_FLASH_64K_BANK; 1965 WRT_REG_WORD(®->ctrl_status, bank_select); 1966 RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ 1967 } else if (((addr & BIT_16) == 0) && 1968 (bank_select & CSR_FLASH_64K_BANK)) { 1969 bank_select &= ~(CSR_FLASH_64K_BANK); 1970 WRT_REG_WORD(®->ctrl_status, bank_select); 1971 RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ 1972 } 1973 1974 /* Always perform IO mapped accesses to the FLASH registers. */ 1975 if (ha->pio_address) { 1976 uint16_t data2; 1977 1978 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr); 1979 do { 1980 data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data)); 1981 barrier(); 1982 cpu_relax(); 1983 data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data)); 1984 } while (data != data2); 1985 } else { 1986 WRT_REG_WORD(®->flash_address, (uint16_t)addr); 1987 data = qla2x00_debounce_register(®->flash_data); 1988 } 1989 1990 return (uint8_t)data; 1991 } 1992 1993 /** 1994 * qla2x00_write_flash_byte() - Write a byte to flash 1995 * @ha: HA context 1996 * @addr: Address in flash to write 1997 * @data: Data to write 1998 */ 1999 static void 2000 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data) 2001 { 2002 uint16_t bank_select; 2003 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; 2004 2005 bank_select = RD_REG_WORD(®->ctrl_status); 2006 if (IS_QLA2322(ha) || IS_QLA6322(ha)) { 2007 /* Specify 64K address range: */ 2008 /* clear out Module Select and Flash Address bits [19:16]. */ 2009 bank_select &= ~0xf8; 2010 bank_select |= addr >> 12 & 0xf0; 2011 bank_select |= CSR_FLASH_64K_BANK; 2012 WRT_REG_WORD(®->ctrl_status, bank_select); 2013 RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ 2014 2015 WRT_REG_WORD(®->flash_address, (uint16_t)addr); 2016 RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ 2017 WRT_REG_WORD(®->flash_data, (uint16_t)data); 2018 RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ 2019 2020 return; 2021 } 2022 2023 /* Setup bit 16 of flash address. */ 2024 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) { 2025 bank_select |= CSR_FLASH_64K_BANK; 2026 WRT_REG_WORD(®->ctrl_status, bank_select); 2027 RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ 2028 } else if (((addr & BIT_16) == 0) && 2029 (bank_select & CSR_FLASH_64K_BANK)) { 2030 bank_select &= ~(CSR_FLASH_64K_BANK); 2031 WRT_REG_WORD(®->ctrl_status, bank_select); 2032 RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ 2033 } 2034 2035 /* Always perform IO mapped accesses to the FLASH registers. */ 2036 if (ha->pio_address) { 2037 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr); 2038 WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data); 2039 } else { 2040 WRT_REG_WORD(®->flash_address, (uint16_t)addr); 2041 RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ 2042 WRT_REG_WORD(®->flash_data, (uint16_t)data); 2043 RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ 2044 } 2045 } 2046 2047 /** 2048 * qla2x00_poll_flash() - Polls flash for completion. 2049 * @ha: HA context 2050 * @addr: Address in flash to poll 2051 * @poll_data: Data to be polled 2052 * @man_id: Flash manufacturer ID 2053 * @flash_id: Flash ID 2054 * 2055 * This function polls the device until bit 7 of what is read matches data 2056 * bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed 2057 * out (a fatal error). The flash book recommeds reading bit 7 again after 2058 * reading bit 5 as a 1. 2059 * 2060 * Returns 0 on success, else non-zero. 2061 */ 2062 static int 2063 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data, 2064 uint8_t man_id, uint8_t flash_id) 2065 { 2066 int status; 2067 uint8_t flash_data; 2068 uint32_t cnt; 2069 2070 status = 1; 2071 2072 /* Wait for 30 seconds for command to finish. */ 2073 poll_data &= BIT_7; 2074 for (cnt = 3000000; cnt; cnt--) { 2075 flash_data = qla2x00_read_flash_byte(ha, addr); 2076 if ((flash_data & BIT_7) == poll_data) { 2077 status = 0; 2078 break; 2079 } 2080 2081 if (man_id != 0x40 && man_id != 0xda) { 2082 if ((flash_data & BIT_5) && cnt > 2) 2083 cnt = 2; 2084 } 2085 udelay(10); 2086 barrier(); 2087 cond_resched(); 2088 } 2089 return status; 2090 } 2091 2092 /** 2093 * qla2x00_program_flash_address() - Programs a flash address 2094 * @ha: HA context 2095 * @addr: Address in flash to program 2096 * @data: Data to be written in flash 2097 * @man_id: Flash manufacturer ID 2098 * @flash_id: Flash ID 2099 * 2100 * Returns 0 on success, else non-zero. 2101 */ 2102 static int 2103 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr, 2104 uint8_t data, uint8_t man_id, uint8_t flash_id) 2105 { 2106 /* Write Program Command Sequence. */ 2107 if (IS_OEM_001(ha)) { 2108 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa); 2109 qla2x00_write_flash_byte(ha, 0x555, 0x55); 2110 qla2x00_write_flash_byte(ha, 0xaaa, 0xa0); 2111 qla2x00_write_flash_byte(ha, addr, data); 2112 } else { 2113 if (man_id == 0xda && flash_id == 0xc1) { 2114 qla2x00_write_flash_byte(ha, addr, data); 2115 if (addr & 0x7e) 2116 return 0; 2117 } else { 2118 qla2x00_write_flash_byte(ha, 0x5555, 0xaa); 2119 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); 2120 qla2x00_write_flash_byte(ha, 0x5555, 0xa0); 2121 qla2x00_write_flash_byte(ha, addr, data); 2122 } 2123 } 2124 2125 udelay(150); 2126 2127 /* Wait for write to complete. */ 2128 return qla2x00_poll_flash(ha, addr, data, man_id, flash_id); 2129 } 2130 2131 /** 2132 * qla2x00_erase_flash() - Erase the flash. 2133 * @ha: HA context 2134 * @man_id: Flash manufacturer ID 2135 * @flash_id: Flash ID 2136 * 2137 * Returns 0 on success, else non-zero. 2138 */ 2139 static int 2140 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id) 2141 { 2142 /* Individual Sector Erase Command Sequence */ 2143 if (IS_OEM_001(ha)) { 2144 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa); 2145 qla2x00_write_flash_byte(ha, 0x555, 0x55); 2146 qla2x00_write_flash_byte(ha, 0xaaa, 0x80); 2147 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa); 2148 qla2x00_write_flash_byte(ha, 0x555, 0x55); 2149 qla2x00_write_flash_byte(ha, 0xaaa, 0x10); 2150 } else { 2151 qla2x00_write_flash_byte(ha, 0x5555, 0xaa); 2152 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); 2153 qla2x00_write_flash_byte(ha, 0x5555, 0x80); 2154 qla2x00_write_flash_byte(ha, 0x5555, 0xaa); 2155 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); 2156 qla2x00_write_flash_byte(ha, 0x5555, 0x10); 2157 } 2158 2159 udelay(150); 2160 2161 /* Wait for erase to complete. */ 2162 return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id); 2163 } 2164 2165 /** 2166 * qla2x00_erase_flash_sector() - Erase a flash sector. 2167 * @ha: HA context 2168 * @addr: Flash sector to erase 2169 * @sec_mask: Sector address mask 2170 * @man_id: Flash manufacturer ID 2171 * @flash_id: Flash ID 2172 * 2173 * Returns 0 on success, else non-zero. 2174 */ 2175 static int 2176 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr, 2177 uint32_t sec_mask, uint8_t man_id, uint8_t flash_id) 2178 { 2179 /* Individual Sector Erase Command Sequence */ 2180 qla2x00_write_flash_byte(ha, 0x5555, 0xaa); 2181 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); 2182 qla2x00_write_flash_byte(ha, 0x5555, 0x80); 2183 qla2x00_write_flash_byte(ha, 0x5555, 0xaa); 2184 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); 2185 if (man_id == 0x1f && flash_id == 0x13) 2186 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10); 2187 else 2188 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30); 2189 2190 udelay(150); 2191 2192 /* Wait for erase to complete. */ 2193 return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id); 2194 } 2195 2196 /** 2197 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip. 2198 * @man_id: Flash manufacturer ID 2199 * @flash_id: Flash ID 2200 */ 2201 static void 2202 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id, 2203 uint8_t *flash_id) 2204 { 2205 qla2x00_write_flash_byte(ha, 0x5555, 0xaa); 2206 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); 2207 qla2x00_write_flash_byte(ha, 0x5555, 0x90); 2208 *man_id = qla2x00_read_flash_byte(ha, 0x0000); 2209 *flash_id = qla2x00_read_flash_byte(ha, 0x0001); 2210 qla2x00_write_flash_byte(ha, 0x5555, 0xaa); 2211 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); 2212 qla2x00_write_flash_byte(ha, 0x5555, 0xf0); 2213 } 2214 2215 static void 2216 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf, 2217 uint32_t saddr, uint32_t length) 2218 { 2219 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; 2220 uint32_t midpoint, ilength; 2221 uint8_t data; 2222 2223 midpoint = length / 2; 2224 2225 WRT_REG_WORD(®->nvram, 0); 2226 RD_REG_WORD(®->nvram); 2227 for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) { 2228 if (ilength == midpoint) { 2229 WRT_REG_WORD(®->nvram, NVR_SELECT); 2230 RD_REG_WORD(®->nvram); 2231 } 2232 data = qla2x00_read_flash_byte(ha, saddr); 2233 if (saddr % 100) 2234 udelay(10); 2235 *tmp_buf = data; 2236 cond_resched(); 2237 } 2238 } 2239 2240 static inline void 2241 qla2x00_suspend_hba(struct scsi_qla_host *vha) 2242 { 2243 int cnt; 2244 unsigned long flags; 2245 struct qla_hw_data *ha = vha->hw; 2246 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; 2247 2248 /* Suspend HBA. */ 2249 scsi_block_requests(vha->host); 2250 ha->isp_ops->disable_intrs(ha); 2251 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); 2252 2253 /* Pause RISC. */ 2254 spin_lock_irqsave(&ha->hardware_lock, flags); 2255 WRT_REG_WORD(®->hccr, HCCR_PAUSE_RISC); 2256 RD_REG_WORD(®->hccr); 2257 if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) { 2258 for (cnt = 0; cnt < 30000; cnt++) { 2259 if ((RD_REG_WORD(®->hccr) & HCCR_RISC_PAUSE) != 0) 2260 break; 2261 udelay(100); 2262 } 2263 } else { 2264 udelay(10); 2265 } 2266 spin_unlock_irqrestore(&ha->hardware_lock, flags); 2267 } 2268 2269 static inline void 2270 qla2x00_resume_hba(struct scsi_qla_host *vha) 2271 { 2272 struct qla_hw_data *ha = vha->hw; 2273 2274 /* Resume HBA. */ 2275 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); 2276 set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags); 2277 qla2xxx_wake_dpc(vha); 2278 qla2x00_wait_for_chip_reset(vha); 2279 scsi_unblock_requests(vha->host); 2280 } 2281 2282 uint8_t * 2283 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf, 2284 uint32_t offset, uint32_t length) 2285 { 2286 uint32_t addr, midpoint; 2287 uint8_t *data; 2288 struct qla_hw_data *ha = vha->hw; 2289 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; 2290 2291 /* Suspend HBA. */ 2292 qla2x00_suspend_hba(vha); 2293 2294 /* Go with read. */ 2295 midpoint = ha->optrom_size / 2; 2296 2297 qla2x00_flash_enable(ha); 2298 WRT_REG_WORD(®->nvram, 0); 2299 RD_REG_WORD(®->nvram); /* PCI Posting. */ 2300 for (addr = offset, data = buf; addr < length; addr++, data++) { 2301 if (addr == midpoint) { 2302 WRT_REG_WORD(®->nvram, NVR_SELECT); 2303 RD_REG_WORD(®->nvram); /* PCI Posting. */ 2304 } 2305 2306 *data = qla2x00_read_flash_byte(ha, addr); 2307 } 2308 qla2x00_flash_disable(ha); 2309 2310 /* Resume HBA. */ 2311 qla2x00_resume_hba(vha); 2312 2313 return buf; 2314 } 2315 2316 int 2317 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf, 2318 uint32_t offset, uint32_t length) 2319 { 2320 2321 int rval; 2322 uint8_t man_id, flash_id, sec_number, data; 2323 uint16_t wd; 2324 uint32_t addr, liter, sec_mask, rest_addr; 2325 struct qla_hw_data *ha = vha->hw; 2326 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; 2327 2328 /* Suspend HBA. */ 2329 qla2x00_suspend_hba(vha); 2330 2331 rval = QLA_SUCCESS; 2332 sec_number = 0; 2333 2334 /* Reset ISP chip. */ 2335 WRT_REG_WORD(®->ctrl_status, CSR_ISP_SOFT_RESET); 2336 pci_read_config_word(ha->pdev, PCI_COMMAND, &wd); 2337 2338 /* Go with write. */ 2339 qla2x00_flash_enable(ha); 2340 do { /* Loop once to provide quick error exit */ 2341 /* Structure of flash memory based on manufacturer */ 2342 if (IS_OEM_001(ha)) { 2343 /* OEM variant with special flash part. */ 2344 man_id = flash_id = 0; 2345 rest_addr = 0xffff; 2346 sec_mask = 0x10000; 2347 goto update_flash; 2348 } 2349 qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id); 2350 switch (man_id) { 2351 case 0x20: /* ST flash. */ 2352 if (flash_id == 0xd2 || flash_id == 0xe3) { 2353 /* 2354 * ST m29w008at part - 64kb sector size with 2355 * 32kb,8kb,8kb,16kb sectors at memory address 2356 * 0xf0000. 2357 */ 2358 rest_addr = 0xffff; 2359 sec_mask = 0x10000; 2360 break; 2361 } 2362 /* 2363 * ST m29w010b part - 16kb sector size 2364 * Default to 16kb sectors 2365 */ 2366 rest_addr = 0x3fff; 2367 sec_mask = 0x1c000; 2368 break; 2369 case 0x40: /* Mostel flash. */ 2370 /* Mostel v29c51001 part - 512 byte sector size. */ 2371 rest_addr = 0x1ff; 2372 sec_mask = 0x1fe00; 2373 break; 2374 case 0xbf: /* SST flash. */ 2375 /* SST39sf10 part - 4kb sector size. */ 2376 rest_addr = 0xfff; 2377 sec_mask = 0x1f000; 2378 break; 2379 case 0xda: /* Winbond flash. */ 2380 /* Winbond W29EE011 part - 256 byte sector size. */ 2381 rest_addr = 0x7f; 2382 sec_mask = 0x1ff80; 2383 break; 2384 case 0xc2: /* Macronix flash. */ 2385 /* 64k sector size. */ 2386 if (flash_id == 0x38 || flash_id == 0x4f) { 2387 rest_addr = 0xffff; 2388 sec_mask = 0x10000; 2389 break; 2390 } 2391 /* Fall through... */ 2392 2393 case 0x1f: /* Atmel flash. */ 2394 /* 512k sector size. */ 2395 if (flash_id == 0x13) { 2396 rest_addr = 0x7fffffff; 2397 sec_mask = 0x80000000; 2398 break; 2399 } 2400 /* Fall through... */ 2401 2402 case 0x01: /* AMD flash. */ 2403 if (flash_id == 0x38 || flash_id == 0x40 || 2404 flash_id == 0x4f) { 2405 /* Am29LV081 part - 64kb sector size. */ 2406 /* Am29LV002BT part - 64kb sector size. */ 2407 rest_addr = 0xffff; 2408 sec_mask = 0x10000; 2409 break; 2410 } else if (flash_id == 0x3e) { 2411 /* 2412 * Am29LV008b part - 64kb sector size with 2413 * 32kb,8kb,8kb,16kb sector at memory address 2414 * h0xf0000. 2415 */ 2416 rest_addr = 0xffff; 2417 sec_mask = 0x10000; 2418 break; 2419 } else if (flash_id == 0x20 || flash_id == 0x6e) { 2420 /* 2421 * Am29LV010 part or AM29f010 - 16kb sector 2422 * size. 2423 */ 2424 rest_addr = 0x3fff; 2425 sec_mask = 0x1c000; 2426 break; 2427 } else if (flash_id == 0x6d) { 2428 /* Am29LV001 part - 8kb sector size. */ 2429 rest_addr = 0x1fff; 2430 sec_mask = 0x1e000; 2431 break; 2432 } 2433 default: 2434 /* Default to 16 kb sector size. */ 2435 rest_addr = 0x3fff; 2436 sec_mask = 0x1c000; 2437 break; 2438 } 2439 2440 update_flash: 2441 if (IS_QLA2322(ha) || IS_QLA6322(ha)) { 2442 if (qla2x00_erase_flash(ha, man_id, flash_id)) { 2443 rval = QLA_FUNCTION_FAILED; 2444 break; 2445 } 2446 } 2447 2448 for (addr = offset, liter = 0; liter < length; liter++, 2449 addr++) { 2450 data = buf[liter]; 2451 /* Are we at the beginning of a sector? */ 2452 if ((addr & rest_addr) == 0) { 2453 if (IS_QLA2322(ha) || IS_QLA6322(ha)) { 2454 if (addr >= 0x10000UL) { 2455 if (((addr >> 12) & 0xf0) && 2456 ((man_id == 0x01 && 2457 flash_id == 0x3e) || 2458 (man_id == 0x20 && 2459 flash_id == 0xd2))) { 2460 sec_number++; 2461 if (sec_number == 1) { 2462 rest_addr = 2463 0x7fff; 2464 sec_mask = 2465 0x18000; 2466 } else if ( 2467 sec_number == 2 || 2468 sec_number == 3) { 2469 rest_addr = 2470 0x1fff; 2471 sec_mask = 2472 0x1e000; 2473 } else if ( 2474 sec_number == 4) { 2475 rest_addr = 2476 0x3fff; 2477 sec_mask = 2478 0x1c000; 2479 } 2480 } 2481 } 2482 } else if (addr == ha->optrom_size / 2) { 2483 WRT_REG_WORD(®->nvram, NVR_SELECT); 2484 RD_REG_WORD(®->nvram); 2485 } 2486 2487 if (flash_id == 0xda && man_id == 0xc1) { 2488 qla2x00_write_flash_byte(ha, 0x5555, 2489 0xaa); 2490 qla2x00_write_flash_byte(ha, 0x2aaa, 2491 0x55); 2492 qla2x00_write_flash_byte(ha, 0x5555, 2493 0xa0); 2494 } else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) { 2495 /* Then erase it */ 2496 if (qla2x00_erase_flash_sector(ha, 2497 addr, sec_mask, man_id, 2498 flash_id)) { 2499 rval = QLA_FUNCTION_FAILED; 2500 break; 2501 } 2502 if (man_id == 0x01 && flash_id == 0x6d) 2503 sec_number++; 2504 } 2505 } 2506 2507 if (man_id == 0x01 && flash_id == 0x6d) { 2508 if (sec_number == 1 && 2509 addr == (rest_addr - 1)) { 2510 rest_addr = 0x0fff; 2511 sec_mask = 0x1f000; 2512 } else if (sec_number == 3 && (addr & 0x7ffe)) { 2513 rest_addr = 0x3fff; 2514 sec_mask = 0x1c000; 2515 } 2516 } 2517 2518 if (qla2x00_program_flash_address(ha, addr, data, 2519 man_id, flash_id)) { 2520 rval = QLA_FUNCTION_FAILED; 2521 break; 2522 } 2523 cond_resched(); 2524 } 2525 } while (0); 2526 qla2x00_flash_disable(ha); 2527 2528 /* Resume HBA. */ 2529 qla2x00_resume_hba(vha); 2530 2531 return rval; 2532 } 2533 2534 uint8_t * 2535 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf, 2536 uint32_t offset, uint32_t length) 2537 { 2538 struct qla_hw_data *ha = vha->hw; 2539 2540 /* Suspend HBA. */ 2541 scsi_block_requests(vha->host); 2542 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); 2543 2544 /* Go with read. */ 2545 qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2); 2546 2547 /* Resume HBA. */ 2548 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); 2549 scsi_unblock_requests(vha->host); 2550 2551 return buf; 2552 } 2553 2554 int 2555 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf, 2556 uint32_t offset, uint32_t length) 2557 { 2558 int rval; 2559 struct qla_hw_data *ha = vha->hw; 2560 2561 /* Suspend HBA. */ 2562 scsi_block_requests(vha->host); 2563 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); 2564 2565 /* Go with write. */ 2566 rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2, 2567 length >> 2); 2568 2569 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); 2570 scsi_unblock_requests(vha->host); 2571 2572 return rval; 2573 } 2574 2575 uint8_t * 2576 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf, 2577 uint32_t offset, uint32_t length) 2578 { 2579 int rval; 2580 dma_addr_t optrom_dma; 2581 void *optrom; 2582 uint8_t *pbuf; 2583 uint32_t faddr, left, burst; 2584 struct qla_hw_data *ha = vha->hw; 2585 2586 if (IS_QLA25XX(ha) || IS_QLA81XX(ha) || IS_QLA83XX(ha) || 2587 IS_QLA27XX(ha)) 2588 goto try_fast; 2589 if (offset & 0xfff) 2590 goto slow_read; 2591 if (length < OPTROM_BURST_SIZE) 2592 goto slow_read; 2593 2594 try_fast: 2595 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, 2596 &optrom_dma, GFP_KERNEL); 2597 if (!optrom) { 2598 ql_log(ql_log_warn, vha, 0x00cc, 2599 "Unable to allocate memory for optrom burst read (%x KB).\n", 2600 OPTROM_BURST_SIZE / 1024); 2601 goto slow_read; 2602 } 2603 2604 pbuf = buf; 2605 faddr = offset >> 2; 2606 left = length >> 2; 2607 burst = OPTROM_BURST_DWORDS; 2608 while (left != 0) { 2609 if (burst > left) 2610 burst = left; 2611 2612 rval = qla2x00_dump_ram(vha, optrom_dma, 2613 flash_data_addr(ha, faddr), burst); 2614 if (rval) { 2615 ql_log(ql_log_warn, vha, 0x00f5, 2616 "Unable to burst-read optrom segment (%x/%x/%llx).\n", 2617 rval, flash_data_addr(ha, faddr), 2618 (unsigned long long)optrom_dma); 2619 ql_log(ql_log_warn, vha, 0x00f6, 2620 "Reverting to slow-read.\n"); 2621 2622 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, 2623 optrom, optrom_dma); 2624 goto slow_read; 2625 } 2626 2627 memcpy(pbuf, optrom, burst * 4); 2628 2629 left -= burst; 2630 faddr += burst; 2631 pbuf += burst * 4; 2632 } 2633 2634 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom, 2635 optrom_dma); 2636 2637 return buf; 2638 2639 slow_read: 2640 return qla24xx_read_optrom_data(vha, buf, offset, length); 2641 } 2642 2643 /** 2644 * qla2x00_get_fcode_version() - Determine an FCODE image's version. 2645 * @ha: HA context 2646 * @pcids: Pointer to the FCODE PCI data structure 2647 * 2648 * The process of retrieving the FCODE version information is at best 2649 * described as interesting. 2650 * 2651 * Within the first 100h bytes of the image an ASCII string is present 2652 * which contains several pieces of information including the FCODE 2653 * version. Unfortunately it seems the only reliable way to retrieve 2654 * the version is by scanning for another sentinel within the string, 2655 * the FCODE build date: 2656 * 2657 * ... 2.00.02 10/17/02 ... 2658 * 2659 * Returns QLA_SUCCESS on successful retrieval of version. 2660 */ 2661 static void 2662 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids) 2663 { 2664 int ret = QLA_FUNCTION_FAILED; 2665 uint32_t istart, iend, iter, vend; 2666 uint8_t do_next, rbyte, *vbyte; 2667 2668 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision)); 2669 2670 /* Skip the PCI data structure. */ 2671 istart = pcids + 2672 ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) | 2673 qla2x00_read_flash_byte(ha, pcids + 0x0A)); 2674 iend = istart + 0x100; 2675 do { 2676 /* Scan for the sentinel date string...eeewww. */ 2677 do_next = 0; 2678 iter = istart; 2679 while ((iter < iend) && !do_next) { 2680 iter++; 2681 if (qla2x00_read_flash_byte(ha, iter) == '/') { 2682 if (qla2x00_read_flash_byte(ha, iter + 2) == 2683 '/') 2684 do_next++; 2685 else if (qla2x00_read_flash_byte(ha, 2686 iter + 3) == '/') 2687 do_next++; 2688 } 2689 } 2690 if (!do_next) 2691 break; 2692 2693 /* Backtrack to previous ' ' (space). */ 2694 do_next = 0; 2695 while ((iter > istart) && !do_next) { 2696 iter--; 2697 if (qla2x00_read_flash_byte(ha, iter) == ' ') 2698 do_next++; 2699 } 2700 if (!do_next) 2701 break; 2702 2703 /* 2704 * Mark end of version tag, and find previous ' ' (space) or 2705 * string length (recent FCODE images -- major hack ahead!!!). 2706 */ 2707 vend = iter - 1; 2708 do_next = 0; 2709 while ((iter > istart) && !do_next) { 2710 iter--; 2711 rbyte = qla2x00_read_flash_byte(ha, iter); 2712 if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10) 2713 do_next++; 2714 } 2715 if (!do_next) 2716 break; 2717 2718 /* Mark beginning of version tag, and copy data. */ 2719 iter++; 2720 if ((vend - iter) && 2721 ((vend - iter) < sizeof(ha->fcode_revision))) { 2722 vbyte = ha->fcode_revision; 2723 while (iter <= vend) { 2724 *vbyte++ = qla2x00_read_flash_byte(ha, iter); 2725 iter++; 2726 } 2727 ret = QLA_SUCCESS; 2728 } 2729 } while (0); 2730 2731 if (ret != QLA_SUCCESS) 2732 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision)); 2733 } 2734 2735 int 2736 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf) 2737 { 2738 int ret = QLA_SUCCESS; 2739 uint8_t code_type, last_image; 2740 uint32_t pcihdr, pcids; 2741 uint8_t *dbyte; 2742 uint16_t *dcode; 2743 struct qla_hw_data *ha = vha->hw; 2744 2745 if (!ha->pio_address || !mbuf) 2746 return QLA_FUNCTION_FAILED; 2747 2748 memset(ha->bios_revision, 0, sizeof(ha->bios_revision)); 2749 memset(ha->efi_revision, 0, sizeof(ha->efi_revision)); 2750 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision)); 2751 memset(ha->fw_revision, 0, sizeof(ha->fw_revision)); 2752 2753 qla2x00_flash_enable(ha); 2754 2755 /* Begin with first PCI expansion ROM header. */ 2756 pcihdr = 0; 2757 last_image = 1; 2758 do { 2759 /* Verify PCI expansion ROM header. */ 2760 if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 || 2761 qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) { 2762 /* No signature */ 2763 ql_log(ql_log_fatal, vha, 0x0050, 2764 "No matching ROM signature.\n"); 2765 ret = QLA_FUNCTION_FAILED; 2766 break; 2767 } 2768 2769 /* Locate PCI data structure. */ 2770 pcids = pcihdr + 2771 ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) | 2772 qla2x00_read_flash_byte(ha, pcihdr + 0x18)); 2773 2774 /* Validate signature of PCI data structure. */ 2775 if (qla2x00_read_flash_byte(ha, pcids) != 'P' || 2776 qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' || 2777 qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' || 2778 qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') { 2779 /* Incorrect header. */ 2780 ql_log(ql_log_fatal, vha, 0x0051, 2781 "PCI data struct not found pcir_adr=%x.\n", pcids); 2782 ret = QLA_FUNCTION_FAILED; 2783 break; 2784 } 2785 2786 /* Read version */ 2787 code_type = qla2x00_read_flash_byte(ha, pcids + 0x14); 2788 switch (code_type) { 2789 case ROM_CODE_TYPE_BIOS: 2790 /* Intel x86, PC-AT compatible. */ 2791 ha->bios_revision[0] = 2792 qla2x00_read_flash_byte(ha, pcids + 0x12); 2793 ha->bios_revision[1] = 2794 qla2x00_read_flash_byte(ha, pcids + 0x13); 2795 ql_dbg(ql_dbg_init, vha, 0x0052, 2796 "Read BIOS %d.%d.\n", 2797 ha->bios_revision[1], ha->bios_revision[0]); 2798 break; 2799 case ROM_CODE_TYPE_FCODE: 2800 /* Open Firmware standard for PCI (FCode). */ 2801 /* Eeeewww... */ 2802 qla2x00_get_fcode_version(ha, pcids); 2803 break; 2804 case ROM_CODE_TYPE_EFI: 2805 /* Extensible Firmware Interface (EFI). */ 2806 ha->efi_revision[0] = 2807 qla2x00_read_flash_byte(ha, pcids + 0x12); 2808 ha->efi_revision[1] = 2809 qla2x00_read_flash_byte(ha, pcids + 0x13); 2810 ql_dbg(ql_dbg_init, vha, 0x0053, 2811 "Read EFI %d.%d.\n", 2812 ha->efi_revision[1], ha->efi_revision[0]); 2813 break; 2814 default: 2815 ql_log(ql_log_warn, vha, 0x0054, 2816 "Unrecognized code type %x at pcids %x.\n", 2817 code_type, pcids); 2818 break; 2819 } 2820 2821 last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7; 2822 2823 /* Locate next PCI expansion ROM. */ 2824 pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) | 2825 qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512; 2826 } while (!last_image); 2827 2828 if (IS_QLA2322(ha)) { 2829 /* Read firmware image information. */ 2830 memset(ha->fw_revision, 0, sizeof(ha->fw_revision)); 2831 dbyte = mbuf; 2832 memset(dbyte, 0, 8); 2833 dcode = (uint16_t *)dbyte; 2834 2835 qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10, 2836 8); 2837 ql_dbg(ql_dbg_init + ql_dbg_buffer, vha, 0x010a, 2838 "Dumping fw " 2839 "ver from flash:.\n"); 2840 ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010b, 2841 (uint8_t *)dbyte, 8); 2842 2843 if ((dcode[0] == 0xffff && dcode[1] == 0xffff && 2844 dcode[2] == 0xffff && dcode[3] == 0xffff) || 2845 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 && 2846 dcode[3] == 0)) { 2847 ql_log(ql_log_warn, vha, 0x0057, 2848 "Unrecognized fw revision at %x.\n", 2849 ha->flt_region_fw * 4); 2850 } else { 2851 /* values are in big endian */ 2852 ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1]; 2853 ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3]; 2854 ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5]; 2855 ql_dbg(ql_dbg_init, vha, 0x0058, 2856 "FW Version: " 2857 "%d.%d.%d.\n", ha->fw_revision[0], 2858 ha->fw_revision[1], ha->fw_revision[2]); 2859 } 2860 } 2861 2862 qla2x00_flash_disable(ha); 2863 2864 return ret; 2865 } 2866 2867 int 2868 qla82xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf) 2869 { 2870 int ret = QLA_SUCCESS; 2871 uint32_t pcihdr, pcids; 2872 uint32_t *dcode; 2873 uint8_t *bcode; 2874 uint8_t code_type, last_image; 2875 struct qla_hw_data *ha = vha->hw; 2876 2877 if (!mbuf) 2878 return QLA_FUNCTION_FAILED; 2879 2880 memset(ha->bios_revision, 0, sizeof(ha->bios_revision)); 2881 memset(ha->efi_revision, 0, sizeof(ha->efi_revision)); 2882 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision)); 2883 memset(ha->fw_revision, 0, sizeof(ha->fw_revision)); 2884 2885 dcode = mbuf; 2886 2887 /* Begin with first PCI expansion ROM header. */ 2888 pcihdr = ha->flt_region_boot << 2; 2889 last_image = 1; 2890 do { 2891 /* Verify PCI expansion ROM header. */ 2892 ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, pcihdr, 2893 0x20 * 4); 2894 bcode = mbuf + (pcihdr % 4); 2895 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) { 2896 /* No signature */ 2897 ql_log(ql_log_fatal, vha, 0x0154, 2898 "No matching ROM signature.\n"); 2899 ret = QLA_FUNCTION_FAILED; 2900 break; 2901 } 2902 2903 /* Locate PCI data structure. */ 2904 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]); 2905 2906 ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, pcids, 2907 0x20 * 4); 2908 bcode = mbuf + (pcihdr % 4); 2909 2910 /* Validate signature of PCI data structure. */ 2911 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' || 2912 bcode[0x2] != 'I' || bcode[0x3] != 'R') { 2913 /* Incorrect header. */ 2914 ql_log(ql_log_fatal, vha, 0x0155, 2915 "PCI data struct not found pcir_adr=%x.\n", pcids); 2916 ret = QLA_FUNCTION_FAILED; 2917 break; 2918 } 2919 2920 /* Read version */ 2921 code_type = bcode[0x14]; 2922 switch (code_type) { 2923 case ROM_CODE_TYPE_BIOS: 2924 /* Intel x86, PC-AT compatible. */ 2925 ha->bios_revision[0] = bcode[0x12]; 2926 ha->bios_revision[1] = bcode[0x13]; 2927 ql_dbg(ql_dbg_init, vha, 0x0156, 2928 "Read BIOS %d.%d.\n", 2929 ha->bios_revision[1], ha->bios_revision[0]); 2930 break; 2931 case ROM_CODE_TYPE_FCODE: 2932 /* Open Firmware standard for PCI (FCode). */ 2933 ha->fcode_revision[0] = bcode[0x12]; 2934 ha->fcode_revision[1] = bcode[0x13]; 2935 ql_dbg(ql_dbg_init, vha, 0x0157, 2936 "Read FCODE %d.%d.\n", 2937 ha->fcode_revision[1], ha->fcode_revision[0]); 2938 break; 2939 case ROM_CODE_TYPE_EFI: 2940 /* Extensible Firmware Interface (EFI). */ 2941 ha->efi_revision[0] = bcode[0x12]; 2942 ha->efi_revision[1] = bcode[0x13]; 2943 ql_dbg(ql_dbg_init, vha, 0x0158, 2944 "Read EFI %d.%d.\n", 2945 ha->efi_revision[1], ha->efi_revision[0]); 2946 break; 2947 default: 2948 ql_log(ql_log_warn, vha, 0x0159, 2949 "Unrecognized code type %x at pcids %x.\n", 2950 code_type, pcids); 2951 break; 2952 } 2953 2954 last_image = bcode[0x15] & BIT_7; 2955 2956 /* Locate next PCI expansion ROM. */ 2957 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512; 2958 } while (!last_image); 2959 2960 /* Read firmware image information. */ 2961 memset(ha->fw_revision, 0, sizeof(ha->fw_revision)); 2962 dcode = mbuf; 2963 ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, ha->flt_region_fw << 2, 2964 0x20); 2965 bcode = mbuf + (pcihdr % 4); 2966 2967 /* Validate signature of PCI data structure. */ 2968 if (bcode[0x0] == 0x3 && bcode[0x1] == 0x0 && 2969 bcode[0x2] == 0x40 && bcode[0x3] == 0x40) { 2970 ha->fw_revision[0] = bcode[0x4]; 2971 ha->fw_revision[1] = bcode[0x5]; 2972 ha->fw_revision[2] = bcode[0x6]; 2973 ql_dbg(ql_dbg_init, vha, 0x0153, 2974 "Firmware revision %d.%d.%d\n", 2975 ha->fw_revision[0], ha->fw_revision[1], 2976 ha->fw_revision[2]); 2977 } 2978 2979 return ret; 2980 } 2981 2982 int 2983 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf) 2984 { 2985 int ret = QLA_SUCCESS; 2986 uint32_t pcihdr, pcids; 2987 uint32_t *dcode; 2988 uint8_t *bcode; 2989 uint8_t code_type, last_image; 2990 int i; 2991 struct qla_hw_data *ha = vha->hw; 2992 2993 if (IS_P3P_TYPE(ha)) 2994 return ret; 2995 2996 if (!mbuf) 2997 return QLA_FUNCTION_FAILED; 2998 2999 memset(ha->bios_revision, 0, sizeof(ha->bios_revision)); 3000 memset(ha->efi_revision, 0, sizeof(ha->efi_revision)); 3001 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision)); 3002 memset(ha->fw_revision, 0, sizeof(ha->fw_revision)); 3003 3004 dcode = mbuf; 3005 3006 /* Begin with first PCI expansion ROM header. */ 3007 pcihdr = ha->flt_region_boot << 2; 3008 last_image = 1; 3009 do { 3010 /* Verify PCI expansion ROM header. */ 3011 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20); 3012 bcode = mbuf + (pcihdr % 4); 3013 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) { 3014 /* No signature */ 3015 ql_log(ql_log_fatal, vha, 0x0059, 3016 "No matching ROM signature.\n"); 3017 ret = QLA_FUNCTION_FAILED; 3018 break; 3019 } 3020 3021 /* Locate PCI data structure. */ 3022 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]); 3023 3024 qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20); 3025 bcode = mbuf + (pcihdr % 4); 3026 3027 /* Validate signature of PCI data structure. */ 3028 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' || 3029 bcode[0x2] != 'I' || bcode[0x3] != 'R') { 3030 /* Incorrect header. */ 3031 ql_log(ql_log_fatal, vha, 0x005a, 3032 "PCI data struct not found pcir_adr=%x.\n", pcids); 3033 ret = QLA_FUNCTION_FAILED; 3034 break; 3035 } 3036 3037 /* Read version */ 3038 code_type = bcode[0x14]; 3039 switch (code_type) { 3040 case ROM_CODE_TYPE_BIOS: 3041 /* Intel x86, PC-AT compatible. */ 3042 ha->bios_revision[0] = bcode[0x12]; 3043 ha->bios_revision[1] = bcode[0x13]; 3044 ql_dbg(ql_dbg_init, vha, 0x005b, 3045 "Read BIOS %d.%d.\n", 3046 ha->bios_revision[1], ha->bios_revision[0]); 3047 break; 3048 case ROM_CODE_TYPE_FCODE: 3049 /* Open Firmware standard for PCI (FCode). */ 3050 ha->fcode_revision[0] = bcode[0x12]; 3051 ha->fcode_revision[1] = bcode[0x13]; 3052 ql_dbg(ql_dbg_init, vha, 0x005c, 3053 "Read FCODE %d.%d.\n", 3054 ha->fcode_revision[1], ha->fcode_revision[0]); 3055 break; 3056 case ROM_CODE_TYPE_EFI: 3057 /* Extensible Firmware Interface (EFI). */ 3058 ha->efi_revision[0] = bcode[0x12]; 3059 ha->efi_revision[1] = bcode[0x13]; 3060 ql_dbg(ql_dbg_init, vha, 0x005d, 3061 "Read EFI %d.%d.\n", 3062 ha->efi_revision[1], ha->efi_revision[0]); 3063 break; 3064 default: 3065 ql_log(ql_log_warn, vha, 0x005e, 3066 "Unrecognized code type %x at pcids %x.\n", 3067 code_type, pcids); 3068 break; 3069 } 3070 3071 last_image = bcode[0x15] & BIT_7; 3072 3073 /* Locate next PCI expansion ROM. */ 3074 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512; 3075 } while (!last_image); 3076 3077 /* Read firmware image information. */ 3078 memset(ha->fw_revision, 0, sizeof(ha->fw_revision)); 3079 dcode = mbuf; 3080 3081 qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4); 3082 for (i = 0; i < 4; i++) 3083 dcode[i] = be32_to_cpu(dcode[i]); 3084 3085 if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff && 3086 dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) || 3087 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 && 3088 dcode[3] == 0)) { 3089 ql_log(ql_log_warn, vha, 0x005f, 3090 "Unrecognized fw revision at %x.\n", 3091 ha->flt_region_fw * 4); 3092 } else { 3093 ha->fw_revision[0] = dcode[0]; 3094 ha->fw_revision[1] = dcode[1]; 3095 ha->fw_revision[2] = dcode[2]; 3096 ha->fw_revision[3] = dcode[3]; 3097 ql_dbg(ql_dbg_init, vha, 0x0060, 3098 "Firmware revision %d.%d.%d (%x).\n", 3099 ha->fw_revision[0], ha->fw_revision[1], 3100 ha->fw_revision[2], ha->fw_revision[3]); 3101 } 3102 3103 /* Check for golden firmware and get version if available */ 3104 if (!IS_QLA81XX(ha)) { 3105 /* Golden firmware is not present in non 81XX adapters */ 3106 return ret; 3107 } 3108 3109 memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version)); 3110 dcode = mbuf; 3111 ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, 3112 ha->flt_region_gold_fw << 2, 32); 3113 3114 if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF && 3115 dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) { 3116 ql_log(ql_log_warn, vha, 0x0056, 3117 "Unrecognized golden fw at 0x%x.\n", 3118 ha->flt_region_gold_fw * 4); 3119 return ret; 3120 } 3121 3122 for (i = 4; i < 8; i++) 3123 ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]); 3124 3125 return ret; 3126 } 3127 3128 static int 3129 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end) 3130 { 3131 if (pos >= end || *pos != 0x82) 3132 return 0; 3133 3134 pos += 3 + pos[1]; 3135 if (pos >= end || *pos != 0x90) 3136 return 0; 3137 3138 pos += 3 + pos[1]; 3139 if (pos >= end || *pos != 0x78) 3140 return 0; 3141 3142 return 1; 3143 } 3144 3145 int 3146 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size) 3147 { 3148 struct qla_hw_data *ha = vha->hw; 3149 uint8_t *pos = ha->vpd; 3150 uint8_t *end = pos + ha->vpd_size; 3151 int len = 0; 3152 3153 if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end)) 3154 return 0; 3155 3156 while (pos < end && *pos != 0x78) { 3157 len = (*pos == 0x82) ? pos[1] : pos[2]; 3158 3159 if (!strncmp(pos, key, strlen(key))) 3160 break; 3161 3162 if (*pos != 0x90 && *pos != 0x91) 3163 pos += len; 3164 3165 pos += 3; 3166 } 3167 3168 if (pos < end - len && *pos != 0x78) 3169 return scnprintf(str, size, "%.*s", len, pos + 3); 3170 3171 return 0; 3172 } 3173 3174 int 3175 qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha) 3176 { 3177 int len, max_len; 3178 uint32_t fcp_prio_addr; 3179 struct qla_hw_data *ha = vha->hw; 3180 3181 if (!ha->fcp_prio_cfg) { 3182 ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE); 3183 if (!ha->fcp_prio_cfg) { 3184 ql_log(ql_log_warn, vha, 0x00d5, 3185 "Unable to allocate memory for fcp priorty data (%x).\n", 3186 FCP_PRIO_CFG_SIZE); 3187 return QLA_FUNCTION_FAILED; 3188 } 3189 } 3190 memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE); 3191 3192 fcp_prio_addr = ha->flt_region_fcp_prio; 3193 3194 /* first read the fcp priority data header from flash */ 3195 ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg, 3196 fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE); 3197 3198 if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 0)) 3199 goto fail; 3200 3201 /* read remaining FCP CMD config data from flash */ 3202 fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2); 3203 len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE; 3204 max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE; 3205 3206 ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0], 3207 fcp_prio_addr << 2, (len < max_len ? len : max_len)); 3208 3209 /* revalidate the entire FCP priority config data, including entries */ 3210 if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 1)) 3211 goto fail; 3212 3213 ha->flags.fcp_prio_enabled = 1; 3214 return QLA_SUCCESS; 3215 fail: 3216 vfree(ha->fcp_prio_cfg); 3217 ha->fcp_prio_cfg = NULL; 3218 return QLA_FUNCTION_FAILED; 3219 } 3220