xref: /openbmc/linux/drivers/scsi/qla2xxx/qla_sup.c (revision 9c1f8594)
1 /*
2  * QLogic Fibre Channel HBA Driver
3  * Copyright (c)  2003-2011 QLogic Corporation
4  *
5  * See LICENSE.qla2xxx for copyright and licensing details.
6  */
7 #include "qla_def.h"
8 
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/vmalloc.h>
12 #include <asm/uaccess.h>
13 
14 /*
15  * NVRAM support routines
16  */
17 
18 /**
19  * qla2x00_lock_nvram_access() -
20  * @ha: HA context
21  */
22 static void
23 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
24 {
25 	uint16_t data;
26 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
27 
28 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
29 		data = RD_REG_WORD(&reg->nvram);
30 		while (data & NVR_BUSY) {
31 			udelay(100);
32 			data = RD_REG_WORD(&reg->nvram);
33 		}
34 
35 		/* Lock resource */
36 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
37 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
38 		udelay(5);
39 		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
40 		while ((data & BIT_0) == 0) {
41 			/* Lock failed */
42 			udelay(100);
43 			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
44 			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
45 			udelay(5);
46 			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
47 		}
48 	}
49 }
50 
51 /**
52  * qla2x00_unlock_nvram_access() -
53  * @ha: HA context
54  */
55 static void
56 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
57 {
58 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
59 
60 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
61 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
62 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
63 	}
64 }
65 
66 /**
67  * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
68  * @ha: HA context
69  * @data: Serial interface selector
70  */
71 static void
72 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
73 {
74 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
75 
76 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
77 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
78 	NVRAM_DELAY();
79 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
80 	    NVR_WRT_ENABLE);
81 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
82 	NVRAM_DELAY();
83 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
84 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
85 	NVRAM_DELAY();
86 }
87 
88 /**
89  * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
90  *	NVRAM.
91  * @ha: HA context
92  * @nv_cmd: NVRAM command
93  *
94  * Bit definitions for NVRAM command:
95  *
96  *	Bit 26     = start bit
97  *	Bit 25, 24 = opcode
98  *	Bit 23-16  = address
99  *	Bit 15-0   = write data
100  *
101  * Returns the word read from nvram @addr.
102  */
103 static uint16_t
104 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
105 {
106 	uint8_t		cnt;
107 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
108 	uint16_t	data = 0;
109 	uint16_t	reg_data;
110 
111 	/* Send command to NVRAM. */
112 	nv_cmd <<= 5;
113 	for (cnt = 0; cnt < 11; cnt++) {
114 		if (nv_cmd & BIT_31)
115 			qla2x00_nv_write(ha, NVR_DATA_OUT);
116 		else
117 			qla2x00_nv_write(ha, 0);
118 		nv_cmd <<= 1;
119 	}
120 
121 	/* Read data from NVRAM. */
122 	for (cnt = 0; cnt < 16; cnt++) {
123 		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
124 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
125 		NVRAM_DELAY();
126 		data <<= 1;
127 		reg_data = RD_REG_WORD(&reg->nvram);
128 		if (reg_data & NVR_DATA_IN)
129 			data |= BIT_0;
130 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
131 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
132 		NVRAM_DELAY();
133 	}
134 
135 	/* Deselect chip. */
136 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
137 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
138 	NVRAM_DELAY();
139 
140 	return data;
141 }
142 
143 
144 /**
145  * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
146  *	request routine to get the word from NVRAM.
147  * @ha: HA context
148  * @addr: Address in NVRAM to read
149  *
150  * Returns the word read from nvram @addr.
151  */
152 static uint16_t
153 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
154 {
155 	uint16_t	data;
156 	uint32_t	nv_cmd;
157 
158 	nv_cmd = addr << 16;
159 	nv_cmd |= NV_READ_OP;
160 	data = qla2x00_nvram_request(ha, nv_cmd);
161 
162 	return (data);
163 }
164 
165 /**
166  * qla2x00_nv_deselect() - Deselect NVRAM operations.
167  * @ha: HA context
168  */
169 static void
170 qla2x00_nv_deselect(struct qla_hw_data *ha)
171 {
172 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
173 
174 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
175 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
176 	NVRAM_DELAY();
177 }
178 
179 /**
180  * qla2x00_write_nvram_word() - Write NVRAM data.
181  * @ha: HA context
182  * @addr: Address in NVRAM to write
183  * @data: word to program
184  */
185 static void
186 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
187 {
188 	int count;
189 	uint16_t word;
190 	uint32_t nv_cmd, wait_cnt;
191 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
192 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
193 
194 	qla2x00_nv_write(ha, NVR_DATA_OUT);
195 	qla2x00_nv_write(ha, 0);
196 	qla2x00_nv_write(ha, 0);
197 
198 	for (word = 0; word < 8; word++)
199 		qla2x00_nv_write(ha, NVR_DATA_OUT);
200 
201 	qla2x00_nv_deselect(ha);
202 
203 	/* Write data */
204 	nv_cmd = (addr << 16) | NV_WRITE_OP;
205 	nv_cmd |= data;
206 	nv_cmd <<= 5;
207 	for (count = 0; count < 27; count++) {
208 		if (nv_cmd & BIT_31)
209 			qla2x00_nv_write(ha, NVR_DATA_OUT);
210 		else
211 			qla2x00_nv_write(ha, 0);
212 
213 		nv_cmd <<= 1;
214 	}
215 
216 	qla2x00_nv_deselect(ha);
217 
218 	/* Wait for NVRAM to become ready */
219 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
220 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
221 	wait_cnt = NVR_WAIT_CNT;
222 	do {
223 		if (!--wait_cnt) {
224 			ql_dbg(ql_dbg_user, vha, 0x708d,
225 			    "NVRAM didn't go ready...\n");
226 			break;
227 		}
228 		NVRAM_DELAY();
229 		word = RD_REG_WORD(&reg->nvram);
230 	} while ((word & NVR_DATA_IN) == 0);
231 
232 	qla2x00_nv_deselect(ha);
233 
234 	/* Disable writes */
235 	qla2x00_nv_write(ha, NVR_DATA_OUT);
236 	for (count = 0; count < 10; count++)
237 		qla2x00_nv_write(ha, 0);
238 
239 	qla2x00_nv_deselect(ha);
240 }
241 
242 static int
243 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
244 	uint16_t data, uint32_t tmo)
245 {
246 	int ret, count;
247 	uint16_t word;
248 	uint32_t nv_cmd;
249 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
250 
251 	ret = QLA_SUCCESS;
252 
253 	qla2x00_nv_write(ha, NVR_DATA_OUT);
254 	qla2x00_nv_write(ha, 0);
255 	qla2x00_nv_write(ha, 0);
256 
257 	for (word = 0; word < 8; word++)
258 		qla2x00_nv_write(ha, NVR_DATA_OUT);
259 
260 	qla2x00_nv_deselect(ha);
261 
262 	/* Write data */
263 	nv_cmd = (addr << 16) | NV_WRITE_OP;
264 	nv_cmd |= data;
265 	nv_cmd <<= 5;
266 	for (count = 0; count < 27; count++) {
267 		if (nv_cmd & BIT_31)
268 			qla2x00_nv_write(ha, NVR_DATA_OUT);
269 		else
270 			qla2x00_nv_write(ha, 0);
271 
272 		nv_cmd <<= 1;
273 	}
274 
275 	qla2x00_nv_deselect(ha);
276 
277 	/* Wait for NVRAM to become ready */
278 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
279 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
280 	do {
281 		NVRAM_DELAY();
282 		word = RD_REG_WORD(&reg->nvram);
283 		if (!--tmo) {
284 			ret = QLA_FUNCTION_FAILED;
285 			break;
286 		}
287 	} while ((word & NVR_DATA_IN) == 0);
288 
289 	qla2x00_nv_deselect(ha);
290 
291 	/* Disable writes */
292 	qla2x00_nv_write(ha, NVR_DATA_OUT);
293 	for (count = 0; count < 10; count++)
294 		qla2x00_nv_write(ha, 0);
295 
296 	qla2x00_nv_deselect(ha);
297 
298 	return ret;
299 }
300 
301 /**
302  * qla2x00_clear_nvram_protection() -
303  * @ha: HA context
304  */
305 static int
306 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
307 {
308 	int ret, stat;
309 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
310 	uint32_t word, wait_cnt;
311 	uint16_t wprot, wprot_old;
312 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
313 
314 	/* Clear NVRAM write protection. */
315 	ret = QLA_FUNCTION_FAILED;
316 
317 	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319 	    __constant_cpu_to_le16(0x1234), 100000);
320 	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
321 	if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 		/* Write enable. */
323 		qla2x00_nv_write(ha, NVR_DATA_OUT);
324 		qla2x00_nv_write(ha, 0);
325 		qla2x00_nv_write(ha, 0);
326 		for (word = 0; word < 8; word++)
327 			qla2x00_nv_write(ha, NVR_DATA_OUT);
328 
329 		qla2x00_nv_deselect(ha);
330 
331 		/* Enable protection register. */
332 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
333 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
334 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
335 		for (word = 0; word < 8; word++)
336 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
337 
338 		qla2x00_nv_deselect(ha);
339 
340 		/* Clear protection register (ffff is cleared). */
341 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
343 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
344 		for (word = 0; word < 8; word++)
345 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
346 
347 		qla2x00_nv_deselect(ha);
348 
349 		/* Wait for NVRAM to become ready. */
350 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
352 		wait_cnt = NVR_WAIT_CNT;
353 		do {
354 			if (!--wait_cnt) {
355 				ql_dbg(ql_dbg_user, vha, 0x708e,
356 				    "NVRAM didn't go ready...\n");
357 				break;
358 			}
359 			NVRAM_DELAY();
360 			word = RD_REG_WORD(&reg->nvram);
361 		} while ((word & NVR_DATA_IN) == 0);
362 
363 		if (wait_cnt)
364 			ret = QLA_SUCCESS;
365 	} else
366 		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
367 
368 	return ret;
369 }
370 
371 static void
372 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
373 {
374 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
375 	uint32_t word, wait_cnt;
376 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
377 
378 	if (stat != QLA_SUCCESS)
379 		return;
380 
381 	/* Set NVRAM write protection. */
382 	/* Write enable. */
383 	qla2x00_nv_write(ha, NVR_DATA_OUT);
384 	qla2x00_nv_write(ha, 0);
385 	qla2x00_nv_write(ha, 0);
386 	for (word = 0; word < 8; word++)
387 		qla2x00_nv_write(ha, NVR_DATA_OUT);
388 
389 	qla2x00_nv_deselect(ha);
390 
391 	/* Enable protection register. */
392 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
393 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
394 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
395 	for (word = 0; word < 8; word++)
396 		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
397 
398 	qla2x00_nv_deselect(ha);
399 
400 	/* Enable protection register. */
401 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
402 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
403 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
404 	for (word = 0; word < 8; word++)
405 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
406 
407 	qla2x00_nv_deselect(ha);
408 
409 	/* Wait for NVRAM to become ready. */
410 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
412 	wait_cnt = NVR_WAIT_CNT;
413 	do {
414 		if (!--wait_cnt) {
415 			ql_dbg(ql_dbg_user, vha, 0x708f,
416 			    "NVRAM didn't go ready...\n");
417 			break;
418 		}
419 		NVRAM_DELAY();
420 		word = RD_REG_WORD(&reg->nvram);
421 	} while ((word & NVR_DATA_IN) == 0);
422 }
423 
424 
425 /*****************************************************************************/
426 /* Flash Manipulation Routines                                               */
427 /*****************************************************************************/
428 
429 static inline uint32_t
430 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
431 {
432 	return ha->flash_conf_off | faddr;
433 }
434 
435 static inline uint32_t
436 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
437 {
438 	return ha->flash_data_off | faddr;
439 }
440 
441 static inline uint32_t
442 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
443 {
444 	return ha->nvram_conf_off | naddr;
445 }
446 
447 static inline uint32_t
448 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
449 {
450 	return ha->nvram_data_off | naddr;
451 }
452 
453 static uint32_t
454 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
455 {
456 	int rval;
457 	uint32_t cnt, data;
458 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
459 
460 	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
461 	/* Wait for READ cycle to complete. */
462 	rval = QLA_SUCCESS;
463 	for (cnt = 3000;
464 	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
465 	    rval == QLA_SUCCESS; cnt--) {
466 		if (cnt)
467 			udelay(10);
468 		else
469 			rval = QLA_FUNCTION_TIMEOUT;
470 		cond_resched();
471 	}
472 
473 	/* TODO: What happens if we time out? */
474 	data = 0xDEADDEAD;
475 	if (rval == QLA_SUCCESS)
476 		data = RD_REG_DWORD(&reg->flash_data);
477 
478 	return data;
479 }
480 
481 uint32_t *
482 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
483     uint32_t dwords)
484 {
485 	uint32_t i;
486 	struct qla_hw_data *ha = vha->hw;
487 
488 	/* Dword reads to flash. */
489 	for (i = 0; i < dwords; i++, faddr++)
490 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
491 		    flash_data_addr(ha, faddr)));
492 
493 	return dwptr;
494 }
495 
496 static int
497 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
498 {
499 	int rval;
500 	uint32_t cnt;
501 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
502 
503 	WRT_REG_DWORD(&reg->flash_data, data);
504 	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
505 	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
506 	/* Wait for Write cycle to complete. */
507 	rval = QLA_SUCCESS;
508 	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
509 	    rval == QLA_SUCCESS; cnt--) {
510 		if (cnt)
511 			udelay(10);
512 		else
513 			rval = QLA_FUNCTION_TIMEOUT;
514 		cond_resched();
515 	}
516 	return rval;
517 }
518 
519 static void
520 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
521     uint8_t *flash_id)
522 {
523 	uint32_t ids;
524 
525 	ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
526 	*man_id = LSB(ids);
527 	*flash_id = MSB(ids);
528 
529 	/* Check if man_id and flash_id are valid. */
530 	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
531 		/* Read information using 0x9f opcode
532 		 * Device ID, Mfg ID would be read in the format:
533 		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
534 		 * Example: ATMEL 0x00 01 45 1F
535 		 * Extract MFG and Dev ID from last two bytes.
536 		 */
537 		ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
538 		*man_id = LSB(ids);
539 		*flash_id = MSB(ids);
540 	}
541 }
542 
543 static int
544 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
545 {
546 	const char *loc, *locations[] = { "DEF", "PCI" };
547 	uint32_t pcihdr, pcids;
548 	uint32_t *dcode;
549 	uint8_t *buf, *bcode, last_image;
550 	uint16_t cnt, chksum, *wptr;
551 	struct qla_flt_location *fltl;
552 	struct qla_hw_data *ha = vha->hw;
553 	struct req_que *req = ha->req_q_map[0];
554 
555 	/*
556 	 * FLT-location structure resides after the last PCI region.
557 	 */
558 
559 	/* Begin with sane defaults. */
560 	loc = locations[0];
561 	*start = 0;
562 	if (IS_QLA24XX_TYPE(ha))
563 		*start = FA_FLASH_LAYOUT_ADDR_24;
564 	else if (IS_QLA25XX(ha))
565 		*start = FA_FLASH_LAYOUT_ADDR;
566 	else if (IS_QLA81XX(ha))
567 		*start = FA_FLASH_LAYOUT_ADDR_81;
568 	else if (IS_QLA82XX(ha)) {
569 		*start = FA_FLASH_LAYOUT_ADDR_82;
570 		goto end;
571 	}
572 	/* Begin with first PCI expansion ROM header. */
573 	buf = (uint8_t *)req->ring;
574 	dcode = (uint32_t *)req->ring;
575 	pcihdr = 0;
576 	last_image = 1;
577 	do {
578 		/* Verify PCI expansion ROM header. */
579 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
580 		bcode = buf + (pcihdr % 4);
581 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
582 			goto end;
583 
584 		/* Locate PCI data structure. */
585 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
586 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
587 		bcode = buf + (pcihdr % 4);
588 
589 		/* Validate signature of PCI data structure. */
590 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
591 		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
592 			goto end;
593 
594 		last_image = bcode[0x15] & BIT_7;
595 
596 		/* Locate next PCI expansion ROM. */
597 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
598 	} while (!last_image);
599 
600 	/* Now verify FLT-location structure. */
601 	fltl = (struct qla_flt_location *)req->ring;
602 	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
603 	    sizeof(struct qla_flt_location) >> 2);
604 	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
605 	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
606 		goto end;
607 
608 	wptr = (uint16_t *)req->ring;
609 	cnt = sizeof(struct qla_flt_location) >> 1;
610 	for (chksum = 0; cnt; cnt--)
611 		chksum += le16_to_cpu(*wptr++);
612 	if (chksum) {
613 		ql_log(ql_log_fatal, vha, 0x0045,
614 		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
615 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010e,
616 		    buf, sizeof(struct qla_flt_location));
617 		return QLA_FUNCTION_FAILED;
618 	}
619 
620 	/* Good data.  Use specified location. */
621 	loc = locations[1];
622 	*start = (le16_to_cpu(fltl->start_hi) << 16 |
623 	    le16_to_cpu(fltl->start_lo)) >> 2;
624 end:
625 	ql_dbg(ql_dbg_init, vha, 0x0046,
626 	    "FLTL[%s] = 0x%x.\n",
627 	    loc, *start);
628 	return QLA_SUCCESS;
629 }
630 
631 static void
632 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
633 {
634 	const char *loc, *locations[] = { "DEF", "FLT" };
635 	const uint32_t def_fw[] =
636 		{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
637 	const uint32_t def_boot[] =
638 		{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
639 	const uint32_t def_vpd_nvram[] =
640 		{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
641 	const uint32_t def_vpd0[] =
642 		{ 0, 0, FA_VPD0_ADDR_81 };
643 	const uint32_t def_vpd1[] =
644 		{ 0, 0, FA_VPD1_ADDR_81 };
645 	const uint32_t def_nvram0[] =
646 		{ 0, 0, FA_NVRAM0_ADDR_81 };
647 	const uint32_t def_nvram1[] =
648 		{ 0, 0, FA_NVRAM1_ADDR_81 };
649 	const uint32_t def_fdt[] =
650 		{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
651 			FA_FLASH_DESCR_ADDR_81 };
652 	const uint32_t def_npiv_conf0[] =
653 		{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
654 			FA_NPIV_CONF0_ADDR_81 };
655 	const uint32_t def_npiv_conf1[] =
656 		{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
657 			FA_NPIV_CONF1_ADDR_81 };
658 	const uint32_t fcp_prio_cfg0[] =
659 		{ FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25,
660 			0 };
661 	const uint32_t fcp_prio_cfg1[] =
662 		{ FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25,
663 			0 };
664 	uint32_t def;
665 	uint16_t *wptr;
666 	uint16_t cnt, chksum;
667 	uint32_t start;
668 	struct qla_flt_header *flt;
669 	struct qla_flt_region *region;
670 	struct qla_hw_data *ha = vha->hw;
671 	struct req_que *req = ha->req_q_map[0];
672 
673 	def = 0;
674 	if (IS_QLA25XX(ha))
675 		def = 1;
676 	else if (IS_QLA81XX(ha))
677 		def = 2;
678 
679 	/* Assign FCP prio region since older adapters may not have FLT, or
680 	   FCP prio region in it's FLT.
681 	 */
682 	ha->flt_region_fcp_prio = ha->flags.port0 ?
683 	    fcp_prio_cfg0[def] : fcp_prio_cfg1[def];
684 
685 	ha->flt_region_flt = flt_addr;
686 	wptr = (uint16_t *)req->ring;
687 	flt = (struct qla_flt_header *)req->ring;
688 	region = (struct qla_flt_region *)&flt[1];
689 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
690 	    flt_addr << 2, OPTROM_BURST_SIZE);
691 	if (*wptr == __constant_cpu_to_le16(0xffff))
692 		goto no_flash_data;
693 	if (flt->version != __constant_cpu_to_le16(1)) {
694 		ql_log(ql_log_warn, vha, 0x0047,
695 		    "Unsupported FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
696 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
697 		    le16_to_cpu(flt->checksum));
698 		goto no_flash_data;
699 	}
700 
701 	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
702 	for (chksum = 0; cnt; cnt--)
703 		chksum += le16_to_cpu(*wptr++);
704 	if (chksum) {
705 		ql_log(ql_log_fatal, vha, 0x0048,
706 		    "Inconsistent FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
707 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
708 		    le16_to_cpu(flt->checksum));
709 		goto no_flash_data;
710 	}
711 
712 	loc = locations[1];
713 	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
714 	for ( ; cnt; cnt--, region++) {
715 		/* Store addresses as DWORD offsets. */
716 		start = le32_to_cpu(region->start) >> 2;
717 		ql_dbg(ql_dbg_init, vha, 0x0049,
718 		    "FLT[%02x]: start=0x%x "
719 		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code),
720 		    start, le32_to_cpu(region->end) >> 2,
721 		    le32_to_cpu(region->size));
722 
723 		switch (le32_to_cpu(region->code) & 0xff) {
724 		case FLT_REG_FW:
725 			ha->flt_region_fw = start;
726 			break;
727 		case FLT_REG_BOOT_CODE:
728 			ha->flt_region_boot = start;
729 			break;
730 		case FLT_REG_VPD_0:
731 			ha->flt_region_vpd_nvram = start;
732 			if (IS_QLA82XX(ha))
733 				break;
734 			if (ha->flags.port0)
735 				ha->flt_region_vpd = start;
736 			break;
737 		case FLT_REG_VPD_1:
738 			if (IS_QLA82XX(ha))
739 				break;
740 			if (!ha->flags.port0)
741 				ha->flt_region_vpd = start;
742 			break;
743 		case FLT_REG_NVRAM_0:
744 			if (ha->flags.port0)
745 				ha->flt_region_nvram = start;
746 			break;
747 		case FLT_REG_NVRAM_1:
748 			if (!ha->flags.port0)
749 				ha->flt_region_nvram = start;
750 			break;
751 		case FLT_REG_FDT:
752 			ha->flt_region_fdt = start;
753 			break;
754 		case FLT_REG_NPIV_CONF_0:
755 			if (ha->flags.port0)
756 				ha->flt_region_npiv_conf = start;
757 			break;
758 		case FLT_REG_NPIV_CONF_1:
759 			if (!ha->flags.port0)
760 				ha->flt_region_npiv_conf = start;
761 			break;
762 		case FLT_REG_GOLD_FW:
763 			ha->flt_region_gold_fw = start;
764 			break;
765 		case FLT_REG_FCP_PRIO_0:
766 			if (ha->flags.port0)
767 				ha->flt_region_fcp_prio = start;
768 			break;
769 		case FLT_REG_FCP_PRIO_1:
770 			if (!ha->flags.port0)
771 				ha->flt_region_fcp_prio = start;
772 			break;
773 		case FLT_REG_BOOT_CODE_82XX:
774 			ha->flt_region_boot = start;
775 			break;
776 		case FLT_REG_FW_82XX:
777 			ha->flt_region_fw = start;
778 			break;
779 		case FLT_REG_GOLD_FW_82XX:
780 			ha->flt_region_gold_fw = start;
781 			break;
782 		case FLT_REG_BOOTLOAD_82XX:
783 			ha->flt_region_bootload = start;
784 			break;
785 		case FLT_REG_VPD_82XX:
786 			ha->flt_region_vpd = start;
787 			break;
788 		}
789 	}
790 	goto done;
791 
792 no_flash_data:
793 	/* Use hardcoded defaults. */
794 	loc = locations[0];
795 	ha->flt_region_fw = def_fw[def];
796 	ha->flt_region_boot = def_boot[def];
797 	ha->flt_region_vpd_nvram = def_vpd_nvram[def];
798 	ha->flt_region_vpd = ha->flags.port0 ?
799 	    def_vpd0[def] : def_vpd1[def];
800 	ha->flt_region_nvram = ha->flags.port0 ?
801 	    def_nvram0[def] : def_nvram1[def];
802 	ha->flt_region_fdt = def_fdt[def];
803 	ha->flt_region_npiv_conf = ha->flags.port0 ?
804 	    def_npiv_conf0[def] : def_npiv_conf1[def];
805 done:
806 	ql_dbg(ql_dbg_init, vha, 0x004a,
807 	    "FLT[%s]: boot=0x%x fw=0x%x vpd_nvram=0x%x vpd=0x%x.\n",
808 	    loc, ha->flt_region_boot,
809 	    ha->flt_region_fw, ha->flt_region_vpd_nvram,
810 	    ha->flt_region_vpd);
811 	ql_dbg(ql_dbg_init, vha, 0x004b,
812 	    "nvram=0x%x fdt=0x%x flt=0x%x npiv=0x%x fcp_prif_cfg=0x%x.\n",
813 	    ha->flt_region_nvram,
814 	    ha->flt_region_fdt, ha->flt_region_flt,
815 	    ha->flt_region_npiv_conf, ha->flt_region_fcp_prio);
816 }
817 
818 static void
819 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
820 {
821 #define FLASH_BLK_SIZE_4K	0x1000
822 #define FLASH_BLK_SIZE_32K	0x8000
823 #define FLASH_BLK_SIZE_64K	0x10000
824 	const char *loc, *locations[] = { "MID", "FDT" };
825 	uint16_t cnt, chksum;
826 	uint16_t *wptr;
827 	struct qla_fdt_layout *fdt;
828 	uint8_t	man_id, flash_id;
829 	uint16_t mid = 0, fid = 0;
830 	struct qla_hw_data *ha = vha->hw;
831 	struct req_que *req = ha->req_q_map[0];
832 
833 	wptr = (uint16_t *)req->ring;
834 	fdt = (struct qla_fdt_layout *)req->ring;
835 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
836 	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
837 	if (*wptr == __constant_cpu_to_le16(0xffff))
838 		goto no_flash_data;
839 	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
840 	    fdt->sig[3] != 'D')
841 		goto no_flash_data;
842 
843 	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
844 	    cnt++)
845 		chksum += le16_to_cpu(*wptr++);
846 	if (chksum) {
847 		ql_dbg(ql_dbg_init, vha, 0x004c,
848 		    "Inconsistent FDT detected:"
849 		    " checksum=0x%x id=%c version0x%x.\n", chksum,
850 		    fdt->sig[0], le16_to_cpu(fdt->version));
851 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x0113,
852 		    (uint8_t *)fdt, sizeof(*fdt));
853 		goto no_flash_data;
854 	}
855 
856 	loc = locations[1];
857 	mid = le16_to_cpu(fdt->man_id);
858 	fid = le16_to_cpu(fdt->id);
859 	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
860 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
861 	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
862 	if (fdt->unprotect_sec_cmd) {
863 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
864 		    fdt->unprotect_sec_cmd);
865 		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
866 		    flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
867 		    flash_conf_addr(ha, 0x0336);
868 	}
869 	goto done;
870 no_flash_data:
871 	loc = locations[0];
872 	if (IS_QLA82XX(ha)) {
873 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
874 		goto done;
875 	}
876 	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
877 	mid = man_id;
878 	fid = flash_id;
879 	ha->fdt_wrt_disable = 0x9c;
880 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
881 	switch (man_id) {
882 	case 0xbf: /* STT flash. */
883 		if (flash_id == 0x8e)
884 			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
885 		else
886 			ha->fdt_block_size = FLASH_BLK_SIZE_32K;
887 
888 		if (flash_id == 0x80)
889 			ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
890 		break;
891 	case 0x13: /* ST M25P80. */
892 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
893 		break;
894 	case 0x1f: /* Atmel 26DF081A. */
895 		ha->fdt_block_size = FLASH_BLK_SIZE_4K;
896 		ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
897 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
898 		ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
899 		break;
900 	default:
901 		/* Default to 64 kb sector size. */
902 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
903 		break;
904 	}
905 done:
906 	ql_dbg(ql_dbg_init, vha, 0x004d,
907 	    "FDT[%x]: (0x%x/0x%x) erase=0x%x "
908 	    "pr=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
909 	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
910 	    ha->fdt_wrt_disable, ha->fdt_block_size);
911 
912 }
913 
914 static void
915 qla2xxx_get_idc_param(scsi_qla_host_t *vha)
916 {
917 #define QLA82XX_IDC_PARAM_ADDR       0x003e885c
918 	uint32_t *wptr;
919 	struct qla_hw_data *ha = vha->hw;
920 	struct req_que *req = ha->req_q_map[0];
921 
922 	if (!IS_QLA82XX(ha))
923 		return;
924 
925 	wptr = (uint32_t *)req->ring;
926 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
927 		QLA82XX_IDC_PARAM_ADDR , 8);
928 
929 	if (*wptr == __constant_cpu_to_le32(0xffffffff)) {
930 		ha->nx_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT;
931 		ha->nx_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT;
932 	} else {
933 		ha->nx_dev_init_timeout = le32_to_cpu(*wptr++);
934 		ha->nx_reset_timeout = le32_to_cpu(*wptr);
935 	}
936 	ql_dbg(ql_dbg_init, vha, 0x004e,
937 	    "nx_dev_init_timeout=%d "
938 	    "nx_reset_timeout=%d.\n", ha->nx_dev_init_timeout,
939 	    ha->nx_reset_timeout);
940 	return;
941 }
942 
943 int
944 qla2xxx_get_flash_info(scsi_qla_host_t *vha)
945 {
946 	int ret;
947 	uint32_t flt_addr;
948 	struct qla_hw_data *ha = vha->hw;
949 
950 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA8XXX_TYPE(ha))
951 		return QLA_SUCCESS;
952 
953 	ret = qla2xxx_find_flt_start(vha, &flt_addr);
954 	if (ret != QLA_SUCCESS)
955 		return ret;
956 
957 	qla2xxx_get_flt_info(vha, flt_addr);
958 	qla2xxx_get_fdt_info(vha);
959 	qla2xxx_get_idc_param(vha);
960 
961 	return QLA_SUCCESS;
962 }
963 
964 void
965 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
966 {
967 #define NPIV_CONFIG_SIZE	(16*1024)
968 	void *data;
969 	uint16_t *wptr;
970 	uint16_t cnt, chksum;
971 	int i;
972 	struct qla_npiv_header hdr;
973 	struct qla_npiv_entry *entry;
974 	struct qla_hw_data *ha = vha->hw;
975 
976 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA8XXX_TYPE(ha))
977 		return;
978 
979 	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
980 	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
981 	if (hdr.version == __constant_cpu_to_le16(0xffff))
982 		return;
983 	if (hdr.version != __constant_cpu_to_le16(1)) {
984 		ql_dbg(ql_dbg_user, vha, 0x7090,
985 		    "Unsupported NPIV-Config "
986 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
987 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
988 		    le16_to_cpu(hdr.checksum));
989 		return;
990 	}
991 
992 	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
993 	if (!data) {
994 		ql_log(ql_log_warn, vha, 0x7091,
995 		    "Unable to allocate memory for data.\n");
996 		return;
997 	}
998 
999 	ha->isp_ops->read_optrom(vha, (uint8_t *)data,
1000 	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
1001 
1002 	cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
1003 	    sizeof(struct qla_npiv_entry)) >> 1;
1004 	for (wptr = data, chksum = 0; cnt; cnt--)
1005 		chksum += le16_to_cpu(*wptr++);
1006 	if (chksum) {
1007 		ql_dbg(ql_dbg_user, vha, 0x7092,
1008 		    "Inconsistent NPIV-Config "
1009 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1010 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1011 		    le16_to_cpu(hdr.checksum));
1012 		goto done;
1013 	}
1014 
1015 	entry = data + sizeof(struct qla_npiv_header);
1016 	cnt = le16_to_cpu(hdr.entries);
1017 	for (i = 0; cnt; cnt--, entry++, i++) {
1018 		uint16_t flags;
1019 		struct fc_vport_identifiers vid;
1020 		struct fc_vport *vport;
1021 
1022 		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
1023 
1024 		flags = le16_to_cpu(entry->flags);
1025 		if (flags == 0xffff)
1026 			continue;
1027 		if ((flags & BIT_0) == 0)
1028 			continue;
1029 
1030 		memset(&vid, 0, sizeof(vid));
1031 		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
1032 		vid.vport_type = FC_PORTTYPE_NPIV;
1033 		vid.disable = false;
1034 		vid.port_name = wwn_to_u64(entry->port_name);
1035 		vid.node_name = wwn_to_u64(entry->node_name);
1036 
1037 		ql_dbg(ql_dbg_user, vha, 0x7093,
1038 		    "NPIV[%02x]: wwpn=%llx "
1039 		    "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
1040 		    (unsigned long long)vid.port_name,
1041 		    (unsigned long long)vid.node_name,
1042 		    le16_to_cpu(entry->vf_id),
1043 		    entry->q_qos, entry->f_qos);
1044 
1045 		if (i < QLA_PRECONFIG_VPORTS) {
1046 			vport = fc_vport_create(vha->host, 0, &vid);
1047 			if (!vport)
1048 				ql_log(ql_log_warn, vha, 0x7094,
1049 				    "NPIV-Config Failed to create vport [%02x]: "
1050 				    "wwpn=%llx wwnn=%llx.\n", cnt,
1051 				    (unsigned long long)vid.port_name,
1052 				    (unsigned long long)vid.node_name);
1053 		}
1054 	}
1055 done:
1056 	kfree(data);
1057 }
1058 
1059 static int
1060 qla24xx_unprotect_flash(scsi_qla_host_t *vha)
1061 {
1062 	struct qla_hw_data *ha = vha->hw;
1063 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1064 
1065 	if (ha->flags.fac_supported)
1066 		return qla81xx_fac_do_write_enable(vha, 1);
1067 
1068 	/* Enable flash write. */
1069 	WRT_REG_DWORD(&reg->ctrl_status,
1070 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1071 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1072 
1073 	if (!ha->fdt_wrt_disable)
1074 		goto done;
1075 
1076 	/* Disable flash write-protection, first clear SR protection bit */
1077 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1078 	/* Then write zero again to clear remaining SR bits.*/
1079 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1080 done:
1081 	return QLA_SUCCESS;
1082 }
1083 
1084 static int
1085 qla24xx_protect_flash(scsi_qla_host_t *vha)
1086 {
1087 	uint32_t cnt;
1088 	struct qla_hw_data *ha = vha->hw;
1089 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1090 
1091 	if (ha->flags.fac_supported)
1092 		return qla81xx_fac_do_write_enable(vha, 0);
1093 
1094 	if (!ha->fdt_wrt_disable)
1095 		goto skip_wrt_protect;
1096 
1097 	/* Enable flash write-protection and wait for completion. */
1098 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1099 	    ha->fdt_wrt_disable);
1100 	for (cnt = 300; cnt &&
1101 	    qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1102 	    cnt--) {
1103 		udelay(10);
1104 	}
1105 
1106 skip_wrt_protect:
1107 	/* Disable flash write. */
1108 	WRT_REG_DWORD(&reg->ctrl_status,
1109 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1110 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1111 
1112 	return QLA_SUCCESS;
1113 }
1114 
1115 static int
1116 qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
1117 {
1118 	struct qla_hw_data *ha = vha->hw;
1119 	uint32_t start, finish;
1120 
1121 	if (ha->flags.fac_supported) {
1122 		start = fdata >> 2;
1123 		finish = start + (ha->fdt_block_size >> 2) - 1;
1124 		return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
1125 		    start), flash_data_addr(ha, finish));
1126 	}
1127 
1128 	return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1129 	    (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
1130 	    ((fdata >> 16) & 0xff));
1131 }
1132 
1133 static int
1134 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1135     uint32_t dwords)
1136 {
1137 	int ret;
1138 	uint32_t liter;
1139 	uint32_t sec_mask, rest_addr;
1140 	uint32_t fdata;
1141 	dma_addr_t optrom_dma;
1142 	void *optrom = NULL;
1143 	struct qla_hw_data *ha = vha->hw;
1144 
1145 	/* Prepare burst-capable write on supported ISPs. */
1146 	if ((IS_QLA25XX(ha) || IS_QLA81XX(ha)) && !(faddr & 0xfff) &&
1147 	    dwords > OPTROM_BURST_DWORDS) {
1148 		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1149 		    &optrom_dma, GFP_KERNEL);
1150 		if (!optrom) {
1151 			ql_log(ql_log_warn, vha, 0x7095,
1152 			    "Unable to allocate "
1153 			    "memory for optrom burst write (%x KB).\n",
1154 			    OPTROM_BURST_SIZE / 1024);
1155 		}
1156 	}
1157 
1158 	rest_addr = (ha->fdt_block_size >> 2) - 1;
1159 	sec_mask = ~rest_addr;
1160 
1161 	ret = qla24xx_unprotect_flash(vha);
1162 	if (ret != QLA_SUCCESS) {
1163 		ql_log(ql_log_warn, vha, 0x7096,
1164 		    "Unable to unprotect flash for update.\n");
1165 		goto done;
1166 	}
1167 
1168 	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1169 		fdata = (faddr & sec_mask) << 2;
1170 
1171 		/* Are we at the beginning of a sector? */
1172 		if ((faddr & rest_addr) == 0) {
1173 			/* Do sector unprotect. */
1174 			if (ha->fdt_unprotect_sec_cmd)
1175 				qla24xx_write_flash_dword(ha,
1176 				    ha->fdt_unprotect_sec_cmd,
1177 				    (fdata & 0xff00) | ((fdata << 16) &
1178 				    0xff0000) | ((fdata >> 16) & 0xff));
1179 			ret = qla24xx_erase_sector(vha, fdata);
1180 			if (ret != QLA_SUCCESS) {
1181 				ql_dbg(ql_dbg_user, vha, 0x7007,
1182 				    "Unable to erase erase sector: address=%x.\n",
1183 				    faddr);
1184 				break;
1185 			}
1186 		}
1187 
1188 		/* Go with burst-write. */
1189 		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1190 			/* Copy data to DMA'ble buffer. */
1191 			memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1192 
1193 			ret = qla2x00_load_ram(vha, optrom_dma,
1194 			    flash_data_addr(ha, faddr),
1195 			    OPTROM_BURST_DWORDS);
1196 			if (ret != QLA_SUCCESS) {
1197 				ql_log(ql_log_warn, vha, 0x7097,
1198 				    "Unable to burst-write optrom segment "
1199 				    "(%x/%x/%llx).\n", ret,
1200 				    flash_data_addr(ha, faddr),
1201 				    (unsigned long long)optrom_dma);
1202 				ql_log(ql_log_warn, vha, 0x7098,
1203 				    "Reverting to slow-write.\n");
1204 
1205 				dma_free_coherent(&ha->pdev->dev,
1206 				    OPTROM_BURST_SIZE, optrom, optrom_dma);
1207 				optrom = NULL;
1208 			} else {
1209 				liter += OPTROM_BURST_DWORDS - 1;
1210 				faddr += OPTROM_BURST_DWORDS - 1;
1211 				dwptr += OPTROM_BURST_DWORDS - 1;
1212 				continue;
1213 			}
1214 		}
1215 
1216 		ret = qla24xx_write_flash_dword(ha,
1217 		    flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1218 		if (ret != QLA_SUCCESS) {
1219 			ql_dbg(ql_dbg_user, vha, 0x7006,
1220 			    "Unable to program flash address=%x data=%x.\n",
1221 			    faddr, *dwptr);
1222 			break;
1223 		}
1224 
1225 		/* Do sector protect. */
1226 		if (ha->fdt_unprotect_sec_cmd &&
1227 		    ((faddr & rest_addr) == rest_addr))
1228 			qla24xx_write_flash_dword(ha,
1229 			    ha->fdt_protect_sec_cmd,
1230 			    (fdata & 0xff00) | ((fdata << 16) &
1231 			    0xff0000) | ((fdata >> 16) & 0xff));
1232 	}
1233 
1234 	ret = qla24xx_protect_flash(vha);
1235 	if (ret != QLA_SUCCESS)
1236 		ql_log(ql_log_warn, vha, 0x7099,
1237 		    "Unable to protect flash after update.\n");
1238 done:
1239 	if (optrom)
1240 		dma_free_coherent(&ha->pdev->dev,
1241 		    OPTROM_BURST_SIZE, optrom, optrom_dma);
1242 
1243 	return ret;
1244 }
1245 
1246 uint8_t *
1247 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1248     uint32_t bytes)
1249 {
1250 	uint32_t i;
1251 	uint16_t *wptr;
1252 	struct qla_hw_data *ha = vha->hw;
1253 
1254 	/* Word reads to NVRAM via registers. */
1255 	wptr = (uint16_t *)buf;
1256 	qla2x00_lock_nvram_access(ha);
1257 	for (i = 0; i < bytes >> 1; i++, naddr++)
1258 		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1259 		    naddr));
1260 	qla2x00_unlock_nvram_access(ha);
1261 
1262 	return buf;
1263 }
1264 
1265 uint8_t *
1266 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1267     uint32_t bytes)
1268 {
1269 	uint32_t i;
1270 	uint32_t *dwptr;
1271 	struct qla_hw_data *ha = vha->hw;
1272 
1273 	if (IS_QLA82XX(ha))
1274 		return  buf;
1275 
1276 	/* Dword reads to flash. */
1277 	dwptr = (uint32_t *)buf;
1278 	for (i = 0; i < bytes >> 2; i++, naddr++)
1279 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1280 		    nvram_data_addr(ha, naddr)));
1281 
1282 	return buf;
1283 }
1284 
1285 int
1286 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1287     uint32_t bytes)
1288 {
1289 	int ret, stat;
1290 	uint32_t i;
1291 	uint16_t *wptr;
1292 	unsigned long flags;
1293 	struct qla_hw_data *ha = vha->hw;
1294 
1295 	ret = QLA_SUCCESS;
1296 
1297 	spin_lock_irqsave(&ha->hardware_lock, flags);
1298 	qla2x00_lock_nvram_access(ha);
1299 
1300 	/* Disable NVRAM write-protection. */
1301 	stat = qla2x00_clear_nvram_protection(ha);
1302 
1303 	wptr = (uint16_t *)buf;
1304 	for (i = 0; i < bytes >> 1; i++, naddr++) {
1305 		qla2x00_write_nvram_word(ha, naddr,
1306 		    cpu_to_le16(*wptr));
1307 		wptr++;
1308 	}
1309 
1310 	/* Enable NVRAM write-protection. */
1311 	qla2x00_set_nvram_protection(ha, stat);
1312 
1313 	qla2x00_unlock_nvram_access(ha);
1314 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1315 
1316 	return ret;
1317 }
1318 
1319 int
1320 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1321     uint32_t bytes)
1322 {
1323 	int ret;
1324 	uint32_t i;
1325 	uint32_t *dwptr;
1326 	struct qla_hw_data *ha = vha->hw;
1327 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1328 
1329 	ret = QLA_SUCCESS;
1330 
1331 	if (IS_QLA82XX(ha))
1332 		return ret;
1333 
1334 	/* Enable flash write. */
1335 	WRT_REG_DWORD(&reg->ctrl_status,
1336 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1337 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1338 
1339 	/* Disable NVRAM write-protection. */
1340 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1341 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1342 
1343 	/* Dword writes to flash. */
1344 	dwptr = (uint32_t *)buf;
1345 	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1346 		ret = qla24xx_write_flash_dword(ha,
1347 		    nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1348 		if (ret != QLA_SUCCESS) {
1349 			ql_dbg(ql_dbg_user, vha, 0x709a,
1350 			    "Unable to program nvram address=%x data=%x.\n",
1351 			    naddr, *dwptr);
1352 			break;
1353 		}
1354 	}
1355 
1356 	/* Enable NVRAM write-protection. */
1357 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1358 
1359 	/* Disable flash write. */
1360 	WRT_REG_DWORD(&reg->ctrl_status,
1361 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1362 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1363 
1364 	return ret;
1365 }
1366 
1367 uint8_t *
1368 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1369     uint32_t bytes)
1370 {
1371 	uint32_t i;
1372 	uint32_t *dwptr;
1373 	struct qla_hw_data *ha = vha->hw;
1374 
1375 	/* Dword reads to flash. */
1376 	dwptr = (uint32_t *)buf;
1377 	for (i = 0; i < bytes >> 2; i++, naddr++)
1378 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1379 		    flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1380 
1381 	return buf;
1382 }
1383 
1384 int
1385 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1386     uint32_t bytes)
1387 {
1388 	struct qla_hw_data *ha = vha->hw;
1389 #define RMW_BUFFER_SIZE	(64 * 1024)
1390 	uint8_t *dbuf;
1391 
1392 	dbuf = vmalloc(RMW_BUFFER_SIZE);
1393 	if (!dbuf)
1394 		return QLA_MEMORY_ALLOC_FAILED;
1395 	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1396 	    RMW_BUFFER_SIZE);
1397 	memcpy(dbuf + (naddr << 2), buf, bytes);
1398 	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1399 	    RMW_BUFFER_SIZE);
1400 	vfree(dbuf);
1401 
1402 	return QLA_SUCCESS;
1403 }
1404 
1405 static inline void
1406 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1407 {
1408 	if (IS_QLA2322(ha)) {
1409 		/* Flip all colors. */
1410 		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1411 			/* Turn off. */
1412 			ha->beacon_color_state = 0;
1413 			*pflags = GPIO_LED_ALL_OFF;
1414 		} else {
1415 			/* Turn on. */
1416 			ha->beacon_color_state = QLA_LED_ALL_ON;
1417 			*pflags = GPIO_LED_RGA_ON;
1418 		}
1419 	} else {
1420 		/* Flip green led only. */
1421 		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1422 			/* Turn off. */
1423 			ha->beacon_color_state = 0;
1424 			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1425 		} else {
1426 			/* Turn on. */
1427 			ha->beacon_color_state = QLA_LED_GRN_ON;
1428 			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1429 		}
1430 	}
1431 }
1432 
1433 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1434 
1435 void
1436 qla2x00_beacon_blink(struct scsi_qla_host *vha)
1437 {
1438 	uint16_t gpio_enable;
1439 	uint16_t gpio_data;
1440 	uint16_t led_color = 0;
1441 	unsigned long flags;
1442 	struct qla_hw_data *ha = vha->hw;
1443 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1444 
1445 	if (IS_QLA82XX(ha))
1446 		return;
1447 
1448 	spin_lock_irqsave(&ha->hardware_lock, flags);
1449 
1450 	/* Save the Original GPIOE. */
1451 	if (ha->pio_address) {
1452 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1453 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1454 	} else {
1455 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1456 		gpio_data = RD_REG_WORD(&reg->gpiod);
1457 	}
1458 
1459 	/* Set the modified gpio_enable values */
1460 	gpio_enable |= GPIO_LED_MASK;
1461 
1462 	if (ha->pio_address) {
1463 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1464 	} else {
1465 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1466 		RD_REG_WORD(&reg->gpioe);
1467 	}
1468 
1469 	qla2x00_flip_colors(ha, &led_color);
1470 
1471 	/* Clear out any previously set LED color. */
1472 	gpio_data &= ~GPIO_LED_MASK;
1473 
1474 	/* Set the new input LED color to GPIOD. */
1475 	gpio_data |= led_color;
1476 
1477 	/* Set the modified gpio_data values */
1478 	if (ha->pio_address) {
1479 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1480 	} else {
1481 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1482 		RD_REG_WORD(&reg->gpiod);
1483 	}
1484 
1485 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1486 }
1487 
1488 int
1489 qla2x00_beacon_on(struct scsi_qla_host *vha)
1490 {
1491 	uint16_t gpio_enable;
1492 	uint16_t gpio_data;
1493 	unsigned long flags;
1494 	struct qla_hw_data *ha = vha->hw;
1495 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1496 
1497 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1498 	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1499 
1500 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1501 		ql_log(ql_log_warn, vha, 0x709b,
1502 		    "Unable to update fw options (beacon on).\n");
1503 		return QLA_FUNCTION_FAILED;
1504 	}
1505 
1506 	/* Turn off LEDs. */
1507 	spin_lock_irqsave(&ha->hardware_lock, flags);
1508 	if (ha->pio_address) {
1509 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1510 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1511 	} else {
1512 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1513 		gpio_data = RD_REG_WORD(&reg->gpiod);
1514 	}
1515 	gpio_enable |= GPIO_LED_MASK;
1516 
1517 	/* Set the modified gpio_enable values. */
1518 	if (ha->pio_address) {
1519 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1520 	} else {
1521 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1522 		RD_REG_WORD(&reg->gpioe);
1523 	}
1524 
1525 	/* Clear out previously set LED colour. */
1526 	gpio_data &= ~GPIO_LED_MASK;
1527 	if (ha->pio_address) {
1528 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1529 	} else {
1530 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1531 		RD_REG_WORD(&reg->gpiod);
1532 	}
1533 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1534 
1535 	/*
1536 	 * Let the per HBA timer kick off the blinking process based on
1537 	 * the following flags. No need to do anything else now.
1538 	 */
1539 	ha->beacon_blink_led = 1;
1540 	ha->beacon_color_state = 0;
1541 
1542 	return QLA_SUCCESS;
1543 }
1544 
1545 int
1546 qla2x00_beacon_off(struct scsi_qla_host *vha)
1547 {
1548 	int rval = QLA_SUCCESS;
1549 	struct qla_hw_data *ha = vha->hw;
1550 
1551 	ha->beacon_blink_led = 0;
1552 
1553 	/* Set the on flag so when it gets flipped it will be off. */
1554 	if (IS_QLA2322(ha))
1555 		ha->beacon_color_state = QLA_LED_ALL_ON;
1556 	else
1557 		ha->beacon_color_state = QLA_LED_GRN_ON;
1558 
1559 	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */
1560 
1561 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1562 	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1563 
1564 	rval = qla2x00_set_fw_options(vha, ha->fw_options);
1565 	if (rval != QLA_SUCCESS)
1566 		ql_log(ql_log_warn, vha, 0x709c,
1567 		    "Unable to update fw options (beacon off).\n");
1568 	return rval;
1569 }
1570 
1571 
1572 static inline void
1573 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1574 {
1575 	/* Flip all colors. */
1576 	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1577 		/* Turn off. */
1578 		ha->beacon_color_state = 0;
1579 		*pflags = 0;
1580 	} else {
1581 		/* Turn on. */
1582 		ha->beacon_color_state = QLA_LED_ALL_ON;
1583 		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1584 	}
1585 }
1586 
1587 void
1588 qla24xx_beacon_blink(struct scsi_qla_host *vha)
1589 {
1590 	uint16_t led_color = 0;
1591 	uint32_t gpio_data;
1592 	unsigned long flags;
1593 	struct qla_hw_data *ha = vha->hw;
1594 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1595 
1596 	/* Save the Original GPIOD. */
1597 	spin_lock_irqsave(&ha->hardware_lock, flags);
1598 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1599 
1600 	/* Enable the gpio_data reg for update. */
1601 	gpio_data |= GPDX_LED_UPDATE_MASK;
1602 
1603 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1604 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1605 
1606 	/* Set the color bits. */
1607 	qla24xx_flip_colors(ha, &led_color);
1608 
1609 	/* Clear out any previously set LED color. */
1610 	gpio_data &= ~GPDX_LED_COLOR_MASK;
1611 
1612 	/* Set the new input LED color to GPIOD. */
1613 	gpio_data |= led_color;
1614 
1615 	/* Set the modified gpio_data values. */
1616 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1617 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1618 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1619 }
1620 
1621 int
1622 qla24xx_beacon_on(struct scsi_qla_host *vha)
1623 {
1624 	uint32_t gpio_data;
1625 	unsigned long flags;
1626 	struct qla_hw_data *ha = vha->hw;
1627 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1628 
1629 	if (IS_QLA82XX(ha))
1630 		return QLA_SUCCESS;
1631 
1632 	if (ha->beacon_blink_led == 0) {
1633 		/* Enable firmware for update */
1634 		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1635 
1636 		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1637 			return QLA_FUNCTION_FAILED;
1638 
1639 		if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1640 		    QLA_SUCCESS) {
1641 			ql_log(ql_log_warn, vha, 0x7009,
1642 			    "Unable to update fw options (beacon on).\n");
1643 			return QLA_FUNCTION_FAILED;
1644 		}
1645 
1646 		spin_lock_irqsave(&ha->hardware_lock, flags);
1647 		gpio_data = RD_REG_DWORD(&reg->gpiod);
1648 
1649 		/* Enable the gpio_data reg for update. */
1650 		gpio_data |= GPDX_LED_UPDATE_MASK;
1651 		WRT_REG_DWORD(&reg->gpiod, gpio_data);
1652 		RD_REG_DWORD(&reg->gpiod);
1653 
1654 		spin_unlock_irqrestore(&ha->hardware_lock, flags);
1655 	}
1656 
1657 	/* So all colors blink together. */
1658 	ha->beacon_color_state = 0;
1659 
1660 	/* Let the per HBA timer kick off the blinking process. */
1661 	ha->beacon_blink_led = 1;
1662 
1663 	return QLA_SUCCESS;
1664 }
1665 
1666 int
1667 qla24xx_beacon_off(struct scsi_qla_host *vha)
1668 {
1669 	uint32_t gpio_data;
1670 	unsigned long flags;
1671 	struct qla_hw_data *ha = vha->hw;
1672 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1673 
1674 	if (IS_QLA82XX(ha))
1675 		return QLA_SUCCESS;
1676 
1677 	ha->beacon_blink_led = 0;
1678 	ha->beacon_color_state = QLA_LED_ALL_ON;
1679 
1680 	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */
1681 
1682 	/* Give control back to firmware. */
1683 	spin_lock_irqsave(&ha->hardware_lock, flags);
1684 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1685 
1686 	/* Disable the gpio_data reg for update. */
1687 	gpio_data &= ~GPDX_LED_UPDATE_MASK;
1688 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1689 	RD_REG_DWORD(&reg->gpiod);
1690 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1691 
1692 	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1693 
1694 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1695 		ql_log(ql_log_warn, vha, 0x704d,
1696 		    "Unable to update fw options (beacon on).\n");
1697 		return QLA_FUNCTION_FAILED;
1698 	}
1699 
1700 	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1701 		ql_log(ql_log_warn, vha, 0x704e,
1702 		    "Unable to update fw options (beacon on).\n");
1703 		return QLA_FUNCTION_FAILED;
1704 	}
1705 
1706 	return QLA_SUCCESS;
1707 }
1708 
1709 
1710 /*
1711  * Flash support routines
1712  */
1713 
1714 /**
1715  * qla2x00_flash_enable() - Setup flash for reading and writing.
1716  * @ha: HA context
1717  */
1718 static void
1719 qla2x00_flash_enable(struct qla_hw_data *ha)
1720 {
1721 	uint16_t data;
1722 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1723 
1724 	data = RD_REG_WORD(&reg->ctrl_status);
1725 	data |= CSR_FLASH_ENABLE;
1726 	WRT_REG_WORD(&reg->ctrl_status, data);
1727 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1728 }
1729 
1730 /**
1731  * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1732  * @ha: HA context
1733  */
1734 static void
1735 qla2x00_flash_disable(struct qla_hw_data *ha)
1736 {
1737 	uint16_t data;
1738 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1739 
1740 	data = RD_REG_WORD(&reg->ctrl_status);
1741 	data &= ~(CSR_FLASH_ENABLE);
1742 	WRT_REG_WORD(&reg->ctrl_status, data);
1743 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1744 }
1745 
1746 /**
1747  * qla2x00_read_flash_byte() - Reads a byte from flash
1748  * @ha: HA context
1749  * @addr: Address in flash to read
1750  *
1751  * A word is read from the chip, but, only the lower byte is valid.
1752  *
1753  * Returns the byte read from flash @addr.
1754  */
1755 static uint8_t
1756 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1757 {
1758 	uint16_t data;
1759 	uint16_t bank_select;
1760 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1761 
1762 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1763 
1764 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1765 		/* Specify 64K address range: */
1766 		/*  clear out Module Select and Flash Address bits [19:16]. */
1767 		bank_select &= ~0xf8;
1768 		bank_select |= addr >> 12 & 0xf0;
1769 		bank_select |= CSR_FLASH_64K_BANK;
1770 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1771 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1772 
1773 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1774 		data = RD_REG_WORD(&reg->flash_data);
1775 
1776 		return (uint8_t)data;
1777 	}
1778 
1779 	/* Setup bit 16 of flash address. */
1780 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1781 		bank_select |= CSR_FLASH_64K_BANK;
1782 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1783 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1784 	} else if (((addr & BIT_16) == 0) &&
1785 	    (bank_select & CSR_FLASH_64K_BANK)) {
1786 		bank_select &= ~(CSR_FLASH_64K_BANK);
1787 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1788 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1789 	}
1790 
1791 	/* Always perform IO mapped accesses to the FLASH registers. */
1792 	if (ha->pio_address) {
1793 		uint16_t data2;
1794 
1795 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1796 		do {
1797 			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1798 			barrier();
1799 			cpu_relax();
1800 			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1801 		} while (data != data2);
1802 	} else {
1803 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1804 		data = qla2x00_debounce_register(&reg->flash_data);
1805 	}
1806 
1807 	return (uint8_t)data;
1808 }
1809 
1810 /**
1811  * qla2x00_write_flash_byte() - Write a byte to flash
1812  * @ha: HA context
1813  * @addr: Address in flash to write
1814  * @data: Data to write
1815  */
1816 static void
1817 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1818 {
1819 	uint16_t bank_select;
1820 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1821 
1822 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1823 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1824 		/* Specify 64K address range: */
1825 		/*  clear out Module Select and Flash Address bits [19:16]. */
1826 		bank_select &= ~0xf8;
1827 		bank_select |= addr >> 12 & 0xf0;
1828 		bank_select |= CSR_FLASH_64K_BANK;
1829 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1830 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1831 
1832 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1833 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1834 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1835 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1836 
1837 		return;
1838 	}
1839 
1840 	/* Setup bit 16 of flash address. */
1841 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1842 		bank_select |= CSR_FLASH_64K_BANK;
1843 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1844 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1845 	} else if (((addr & BIT_16) == 0) &&
1846 	    (bank_select & CSR_FLASH_64K_BANK)) {
1847 		bank_select &= ~(CSR_FLASH_64K_BANK);
1848 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1849 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1850 	}
1851 
1852 	/* Always perform IO mapped accesses to the FLASH registers. */
1853 	if (ha->pio_address) {
1854 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1855 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1856 	} else {
1857 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1858 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1859 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1860 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1861 	}
1862 }
1863 
1864 /**
1865  * qla2x00_poll_flash() - Polls flash for completion.
1866  * @ha: HA context
1867  * @addr: Address in flash to poll
1868  * @poll_data: Data to be polled
1869  * @man_id: Flash manufacturer ID
1870  * @flash_id: Flash ID
1871  *
1872  * This function polls the device until bit 7 of what is read matches data
1873  * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
1874  * out (a fatal error).  The flash book recommeds reading bit 7 again after
1875  * reading bit 5 as a 1.
1876  *
1877  * Returns 0 on success, else non-zero.
1878  */
1879 static int
1880 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
1881     uint8_t man_id, uint8_t flash_id)
1882 {
1883 	int status;
1884 	uint8_t flash_data;
1885 	uint32_t cnt;
1886 
1887 	status = 1;
1888 
1889 	/* Wait for 30 seconds for command to finish. */
1890 	poll_data &= BIT_7;
1891 	for (cnt = 3000000; cnt; cnt--) {
1892 		flash_data = qla2x00_read_flash_byte(ha, addr);
1893 		if ((flash_data & BIT_7) == poll_data) {
1894 			status = 0;
1895 			break;
1896 		}
1897 
1898 		if (man_id != 0x40 && man_id != 0xda) {
1899 			if ((flash_data & BIT_5) && cnt > 2)
1900 				cnt = 2;
1901 		}
1902 		udelay(10);
1903 		barrier();
1904 		cond_resched();
1905 	}
1906 	return status;
1907 }
1908 
1909 /**
1910  * qla2x00_program_flash_address() - Programs a flash address
1911  * @ha: HA context
1912  * @addr: Address in flash to program
1913  * @data: Data to be written in flash
1914  * @man_id: Flash manufacturer ID
1915  * @flash_id: Flash ID
1916  *
1917  * Returns 0 on success, else non-zero.
1918  */
1919 static int
1920 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
1921     uint8_t data, uint8_t man_id, uint8_t flash_id)
1922 {
1923 	/* Write Program Command Sequence. */
1924 	if (IS_OEM_001(ha)) {
1925 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1926 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1927 		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1928 		qla2x00_write_flash_byte(ha, addr, data);
1929 	} else {
1930 		if (man_id == 0xda && flash_id == 0xc1) {
1931 			qla2x00_write_flash_byte(ha, addr, data);
1932 			if (addr & 0x7e)
1933 				return 0;
1934 		} else {
1935 			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1936 			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1937 			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1938 			qla2x00_write_flash_byte(ha, addr, data);
1939 		}
1940 	}
1941 
1942 	udelay(150);
1943 
1944 	/* Wait for write to complete. */
1945 	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1946 }
1947 
1948 /**
1949  * qla2x00_erase_flash() - Erase the flash.
1950  * @ha: HA context
1951  * @man_id: Flash manufacturer ID
1952  * @flash_id: Flash ID
1953  *
1954  * Returns 0 on success, else non-zero.
1955  */
1956 static int
1957 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
1958 {
1959 	/* Individual Sector Erase Command Sequence */
1960 	if (IS_OEM_001(ha)) {
1961 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1962 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1963 		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1964 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1965 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1966 		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1967 	} else {
1968 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1969 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1970 		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1971 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1972 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1973 		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1974 	}
1975 
1976 	udelay(150);
1977 
1978 	/* Wait for erase to complete. */
1979 	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1980 }
1981 
1982 /**
1983  * qla2x00_erase_flash_sector() - Erase a flash sector.
1984  * @ha: HA context
1985  * @addr: Flash sector to erase
1986  * @sec_mask: Sector address mask
1987  * @man_id: Flash manufacturer ID
1988  * @flash_id: Flash ID
1989  *
1990  * Returns 0 on success, else non-zero.
1991  */
1992 static int
1993 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
1994     uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1995 {
1996 	/* Individual Sector Erase Command Sequence */
1997 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1998 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1999 	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
2000 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2001 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2002 	if (man_id == 0x1f && flash_id == 0x13)
2003 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
2004 	else
2005 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
2006 
2007 	udelay(150);
2008 
2009 	/* Wait for erase to complete. */
2010 	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
2011 }
2012 
2013 /**
2014  * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
2015  * @man_id: Flash manufacturer ID
2016  * @flash_id: Flash ID
2017  */
2018 static void
2019 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
2020     uint8_t *flash_id)
2021 {
2022 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2023 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2024 	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
2025 	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
2026 	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
2027 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2028 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2029 	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
2030 }
2031 
2032 static void
2033 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
2034 	uint32_t saddr, uint32_t length)
2035 {
2036 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2037 	uint32_t midpoint, ilength;
2038 	uint8_t data;
2039 
2040 	midpoint = length / 2;
2041 
2042 	WRT_REG_WORD(&reg->nvram, 0);
2043 	RD_REG_WORD(&reg->nvram);
2044 	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
2045 		if (ilength == midpoint) {
2046 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2047 			RD_REG_WORD(&reg->nvram);
2048 		}
2049 		data = qla2x00_read_flash_byte(ha, saddr);
2050 		if (saddr % 100)
2051 			udelay(10);
2052 		*tmp_buf = data;
2053 		cond_resched();
2054 	}
2055 }
2056 
2057 static inline void
2058 qla2x00_suspend_hba(struct scsi_qla_host *vha)
2059 {
2060 	int cnt;
2061 	unsigned long flags;
2062 	struct qla_hw_data *ha = vha->hw;
2063 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2064 
2065 	/* Suspend HBA. */
2066 	scsi_block_requests(vha->host);
2067 	ha->isp_ops->disable_intrs(ha);
2068 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2069 
2070 	/* Pause RISC. */
2071 	spin_lock_irqsave(&ha->hardware_lock, flags);
2072 	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
2073 	RD_REG_WORD(&reg->hccr);
2074 	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
2075 		for (cnt = 0; cnt < 30000; cnt++) {
2076 			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
2077 				break;
2078 			udelay(100);
2079 		}
2080 	} else {
2081 		udelay(10);
2082 	}
2083 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
2084 }
2085 
2086 static inline void
2087 qla2x00_resume_hba(struct scsi_qla_host *vha)
2088 {
2089 	struct qla_hw_data *ha = vha->hw;
2090 
2091 	/* Resume HBA. */
2092 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2093 	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
2094 	qla2xxx_wake_dpc(vha);
2095 	qla2x00_wait_for_chip_reset(vha);
2096 	scsi_unblock_requests(vha->host);
2097 }
2098 
2099 uint8_t *
2100 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2101     uint32_t offset, uint32_t length)
2102 {
2103 	uint32_t addr, midpoint;
2104 	uint8_t *data;
2105 	struct qla_hw_data *ha = vha->hw;
2106 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2107 
2108 	/* Suspend HBA. */
2109 	qla2x00_suspend_hba(vha);
2110 
2111 	/* Go with read. */
2112 	midpoint = ha->optrom_size / 2;
2113 
2114 	qla2x00_flash_enable(ha);
2115 	WRT_REG_WORD(&reg->nvram, 0);
2116 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
2117 	for (addr = offset, data = buf; addr < length; addr++, data++) {
2118 		if (addr == midpoint) {
2119 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2120 			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
2121 		}
2122 
2123 		*data = qla2x00_read_flash_byte(ha, addr);
2124 	}
2125 	qla2x00_flash_disable(ha);
2126 
2127 	/* Resume HBA. */
2128 	qla2x00_resume_hba(vha);
2129 
2130 	return buf;
2131 }
2132 
2133 int
2134 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2135     uint32_t offset, uint32_t length)
2136 {
2137 
2138 	int rval;
2139 	uint8_t man_id, flash_id, sec_number, data;
2140 	uint16_t wd;
2141 	uint32_t addr, liter, sec_mask, rest_addr;
2142 	struct qla_hw_data *ha = vha->hw;
2143 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2144 
2145 	/* Suspend HBA. */
2146 	qla2x00_suspend_hba(vha);
2147 
2148 	rval = QLA_SUCCESS;
2149 	sec_number = 0;
2150 
2151 	/* Reset ISP chip. */
2152 	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
2153 	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
2154 
2155 	/* Go with write. */
2156 	qla2x00_flash_enable(ha);
2157 	do {	/* Loop once to provide quick error exit */
2158 		/* Structure of flash memory based on manufacturer */
2159 		if (IS_OEM_001(ha)) {
2160 			/* OEM variant with special flash part. */
2161 			man_id = flash_id = 0;
2162 			rest_addr = 0xffff;
2163 			sec_mask   = 0x10000;
2164 			goto update_flash;
2165 		}
2166 		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
2167 		switch (man_id) {
2168 		case 0x20: /* ST flash. */
2169 			if (flash_id == 0xd2 || flash_id == 0xe3) {
2170 				/*
2171 				 * ST m29w008at part - 64kb sector size with
2172 				 * 32kb,8kb,8kb,16kb sectors at memory address
2173 				 * 0xf0000.
2174 				 */
2175 				rest_addr = 0xffff;
2176 				sec_mask = 0x10000;
2177 				break;
2178 			}
2179 			/*
2180 			 * ST m29w010b part - 16kb sector size
2181 			 * Default to 16kb sectors
2182 			 */
2183 			rest_addr = 0x3fff;
2184 			sec_mask = 0x1c000;
2185 			break;
2186 		case 0x40: /* Mostel flash. */
2187 			/* Mostel v29c51001 part - 512 byte sector size. */
2188 			rest_addr = 0x1ff;
2189 			sec_mask = 0x1fe00;
2190 			break;
2191 		case 0xbf: /* SST flash. */
2192 			/* SST39sf10 part - 4kb sector size. */
2193 			rest_addr = 0xfff;
2194 			sec_mask = 0x1f000;
2195 			break;
2196 		case 0xda: /* Winbond flash. */
2197 			/* Winbond W29EE011 part - 256 byte sector size. */
2198 			rest_addr = 0x7f;
2199 			sec_mask = 0x1ff80;
2200 			break;
2201 		case 0xc2: /* Macronix flash. */
2202 			/* 64k sector size. */
2203 			if (flash_id == 0x38 || flash_id == 0x4f) {
2204 				rest_addr = 0xffff;
2205 				sec_mask = 0x10000;
2206 				break;
2207 			}
2208 			/* Fall through... */
2209 
2210 		case 0x1f: /* Atmel flash. */
2211 			/* 512k sector size. */
2212 			if (flash_id == 0x13) {
2213 				rest_addr = 0x7fffffff;
2214 				sec_mask =   0x80000000;
2215 				break;
2216 			}
2217 			/* Fall through... */
2218 
2219 		case 0x01: /* AMD flash. */
2220 			if (flash_id == 0x38 || flash_id == 0x40 ||
2221 			    flash_id == 0x4f) {
2222 				/* Am29LV081 part - 64kb sector size. */
2223 				/* Am29LV002BT part - 64kb sector size. */
2224 				rest_addr = 0xffff;
2225 				sec_mask = 0x10000;
2226 				break;
2227 			} else if (flash_id == 0x3e) {
2228 				/*
2229 				 * Am29LV008b part - 64kb sector size with
2230 				 * 32kb,8kb,8kb,16kb sector at memory address
2231 				 * h0xf0000.
2232 				 */
2233 				rest_addr = 0xffff;
2234 				sec_mask = 0x10000;
2235 				break;
2236 			} else if (flash_id == 0x20 || flash_id == 0x6e) {
2237 				/*
2238 				 * Am29LV010 part or AM29f010 - 16kb sector
2239 				 * size.
2240 				 */
2241 				rest_addr = 0x3fff;
2242 				sec_mask = 0x1c000;
2243 				break;
2244 			} else if (flash_id == 0x6d) {
2245 				/* Am29LV001 part - 8kb sector size. */
2246 				rest_addr = 0x1fff;
2247 				sec_mask = 0x1e000;
2248 				break;
2249 			}
2250 		default:
2251 			/* Default to 16 kb sector size. */
2252 			rest_addr = 0x3fff;
2253 			sec_mask = 0x1c000;
2254 			break;
2255 		}
2256 
2257 update_flash:
2258 		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2259 			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2260 				rval = QLA_FUNCTION_FAILED;
2261 				break;
2262 			}
2263 		}
2264 
2265 		for (addr = offset, liter = 0; liter < length; liter++,
2266 		    addr++) {
2267 			data = buf[liter];
2268 			/* Are we at the beginning of a sector? */
2269 			if ((addr & rest_addr) == 0) {
2270 				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2271 					if (addr >= 0x10000UL) {
2272 						if (((addr >> 12) & 0xf0) &&
2273 						    ((man_id == 0x01 &&
2274 							flash_id == 0x3e) ||
2275 						     (man_id == 0x20 &&
2276 							 flash_id == 0xd2))) {
2277 							sec_number++;
2278 							if (sec_number == 1) {
2279 								rest_addr =
2280 								    0x7fff;
2281 								sec_mask =
2282 								    0x18000;
2283 							} else if (
2284 							    sec_number == 2 ||
2285 							    sec_number == 3) {
2286 								rest_addr =
2287 								    0x1fff;
2288 								sec_mask =
2289 								    0x1e000;
2290 							} else if (
2291 							    sec_number == 4) {
2292 								rest_addr =
2293 								    0x3fff;
2294 								sec_mask =
2295 								    0x1c000;
2296 							}
2297 						}
2298 					}
2299 				} else if (addr == ha->optrom_size / 2) {
2300 					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2301 					RD_REG_WORD(&reg->nvram);
2302 				}
2303 
2304 				if (flash_id == 0xda && man_id == 0xc1) {
2305 					qla2x00_write_flash_byte(ha, 0x5555,
2306 					    0xaa);
2307 					qla2x00_write_flash_byte(ha, 0x2aaa,
2308 					    0x55);
2309 					qla2x00_write_flash_byte(ha, 0x5555,
2310 					    0xa0);
2311 				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2312 					/* Then erase it */
2313 					if (qla2x00_erase_flash_sector(ha,
2314 					    addr, sec_mask, man_id,
2315 					    flash_id)) {
2316 						rval = QLA_FUNCTION_FAILED;
2317 						break;
2318 					}
2319 					if (man_id == 0x01 && flash_id == 0x6d)
2320 						sec_number++;
2321 				}
2322 			}
2323 
2324 			if (man_id == 0x01 && flash_id == 0x6d) {
2325 				if (sec_number == 1 &&
2326 				    addr == (rest_addr - 1)) {
2327 					rest_addr = 0x0fff;
2328 					sec_mask   = 0x1f000;
2329 				} else if (sec_number == 3 && (addr & 0x7ffe)) {
2330 					rest_addr = 0x3fff;
2331 					sec_mask   = 0x1c000;
2332 				}
2333 			}
2334 
2335 			if (qla2x00_program_flash_address(ha, addr, data,
2336 			    man_id, flash_id)) {
2337 				rval = QLA_FUNCTION_FAILED;
2338 				break;
2339 			}
2340 			cond_resched();
2341 		}
2342 	} while (0);
2343 	qla2x00_flash_disable(ha);
2344 
2345 	/* Resume HBA. */
2346 	qla2x00_resume_hba(vha);
2347 
2348 	return rval;
2349 }
2350 
2351 uint8_t *
2352 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2353     uint32_t offset, uint32_t length)
2354 {
2355 	struct qla_hw_data *ha = vha->hw;
2356 
2357 	/* Suspend HBA. */
2358 	scsi_block_requests(vha->host);
2359 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2360 
2361 	/* Go with read. */
2362 	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2363 
2364 	/* Resume HBA. */
2365 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2366 	scsi_unblock_requests(vha->host);
2367 
2368 	return buf;
2369 }
2370 
2371 int
2372 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2373     uint32_t offset, uint32_t length)
2374 {
2375 	int rval;
2376 	struct qla_hw_data *ha = vha->hw;
2377 
2378 	/* Suspend HBA. */
2379 	scsi_block_requests(vha->host);
2380 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2381 
2382 	/* Go with write. */
2383 	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2384 	    length >> 2);
2385 
2386 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2387 	scsi_unblock_requests(vha->host);
2388 
2389 	return rval;
2390 }
2391 
2392 uint8_t *
2393 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2394     uint32_t offset, uint32_t length)
2395 {
2396 	int rval;
2397 	dma_addr_t optrom_dma;
2398 	void *optrom;
2399 	uint8_t *pbuf;
2400 	uint32_t faddr, left, burst;
2401 	struct qla_hw_data *ha = vha->hw;
2402 
2403 	if (IS_QLA25XX(ha) || IS_QLA81XX(ha))
2404 		goto try_fast;
2405 	if (offset & 0xfff)
2406 		goto slow_read;
2407 	if (length < OPTROM_BURST_SIZE)
2408 		goto slow_read;
2409 
2410 try_fast:
2411 	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2412 	    &optrom_dma, GFP_KERNEL);
2413 	if (!optrom) {
2414 		ql_log(ql_log_warn, vha, 0x00cc,
2415 		    "Unable to allocate memory for optrom burst read (%x KB).\n",
2416 		    OPTROM_BURST_SIZE / 1024);
2417 		goto slow_read;
2418 	}
2419 
2420 	pbuf = buf;
2421 	faddr = offset >> 2;
2422 	left = length >> 2;
2423 	burst = OPTROM_BURST_DWORDS;
2424 	while (left != 0) {
2425 		if (burst > left)
2426 			burst = left;
2427 
2428 		rval = qla2x00_dump_ram(vha, optrom_dma,
2429 		    flash_data_addr(ha, faddr), burst);
2430 		if (rval) {
2431 			ql_log(ql_log_warn, vha, 0x00f5,
2432 			    "Unable to burst-read optrom segment (%x/%x/%llx).\n",
2433 			    rval, flash_data_addr(ha, faddr),
2434 			    (unsigned long long)optrom_dma);
2435 			ql_log(ql_log_warn, vha, 0x00f6,
2436 			    "Reverting to slow-read.\n");
2437 
2438 			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2439 			    optrom, optrom_dma);
2440 			goto slow_read;
2441 		}
2442 
2443 		memcpy(pbuf, optrom, burst * 4);
2444 
2445 		left -= burst;
2446 		faddr += burst;
2447 		pbuf += burst * 4;
2448 	}
2449 
2450 	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2451 	    optrom_dma);
2452 
2453 	return buf;
2454 
2455 slow_read:
2456     return qla24xx_read_optrom_data(vha, buf, offset, length);
2457 }
2458 
2459 /**
2460  * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2461  * @ha: HA context
2462  * @pcids: Pointer to the FCODE PCI data structure
2463  *
2464  * The process of retrieving the FCODE version information is at best
2465  * described as interesting.
2466  *
2467  * Within the first 100h bytes of the image an ASCII string is present
2468  * which contains several pieces of information including the FCODE
2469  * version.  Unfortunately it seems the only reliable way to retrieve
2470  * the version is by scanning for another sentinel within the string,
2471  * the FCODE build date:
2472  *
2473  *	... 2.00.02 10/17/02 ...
2474  *
2475  * Returns QLA_SUCCESS on successful retrieval of version.
2476  */
2477 static void
2478 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2479 {
2480 	int ret = QLA_FUNCTION_FAILED;
2481 	uint32_t istart, iend, iter, vend;
2482 	uint8_t do_next, rbyte, *vbyte;
2483 
2484 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2485 
2486 	/* Skip the PCI data structure. */
2487 	istart = pcids +
2488 	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2489 		qla2x00_read_flash_byte(ha, pcids + 0x0A));
2490 	iend = istart + 0x100;
2491 	do {
2492 		/* Scan for the sentinel date string...eeewww. */
2493 		do_next = 0;
2494 		iter = istart;
2495 		while ((iter < iend) && !do_next) {
2496 			iter++;
2497 			if (qla2x00_read_flash_byte(ha, iter) == '/') {
2498 				if (qla2x00_read_flash_byte(ha, iter + 2) ==
2499 				    '/')
2500 					do_next++;
2501 				else if (qla2x00_read_flash_byte(ha,
2502 				    iter + 3) == '/')
2503 					do_next++;
2504 			}
2505 		}
2506 		if (!do_next)
2507 			break;
2508 
2509 		/* Backtrack to previous ' ' (space). */
2510 		do_next = 0;
2511 		while ((iter > istart) && !do_next) {
2512 			iter--;
2513 			if (qla2x00_read_flash_byte(ha, iter) == ' ')
2514 				do_next++;
2515 		}
2516 		if (!do_next)
2517 			break;
2518 
2519 		/*
2520 		 * Mark end of version tag, and find previous ' ' (space) or
2521 		 * string length (recent FCODE images -- major hack ahead!!!).
2522 		 */
2523 		vend = iter - 1;
2524 		do_next = 0;
2525 		while ((iter > istart) && !do_next) {
2526 			iter--;
2527 			rbyte = qla2x00_read_flash_byte(ha, iter);
2528 			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2529 				do_next++;
2530 		}
2531 		if (!do_next)
2532 			break;
2533 
2534 		/* Mark beginning of version tag, and copy data. */
2535 		iter++;
2536 		if ((vend - iter) &&
2537 		    ((vend - iter) < sizeof(ha->fcode_revision))) {
2538 			vbyte = ha->fcode_revision;
2539 			while (iter <= vend) {
2540 				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
2541 				iter++;
2542 			}
2543 			ret = QLA_SUCCESS;
2544 		}
2545 	} while (0);
2546 
2547 	if (ret != QLA_SUCCESS)
2548 		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2549 }
2550 
2551 int
2552 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2553 {
2554 	int ret = QLA_SUCCESS;
2555 	uint8_t code_type, last_image;
2556 	uint32_t pcihdr, pcids;
2557 	uint8_t *dbyte;
2558 	uint16_t *dcode;
2559 	struct qla_hw_data *ha = vha->hw;
2560 
2561 	if (!ha->pio_address || !mbuf)
2562 		return QLA_FUNCTION_FAILED;
2563 
2564 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2565 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2566 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2567 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2568 
2569 	qla2x00_flash_enable(ha);
2570 
2571 	/* Begin with first PCI expansion ROM header. */
2572 	pcihdr = 0;
2573 	last_image = 1;
2574 	do {
2575 		/* Verify PCI expansion ROM header. */
2576 		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2577 		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2578 			/* No signature */
2579 			ql_log(ql_log_fatal, vha, 0x0050,
2580 			    "No matching ROM signature.\n");
2581 			ret = QLA_FUNCTION_FAILED;
2582 			break;
2583 		}
2584 
2585 		/* Locate PCI data structure. */
2586 		pcids = pcihdr +
2587 		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2588 			qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2589 
2590 		/* Validate signature of PCI data structure. */
2591 		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2592 		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2593 		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2594 		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2595 			/* Incorrect header. */
2596 			ql_log(ql_log_fatal, vha, 0x0051,
2597 			    "PCI data struct not found pcir_adr=%x.\n", pcids);
2598 			ret = QLA_FUNCTION_FAILED;
2599 			break;
2600 		}
2601 
2602 		/* Read version */
2603 		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2604 		switch (code_type) {
2605 		case ROM_CODE_TYPE_BIOS:
2606 			/* Intel x86, PC-AT compatible. */
2607 			ha->bios_revision[0] =
2608 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2609 			ha->bios_revision[1] =
2610 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2611 			ql_dbg(ql_dbg_init, vha, 0x0052,
2612 			    "Read BIOS %d.%d.\n",
2613 			    ha->bios_revision[1], ha->bios_revision[0]);
2614 			break;
2615 		case ROM_CODE_TYPE_FCODE:
2616 			/* Open Firmware standard for PCI (FCode). */
2617 			/* Eeeewww... */
2618 			qla2x00_get_fcode_version(ha, pcids);
2619 			break;
2620 		case ROM_CODE_TYPE_EFI:
2621 			/* Extensible Firmware Interface (EFI). */
2622 			ha->efi_revision[0] =
2623 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2624 			ha->efi_revision[1] =
2625 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2626 			ql_dbg(ql_dbg_init, vha, 0x0053,
2627 			    "Read EFI %d.%d.\n",
2628 			    ha->efi_revision[1], ha->efi_revision[0]);
2629 			break;
2630 		default:
2631 			ql_log(ql_log_warn, vha, 0x0054,
2632 			    "Unrecognized code type %x at pcids %x.\n",
2633 			    code_type, pcids);
2634 			break;
2635 		}
2636 
2637 		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2638 
2639 		/* Locate next PCI expansion ROM. */
2640 		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2641 		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2642 	} while (!last_image);
2643 
2644 	if (IS_QLA2322(ha)) {
2645 		/* Read firmware image information. */
2646 		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2647 		dbyte = mbuf;
2648 		memset(dbyte, 0, 8);
2649 		dcode = (uint16_t *)dbyte;
2650 
2651 		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2652 		    8);
2653 		ql_dbg(ql_dbg_init + ql_dbg_buffer, vha, 0x010a,
2654 		    "Dumping fw "
2655 		    "ver from flash:.\n");
2656 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010b,
2657 		    (uint8_t *)dbyte, 8);
2658 
2659 		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2660 		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2661 		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2662 		    dcode[3] == 0)) {
2663 			ql_log(ql_log_warn, vha, 0x0057,
2664 			    "Unrecognized fw revision at %x.\n",
2665 			    ha->flt_region_fw * 4);
2666 		} else {
2667 			/* values are in big endian */
2668 			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2669 			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2670 			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2671 			ql_dbg(ql_dbg_init, vha, 0x0058,
2672 			    "FW Version: "
2673 			    "%d.%d.%d.\n", ha->fw_revision[0],
2674 			    ha->fw_revision[1], ha->fw_revision[2]);
2675 		}
2676 	}
2677 
2678 	qla2x00_flash_disable(ha);
2679 
2680 	return ret;
2681 }
2682 
2683 int
2684 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2685 {
2686 	int ret = QLA_SUCCESS;
2687 	uint32_t pcihdr, pcids;
2688 	uint32_t *dcode;
2689 	uint8_t *bcode;
2690 	uint8_t code_type, last_image;
2691 	int i;
2692 	struct qla_hw_data *ha = vha->hw;
2693 
2694 	if (IS_QLA82XX(ha))
2695 		return ret;
2696 
2697 	if (!mbuf)
2698 		return QLA_FUNCTION_FAILED;
2699 
2700 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2701 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2702 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2703 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2704 
2705 	dcode = mbuf;
2706 
2707 	/* Begin with first PCI expansion ROM header. */
2708 	pcihdr = ha->flt_region_boot << 2;
2709 	last_image = 1;
2710 	do {
2711 		/* Verify PCI expansion ROM header. */
2712 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2713 		bcode = mbuf + (pcihdr % 4);
2714 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2715 			/* No signature */
2716 			ql_log(ql_log_fatal, vha, 0x0059,
2717 			    "No matching ROM signature.\n");
2718 			ret = QLA_FUNCTION_FAILED;
2719 			break;
2720 		}
2721 
2722 		/* Locate PCI data structure. */
2723 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2724 
2725 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2726 		bcode = mbuf + (pcihdr % 4);
2727 
2728 		/* Validate signature of PCI data structure. */
2729 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2730 		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2731 			/* Incorrect header. */
2732 			ql_log(ql_log_fatal, vha, 0x005a,
2733 			    "PCI data struct not found pcir_adr=%x.\n", pcids);
2734 			ret = QLA_FUNCTION_FAILED;
2735 			break;
2736 		}
2737 
2738 		/* Read version */
2739 		code_type = bcode[0x14];
2740 		switch (code_type) {
2741 		case ROM_CODE_TYPE_BIOS:
2742 			/* Intel x86, PC-AT compatible. */
2743 			ha->bios_revision[0] = bcode[0x12];
2744 			ha->bios_revision[1] = bcode[0x13];
2745 			ql_dbg(ql_dbg_init, vha, 0x005b,
2746 			    "Read BIOS %d.%d.\n",
2747 			    ha->bios_revision[1], ha->bios_revision[0]);
2748 			break;
2749 		case ROM_CODE_TYPE_FCODE:
2750 			/* Open Firmware standard for PCI (FCode). */
2751 			ha->fcode_revision[0] = bcode[0x12];
2752 			ha->fcode_revision[1] = bcode[0x13];
2753 			ql_dbg(ql_dbg_init, vha, 0x005c,
2754 			    "Read FCODE %d.%d.\n",
2755 			    ha->fcode_revision[1], ha->fcode_revision[0]);
2756 			break;
2757 		case ROM_CODE_TYPE_EFI:
2758 			/* Extensible Firmware Interface (EFI). */
2759 			ha->efi_revision[0] = bcode[0x12];
2760 			ha->efi_revision[1] = bcode[0x13];
2761 			ql_dbg(ql_dbg_init, vha, 0x005d,
2762 			    "Read EFI %d.%d.\n",
2763 			    ha->efi_revision[1], ha->efi_revision[0]);
2764 			break;
2765 		default:
2766 			ql_log(ql_log_warn, vha, 0x005e,
2767 			    "Unrecognized code type %x at pcids %x.\n",
2768 			    code_type, pcids);
2769 			break;
2770 		}
2771 
2772 		last_image = bcode[0x15] & BIT_7;
2773 
2774 		/* Locate next PCI expansion ROM. */
2775 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2776 	} while (!last_image);
2777 
2778 	/* Read firmware image information. */
2779 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2780 	dcode = mbuf;
2781 
2782 	qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2783 	for (i = 0; i < 4; i++)
2784 		dcode[i] = be32_to_cpu(dcode[i]);
2785 
2786 	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2787 	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2788 	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2789 	    dcode[3] == 0)) {
2790 		ql_log(ql_log_warn, vha, 0x005f,
2791 		    "Unrecognized fw revision at %x.\n",
2792 		    ha->flt_region_fw * 4);
2793 	} else {
2794 		ha->fw_revision[0] = dcode[0];
2795 		ha->fw_revision[1] = dcode[1];
2796 		ha->fw_revision[2] = dcode[2];
2797 		ha->fw_revision[3] = dcode[3];
2798 		ql_dbg(ql_dbg_init, vha, 0x0060,
2799 		    "Firmware revision %d.%d.%d.%d.\n",
2800 		    ha->fw_revision[0], ha->fw_revision[1],
2801 		    ha->fw_revision[2], ha->fw_revision[3]);
2802 	}
2803 
2804 	/* Check for golden firmware and get version if available */
2805 	if (!IS_QLA81XX(ha)) {
2806 		/* Golden firmware is not present in non 81XX adapters */
2807 		return ret;
2808 	}
2809 
2810 	memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version));
2811 	dcode = mbuf;
2812 	ha->isp_ops->read_optrom(vha, (uint8_t *)dcode,
2813 	    ha->flt_region_gold_fw << 2, 32);
2814 
2815 	if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF &&
2816 	    dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) {
2817 		ql_log(ql_log_warn, vha, 0x0056,
2818 		    "Unrecognized golden fw at 0x%x.\n",
2819 		    ha->flt_region_gold_fw * 4);
2820 		return ret;
2821 	}
2822 
2823 	for (i = 4; i < 8; i++)
2824 		ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]);
2825 
2826 	return ret;
2827 }
2828 
2829 static int
2830 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
2831 {
2832 	if (pos >= end || *pos != 0x82)
2833 		return 0;
2834 
2835 	pos += 3 + pos[1];
2836 	if (pos >= end || *pos != 0x90)
2837 		return 0;
2838 
2839 	pos += 3 + pos[1];
2840 	if (pos >= end || *pos != 0x78)
2841 		return 0;
2842 
2843 	return 1;
2844 }
2845 
2846 int
2847 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2848 {
2849 	struct qla_hw_data *ha = vha->hw;
2850 	uint8_t *pos = ha->vpd;
2851 	uint8_t *end = pos + ha->vpd_size;
2852 	int len = 0;
2853 
2854 	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
2855 		return 0;
2856 
2857 	while (pos < end && *pos != 0x78) {
2858 		len = (*pos == 0x82) ? pos[1] : pos[2];
2859 
2860 		if (!strncmp(pos, key, strlen(key)))
2861 			break;
2862 
2863 		if (*pos != 0x90 && *pos != 0x91)
2864 			pos += len;
2865 
2866 		pos += 3;
2867 	}
2868 
2869 	if (pos < end - len && *pos != 0x78)
2870 		return snprintf(str, size, "%.*s", len, pos + 3);
2871 
2872 	return 0;
2873 }
2874 
2875 int
2876 qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha)
2877 {
2878 	int len, max_len;
2879 	uint32_t fcp_prio_addr;
2880 	struct qla_hw_data *ha = vha->hw;
2881 
2882 	if (!ha->fcp_prio_cfg) {
2883 		ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE);
2884 		if (!ha->fcp_prio_cfg) {
2885 			ql_log(ql_log_warn, vha, 0x00d5,
2886 			    "Unable to allocate memory for fcp priorty data (%x).\n",
2887 			    FCP_PRIO_CFG_SIZE);
2888 			return QLA_FUNCTION_FAILED;
2889 		}
2890 	}
2891 	memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE);
2892 
2893 	fcp_prio_addr = ha->flt_region_fcp_prio;
2894 
2895 	/* first read the fcp priority data header from flash */
2896 	ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
2897 			fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);
2898 
2899 	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 0))
2900 		goto fail;
2901 
2902 	/* read remaining FCP CMD config data from flash */
2903 	fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
2904 	len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
2905 	max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE;
2906 
2907 	ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
2908 			fcp_prio_addr << 2, (len < max_len ? len : max_len));
2909 
2910 	/* revalidate the entire FCP priority config data, including entries */
2911 	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 1))
2912 		goto fail;
2913 
2914 	ha->flags.fcp_prio_enabled = 1;
2915 	return QLA_SUCCESS;
2916 fail:
2917 	vfree(ha->fcp_prio_cfg);
2918 	ha->fcp_prio_cfg = NULL;
2919 	return QLA_FUNCTION_FAILED;
2920 }
2921