xref: /openbmc/linux/drivers/scsi/qla2xxx/qla_sup.c (revision 9ac8d3fb)
1 /*
2  * QLogic Fibre Channel HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  *
5  * See LICENSE.qla2xxx for copyright and licensing details.
6  */
7 #include "qla_def.h"
8 
9 #include <linux/delay.h>
10 #include <linux/vmalloc.h>
11 #include <asm/uaccess.h>
12 
13 static uint16_t qla2x00_nvram_request(scsi_qla_host_t *, uint32_t);
14 static void qla2x00_nv_deselect(scsi_qla_host_t *);
15 static void qla2x00_nv_write(scsi_qla_host_t *, uint16_t);
16 
17 /*
18  * NVRAM support routines
19  */
20 
21 /**
22  * qla2x00_lock_nvram_access() -
23  * @ha: HA context
24  */
25 static void
26 qla2x00_lock_nvram_access(scsi_qla_host_t *ha)
27 {
28 	uint16_t data;
29 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
30 
31 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
32 		data = RD_REG_WORD(&reg->nvram);
33 		while (data & NVR_BUSY) {
34 			udelay(100);
35 			data = RD_REG_WORD(&reg->nvram);
36 		}
37 
38 		/* Lock resource */
39 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
40 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
41 		udelay(5);
42 		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
43 		while ((data & BIT_0) == 0) {
44 			/* Lock failed */
45 			udelay(100);
46 			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
47 			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
48 			udelay(5);
49 			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
50 		}
51 	}
52 }
53 
54 /**
55  * qla2x00_unlock_nvram_access() -
56  * @ha: HA context
57  */
58 static void
59 qla2x00_unlock_nvram_access(scsi_qla_host_t *ha)
60 {
61 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
62 
63 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
64 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
65 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
66 	}
67 }
68 
69 /**
70  * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
71  *	request routine to get the word from NVRAM.
72  * @ha: HA context
73  * @addr: Address in NVRAM to read
74  *
75  * Returns the word read from nvram @addr.
76  */
77 static uint16_t
78 qla2x00_get_nvram_word(scsi_qla_host_t *ha, uint32_t addr)
79 {
80 	uint16_t	data;
81 	uint32_t	nv_cmd;
82 
83 	nv_cmd = addr << 16;
84 	nv_cmd |= NV_READ_OP;
85 	data = qla2x00_nvram_request(ha, nv_cmd);
86 
87 	return (data);
88 }
89 
90 /**
91  * qla2x00_write_nvram_word() - Write NVRAM data.
92  * @ha: HA context
93  * @addr: Address in NVRAM to write
94  * @data: word to program
95  */
96 static void
97 qla2x00_write_nvram_word(scsi_qla_host_t *ha, uint32_t addr, uint16_t data)
98 {
99 	int count;
100 	uint16_t word;
101 	uint32_t nv_cmd, wait_cnt;
102 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
103 
104 	qla2x00_nv_write(ha, NVR_DATA_OUT);
105 	qla2x00_nv_write(ha, 0);
106 	qla2x00_nv_write(ha, 0);
107 
108 	for (word = 0; word < 8; word++)
109 		qla2x00_nv_write(ha, NVR_DATA_OUT);
110 
111 	qla2x00_nv_deselect(ha);
112 
113 	/* Write data */
114 	nv_cmd = (addr << 16) | NV_WRITE_OP;
115 	nv_cmd |= data;
116 	nv_cmd <<= 5;
117 	for (count = 0; count < 27; count++) {
118 		if (nv_cmd & BIT_31)
119 			qla2x00_nv_write(ha, NVR_DATA_OUT);
120 		else
121 			qla2x00_nv_write(ha, 0);
122 
123 		nv_cmd <<= 1;
124 	}
125 
126 	qla2x00_nv_deselect(ha);
127 
128 	/* Wait for NVRAM to become ready */
129 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
130 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
131 	wait_cnt = NVR_WAIT_CNT;
132 	do {
133 		if (!--wait_cnt) {
134 			DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
135 			    __func__, ha->host_no));
136 			break;
137 		}
138 		NVRAM_DELAY();
139 		word = RD_REG_WORD(&reg->nvram);
140 	} while ((word & NVR_DATA_IN) == 0);
141 
142 	qla2x00_nv_deselect(ha);
143 
144 	/* Disable writes */
145 	qla2x00_nv_write(ha, NVR_DATA_OUT);
146 	for (count = 0; count < 10; count++)
147 		qla2x00_nv_write(ha, 0);
148 
149 	qla2x00_nv_deselect(ha);
150 }
151 
152 static int
153 qla2x00_write_nvram_word_tmo(scsi_qla_host_t *ha, uint32_t addr, uint16_t data,
154     uint32_t tmo)
155 {
156 	int ret, count;
157 	uint16_t word;
158 	uint32_t nv_cmd;
159 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
160 
161 	ret = QLA_SUCCESS;
162 
163 	qla2x00_nv_write(ha, NVR_DATA_OUT);
164 	qla2x00_nv_write(ha, 0);
165 	qla2x00_nv_write(ha, 0);
166 
167 	for (word = 0; word < 8; word++)
168 		qla2x00_nv_write(ha, NVR_DATA_OUT);
169 
170 	qla2x00_nv_deselect(ha);
171 
172 	/* Write data */
173 	nv_cmd = (addr << 16) | NV_WRITE_OP;
174 	nv_cmd |= data;
175 	nv_cmd <<= 5;
176 	for (count = 0; count < 27; count++) {
177 		if (nv_cmd & BIT_31)
178 			qla2x00_nv_write(ha, NVR_DATA_OUT);
179 		else
180 			qla2x00_nv_write(ha, 0);
181 
182 		nv_cmd <<= 1;
183 	}
184 
185 	qla2x00_nv_deselect(ha);
186 
187 	/* Wait for NVRAM to become ready */
188 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
189 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
190 	do {
191 		NVRAM_DELAY();
192 		word = RD_REG_WORD(&reg->nvram);
193 		if (!--tmo) {
194 			ret = QLA_FUNCTION_FAILED;
195 			break;
196 		}
197 	} while ((word & NVR_DATA_IN) == 0);
198 
199 	qla2x00_nv_deselect(ha);
200 
201 	/* Disable writes */
202 	qla2x00_nv_write(ha, NVR_DATA_OUT);
203 	for (count = 0; count < 10; count++)
204 		qla2x00_nv_write(ha, 0);
205 
206 	qla2x00_nv_deselect(ha);
207 
208 	return ret;
209 }
210 
211 /**
212  * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
213  *	NVRAM.
214  * @ha: HA context
215  * @nv_cmd: NVRAM command
216  *
217  * Bit definitions for NVRAM command:
218  *
219  *	Bit 26     = start bit
220  *	Bit 25, 24 = opcode
221  *	Bit 23-16  = address
222  *	Bit 15-0   = write data
223  *
224  * Returns the word read from nvram @addr.
225  */
226 static uint16_t
227 qla2x00_nvram_request(scsi_qla_host_t *ha, uint32_t nv_cmd)
228 {
229 	uint8_t		cnt;
230 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
231 	uint16_t	data = 0;
232 	uint16_t	reg_data;
233 
234 	/* Send command to NVRAM. */
235 	nv_cmd <<= 5;
236 	for (cnt = 0; cnt < 11; cnt++) {
237 		if (nv_cmd & BIT_31)
238 			qla2x00_nv_write(ha, NVR_DATA_OUT);
239 		else
240 			qla2x00_nv_write(ha, 0);
241 		nv_cmd <<= 1;
242 	}
243 
244 	/* Read data from NVRAM. */
245 	for (cnt = 0; cnt < 16; cnt++) {
246 		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
247 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
248 		NVRAM_DELAY();
249 		data <<= 1;
250 		reg_data = RD_REG_WORD(&reg->nvram);
251 		if (reg_data & NVR_DATA_IN)
252 			data |= BIT_0;
253 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
254 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
255 		NVRAM_DELAY();
256 	}
257 
258 	/* Deselect chip. */
259 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
260 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
261 	NVRAM_DELAY();
262 
263 	return (data);
264 }
265 
266 /**
267  * qla2x00_nv_write() - Clean NVRAM operations.
268  * @ha: HA context
269  */
270 static void
271 qla2x00_nv_deselect(scsi_qla_host_t *ha)
272 {
273 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
274 
275 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
276 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
277 	NVRAM_DELAY();
278 }
279 
280 /**
281  * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
282  * @ha: HA context
283  * @data: Serial interface selector
284  */
285 static void
286 qla2x00_nv_write(scsi_qla_host_t *ha, uint16_t data)
287 {
288 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
289 
290 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
291 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
292 	NVRAM_DELAY();
293 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT| NVR_CLOCK |
294 	    NVR_WRT_ENABLE);
295 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
296 	NVRAM_DELAY();
297 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
298 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
299 	NVRAM_DELAY();
300 }
301 
302 /**
303  * qla2x00_clear_nvram_protection() -
304  * @ha: HA context
305  */
306 static int
307 qla2x00_clear_nvram_protection(scsi_qla_host_t *ha)
308 {
309 	int ret, stat;
310 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
311 	uint32_t word, wait_cnt;
312 	uint16_t wprot, wprot_old;
313 
314 	/* Clear NVRAM write protection. */
315 	ret = QLA_FUNCTION_FAILED;
316 
317 	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319 	    __constant_cpu_to_le16(0x1234), 100000);
320 	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
321 	if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 		/* Write enable. */
323 		qla2x00_nv_write(ha, NVR_DATA_OUT);
324 		qla2x00_nv_write(ha, 0);
325 		qla2x00_nv_write(ha, 0);
326 		for (word = 0; word < 8; word++)
327 			qla2x00_nv_write(ha, NVR_DATA_OUT);
328 
329 		qla2x00_nv_deselect(ha);
330 
331 		/* Enable protection register. */
332 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
333 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
334 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
335 		for (word = 0; word < 8; word++)
336 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
337 
338 		qla2x00_nv_deselect(ha);
339 
340 		/* Clear protection register (ffff is cleared). */
341 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
343 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
344 		for (word = 0; word < 8; word++)
345 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
346 
347 		qla2x00_nv_deselect(ha);
348 
349 		/* Wait for NVRAM to become ready. */
350 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
352 		wait_cnt = NVR_WAIT_CNT;
353 		do {
354 			if (!--wait_cnt) {
355 				DEBUG9_10(printk("%s(%ld): NVRAM didn't go "
356 				    "ready...\n", __func__,
357 				    ha->host_no));
358 				break;
359 			}
360 			NVRAM_DELAY();
361 			word = RD_REG_WORD(&reg->nvram);
362 		} while ((word & NVR_DATA_IN) == 0);
363 
364 		if (wait_cnt)
365 			ret = QLA_SUCCESS;
366 	} else
367 		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
368 
369 	return ret;
370 }
371 
372 static void
373 qla2x00_set_nvram_protection(scsi_qla_host_t *ha, int stat)
374 {
375 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
376 	uint32_t word, wait_cnt;
377 
378 	if (stat != QLA_SUCCESS)
379 		return;
380 
381 	/* Set NVRAM write protection. */
382 	/* Write enable. */
383 	qla2x00_nv_write(ha, NVR_DATA_OUT);
384 	qla2x00_nv_write(ha, 0);
385 	qla2x00_nv_write(ha, 0);
386 	for (word = 0; word < 8; word++)
387 		qla2x00_nv_write(ha, NVR_DATA_OUT);
388 
389 	qla2x00_nv_deselect(ha);
390 
391 	/* Enable protection register. */
392 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
393 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
394 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
395 	for (word = 0; word < 8; word++)
396 		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
397 
398 	qla2x00_nv_deselect(ha);
399 
400 	/* Enable protection register. */
401 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
402 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
403 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
404 	for (word = 0; word < 8; word++)
405 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
406 
407 	qla2x00_nv_deselect(ha);
408 
409 	/* Wait for NVRAM to become ready. */
410 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
412 	wait_cnt = NVR_WAIT_CNT;
413 	do {
414 		if (!--wait_cnt) {
415 			DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
416 			    __func__, ha->host_no));
417 			break;
418 		}
419 		NVRAM_DELAY();
420 		word = RD_REG_WORD(&reg->nvram);
421 	} while ((word & NVR_DATA_IN) == 0);
422 }
423 
424 
425 /*****************************************************************************/
426 /* Flash Manipulation Routines                                               */
427 /*****************************************************************************/
428 
429 #define OPTROM_BURST_SIZE	0x1000
430 #define OPTROM_BURST_DWORDS	(OPTROM_BURST_SIZE / 4)
431 
432 static inline uint32_t
433 flash_conf_to_access_addr(uint32_t faddr)
434 {
435 	return FARX_ACCESS_FLASH_CONF | faddr;
436 }
437 
438 static inline uint32_t
439 flash_data_to_access_addr(uint32_t faddr)
440 {
441 	return FARX_ACCESS_FLASH_DATA | faddr;
442 }
443 
444 static inline uint32_t
445 nvram_conf_to_access_addr(uint32_t naddr)
446 {
447 	return FARX_ACCESS_NVRAM_CONF | naddr;
448 }
449 
450 static inline uint32_t
451 nvram_data_to_access_addr(uint32_t naddr)
452 {
453 	return FARX_ACCESS_NVRAM_DATA | naddr;
454 }
455 
456 static uint32_t
457 qla24xx_read_flash_dword(scsi_qla_host_t *ha, uint32_t addr)
458 {
459 	int rval;
460 	uint32_t cnt, data;
461 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
462 
463 	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
464 	/* Wait for READ cycle to complete. */
465 	rval = QLA_SUCCESS;
466 	for (cnt = 3000;
467 	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
468 	    rval == QLA_SUCCESS; cnt--) {
469 		if (cnt)
470 			udelay(10);
471 		else
472 			rval = QLA_FUNCTION_TIMEOUT;
473 		cond_resched();
474 	}
475 
476 	/* TODO: What happens if we time out? */
477 	data = 0xDEADDEAD;
478 	if (rval == QLA_SUCCESS)
479 		data = RD_REG_DWORD(&reg->flash_data);
480 
481 	return data;
482 }
483 
484 uint32_t *
485 qla24xx_read_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
486     uint32_t dwords)
487 {
488 	uint32_t i;
489 
490 	/* Dword reads to flash. */
491 	for (i = 0; i < dwords; i++, faddr++)
492 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
493 		    flash_data_to_access_addr(faddr)));
494 
495 	return dwptr;
496 }
497 
498 static int
499 qla24xx_write_flash_dword(scsi_qla_host_t *ha, uint32_t addr, uint32_t data)
500 {
501 	int rval;
502 	uint32_t cnt;
503 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
504 
505 	WRT_REG_DWORD(&reg->flash_data, data);
506 	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
507 	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
508 	/* Wait for Write cycle to complete. */
509 	rval = QLA_SUCCESS;
510 	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
511 	    rval == QLA_SUCCESS; cnt--) {
512 		if (cnt)
513 			udelay(10);
514 		else
515 			rval = QLA_FUNCTION_TIMEOUT;
516 		cond_resched();
517 	}
518 	return rval;
519 }
520 
521 static void
522 qla24xx_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
523     uint8_t *flash_id)
524 {
525 	uint32_t ids;
526 
527 	ids = qla24xx_read_flash_dword(ha, flash_data_to_access_addr(0xd03ab));
528 	*man_id = LSB(ids);
529 	*flash_id = MSB(ids);
530 
531 	/* Check if man_id and flash_id are valid. */
532 	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
533 		/* Read information using 0x9f opcode
534 		 * Device ID, Mfg ID would be read in the format:
535 		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
536 		 * Example: ATMEL 0x00 01 45 1F
537 		 * Extract MFG and Dev ID from last two bytes.
538 		 */
539 		ids = qla24xx_read_flash_dword(ha,
540 		    flash_data_to_access_addr(0xd009f));
541 		*man_id = LSB(ids);
542 		*flash_id = MSB(ids);
543 	}
544 }
545 
546 static int
547 qla2xxx_find_flt_start(scsi_qla_host_t *ha, uint32_t *start)
548 {
549 	const char *loc, *locations[] = { "DEF", "PCI" };
550 	uint32_t pcihdr, pcids;
551 	uint32_t *dcode;
552 	uint8_t *buf, *bcode, last_image;
553 	uint16_t cnt, chksum, *wptr;
554 	struct qla_flt_location *fltl;
555 
556 	/*
557 	 * FLT-location structure resides after the last PCI region.
558 	 */
559 
560 	/* Begin with sane defaults. */
561 	loc = locations[0];
562 	*start = IS_QLA24XX_TYPE(ha) ? FA_FLASH_LAYOUT_ADDR_24:
563 	    FA_FLASH_LAYOUT_ADDR;
564 
565 	/* Begin with first PCI expansion ROM header. */
566 	buf = (uint8_t *)ha->request_ring;
567 	dcode = (uint32_t *)ha->request_ring;
568 	pcihdr = 0;
569 	last_image = 1;
570 	do {
571 		/* Verify PCI expansion ROM header. */
572 		qla24xx_read_flash_data(ha, dcode, pcihdr >> 2, 0x20);
573 		bcode = buf + (pcihdr % 4);
574 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
575 			goto end;
576 
577 		/* Locate PCI data structure. */
578 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
579 		qla24xx_read_flash_data(ha, dcode, pcids >> 2, 0x20);
580 		bcode = buf + (pcihdr % 4);
581 
582 		/* Validate signature of PCI data structure. */
583 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
584 		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
585 			goto end;
586 
587 		last_image = bcode[0x15] & BIT_7;
588 
589 		/* Locate next PCI expansion ROM. */
590 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
591 	} while (!last_image);
592 
593 	/* Now verify FLT-location structure. */
594 	fltl = (struct qla_flt_location *)ha->request_ring;
595 	qla24xx_read_flash_data(ha, dcode, pcihdr >> 2,
596 	    sizeof(struct qla_flt_location) >> 2);
597 	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
598 	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
599 		goto end;
600 
601 	wptr = (uint16_t *)ha->request_ring;
602 	cnt = sizeof(struct qla_flt_location) >> 1;
603 	for (chksum = 0; cnt; cnt--)
604 		chksum += le16_to_cpu(*wptr++);
605 	if (chksum) {
606 		qla_printk(KERN_ERR, ha,
607 		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
608 		qla2x00_dump_buffer(buf, sizeof(struct qla_flt_location));
609 		return QLA_FUNCTION_FAILED;
610 	}
611 
612 	/* Good data.  Use specified location. */
613 	loc = locations[1];
614 	*start = le16_to_cpu(fltl->start_hi) << 16 |
615 	    le16_to_cpu(fltl->start_lo);
616 end:
617 	DEBUG2(qla_printk(KERN_DEBUG, ha, "FLTL[%s] = 0x%x.\n", loc, *start));
618 	return QLA_SUCCESS;
619 }
620 
621 static void
622 qla2xxx_get_flt_info(scsi_qla_host_t *ha, uint32_t flt_addr)
623 {
624 	const char *loc, *locations[] = { "DEF", "FLT" };
625 	uint16_t *wptr;
626 	uint16_t cnt, chksum;
627 	uint32_t start;
628 	struct qla_flt_header *flt;
629 	struct qla_flt_region *region;
630 
631 	ha->flt_region_flt = flt_addr;
632 	wptr = (uint16_t *)ha->request_ring;
633 	flt = (struct qla_flt_header *)ha->request_ring;
634 	region = (struct qla_flt_region *)&flt[1];
635 	ha->isp_ops->read_optrom(ha, (uint8_t *)ha->request_ring,
636 	    flt_addr << 2, OPTROM_BURST_SIZE);
637 	if (*wptr == __constant_cpu_to_le16(0xffff))
638 		goto no_flash_data;
639 	if (flt->version != __constant_cpu_to_le16(1)) {
640 		DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported FLT detected: "
641 		    "version=0x%x length=0x%x checksum=0x%x.\n",
642 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
643 		    le16_to_cpu(flt->checksum)));
644 		goto no_flash_data;
645 	}
646 
647 	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
648 	for (chksum = 0; cnt; cnt--)
649 		chksum += le16_to_cpu(*wptr++);
650 	if (chksum) {
651 		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FLT detected: "
652 		    "version=0x%x length=0x%x checksum=0x%x.\n",
653 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
654 		    chksum));
655 		goto no_flash_data;
656 	}
657 
658 	loc = locations[1];
659 	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
660 	for ( ; cnt; cnt--, region++) {
661 		/* Store addresses as DWORD offsets. */
662 		start = le32_to_cpu(region->start) >> 2;
663 
664 		DEBUG3(qla_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x "
665 		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start,
666 		    le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size)));
667 
668 		switch (le32_to_cpu(region->code)) {
669 		case FLT_REG_FW:
670 			ha->flt_region_fw = start;
671 			break;
672 		case FLT_REG_BOOT_CODE:
673 			ha->flt_region_boot = start;
674 			break;
675 		case FLT_REG_VPD_0:
676 			ha->flt_region_vpd_nvram = start;
677 			break;
678 		case FLT_REG_FDT:
679 			ha->flt_region_fdt = start;
680 			break;
681 		case FLT_REG_HW_EVENT_0:
682 			if (!PCI_FUNC(ha->pdev->devfn))
683 				ha->flt_region_hw_event = start;
684 			break;
685 		case FLT_REG_HW_EVENT_1:
686 			if (PCI_FUNC(ha->pdev->devfn))
687 				ha->flt_region_hw_event = start;
688 			break;
689 		case FLT_REG_NPIV_CONF_0:
690 			if (!PCI_FUNC(ha->pdev->devfn))
691 				ha->flt_region_npiv_conf = start;
692 			break;
693 		case FLT_REG_NPIV_CONF_1:
694 			if (PCI_FUNC(ha->pdev->devfn))
695 				ha->flt_region_npiv_conf = start;
696 			break;
697 		}
698 	}
699 	goto done;
700 
701 no_flash_data:
702 	/* Use hardcoded defaults. */
703 	loc = locations[0];
704 	ha->flt_region_fw = FA_RISC_CODE_ADDR;
705 	ha->flt_region_boot = FA_BOOT_CODE_ADDR;
706 	ha->flt_region_vpd_nvram = FA_VPD_NVRAM_ADDR;
707 	ha->flt_region_fdt = IS_QLA24XX_TYPE(ha) ? FA_FLASH_DESCR_ADDR_24:
708 	    FA_FLASH_DESCR_ADDR;
709 	ha->flt_region_hw_event = !PCI_FUNC(ha->pdev->devfn) ?
710 	    FA_HW_EVENT0_ADDR: FA_HW_EVENT1_ADDR;
711 	ha->flt_region_npiv_conf = !PCI_FUNC(ha->pdev->devfn) ?
712 	    (IS_QLA24XX_TYPE(ha) ? FA_NPIV_CONF0_ADDR_24: FA_NPIV_CONF0_ADDR):
713 	    (IS_QLA24XX_TYPE(ha) ? FA_NPIV_CONF1_ADDR_24: FA_NPIV_CONF1_ADDR);
714 done:
715 	DEBUG2(qla_printk(KERN_DEBUG, ha, "FLT[%s]: boot=0x%x fw=0x%x "
716 	    "vpd_nvram=0x%x fdt=0x%x flt=0x%x hwe=0x%x npiv=0x%x.\n", loc,
717 	    ha->flt_region_boot, ha->flt_region_fw, ha->flt_region_vpd_nvram,
718 	    ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_hw_event,
719 	    ha->flt_region_npiv_conf));
720 }
721 
722 static void
723 qla2xxx_get_fdt_info(scsi_qla_host_t *ha)
724 {
725 #define FLASH_BLK_SIZE_32K	0x8000
726 #define FLASH_BLK_SIZE_64K	0x10000
727 	const char *loc, *locations[] = { "MID", "FDT" };
728 	uint16_t cnt, chksum;
729 	uint16_t *wptr;
730 	struct qla_fdt_layout *fdt;
731 	uint8_t	man_id, flash_id;
732 	uint16_t mid, fid;
733 
734 	wptr = (uint16_t *)ha->request_ring;
735 	fdt = (struct qla_fdt_layout *)ha->request_ring;
736 	ha->isp_ops->read_optrom(ha, (uint8_t *)ha->request_ring,
737 	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
738 	if (*wptr == __constant_cpu_to_le16(0xffff))
739 		goto no_flash_data;
740 	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
741 	    fdt->sig[3] != 'D')
742 		goto no_flash_data;
743 
744 	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
745 	    cnt++)
746 		chksum += le16_to_cpu(*wptr++);
747 	if (chksum) {
748 		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
749 		    "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
750 		    le16_to_cpu(fdt->version)));
751 		DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt)));
752 		goto no_flash_data;
753 	}
754 
755 	loc = locations[1];
756 	mid = le16_to_cpu(fdt->man_id);
757 	fid = le16_to_cpu(fdt->id);
758 	ha->fdt_odd_index = mid == 0x1f;
759 	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
760 	ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0300 | fdt->erase_cmd);
761 	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
762 	if (fdt->unprotect_sec_cmd) {
763 		ha->fdt_unprotect_sec_cmd = flash_conf_to_access_addr(0x0300 |
764 		    fdt->unprotect_sec_cmd);
765 		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
766 		    flash_conf_to_access_addr(0x0300 | fdt->protect_sec_cmd):
767 		    flash_conf_to_access_addr(0x0336);
768 	}
769 	goto done;
770 no_flash_data:
771 	loc = locations[0];
772 	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
773 	mid = man_id;
774 	fid = flash_id;
775 	ha->fdt_wrt_disable = 0x9c;
776 	ha->fdt_erase_cmd = flash_conf_to_access_addr(0x03d8);
777 	switch (man_id) {
778 	case 0xbf: /* STT flash. */
779 		if (flash_id == 0x8e)
780 			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
781 		else
782 			ha->fdt_block_size = FLASH_BLK_SIZE_32K;
783 
784 		if (flash_id == 0x80)
785 			ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0352);
786 		break;
787 	case 0x13: /* ST M25P80. */
788 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
789 		break;
790 	case 0x1f: /* Atmel 26DF081A. */
791 		ha->fdt_odd_index = 1;
792 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
793 		ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0320);
794 		ha->fdt_unprotect_sec_cmd = flash_conf_to_access_addr(0x0339);
795 		ha->fdt_protect_sec_cmd = flash_conf_to_access_addr(0x0336);
796 		break;
797 	default:
798 		/* Default to 64 kb sector size. */
799 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
800 		break;
801 	}
802 done:
803 	DEBUG2(qla_printk(KERN_DEBUG, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x "
804 	    "pro=%x upro=%x idx=%d wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
805 	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
806 	    ha->fdt_unprotect_sec_cmd, ha->fdt_odd_index, ha->fdt_wrt_disable,
807 	    ha->fdt_block_size));
808 }
809 
810 int
811 qla2xxx_get_flash_info(scsi_qla_host_t *ha)
812 {
813 	int ret;
814 	uint32_t flt_addr;
815 
816 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha))
817 		return QLA_SUCCESS;
818 
819 	ret = qla2xxx_find_flt_start(ha, &flt_addr);
820 	if (ret != QLA_SUCCESS)
821 		return ret;
822 
823 	qla2xxx_get_flt_info(ha, flt_addr);
824 	qla2xxx_get_fdt_info(ha);
825 
826 	return QLA_SUCCESS;
827 }
828 
829 void
830 qla2xxx_flash_npiv_conf(scsi_qla_host_t *ha)
831 {
832 #define NPIV_CONFIG_SIZE	(16*1024)
833 	void *data;
834 	uint16_t *wptr;
835 	uint16_t cnt, chksum;
836 	struct qla_npiv_header hdr;
837 	struct qla_npiv_entry *entry;
838 
839 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha))
840 		return;
841 
842 	ha->isp_ops->read_optrom(ha, (uint8_t *)&hdr,
843 	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
844 	if (hdr.version == __constant_cpu_to_le16(0xffff))
845 		return;
846 	if (hdr.version != __constant_cpu_to_le16(1)) {
847 		DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported NPIV-Config "
848 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
849 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
850 		    le16_to_cpu(hdr.checksum)));
851 		return;
852 	}
853 
854 	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
855 	if (!data) {
856 		DEBUG2(qla_printk(KERN_INFO, ha, "NPIV-Config: Unable to "
857 		    "allocate memory.\n"));
858 		return;
859 	}
860 
861 	ha->isp_ops->read_optrom(ha, (uint8_t *)data,
862 	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
863 
864 	cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
865 	    sizeof(struct qla_npiv_entry)) >> 1;
866 	for (wptr = data, chksum = 0; cnt; cnt--)
867 		chksum += le16_to_cpu(*wptr++);
868 	if (chksum) {
869 		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent NPIV-Config "
870 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
871 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
872 		    chksum));
873 		goto done;
874 	}
875 
876 	entry = data + sizeof(struct qla_npiv_header);
877 	cnt = le16_to_cpu(hdr.entries);
878 	for ( ; cnt; cnt--, entry++) {
879 		uint16_t flags;
880 		struct fc_vport_identifiers vid;
881 		struct fc_vport *vport;
882 
883 		flags = le16_to_cpu(entry->flags);
884 		if (flags == 0xffff)
885 			continue;
886 		if ((flags & BIT_0) == 0)
887 			continue;
888 
889 		memset(&vid, 0, sizeof(vid));
890 		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
891 		vid.vport_type = FC_PORTTYPE_NPIV;
892 		vid.disable = false;
893 		vid.port_name = wwn_to_u64(entry->port_name);
894 		vid.node_name = wwn_to_u64(entry->node_name);
895 
896 		DEBUG2(qla_printk(KERN_DEBUG, ha, "NPIV[%02x]: wwpn=%llx "
897 		    "wwnn=%llx vf_id=0x%x qos=0x%x.\n", cnt,
898 		    (unsigned long long)vid.port_name,
899 		    (unsigned long long)vid.node_name,
900 		    le16_to_cpu(entry->vf_id), le16_to_cpu(entry->qos)));
901 
902 		vport = fc_vport_create(ha->host, 0, &vid);
903 		if (!vport)
904 			qla_printk(KERN_INFO, ha, "NPIV-Config: Failed to "
905 			    "create vport [%02x]: wwpn=%llx wwnn=%llx.\n", cnt,
906 			    (unsigned long long)vid.port_name,
907 			    (unsigned long long)vid.node_name);
908 	}
909 done:
910 	kfree(data);
911 }
912 
913 static void
914 qla24xx_unprotect_flash(scsi_qla_host_t *ha)
915 {
916 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
917 
918 	/* Enable flash write. */
919 	WRT_REG_DWORD(&reg->ctrl_status,
920 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
921 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
922 
923 	if (!ha->fdt_wrt_disable)
924 		return;
925 
926 	/* Disable flash write-protection. */
927 	qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
928 	/* Some flash parts need an additional zero-write to clear bits.*/
929 	qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
930 }
931 
932 static void
933 qla24xx_protect_flash(scsi_qla_host_t *ha)
934 {
935 	uint32_t cnt;
936 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
937 
938 	if (!ha->fdt_wrt_disable)
939 		goto skip_wrt_protect;
940 
941 	/* Enable flash write-protection and wait for completion. */
942 	qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101),
943 	    ha->fdt_wrt_disable);
944 	for (cnt = 300; cnt &&
945 	    qla24xx_read_flash_dword(ha,
946 		    flash_conf_to_access_addr(0x005)) & BIT_0;
947 	    cnt--) {
948 		udelay(10);
949 	}
950 
951 skip_wrt_protect:
952 	/* Disable flash write. */
953 	WRT_REG_DWORD(&reg->ctrl_status,
954 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
955 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
956 }
957 
958 static int
959 qla24xx_write_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
960     uint32_t dwords)
961 {
962 	int ret;
963 	uint32_t liter, miter;
964 	uint32_t sec_mask, rest_addr;
965 	uint32_t fdata, findex;
966 	dma_addr_t optrom_dma;
967 	void *optrom = NULL;
968 	uint32_t *s, *d;
969 
970 	ret = QLA_SUCCESS;
971 
972 	/* Prepare burst-capable write on supported ISPs. */
973 	if (IS_QLA25XX(ha) && !(faddr & 0xfff) &&
974 	    dwords > OPTROM_BURST_DWORDS) {
975 		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
976 		    &optrom_dma, GFP_KERNEL);
977 		if (!optrom) {
978 			qla_printk(KERN_DEBUG, ha,
979 			    "Unable to allocate memory for optrom burst write "
980 			    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
981 		}
982 	}
983 
984 	rest_addr = (ha->fdt_block_size >> 2) - 1;
985 	sec_mask = 0x80000 - (ha->fdt_block_size >> 2);
986 
987 	qla24xx_unprotect_flash(ha);
988 
989 	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
990 		if (ha->fdt_odd_index) {
991 			findex = faddr << 2;
992 			fdata = findex & sec_mask;
993 		} else {
994 			findex = faddr;
995 			fdata = (findex & sec_mask) << 2;
996 		}
997 
998 		/* Are we at the beginning of a sector? */
999 		if ((findex & rest_addr) == 0) {
1000 			/* Do sector unprotect. */
1001 			if (ha->fdt_unprotect_sec_cmd)
1002 				qla24xx_write_flash_dword(ha,
1003 				    ha->fdt_unprotect_sec_cmd,
1004 				    (fdata & 0xff00) | ((fdata << 16) &
1005 				    0xff0000) | ((fdata >> 16) & 0xff));
1006 			ret = qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1007 			    (fdata & 0xff00) |((fdata << 16) &
1008 			    0xff0000) | ((fdata >> 16) & 0xff));
1009 			if (ret != QLA_SUCCESS) {
1010 				DEBUG9(printk("%s(%ld) Unable to flash "
1011 				    "sector: address=%x.\n", __func__,
1012 				    ha->host_no, faddr));
1013 				break;
1014 			}
1015 		}
1016 
1017 		/* Go with burst-write. */
1018 		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1019 			/* Copy data to DMA'ble buffer. */
1020 			for (miter = 0, s = optrom, d = dwptr;
1021 			    miter < OPTROM_BURST_DWORDS; miter++, s++, d++)
1022 				*s = cpu_to_le32(*d);
1023 
1024 			ret = qla2x00_load_ram(ha, optrom_dma,
1025 			    flash_data_to_access_addr(faddr),
1026 			    OPTROM_BURST_DWORDS);
1027 			if (ret != QLA_SUCCESS) {
1028 				qla_printk(KERN_WARNING, ha,
1029 				    "Unable to burst-write optrom segment "
1030 				    "(%x/%x/%llx).\n", ret,
1031 				    flash_data_to_access_addr(faddr),
1032 				    (unsigned long long)optrom_dma);
1033 				qla_printk(KERN_WARNING, ha,
1034 				    "Reverting to slow-write.\n");
1035 
1036 				dma_free_coherent(&ha->pdev->dev,
1037 				    OPTROM_BURST_SIZE, optrom, optrom_dma);
1038 				optrom = NULL;
1039 			} else {
1040 				liter += OPTROM_BURST_DWORDS - 1;
1041 				faddr += OPTROM_BURST_DWORDS - 1;
1042 				dwptr += OPTROM_BURST_DWORDS - 1;
1043 				continue;
1044 			}
1045 		}
1046 
1047 		ret = qla24xx_write_flash_dword(ha,
1048 		    flash_data_to_access_addr(faddr), cpu_to_le32(*dwptr));
1049 		if (ret != QLA_SUCCESS) {
1050 			DEBUG9(printk("%s(%ld) Unable to program flash "
1051 			    "address=%x data=%x.\n", __func__,
1052 			    ha->host_no, faddr, *dwptr));
1053 			break;
1054 		}
1055 
1056 		/* Do sector protect. */
1057 		if (ha->fdt_unprotect_sec_cmd &&
1058 		    ((faddr & rest_addr) == rest_addr))
1059 			qla24xx_write_flash_dword(ha,
1060 			    ha->fdt_protect_sec_cmd,
1061 			    (fdata & 0xff00) | ((fdata << 16) &
1062 			    0xff0000) | ((fdata >> 16) & 0xff));
1063 	}
1064 
1065 	qla24xx_protect_flash(ha);
1066 
1067 	if (optrom)
1068 		dma_free_coherent(&ha->pdev->dev,
1069 		    OPTROM_BURST_SIZE, optrom, optrom_dma);
1070 
1071 	return ret;
1072 }
1073 
1074 uint8_t *
1075 qla2x00_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
1076     uint32_t bytes)
1077 {
1078 	uint32_t i;
1079 	uint16_t *wptr;
1080 
1081 	/* Word reads to NVRAM via registers. */
1082 	wptr = (uint16_t *)buf;
1083 	qla2x00_lock_nvram_access(ha);
1084 	for (i = 0; i < bytes >> 1; i++, naddr++)
1085 		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1086 		    naddr));
1087 	qla2x00_unlock_nvram_access(ha);
1088 
1089 	return buf;
1090 }
1091 
1092 uint8_t *
1093 qla24xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
1094     uint32_t bytes)
1095 {
1096 	uint32_t i;
1097 	uint32_t *dwptr;
1098 
1099 	/* Dword reads to flash. */
1100 	dwptr = (uint32_t *)buf;
1101 	for (i = 0; i < bytes >> 2; i++, naddr++)
1102 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1103 		    nvram_data_to_access_addr(naddr)));
1104 
1105 	return buf;
1106 }
1107 
1108 int
1109 qla2x00_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
1110     uint32_t bytes)
1111 {
1112 	int ret, stat;
1113 	uint32_t i;
1114 	uint16_t *wptr;
1115 	unsigned long flags;
1116 
1117 	ret = QLA_SUCCESS;
1118 
1119 	spin_lock_irqsave(&ha->hardware_lock, flags);
1120 	qla2x00_lock_nvram_access(ha);
1121 
1122 	/* Disable NVRAM write-protection. */
1123 	stat = qla2x00_clear_nvram_protection(ha);
1124 
1125 	wptr = (uint16_t *)buf;
1126 	for (i = 0; i < bytes >> 1; i++, naddr++) {
1127 		qla2x00_write_nvram_word(ha, naddr,
1128 		    cpu_to_le16(*wptr));
1129 		wptr++;
1130 	}
1131 
1132 	/* Enable NVRAM write-protection. */
1133 	qla2x00_set_nvram_protection(ha, stat);
1134 
1135 	qla2x00_unlock_nvram_access(ha);
1136 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1137 
1138 	return ret;
1139 }
1140 
1141 int
1142 qla24xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
1143     uint32_t bytes)
1144 {
1145 	int ret;
1146 	uint32_t i;
1147 	uint32_t *dwptr;
1148 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1149 
1150 	ret = QLA_SUCCESS;
1151 
1152 	/* Enable flash write. */
1153 	WRT_REG_DWORD(&reg->ctrl_status,
1154 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1155 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1156 
1157 	/* Disable NVRAM write-protection. */
1158 	qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
1159 	    0);
1160 	qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
1161 	    0);
1162 
1163 	/* Dword writes to flash. */
1164 	dwptr = (uint32_t *)buf;
1165 	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1166 		ret = qla24xx_write_flash_dword(ha,
1167 		    nvram_data_to_access_addr(naddr),
1168 		    cpu_to_le32(*dwptr));
1169 		if (ret != QLA_SUCCESS) {
1170 			DEBUG9(printk("%s(%ld) Unable to program "
1171 			    "nvram address=%x data=%x.\n", __func__,
1172 			    ha->host_no, naddr, *dwptr));
1173 			break;
1174 		}
1175 	}
1176 
1177 	/* Enable NVRAM write-protection. */
1178 	qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
1179 	    0x8c);
1180 
1181 	/* Disable flash write. */
1182 	WRT_REG_DWORD(&reg->ctrl_status,
1183 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1184 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1185 
1186 	return ret;
1187 }
1188 
1189 uint8_t *
1190 qla25xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
1191     uint32_t bytes)
1192 {
1193 	uint32_t i;
1194 	uint32_t *dwptr;
1195 
1196 	/* Dword reads to flash. */
1197 	dwptr = (uint32_t *)buf;
1198 	for (i = 0; i < bytes >> 2; i++, naddr++)
1199 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1200 		    flash_data_to_access_addr(ha->flt_region_vpd_nvram |
1201 		    naddr)));
1202 
1203 	return buf;
1204 }
1205 
1206 int
1207 qla25xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
1208     uint32_t bytes)
1209 {
1210 #define RMW_BUFFER_SIZE	(64 * 1024)
1211 	uint8_t *dbuf;
1212 
1213 	dbuf = vmalloc(RMW_BUFFER_SIZE);
1214 	if (!dbuf)
1215 		return QLA_MEMORY_ALLOC_FAILED;
1216 	ha->isp_ops->read_optrom(ha, dbuf, ha->flt_region_vpd_nvram << 2,
1217 	    RMW_BUFFER_SIZE);
1218 	memcpy(dbuf + (naddr << 2), buf, bytes);
1219 	ha->isp_ops->write_optrom(ha, dbuf, ha->flt_region_vpd_nvram << 2,
1220 	    RMW_BUFFER_SIZE);
1221 	vfree(dbuf);
1222 
1223 	return QLA_SUCCESS;
1224 }
1225 
1226 static inline void
1227 qla2x00_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
1228 {
1229 	if (IS_QLA2322(ha)) {
1230 		/* Flip all colors. */
1231 		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1232 			/* Turn off. */
1233 			ha->beacon_color_state = 0;
1234 			*pflags = GPIO_LED_ALL_OFF;
1235 		} else {
1236 			/* Turn on. */
1237 			ha->beacon_color_state = QLA_LED_ALL_ON;
1238 			*pflags = GPIO_LED_RGA_ON;
1239 		}
1240 	} else {
1241 		/* Flip green led only. */
1242 		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1243 			/* Turn off. */
1244 			ha->beacon_color_state = 0;
1245 			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1246 		} else {
1247 			/* Turn on. */
1248 			ha->beacon_color_state = QLA_LED_GRN_ON;
1249 			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1250 		}
1251 	}
1252 }
1253 
1254 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1255 
1256 void
1257 qla2x00_beacon_blink(struct scsi_qla_host *ha)
1258 {
1259 	uint16_t gpio_enable;
1260 	uint16_t gpio_data;
1261 	uint16_t led_color = 0;
1262 	unsigned long flags;
1263 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1264 
1265 	spin_lock_irqsave(&ha->hardware_lock, flags);
1266 
1267 	/* Save the Original GPIOE. */
1268 	if (ha->pio_address) {
1269 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1270 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1271 	} else {
1272 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1273 		gpio_data = RD_REG_WORD(&reg->gpiod);
1274 	}
1275 
1276 	/* Set the modified gpio_enable values */
1277 	gpio_enable |= GPIO_LED_MASK;
1278 
1279 	if (ha->pio_address) {
1280 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1281 	} else {
1282 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1283 		RD_REG_WORD(&reg->gpioe);
1284 	}
1285 
1286 	qla2x00_flip_colors(ha, &led_color);
1287 
1288 	/* Clear out any previously set LED color. */
1289 	gpio_data &= ~GPIO_LED_MASK;
1290 
1291 	/* Set the new input LED color to GPIOD. */
1292 	gpio_data |= led_color;
1293 
1294 	/* Set the modified gpio_data values */
1295 	if (ha->pio_address) {
1296 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1297 	} else {
1298 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1299 		RD_REG_WORD(&reg->gpiod);
1300 	}
1301 
1302 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1303 }
1304 
1305 int
1306 qla2x00_beacon_on(struct scsi_qla_host *ha)
1307 {
1308 	uint16_t gpio_enable;
1309 	uint16_t gpio_data;
1310 	unsigned long flags;
1311 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1312 
1313 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1314 	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1315 
1316 	if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1317 		qla_printk(KERN_WARNING, ha,
1318 		    "Unable to update fw options (beacon on).\n");
1319 		return QLA_FUNCTION_FAILED;
1320 	}
1321 
1322 	/* Turn off LEDs. */
1323 	spin_lock_irqsave(&ha->hardware_lock, flags);
1324 	if (ha->pio_address) {
1325 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1326 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1327 	} else {
1328 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1329 		gpio_data = RD_REG_WORD(&reg->gpiod);
1330 	}
1331 	gpio_enable |= GPIO_LED_MASK;
1332 
1333 	/* Set the modified gpio_enable values. */
1334 	if (ha->pio_address) {
1335 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1336 	} else {
1337 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1338 		RD_REG_WORD(&reg->gpioe);
1339 	}
1340 
1341 	/* Clear out previously set LED colour. */
1342 	gpio_data &= ~GPIO_LED_MASK;
1343 	if (ha->pio_address) {
1344 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1345 	} else {
1346 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1347 		RD_REG_WORD(&reg->gpiod);
1348 	}
1349 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1350 
1351 	/*
1352 	 * Let the per HBA timer kick off the blinking process based on
1353 	 * the following flags. No need to do anything else now.
1354 	 */
1355 	ha->beacon_blink_led = 1;
1356 	ha->beacon_color_state = 0;
1357 
1358 	return QLA_SUCCESS;
1359 }
1360 
1361 int
1362 qla2x00_beacon_off(struct scsi_qla_host *ha)
1363 {
1364 	int rval = QLA_SUCCESS;
1365 
1366 	ha->beacon_blink_led = 0;
1367 
1368 	/* Set the on flag so when it gets flipped it will be off. */
1369 	if (IS_QLA2322(ha))
1370 		ha->beacon_color_state = QLA_LED_ALL_ON;
1371 	else
1372 		ha->beacon_color_state = QLA_LED_GRN_ON;
1373 
1374 	ha->isp_ops->beacon_blink(ha);	/* This turns green LED off */
1375 
1376 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1377 	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1378 
1379 	rval = qla2x00_set_fw_options(ha, ha->fw_options);
1380 	if (rval != QLA_SUCCESS)
1381 		qla_printk(KERN_WARNING, ha,
1382 		    "Unable to update fw options (beacon off).\n");
1383 	return rval;
1384 }
1385 
1386 
1387 static inline void
1388 qla24xx_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
1389 {
1390 	/* Flip all colors. */
1391 	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1392 		/* Turn off. */
1393 		ha->beacon_color_state = 0;
1394 		*pflags = 0;
1395 	} else {
1396 		/* Turn on. */
1397 		ha->beacon_color_state = QLA_LED_ALL_ON;
1398 		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1399 	}
1400 }
1401 
1402 void
1403 qla24xx_beacon_blink(struct scsi_qla_host *ha)
1404 {
1405 	uint16_t led_color = 0;
1406 	uint32_t gpio_data;
1407 	unsigned long flags;
1408 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1409 
1410 	/* Save the Original GPIOD. */
1411 	spin_lock_irqsave(&ha->hardware_lock, flags);
1412 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1413 
1414 	/* Enable the gpio_data reg for update. */
1415 	gpio_data |= GPDX_LED_UPDATE_MASK;
1416 
1417 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1418 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1419 
1420 	/* Set the color bits. */
1421 	qla24xx_flip_colors(ha, &led_color);
1422 
1423 	/* Clear out any previously set LED color. */
1424 	gpio_data &= ~GPDX_LED_COLOR_MASK;
1425 
1426 	/* Set the new input LED color to GPIOD. */
1427 	gpio_data |= led_color;
1428 
1429 	/* Set the modified gpio_data values. */
1430 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1431 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1432 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1433 }
1434 
1435 int
1436 qla24xx_beacon_on(struct scsi_qla_host *ha)
1437 {
1438 	uint32_t gpio_data;
1439 	unsigned long flags;
1440 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1441 
1442 	if (ha->beacon_blink_led == 0) {
1443 		/* Enable firmware for update */
1444 		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1445 
1446 		if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS)
1447 			return QLA_FUNCTION_FAILED;
1448 
1449 		if (qla2x00_get_fw_options(ha, ha->fw_options) !=
1450 		    QLA_SUCCESS) {
1451 			qla_printk(KERN_WARNING, ha,
1452 			    "Unable to update fw options (beacon on).\n");
1453 			return QLA_FUNCTION_FAILED;
1454 		}
1455 
1456 		spin_lock_irqsave(&ha->hardware_lock, flags);
1457 		gpio_data = RD_REG_DWORD(&reg->gpiod);
1458 
1459 		/* Enable the gpio_data reg for update. */
1460 		gpio_data |= GPDX_LED_UPDATE_MASK;
1461 		WRT_REG_DWORD(&reg->gpiod, gpio_data);
1462 		RD_REG_DWORD(&reg->gpiod);
1463 
1464 		spin_unlock_irqrestore(&ha->hardware_lock, flags);
1465 	}
1466 
1467 	/* So all colors blink together. */
1468 	ha->beacon_color_state = 0;
1469 
1470 	/* Let the per HBA timer kick off the blinking process. */
1471 	ha->beacon_blink_led = 1;
1472 
1473 	return QLA_SUCCESS;
1474 }
1475 
1476 int
1477 qla24xx_beacon_off(struct scsi_qla_host *ha)
1478 {
1479 	uint32_t gpio_data;
1480 	unsigned long flags;
1481 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1482 
1483 	ha->beacon_blink_led = 0;
1484 	ha->beacon_color_state = QLA_LED_ALL_ON;
1485 
1486 	ha->isp_ops->beacon_blink(ha);	/* Will flip to all off. */
1487 
1488 	/* Give control back to firmware. */
1489 	spin_lock_irqsave(&ha->hardware_lock, flags);
1490 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1491 
1492 	/* Disable the gpio_data reg for update. */
1493 	gpio_data &= ~GPDX_LED_UPDATE_MASK;
1494 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1495 	RD_REG_DWORD(&reg->gpiod);
1496 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1497 
1498 	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1499 
1500 	if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1501 		qla_printk(KERN_WARNING, ha,
1502 		    "Unable to update fw options (beacon off).\n");
1503 		return QLA_FUNCTION_FAILED;
1504 	}
1505 
1506 	if (qla2x00_get_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1507 		qla_printk(KERN_WARNING, ha,
1508 		    "Unable to get fw options (beacon off).\n");
1509 		return QLA_FUNCTION_FAILED;
1510 	}
1511 
1512 	return QLA_SUCCESS;
1513 }
1514 
1515 
1516 /*
1517  * Flash support routines
1518  */
1519 
1520 /**
1521  * qla2x00_flash_enable() - Setup flash for reading and writing.
1522  * @ha: HA context
1523  */
1524 static void
1525 qla2x00_flash_enable(scsi_qla_host_t *ha)
1526 {
1527 	uint16_t data;
1528 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1529 
1530 	data = RD_REG_WORD(&reg->ctrl_status);
1531 	data |= CSR_FLASH_ENABLE;
1532 	WRT_REG_WORD(&reg->ctrl_status, data);
1533 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1534 }
1535 
1536 /**
1537  * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1538  * @ha: HA context
1539  */
1540 static void
1541 qla2x00_flash_disable(scsi_qla_host_t *ha)
1542 {
1543 	uint16_t data;
1544 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1545 
1546 	data = RD_REG_WORD(&reg->ctrl_status);
1547 	data &= ~(CSR_FLASH_ENABLE);
1548 	WRT_REG_WORD(&reg->ctrl_status, data);
1549 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1550 }
1551 
1552 /**
1553  * qla2x00_read_flash_byte() - Reads a byte from flash
1554  * @ha: HA context
1555  * @addr: Address in flash to read
1556  *
1557  * A word is read from the chip, but, only the lower byte is valid.
1558  *
1559  * Returns the byte read from flash @addr.
1560  */
1561 static uint8_t
1562 qla2x00_read_flash_byte(scsi_qla_host_t *ha, uint32_t addr)
1563 {
1564 	uint16_t data;
1565 	uint16_t bank_select;
1566 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1567 
1568 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1569 
1570 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1571 		/* Specify 64K address range: */
1572 		/*  clear out Module Select and Flash Address bits [19:16]. */
1573 		bank_select &= ~0xf8;
1574 		bank_select |= addr >> 12 & 0xf0;
1575 		bank_select |= CSR_FLASH_64K_BANK;
1576 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1577 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1578 
1579 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1580 		data = RD_REG_WORD(&reg->flash_data);
1581 
1582 		return (uint8_t)data;
1583 	}
1584 
1585 	/* Setup bit 16 of flash address. */
1586 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1587 		bank_select |= CSR_FLASH_64K_BANK;
1588 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1589 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1590 	} else if (((addr & BIT_16) == 0) &&
1591 	    (bank_select & CSR_FLASH_64K_BANK)) {
1592 		bank_select &= ~(CSR_FLASH_64K_BANK);
1593 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1594 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1595 	}
1596 
1597 	/* Always perform IO mapped accesses to the FLASH registers. */
1598 	if (ha->pio_address) {
1599 		uint16_t data2;
1600 
1601 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1602 		do {
1603 			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1604 			barrier();
1605 			cpu_relax();
1606 			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1607 		} while (data != data2);
1608 	} else {
1609 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1610 		data = qla2x00_debounce_register(&reg->flash_data);
1611 	}
1612 
1613 	return (uint8_t)data;
1614 }
1615 
1616 /**
1617  * qla2x00_write_flash_byte() - Write a byte to flash
1618  * @ha: HA context
1619  * @addr: Address in flash to write
1620  * @data: Data to write
1621  */
1622 static void
1623 qla2x00_write_flash_byte(scsi_qla_host_t *ha, uint32_t addr, uint8_t data)
1624 {
1625 	uint16_t bank_select;
1626 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1627 
1628 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1629 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1630 		/* Specify 64K address range: */
1631 		/*  clear out Module Select and Flash Address bits [19:16]. */
1632 		bank_select &= ~0xf8;
1633 		bank_select |= addr >> 12 & 0xf0;
1634 		bank_select |= CSR_FLASH_64K_BANK;
1635 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1636 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1637 
1638 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1639 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1640 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1641 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1642 
1643 		return;
1644 	}
1645 
1646 	/* Setup bit 16 of flash address. */
1647 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1648 		bank_select |= CSR_FLASH_64K_BANK;
1649 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1650 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1651 	} else if (((addr & BIT_16) == 0) &&
1652 	    (bank_select & CSR_FLASH_64K_BANK)) {
1653 		bank_select &= ~(CSR_FLASH_64K_BANK);
1654 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1655 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1656 	}
1657 
1658 	/* Always perform IO mapped accesses to the FLASH registers. */
1659 	if (ha->pio_address) {
1660 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1661 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1662 	} else {
1663 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1664 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1665 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1666 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1667 	}
1668 }
1669 
1670 /**
1671  * qla2x00_poll_flash() - Polls flash for completion.
1672  * @ha: HA context
1673  * @addr: Address in flash to poll
1674  * @poll_data: Data to be polled
1675  * @man_id: Flash manufacturer ID
1676  * @flash_id: Flash ID
1677  *
1678  * This function polls the device until bit 7 of what is read matches data
1679  * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
1680  * out (a fatal error).  The flash book recommeds reading bit 7 again after
1681  * reading bit 5 as a 1.
1682  *
1683  * Returns 0 on success, else non-zero.
1684  */
1685 static int
1686 qla2x00_poll_flash(scsi_qla_host_t *ha, uint32_t addr, uint8_t poll_data,
1687     uint8_t man_id, uint8_t flash_id)
1688 {
1689 	int status;
1690 	uint8_t flash_data;
1691 	uint32_t cnt;
1692 
1693 	status = 1;
1694 
1695 	/* Wait for 30 seconds for command to finish. */
1696 	poll_data &= BIT_7;
1697 	for (cnt = 3000000; cnt; cnt--) {
1698 		flash_data = qla2x00_read_flash_byte(ha, addr);
1699 		if ((flash_data & BIT_7) == poll_data) {
1700 			status = 0;
1701 			break;
1702 		}
1703 
1704 		if (man_id != 0x40 && man_id != 0xda) {
1705 			if ((flash_data & BIT_5) && cnt > 2)
1706 				cnt = 2;
1707 		}
1708 		udelay(10);
1709 		barrier();
1710 		cond_resched();
1711 	}
1712 	return status;
1713 }
1714 
1715 /**
1716  * qla2x00_program_flash_address() - Programs a flash address
1717  * @ha: HA context
1718  * @addr: Address in flash to program
1719  * @data: Data to be written in flash
1720  * @man_id: Flash manufacturer ID
1721  * @flash_id: Flash ID
1722  *
1723  * Returns 0 on success, else non-zero.
1724  */
1725 static int
1726 qla2x00_program_flash_address(scsi_qla_host_t *ha, uint32_t addr, uint8_t data,
1727     uint8_t man_id, uint8_t flash_id)
1728 {
1729 	/* Write Program Command Sequence. */
1730 	if (IS_OEM_001(ha)) {
1731 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1732 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1733 		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1734 		qla2x00_write_flash_byte(ha, addr, data);
1735 	} else {
1736 		if (man_id == 0xda && flash_id == 0xc1) {
1737 			qla2x00_write_flash_byte(ha, addr, data);
1738 			if (addr & 0x7e)
1739 				return 0;
1740 		} else {
1741 			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1742 			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1743 			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1744 			qla2x00_write_flash_byte(ha, addr, data);
1745 		}
1746 	}
1747 
1748 	udelay(150);
1749 
1750 	/* Wait for write to complete. */
1751 	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1752 }
1753 
1754 /**
1755  * qla2x00_erase_flash() - Erase the flash.
1756  * @ha: HA context
1757  * @man_id: Flash manufacturer ID
1758  * @flash_id: Flash ID
1759  *
1760  * Returns 0 on success, else non-zero.
1761  */
1762 static int
1763 qla2x00_erase_flash(scsi_qla_host_t *ha, uint8_t man_id, uint8_t flash_id)
1764 {
1765 	/* Individual Sector Erase Command Sequence */
1766 	if (IS_OEM_001(ha)) {
1767 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1768 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1769 		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1770 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1771 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1772 		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1773 	} else {
1774 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1775 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1776 		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1777 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1778 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1779 		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1780 	}
1781 
1782 	udelay(150);
1783 
1784 	/* Wait for erase to complete. */
1785 	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1786 }
1787 
1788 /**
1789  * qla2x00_erase_flash_sector() - Erase a flash sector.
1790  * @ha: HA context
1791  * @addr: Flash sector to erase
1792  * @sec_mask: Sector address mask
1793  * @man_id: Flash manufacturer ID
1794  * @flash_id: Flash ID
1795  *
1796  * Returns 0 on success, else non-zero.
1797  */
1798 static int
1799 qla2x00_erase_flash_sector(scsi_qla_host_t *ha, uint32_t addr,
1800     uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1801 {
1802 	/* Individual Sector Erase Command Sequence */
1803 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1804 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1805 	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1806 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1807 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1808 	if (man_id == 0x1f && flash_id == 0x13)
1809 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
1810 	else
1811 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
1812 
1813 	udelay(150);
1814 
1815 	/* Wait for erase to complete. */
1816 	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
1817 }
1818 
1819 /**
1820  * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
1821  * @man_id: Flash manufacturer ID
1822  * @flash_id: Flash ID
1823  */
1824 static void
1825 qla2x00_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
1826     uint8_t *flash_id)
1827 {
1828 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1829 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1830 	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
1831 	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
1832 	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
1833 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1834 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1835 	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
1836 }
1837 
1838 static void
1839 qla2x00_read_flash_data(scsi_qla_host_t *ha, uint8_t *tmp_buf, uint32_t saddr,
1840         uint32_t length)
1841 {
1842 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1843 	uint32_t midpoint, ilength;
1844 	uint8_t data;
1845 
1846 	midpoint = length / 2;
1847 
1848 	WRT_REG_WORD(&reg->nvram, 0);
1849 	RD_REG_WORD(&reg->nvram);
1850 	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
1851 		if (ilength == midpoint) {
1852 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1853 			RD_REG_WORD(&reg->nvram);
1854 		}
1855 		data = qla2x00_read_flash_byte(ha, saddr);
1856 		if (saddr % 100)
1857 			udelay(10);
1858 		*tmp_buf = data;
1859 		cond_resched();
1860 	}
1861 }
1862 
1863 static inline void
1864 qla2x00_suspend_hba(struct scsi_qla_host *ha)
1865 {
1866 	int cnt;
1867 	unsigned long flags;
1868 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1869 
1870 	/* Suspend HBA. */
1871 	scsi_block_requests(ha->host);
1872 	ha->isp_ops->disable_intrs(ha);
1873 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1874 
1875 	/* Pause RISC. */
1876 	spin_lock_irqsave(&ha->hardware_lock, flags);
1877 	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
1878 	RD_REG_WORD(&reg->hccr);
1879 	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
1880 		for (cnt = 0; cnt < 30000; cnt++) {
1881 			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
1882 				break;
1883 			udelay(100);
1884 		}
1885 	} else {
1886 		udelay(10);
1887 	}
1888 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1889 }
1890 
1891 static inline void
1892 qla2x00_resume_hba(struct scsi_qla_host *ha)
1893 {
1894 	/* Resume HBA. */
1895 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1896 	set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
1897 	qla2xxx_wake_dpc(ha);
1898 	qla2x00_wait_for_hba_online(ha);
1899 	scsi_unblock_requests(ha->host);
1900 }
1901 
1902 uint8_t *
1903 qla2x00_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1904     uint32_t offset, uint32_t length)
1905 {
1906 	uint32_t addr, midpoint;
1907 	uint8_t *data;
1908 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1909 
1910 	/* Suspend HBA. */
1911 	qla2x00_suspend_hba(ha);
1912 
1913 	/* Go with read. */
1914 	midpoint = ha->optrom_size / 2;
1915 
1916 	qla2x00_flash_enable(ha);
1917 	WRT_REG_WORD(&reg->nvram, 0);
1918 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
1919 	for (addr = offset, data = buf; addr < length; addr++, data++) {
1920 		if (addr == midpoint) {
1921 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1922 			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
1923 		}
1924 
1925 		*data = qla2x00_read_flash_byte(ha, addr);
1926 	}
1927 	qla2x00_flash_disable(ha);
1928 
1929 	/* Resume HBA. */
1930 	qla2x00_resume_hba(ha);
1931 
1932 	return buf;
1933 }
1934 
1935 int
1936 qla2x00_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1937     uint32_t offset, uint32_t length)
1938 {
1939 
1940 	int rval;
1941 	uint8_t man_id, flash_id, sec_number, data;
1942 	uint16_t wd;
1943 	uint32_t addr, liter, sec_mask, rest_addr;
1944 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1945 
1946 	/* Suspend HBA. */
1947 	qla2x00_suspend_hba(ha);
1948 
1949 	rval = QLA_SUCCESS;
1950 	sec_number = 0;
1951 
1952 	/* Reset ISP chip. */
1953 	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
1954 	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
1955 
1956 	/* Go with write. */
1957 	qla2x00_flash_enable(ha);
1958 	do {	/* Loop once to provide quick error exit */
1959 		/* Structure of flash memory based on manufacturer */
1960 		if (IS_OEM_001(ha)) {
1961 			/* OEM variant with special flash part. */
1962 			man_id = flash_id = 0;
1963 			rest_addr = 0xffff;
1964 			sec_mask   = 0x10000;
1965 			goto update_flash;
1966 		}
1967 		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
1968 		switch (man_id) {
1969 		case 0x20: /* ST flash. */
1970 			if (flash_id == 0xd2 || flash_id == 0xe3) {
1971 				/*
1972 				 * ST m29w008at part - 64kb sector size with
1973 				 * 32kb,8kb,8kb,16kb sectors at memory address
1974 				 * 0xf0000.
1975 				 */
1976 				rest_addr = 0xffff;
1977 				sec_mask = 0x10000;
1978 				break;
1979 			}
1980 			/*
1981 			 * ST m29w010b part - 16kb sector size
1982 			 * Default to 16kb sectors
1983 			 */
1984 			rest_addr = 0x3fff;
1985 			sec_mask = 0x1c000;
1986 			break;
1987 		case 0x40: /* Mostel flash. */
1988 			/* Mostel v29c51001 part - 512 byte sector size. */
1989 			rest_addr = 0x1ff;
1990 			sec_mask = 0x1fe00;
1991 			break;
1992 		case 0xbf: /* SST flash. */
1993 			/* SST39sf10 part - 4kb sector size. */
1994 			rest_addr = 0xfff;
1995 			sec_mask = 0x1f000;
1996 			break;
1997 		case 0xda: /* Winbond flash. */
1998 			/* Winbond W29EE011 part - 256 byte sector size. */
1999 			rest_addr = 0x7f;
2000 			sec_mask = 0x1ff80;
2001 			break;
2002 		case 0xc2: /* Macronix flash. */
2003 			/* 64k sector size. */
2004 			if (flash_id == 0x38 || flash_id == 0x4f) {
2005 				rest_addr = 0xffff;
2006 				sec_mask = 0x10000;
2007 				break;
2008 			}
2009 			/* Fall through... */
2010 
2011 		case 0x1f: /* Atmel flash. */
2012 			/* 512k sector size. */
2013 			if (flash_id == 0x13) {
2014 				rest_addr = 0x7fffffff;
2015 				sec_mask =   0x80000000;
2016 				break;
2017 			}
2018 			/* Fall through... */
2019 
2020 		case 0x01: /* AMD flash. */
2021 			if (flash_id == 0x38 || flash_id == 0x40 ||
2022 			    flash_id == 0x4f) {
2023 				/* Am29LV081 part - 64kb sector size. */
2024 				/* Am29LV002BT part - 64kb sector size. */
2025 				rest_addr = 0xffff;
2026 				sec_mask = 0x10000;
2027 				break;
2028 			} else if (flash_id == 0x3e) {
2029 				/*
2030 				 * Am29LV008b part - 64kb sector size with
2031 				 * 32kb,8kb,8kb,16kb sector at memory address
2032 				 * h0xf0000.
2033 				 */
2034 				rest_addr = 0xffff;
2035 				sec_mask = 0x10000;
2036 				break;
2037 			} else if (flash_id == 0x20 || flash_id == 0x6e) {
2038 				/*
2039 				 * Am29LV010 part or AM29f010 - 16kb sector
2040 				 * size.
2041 				 */
2042 				rest_addr = 0x3fff;
2043 				sec_mask = 0x1c000;
2044 				break;
2045 			} else if (flash_id == 0x6d) {
2046 				/* Am29LV001 part - 8kb sector size. */
2047 				rest_addr = 0x1fff;
2048 				sec_mask = 0x1e000;
2049 				break;
2050 			}
2051 		default:
2052 			/* Default to 16 kb sector size. */
2053 			rest_addr = 0x3fff;
2054 			sec_mask = 0x1c000;
2055 			break;
2056 		}
2057 
2058 update_flash:
2059 		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2060 			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2061 				rval = QLA_FUNCTION_FAILED;
2062 				break;
2063 			}
2064 		}
2065 
2066 		for (addr = offset, liter = 0; liter < length; liter++,
2067 		    addr++) {
2068 			data = buf[liter];
2069 			/* Are we at the beginning of a sector? */
2070 			if ((addr & rest_addr) == 0) {
2071 				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2072 					if (addr >= 0x10000UL) {
2073 						if (((addr >> 12) & 0xf0) &&
2074 						    ((man_id == 0x01 &&
2075 							flash_id == 0x3e) ||
2076 						     (man_id == 0x20 &&
2077 							 flash_id == 0xd2))) {
2078 							sec_number++;
2079 							if (sec_number == 1) {
2080 								rest_addr =
2081 								    0x7fff;
2082 								sec_mask =
2083 								    0x18000;
2084 							} else if (
2085 							    sec_number == 2 ||
2086 							    sec_number == 3) {
2087 								rest_addr =
2088 								    0x1fff;
2089 								sec_mask =
2090 								    0x1e000;
2091 							} else if (
2092 							    sec_number == 4) {
2093 								rest_addr =
2094 								    0x3fff;
2095 								sec_mask =
2096 								    0x1c000;
2097 							}
2098 						}
2099 					}
2100 				} else if (addr == ha->optrom_size / 2) {
2101 					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2102 					RD_REG_WORD(&reg->nvram);
2103 				}
2104 
2105 				if (flash_id == 0xda && man_id == 0xc1) {
2106 					qla2x00_write_flash_byte(ha, 0x5555,
2107 					    0xaa);
2108 					qla2x00_write_flash_byte(ha, 0x2aaa,
2109 					    0x55);
2110 					qla2x00_write_flash_byte(ha, 0x5555,
2111 					    0xa0);
2112 				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2113 					/* Then erase it */
2114 					if (qla2x00_erase_flash_sector(ha,
2115 					    addr, sec_mask, man_id,
2116 					    flash_id)) {
2117 						rval = QLA_FUNCTION_FAILED;
2118 						break;
2119 					}
2120 					if (man_id == 0x01 && flash_id == 0x6d)
2121 						sec_number++;
2122 				}
2123 			}
2124 
2125 			if (man_id == 0x01 && flash_id == 0x6d) {
2126 				if (sec_number == 1 &&
2127 				    addr == (rest_addr - 1)) {
2128 					rest_addr = 0x0fff;
2129 					sec_mask   = 0x1f000;
2130 				} else if (sec_number == 3 && (addr & 0x7ffe)) {
2131 					rest_addr = 0x3fff;
2132 					sec_mask   = 0x1c000;
2133 				}
2134 			}
2135 
2136 			if (qla2x00_program_flash_address(ha, addr, data,
2137 			    man_id, flash_id)) {
2138 				rval = QLA_FUNCTION_FAILED;
2139 				break;
2140 			}
2141 			cond_resched();
2142 		}
2143 	} while (0);
2144 	qla2x00_flash_disable(ha);
2145 
2146 	/* Resume HBA. */
2147 	qla2x00_resume_hba(ha);
2148 
2149 	return rval;
2150 }
2151 
2152 uint8_t *
2153 qla24xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
2154     uint32_t offset, uint32_t length)
2155 {
2156 	/* Suspend HBA. */
2157 	scsi_block_requests(ha->host);
2158 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2159 
2160 	/* Go with read. */
2161 	qla24xx_read_flash_data(ha, (uint32_t *)buf, offset >> 2, length >> 2);
2162 
2163 	/* Resume HBA. */
2164 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2165 	scsi_unblock_requests(ha->host);
2166 
2167 	return buf;
2168 }
2169 
2170 int
2171 qla24xx_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
2172     uint32_t offset, uint32_t length)
2173 {
2174 	int rval;
2175 
2176 	/* Suspend HBA. */
2177 	scsi_block_requests(ha->host);
2178 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2179 
2180 	/* Go with write. */
2181 	rval = qla24xx_write_flash_data(ha, (uint32_t *)buf, offset >> 2,
2182 	    length >> 2);
2183 
2184 	/* Resume HBA -- RISC reset needed. */
2185 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2186 	set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
2187 	qla2xxx_wake_dpc(ha);
2188 	qla2x00_wait_for_hba_online(ha);
2189 	scsi_unblock_requests(ha->host);
2190 
2191 	return rval;
2192 }
2193 
2194 uint8_t *
2195 qla25xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
2196     uint32_t offset, uint32_t length)
2197 {
2198 	int rval;
2199 	dma_addr_t optrom_dma;
2200 	void *optrom;
2201 	uint8_t *pbuf;
2202 	uint32_t faddr, left, burst;
2203 
2204 	if (offset & 0xfff)
2205 		goto slow_read;
2206 	if (length < OPTROM_BURST_SIZE)
2207 		goto slow_read;
2208 
2209 	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2210 	    &optrom_dma, GFP_KERNEL);
2211 	if (!optrom) {
2212 		qla_printk(KERN_DEBUG, ha,
2213 		    "Unable to allocate memory for optrom burst read "
2214 		    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
2215 
2216 		goto slow_read;
2217 	}
2218 
2219 	pbuf = buf;
2220 	faddr = offset >> 2;
2221 	left = length >> 2;
2222 	burst = OPTROM_BURST_DWORDS;
2223 	while (left != 0) {
2224 		if (burst > left)
2225 			burst = left;
2226 
2227 		rval = qla2x00_dump_ram(ha, optrom_dma,
2228 		    flash_data_to_access_addr(faddr), burst);
2229 		if (rval) {
2230 			qla_printk(KERN_WARNING, ha,
2231 			    "Unable to burst-read optrom segment "
2232 			    "(%x/%x/%llx).\n", rval,
2233 			    flash_data_to_access_addr(faddr),
2234 			    (unsigned long long)optrom_dma);
2235 			qla_printk(KERN_WARNING, ha,
2236 			    "Reverting to slow-read.\n");
2237 
2238 			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2239 			    optrom, optrom_dma);
2240 			goto slow_read;
2241 		}
2242 
2243 		memcpy(pbuf, optrom, burst * 4);
2244 
2245 		left -= burst;
2246 		faddr += burst;
2247 		pbuf += burst * 4;
2248 	}
2249 
2250 	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2251 	    optrom_dma);
2252 
2253 	return buf;
2254 
2255 slow_read:
2256     return qla24xx_read_optrom_data(ha, buf, offset, length);
2257 }
2258 
2259 /**
2260  * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2261  * @ha: HA context
2262  * @pcids: Pointer to the FCODE PCI data structure
2263  *
2264  * The process of retrieving the FCODE version information is at best
2265  * described as interesting.
2266  *
2267  * Within the first 100h bytes of the image an ASCII string is present
2268  * which contains several pieces of information including the FCODE
2269  * version.  Unfortunately it seems the only reliable way to retrieve
2270  * the version is by scanning for another sentinel within the string,
2271  * the FCODE build date:
2272  *
2273  *	... 2.00.02 10/17/02 ...
2274  *
2275  * Returns QLA_SUCCESS on successful retrieval of version.
2276  */
2277 static void
2278 qla2x00_get_fcode_version(scsi_qla_host_t *ha, uint32_t pcids)
2279 {
2280 	int ret = QLA_FUNCTION_FAILED;
2281 	uint32_t istart, iend, iter, vend;
2282 	uint8_t do_next, rbyte, *vbyte;
2283 
2284 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2285 
2286 	/* Skip the PCI data structure. */
2287 	istart = pcids +
2288 	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2289 		qla2x00_read_flash_byte(ha, pcids + 0x0A));
2290 	iend = istart + 0x100;
2291 	do {
2292 		/* Scan for the sentinel date string...eeewww. */
2293 		do_next = 0;
2294 		iter = istart;
2295 		while ((iter < iend) && !do_next) {
2296 			iter++;
2297 			if (qla2x00_read_flash_byte(ha, iter) == '/') {
2298 				if (qla2x00_read_flash_byte(ha, iter + 2) ==
2299 				    '/')
2300 					do_next++;
2301 				else if (qla2x00_read_flash_byte(ha,
2302 				    iter + 3) == '/')
2303 					do_next++;
2304 			}
2305 		}
2306 		if (!do_next)
2307 			break;
2308 
2309 		/* Backtrack to previous ' ' (space). */
2310 		do_next = 0;
2311 		while ((iter > istart) && !do_next) {
2312 			iter--;
2313 			if (qla2x00_read_flash_byte(ha, iter) == ' ')
2314 				do_next++;
2315 		}
2316 		if (!do_next)
2317 			break;
2318 
2319 		/*
2320 		 * Mark end of version tag, and find previous ' ' (space) or
2321 		 * string length (recent FCODE images -- major hack ahead!!!).
2322 		 */
2323 		vend = iter - 1;
2324 		do_next = 0;
2325 		while ((iter > istart) && !do_next) {
2326 			iter--;
2327 			rbyte = qla2x00_read_flash_byte(ha, iter);
2328 			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2329 				do_next++;
2330 		}
2331 		if (!do_next)
2332 			break;
2333 
2334 		/* Mark beginning of version tag, and copy data. */
2335 		iter++;
2336 		if ((vend - iter) &&
2337 		    ((vend - iter) < sizeof(ha->fcode_revision))) {
2338 			vbyte = ha->fcode_revision;
2339 			while (iter <= vend) {
2340 				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
2341 				iter++;
2342 			}
2343 			ret = QLA_SUCCESS;
2344 		}
2345 	} while (0);
2346 
2347 	if (ret != QLA_SUCCESS)
2348 		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2349 }
2350 
2351 int
2352 qla2x00_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
2353 {
2354 	int ret = QLA_SUCCESS;
2355 	uint8_t code_type, last_image;
2356 	uint32_t pcihdr, pcids;
2357 	uint8_t *dbyte;
2358 	uint16_t *dcode;
2359 
2360 	if (!ha->pio_address || !mbuf)
2361 		return QLA_FUNCTION_FAILED;
2362 
2363 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2364 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2365 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2366 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2367 
2368 	qla2x00_flash_enable(ha);
2369 
2370 	/* Begin with first PCI expansion ROM header. */
2371 	pcihdr = 0;
2372 	last_image = 1;
2373 	do {
2374 		/* Verify PCI expansion ROM header. */
2375 		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2376 		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2377 			/* No signature */
2378 			DEBUG2(printk("scsi(%ld): No matching ROM "
2379 			    "signature.\n", ha->host_no));
2380 			ret = QLA_FUNCTION_FAILED;
2381 			break;
2382 		}
2383 
2384 		/* Locate PCI data structure. */
2385 		pcids = pcihdr +
2386 		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2387 			qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2388 
2389 		/* Validate signature of PCI data structure. */
2390 		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2391 		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2392 		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2393 		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2394 			/* Incorrect header. */
2395 			DEBUG2(printk("%s(): PCI data struct not found "
2396 			    "pcir_adr=%x.\n", __func__, pcids));
2397 			ret = QLA_FUNCTION_FAILED;
2398 			break;
2399 		}
2400 
2401 		/* Read version */
2402 		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2403 		switch (code_type) {
2404 		case ROM_CODE_TYPE_BIOS:
2405 			/* Intel x86, PC-AT compatible. */
2406 			ha->bios_revision[0] =
2407 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2408 			ha->bios_revision[1] =
2409 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2410 			DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
2411 			    ha->bios_revision[1], ha->bios_revision[0]));
2412 			break;
2413 		case ROM_CODE_TYPE_FCODE:
2414 			/* Open Firmware standard for PCI (FCode). */
2415 			/* Eeeewww... */
2416 			qla2x00_get_fcode_version(ha, pcids);
2417 			break;
2418 		case ROM_CODE_TYPE_EFI:
2419 			/* Extensible Firmware Interface (EFI). */
2420 			ha->efi_revision[0] =
2421 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2422 			ha->efi_revision[1] =
2423 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2424 			DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
2425 			    ha->efi_revision[1], ha->efi_revision[0]));
2426 			break;
2427 		default:
2428 			DEBUG2(printk("%s(): Unrecognized code type %x at "
2429 			    "pcids %x.\n", __func__, code_type, pcids));
2430 			break;
2431 		}
2432 
2433 		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2434 
2435 		/* Locate next PCI expansion ROM. */
2436 		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2437 		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2438 	} while (!last_image);
2439 
2440 	if (IS_QLA2322(ha)) {
2441 		/* Read firmware image information. */
2442 		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2443 		dbyte = mbuf;
2444 		memset(dbyte, 0, 8);
2445 		dcode = (uint16_t *)dbyte;
2446 
2447 		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2448 		    8);
2449 		DEBUG3(printk("%s(%ld): dumping fw ver from flash:\n",
2450 		    __func__, ha->host_no));
2451 		DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
2452 
2453 		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2454 		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2455 		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2456 		    dcode[3] == 0)) {
2457 			DEBUG2(printk("%s(): Unrecognized fw revision at "
2458 			    "%x.\n", __func__, ha->flt_region_fw * 4));
2459 		} else {
2460 			/* values are in big endian */
2461 			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2462 			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2463 			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2464 		}
2465 	}
2466 
2467 	qla2x00_flash_disable(ha);
2468 
2469 	return ret;
2470 }
2471 
2472 int
2473 qla24xx_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
2474 {
2475 	int ret = QLA_SUCCESS;
2476 	uint32_t pcihdr, pcids;
2477 	uint32_t *dcode;
2478 	uint8_t *bcode;
2479 	uint8_t code_type, last_image;
2480 	int i;
2481 
2482 	if (!mbuf)
2483 		return QLA_FUNCTION_FAILED;
2484 
2485 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2486 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2487 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2488 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2489 
2490 	dcode = mbuf;
2491 
2492 	/* Begin with first PCI expansion ROM header. */
2493 	pcihdr = ha->flt_region_boot;
2494 	last_image = 1;
2495 	do {
2496 		/* Verify PCI expansion ROM header. */
2497 		qla24xx_read_flash_data(ha, dcode, pcihdr >> 2, 0x20);
2498 		bcode = mbuf + (pcihdr % 4);
2499 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2500 			/* No signature */
2501 			DEBUG2(printk("scsi(%ld): No matching ROM "
2502 			    "signature.\n", ha->host_no));
2503 			ret = QLA_FUNCTION_FAILED;
2504 			break;
2505 		}
2506 
2507 		/* Locate PCI data structure. */
2508 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2509 
2510 		qla24xx_read_flash_data(ha, dcode, pcids >> 2, 0x20);
2511 		bcode = mbuf + (pcihdr % 4);
2512 
2513 		/* Validate signature of PCI data structure. */
2514 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2515 		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2516 			/* Incorrect header. */
2517 			DEBUG2(printk("%s(): PCI data struct not found "
2518 			    "pcir_adr=%x.\n", __func__, pcids));
2519 			ret = QLA_FUNCTION_FAILED;
2520 			break;
2521 		}
2522 
2523 		/* Read version */
2524 		code_type = bcode[0x14];
2525 		switch (code_type) {
2526 		case ROM_CODE_TYPE_BIOS:
2527 			/* Intel x86, PC-AT compatible. */
2528 			ha->bios_revision[0] = bcode[0x12];
2529 			ha->bios_revision[1] = bcode[0x13];
2530 			DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
2531 			    ha->bios_revision[1], ha->bios_revision[0]));
2532 			break;
2533 		case ROM_CODE_TYPE_FCODE:
2534 			/* Open Firmware standard for PCI (FCode). */
2535 			ha->fcode_revision[0] = bcode[0x12];
2536 			ha->fcode_revision[1] = bcode[0x13];
2537 			DEBUG3(printk("%s(): read FCODE %d.%d.\n", __func__,
2538 			    ha->fcode_revision[1], ha->fcode_revision[0]));
2539 			break;
2540 		case ROM_CODE_TYPE_EFI:
2541 			/* Extensible Firmware Interface (EFI). */
2542 			ha->efi_revision[0] = bcode[0x12];
2543 			ha->efi_revision[1] = bcode[0x13];
2544 			DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
2545 			    ha->efi_revision[1], ha->efi_revision[0]));
2546 			break;
2547 		default:
2548 			DEBUG2(printk("%s(): Unrecognized code type %x at "
2549 			    "pcids %x.\n", __func__, code_type, pcids));
2550 			break;
2551 		}
2552 
2553 		last_image = bcode[0x15] & BIT_7;
2554 
2555 		/* Locate next PCI expansion ROM. */
2556 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2557 	} while (!last_image);
2558 
2559 	/* Read firmware image information. */
2560 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2561 	dcode = mbuf;
2562 
2563 	qla24xx_read_flash_data(ha, dcode, ha->flt_region_fw + 4, 4);
2564 	for (i = 0; i < 4; i++)
2565 		dcode[i] = be32_to_cpu(dcode[i]);
2566 
2567 	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2568 	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2569 	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2570 	    dcode[3] == 0)) {
2571 		DEBUG2(printk("%s(): Unrecognized fw version at %x.\n",
2572 		    __func__, ha->flt_region_fw));
2573 	} else {
2574 		ha->fw_revision[0] = dcode[0];
2575 		ha->fw_revision[1] = dcode[1];
2576 		ha->fw_revision[2] = dcode[2];
2577 		ha->fw_revision[3] = dcode[3];
2578 	}
2579 
2580 	return ret;
2581 }
2582 
2583 static int
2584 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
2585 {
2586 	if (pos >= end || *pos != 0x82)
2587 		return 0;
2588 
2589 	pos += 3 + pos[1];
2590 	if (pos >= end || *pos != 0x90)
2591 		return 0;
2592 
2593 	pos += 3 + pos[1];
2594 	if (pos >= end || *pos != 0x78)
2595 		return 0;
2596 
2597 	return 1;
2598 }
2599 
2600 int
2601 qla2xxx_get_vpd_field(scsi_qla_host_t *ha, char *key, char *str, size_t size)
2602 {
2603 	uint8_t *pos = ha->vpd;
2604 	uint8_t *end = pos + ha->vpd_size;
2605 	int len = 0;
2606 
2607 	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
2608 		return 0;
2609 
2610 	while (pos < end && *pos != 0x78) {
2611 		len = (*pos == 0x82) ? pos[1] : pos[2];
2612 
2613 		if (!strncmp(pos, key, strlen(key)))
2614 			break;
2615 
2616 		if (*pos != 0x90 && *pos != 0x91)
2617 			pos += len;
2618 
2619 		pos += 3;
2620 	}
2621 
2622 	if (pos < end - len && *pos != 0x78)
2623 		return snprintf(str, size, "%.*s", len, pos + 3);
2624 
2625 	return 0;
2626 }
2627 
2628 static int
2629 qla2xxx_hw_event_store(scsi_qla_host_t *ha, uint32_t *fdata)
2630 {
2631 	uint32_t d[2], faddr;
2632 
2633 	/* Locate first empty entry. */
2634 	for (;;) {
2635 		if (ha->hw_event_ptr >=
2636 		    ha->flt_region_hw_event + FA_HW_EVENT_SIZE) {
2637 			DEBUG2(qla_printk(KERN_WARNING, ha,
2638 			    "HW event -- Log Full!\n"));
2639 			return QLA_MEMORY_ALLOC_FAILED;
2640 		}
2641 
2642 		qla24xx_read_flash_data(ha, d, ha->hw_event_ptr, 2);
2643 		faddr = flash_data_to_access_addr(ha->hw_event_ptr);
2644 		ha->hw_event_ptr += FA_HW_EVENT_ENTRY_SIZE;
2645 		if (d[0] == __constant_cpu_to_le32(0xffffffff) &&
2646 		    d[1] == __constant_cpu_to_le32(0xffffffff)) {
2647 			qla24xx_unprotect_flash(ha);
2648 
2649 			qla24xx_write_flash_dword(ha, faddr++,
2650 			    cpu_to_le32(jiffies));
2651 			qla24xx_write_flash_dword(ha, faddr++, 0);
2652 			qla24xx_write_flash_dword(ha, faddr++, *fdata++);
2653 			qla24xx_write_flash_dword(ha, faddr++, *fdata);
2654 
2655 			qla24xx_protect_flash(ha);
2656 			break;
2657 		}
2658 	}
2659 	return QLA_SUCCESS;
2660 }
2661 
2662 int
2663 qla2xxx_hw_event_log(scsi_qla_host_t *ha, uint16_t code, uint16_t d1,
2664     uint16_t d2, uint16_t d3)
2665 {
2666 #define QMARK(a, b, c, d) \
2667     cpu_to_le32(LSB(a) << 24 | LSB(b) << 16 | LSB(c) << 8 | LSB(d))
2668 
2669 	int rval;
2670 	uint32_t marker[2], fdata[4];
2671 
2672 	if (ha->flt_region_hw_event == 0)
2673 		return QLA_FUNCTION_FAILED;
2674 
2675 	DEBUG2(qla_printk(KERN_WARNING, ha,
2676 	    "HW event -- code=%x, d1=%x, d2=%x, d3=%x.\n", code, d1, d2, d3));
2677 
2678 	/* If marker not already found, locate or write.  */
2679 	if (!ha->flags.hw_event_marker_found) {
2680 		/* Create marker. */
2681 		marker[0] = QMARK('L', ha->fw_major_version,
2682 		    ha->fw_minor_version, ha->fw_subminor_version);
2683 		marker[1] = QMARK(QLA_DRIVER_MAJOR_VER, QLA_DRIVER_MINOR_VER,
2684 		    QLA_DRIVER_PATCH_VER, QLA_DRIVER_BETA_VER);
2685 
2686 		/* Locate marker. */
2687 		ha->hw_event_ptr = ha->flt_region_hw_event;
2688 		for (;;) {
2689 			qla24xx_read_flash_data(ha, fdata, ha->hw_event_ptr,
2690 			    4);
2691 			if (fdata[0] == __constant_cpu_to_le32(0xffffffff) &&
2692 			    fdata[1] == __constant_cpu_to_le32(0xffffffff))
2693 				break;
2694 			ha->hw_event_ptr += FA_HW_EVENT_ENTRY_SIZE;
2695 			if (ha->hw_event_ptr >=
2696 			    ha->flt_region_hw_event + FA_HW_EVENT_SIZE) {
2697 				DEBUG2(qla_printk(KERN_WARNING, ha,
2698 				    "HW event -- Log Full!\n"));
2699 				return QLA_MEMORY_ALLOC_FAILED;
2700 			}
2701 			if (fdata[2] == marker[0] && fdata[3] == marker[1]) {
2702 				ha->flags.hw_event_marker_found = 1;
2703 				break;
2704 			}
2705 		}
2706 		/* No marker, write it. */
2707 		if (!ha->flags.hw_event_marker_found) {
2708 			rval = qla2xxx_hw_event_store(ha, marker);
2709 			if (rval != QLA_SUCCESS) {
2710 				DEBUG2(qla_printk(KERN_WARNING, ha,
2711 				    "HW event -- Failed marker write=%x.!\n",
2712 				    rval));
2713 				return rval;
2714 			}
2715 			ha->flags.hw_event_marker_found = 1;
2716 		}
2717 	}
2718 
2719 	/* Store error.  */
2720 	fdata[0] = cpu_to_le32(code << 16 | d1);
2721 	fdata[1] = cpu_to_le32(d2 << 16 | d3);
2722 	rval = qla2xxx_hw_event_store(ha, fdata);
2723 	if (rval != QLA_SUCCESS) {
2724 		DEBUG2(qla_printk(KERN_WARNING, ha,
2725 		    "HW event -- Failed error write=%x.!\n",
2726 		    rval));
2727 	}
2728 
2729 	return rval;
2730 }
2731