xref: /openbmc/linux/drivers/scsi/qla2xxx/qla_sup.c (revision 9344dade)
1 /*
2  * QLogic Fibre Channel HBA Driver
3  * Copyright (c)  2003-2013 QLogic Corporation
4  *
5  * See LICENSE.qla2xxx for copyright and licensing details.
6  */
7 #include "qla_def.h"
8 
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/vmalloc.h>
12 #include <asm/uaccess.h>
13 
14 /*
15  * NVRAM support routines
16  */
17 
18 /**
19  * qla2x00_lock_nvram_access() -
20  * @ha: HA context
21  */
22 static void
23 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
24 {
25 	uint16_t data;
26 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
27 
28 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
29 		data = RD_REG_WORD(&reg->nvram);
30 		while (data & NVR_BUSY) {
31 			udelay(100);
32 			data = RD_REG_WORD(&reg->nvram);
33 		}
34 
35 		/* Lock resource */
36 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
37 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
38 		udelay(5);
39 		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
40 		while ((data & BIT_0) == 0) {
41 			/* Lock failed */
42 			udelay(100);
43 			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
44 			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
45 			udelay(5);
46 			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
47 		}
48 	}
49 }
50 
51 /**
52  * qla2x00_unlock_nvram_access() -
53  * @ha: HA context
54  */
55 static void
56 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
57 {
58 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
59 
60 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
61 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
62 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
63 	}
64 }
65 
66 /**
67  * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
68  * @ha: HA context
69  * @data: Serial interface selector
70  */
71 static void
72 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
73 {
74 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
75 
76 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
77 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
78 	NVRAM_DELAY();
79 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
80 	    NVR_WRT_ENABLE);
81 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
82 	NVRAM_DELAY();
83 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
84 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
85 	NVRAM_DELAY();
86 }
87 
88 /**
89  * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
90  *	NVRAM.
91  * @ha: HA context
92  * @nv_cmd: NVRAM command
93  *
94  * Bit definitions for NVRAM command:
95  *
96  *	Bit 26     = start bit
97  *	Bit 25, 24 = opcode
98  *	Bit 23-16  = address
99  *	Bit 15-0   = write data
100  *
101  * Returns the word read from nvram @addr.
102  */
103 static uint16_t
104 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
105 {
106 	uint8_t		cnt;
107 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
108 	uint16_t	data = 0;
109 	uint16_t	reg_data;
110 
111 	/* Send command to NVRAM. */
112 	nv_cmd <<= 5;
113 	for (cnt = 0; cnt < 11; cnt++) {
114 		if (nv_cmd & BIT_31)
115 			qla2x00_nv_write(ha, NVR_DATA_OUT);
116 		else
117 			qla2x00_nv_write(ha, 0);
118 		nv_cmd <<= 1;
119 	}
120 
121 	/* Read data from NVRAM. */
122 	for (cnt = 0; cnt < 16; cnt++) {
123 		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
124 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
125 		NVRAM_DELAY();
126 		data <<= 1;
127 		reg_data = RD_REG_WORD(&reg->nvram);
128 		if (reg_data & NVR_DATA_IN)
129 			data |= BIT_0;
130 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
131 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
132 		NVRAM_DELAY();
133 	}
134 
135 	/* Deselect chip. */
136 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
137 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
138 	NVRAM_DELAY();
139 
140 	return data;
141 }
142 
143 
144 /**
145  * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
146  *	request routine to get the word from NVRAM.
147  * @ha: HA context
148  * @addr: Address in NVRAM to read
149  *
150  * Returns the word read from nvram @addr.
151  */
152 static uint16_t
153 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
154 {
155 	uint16_t	data;
156 	uint32_t	nv_cmd;
157 
158 	nv_cmd = addr << 16;
159 	nv_cmd |= NV_READ_OP;
160 	data = qla2x00_nvram_request(ha, nv_cmd);
161 
162 	return (data);
163 }
164 
165 /**
166  * qla2x00_nv_deselect() - Deselect NVRAM operations.
167  * @ha: HA context
168  */
169 static void
170 qla2x00_nv_deselect(struct qla_hw_data *ha)
171 {
172 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
173 
174 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
175 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
176 	NVRAM_DELAY();
177 }
178 
179 /**
180  * qla2x00_write_nvram_word() - Write NVRAM data.
181  * @ha: HA context
182  * @addr: Address in NVRAM to write
183  * @data: word to program
184  */
185 static void
186 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
187 {
188 	int count;
189 	uint16_t word;
190 	uint32_t nv_cmd, wait_cnt;
191 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
192 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
193 
194 	qla2x00_nv_write(ha, NVR_DATA_OUT);
195 	qla2x00_nv_write(ha, 0);
196 	qla2x00_nv_write(ha, 0);
197 
198 	for (word = 0; word < 8; word++)
199 		qla2x00_nv_write(ha, NVR_DATA_OUT);
200 
201 	qla2x00_nv_deselect(ha);
202 
203 	/* Write data */
204 	nv_cmd = (addr << 16) | NV_WRITE_OP;
205 	nv_cmd |= data;
206 	nv_cmd <<= 5;
207 	for (count = 0; count < 27; count++) {
208 		if (nv_cmd & BIT_31)
209 			qla2x00_nv_write(ha, NVR_DATA_OUT);
210 		else
211 			qla2x00_nv_write(ha, 0);
212 
213 		nv_cmd <<= 1;
214 	}
215 
216 	qla2x00_nv_deselect(ha);
217 
218 	/* Wait for NVRAM to become ready */
219 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
220 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
221 	wait_cnt = NVR_WAIT_CNT;
222 	do {
223 		if (!--wait_cnt) {
224 			ql_dbg(ql_dbg_user, vha, 0x708d,
225 			    "NVRAM didn't go ready...\n");
226 			break;
227 		}
228 		NVRAM_DELAY();
229 		word = RD_REG_WORD(&reg->nvram);
230 	} while ((word & NVR_DATA_IN) == 0);
231 
232 	qla2x00_nv_deselect(ha);
233 
234 	/* Disable writes */
235 	qla2x00_nv_write(ha, NVR_DATA_OUT);
236 	for (count = 0; count < 10; count++)
237 		qla2x00_nv_write(ha, 0);
238 
239 	qla2x00_nv_deselect(ha);
240 }
241 
242 static int
243 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
244 	uint16_t data, uint32_t tmo)
245 {
246 	int ret, count;
247 	uint16_t word;
248 	uint32_t nv_cmd;
249 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
250 
251 	ret = QLA_SUCCESS;
252 
253 	qla2x00_nv_write(ha, NVR_DATA_OUT);
254 	qla2x00_nv_write(ha, 0);
255 	qla2x00_nv_write(ha, 0);
256 
257 	for (word = 0; word < 8; word++)
258 		qla2x00_nv_write(ha, NVR_DATA_OUT);
259 
260 	qla2x00_nv_deselect(ha);
261 
262 	/* Write data */
263 	nv_cmd = (addr << 16) | NV_WRITE_OP;
264 	nv_cmd |= data;
265 	nv_cmd <<= 5;
266 	for (count = 0; count < 27; count++) {
267 		if (nv_cmd & BIT_31)
268 			qla2x00_nv_write(ha, NVR_DATA_OUT);
269 		else
270 			qla2x00_nv_write(ha, 0);
271 
272 		nv_cmd <<= 1;
273 	}
274 
275 	qla2x00_nv_deselect(ha);
276 
277 	/* Wait for NVRAM to become ready */
278 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
279 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
280 	do {
281 		NVRAM_DELAY();
282 		word = RD_REG_WORD(&reg->nvram);
283 		if (!--tmo) {
284 			ret = QLA_FUNCTION_FAILED;
285 			break;
286 		}
287 	} while ((word & NVR_DATA_IN) == 0);
288 
289 	qla2x00_nv_deselect(ha);
290 
291 	/* Disable writes */
292 	qla2x00_nv_write(ha, NVR_DATA_OUT);
293 	for (count = 0; count < 10; count++)
294 		qla2x00_nv_write(ha, 0);
295 
296 	qla2x00_nv_deselect(ha);
297 
298 	return ret;
299 }
300 
301 /**
302  * qla2x00_clear_nvram_protection() -
303  * @ha: HA context
304  */
305 static int
306 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
307 {
308 	int ret, stat;
309 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
310 	uint32_t word, wait_cnt;
311 	uint16_t wprot, wprot_old;
312 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
313 
314 	/* Clear NVRAM write protection. */
315 	ret = QLA_FUNCTION_FAILED;
316 
317 	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319 	    __constant_cpu_to_le16(0x1234), 100000);
320 	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
321 	if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 		/* Write enable. */
323 		qla2x00_nv_write(ha, NVR_DATA_OUT);
324 		qla2x00_nv_write(ha, 0);
325 		qla2x00_nv_write(ha, 0);
326 		for (word = 0; word < 8; word++)
327 			qla2x00_nv_write(ha, NVR_DATA_OUT);
328 
329 		qla2x00_nv_deselect(ha);
330 
331 		/* Enable protection register. */
332 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
333 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
334 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
335 		for (word = 0; word < 8; word++)
336 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
337 
338 		qla2x00_nv_deselect(ha);
339 
340 		/* Clear protection register (ffff is cleared). */
341 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
343 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
344 		for (word = 0; word < 8; word++)
345 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
346 
347 		qla2x00_nv_deselect(ha);
348 
349 		/* Wait for NVRAM to become ready. */
350 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
352 		wait_cnt = NVR_WAIT_CNT;
353 		do {
354 			if (!--wait_cnt) {
355 				ql_dbg(ql_dbg_user, vha, 0x708e,
356 				    "NVRAM didn't go ready...\n");
357 				break;
358 			}
359 			NVRAM_DELAY();
360 			word = RD_REG_WORD(&reg->nvram);
361 		} while ((word & NVR_DATA_IN) == 0);
362 
363 		if (wait_cnt)
364 			ret = QLA_SUCCESS;
365 	} else
366 		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
367 
368 	return ret;
369 }
370 
371 static void
372 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
373 {
374 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
375 	uint32_t word, wait_cnt;
376 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
377 
378 	if (stat != QLA_SUCCESS)
379 		return;
380 
381 	/* Set NVRAM write protection. */
382 	/* Write enable. */
383 	qla2x00_nv_write(ha, NVR_DATA_OUT);
384 	qla2x00_nv_write(ha, 0);
385 	qla2x00_nv_write(ha, 0);
386 	for (word = 0; word < 8; word++)
387 		qla2x00_nv_write(ha, NVR_DATA_OUT);
388 
389 	qla2x00_nv_deselect(ha);
390 
391 	/* Enable protection register. */
392 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
393 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
394 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
395 	for (word = 0; word < 8; word++)
396 		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
397 
398 	qla2x00_nv_deselect(ha);
399 
400 	/* Enable protection register. */
401 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
402 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
403 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
404 	for (word = 0; word < 8; word++)
405 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
406 
407 	qla2x00_nv_deselect(ha);
408 
409 	/* Wait for NVRAM to become ready. */
410 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
412 	wait_cnt = NVR_WAIT_CNT;
413 	do {
414 		if (!--wait_cnt) {
415 			ql_dbg(ql_dbg_user, vha, 0x708f,
416 			    "NVRAM didn't go ready...\n");
417 			break;
418 		}
419 		NVRAM_DELAY();
420 		word = RD_REG_WORD(&reg->nvram);
421 	} while ((word & NVR_DATA_IN) == 0);
422 }
423 
424 
425 /*****************************************************************************/
426 /* Flash Manipulation Routines                                               */
427 /*****************************************************************************/
428 
429 static inline uint32_t
430 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
431 {
432 	return ha->flash_conf_off | faddr;
433 }
434 
435 static inline uint32_t
436 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
437 {
438 	return ha->flash_data_off | faddr;
439 }
440 
441 static inline uint32_t
442 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
443 {
444 	return ha->nvram_conf_off | naddr;
445 }
446 
447 static inline uint32_t
448 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
449 {
450 	return ha->nvram_data_off | naddr;
451 }
452 
453 static uint32_t
454 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
455 {
456 	int rval;
457 	uint32_t cnt, data;
458 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
459 
460 	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
461 	/* Wait for READ cycle to complete. */
462 	rval = QLA_SUCCESS;
463 	for (cnt = 3000;
464 	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
465 	    rval == QLA_SUCCESS; cnt--) {
466 		if (cnt)
467 			udelay(10);
468 		else
469 			rval = QLA_FUNCTION_TIMEOUT;
470 		cond_resched();
471 	}
472 
473 	/* TODO: What happens if we time out? */
474 	data = 0xDEADDEAD;
475 	if (rval == QLA_SUCCESS)
476 		data = RD_REG_DWORD(&reg->flash_data);
477 
478 	return data;
479 }
480 
481 uint32_t *
482 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
483     uint32_t dwords)
484 {
485 	uint32_t i;
486 	struct qla_hw_data *ha = vha->hw;
487 
488 	/* Dword reads to flash. */
489 	for (i = 0; i < dwords; i++, faddr++)
490 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
491 		    flash_data_addr(ha, faddr)));
492 
493 	return dwptr;
494 }
495 
496 static int
497 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
498 {
499 	int rval;
500 	uint32_t cnt;
501 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
502 
503 	WRT_REG_DWORD(&reg->flash_data, data);
504 	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
505 	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
506 	/* Wait for Write cycle to complete. */
507 	rval = QLA_SUCCESS;
508 	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
509 	    rval == QLA_SUCCESS; cnt--) {
510 		if (cnt)
511 			udelay(10);
512 		else
513 			rval = QLA_FUNCTION_TIMEOUT;
514 		cond_resched();
515 	}
516 	return rval;
517 }
518 
519 static void
520 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
521     uint8_t *flash_id)
522 {
523 	uint32_t ids;
524 
525 	ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
526 	*man_id = LSB(ids);
527 	*flash_id = MSB(ids);
528 
529 	/* Check if man_id and flash_id are valid. */
530 	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
531 		/* Read information using 0x9f opcode
532 		 * Device ID, Mfg ID would be read in the format:
533 		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
534 		 * Example: ATMEL 0x00 01 45 1F
535 		 * Extract MFG and Dev ID from last two bytes.
536 		 */
537 		ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
538 		*man_id = LSB(ids);
539 		*flash_id = MSB(ids);
540 	}
541 }
542 
543 static int
544 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
545 {
546 	const char *loc, *locations[] = { "DEF", "PCI" };
547 	uint32_t pcihdr, pcids;
548 	uint32_t *dcode;
549 	uint8_t *buf, *bcode, last_image;
550 	uint16_t cnt, chksum, *wptr;
551 	struct qla_flt_location *fltl;
552 	struct qla_hw_data *ha = vha->hw;
553 	struct req_que *req = ha->req_q_map[0];
554 
555 	/*
556 	 * FLT-location structure resides after the last PCI region.
557 	 */
558 
559 	/* Begin with sane defaults. */
560 	loc = locations[0];
561 	*start = 0;
562 	if (IS_QLA24XX_TYPE(ha))
563 		*start = FA_FLASH_LAYOUT_ADDR_24;
564 	else if (IS_QLA25XX(ha))
565 		*start = FA_FLASH_LAYOUT_ADDR;
566 	else if (IS_QLA81XX(ha))
567 		*start = FA_FLASH_LAYOUT_ADDR_81;
568 	else if (IS_QLA82XX(ha)) {
569 		*start = FA_FLASH_LAYOUT_ADDR_82;
570 		goto end;
571 	} else if (IS_QLA83XX(ha)) {
572 		*start = FA_FLASH_LAYOUT_ADDR_83;
573 		goto end;
574 	}
575 	/* Begin with first PCI expansion ROM header. */
576 	buf = (uint8_t *)req->ring;
577 	dcode = (uint32_t *)req->ring;
578 	pcihdr = 0;
579 	last_image = 1;
580 	do {
581 		/* Verify PCI expansion ROM header. */
582 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
583 		bcode = buf + (pcihdr % 4);
584 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
585 			goto end;
586 
587 		/* Locate PCI data structure. */
588 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
589 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
590 		bcode = buf + (pcihdr % 4);
591 
592 		/* Validate signature of PCI data structure. */
593 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
594 		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
595 			goto end;
596 
597 		last_image = bcode[0x15] & BIT_7;
598 
599 		/* Locate next PCI expansion ROM. */
600 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
601 	} while (!last_image);
602 
603 	/* Now verify FLT-location structure. */
604 	fltl = (struct qla_flt_location *)req->ring;
605 	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
606 	    sizeof(struct qla_flt_location) >> 2);
607 	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
608 	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
609 		goto end;
610 
611 	wptr = (uint16_t *)req->ring;
612 	cnt = sizeof(struct qla_flt_location) >> 1;
613 	for (chksum = 0; cnt; cnt--)
614 		chksum += le16_to_cpu(*wptr++);
615 	if (chksum) {
616 		ql_log(ql_log_fatal, vha, 0x0045,
617 		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
618 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010e,
619 		    buf, sizeof(struct qla_flt_location));
620 		return QLA_FUNCTION_FAILED;
621 	}
622 
623 	/* Good data.  Use specified location. */
624 	loc = locations[1];
625 	*start = (le16_to_cpu(fltl->start_hi) << 16 |
626 	    le16_to_cpu(fltl->start_lo)) >> 2;
627 end:
628 	ql_dbg(ql_dbg_init, vha, 0x0046,
629 	    "FLTL[%s] = 0x%x.\n",
630 	    loc, *start);
631 	return QLA_SUCCESS;
632 }
633 
634 static void
635 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
636 {
637 	const char *loc, *locations[] = { "DEF", "FLT" };
638 	const uint32_t def_fw[] =
639 		{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
640 	const uint32_t def_boot[] =
641 		{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
642 	const uint32_t def_vpd_nvram[] =
643 		{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
644 	const uint32_t def_vpd0[] =
645 		{ 0, 0, FA_VPD0_ADDR_81 };
646 	const uint32_t def_vpd1[] =
647 		{ 0, 0, FA_VPD1_ADDR_81 };
648 	const uint32_t def_nvram0[] =
649 		{ 0, 0, FA_NVRAM0_ADDR_81 };
650 	const uint32_t def_nvram1[] =
651 		{ 0, 0, FA_NVRAM1_ADDR_81 };
652 	const uint32_t def_fdt[] =
653 		{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
654 			FA_FLASH_DESCR_ADDR_81 };
655 	const uint32_t def_npiv_conf0[] =
656 		{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
657 			FA_NPIV_CONF0_ADDR_81 };
658 	const uint32_t def_npiv_conf1[] =
659 		{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
660 			FA_NPIV_CONF1_ADDR_81 };
661 	const uint32_t fcp_prio_cfg0[] =
662 		{ FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25,
663 			0 };
664 	const uint32_t fcp_prio_cfg1[] =
665 		{ FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25,
666 			0 };
667 	uint32_t def;
668 	uint16_t *wptr;
669 	uint16_t cnt, chksum;
670 	uint32_t start;
671 	struct qla_flt_header *flt;
672 	struct qla_flt_region *region;
673 	struct qla_hw_data *ha = vha->hw;
674 	struct req_que *req = ha->req_q_map[0];
675 
676 	def = 0;
677 	if (IS_QLA25XX(ha))
678 		def = 1;
679 	else if (IS_QLA81XX(ha))
680 		def = 2;
681 
682 	/* Assign FCP prio region since older adapters may not have FLT, or
683 	   FCP prio region in it's FLT.
684 	 */
685 	ha->flt_region_fcp_prio = ha->flags.port0 ?
686 	    fcp_prio_cfg0[def] : fcp_prio_cfg1[def];
687 
688 	ha->flt_region_flt = flt_addr;
689 	wptr = (uint16_t *)req->ring;
690 	flt = (struct qla_flt_header *)req->ring;
691 	region = (struct qla_flt_region *)&flt[1];
692 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
693 	    flt_addr << 2, OPTROM_BURST_SIZE);
694 	if (*wptr == __constant_cpu_to_le16(0xffff))
695 		goto no_flash_data;
696 	if (flt->version != __constant_cpu_to_le16(1)) {
697 		ql_log(ql_log_warn, vha, 0x0047,
698 		    "Unsupported FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
699 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
700 		    le16_to_cpu(flt->checksum));
701 		goto no_flash_data;
702 	}
703 
704 	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
705 	for (chksum = 0; cnt; cnt--)
706 		chksum += le16_to_cpu(*wptr++);
707 	if (chksum) {
708 		ql_log(ql_log_fatal, vha, 0x0048,
709 		    "Inconsistent FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
710 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
711 		    le16_to_cpu(flt->checksum));
712 		goto no_flash_data;
713 	}
714 
715 	loc = locations[1];
716 	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
717 	for ( ; cnt; cnt--, region++) {
718 		/* Store addresses as DWORD offsets. */
719 		start = le32_to_cpu(region->start) >> 2;
720 		ql_dbg(ql_dbg_init, vha, 0x0049,
721 		    "FLT[%02x]: start=0x%x "
722 		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code),
723 		    start, le32_to_cpu(region->end) >> 2,
724 		    le32_to_cpu(region->size));
725 
726 		switch (le32_to_cpu(region->code) & 0xff) {
727 		case FLT_REG_FCOE_FW:
728 			if (!IS_QLA8031(ha))
729 				break;
730 			ha->flt_region_fw = start;
731 			break;
732 		case FLT_REG_FW:
733 			if (IS_QLA8031(ha))
734 				break;
735 			ha->flt_region_fw = start;
736 			break;
737 		case FLT_REG_BOOT_CODE:
738 			ha->flt_region_boot = start;
739 			break;
740 		case FLT_REG_VPD_0:
741 			if (IS_QLA8031(ha))
742 				break;
743 			ha->flt_region_vpd_nvram = start;
744 			if (IS_QLA82XX(ha))
745 				break;
746 			if (ha->flags.port0)
747 				ha->flt_region_vpd = start;
748 			break;
749 		case FLT_REG_VPD_1:
750 			if (IS_QLA82XX(ha) || IS_QLA8031(ha))
751 				break;
752 			if (!ha->flags.port0)
753 				ha->flt_region_vpd = start;
754 			break;
755 		case FLT_REG_NVRAM_0:
756 			if (IS_QLA8031(ha))
757 				break;
758 			if (ha->flags.port0)
759 				ha->flt_region_nvram = start;
760 			break;
761 		case FLT_REG_NVRAM_1:
762 			if (IS_QLA8031(ha))
763 				break;
764 			if (!ha->flags.port0)
765 				ha->flt_region_nvram = start;
766 			break;
767 		case FLT_REG_FDT:
768 			ha->flt_region_fdt = start;
769 			break;
770 		case FLT_REG_NPIV_CONF_0:
771 			if (ha->flags.port0)
772 				ha->flt_region_npiv_conf = start;
773 			break;
774 		case FLT_REG_NPIV_CONF_1:
775 			if (!ha->flags.port0)
776 				ha->flt_region_npiv_conf = start;
777 			break;
778 		case FLT_REG_GOLD_FW:
779 			ha->flt_region_gold_fw = start;
780 			break;
781 		case FLT_REG_FCP_PRIO_0:
782 			if (ha->flags.port0)
783 				ha->flt_region_fcp_prio = start;
784 			break;
785 		case FLT_REG_FCP_PRIO_1:
786 			if (!ha->flags.port0)
787 				ha->flt_region_fcp_prio = start;
788 			break;
789 		case FLT_REG_BOOT_CODE_82XX:
790 			ha->flt_region_boot = start;
791 			break;
792 		case FLT_REG_FW_82XX:
793 			ha->flt_region_fw = start;
794 			break;
795 		case FLT_REG_GOLD_FW_82XX:
796 			ha->flt_region_gold_fw = start;
797 			break;
798 		case FLT_REG_BOOTLOAD_82XX:
799 			ha->flt_region_bootload = start;
800 			break;
801 		case FLT_REG_VPD_8XXX:
802 			if (IS_CNA_CAPABLE(ha))
803 				ha->flt_region_vpd = start;
804 			break;
805 		case FLT_REG_FCOE_NVRAM_0:
806 			if (!IS_QLA8031(ha))
807 				break;
808 			if (ha->flags.port0)
809 				ha->flt_region_nvram = start;
810 			break;
811 		case FLT_REG_FCOE_NVRAM_1:
812 			if (!IS_QLA8031(ha))
813 				break;
814 			if (!ha->flags.port0)
815 				ha->flt_region_nvram = start;
816 			break;
817 		}
818 	}
819 	goto done;
820 
821 no_flash_data:
822 	/* Use hardcoded defaults. */
823 	loc = locations[0];
824 	ha->flt_region_fw = def_fw[def];
825 	ha->flt_region_boot = def_boot[def];
826 	ha->flt_region_vpd_nvram = def_vpd_nvram[def];
827 	ha->flt_region_vpd = ha->flags.port0 ?
828 	    def_vpd0[def] : def_vpd1[def];
829 	ha->flt_region_nvram = ha->flags.port0 ?
830 	    def_nvram0[def] : def_nvram1[def];
831 	ha->flt_region_fdt = def_fdt[def];
832 	ha->flt_region_npiv_conf = ha->flags.port0 ?
833 	    def_npiv_conf0[def] : def_npiv_conf1[def];
834 done:
835 	ql_dbg(ql_dbg_init, vha, 0x004a,
836 	    "FLT[%s]: boot=0x%x fw=0x%x vpd_nvram=0x%x vpd=0x%x nvram=0x%x "
837 	    "fdt=0x%x flt=0x%x npiv=0x%x fcp_prif_cfg=0x%x.\n",
838 	    loc, ha->flt_region_boot, ha->flt_region_fw,
839 	    ha->flt_region_vpd_nvram, ha->flt_region_vpd, ha->flt_region_nvram,
840 	    ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf,
841 	    ha->flt_region_fcp_prio);
842 }
843 
844 static void
845 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
846 {
847 #define FLASH_BLK_SIZE_4K	0x1000
848 #define FLASH_BLK_SIZE_32K	0x8000
849 #define FLASH_BLK_SIZE_64K	0x10000
850 	const char *loc, *locations[] = { "MID", "FDT" };
851 	uint16_t cnt, chksum;
852 	uint16_t *wptr;
853 	struct qla_fdt_layout *fdt;
854 	uint8_t	man_id, flash_id;
855 	uint16_t mid = 0, fid = 0;
856 	struct qla_hw_data *ha = vha->hw;
857 	struct req_que *req = ha->req_q_map[0];
858 
859 	wptr = (uint16_t *)req->ring;
860 	fdt = (struct qla_fdt_layout *)req->ring;
861 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
862 	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
863 	if (*wptr == __constant_cpu_to_le16(0xffff))
864 		goto no_flash_data;
865 	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
866 	    fdt->sig[3] != 'D')
867 		goto no_flash_data;
868 
869 	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
870 	    cnt++)
871 		chksum += le16_to_cpu(*wptr++);
872 	if (chksum) {
873 		ql_dbg(ql_dbg_init, vha, 0x004c,
874 		    "Inconsistent FDT detected:"
875 		    " checksum=0x%x id=%c version0x%x.\n", chksum,
876 		    fdt->sig[0], le16_to_cpu(fdt->version));
877 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x0113,
878 		    (uint8_t *)fdt, sizeof(*fdt));
879 		goto no_flash_data;
880 	}
881 
882 	loc = locations[1];
883 	mid = le16_to_cpu(fdt->man_id);
884 	fid = le16_to_cpu(fdt->id);
885 	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
886 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
887 	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
888 	if (fdt->unprotect_sec_cmd) {
889 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
890 		    fdt->unprotect_sec_cmd);
891 		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
892 		    flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
893 		    flash_conf_addr(ha, 0x0336);
894 	}
895 	goto done;
896 no_flash_data:
897 	loc = locations[0];
898 	if (IS_QLA82XX(ha)) {
899 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
900 		goto done;
901 	}
902 	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
903 	mid = man_id;
904 	fid = flash_id;
905 	ha->fdt_wrt_disable = 0x9c;
906 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
907 	switch (man_id) {
908 	case 0xbf: /* STT flash. */
909 		if (flash_id == 0x8e)
910 			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
911 		else
912 			ha->fdt_block_size = FLASH_BLK_SIZE_32K;
913 
914 		if (flash_id == 0x80)
915 			ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
916 		break;
917 	case 0x13: /* ST M25P80. */
918 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
919 		break;
920 	case 0x1f: /* Atmel 26DF081A. */
921 		ha->fdt_block_size = FLASH_BLK_SIZE_4K;
922 		ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
923 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
924 		ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
925 		break;
926 	default:
927 		/* Default to 64 kb sector size. */
928 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
929 		break;
930 	}
931 done:
932 	ql_dbg(ql_dbg_init, vha, 0x004d,
933 	    "FDT[%s]: (0x%x/0x%x) erase=0x%x "
934 	    "pr=%x wrtd=0x%x blk=0x%x.\n",
935 	    loc, mid, fid,
936 	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
937 	    ha->fdt_wrt_disable, ha->fdt_block_size);
938 
939 }
940 
941 static void
942 qla2xxx_get_idc_param(scsi_qla_host_t *vha)
943 {
944 #define QLA82XX_IDC_PARAM_ADDR       0x003e885c
945 	uint32_t *wptr;
946 	struct qla_hw_data *ha = vha->hw;
947 	struct req_que *req = ha->req_q_map[0];
948 
949 	if (!IS_QLA82XX(ha))
950 		return;
951 
952 	wptr = (uint32_t *)req->ring;
953 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
954 		QLA82XX_IDC_PARAM_ADDR , 8);
955 
956 	if (*wptr == __constant_cpu_to_le32(0xffffffff)) {
957 		ha->fcoe_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT;
958 		ha->fcoe_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT;
959 	} else {
960 		ha->fcoe_dev_init_timeout = le32_to_cpu(*wptr++);
961 		ha->fcoe_reset_timeout = le32_to_cpu(*wptr);
962 	}
963 	ql_dbg(ql_dbg_init, vha, 0x004e,
964 	    "fcoe_dev_init_timeout=%d "
965 	    "fcoe_reset_timeout=%d.\n", ha->fcoe_dev_init_timeout,
966 	    ha->fcoe_reset_timeout);
967 	return;
968 }
969 
970 int
971 qla2xxx_get_flash_info(scsi_qla_host_t *vha)
972 {
973 	int ret;
974 	uint32_t flt_addr;
975 	struct qla_hw_data *ha = vha->hw;
976 
977 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
978 	    !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha))
979 		return QLA_SUCCESS;
980 
981 	ret = qla2xxx_find_flt_start(vha, &flt_addr);
982 	if (ret != QLA_SUCCESS)
983 		return ret;
984 
985 	qla2xxx_get_flt_info(vha, flt_addr);
986 	qla2xxx_get_fdt_info(vha);
987 	qla2xxx_get_idc_param(vha);
988 
989 	return QLA_SUCCESS;
990 }
991 
992 void
993 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
994 {
995 #define NPIV_CONFIG_SIZE	(16*1024)
996 	void *data;
997 	uint16_t *wptr;
998 	uint16_t cnt, chksum;
999 	int i;
1000 	struct qla_npiv_header hdr;
1001 	struct qla_npiv_entry *entry;
1002 	struct qla_hw_data *ha = vha->hw;
1003 
1004 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
1005 	    !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha))
1006 		return;
1007 
1008 	if (ha->flags.nic_core_reset_hdlr_active)
1009 		return;
1010 
1011 	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
1012 	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
1013 	if (hdr.version == __constant_cpu_to_le16(0xffff))
1014 		return;
1015 	if (hdr.version != __constant_cpu_to_le16(1)) {
1016 		ql_dbg(ql_dbg_user, vha, 0x7090,
1017 		    "Unsupported NPIV-Config "
1018 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1019 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1020 		    le16_to_cpu(hdr.checksum));
1021 		return;
1022 	}
1023 
1024 	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
1025 	if (!data) {
1026 		ql_log(ql_log_warn, vha, 0x7091,
1027 		    "Unable to allocate memory for data.\n");
1028 		return;
1029 	}
1030 
1031 	ha->isp_ops->read_optrom(vha, (uint8_t *)data,
1032 	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
1033 
1034 	cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
1035 	    sizeof(struct qla_npiv_entry)) >> 1;
1036 	for (wptr = data, chksum = 0; cnt; cnt--)
1037 		chksum += le16_to_cpu(*wptr++);
1038 	if (chksum) {
1039 		ql_dbg(ql_dbg_user, vha, 0x7092,
1040 		    "Inconsistent NPIV-Config "
1041 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1042 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1043 		    le16_to_cpu(hdr.checksum));
1044 		goto done;
1045 	}
1046 
1047 	entry = data + sizeof(struct qla_npiv_header);
1048 	cnt = le16_to_cpu(hdr.entries);
1049 	for (i = 0; cnt; cnt--, entry++, i++) {
1050 		uint16_t flags;
1051 		struct fc_vport_identifiers vid;
1052 		struct fc_vport *vport;
1053 
1054 		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
1055 
1056 		flags = le16_to_cpu(entry->flags);
1057 		if (flags == 0xffff)
1058 			continue;
1059 		if ((flags & BIT_0) == 0)
1060 			continue;
1061 
1062 		memset(&vid, 0, sizeof(vid));
1063 		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
1064 		vid.vport_type = FC_PORTTYPE_NPIV;
1065 		vid.disable = false;
1066 		vid.port_name = wwn_to_u64(entry->port_name);
1067 		vid.node_name = wwn_to_u64(entry->node_name);
1068 
1069 		ql_dbg(ql_dbg_user, vha, 0x7093,
1070 		    "NPIV[%02x]: wwpn=%llx "
1071 		    "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
1072 		    (unsigned long long)vid.port_name,
1073 		    (unsigned long long)vid.node_name,
1074 		    le16_to_cpu(entry->vf_id),
1075 		    entry->q_qos, entry->f_qos);
1076 
1077 		if (i < QLA_PRECONFIG_VPORTS) {
1078 			vport = fc_vport_create(vha->host, 0, &vid);
1079 			if (!vport)
1080 				ql_log(ql_log_warn, vha, 0x7094,
1081 				    "NPIV-Config Failed to create vport [%02x]: "
1082 				    "wwpn=%llx wwnn=%llx.\n", cnt,
1083 				    (unsigned long long)vid.port_name,
1084 				    (unsigned long long)vid.node_name);
1085 		}
1086 	}
1087 done:
1088 	kfree(data);
1089 }
1090 
1091 static int
1092 qla24xx_unprotect_flash(scsi_qla_host_t *vha)
1093 {
1094 	struct qla_hw_data *ha = vha->hw;
1095 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1096 
1097 	if (ha->flags.fac_supported)
1098 		return qla81xx_fac_do_write_enable(vha, 1);
1099 
1100 	/* Enable flash write. */
1101 	WRT_REG_DWORD(&reg->ctrl_status,
1102 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1103 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1104 
1105 	if (!ha->fdt_wrt_disable)
1106 		goto done;
1107 
1108 	/* Disable flash write-protection, first clear SR protection bit */
1109 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1110 	/* Then write zero again to clear remaining SR bits.*/
1111 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1112 done:
1113 	return QLA_SUCCESS;
1114 }
1115 
1116 static int
1117 qla24xx_protect_flash(scsi_qla_host_t *vha)
1118 {
1119 	uint32_t cnt;
1120 	struct qla_hw_data *ha = vha->hw;
1121 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1122 
1123 	if (ha->flags.fac_supported)
1124 		return qla81xx_fac_do_write_enable(vha, 0);
1125 
1126 	if (!ha->fdt_wrt_disable)
1127 		goto skip_wrt_protect;
1128 
1129 	/* Enable flash write-protection and wait for completion. */
1130 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1131 	    ha->fdt_wrt_disable);
1132 	for (cnt = 300; cnt &&
1133 	    qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1134 	    cnt--) {
1135 		udelay(10);
1136 	}
1137 
1138 skip_wrt_protect:
1139 	/* Disable flash write. */
1140 	WRT_REG_DWORD(&reg->ctrl_status,
1141 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1142 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1143 
1144 	return QLA_SUCCESS;
1145 }
1146 
1147 static int
1148 qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
1149 {
1150 	struct qla_hw_data *ha = vha->hw;
1151 	uint32_t start, finish;
1152 
1153 	if (ha->flags.fac_supported) {
1154 		start = fdata >> 2;
1155 		finish = start + (ha->fdt_block_size >> 2) - 1;
1156 		return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
1157 		    start), flash_data_addr(ha, finish));
1158 	}
1159 
1160 	return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1161 	    (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
1162 	    ((fdata >> 16) & 0xff));
1163 }
1164 
1165 static int
1166 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1167     uint32_t dwords)
1168 {
1169 	int ret;
1170 	uint32_t liter;
1171 	uint32_t sec_mask, rest_addr;
1172 	uint32_t fdata;
1173 	dma_addr_t optrom_dma;
1174 	void *optrom = NULL;
1175 	struct qla_hw_data *ha = vha->hw;
1176 
1177 	/* Prepare burst-capable write on supported ISPs. */
1178 	if ((IS_QLA25XX(ha) || IS_QLA81XX(ha) || IS_QLA83XX(ha)) &&
1179 	    !(faddr & 0xfff) && dwords > OPTROM_BURST_DWORDS) {
1180 		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1181 		    &optrom_dma, GFP_KERNEL);
1182 		if (!optrom) {
1183 			ql_log(ql_log_warn, vha, 0x7095,
1184 			    "Unable to allocate "
1185 			    "memory for optrom burst write (%x KB).\n",
1186 			    OPTROM_BURST_SIZE / 1024);
1187 		}
1188 	}
1189 
1190 	rest_addr = (ha->fdt_block_size >> 2) - 1;
1191 	sec_mask = ~rest_addr;
1192 
1193 	ret = qla24xx_unprotect_flash(vha);
1194 	if (ret != QLA_SUCCESS) {
1195 		ql_log(ql_log_warn, vha, 0x7096,
1196 		    "Unable to unprotect flash for update.\n");
1197 		goto done;
1198 	}
1199 
1200 	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1201 		fdata = (faddr & sec_mask) << 2;
1202 
1203 		/* Are we at the beginning of a sector? */
1204 		if ((faddr & rest_addr) == 0) {
1205 			/* Do sector unprotect. */
1206 			if (ha->fdt_unprotect_sec_cmd)
1207 				qla24xx_write_flash_dword(ha,
1208 				    ha->fdt_unprotect_sec_cmd,
1209 				    (fdata & 0xff00) | ((fdata << 16) &
1210 				    0xff0000) | ((fdata >> 16) & 0xff));
1211 			ret = qla24xx_erase_sector(vha, fdata);
1212 			if (ret != QLA_SUCCESS) {
1213 				ql_dbg(ql_dbg_user, vha, 0x7007,
1214 				    "Unable to erase erase sector: address=%x.\n",
1215 				    faddr);
1216 				break;
1217 			}
1218 		}
1219 
1220 		/* Go with burst-write. */
1221 		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1222 			/* Copy data to DMA'ble buffer. */
1223 			memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1224 
1225 			ret = qla2x00_load_ram(vha, optrom_dma,
1226 			    flash_data_addr(ha, faddr),
1227 			    OPTROM_BURST_DWORDS);
1228 			if (ret != QLA_SUCCESS) {
1229 				ql_log(ql_log_warn, vha, 0x7097,
1230 				    "Unable to burst-write optrom segment "
1231 				    "(%x/%x/%llx).\n", ret,
1232 				    flash_data_addr(ha, faddr),
1233 				    (unsigned long long)optrom_dma);
1234 				ql_log(ql_log_warn, vha, 0x7098,
1235 				    "Reverting to slow-write.\n");
1236 
1237 				dma_free_coherent(&ha->pdev->dev,
1238 				    OPTROM_BURST_SIZE, optrom, optrom_dma);
1239 				optrom = NULL;
1240 			} else {
1241 				liter += OPTROM_BURST_DWORDS - 1;
1242 				faddr += OPTROM_BURST_DWORDS - 1;
1243 				dwptr += OPTROM_BURST_DWORDS - 1;
1244 				continue;
1245 			}
1246 		}
1247 
1248 		ret = qla24xx_write_flash_dword(ha,
1249 		    flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1250 		if (ret != QLA_SUCCESS) {
1251 			ql_dbg(ql_dbg_user, vha, 0x7006,
1252 			    "Unable to program flash address=%x data=%x.\n",
1253 			    faddr, *dwptr);
1254 			break;
1255 		}
1256 
1257 		/* Do sector protect. */
1258 		if (ha->fdt_unprotect_sec_cmd &&
1259 		    ((faddr & rest_addr) == rest_addr))
1260 			qla24xx_write_flash_dword(ha,
1261 			    ha->fdt_protect_sec_cmd,
1262 			    (fdata & 0xff00) | ((fdata << 16) &
1263 			    0xff0000) | ((fdata >> 16) & 0xff));
1264 	}
1265 
1266 	ret = qla24xx_protect_flash(vha);
1267 	if (ret != QLA_SUCCESS)
1268 		ql_log(ql_log_warn, vha, 0x7099,
1269 		    "Unable to protect flash after update.\n");
1270 done:
1271 	if (optrom)
1272 		dma_free_coherent(&ha->pdev->dev,
1273 		    OPTROM_BURST_SIZE, optrom, optrom_dma);
1274 
1275 	return ret;
1276 }
1277 
1278 uint8_t *
1279 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1280     uint32_t bytes)
1281 {
1282 	uint32_t i;
1283 	uint16_t *wptr;
1284 	struct qla_hw_data *ha = vha->hw;
1285 
1286 	/* Word reads to NVRAM via registers. */
1287 	wptr = (uint16_t *)buf;
1288 	qla2x00_lock_nvram_access(ha);
1289 	for (i = 0; i < bytes >> 1; i++, naddr++)
1290 		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1291 		    naddr));
1292 	qla2x00_unlock_nvram_access(ha);
1293 
1294 	return buf;
1295 }
1296 
1297 uint8_t *
1298 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1299     uint32_t bytes)
1300 {
1301 	uint32_t i;
1302 	uint32_t *dwptr;
1303 	struct qla_hw_data *ha = vha->hw;
1304 
1305 	if (IS_QLA82XX(ha))
1306 		return  buf;
1307 
1308 	/* Dword reads to flash. */
1309 	dwptr = (uint32_t *)buf;
1310 	for (i = 0; i < bytes >> 2; i++, naddr++)
1311 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1312 		    nvram_data_addr(ha, naddr)));
1313 
1314 	return buf;
1315 }
1316 
1317 int
1318 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1319     uint32_t bytes)
1320 {
1321 	int ret, stat;
1322 	uint32_t i;
1323 	uint16_t *wptr;
1324 	unsigned long flags;
1325 	struct qla_hw_data *ha = vha->hw;
1326 
1327 	ret = QLA_SUCCESS;
1328 
1329 	spin_lock_irqsave(&ha->hardware_lock, flags);
1330 	qla2x00_lock_nvram_access(ha);
1331 
1332 	/* Disable NVRAM write-protection. */
1333 	stat = qla2x00_clear_nvram_protection(ha);
1334 
1335 	wptr = (uint16_t *)buf;
1336 	for (i = 0; i < bytes >> 1; i++, naddr++) {
1337 		qla2x00_write_nvram_word(ha, naddr,
1338 		    cpu_to_le16(*wptr));
1339 		wptr++;
1340 	}
1341 
1342 	/* Enable NVRAM write-protection. */
1343 	qla2x00_set_nvram_protection(ha, stat);
1344 
1345 	qla2x00_unlock_nvram_access(ha);
1346 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1347 
1348 	return ret;
1349 }
1350 
1351 int
1352 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1353     uint32_t bytes)
1354 {
1355 	int ret;
1356 	uint32_t i;
1357 	uint32_t *dwptr;
1358 	struct qla_hw_data *ha = vha->hw;
1359 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1360 
1361 	ret = QLA_SUCCESS;
1362 
1363 	if (IS_QLA82XX(ha))
1364 		return ret;
1365 
1366 	/* Enable flash write. */
1367 	WRT_REG_DWORD(&reg->ctrl_status,
1368 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1369 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1370 
1371 	/* Disable NVRAM write-protection. */
1372 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1373 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1374 
1375 	/* Dword writes to flash. */
1376 	dwptr = (uint32_t *)buf;
1377 	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1378 		ret = qla24xx_write_flash_dword(ha,
1379 		    nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1380 		if (ret != QLA_SUCCESS) {
1381 			ql_dbg(ql_dbg_user, vha, 0x709a,
1382 			    "Unable to program nvram address=%x data=%x.\n",
1383 			    naddr, *dwptr);
1384 			break;
1385 		}
1386 	}
1387 
1388 	/* Enable NVRAM write-protection. */
1389 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1390 
1391 	/* Disable flash write. */
1392 	WRT_REG_DWORD(&reg->ctrl_status,
1393 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1394 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1395 
1396 	return ret;
1397 }
1398 
1399 uint8_t *
1400 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1401     uint32_t bytes)
1402 {
1403 	uint32_t i;
1404 	uint32_t *dwptr;
1405 	struct qla_hw_data *ha = vha->hw;
1406 
1407 	/* Dword reads to flash. */
1408 	dwptr = (uint32_t *)buf;
1409 	for (i = 0; i < bytes >> 2; i++, naddr++)
1410 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1411 		    flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1412 
1413 	return buf;
1414 }
1415 
1416 int
1417 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1418     uint32_t bytes)
1419 {
1420 	struct qla_hw_data *ha = vha->hw;
1421 #define RMW_BUFFER_SIZE	(64 * 1024)
1422 	uint8_t *dbuf;
1423 
1424 	dbuf = vmalloc(RMW_BUFFER_SIZE);
1425 	if (!dbuf)
1426 		return QLA_MEMORY_ALLOC_FAILED;
1427 	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1428 	    RMW_BUFFER_SIZE);
1429 	memcpy(dbuf + (naddr << 2), buf, bytes);
1430 	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1431 	    RMW_BUFFER_SIZE);
1432 	vfree(dbuf);
1433 
1434 	return QLA_SUCCESS;
1435 }
1436 
1437 static inline void
1438 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1439 {
1440 	if (IS_QLA2322(ha)) {
1441 		/* Flip all colors. */
1442 		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1443 			/* Turn off. */
1444 			ha->beacon_color_state = 0;
1445 			*pflags = GPIO_LED_ALL_OFF;
1446 		} else {
1447 			/* Turn on. */
1448 			ha->beacon_color_state = QLA_LED_ALL_ON;
1449 			*pflags = GPIO_LED_RGA_ON;
1450 		}
1451 	} else {
1452 		/* Flip green led only. */
1453 		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1454 			/* Turn off. */
1455 			ha->beacon_color_state = 0;
1456 			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1457 		} else {
1458 			/* Turn on. */
1459 			ha->beacon_color_state = QLA_LED_GRN_ON;
1460 			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1461 		}
1462 	}
1463 }
1464 
1465 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1466 
1467 void
1468 qla2x00_beacon_blink(struct scsi_qla_host *vha)
1469 {
1470 	uint16_t gpio_enable;
1471 	uint16_t gpio_data;
1472 	uint16_t led_color = 0;
1473 	unsigned long flags;
1474 	struct qla_hw_data *ha = vha->hw;
1475 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1476 
1477 	if (IS_QLA82XX(ha))
1478 		return;
1479 
1480 	spin_lock_irqsave(&ha->hardware_lock, flags);
1481 
1482 	/* Save the Original GPIOE. */
1483 	if (ha->pio_address) {
1484 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1485 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1486 	} else {
1487 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1488 		gpio_data = RD_REG_WORD(&reg->gpiod);
1489 	}
1490 
1491 	/* Set the modified gpio_enable values */
1492 	gpio_enable |= GPIO_LED_MASK;
1493 
1494 	if (ha->pio_address) {
1495 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1496 	} else {
1497 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1498 		RD_REG_WORD(&reg->gpioe);
1499 	}
1500 
1501 	qla2x00_flip_colors(ha, &led_color);
1502 
1503 	/* Clear out any previously set LED color. */
1504 	gpio_data &= ~GPIO_LED_MASK;
1505 
1506 	/* Set the new input LED color to GPIOD. */
1507 	gpio_data |= led_color;
1508 
1509 	/* Set the modified gpio_data values */
1510 	if (ha->pio_address) {
1511 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1512 	} else {
1513 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1514 		RD_REG_WORD(&reg->gpiod);
1515 	}
1516 
1517 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1518 }
1519 
1520 int
1521 qla2x00_beacon_on(struct scsi_qla_host *vha)
1522 {
1523 	uint16_t gpio_enable;
1524 	uint16_t gpio_data;
1525 	unsigned long flags;
1526 	struct qla_hw_data *ha = vha->hw;
1527 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1528 
1529 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1530 	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1531 
1532 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1533 		ql_log(ql_log_warn, vha, 0x709b,
1534 		    "Unable to update fw options (beacon on).\n");
1535 		return QLA_FUNCTION_FAILED;
1536 	}
1537 
1538 	/* Turn off LEDs. */
1539 	spin_lock_irqsave(&ha->hardware_lock, flags);
1540 	if (ha->pio_address) {
1541 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1542 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1543 	} else {
1544 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1545 		gpio_data = RD_REG_WORD(&reg->gpiod);
1546 	}
1547 	gpio_enable |= GPIO_LED_MASK;
1548 
1549 	/* Set the modified gpio_enable values. */
1550 	if (ha->pio_address) {
1551 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1552 	} else {
1553 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1554 		RD_REG_WORD(&reg->gpioe);
1555 	}
1556 
1557 	/* Clear out previously set LED colour. */
1558 	gpio_data &= ~GPIO_LED_MASK;
1559 	if (ha->pio_address) {
1560 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1561 	} else {
1562 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1563 		RD_REG_WORD(&reg->gpiod);
1564 	}
1565 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1566 
1567 	/*
1568 	 * Let the per HBA timer kick off the blinking process based on
1569 	 * the following flags. No need to do anything else now.
1570 	 */
1571 	ha->beacon_blink_led = 1;
1572 	ha->beacon_color_state = 0;
1573 
1574 	return QLA_SUCCESS;
1575 }
1576 
1577 int
1578 qla2x00_beacon_off(struct scsi_qla_host *vha)
1579 {
1580 	int rval = QLA_SUCCESS;
1581 	struct qla_hw_data *ha = vha->hw;
1582 
1583 	ha->beacon_blink_led = 0;
1584 
1585 	/* Set the on flag so when it gets flipped it will be off. */
1586 	if (IS_QLA2322(ha))
1587 		ha->beacon_color_state = QLA_LED_ALL_ON;
1588 	else
1589 		ha->beacon_color_state = QLA_LED_GRN_ON;
1590 
1591 	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */
1592 
1593 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1594 	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1595 
1596 	rval = qla2x00_set_fw_options(vha, ha->fw_options);
1597 	if (rval != QLA_SUCCESS)
1598 		ql_log(ql_log_warn, vha, 0x709c,
1599 		    "Unable to update fw options (beacon off).\n");
1600 	return rval;
1601 }
1602 
1603 
1604 static inline void
1605 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1606 {
1607 	/* Flip all colors. */
1608 	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1609 		/* Turn off. */
1610 		ha->beacon_color_state = 0;
1611 		*pflags = 0;
1612 	} else {
1613 		/* Turn on. */
1614 		ha->beacon_color_state = QLA_LED_ALL_ON;
1615 		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1616 	}
1617 }
1618 
1619 void
1620 qla24xx_beacon_blink(struct scsi_qla_host *vha)
1621 {
1622 	uint16_t led_color = 0;
1623 	uint32_t gpio_data;
1624 	unsigned long flags;
1625 	struct qla_hw_data *ha = vha->hw;
1626 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1627 
1628 	/* Save the Original GPIOD. */
1629 	spin_lock_irqsave(&ha->hardware_lock, flags);
1630 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1631 
1632 	/* Enable the gpio_data reg for update. */
1633 	gpio_data |= GPDX_LED_UPDATE_MASK;
1634 
1635 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1636 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1637 
1638 	/* Set the color bits. */
1639 	qla24xx_flip_colors(ha, &led_color);
1640 
1641 	/* Clear out any previously set LED color. */
1642 	gpio_data &= ~GPDX_LED_COLOR_MASK;
1643 
1644 	/* Set the new input LED color to GPIOD. */
1645 	gpio_data |= led_color;
1646 
1647 	/* Set the modified gpio_data values. */
1648 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1649 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1650 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1651 }
1652 
1653 static uint32_t
1654 qla83xx_select_led_port(struct qla_hw_data *ha)
1655 {
1656 	uint32_t led_select_value = 0;
1657 
1658 	if (!IS_QLA83XX(ha))
1659 		goto out;
1660 
1661 	if (ha->flags.port0)
1662 		led_select_value = QLA83XX_LED_PORT0;
1663 	else
1664 		led_select_value = QLA83XX_LED_PORT1;
1665 
1666 out:
1667 	return led_select_value;
1668 }
1669 
1670 void
1671 qla83xx_beacon_blink(struct scsi_qla_host *vha)
1672 {
1673 	uint32_t led_select_value;
1674 	struct qla_hw_data *ha = vha->hw;
1675 	uint16_t led_cfg[6];
1676 	uint16_t orig_led_cfg[6];
1677 	uint32_t led_10_value, led_43_value;
1678 
1679 	if (!IS_QLA83XX(ha) && !IS_QLA81XX(ha))
1680 		return;
1681 
1682 	if (!ha->beacon_blink_led)
1683 		return;
1684 
1685 	if (IS_QLA2031(ha)) {
1686 		led_select_value = qla83xx_select_led_port(ha);
1687 
1688 		qla83xx_wr_reg(vha, led_select_value, 0x40002000);
1689 		qla83xx_wr_reg(vha, led_select_value + 4, 0x40002000);
1690 		msleep(1000);
1691 		qla83xx_wr_reg(vha, led_select_value, 0x40004000);
1692 		qla83xx_wr_reg(vha, led_select_value + 4, 0x40004000);
1693 	} else if (IS_QLA8031(ha)) {
1694 		led_select_value = qla83xx_select_led_port(ha);
1695 
1696 		qla83xx_rd_reg(vha, led_select_value, &led_10_value);
1697 		qla83xx_rd_reg(vha, led_select_value + 0x10, &led_43_value);
1698 		qla83xx_wr_reg(vha, led_select_value, 0x01f44000);
1699 		msleep(500);
1700 		qla83xx_wr_reg(vha, led_select_value, 0x400001f4);
1701 		msleep(1000);
1702 		qla83xx_wr_reg(vha, led_select_value, led_10_value);
1703 		qla83xx_wr_reg(vha, led_select_value + 0x10, led_43_value);
1704 	} else if (IS_QLA81XX(ha)) {
1705 		int rval;
1706 
1707 		/* Save Current */
1708 		rval = qla81xx_get_led_config(vha, orig_led_cfg);
1709 		/* Do the blink */
1710 		if (rval == QLA_SUCCESS) {
1711 			if (IS_QLA81XX(ha)) {
1712 				led_cfg[0] = 0x4000;
1713 				led_cfg[1] = 0x2000;
1714 				led_cfg[2] = 0;
1715 				led_cfg[3] = 0;
1716 				led_cfg[4] = 0;
1717 				led_cfg[5] = 0;
1718 			} else {
1719 				led_cfg[0] = 0x4000;
1720 				led_cfg[1] = 0x4000;
1721 				led_cfg[2] = 0x4000;
1722 				led_cfg[3] = 0x2000;
1723 				led_cfg[4] = 0;
1724 				led_cfg[5] = 0x2000;
1725 			}
1726 			rval = qla81xx_set_led_config(vha, led_cfg);
1727 			msleep(1000);
1728 			if (IS_QLA81XX(ha)) {
1729 				led_cfg[0] = 0x4000;
1730 				led_cfg[1] = 0x2000;
1731 				led_cfg[2] = 0;
1732 			} else {
1733 				led_cfg[0] = 0x4000;
1734 				led_cfg[1] = 0x2000;
1735 				led_cfg[2] = 0x4000;
1736 				led_cfg[3] = 0x4000;
1737 				led_cfg[4] = 0;
1738 				led_cfg[5] = 0x2000;
1739 			}
1740 			rval = qla81xx_set_led_config(vha, led_cfg);
1741 		}
1742 		/* On exit, restore original (presumes no status change) */
1743 		qla81xx_set_led_config(vha, orig_led_cfg);
1744 	}
1745 }
1746 
1747 int
1748 qla24xx_beacon_on(struct scsi_qla_host *vha)
1749 {
1750 	uint32_t gpio_data;
1751 	unsigned long flags;
1752 	struct qla_hw_data *ha = vha->hw;
1753 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1754 
1755 	if (IS_QLA82XX(ha))
1756 		return QLA_SUCCESS;
1757 
1758 	if (IS_QLA8031(ha) || IS_QLA81XX(ha))
1759 		goto skip_gpio; /* let blink handle it */
1760 
1761 	if (ha->beacon_blink_led == 0) {
1762 		/* Enable firmware for update */
1763 		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1764 
1765 		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1766 			return QLA_FUNCTION_FAILED;
1767 
1768 		if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1769 		    QLA_SUCCESS) {
1770 			ql_log(ql_log_warn, vha, 0x7009,
1771 			    "Unable to update fw options (beacon on).\n");
1772 			return QLA_FUNCTION_FAILED;
1773 		}
1774 
1775 		if (IS_QLA2031(ha))
1776 			goto skip_gpio;
1777 
1778 		spin_lock_irqsave(&ha->hardware_lock, flags);
1779 		gpio_data = RD_REG_DWORD(&reg->gpiod);
1780 
1781 		/* Enable the gpio_data reg for update. */
1782 		gpio_data |= GPDX_LED_UPDATE_MASK;
1783 		WRT_REG_DWORD(&reg->gpiod, gpio_data);
1784 		RD_REG_DWORD(&reg->gpiod);
1785 
1786 		spin_unlock_irqrestore(&ha->hardware_lock, flags);
1787 	}
1788 
1789 	/* So all colors blink together. */
1790 	ha->beacon_color_state = 0;
1791 
1792 skip_gpio:
1793 	/* Let the per HBA timer kick off the blinking process. */
1794 	ha->beacon_blink_led = 1;
1795 
1796 	return QLA_SUCCESS;
1797 }
1798 
1799 int
1800 qla24xx_beacon_off(struct scsi_qla_host *vha)
1801 {
1802 	uint32_t gpio_data;
1803 	unsigned long flags;
1804 	struct qla_hw_data *ha = vha->hw;
1805 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1806 
1807 	if (IS_QLA82XX(ha))
1808 		return QLA_SUCCESS;
1809 
1810 	ha->beacon_blink_led = 0;
1811 
1812 	if (IS_QLA2031(ha))
1813 		goto set_fw_options;
1814 
1815 	if (IS_QLA8031(ha) || IS_QLA81XX(ha))
1816 		return QLA_SUCCESS;
1817 
1818 	ha->beacon_color_state = QLA_LED_ALL_ON;
1819 
1820 	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */
1821 
1822 	/* Give control back to firmware. */
1823 	spin_lock_irqsave(&ha->hardware_lock, flags);
1824 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1825 
1826 	/* Disable the gpio_data reg for update. */
1827 	gpio_data &= ~GPDX_LED_UPDATE_MASK;
1828 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1829 	RD_REG_DWORD(&reg->gpiod);
1830 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1831 
1832 set_fw_options:
1833 	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1834 
1835 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1836 		ql_log(ql_log_warn, vha, 0x704d,
1837 		    "Unable to update fw options (beacon on).\n");
1838 		return QLA_FUNCTION_FAILED;
1839 	}
1840 
1841 	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1842 		ql_log(ql_log_warn, vha, 0x704e,
1843 		    "Unable to update fw options (beacon on).\n");
1844 		return QLA_FUNCTION_FAILED;
1845 	}
1846 
1847 	return QLA_SUCCESS;
1848 }
1849 
1850 
1851 /*
1852  * Flash support routines
1853  */
1854 
1855 /**
1856  * qla2x00_flash_enable() - Setup flash for reading and writing.
1857  * @ha: HA context
1858  */
1859 static void
1860 qla2x00_flash_enable(struct qla_hw_data *ha)
1861 {
1862 	uint16_t data;
1863 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1864 
1865 	data = RD_REG_WORD(&reg->ctrl_status);
1866 	data |= CSR_FLASH_ENABLE;
1867 	WRT_REG_WORD(&reg->ctrl_status, data);
1868 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1869 }
1870 
1871 /**
1872  * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1873  * @ha: HA context
1874  */
1875 static void
1876 qla2x00_flash_disable(struct qla_hw_data *ha)
1877 {
1878 	uint16_t data;
1879 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1880 
1881 	data = RD_REG_WORD(&reg->ctrl_status);
1882 	data &= ~(CSR_FLASH_ENABLE);
1883 	WRT_REG_WORD(&reg->ctrl_status, data);
1884 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1885 }
1886 
1887 /**
1888  * qla2x00_read_flash_byte() - Reads a byte from flash
1889  * @ha: HA context
1890  * @addr: Address in flash to read
1891  *
1892  * A word is read from the chip, but, only the lower byte is valid.
1893  *
1894  * Returns the byte read from flash @addr.
1895  */
1896 static uint8_t
1897 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1898 {
1899 	uint16_t data;
1900 	uint16_t bank_select;
1901 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1902 
1903 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1904 
1905 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1906 		/* Specify 64K address range: */
1907 		/*  clear out Module Select and Flash Address bits [19:16]. */
1908 		bank_select &= ~0xf8;
1909 		bank_select |= addr >> 12 & 0xf0;
1910 		bank_select |= CSR_FLASH_64K_BANK;
1911 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1912 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1913 
1914 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1915 		data = RD_REG_WORD(&reg->flash_data);
1916 
1917 		return (uint8_t)data;
1918 	}
1919 
1920 	/* Setup bit 16 of flash address. */
1921 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1922 		bank_select |= CSR_FLASH_64K_BANK;
1923 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1924 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1925 	} else if (((addr & BIT_16) == 0) &&
1926 	    (bank_select & CSR_FLASH_64K_BANK)) {
1927 		bank_select &= ~(CSR_FLASH_64K_BANK);
1928 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1929 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1930 	}
1931 
1932 	/* Always perform IO mapped accesses to the FLASH registers. */
1933 	if (ha->pio_address) {
1934 		uint16_t data2;
1935 
1936 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1937 		do {
1938 			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1939 			barrier();
1940 			cpu_relax();
1941 			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1942 		} while (data != data2);
1943 	} else {
1944 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1945 		data = qla2x00_debounce_register(&reg->flash_data);
1946 	}
1947 
1948 	return (uint8_t)data;
1949 }
1950 
1951 /**
1952  * qla2x00_write_flash_byte() - Write a byte to flash
1953  * @ha: HA context
1954  * @addr: Address in flash to write
1955  * @data: Data to write
1956  */
1957 static void
1958 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1959 {
1960 	uint16_t bank_select;
1961 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1962 
1963 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1964 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1965 		/* Specify 64K address range: */
1966 		/*  clear out Module Select and Flash Address bits [19:16]. */
1967 		bank_select &= ~0xf8;
1968 		bank_select |= addr >> 12 & 0xf0;
1969 		bank_select |= CSR_FLASH_64K_BANK;
1970 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1971 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1972 
1973 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1974 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1975 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1976 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1977 
1978 		return;
1979 	}
1980 
1981 	/* Setup bit 16 of flash address. */
1982 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1983 		bank_select |= CSR_FLASH_64K_BANK;
1984 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1985 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1986 	} else if (((addr & BIT_16) == 0) &&
1987 	    (bank_select & CSR_FLASH_64K_BANK)) {
1988 		bank_select &= ~(CSR_FLASH_64K_BANK);
1989 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1990 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1991 	}
1992 
1993 	/* Always perform IO mapped accesses to the FLASH registers. */
1994 	if (ha->pio_address) {
1995 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1996 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1997 	} else {
1998 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1999 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
2000 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
2001 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
2002 	}
2003 }
2004 
2005 /**
2006  * qla2x00_poll_flash() - Polls flash for completion.
2007  * @ha: HA context
2008  * @addr: Address in flash to poll
2009  * @poll_data: Data to be polled
2010  * @man_id: Flash manufacturer ID
2011  * @flash_id: Flash ID
2012  *
2013  * This function polls the device until bit 7 of what is read matches data
2014  * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
2015  * out (a fatal error).  The flash book recommeds reading bit 7 again after
2016  * reading bit 5 as a 1.
2017  *
2018  * Returns 0 on success, else non-zero.
2019  */
2020 static int
2021 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
2022     uint8_t man_id, uint8_t flash_id)
2023 {
2024 	int status;
2025 	uint8_t flash_data;
2026 	uint32_t cnt;
2027 
2028 	status = 1;
2029 
2030 	/* Wait for 30 seconds for command to finish. */
2031 	poll_data &= BIT_7;
2032 	for (cnt = 3000000; cnt; cnt--) {
2033 		flash_data = qla2x00_read_flash_byte(ha, addr);
2034 		if ((flash_data & BIT_7) == poll_data) {
2035 			status = 0;
2036 			break;
2037 		}
2038 
2039 		if (man_id != 0x40 && man_id != 0xda) {
2040 			if ((flash_data & BIT_5) && cnt > 2)
2041 				cnt = 2;
2042 		}
2043 		udelay(10);
2044 		barrier();
2045 		cond_resched();
2046 	}
2047 	return status;
2048 }
2049 
2050 /**
2051  * qla2x00_program_flash_address() - Programs a flash address
2052  * @ha: HA context
2053  * @addr: Address in flash to program
2054  * @data: Data to be written in flash
2055  * @man_id: Flash manufacturer ID
2056  * @flash_id: Flash ID
2057  *
2058  * Returns 0 on success, else non-zero.
2059  */
2060 static int
2061 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
2062     uint8_t data, uint8_t man_id, uint8_t flash_id)
2063 {
2064 	/* Write Program Command Sequence. */
2065 	if (IS_OEM_001(ha)) {
2066 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2067 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
2068 		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
2069 		qla2x00_write_flash_byte(ha, addr, data);
2070 	} else {
2071 		if (man_id == 0xda && flash_id == 0xc1) {
2072 			qla2x00_write_flash_byte(ha, addr, data);
2073 			if (addr & 0x7e)
2074 				return 0;
2075 		} else {
2076 			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2077 			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2078 			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
2079 			qla2x00_write_flash_byte(ha, addr, data);
2080 		}
2081 	}
2082 
2083 	udelay(150);
2084 
2085 	/* Wait for write to complete. */
2086 	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
2087 }
2088 
2089 /**
2090  * qla2x00_erase_flash() - Erase the flash.
2091  * @ha: HA context
2092  * @man_id: Flash manufacturer ID
2093  * @flash_id: Flash ID
2094  *
2095  * Returns 0 on success, else non-zero.
2096  */
2097 static int
2098 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
2099 {
2100 	/* Individual Sector Erase Command Sequence */
2101 	if (IS_OEM_001(ha)) {
2102 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2103 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
2104 		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
2105 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2106 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
2107 		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
2108 	} else {
2109 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2110 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2111 		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
2112 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2113 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2114 		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
2115 	}
2116 
2117 	udelay(150);
2118 
2119 	/* Wait for erase to complete. */
2120 	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
2121 }
2122 
2123 /**
2124  * qla2x00_erase_flash_sector() - Erase a flash sector.
2125  * @ha: HA context
2126  * @addr: Flash sector to erase
2127  * @sec_mask: Sector address mask
2128  * @man_id: Flash manufacturer ID
2129  * @flash_id: Flash ID
2130  *
2131  * Returns 0 on success, else non-zero.
2132  */
2133 static int
2134 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
2135     uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
2136 {
2137 	/* Individual Sector Erase Command Sequence */
2138 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2139 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2140 	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
2141 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2142 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2143 	if (man_id == 0x1f && flash_id == 0x13)
2144 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
2145 	else
2146 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
2147 
2148 	udelay(150);
2149 
2150 	/* Wait for erase to complete. */
2151 	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
2152 }
2153 
2154 /**
2155  * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
2156  * @man_id: Flash manufacturer ID
2157  * @flash_id: Flash ID
2158  */
2159 static void
2160 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
2161     uint8_t *flash_id)
2162 {
2163 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2164 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2165 	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
2166 	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
2167 	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
2168 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2169 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2170 	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
2171 }
2172 
2173 static void
2174 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
2175 	uint32_t saddr, uint32_t length)
2176 {
2177 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2178 	uint32_t midpoint, ilength;
2179 	uint8_t data;
2180 
2181 	midpoint = length / 2;
2182 
2183 	WRT_REG_WORD(&reg->nvram, 0);
2184 	RD_REG_WORD(&reg->nvram);
2185 	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
2186 		if (ilength == midpoint) {
2187 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2188 			RD_REG_WORD(&reg->nvram);
2189 		}
2190 		data = qla2x00_read_flash_byte(ha, saddr);
2191 		if (saddr % 100)
2192 			udelay(10);
2193 		*tmp_buf = data;
2194 		cond_resched();
2195 	}
2196 }
2197 
2198 static inline void
2199 qla2x00_suspend_hba(struct scsi_qla_host *vha)
2200 {
2201 	int cnt;
2202 	unsigned long flags;
2203 	struct qla_hw_data *ha = vha->hw;
2204 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2205 
2206 	/* Suspend HBA. */
2207 	scsi_block_requests(vha->host);
2208 	ha->isp_ops->disable_intrs(ha);
2209 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2210 
2211 	/* Pause RISC. */
2212 	spin_lock_irqsave(&ha->hardware_lock, flags);
2213 	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
2214 	RD_REG_WORD(&reg->hccr);
2215 	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
2216 		for (cnt = 0; cnt < 30000; cnt++) {
2217 			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
2218 				break;
2219 			udelay(100);
2220 		}
2221 	} else {
2222 		udelay(10);
2223 	}
2224 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
2225 }
2226 
2227 static inline void
2228 qla2x00_resume_hba(struct scsi_qla_host *vha)
2229 {
2230 	struct qla_hw_data *ha = vha->hw;
2231 
2232 	/* Resume HBA. */
2233 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2234 	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
2235 	qla2xxx_wake_dpc(vha);
2236 	qla2x00_wait_for_chip_reset(vha);
2237 	scsi_unblock_requests(vha->host);
2238 }
2239 
2240 uint8_t *
2241 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2242     uint32_t offset, uint32_t length)
2243 {
2244 	uint32_t addr, midpoint;
2245 	uint8_t *data;
2246 	struct qla_hw_data *ha = vha->hw;
2247 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2248 
2249 	/* Suspend HBA. */
2250 	qla2x00_suspend_hba(vha);
2251 
2252 	/* Go with read. */
2253 	midpoint = ha->optrom_size / 2;
2254 
2255 	qla2x00_flash_enable(ha);
2256 	WRT_REG_WORD(&reg->nvram, 0);
2257 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
2258 	for (addr = offset, data = buf; addr < length; addr++, data++) {
2259 		if (addr == midpoint) {
2260 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2261 			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
2262 		}
2263 
2264 		*data = qla2x00_read_flash_byte(ha, addr);
2265 	}
2266 	qla2x00_flash_disable(ha);
2267 
2268 	/* Resume HBA. */
2269 	qla2x00_resume_hba(vha);
2270 
2271 	return buf;
2272 }
2273 
2274 int
2275 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2276     uint32_t offset, uint32_t length)
2277 {
2278 
2279 	int rval;
2280 	uint8_t man_id, flash_id, sec_number, data;
2281 	uint16_t wd;
2282 	uint32_t addr, liter, sec_mask, rest_addr;
2283 	struct qla_hw_data *ha = vha->hw;
2284 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2285 
2286 	/* Suspend HBA. */
2287 	qla2x00_suspend_hba(vha);
2288 
2289 	rval = QLA_SUCCESS;
2290 	sec_number = 0;
2291 
2292 	/* Reset ISP chip. */
2293 	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
2294 	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
2295 
2296 	/* Go with write. */
2297 	qla2x00_flash_enable(ha);
2298 	do {	/* Loop once to provide quick error exit */
2299 		/* Structure of flash memory based on manufacturer */
2300 		if (IS_OEM_001(ha)) {
2301 			/* OEM variant with special flash part. */
2302 			man_id = flash_id = 0;
2303 			rest_addr = 0xffff;
2304 			sec_mask   = 0x10000;
2305 			goto update_flash;
2306 		}
2307 		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
2308 		switch (man_id) {
2309 		case 0x20: /* ST flash. */
2310 			if (flash_id == 0xd2 || flash_id == 0xe3) {
2311 				/*
2312 				 * ST m29w008at part - 64kb sector size with
2313 				 * 32kb,8kb,8kb,16kb sectors at memory address
2314 				 * 0xf0000.
2315 				 */
2316 				rest_addr = 0xffff;
2317 				sec_mask = 0x10000;
2318 				break;
2319 			}
2320 			/*
2321 			 * ST m29w010b part - 16kb sector size
2322 			 * Default to 16kb sectors
2323 			 */
2324 			rest_addr = 0x3fff;
2325 			sec_mask = 0x1c000;
2326 			break;
2327 		case 0x40: /* Mostel flash. */
2328 			/* Mostel v29c51001 part - 512 byte sector size. */
2329 			rest_addr = 0x1ff;
2330 			sec_mask = 0x1fe00;
2331 			break;
2332 		case 0xbf: /* SST flash. */
2333 			/* SST39sf10 part - 4kb sector size. */
2334 			rest_addr = 0xfff;
2335 			sec_mask = 0x1f000;
2336 			break;
2337 		case 0xda: /* Winbond flash. */
2338 			/* Winbond W29EE011 part - 256 byte sector size. */
2339 			rest_addr = 0x7f;
2340 			sec_mask = 0x1ff80;
2341 			break;
2342 		case 0xc2: /* Macronix flash. */
2343 			/* 64k sector size. */
2344 			if (flash_id == 0x38 || flash_id == 0x4f) {
2345 				rest_addr = 0xffff;
2346 				sec_mask = 0x10000;
2347 				break;
2348 			}
2349 			/* Fall through... */
2350 
2351 		case 0x1f: /* Atmel flash. */
2352 			/* 512k sector size. */
2353 			if (flash_id == 0x13) {
2354 				rest_addr = 0x7fffffff;
2355 				sec_mask =   0x80000000;
2356 				break;
2357 			}
2358 			/* Fall through... */
2359 
2360 		case 0x01: /* AMD flash. */
2361 			if (flash_id == 0x38 || flash_id == 0x40 ||
2362 			    flash_id == 0x4f) {
2363 				/* Am29LV081 part - 64kb sector size. */
2364 				/* Am29LV002BT part - 64kb sector size. */
2365 				rest_addr = 0xffff;
2366 				sec_mask = 0x10000;
2367 				break;
2368 			} else if (flash_id == 0x3e) {
2369 				/*
2370 				 * Am29LV008b part - 64kb sector size with
2371 				 * 32kb,8kb,8kb,16kb sector at memory address
2372 				 * h0xf0000.
2373 				 */
2374 				rest_addr = 0xffff;
2375 				sec_mask = 0x10000;
2376 				break;
2377 			} else if (flash_id == 0x20 || flash_id == 0x6e) {
2378 				/*
2379 				 * Am29LV010 part or AM29f010 - 16kb sector
2380 				 * size.
2381 				 */
2382 				rest_addr = 0x3fff;
2383 				sec_mask = 0x1c000;
2384 				break;
2385 			} else if (flash_id == 0x6d) {
2386 				/* Am29LV001 part - 8kb sector size. */
2387 				rest_addr = 0x1fff;
2388 				sec_mask = 0x1e000;
2389 				break;
2390 			}
2391 		default:
2392 			/* Default to 16 kb sector size. */
2393 			rest_addr = 0x3fff;
2394 			sec_mask = 0x1c000;
2395 			break;
2396 		}
2397 
2398 update_flash:
2399 		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2400 			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2401 				rval = QLA_FUNCTION_FAILED;
2402 				break;
2403 			}
2404 		}
2405 
2406 		for (addr = offset, liter = 0; liter < length; liter++,
2407 		    addr++) {
2408 			data = buf[liter];
2409 			/* Are we at the beginning of a sector? */
2410 			if ((addr & rest_addr) == 0) {
2411 				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2412 					if (addr >= 0x10000UL) {
2413 						if (((addr >> 12) & 0xf0) &&
2414 						    ((man_id == 0x01 &&
2415 							flash_id == 0x3e) ||
2416 						     (man_id == 0x20 &&
2417 							 flash_id == 0xd2))) {
2418 							sec_number++;
2419 							if (sec_number == 1) {
2420 								rest_addr =
2421 								    0x7fff;
2422 								sec_mask =
2423 								    0x18000;
2424 							} else if (
2425 							    sec_number == 2 ||
2426 							    sec_number == 3) {
2427 								rest_addr =
2428 								    0x1fff;
2429 								sec_mask =
2430 								    0x1e000;
2431 							} else if (
2432 							    sec_number == 4) {
2433 								rest_addr =
2434 								    0x3fff;
2435 								sec_mask =
2436 								    0x1c000;
2437 							}
2438 						}
2439 					}
2440 				} else if (addr == ha->optrom_size / 2) {
2441 					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2442 					RD_REG_WORD(&reg->nvram);
2443 				}
2444 
2445 				if (flash_id == 0xda && man_id == 0xc1) {
2446 					qla2x00_write_flash_byte(ha, 0x5555,
2447 					    0xaa);
2448 					qla2x00_write_flash_byte(ha, 0x2aaa,
2449 					    0x55);
2450 					qla2x00_write_flash_byte(ha, 0x5555,
2451 					    0xa0);
2452 				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2453 					/* Then erase it */
2454 					if (qla2x00_erase_flash_sector(ha,
2455 					    addr, sec_mask, man_id,
2456 					    flash_id)) {
2457 						rval = QLA_FUNCTION_FAILED;
2458 						break;
2459 					}
2460 					if (man_id == 0x01 && flash_id == 0x6d)
2461 						sec_number++;
2462 				}
2463 			}
2464 
2465 			if (man_id == 0x01 && flash_id == 0x6d) {
2466 				if (sec_number == 1 &&
2467 				    addr == (rest_addr - 1)) {
2468 					rest_addr = 0x0fff;
2469 					sec_mask   = 0x1f000;
2470 				} else if (sec_number == 3 && (addr & 0x7ffe)) {
2471 					rest_addr = 0x3fff;
2472 					sec_mask   = 0x1c000;
2473 				}
2474 			}
2475 
2476 			if (qla2x00_program_flash_address(ha, addr, data,
2477 			    man_id, flash_id)) {
2478 				rval = QLA_FUNCTION_FAILED;
2479 				break;
2480 			}
2481 			cond_resched();
2482 		}
2483 	} while (0);
2484 	qla2x00_flash_disable(ha);
2485 
2486 	/* Resume HBA. */
2487 	qla2x00_resume_hba(vha);
2488 
2489 	return rval;
2490 }
2491 
2492 uint8_t *
2493 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2494     uint32_t offset, uint32_t length)
2495 {
2496 	struct qla_hw_data *ha = vha->hw;
2497 
2498 	/* Suspend HBA. */
2499 	scsi_block_requests(vha->host);
2500 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2501 
2502 	/* Go with read. */
2503 	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2504 
2505 	/* Resume HBA. */
2506 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2507 	scsi_unblock_requests(vha->host);
2508 
2509 	return buf;
2510 }
2511 
2512 int
2513 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2514     uint32_t offset, uint32_t length)
2515 {
2516 	int rval;
2517 	struct qla_hw_data *ha = vha->hw;
2518 
2519 	/* Suspend HBA. */
2520 	scsi_block_requests(vha->host);
2521 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2522 
2523 	/* Go with write. */
2524 	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2525 	    length >> 2);
2526 
2527 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2528 	scsi_unblock_requests(vha->host);
2529 
2530 	return rval;
2531 }
2532 
2533 uint8_t *
2534 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2535     uint32_t offset, uint32_t length)
2536 {
2537 	int rval;
2538 	dma_addr_t optrom_dma;
2539 	void *optrom;
2540 	uint8_t *pbuf;
2541 	uint32_t faddr, left, burst;
2542 	struct qla_hw_data *ha = vha->hw;
2543 
2544 	if (IS_QLA25XX(ha) || IS_QLA81XX(ha))
2545 		goto try_fast;
2546 	if (offset & 0xfff)
2547 		goto slow_read;
2548 	if (length < OPTROM_BURST_SIZE)
2549 		goto slow_read;
2550 
2551 try_fast:
2552 	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2553 	    &optrom_dma, GFP_KERNEL);
2554 	if (!optrom) {
2555 		ql_log(ql_log_warn, vha, 0x00cc,
2556 		    "Unable to allocate memory for optrom burst read (%x KB).\n",
2557 		    OPTROM_BURST_SIZE / 1024);
2558 		goto slow_read;
2559 	}
2560 
2561 	pbuf = buf;
2562 	faddr = offset >> 2;
2563 	left = length >> 2;
2564 	burst = OPTROM_BURST_DWORDS;
2565 	while (left != 0) {
2566 		if (burst > left)
2567 			burst = left;
2568 
2569 		rval = qla2x00_dump_ram(vha, optrom_dma,
2570 		    flash_data_addr(ha, faddr), burst);
2571 		if (rval) {
2572 			ql_log(ql_log_warn, vha, 0x00f5,
2573 			    "Unable to burst-read optrom segment (%x/%x/%llx).\n",
2574 			    rval, flash_data_addr(ha, faddr),
2575 			    (unsigned long long)optrom_dma);
2576 			ql_log(ql_log_warn, vha, 0x00f6,
2577 			    "Reverting to slow-read.\n");
2578 
2579 			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2580 			    optrom, optrom_dma);
2581 			goto slow_read;
2582 		}
2583 
2584 		memcpy(pbuf, optrom, burst * 4);
2585 
2586 		left -= burst;
2587 		faddr += burst;
2588 		pbuf += burst * 4;
2589 	}
2590 
2591 	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2592 	    optrom_dma);
2593 
2594 	return buf;
2595 
2596 slow_read:
2597     return qla24xx_read_optrom_data(vha, buf, offset, length);
2598 }
2599 
2600 /**
2601  * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2602  * @ha: HA context
2603  * @pcids: Pointer to the FCODE PCI data structure
2604  *
2605  * The process of retrieving the FCODE version information is at best
2606  * described as interesting.
2607  *
2608  * Within the first 100h bytes of the image an ASCII string is present
2609  * which contains several pieces of information including the FCODE
2610  * version.  Unfortunately it seems the only reliable way to retrieve
2611  * the version is by scanning for another sentinel within the string,
2612  * the FCODE build date:
2613  *
2614  *	... 2.00.02 10/17/02 ...
2615  *
2616  * Returns QLA_SUCCESS on successful retrieval of version.
2617  */
2618 static void
2619 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2620 {
2621 	int ret = QLA_FUNCTION_FAILED;
2622 	uint32_t istart, iend, iter, vend;
2623 	uint8_t do_next, rbyte, *vbyte;
2624 
2625 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2626 
2627 	/* Skip the PCI data structure. */
2628 	istart = pcids +
2629 	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2630 		qla2x00_read_flash_byte(ha, pcids + 0x0A));
2631 	iend = istart + 0x100;
2632 	do {
2633 		/* Scan for the sentinel date string...eeewww. */
2634 		do_next = 0;
2635 		iter = istart;
2636 		while ((iter < iend) && !do_next) {
2637 			iter++;
2638 			if (qla2x00_read_flash_byte(ha, iter) == '/') {
2639 				if (qla2x00_read_flash_byte(ha, iter + 2) ==
2640 				    '/')
2641 					do_next++;
2642 				else if (qla2x00_read_flash_byte(ha,
2643 				    iter + 3) == '/')
2644 					do_next++;
2645 			}
2646 		}
2647 		if (!do_next)
2648 			break;
2649 
2650 		/* Backtrack to previous ' ' (space). */
2651 		do_next = 0;
2652 		while ((iter > istart) && !do_next) {
2653 			iter--;
2654 			if (qla2x00_read_flash_byte(ha, iter) == ' ')
2655 				do_next++;
2656 		}
2657 		if (!do_next)
2658 			break;
2659 
2660 		/*
2661 		 * Mark end of version tag, and find previous ' ' (space) or
2662 		 * string length (recent FCODE images -- major hack ahead!!!).
2663 		 */
2664 		vend = iter - 1;
2665 		do_next = 0;
2666 		while ((iter > istart) && !do_next) {
2667 			iter--;
2668 			rbyte = qla2x00_read_flash_byte(ha, iter);
2669 			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2670 				do_next++;
2671 		}
2672 		if (!do_next)
2673 			break;
2674 
2675 		/* Mark beginning of version tag, and copy data. */
2676 		iter++;
2677 		if ((vend - iter) &&
2678 		    ((vend - iter) < sizeof(ha->fcode_revision))) {
2679 			vbyte = ha->fcode_revision;
2680 			while (iter <= vend) {
2681 				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
2682 				iter++;
2683 			}
2684 			ret = QLA_SUCCESS;
2685 		}
2686 	} while (0);
2687 
2688 	if (ret != QLA_SUCCESS)
2689 		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2690 }
2691 
2692 int
2693 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2694 {
2695 	int ret = QLA_SUCCESS;
2696 	uint8_t code_type, last_image;
2697 	uint32_t pcihdr, pcids;
2698 	uint8_t *dbyte;
2699 	uint16_t *dcode;
2700 	struct qla_hw_data *ha = vha->hw;
2701 
2702 	if (!ha->pio_address || !mbuf)
2703 		return QLA_FUNCTION_FAILED;
2704 
2705 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2706 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2707 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2708 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2709 
2710 	qla2x00_flash_enable(ha);
2711 
2712 	/* Begin with first PCI expansion ROM header. */
2713 	pcihdr = 0;
2714 	last_image = 1;
2715 	do {
2716 		/* Verify PCI expansion ROM header. */
2717 		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2718 		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2719 			/* No signature */
2720 			ql_log(ql_log_fatal, vha, 0x0050,
2721 			    "No matching ROM signature.\n");
2722 			ret = QLA_FUNCTION_FAILED;
2723 			break;
2724 		}
2725 
2726 		/* Locate PCI data structure. */
2727 		pcids = pcihdr +
2728 		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2729 			qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2730 
2731 		/* Validate signature of PCI data structure. */
2732 		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2733 		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2734 		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2735 		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2736 			/* Incorrect header. */
2737 			ql_log(ql_log_fatal, vha, 0x0051,
2738 			    "PCI data struct not found pcir_adr=%x.\n", pcids);
2739 			ret = QLA_FUNCTION_FAILED;
2740 			break;
2741 		}
2742 
2743 		/* Read version */
2744 		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2745 		switch (code_type) {
2746 		case ROM_CODE_TYPE_BIOS:
2747 			/* Intel x86, PC-AT compatible. */
2748 			ha->bios_revision[0] =
2749 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2750 			ha->bios_revision[1] =
2751 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2752 			ql_dbg(ql_dbg_init, vha, 0x0052,
2753 			    "Read BIOS %d.%d.\n",
2754 			    ha->bios_revision[1], ha->bios_revision[0]);
2755 			break;
2756 		case ROM_CODE_TYPE_FCODE:
2757 			/* Open Firmware standard for PCI (FCode). */
2758 			/* Eeeewww... */
2759 			qla2x00_get_fcode_version(ha, pcids);
2760 			break;
2761 		case ROM_CODE_TYPE_EFI:
2762 			/* Extensible Firmware Interface (EFI). */
2763 			ha->efi_revision[0] =
2764 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2765 			ha->efi_revision[1] =
2766 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2767 			ql_dbg(ql_dbg_init, vha, 0x0053,
2768 			    "Read EFI %d.%d.\n",
2769 			    ha->efi_revision[1], ha->efi_revision[0]);
2770 			break;
2771 		default:
2772 			ql_log(ql_log_warn, vha, 0x0054,
2773 			    "Unrecognized code type %x at pcids %x.\n",
2774 			    code_type, pcids);
2775 			break;
2776 		}
2777 
2778 		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2779 
2780 		/* Locate next PCI expansion ROM. */
2781 		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2782 		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2783 	} while (!last_image);
2784 
2785 	if (IS_QLA2322(ha)) {
2786 		/* Read firmware image information. */
2787 		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2788 		dbyte = mbuf;
2789 		memset(dbyte, 0, 8);
2790 		dcode = (uint16_t *)dbyte;
2791 
2792 		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2793 		    8);
2794 		ql_dbg(ql_dbg_init + ql_dbg_buffer, vha, 0x010a,
2795 		    "Dumping fw "
2796 		    "ver from flash:.\n");
2797 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010b,
2798 		    (uint8_t *)dbyte, 8);
2799 
2800 		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2801 		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2802 		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2803 		    dcode[3] == 0)) {
2804 			ql_log(ql_log_warn, vha, 0x0057,
2805 			    "Unrecognized fw revision at %x.\n",
2806 			    ha->flt_region_fw * 4);
2807 		} else {
2808 			/* values are in big endian */
2809 			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2810 			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2811 			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2812 			ql_dbg(ql_dbg_init, vha, 0x0058,
2813 			    "FW Version: "
2814 			    "%d.%d.%d.\n", ha->fw_revision[0],
2815 			    ha->fw_revision[1], ha->fw_revision[2]);
2816 		}
2817 	}
2818 
2819 	qla2x00_flash_disable(ha);
2820 
2821 	return ret;
2822 }
2823 
2824 int
2825 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2826 {
2827 	int ret = QLA_SUCCESS;
2828 	uint32_t pcihdr, pcids;
2829 	uint32_t *dcode;
2830 	uint8_t *bcode;
2831 	uint8_t code_type, last_image;
2832 	int i;
2833 	struct qla_hw_data *ha = vha->hw;
2834 
2835 	if (IS_QLA82XX(ha))
2836 		return ret;
2837 
2838 	if (!mbuf)
2839 		return QLA_FUNCTION_FAILED;
2840 
2841 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2842 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2843 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2844 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2845 
2846 	dcode = mbuf;
2847 
2848 	/* Begin with first PCI expansion ROM header. */
2849 	pcihdr = ha->flt_region_boot << 2;
2850 	last_image = 1;
2851 	do {
2852 		/* Verify PCI expansion ROM header. */
2853 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2854 		bcode = mbuf + (pcihdr % 4);
2855 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2856 			/* No signature */
2857 			ql_log(ql_log_fatal, vha, 0x0059,
2858 			    "No matching ROM signature.\n");
2859 			ret = QLA_FUNCTION_FAILED;
2860 			break;
2861 		}
2862 
2863 		/* Locate PCI data structure. */
2864 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2865 
2866 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2867 		bcode = mbuf + (pcihdr % 4);
2868 
2869 		/* Validate signature of PCI data structure. */
2870 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2871 		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2872 			/* Incorrect header. */
2873 			ql_log(ql_log_fatal, vha, 0x005a,
2874 			    "PCI data struct not found pcir_adr=%x.\n", pcids);
2875 			ret = QLA_FUNCTION_FAILED;
2876 			break;
2877 		}
2878 
2879 		/* Read version */
2880 		code_type = bcode[0x14];
2881 		switch (code_type) {
2882 		case ROM_CODE_TYPE_BIOS:
2883 			/* Intel x86, PC-AT compatible. */
2884 			ha->bios_revision[0] = bcode[0x12];
2885 			ha->bios_revision[1] = bcode[0x13];
2886 			ql_dbg(ql_dbg_init, vha, 0x005b,
2887 			    "Read BIOS %d.%d.\n",
2888 			    ha->bios_revision[1], ha->bios_revision[0]);
2889 			break;
2890 		case ROM_CODE_TYPE_FCODE:
2891 			/* Open Firmware standard for PCI (FCode). */
2892 			ha->fcode_revision[0] = bcode[0x12];
2893 			ha->fcode_revision[1] = bcode[0x13];
2894 			ql_dbg(ql_dbg_init, vha, 0x005c,
2895 			    "Read FCODE %d.%d.\n",
2896 			    ha->fcode_revision[1], ha->fcode_revision[0]);
2897 			break;
2898 		case ROM_CODE_TYPE_EFI:
2899 			/* Extensible Firmware Interface (EFI). */
2900 			ha->efi_revision[0] = bcode[0x12];
2901 			ha->efi_revision[1] = bcode[0x13];
2902 			ql_dbg(ql_dbg_init, vha, 0x005d,
2903 			    "Read EFI %d.%d.\n",
2904 			    ha->efi_revision[1], ha->efi_revision[0]);
2905 			break;
2906 		default:
2907 			ql_log(ql_log_warn, vha, 0x005e,
2908 			    "Unrecognized code type %x at pcids %x.\n",
2909 			    code_type, pcids);
2910 			break;
2911 		}
2912 
2913 		last_image = bcode[0x15] & BIT_7;
2914 
2915 		/* Locate next PCI expansion ROM. */
2916 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2917 	} while (!last_image);
2918 
2919 	/* Read firmware image information. */
2920 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2921 	dcode = mbuf;
2922 
2923 	qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2924 	for (i = 0; i < 4; i++)
2925 		dcode[i] = be32_to_cpu(dcode[i]);
2926 
2927 	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2928 	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2929 	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2930 	    dcode[3] == 0)) {
2931 		ql_log(ql_log_warn, vha, 0x005f,
2932 		    "Unrecognized fw revision at %x.\n",
2933 		    ha->flt_region_fw * 4);
2934 	} else {
2935 		ha->fw_revision[0] = dcode[0];
2936 		ha->fw_revision[1] = dcode[1];
2937 		ha->fw_revision[2] = dcode[2];
2938 		ha->fw_revision[3] = dcode[3];
2939 		ql_dbg(ql_dbg_init, vha, 0x0060,
2940 		    "Firmware revision %d.%d.%d.%d.\n",
2941 		    ha->fw_revision[0], ha->fw_revision[1],
2942 		    ha->fw_revision[2], ha->fw_revision[3]);
2943 	}
2944 
2945 	/* Check for golden firmware and get version if available */
2946 	if (!IS_QLA81XX(ha)) {
2947 		/* Golden firmware is not present in non 81XX adapters */
2948 		return ret;
2949 	}
2950 
2951 	memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version));
2952 	dcode = mbuf;
2953 	ha->isp_ops->read_optrom(vha, (uint8_t *)dcode,
2954 	    ha->flt_region_gold_fw << 2, 32);
2955 
2956 	if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF &&
2957 	    dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) {
2958 		ql_log(ql_log_warn, vha, 0x0056,
2959 		    "Unrecognized golden fw at 0x%x.\n",
2960 		    ha->flt_region_gold_fw * 4);
2961 		return ret;
2962 	}
2963 
2964 	for (i = 4; i < 8; i++)
2965 		ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]);
2966 
2967 	return ret;
2968 }
2969 
2970 static int
2971 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
2972 {
2973 	if (pos >= end || *pos != 0x82)
2974 		return 0;
2975 
2976 	pos += 3 + pos[1];
2977 	if (pos >= end || *pos != 0x90)
2978 		return 0;
2979 
2980 	pos += 3 + pos[1];
2981 	if (pos >= end || *pos != 0x78)
2982 		return 0;
2983 
2984 	return 1;
2985 }
2986 
2987 int
2988 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2989 {
2990 	struct qla_hw_data *ha = vha->hw;
2991 	uint8_t *pos = ha->vpd;
2992 	uint8_t *end = pos + ha->vpd_size;
2993 	int len = 0;
2994 
2995 	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
2996 		return 0;
2997 
2998 	while (pos < end && *pos != 0x78) {
2999 		len = (*pos == 0x82) ? pos[1] : pos[2];
3000 
3001 		if (!strncmp(pos, key, strlen(key)))
3002 			break;
3003 
3004 		if (*pos != 0x90 && *pos != 0x91)
3005 			pos += len;
3006 
3007 		pos += 3;
3008 	}
3009 
3010 	if (pos < end - len && *pos != 0x78)
3011 		return snprintf(str, size, "%.*s", len, pos + 3);
3012 
3013 	return 0;
3014 }
3015 
3016 int
3017 qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha)
3018 {
3019 	int len, max_len;
3020 	uint32_t fcp_prio_addr;
3021 	struct qla_hw_data *ha = vha->hw;
3022 
3023 	if (!ha->fcp_prio_cfg) {
3024 		ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE);
3025 		if (!ha->fcp_prio_cfg) {
3026 			ql_log(ql_log_warn, vha, 0x00d5,
3027 			    "Unable to allocate memory for fcp priorty data (%x).\n",
3028 			    FCP_PRIO_CFG_SIZE);
3029 			return QLA_FUNCTION_FAILED;
3030 		}
3031 	}
3032 	memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE);
3033 
3034 	fcp_prio_addr = ha->flt_region_fcp_prio;
3035 
3036 	/* first read the fcp priority data header from flash */
3037 	ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
3038 			fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);
3039 
3040 	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 0))
3041 		goto fail;
3042 
3043 	/* read remaining FCP CMD config data from flash */
3044 	fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
3045 	len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
3046 	max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE;
3047 
3048 	ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
3049 			fcp_prio_addr << 2, (len < max_len ? len : max_len));
3050 
3051 	/* revalidate the entire FCP priority config data, including entries */
3052 	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 1))
3053 		goto fail;
3054 
3055 	ha->flags.fcp_prio_enabled = 1;
3056 	return QLA_SUCCESS;
3057 fail:
3058 	vfree(ha->fcp_prio_cfg);
3059 	ha->fcp_prio_cfg = NULL;
3060 	return QLA_FUNCTION_FAILED;
3061 }
3062