xref: /openbmc/linux/drivers/scsi/qla2xxx/qla_sup.c (revision 6ee73861)
1 /*
2  * QLogic Fibre Channel HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  *
5  * See LICENSE.qla2xxx for copyright and licensing details.
6  */
7 #include "qla_def.h"
8 
9 #include <linux/delay.h>
10 #include <linux/vmalloc.h>
11 #include <asm/uaccess.h>
12 
13 /*
14  * NVRAM support routines
15  */
16 
17 /**
18  * qla2x00_lock_nvram_access() -
19  * @ha: HA context
20  */
21 static void
22 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
23 {
24 	uint16_t data;
25 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
26 
27 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
28 		data = RD_REG_WORD(&reg->nvram);
29 		while (data & NVR_BUSY) {
30 			udelay(100);
31 			data = RD_REG_WORD(&reg->nvram);
32 		}
33 
34 		/* Lock resource */
35 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
36 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
37 		udelay(5);
38 		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
39 		while ((data & BIT_0) == 0) {
40 			/* Lock failed */
41 			udelay(100);
42 			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
43 			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
44 			udelay(5);
45 			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
46 		}
47 	}
48 }
49 
50 /**
51  * qla2x00_unlock_nvram_access() -
52  * @ha: HA context
53  */
54 static void
55 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
56 {
57 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
58 
59 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
60 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
61 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
62 	}
63 }
64 
65 /**
66  * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
67  * @ha: HA context
68  * @data: Serial interface selector
69  */
70 static void
71 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
72 {
73 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
74 
75 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
76 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
77 	NVRAM_DELAY();
78 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
79 	    NVR_WRT_ENABLE);
80 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
81 	NVRAM_DELAY();
82 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
83 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
84 	NVRAM_DELAY();
85 }
86 
87 /**
88  * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
89  *	NVRAM.
90  * @ha: HA context
91  * @nv_cmd: NVRAM command
92  *
93  * Bit definitions for NVRAM command:
94  *
95  *	Bit 26     = start bit
96  *	Bit 25, 24 = opcode
97  *	Bit 23-16  = address
98  *	Bit 15-0   = write data
99  *
100  * Returns the word read from nvram @addr.
101  */
102 static uint16_t
103 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
104 {
105 	uint8_t		cnt;
106 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
107 	uint16_t	data = 0;
108 	uint16_t	reg_data;
109 
110 	/* Send command to NVRAM. */
111 	nv_cmd <<= 5;
112 	for (cnt = 0; cnt < 11; cnt++) {
113 		if (nv_cmd & BIT_31)
114 			qla2x00_nv_write(ha, NVR_DATA_OUT);
115 		else
116 			qla2x00_nv_write(ha, 0);
117 		nv_cmd <<= 1;
118 	}
119 
120 	/* Read data from NVRAM. */
121 	for (cnt = 0; cnt < 16; cnt++) {
122 		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
123 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
124 		NVRAM_DELAY();
125 		data <<= 1;
126 		reg_data = RD_REG_WORD(&reg->nvram);
127 		if (reg_data & NVR_DATA_IN)
128 			data |= BIT_0;
129 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
130 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
131 		NVRAM_DELAY();
132 	}
133 
134 	/* Deselect chip. */
135 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
136 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
137 	NVRAM_DELAY();
138 
139 	return data;
140 }
141 
142 
143 /**
144  * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
145  *	request routine to get the word from NVRAM.
146  * @ha: HA context
147  * @addr: Address in NVRAM to read
148  *
149  * Returns the word read from nvram @addr.
150  */
151 static uint16_t
152 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
153 {
154 	uint16_t	data;
155 	uint32_t	nv_cmd;
156 
157 	nv_cmd = addr << 16;
158 	nv_cmd |= NV_READ_OP;
159 	data = qla2x00_nvram_request(ha, nv_cmd);
160 
161 	return (data);
162 }
163 
164 /**
165  * qla2x00_nv_deselect() - Deselect NVRAM operations.
166  * @ha: HA context
167  */
168 static void
169 qla2x00_nv_deselect(struct qla_hw_data *ha)
170 {
171 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
172 
173 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
174 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
175 	NVRAM_DELAY();
176 }
177 
178 /**
179  * qla2x00_write_nvram_word() - Write NVRAM data.
180  * @ha: HA context
181  * @addr: Address in NVRAM to write
182  * @data: word to program
183  */
184 static void
185 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
186 {
187 	int count;
188 	uint16_t word;
189 	uint32_t nv_cmd, wait_cnt;
190 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
191 
192 	qla2x00_nv_write(ha, NVR_DATA_OUT);
193 	qla2x00_nv_write(ha, 0);
194 	qla2x00_nv_write(ha, 0);
195 
196 	for (word = 0; word < 8; word++)
197 		qla2x00_nv_write(ha, NVR_DATA_OUT);
198 
199 	qla2x00_nv_deselect(ha);
200 
201 	/* Write data */
202 	nv_cmd = (addr << 16) | NV_WRITE_OP;
203 	nv_cmd |= data;
204 	nv_cmd <<= 5;
205 	for (count = 0; count < 27; count++) {
206 		if (nv_cmd & BIT_31)
207 			qla2x00_nv_write(ha, NVR_DATA_OUT);
208 		else
209 			qla2x00_nv_write(ha, 0);
210 
211 		nv_cmd <<= 1;
212 	}
213 
214 	qla2x00_nv_deselect(ha);
215 
216 	/* Wait for NVRAM to become ready */
217 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
218 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
219 	wait_cnt = NVR_WAIT_CNT;
220 	do {
221 		if (!--wait_cnt) {
222 			DEBUG9_10(qla_printk(KERN_WARNING, ha,
223 			    "NVRAM didn't go ready...\n"));
224 			break;
225 		}
226 		NVRAM_DELAY();
227 		word = RD_REG_WORD(&reg->nvram);
228 	} while ((word & NVR_DATA_IN) == 0);
229 
230 	qla2x00_nv_deselect(ha);
231 
232 	/* Disable writes */
233 	qla2x00_nv_write(ha, NVR_DATA_OUT);
234 	for (count = 0; count < 10; count++)
235 		qla2x00_nv_write(ha, 0);
236 
237 	qla2x00_nv_deselect(ha);
238 }
239 
240 static int
241 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
242 	uint16_t data, uint32_t tmo)
243 {
244 	int ret, count;
245 	uint16_t word;
246 	uint32_t nv_cmd;
247 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
248 
249 	ret = QLA_SUCCESS;
250 
251 	qla2x00_nv_write(ha, NVR_DATA_OUT);
252 	qla2x00_nv_write(ha, 0);
253 	qla2x00_nv_write(ha, 0);
254 
255 	for (word = 0; word < 8; word++)
256 		qla2x00_nv_write(ha, NVR_DATA_OUT);
257 
258 	qla2x00_nv_deselect(ha);
259 
260 	/* Write data */
261 	nv_cmd = (addr << 16) | NV_WRITE_OP;
262 	nv_cmd |= data;
263 	nv_cmd <<= 5;
264 	for (count = 0; count < 27; count++) {
265 		if (nv_cmd & BIT_31)
266 			qla2x00_nv_write(ha, NVR_DATA_OUT);
267 		else
268 			qla2x00_nv_write(ha, 0);
269 
270 		nv_cmd <<= 1;
271 	}
272 
273 	qla2x00_nv_deselect(ha);
274 
275 	/* Wait for NVRAM to become ready */
276 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
277 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
278 	do {
279 		NVRAM_DELAY();
280 		word = RD_REG_WORD(&reg->nvram);
281 		if (!--tmo) {
282 			ret = QLA_FUNCTION_FAILED;
283 			break;
284 		}
285 	} while ((word & NVR_DATA_IN) == 0);
286 
287 	qla2x00_nv_deselect(ha);
288 
289 	/* Disable writes */
290 	qla2x00_nv_write(ha, NVR_DATA_OUT);
291 	for (count = 0; count < 10; count++)
292 		qla2x00_nv_write(ha, 0);
293 
294 	qla2x00_nv_deselect(ha);
295 
296 	return ret;
297 }
298 
299 /**
300  * qla2x00_clear_nvram_protection() -
301  * @ha: HA context
302  */
303 static int
304 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
305 {
306 	int ret, stat;
307 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
308 	uint32_t word, wait_cnt;
309 	uint16_t wprot, wprot_old;
310 
311 	/* Clear NVRAM write protection. */
312 	ret = QLA_FUNCTION_FAILED;
313 
314 	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
315 	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
316 	    __constant_cpu_to_le16(0x1234), 100000);
317 	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 	if (stat != QLA_SUCCESS || wprot != 0x1234) {
319 		/* Write enable. */
320 		qla2x00_nv_write(ha, NVR_DATA_OUT);
321 		qla2x00_nv_write(ha, 0);
322 		qla2x00_nv_write(ha, 0);
323 		for (word = 0; word < 8; word++)
324 			qla2x00_nv_write(ha, NVR_DATA_OUT);
325 
326 		qla2x00_nv_deselect(ha);
327 
328 		/* Enable protection register. */
329 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
330 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
331 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
332 		for (word = 0; word < 8; word++)
333 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
334 
335 		qla2x00_nv_deselect(ha);
336 
337 		/* Clear protection register (ffff is cleared). */
338 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
339 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
340 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
341 		for (word = 0; word < 8; word++)
342 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
343 
344 		qla2x00_nv_deselect(ha);
345 
346 		/* Wait for NVRAM to become ready. */
347 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
348 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
349 		wait_cnt = NVR_WAIT_CNT;
350 		do {
351 			if (!--wait_cnt) {
352 				DEBUG9_10(qla_printk(KERN_WARNING, ha,
353 				    "NVRAM didn't go ready...\n"));
354 				break;
355 			}
356 			NVRAM_DELAY();
357 			word = RD_REG_WORD(&reg->nvram);
358 		} while ((word & NVR_DATA_IN) == 0);
359 
360 		if (wait_cnt)
361 			ret = QLA_SUCCESS;
362 	} else
363 		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
364 
365 	return ret;
366 }
367 
368 static void
369 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
370 {
371 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
372 	uint32_t word, wait_cnt;
373 
374 	if (stat != QLA_SUCCESS)
375 		return;
376 
377 	/* Set NVRAM write protection. */
378 	/* Write enable. */
379 	qla2x00_nv_write(ha, NVR_DATA_OUT);
380 	qla2x00_nv_write(ha, 0);
381 	qla2x00_nv_write(ha, 0);
382 	for (word = 0; word < 8; word++)
383 		qla2x00_nv_write(ha, NVR_DATA_OUT);
384 
385 	qla2x00_nv_deselect(ha);
386 
387 	/* Enable protection register. */
388 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
389 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
390 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
391 	for (word = 0; word < 8; word++)
392 		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
393 
394 	qla2x00_nv_deselect(ha);
395 
396 	/* Enable protection register. */
397 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
398 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
399 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
400 	for (word = 0; word < 8; word++)
401 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
402 
403 	qla2x00_nv_deselect(ha);
404 
405 	/* Wait for NVRAM to become ready. */
406 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
407 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
408 	wait_cnt = NVR_WAIT_CNT;
409 	do {
410 		if (!--wait_cnt) {
411 			DEBUG9_10(qla_printk(KERN_WARNING, ha,
412 			    "NVRAM didn't go ready...\n"));
413 			break;
414 		}
415 		NVRAM_DELAY();
416 		word = RD_REG_WORD(&reg->nvram);
417 	} while ((word & NVR_DATA_IN) == 0);
418 }
419 
420 
421 /*****************************************************************************/
422 /* Flash Manipulation Routines                                               */
423 /*****************************************************************************/
424 
425 #define OPTROM_BURST_SIZE	0x1000
426 #define OPTROM_BURST_DWORDS	(OPTROM_BURST_SIZE / 4)
427 
428 static inline uint32_t
429 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
430 {
431 	return ha->flash_conf_off | faddr;
432 }
433 
434 static inline uint32_t
435 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
436 {
437 	return ha->flash_data_off | faddr;
438 }
439 
440 static inline uint32_t
441 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
442 {
443 	return ha->nvram_conf_off | naddr;
444 }
445 
446 static inline uint32_t
447 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
448 {
449 	return ha->nvram_data_off | naddr;
450 }
451 
452 static uint32_t
453 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
454 {
455 	int rval;
456 	uint32_t cnt, data;
457 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
458 
459 	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
460 	/* Wait for READ cycle to complete. */
461 	rval = QLA_SUCCESS;
462 	for (cnt = 3000;
463 	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
464 	    rval == QLA_SUCCESS; cnt--) {
465 		if (cnt)
466 			udelay(10);
467 		else
468 			rval = QLA_FUNCTION_TIMEOUT;
469 		cond_resched();
470 	}
471 
472 	/* TODO: What happens if we time out? */
473 	data = 0xDEADDEAD;
474 	if (rval == QLA_SUCCESS)
475 		data = RD_REG_DWORD(&reg->flash_data);
476 
477 	return data;
478 }
479 
480 uint32_t *
481 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
482     uint32_t dwords)
483 {
484 	uint32_t i;
485 	struct qla_hw_data *ha = vha->hw;
486 
487 	/* Dword reads to flash. */
488 	for (i = 0; i < dwords; i++, faddr++)
489 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
490 		    flash_data_addr(ha, faddr)));
491 
492 	return dwptr;
493 }
494 
495 static int
496 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
497 {
498 	int rval;
499 	uint32_t cnt;
500 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
501 
502 	WRT_REG_DWORD(&reg->flash_data, data);
503 	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
504 	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
505 	/* Wait for Write cycle to complete. */
506 	rval = QLA_SUCCESS;
507 	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
508 	    rval == QLA_SUCCESS; cnt--) {
509 		if (cnt)
510 			udelay(10);
511 		else
512 			rval = QLA_FUNCTION_TIMEOUT;
513 		cond_resched();
514 	}
515 	return rval;
516 }
517 
518 static void
519 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
520     uint8_t *flash_id)
521 {
522 	uint32_t ids;
523 
524 	ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
525 	*man_id = LSB(ids);
526 	*flash_id = MSB(ids);
527 
528 	/* Check if man_id and flash_id are valid. */
529 	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
530 		/* Read information using 0x9f opcode
531 		 * Device ID, Mfg ID would be read in the format:
532 		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
533 		 * Example: ATMEL 0x00 01 45 1F
534 		 * Extract MFG and Dev ID from last two bytes.
535 		 */
536 		ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
537 		*man_id = LSB(ids);
538 		*flash_id = MSB(ids);
539 	}
540 }
541 
542 static int
543 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
544 {
545 	const char *loc, *locations[] = { "DEF", "PCI" };
546 	uint32_t pcihdr, pcids;
547 	uint32_t *dcode;
548 	uint8_t *buf, *bcode, last_image;
549 	uint16_t cnt, chksum, *wptr;
550 	struct qla_flt_location *fltl;
551 	struct qla_hw_data *ha = vha->hw;
552 	struct req_que *req = ha->req_q_map[0];
553 
554 	/*
555 	 * FLT-location structure resides after the last PCI region.
556 	 */
557 
558 	/* Begin with sane defaults. */
559 	loc = locations[0];
560 	*start = 0;
561 	if (IS_QLA24XX_TYPE(ha))
562 		*start = FA_FLASH_LAYOUT_ADDR_24;
563 	else if (IS_QLA25XX(ha))
564 		*start = FA_FLASH_LAYOUT_ADDR;
565 	else if (IS_QLA81XX(ha))
566 		*start = FA_FLASH_LAYOUT_ADDR_81;
567 	/* Begin with first PCI expansion ROM header. */
568 	buf = (uint8_t *)req->ring;
569 	dcode = (uint32_t *)req->ring;
570 	pcihdr = 0;
571 	last_image = 1;
572 	do {
573 		/* Verify PCI expansion ROM header. */
574 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
575 		bcode = buf + (pcihdr % 4);
576 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
577 			goto end;
578 
579 		/* Locate PCI data structure. */
580 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
581 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
582 		bcode = buf + (pcihdr % 4);
583 
584 		/* Validate signature of PCI data structure. */
585 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
586 		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
587 			goto end;
588 
589 		last_image = bcode[0x15] & BIT_7;
590 
591 		/* Locate next PCI expansion ROM. */
592 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
593 	} while (!last_image);
594 
595 	/* Now verify FLT-location structure. */
596 	fltl = (struct qla_flt_location *)req->ring;
597 	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
598 	    sizeof(struct qla_flt_location) >> 2);
599 	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
600 	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
601 		goto end;
602 
603 	wptr = (uint16_t *)req->ring;
604 	cnt = sizeof(struct qla_flt_location) >> 1;
605 	for (chksum = 0; cnt; cnt--)
606 		chksum += le16_to_cpu(*wptr++);
607 	if (chksum) {
608 		qla_printk(KERN_ERR, ha,
609 		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
610 		qla2x00_dump_buffer(buf, sizeof(struct qla_flt_location));
611 		return QLA_FUNCTION_FAILED;
612 	}
613 
614 	/* Good data.  Use specified location. */
615 	loc = locations[1];
616 	*start = (le16_to_cpu(fltl->start_hi) << 16 |
617 	    le16_to_cpu(fltl->start_lo)) >> 2;
618 end:
619 	DEBUG2(qla_printk(KERN_DEBUG, ha, "FLTL[%s] = 0x%x.\n", loc, *start));
620 	return QLA_SUCCESS;
621 }
622 
623 static void
624 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
625 {
626 	const char *loc, *locations[] = { "DEF", "FLT" };
627 	const uint32_t def_fw[] =
628 		{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
629 	const uint32_t def_boot[] =
630 		{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
631 	const uint32_t def_vpd_nvram[] =
632 		{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
633 	const uint32_t def_vpd0[] =
634 		{ 0, 0, FA_VPD0_ADDR_81 };
635 	const uint32_t def_vpd1[] =
636 		{ 0, 0, FA_VPD1_ADDR_81 };
637 	const uint32_t def_nvram0[] =
638 		{ 0, 0, FA_NVRAM0_ADDR_81 };
639 	const uint32_t def_nvram1[] =
640 		{ 0, 0, FA_NVRAM1_ADDR_81 };
641 	const uint32_t def_fdt[] =
642 		{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
643 			FA_FLASH_DESCR_ADDR_81 };
644 	const uint32_t def_npiv_conf0[] =
645 		{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
646 			FA_NPIV_CONF0_ADDR_81 };
647 	const uint32_t def_npiv_conf1[] =
648 		{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
649 			FA_NPIV_CONF1_ADDR_81 };
650 	uint32_t def;
651 	uint16_t *wptr;
652 	uint16_t cnt, chksum;
653 	uint32_t start;
654 	struct qla_flt_header *flt;
655 	struct qla_flt_region *region;
656 	struct qla_hw_data *ha = vha->hw;
657 	struct req_que *req = ha->req_q_map[0];
658 
659 	ha->flt_region_flt = flt_addr;
660 	wptr = (uint16_t *)req->ring;
661 	flt = (struct qla_flt_header *)req->ring;
662 	region = (struct qla_flt_region *)&flt[1];
663 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
664 	    flt_addr << 2, OPTROM_BURST_SIZE);
665 	if (*wptr == __constant_cpu_to_le16(0xffff))
666 		goto no_flash_data;
667 	if (flt->version != __constant_cpu_to_le16(1)) {
668 		DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported FLT detected: "
669 		    "version=0x%x length=0x%x checksum=0x%x.\n",
670 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
671 		    le16_to_cpu(flt->checksum)));
672 		goto no_flash_data;
673 	}
674 
675 	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
676 	for (chksum = 0; cnt; cnt--)
677 		chksum += le16_to_cpu(*wptr++);
678 	if (chksum) {
679 		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FLT detected: "
680 		    "version=0x%x length=0x%x checksum=0x%x.\n",
681 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
682 		    chksum));
683 		goto no_flash_data;
684 	}
685 
686 	loc = locations[1];
687 	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
688 	for ( ; cnt; cnt--, region++) {
689 		/* Store addresses as DWORD offsets. */
690 		start = le32_to_cpu(region->start) >> 2;
691 
692 		DEBUG3(qla_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x "
693 		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start,
694 		    le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size)));
695 
696 		switch (le32_to_cpu(region->code) & 0xff) {
697 		case FLT_REG_FW:
698 			ha->flt_region_fw = start;
699 			break;
700 		case FLT_REG_BOOT_CODE:
701 			ha->flt_region_boot = start;
702 			break;
703 		case FLT_REG_VPD_0:
704 			ha->flt_region_vpd_nvram = start;
705 			if (ha->flags.port0)
706 				ha->flt_region_vpd = start;
707 			break;
708 		case FLT_REG_VPD_1:
709 			if (!ha->flags.port0)
710 				ha->flt_region_vpd = start;
711 			break;
712 		case FLT_REG_NVRAM_0:
713 			if (ha->flags.port0)
714 				ha->flt_region_nvram = start;
715 			break;
716 		case FLT_REG_NVRAM_1:
717 			if (!ha->flags.port0)
718 				ha->flt_region_nvram = start;
719 			break;
720 		case FLT_REG_FDT:
721 			ha->flt_region_fdt = start;
722 			break;
723 		case FLT_REG_NPIV_CONF_0:
724 			if (ha->flags.port0)
725 				ha->flt_region_npiv_conf = start;
726 			break;
727 		case FLT_REG_NPIV_CONF_1:
728 			if (!ha->flags.port0)
729 				ha->flt_region_npiv_conf = start;
730 			break;
731 		case FLT_REG_GOLD_FW:
732 			ha->flt_region_gold_fw = start;
733 			break;
734 		}
735 	}
736 	goto done;
737 
738 no_flash_data:
739 	/* Use hardcoded defaults. */
740 	loc = locations[0];
741 	def = 0;
742 	if (IS_QLA24XX_TYPE(ha))
743 		def = 0;
744 	else if (IS_QLA25XX(ha))
745 		def = 1;
746 	else if (IS_QLA81XX(ha))
747 		def = 2;
748 	ha->flt_region_fw = def_fw[def];
749 	ha->flt_region_boot = def_boot[def];
750 	ha->flt_region_vpd_nvram = def_vpd_nvram[def];
751 	ha->flt_region_vpd = ha->flags.port0 ?
752 	    def_vpd0[def]: def_vpd1[def];
753 	ha->flt_region_nvram = ha->flags.port0 ?
754 	    def_nvram0[def]: def_nvram1[def];
755 	ha->flt_region_fdt = def_fdt[def];
756 	ha->flt_region_npiv_conf = ha->flags.port0 ?
757 	    def_npiv_conf0[def]: def_npiv_conf1[def];
758 done:
759 	DEBUG2(qla_printk(KERN_DEBUG, ha, "FLT[%s]: boot=0x%x fw=0x%x "
760 	    "vpd_nvram=0x%x vpd=0x%x nvram=0x%x fdt=0x%x flt=0x%x "
761 	    "npiv=0x%x.\n", loc, ha->flt_region_boot, ha->flt_region_fw,
762 	    ha->flt_region_vpd_nvram, ha->flt_region_vpd, ha->flt_region_nvram,
763 	    ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf));
764 }
765 
766 static void
767 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
768 {
769 #define FLASH_BLK_SIZE_4K	0x1000
770 #define FLASH_BLK_SIZE_32K	0x8000
771 #define FLASH_BLK_SIZE_64K	0x10000
772 	const char *loc, *locations[] = { "MID", "FDT" };
773 	uint16_t cnt, chksum;
774 	uint16_t *wptr;
775 	struct qla_fdt_layout *fdt;
776 	uint8_t	man_id, flash_id;
777 	uint16_t mid, fid;
778 	struct qla_hw_data *ha = vha->hw;
779 	struct req_que *req = ha->req_q_map[0];
780 
781 	wptr = (uint16_t *)req->ring;
782 	fdt = (struct qla_fdt_layout *)req->ring;
783 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
784 	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
785 	if (*wptr == __constant_cpu_to_le16(0xffff))
786 		goto no_flash_data;
787 	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
788 	    fdt->sig[3] != 'D')
789 		goto no_flash_data;
790 
791 	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
792 	    cnt++)
793 		chksum += le16_to_cpu(*wptr++);
794 	if (chksum) {
795 		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
796 		    "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
797 		    le16_to_cpu(fdt->version)));
798 		DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt)));
799 		goto no_flash_data;
800 	}
801 
802 	loc = locations[1];
803 	mid = le16_to_cpu(fdt->man_id);
804 	fid = le16_to_cpu(fdt->id);
805 	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
806 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
807 	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
808 	if (fdt->unprotect_sec_cmd) {
809 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
810 		    fdt->unprotect_sec_cmd);
811 		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
812 		    flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
813 		    flash_conf_addr(ha, 0x0336);
814 	}
815 	goto done;
816 no_flash_data:
817 	loc = locations[0];
818 	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
819 	mid = man_id;
820 	fid = flash_id;
821 	ha->fdt_wrt_disable = 0x9c;
822 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
823 	switch (man_id) {
824 	case 0xbf: /* STT flash. */
825 		if (flash_id == 0x8e)
826 			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
827 		else
828 			ha->fdt_block_size = FLASH_BLK_SIZE_32K;
829 
830 		if (flash_id == 0x80)
831 			ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
832 		break;
833 	case 0x13: /* ST M25P80. */
834 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
835 		break;
836 	case 0x1f: /* Atmel 26DF081A. */
837 		ha->fdt_block_size = FLASH_BLK_SIZE_4K;
838 		ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
839 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
840 		ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
841 		break;
842 	default:
843 		/* Default to 64 kb sector size. */
844 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
845 		break;
846 	}
847 done:
848 	DEBUG2(qla_printk(KERN_DEBUG, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x "
849 	    "pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
850 	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
851 	    ha->fdt_unprotect_sec_cmd, ha->fdt_wrt_disable,
852 	    ha->fdt_block_size));
853 }
854 
855 int
856 qla2xxx_get_flash_info(scsi_qla_host_t *vha)
857 {
858 	int ret;
859 	uint32_t flt_addr;
860 	struct qla_hw_data *ha = vha->hw;
861 
862 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA81XX(ha))
863 		return QLA_SUCCESS;
864 
865 	ret = qla2xxx_find_flt_start(vha, &flt_addr);
866 	if (ret != QLA_SUCCESS)
867 		return ret;
868 
869 	qla2xxx_get_flt_info(vha, flt_addr);
870 	qla2xxx_get_fdt_info(vha);
871 
872 	return QLA_SUCCESS;
873 }
874 
875 void
876 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
877 {
878 #define NPIV_CONFIG_SIZE	(16*1024)
879 	void *data;
880 	uint16_t *wptr;
881 	uint16_t cnt, chksum;
882 	int i;
883 	struct qla_npiv_header hdr;
884 	struct qla_npiv_entry *entry;
885 	struct qla_hw_data *ha = vha->hw;
886 
887 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA81XX(ha))
888 		return;
889 
890 	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
891 	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
892 	if (hdr.version == __constant_cpu_to_le16(0xffff))
893 		return;
894 	if (hdr.version != __constant_cpu_to_le16(1)) {
895 		DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported NPIV-Config "
896 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
897 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
898 		    le16_to_cpu(hdr.checksum)));
899 		return;
900 	}
901 
902 	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
903 	if (!data) {
904 		DEBUG2(qla_printk(KERN_INFO, ha, "NPIV-Config: Unable to "
905 		    "allocate memory.\n"));
906 		return;
907 	}
908 
909 	ha->isp_ops->read_optrom(vha, (uint8_t *)data,
910 	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
911 
912 	cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
913 	    sizeof(struct qla_npiv_entry)) >> 1;
914 	for (wptr = data, chksum = 0; cnt; cnt--)
915 		chksum += le16_to_cpu(*wptr++);
916 	if (chksum) {
917 		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent NPIV-Config "
918 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
919 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
920 		    chksum));
921 		goto done;
922 	}
923 
924 	entry = data + sizeof(struct qla_npiv_header);
925 	cnt = le16_to_cpu(hdr.entries);
926 	for (i = 0; cnt; cnt--, entry++, i++) {
927 		uint16_t flags;
928 		struct fc_vport_identifiers vid;
929 		struct fc_vport *vport;
930 
931 		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
932 
933 		flags = le16_to_cpu(entry->flags);
934 		if (flags == 0xffff)
935 			continue;
936 		if ((flags & BIT_0) == 0)
937 			continue;
938 
939 		memset(&vid, 0, sizeof(vid));
940 		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
941 		vid.vport_type = FC_PORTTYPE_NPIV;
942 		vid.disable = false;
943 		vid.port_name = wwn_to_u64(entry->port_name);
944 		vid.node_name = wwn_to_u64(entry->node_name);
945 
946 		DEBUG2(qla_printk(KERN_INFO, ha, "NPIV[%02x]: wwpn=%llx "
947 			"wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
948 			(unsigned long long)vid.port_name,
949 			(unsigned long long)vid.node_name,
950 			le16_to_cpu(entry->vf_id),
951 			entry->q_qos, entry->f_qos));
952 
953 		if (i < QLA_PRECONFIG_VPORTS) {
954 			vport = fc_vport_create(vha->host, 0, &vid);
955 			if (!vport)
956 				qla_printk(KERN_INFO, ha,
957 				"NPIV-Config: Failed to create vport [%02x]: "
958 				"wwpn=%llx wwnn=%llx.\n", cnt,
959 				(unsigned long long)vid.port_name,
960 				(unsigned long long)vid.node_name);
961 		}
962 	}
963 done:
964 	kfree(data);
965 }
966 
967 static int
968 qla24xx_unprotect_flash(scsi_qla_host_t *vha)
969 {
970 	struct qla_hw_data *ha = vha->hw;
971 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
972 
973 	if (ha->flags.fac_supported)
974 		return qla81xx_fac_do_write_enable(vha, 1);
975 
976 	/* Enable flash write. */
977 	WRT_REG_DWORD(&reg->ctrl_status,
978 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
979 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
980 
981 	if (!ha->fdt_wrt_disable)
982 		goto done;
983 
984 	/* Disable flash write-protection, first clear SR protection bit */
985 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
986 	/* Then write zero again to clear remaining SR bits.*/
987 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
988 done:
989 	return QLA_SUCCESS;
990 }
991 
992 static int
993 qla24xx_protect_flash(scsi_qla_host_t *vha)
994 {
995 	uint32_t cnt;
996 	struct qla_hw_data *ha = vha->hw;
997 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
998 
999 	if (ha->flags.fac_supported)
1000 		return qla81xx_fac_do_write_enable(vha, 0);
1001 
1002 	if (!ha->fdt_wrt_disable)
1003 		goto skip_wrt_protect;
1004 
1005 	/* Enable flash write-protection and wait for completion. */
1006 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1007 	    ha->fdt_wrt_disable);
1008 	for (cnt = 300; cnt &&
1009 	    qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1010 	    cnt--) {
1011 		udelay(10);
1012 	}
1013 
1014 skip_wrt_protect:
1015 	/* Disable flash write. */
1016 	WRT_REG_DWORD(&reg->ctrl_status,
1017 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1018 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1019 
1020 	return QLA_SUCCESS;
1021 }
1022 
1023 static int
1024 qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
1025 {
1026 	struct qla_hw_data *ha = vha->hw;
1027 	uint32_t start, finish;
1028 
1029 	if (ha->flags.fac_supported) {
1030 		start = fdata >> 2;
1031 		finish = start + (ha->fdt_block_size >> 2) - 1;
1032 		return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
1033 		    start), flash_data_addr(ha, finish));
1034 	}
1035 
1036 	return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1037 	    (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
1038 	    ((fdata >> 16) & 0xff));
1039 }
1040 
1041 static int
1042 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1043     uint32_t dwords)
1044 {
1045 	int ret;
1046 	uint32_t liter;
1047 	uint32_t sec_mask, rest_addr;
1048 	uint32_t fdata;
1049 	dma_addr_t optrom_dma;
1050 	void *optrom = NULL;
1051 	struct qla_hw_data *ha = vha->hw;
1052 
1053 	/* Prepare burst-capable write on supported ISPs. */
1054 	if ((IS_QLA25XX(ha) || IS_QLA81XX(ha)) && !(faddr & 0xfff) &&
1055 	    dwords > OPTROM_BURST_DWORDS) {
1056 		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1057 		    &optrom_dma, GFP_KERNEL);
1058 		if (!optrom) {
1059 			qla_printk(KERN_DEBUG, ha,
1060 			    "Unable to allocate memory for optrom burst write "
1061 			    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
1062 		}
1063 	}
1064 
1065 	rest_addr = (ha->fdt_block_size >> 2) - 1;
1066 	sec_mask = ~rest_addr;
1067 
1068 	ret = qla24xx_unprotect_flash(vha);
1069 	if (ret != QLA_SUCCESS) {
1070 		qla_printk(KERN_WARNING, ha,
1071 		    "Unable to unprotect flash for update.\n");
1072 		goto done;
1073 	}
1074 
1075 	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1076 		fdata = (faddr & sec_mask) << 2;
1077 
1078 		/* Are we at the beginning of a sector? */
1079 		if ((faddr & rest_addr) == 0) {
1080 			/* Do sector unprotect. */
1081 			if (ha->fdt_unprotect_sec_cmd)
1082 				qla24xx_write_flash_dword(ha,
1083 				    ha->fdt_unprotect_sec_cmd,
1084 				    (fdata & 0xff00) | ((fdata << 16) &
1085 				    0xff0000) | ((fdata >> 16) & 0xff));
1086 			ret = qla24xx_erase_sector(vha, fdata);
1087 			if (ret != QLA_SUCCESS) {
1088 				DEBUG9(qla_printk(KERN_WARNING, ha,
1089 				    "Unable to erase sector: address=%x.\n",
1090 				    faddr));
1091 				break;
1092 			}
1093 		}
1094 
1095 		/* Go with burst-write. */
1096 		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1097 			/* Copy data to DMA'ble buffer. */
1098 			memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1099 
1100 			ret = qla2x00_load_ram(vha, optrom_dma,
1101 			    flash_data_addr(ha, faddr),
1102 			    OPTROM_BURST_DWORDS);
1103 			if (ret != QLA_SUCCESS) {
1104 				qla_printk(KERN_WARNING, ha,
1105 				    "Unable to burst-write optrom segment "
1106 				    "(%x/%x/%llx).\n", ret,
1107 				    flash_data_addr(ha, faddr),
1108 				    (unsigned long long)optrom_dma);
1109 				qla_printk(KERN_WARNING, ha,
1110 				    "Reverting to slow-write.\n");
1111 
1112 				dma_free_coherent(&ha->pdev->dev,
1113 				    OPTROM_BURST_SIZE, optrom, optrom_dma);
1114 				optrom = NULL;
1115 			} else {
1116 				liter += OPTROM_BURST_DWORDS - 1;
1117 				faddr += OPTROM_BURST_DWORDS - 1;
1118 				dwptr += OPTROM_BURST_DWORDS - 1;
1119 				continue;
1120 			}
1121 		}
1122 
1123 		ret = qla24xx_write_flash_dword(ha,
1124 		    flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1125 		if (ret != QLA_SUCCESS) {
1126 			DEBUG9(printk("%s(%ld) Unable to program flash "
1127 			    "address=%x data=%x.\n", __func__,
1128 			    vha->host_no, faddr, *dwptr));
1129 			break;
1130 		}
1131 
1132 		/* Do sector protect. */
1133 		if (ha->fdt_unprotect_sec_cmd &&
1134 		    ((faddr & rest_addr) == rest_addr))
1135 			qla24xx_write_flash_dword(ha,
1136 			    ha->fdt_protect_sec_cmd,
1137 			    (fdata & 0xff00) | ((fdata << 16) &
1138 			    0xff0000) | ((fdata >> 16) & 0xff));
1139 	}
1140 
1141 	ret = qla24xx_protect_flash(vha);
1142 	if (ret != QLA_SUCCESS)
1143 		qla_printk(KERN_WARNING, ha,
1144 		    "Unable to protect flash after update.\n");
1145 done:
1146 	if (optrom)
1147 		dma_free_coherent(&ha->pdev->dev,
1148 		    OPTROM_BURST_SIZE, optrom, optrom_dma);
1149 
1150 	return ret;
1151 }
1152 
1153 uint8_t *
1154 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1155     uint32_t bytes)
1156 {
1157 	uint32_t i;
1158 	uint16_t *wptr;
1159 	struct qla_hw_data *ha = vha->hw;
1160 
1161 	/* Word reads to NVRAM via registers. */
1162 	wptr = (uint16_t *)buf;
1163 	qla2x00_lock_nvram_access(ha);
1164 	for (i = 0; i < bytes >> 1; i++, naddr++)
1165 		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1166 		    naddr));
1167 	qla2x00_unlock_nvram_access(ha);
1168 
1169 	return buf;
1170 }
1171 
1172 uint8_t *
1173 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1174     uint32_t bytes)
1175 {
1176 	uint32_t i;
1177 	uint32_t *dwptr;
1178 	struct qla_hw_data *ha = vha->hw;
1179 
1180 	/* Dword reads to flash. */
1181 	dwptr = (uint32_t *)buf;
1182 	for (i = 0; i < bytes >> 2; i++, naddr++)
1183 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1184 		    nvram_data_addr(ha, naddr)));
1185 
1186 	return buf;
1187 }
1188 
1189 int
1190 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1191     uint32_t bytes)
1192 {
1193 	int ret, stat;
1194 	uint32_t i;
1195 	uint16_t *wptr;
1196 	unsigned long flags;
1197 	struct qla_hw_data *ha = vha->hw;
1198 
1199 	ret = QLA_SUCCESS;
1200 
1201 	spin_lock_irqsave(&ha->hardware_lock, flags);
1202 	qla2x00_lock_nvram_access(ha);
1203 
1204 	/* Disable NVRAM write-protection. */
1205 	stat = qla2x00_clear_nvram_protection(ha);
1206 
1207 	wptr = (uint16_t *)buf;
1208 	for (i = 0; i < bytes >> 1; i++, naddr++) {
1209 		qla2x00_write_nvram_word(ha, naddr,
1210 		    cpu_to_le16(*wptr));
1211 		wptr++;
1212 	}
1213 
1214 	/* Enable NVRAM write-protection. */
1215 	qla2x00_set_nvram_protection(ha, stat);
1216 
1217 	qla2x00_unlock_nvram_access(ha);
1218 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1219 
1220 	return ret;
1221 }
1222 
1223 int
1224 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1225     uint32_t bytes)
1226 {
1227 	int ret;
1228 	uint32_t i;
1229 	uint32_t *dwptr;
1230 	struct qla_hw_data *ha = vha->hw;
1231 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1232 
1233 	ret = QLA_SUCCESS;
1234 
1235 	/* Enable flash write. */
1236 	WRT_REG_DWORD(&reg->ctrl_status,
1237 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1238 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1239 
1240 	/* Disable NVRAM write-protection. */
1241 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1242 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1243 
1244 	/* Dword writes to flash. */
1245 	dwptr = (uint32_t *)buf;
1246 	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1247 		ret = qla24xx_write_flash_dword(ha,
1248 		    nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1249 		if (ret != QLA_SUCCESS) {
1250 			DEBUG9(qla_printk(KERN_WARNING, ha,
1251 			    "Unable to program nvram address=%x data=%x.\n",
1252 			    naddr, *dwptr));
1253 			break;
1254 		}
1255 	}
1256 
1257 	/* Enable NVRAM write-protection. */
1258 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1259 
1260 	/* Disable flash write. */
1261 	WRT_REG_DWORD(&reg->ctrl_status,
1262 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1263 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1264 
1265 	return ret;
1266 }
1267 
1268 uint8_t *
1269 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1270     uint32_t bytes)
1271 {
1272 	uint32_t i;
1273 	uint32_t *dwptr;
1274 	struct qla_hw_data *ha = vha->hw;
1275 
1276 	/* Dword reads to flash. */
1277 	dwptr = (uint32_t *)buf;
1278 	for (i = 0; i < bytes >> 2; i++, naddr++)
1279 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1280 		    flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1281 
1282 	return buf;
1283 }
1284 
1285 int
1286 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1287     uint32_t bytes)
1288 {
1289 	struct qla_hw_data *ha = vha->hw;
1290 #define RMW_BUFFER_SIZE	(64 * 1024)
1291 	uint8_t *dbuf;
1292 
1293 	dbuf = vmalloc(RMW_BUFFER_SIZE);
1294 	if (!dbuf)
1295 		return QLA_MEMORY_ALLOC_FAILED;
1296 	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1297 	    RMW_BUFFER_SIZE);
1298 	memcpy(dbuf + (naddr << 2), buf, bytes);
1299 	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1300 	    RMW_BUFFER_SIZE);
1301 	vfree(dbuf);
1302 
1303 	return QLA_SUCCESS;
1304 }
1305 
1306 static inline void
1307 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1308 {
1309 	if (IS_QLA2322(ha)) {
1310 		/* Flip all colors. */
1311 		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1312 			/* Turn off. */
1313 			ha->beacon_color_state = 0;
1314 			*pflags = GPIO_LED_ALL_OFF;
1315 		} else {
1316 			/* Turn on. */
1317 			ha->beacon_color_state = QLA_LED_ALL_ON;
1318 			*pflags = GPIO_LED_RGA_ON;
1319 		}
1320 	} else {
1321 		/* Flip green led only. */
1322 		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1323 			/* Turn off. */
1324 			ha->beacon_color_state = 0;
1325 			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1326 		} else {
1327 			/* Turn on. */
1328 			ha->beacon_color_state = QLA_LED_GRN_ON;
1329 			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1330 		}
1331 	}
1332 }
1333 
1334 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1335 
1336 void
1337 qla2x00_beacon_blink(struct scsi_qla_host *vha)
1338 {
1339 	uint16_t gpio_enable;
1340 	uint16_t gpio_data;
1341 	uint16_t led_color = 0;
1342 	unsigned long flags;
1343 	struct qla_hw_data *ha = vha->hw;
1344 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1345 
1346 	spin_lock_irqsave(&ha->hardware_lock, flags);
1347 
1348 	/* Save the Original GPIOE. */
1349 	if (ha->pio_address) {
1350 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1351 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1352 	} else {
1353 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1354 		gpio_data = RD_REG_WORD(&reg->gpiod);
1355 	}
1356 
1357 	/* Set the modified gpio_enable values */
1358 	gpio_enable |= GPIO_LED_MASK;
1359 
1360 	if (ha->pio_address) {
1361 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1362 	} else {
1363 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1364 		RD_REG_WORD(&reg->gpioe);
1365 	}
1366 
1367 	qla2x00_flip_colors(ha, &led_color);
1368 
1369 	/* Clear out any previously set LED color. */
1370 	gpio_data &= ~GPIO_LED_MASK;
1371 
1372 	/* Set the new input LED color to GPIOD. */
1373 	gpio_data |= led_color;
1374 
1375 	/* Set the modified gpio_data values */
1376 	if (ha->pio_address) {
1377 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1378 	} else {
1379 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1380 		RD_REG_WORD(&reg->gpiod);
1381 	}
1382 
1383 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1384 }
1385 
1386 int
1387 qla2x00_beacon_on(struct scsi_qla_host *vha)
1388 {
1389 	uint16_t gpio_enable;
1390 	uint16_t gpio_data;
1391 	unsigned long flags;
1392 	struct qla_hw_data *ha = vha->hw;
1393 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1394 
1395 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1396 	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1397 
1398 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1399 		qla_printk(KERN_WARNING, ha,
1400 		    "Unable to update fw options (beacon on).\n");
1401 		return QLA_FUNCTION_FAILED;
1402 	}
1403 
1404 	/* Turn off LEDs. */
1405 	spin_lock_irqsave(&ha->hardware_lock, flags);
1406 	if (ha->pio_address) {
1407 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1408 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1409 	} else {
1410 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1411 		gpio_data = RD_REG_WORD(&reg->gpiod);
1412 	}
1413 	gpio_enable |= GPIO_LED_MASK;
1414 
1415 	/* Set the modified gpio_enable values. */
1416 	if (ha->pio_address) {
1417 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1418 	} else {
1419 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1420 		RD_REG_WORD(&reg->gpioe);
1421 	}
1422 
1423 	/* Clear out previously set LED colour. */
1424 	gpio_data &= ~GPIO_LED_MASK;
1425 	if (ha->pio_address) {
1426 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1427 	} else {
1428 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1429 		RD_REG_WORD(&reg->gpiod);
1430 	}
1431 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1432 
1433 	/*
1434 	 * Let the per HBA timer kick off the blinking process based on
1435 	 * the following flags. No need to do anything else now.
1436 	 */
1437 	ha->beacon_blink_led = 1;
1438 	ha->beacon_color_state = 0;
1439 
1440 	return QLA_SUCCESS;
1441 }
1442 
1443 int
1444 qla2x00_beacon_off(struct scsi_qla_host *vha)
1445 {
1446 	int rval = QLA_SUCCESS;
1447 	struct qla_hw_data *ha = vha->hw;
1448 
1449 	ha->beacon_blink_led = 0;
1450 
1451 	/* Set the on flag so when it gets flipped it will be off. */
1452 	if (IS_QLA2322(ha))
1453 		ha->beacon_color_state = QLA_LED_ALL_ON;
1454 	else
1455 		ha->beacon_color_state = QLA_LED_GRN_ON;
1456 
1457 	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */
1458 
1459 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1460 	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1461 
1462 	rval = qla2x00_set_fw_options(vha, ha->fw_options);
1463 	if (rval != QLA_SUCCESS)
1464 		qla_printk(KERN_WARNING, ha,
1465 		    "Unable to update fw options (beacon off).\n");
1466 	return rval;
1467 }
1468 
1469 
1470 static inline void
1471 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1472 {
1473 	/* Flip all colors. */
1474 	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1475 		/* Turn off. */
1476 		ha->beacon_color_state = 0;
1477 		*pflags = 0;
1478 	} else {
1479 		/* Turn on. */
1480 		ha->beacon_color_state = QLA_LED_ALL_ON;
1481 		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1482 	}
1483 }
1484 
1485 void
1486 qla24xx_beacon_blink(struct scsi_qla_host *vha)
1487 {
1488 	uint16_t led_color = 0;
1489 	uint32_t gpio_data;
1490 	unsigned long flags;
1491 	struct qla_hw_data *ha = vha->hw;
1492 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1493 
1494 	/* Save the Original GPIOD. */
1495 	spin_lock_irqsave(&ha->hardware_lock, flags);
1496 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1497 
1498 	/* Enable the gpio_data reg for update. */
1499 	gpio_data |= GPDX_LED_UPDATE_MASK;
1500 
1501 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1502 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1503 
1504 	/* Set the color bits. */
1505 	qla24xx_flip_colors(ha, &led_color);
1506 
1507 	/* Clear out any previously set LED color. */
1508 	gpio_data &= ~GPDX_LED_COLOR_MASK;
1509 
1510 	/* Set the new input LED color to GPIOD. */
1511 	gpio_data |= led_color;
1512 
1513 	/* Set the modified gpio_data values. */
1514 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1515 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1516 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1517 }
1518 
1519 int
1520 qla24xx_beacon_on(struct scsi_qla_host *vha)
1521 {
1522 	uint32_t gpio_data;
1523 	unsigned long flags;
1524 	struct qla_hw_data *ha = vha->hw;
1525 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1526 
1527 	if (ha->beacon_blink_led == 0) {
1528 		/* Enable firmware for update */
1529 		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1530 
1531 		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1532 			return QLA_FUNCTION_FAILED;
1533 
1534 		if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1535 		    QLA_SUCCESS) {
1536 			qla_printk(KERN_WARNING, ha,
1537 			    "Unable to update fw options (beacon on).\n");
1538 			return QLA_FUNCTION_FAILED;
1539 		}
1540 
1541 		spin_lock_irqsave(&ha->hardware_lock, flags);
1542 		gpio_data = RD_REG_DWORD(&reg->gpiod);
1543 
1544 		/* Enable the gpio_data reg for update. */
1545 		gpio_data |= GPDX_LED_UPDATE_MASK;
1546 		WRT_REG_DWORD(&reg->gpiod, gpio_data);
1547 		RD_REG_DWORD(&reg->gpiod);
1548 
1549 		spin_unlock_irqrestore(&ha->hardware_lock, flags);
1550 	}
1551 
1552 	/* So all colors blink together. */
1553 	ha->beacon_color_state = 0;
1554 
1555 	/* Let the per HBA timer kick off the blinking process. */
1556 	ha->beacon_blink_led = 1;
1557 
1558 	return QLA_SUCCESS;
1559 }
1560 
1561 int
1562 qla24xx_beacon_off(struct scsi_qla_host *vha)
1563 {
1564 	uint32_t gpio_data;
1565 	unsigned long flags;
1566 	struct qla_hw_data *ha = vha->hw;
1567 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1568 
1569 	ha->beacon_blink_led = 0;
1570 	ha->beacon_color_state = QLA_LED_ALL_ON;
1571 
1572 	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */
1573 
1574 	/* Give control back to firmware. */
1575 	spin_lock_irqsave(&ha->hardware_lock, flags);
1576 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1577 
1578 	/* Disable the gpio_data reg for update. */
1579 	gpio_data &= ~GPDX_LED_UPDATE_MASK;
1580 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1581 	RD_REG_DWORD(&reg->gpiod);
1582 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1583 
1584 	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1585 
1586 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1587 		qla_printk(KERN_WARNING, ha,
1588 		    "Unable to update fw options (beacon off).\n");
1589 		return QLA_FUNCTION_FAILED;
1590 	}
1591 
1592 	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1593 		qla_printk(KERN_WARNING, ha,
1594 		    "Unable to get fw options (beacon off).\n");
1595 		return QLA_FUNCTION_FAILED;
1596 	}
1597 
1598 	return QLA_SUCCESS;
1599 }
1600 
1601 
1602 /*
1603  * Flash support routines
1604  */
1605 
1606 /**
1607  * qla2x00_flash_enable() - Setup flash for reading and writing.
1608  * @ha: HA context
1609  */
1610 static void
1611 qla2x00_flash_enable(struct qla_hw_data *ha)
1612 {
1613 	uint16_t data;
1614 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1615 
1616 	data = RD_REG_WORD(&reg->ctrl_status);
1617 	data |= CSR_FLASH_ENABLE;
1618 	WRT_REG_WORD(&reg->ctrl_status, data);
1619 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1620 }
1621 
1622 /**
1623  * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1624  * @ha: HA context
1625  */
1626 static void
1627 qla2x00_flash_disable(struct qla_hw_data *ha)
1628 {
1629 	uint16_t data;
1630 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1631 
1632 	data = RD_REG_WORD(&reg->ctrl_status);
1633 	data &= ~(CSR_FLASH_ENABLE);
1634 	WRT_REG_WORD(&reg->ctrl_status, data);
1635 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1636 }
1637 
1638 /**
1639  * qla2x00_read_flash_byte() - Reads a byte from flash
1640  * @ha: HA context
1641  * @addr: Address in flash to read
1642  *
1643  * A word is read from the chip, but, only the lower byte is valid.
1644  *
1645  * Returns the byte read from flash @addr.
1646  */
1647 static uint8_t
1648 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1649 {
1650 	uint16_t data;
1651 	uint16_t bank_select;
1652 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1653 
1654 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1655 
1656 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1657 		/* Specify 64K address range: */
1658 		/*  clear out Module Select and Flash Address bits [19:16]. */
1659 		bank_select &= ~0xf8;
1660 		bank_select |= addr >> 12 & 0xf0;
1661 		bank_select |= CSR_FLASH_64K_BANK;
1662 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1663 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1664 
1665 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1666 		data = RD_REG_WORD(&reg->flash_data);
1667 
1668 		return (uint8_t)data;
1669 	}
1670 
1671 	/* Setup bit 16 of flash address. */
1672 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1673 		bank_select |= CSR_FLASH_64K_BANK;
1674 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1675 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1676 	} else if (((addr & BIT_16) == 0) &&
1677 	    (bank_select & CSR_FLASH_64K_BANK)) {
1678 		bank_select &= ~(CSR_FLASH_64K_BANK);
1679 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1680 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1681 	}
1682 
1683 	/* Always perform IO mapped accesses to the FLASH registers. */
1684 	if (ha->pio_address) {
1685 		uint16_t data2;
1686 
1687 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1688 		do {
1689 			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1690 			barrier();
1691 			cpu_relax();
1692 			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1693 		} while (data != data2);
1694 	} else {
1695 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1696 		data = qla2x00_debounce_register(&reg->flash_data);
1697 	}
1698 
1699 	return (uint8_t)data;
1700 }
1701 
1702 /**
1703  * qla2x00_write_flash_byte() - Write a byte to flash
1704  * @ha: HA context
1705  * @addr: Address in flash to write
1706  * @data: Data to write
1707  */
1708 static void
1709 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1710 {
1711 	uint16_t bank_select;
1712 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1713 
1714 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1715 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1716 		/* Specify 64K address range: */
1717 		/*  clear out Module Select and Flash Address bits [19:16]. */
1718 		bank_select &= ~0xf8;
1719 		bank_select |= addr >> 12 & 0xf0;
1720 		bank_select |= CSR_FLASH_64K_BANK;
1721 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1722 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1723 
1724 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1725 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1726 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1727 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1728 
1729 		return;
1730 	}
1731 
1732 	/* Setup bit 16 of flash address. */
1733 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1734 		bank_select |= CSR_FLASH_64K_BANK;
1735 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1736 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1737 	} else if (((addr & BIT_16) == 0) &&
1738 	    (bank_select & CSR_FLASH_64K_BANK)) {
1739 		bank_select &= ~(CSR_FLASH_64K_BANK);
1740 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1741 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1742 	}
1743 
1744 	/* Always perform IO mapped accesses to the FLASH registers. */
1745 	if (ha->pio_address) {
1746 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1747 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1748 	} else {
1749 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1750 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1751 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1752 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1753 	}
1754 }
1755 
1756 /**
1757  * qla2x00_poll_flash() - Polls flash for completion.
1758  * @ha: HA context
1759  * @addr: Address in flash to poll
1760  * @poll_data: Data to be polled
1761  * @man_id: Flash manufacturer ID
1762  * @flash_id: Flash ID
1763  *
1764  * This function polls the device until bit 7 of what is read matches data
1765  * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
1766  * out (a fatal error).  The flash book recommeds reading bit 7 again after
1767  * reading bit 5 as a 1.
1768  *
1769  * Returns 0 on success, else non-zero.
1770  */
1771 static int
1772 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
1773     uint8_t man_id, uint8_t flash_id)
1774 {
1775 	int status;
1776 	uint8_t flash_data;
1777 	uint32_t cnt;
1778 
1779 	status = 1;
1780 
1781 	/* Wait for 30 seconds for command to finish. */
1782 	poll_data &= BIT_7;
1783 	for (cnt = 3000000; cnt; cnt--) {
1784 		flash_data = qla2x00_read_flash_byte(ha, addr);
1785 		if ((flash_data & BIT_7) == poll_data) {
1786 			status = 0;
1787 			break;
1788 		}
1789 
1790 		if (man_id != 0x40 && man_id != 0xda) {
1791 			if ((flash_data & BIT_5) && cnt > 2)
1792 				cnt = 2;
1793 		}
1794 		udelay(10);
1795 		barrier();
1796 		cond_resched();
1797 	}
1798 	return status;
1799 }
1800 
1801 /**
1802  * qla2x00_program_flash_address() - Programs a flash address
1803  * @ha: HA context
1804  * @addr: Address in flash to program
1805  * @data: Data to be written in flash
1806  * @man_id: Flash manufacturer ID
1807  * @flash_id: Flash ID
1808  *
1809  * Returns 0 on success, else non-zero.
1810  */
1811 static int
1812 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
1813     uint8_t data, uint8_t man_id, uint8_t flash_id)
1814 {
1815 	/* Write Program Command Sequence. */
1816 	if (IS_OEM_001(ha)) {
1817 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1818 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1819 		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1820 		qla2x00_write_flash_byte(ha, addr, data);
1821 	} else {
1822 		if (man_id == 0xda && flash_id == 0xc1) {
1823 			qla2x00_write_flash_byte(ha, addr, data);
1824 			if (addr & 0x7e)
1825 				return 0;
1826 		} else {
1827 			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1828 			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1829 			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1830 			qla2x00_write_flash_byte(ha, addr, data);
1831 		}
1832 	}
1833 
1834 	udelay(150);
1835 
1836 	/* Wait for write to complete. */
1837 	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1838 }
1839 
1840 /**
1841  * qla2x00_erase_flash() - Erase the flash.
1842  * @ha: HA context
1843  * @man_id: Flash manufacturer ID
1844  * @flash_id: Flash ID
1845  *
1846  * Returns 0 on success, else non-zero.
1847  */
1848 static int
1849 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
1850 {
1851 	/* Individual Sector Erase Command Sequence */
1852 	if (IS_OEM_001(ha)) {
1853 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1854 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1855 		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1856 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1857 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1858 		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1859 	} else {
1860 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1861 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1862 		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1863 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1864 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1865 		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1866 	}
1867 
1868 	udelay(150);
1869 
1870 	/* Wait for erase to complete. */
1871 	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1872 }
1873 
1874 /**
1875  * qla2x00_erase_flash_sector() - Erase a flash sector.
1876  * @ha: HA context
1877  * @addr: Flash sector to erase
1878  * @sec_mask: Sector address mask
1879  * @man_id: Flash manufacturer ID
1880  * @flash_id: Flash ID
1881  *
1882  * Returns 0 on success, else non-zero.
1883  */
1884 static int
1885 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
1886     uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1887 {
1888 	/* Individual Sector Erase Command Sequence */
1889 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1890 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1891 	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1892 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1893 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1894 	if (man_id == 0x1f && flash_id == 0x13)
1895 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
1896 	else
1897 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
1898 
1899 	udelay(150);
1900 
1901 	/* Wait for erase to complete. */
1902 	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
1903 }
1904 
1905 /**
1906  * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
1907  * @man_id: Flash manufacturer ID
1908  * @flash_id: Flash ID
1909  */
1910 static void
1911 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
1912     uint8_t *flash_id)
1913 {
1914 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1915 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1916 	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
1917 	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
1918 	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
1919 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1920 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1921 	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
1922 }
1923 
1924 static void
1925 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
1926 	uint32_t saddr, uint32_t length)
1927 {
1928 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1929 	uint32_t midpoint, ilength;
1930 	uint8_t data;
1931 
1932 	midpoint = length / 2;
1933 
1934 	WRT_REG_WORD(&reg->nvram, 0);
1935 	RD_REG_WORD(&reg->nvram);
1936 	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
1937 		if (ilength == midpoint) {
1938 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1939 			RD_REG_WORD(&reg->nvram);
1940 		}
1941 		data = qla2x00_read_flash_byte(ha, saddr);
1942 		if (saddr % 100)
1943 			udelay(10);
1944 		*tmp_buf = data;
1945 		cond_resched();
1946 	}
1947 }
1948 
1949 static inline void
1950 qla2x00_suspend_hba(struct scsi_qla_host *vha)
1951 {
1952 	int cnt;
1953 	unsigned long flags;
1954 	struct qla_hw_data *ha = vha->hw;
1955 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1956 
1957 	/* Suspend HBA. */
1958 	scsi_block_requests(vha->host);
1959 	ha->isp_ops->disable_intrs(ha);
1960 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1961 
1962 	/* Pause RISC. */
1963 	spin_lock_irqsave(&ha->hardware_lock, flags);
1964 	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
1965 	RD_REG_WORD(&reg->hccr);
1966 	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
1967 		for (cnt = 0; cnt < 30000; cnt++) {
1968 			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
1969 				break;
1970 			udelay(100);
1971 		}
1972 	} else {
1973 		udelay(10);
1974 	}
1975 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1976 }
1977 
1978 static inline void
1979 qla2x00_resume_hba(struct scsi_qla_host *vha)
1980 {
1981 	struct qla_hw_data *ha = vha->hw;
1982 
1983 	/* Resume HBA. */
1984 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1985 	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
1986 	qla2xxx_wake_dpc(vha);
1987 	qla2x00_wait_for_chip_reset(vha);
1988 	scsi_unblock_requests(vha->host);
1989 }
1990 
1991 uint8_t *
1992 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
1993     uint32_t offset, uint32_t length)
1994 {
1995 	uint32_t addr, midpoint;
1996 	uint8_t *data;
1997 	struct qla_hw_data *ha = vha->hw;
1998 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1999 
2000 	/* Suspend HBA. */
2001 	qla2x00_suspend_hba(vha);
2002 
2003 	/* Go with read. */
2004 	midpoint = ha->optrom_size / 2;
2005 
2006 	qla2x00_flash_enable(ha);
2007 	WRT_REG_WORD(&reg->nvram, 0);
2008 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
2009 	for (addr = offset, data = buf; addr < length; addr++, data++) {
2010 		if (addr == midpoint) {
2011 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2012 			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
2013 		}
2014 
2015 		*data = qla2x00_read_flash_byte(ha, addr);
2016 	}
2017 	qla2x00_flash_disable(ha);
2018 
2019 	/* Resume HBA. */
2020 	qla2x00_resume_hba(vha);
2021 
2022 	return buf;
2023 }
2024 
2025 int
2026 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2027     uint32_t offset, uint32_t length)
2028 {
2029 
2030 	int rval;
2031 	uint8_t man_id, flash_id, sec_number, data;
2032 	uint16_t wd;
2033 	uint32_t addr, liter, sec_mask, rest_addr;
2034 	struct qla_hw_data *ha = vha->hw;
2035 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2036 
2037 	/* Suspend HBA. */
2038 	qla2x00_suspend_hba(vha);
2039 
2040 	rval = QLA_SUCCESS;
2041 	sec_number = 0;
2042 
2043 	/* Reset ISP chip. */
2044 	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
2045 	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
2046 
2047 	/* Go with write. */
2048 	qla2x00_flash_enable(ha);
2049 	do {	/* Loop once to provide quick error exit */
2050 		/* Structure of flash memory based on manufacturer */
2051 		if (IS_OEM_001(ha)) {
2052 			/* OEM variant with special flash part. */
2053 			man_id = flash_id = 0;
2054 			rest_addr = 0xffff;
2055 			sec_mask   = 0x10000;
2056 			goto update_flash;
2057 		}
2058 		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
2059 		switch (man_id) {
2060 		case 0x20: /* ST flash. */
2061 			if (flash_id == 0xd2 || flash_id == 0xe3) {
2062 				/*
2063 				 * ST m29w008at part - 64kb sector size with
2064 				 * 32kb,8kb,8kb,16kb sectors at memory address
2065 				 * 0xf0000.
2066 				 */
2067 				rest_addr = 0xffff;
2068 				sec_mask = 0x10000;
2069 				break;
2070 			}
2071 			/*
2072 			 * ST m29w010b part - 16kb sector size
2073 			 * Default to 16kb sectors
2074 			 */
2075 			rest_addr = 0x3fff;
2076 			sec_mask = 0x1c000;
2077 			break;
2078 		case 0x40: /* Mostel flash. */
2079 			/* Mostel v29c51001 part - 512 byte sector size. */
2080 			rest_addr = 0x1ff;
2081 			sec_mask = 0x1fe00;
2082 			break;
2083 		case 0xbf: /* SST flash. */
2084 			/* SST39sf10 part - 4kb sector size. */
2085 			rest_addr = 0xfff;
2086 			sec_mask = 0x1f000;
2087 			break;
2088 		case 0xda: /* Winbond flash. */
2089 			/* Winbond W29EE011 part - 256 byte sector size. */
2090 			rest_addr = 0x7f;
2091 			sec_mask = 0x1ff80;
2092 			break;
2093 		case 0xc2: /* Macronix flash. */
2094 			/* 64k sector size. */
2095 			if (flash_id == 0x38 || flash_id == 0x4f) {
2096 				rest_addr = 0xffff;
2097 				sec_mask = 0x10000;
2098 				break;
2099 			}
2100 			/* Fall through... */
2101 
2102 		case 0x1f: /* Atmel flash. */
2103 			/* 512k sector size. */
2104 			if (flash_id == 0x13) {
2105 				rest_addr = 0x7fffffff;
2106 				sec_mask =   0x80000000;
2107 				break;
2108 			}
2109 			/* Fall through... */
2110 
2111 		case 0x01: /* AMD flash. */
2112 			if (flash_id == 0x38 || flash_id == 0x40 ||
2113 			    flash_id == 0x4f) {
2114 				/* Am29LV081 part - 64kb sector size. */
2115 				/* Am29LV002BT part - 64kb sector size. */
2116 				rest_addr = 0xffff;
2117 				sec_mask = 0x10000;
2118 				break;
2119 			} else if (flash_id == 0x3e) {
2120 				/*
2121 				 * Am29LV008b part - 64kb sector size with
2122 				 * 32kb,8kb,8kb,16kb sector at memory address
2123 				 * h0xf0000.
2124 				 */
2125 				rest_addr = 0xffff;
2126 				sec_mask = 0x10000;
2127 				break;
2128 			} else if (flash_id == 0x20 || flash_id == 0x6e) {
2129 				/*
2130 				 * Am29LV010 part or AM29f010 - 16kb sector
2131 				 * size.
2132 				 */
2133 				rest_addr = 0x3fff;
2134 				sec_mask = 0x1c000;
2135 				break;
2136 			} else if (flash_id == 0x6d) {
2137 				/* Am29LV001 part - 8kb sector size. */
2138 				rest_addr = 0x1fff;
2139 				sec_mask = 0x1e000;
2140 				break;
2141 			}
2142 		default:
2143 			/* Default to 16 kb sector size. */
2144 			rest_addr = 0x3fff;
2145 			sec_mask = 0x1c000;
2146 			break;
2147 		}
2148 
2149 update_flash:
2150 		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2151 			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2152 				rval = QLA_FUNCTION_FAILED;
2153 				break;
2154 			}
2155 		}
2156 
2157 		for (addr = offset, liter = 0; liter < length; liter++,
2158 		    addr++) {
2159 			data = buf[liter];
2160 			/* Are we at the beginning of a sector? */
2161 			if ((addr & rest_addr) == 0) {
2162 				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2163 					if (addr >= 0x10000UL) {
2164 						if (((addr >> 12) & 0xf0) &&
2165 						    ((man_id == 0x01 &&
2166 							flash_id == 0x3e) ||
2167 						     (man_id == 0x20 &&
2168 							 flash_id == 0xd2))) {
2169 							sec_number++;
2170 							if (sec_number == 1) {
2171 								rest_addr =
2172 								    0x7fff;
2173 								sec_mask =
2174 								    0x18000;
2175 							} else if (
2176 							    sec_number == 2 ||
2177 							    sec_number == 3) {
2178 								rest_addr =
2179 								    0x1fff;
2180 								sec_mask =
2181 								    0x1e000;
2182 							} else if (
2183 							    sec_number == 4) {
2184 								rest_addr =
2185 								    0x3fff;
2186 								sec_mask =
2187 								    0x1c000;
2188 							}
2189 						}
2190 					}
2191 				} else if (addr == ha->optrom_size / 2) {
2192 					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2193 					RD_REG_WORD(&reg->nvram);
2194 				}
2195 
2196 				if (flash_id == 0xda && man_id == 0xc1) {
2197 					qla2x00_write_flash_byte(ha, 0x5555,
2198 					    0xaa);
2199 					qla2x00_write_flash_byte(ha, 0x2aaa,
2200 					    0x55);
2201 					qla2x00_write_flash_byte(ha, 0x5555,
2202 					    0xa0);
2203 				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2204 					/* Then erase it */
2205 					if (qla2x00_erase_flash_sector(ha,
2206 					    addr, sec_mask, man_id,
2207 					    flash_id)) {
2208 						rval = QLA_FUNCTION_FAILED;
2209 						break;
2210 					}
2211 					if (man_id == 0x01 && flash_id == 0x6d)
2212 						sec_number++;
2213 				}
2214 			}
2215 
2216 			if (man_id == 0x01 && flash_id == 0x6d) {
2217 				if (sec_number == 1 &&
2218 				    addr == (rest_addr - 1)) {
2219 					rest_addr = 0x0fff;
2220 					sec_mask   = 0x1f000;
2221 				} else if (sec_number == 3 && (addr & 0x7ffe)) {
2222 					rest_addr = 0x3fff;
2223 					sec_mask   = 0x1c000;
2224 				}
2225 			}
2226 
2227 			if (qla2x00_program_flash_address(ha, addr, data,
2228 			    man_id, flash_id)) {
2229 				rval = QLA_FUNCTION_FAILED;
2230 				break;
2231 			}
2232 			cond_resched();
2233 		}
2234 	} while (0);
2235 	qla2x00_flash_disable(ha);
2236 
2237 	/* Resume HBA. */
2238 	qla2x00_resume_hba(vha);
2239 
2240 	return rval;
2241 }
2242 
2243 uint8_t *
2244 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2245     uint32_t offset, uint32_t length)
2246 {
2247 	struct qla_hw_data *ha = vha->hw;
2248 
2249 	/* Suspend HBA. */
2250 	scsi_block_requests(vha->host);
2251 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2252 
2253 	/* Go with read. */
2254 	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2255 
2256 	/* Resume HBA. */
2257 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2258 	scsi_unblock_requests(vha->host);
2259 
2260 	return buf;
2261 }
2262 
2263 int
2264 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2265     uint32_t offset, uint32_t length)
2266 {
2267 	int rval;
2268 	struct qla_hw_data *ha = vha->hw;
2269 
2270 	/* Suspend HBA. */
2271 	scsi_block_requests(vha->host);
2272 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2273 
2274 	/* Go with write. */
2275 	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2276 	    length >> 2);
2277 
2278 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2279 	scsi_unblock_requests(vha->host);
2280 
2281 	return rval;
2282 }
2283 
2284 uint8_t *
2285 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2286     uint32_t offset, uint32_t length)
2287 {
2288 	int rval;
2289 	dma_addr_t optrom_dma;
2290 	void *optrom;
2291 	uint8_t *pbuf;
2292 	uint32_t faddr, left, burst;
2293 	struct qla_hw_data *ha = vha->hw;
2294 
2295 	if (offset & 0xfff)
2296 		goto slow_read;
2297 	if (length < OPTROM_BURST_SIZE)
2298 		goto slow_read;
2299 
2300 	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2301 	    &optrom_dma, GFP_KERNEL);
2302 	if (!optrom) {
2303 		qla_printk(KERN_DEBUG, ha,
2304 		    "Unable to allocate memory for optrom burst read "
2305 		    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
2306 
2307 		goto slow_read;
2308 	}
2309 
2310 	pbuf = buf;
2311 	faddr = offset >> 2;
2312 	left = length >> 2;
2313 	burst = OPTROM_BURST_DWORDS;
2314 	while (left != 0) {
2315 		if (burst > left)
2316 			burst = left;
2317 
2318 		rval = qla2x00_dump_ram(vha, optrom_dma,
2319 		    flash_data_addr(ha, faddr), burst);
2320 		if (rval) {
2321 			qla_printk(KERN_WARNING, ha,
2322 			    "Unable to burst-read optrom segment "
2323 			    "(%x/%x/%llx).\n", rval,
2324 			    flash_data_addr(ha, faddr),
2325 			    (unsigned long long)optrom_dma);
2326 			qla_printk(KERN_WARNING, ha,
2327 			    "Reverting to slow-read.\n");
2328 
2329 			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2330 			    optrom, optrom_dma);
2331 			goto slow_read;
2332 		}
2333 
2334 		memcpy(pbuf, optrom, burst * 4);
2335 
2336 		left -= burst;
2337 		faddr += burst;
2338 		pbuf += burst * 4;
2339 	}
2340 
2341 	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2342 	    optrom_dma);
2343 
2344 	return buf;
2345 
2346 slow_read:
2347     return qla24xx_read_optrom_data(vha, buf, offset, length);
2348 }
2349 
2350 /**
2351  * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2352  * @ha: HA context
2353  * @pcids: Pointer to the FCODE PCI data structure
2354  *
2355  * The process of retrieving the FCODE version information is at best
2356  * described as interesting.
2357  *
2358  * Within the first 100h bytes of the image an ASCII string is present
2359  * which contains several pieces of information including the FCODE
2360  * version.  Unfortunately it seems the only reliable way to retrieve
2361  * the version is by scanning for another sentinel within the string,
2362  * the FCODE build date:
2363  *
2364  *	... 2.00.02 10/17/02 ...
2365  *
2366  * Returns QLA_SUCCESS on successful retrieval of version.
2367  */
2368 static void
2369 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2370 {
2371 	int ret = QLA_FUNCTION_FAILED;
2372 	uint32_t istart, iend, iter, vend;
2373 	uint8_t do_next, rbyte, *vbyte;
2374 
2375 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2376 
2377 	/* Skip the PCI data structure. */
2378 	istart = pcids +
2379 	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2380 		qla2x00_read_flash_byte(ha, pcids + 0x0A));
2381 	iend = istart + 0x100;
2382 	do {
2383 		/* Scan for the sentinel date string...eeewww. */
2384 		do_next = 0;
2385 		iter = istart;
2386 		while ((iter < iend) && !do_next) {
2387 			iter++;
2388 			if (qla2x00_read_flash_byte(ha, iter) == '/') {
2389 				if (qla2x00_read_flash_byte(ha, iter + 2) ==
2390 				    '/')
2391 					do_next++;
2392 				else if (qla2x00_read_flash_byte(ha,
2393 				    iter + 3) == '/')
2394 					do_next++;
2395 			}
2396 		}
2397 		if (!do_next)
2398 			break;
2399 
2400 		/* Backtrack to previous ' ' (space). */
2401 		do_next = 0;
2402 		while ((iter > istart) && !do_next) {
2403 			iter--;
2404 			if (qla2x00_read_flash_byte(ha, iter) == ' ')
2405 				do_next++;
2406 		}
2407 		if (!do_next)
2408 			break;
2409 
2410 		/*
2411 		 * Mark end of version tag, and find previous ' ' (space) or
2412 		 * string length (recent FCODE images -- major hack ahead!!!).
2413 		 */
2414 		vend = iter - 1;
2415 		do_next = 0;
2416 		while ((iter > istart) && !do_next) {
2417 			iter--;
2418 			rbyte = qla2x00_read_flash_byte(ha, iter);
2419 			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2420 				do_next++;
2421 		}
2422 		if (!do_next)
2423 			break;
2424 
2425 		/* Mark beginning of version tag, and copy data. */
2426 		iter++;
2427 		if ((vend - iter) &&
2428 		    ((vend - iter) < sizeof(ha->fcode_revision))) {
2429 			vbyte = ha->fcode_revision;
2430 			while (iter <= vend) {
2431 				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
2432 				iter++;
2433 			}
2434 			ret = QLA_SUCCESS;
2435 		}
2436 	} while (0);
2437 
2438 	if (ret != QLA_SUCCESS)
2439 		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2440 }
2441 
2442 int
2443 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2444 {
2445 	int ret = QLA_SUCCESS;
2446 	uint8_t code_type, last_image;
2447 	uint32_t pcihdr, pcids;
2448 	uint8_t *dbyte;
2449 	uint16_t *dcode;
2450 	struct qla_hw_data *ha = vha->hw;
2451 
2452 	if (!ha->pio_address || !mbuf)
2453 		return QLA_FUNCTION_FAILED;
2454 
2455 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2456 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2457 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2458 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2459 
2460 	qla2x00_flash_enable(ha);
2461 
2462 	/* Begin with first PCI expansion ROM header. */
2463 	pcihdr = 0;
2464 	last_image = 1;
2465 	do {
2466 		/* Verify PCI expansion ROM header. */
2467 		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2468 		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2469 			/* No signature */
2470 			DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
2471 			    "signature.\n"));
2472 			ret = QLA_FUNCTION_FAILED;
2473 			break;
2474 		}
2475 
2476 		/* Locate PCI data structure. */
2477 		pcids = pcihdr +
2478 		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2479 			qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2480 
2481 		/* Validate signature of PCI data structure. */
2482 		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2483 		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2484 		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2485 		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2486 			/* Incorrect header. */
2487 			DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
2488 			    "found pcir_adr=%x.\n", pcids));
2489 			ret = QLA_FUNCTION_FAILED;
2490 			break;
2491 		}
2492 
2493 		/* Read version */
2494 		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2495 		switch (code_type) {
2496 		case ROM_CODE_TYPE_BIOS:
2497 			/* Intel x86, PC-AT compatible. */
2498 			ha->bios_revision[0] =
2499 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2500 			ha->bios_revision[1] =
2501 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2502 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2503 			    ha->bios_revision[1], ha->bios_revision[0]));
2504 			break;
2505 		case ROM_CODE_TYPE_FCODE:
2506 			/* Open Firmware standard for PCI (FCode). */
2507 			/* Eeeewww... */
2508 			qla2x00_get_fcode_version(ha, pcids);
2509 			break;
2510 		case ROM_CODE_TYPE_EFI:
2511 			/* Extensible Firmware Interface (EFI). */
2512 			ha->efi_revision[0] =
2513 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2514 			ha->efi_revision[1] =
2515 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2516 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2517 			    ha->efi_revision[1], ha->efi_revision[0]));
2518 			break;
2519 		default:
2520 			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
2521 			    "type %x at pcids %x.\n", code_type, pcids));
2522 			break;
2523 		}
2524 
2525 		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2526 
2527 		/* Locate next PCI expansion ROM. */
2528 		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2529 		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2530 	} while (!last_image);
2531 
2532 	if (IS_QLA2322(ha)) {
2533 		/* Read firmware image information. */
2534 		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2535 		dbyte = mbuf;
2536 		memset(dbyte, 0, 8);
2537 		dcode = (uint16_t *)dbyte;
2538 
2539 		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2540 		    8);
2541 		DEBUG3(qla_printk(KERN_DEBUG, ha, "dumping fw ver from "
2542 		    "flash:\n"));
2543 		DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
2544 
2545 		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2546 		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2547 		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2548 		    dcode[3] == 0)) {
2549 			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
2550 			    "revision at %x.\n", ha->flt_region_fw * 4));
2551 		} else {
2552 			/* values are in big endian */
2553 			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2554 			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2555 			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2556 		}
2557 	}
2558 
2559 	qla2x00_flash_disable(ha);
2560 
2561 	return ret;
2562 }
2563 
2564 int
2565 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2566 {
2567 	int ret = QLA_SUCCESS;
2568 	uint32_t pcihdr, pcids;
2569 	uint32_t *dcode;
2570 	uint8_t *bcode;
2571 	uint8_t code_type, last_image;
2572 	int i;
2573 	struct qla_hw_data *ha = vha->hw;
2574 
2575 	if (!mbuf)
2576 		return QLA_FUNCTION_FAILED;
2577 
2578 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2579 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2580 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2581 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2582 
2583 	dcode = mbuf;
2584 
2585 	/* Begin with first PCI expansion ROM header. */
2586 	pcihdr = ha->flt_region_boot << 2;
2587 	last_image = 1;
2588 	do {
2589 		/* Verify PCI expansion ROM header. */
2590 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2591 		bcode = mbuf + (pcihdr % 4);
2592 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2593 			/* No signature */
2594 			DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
2595 			    "signature.\n"));
2596 			ret = QLA_FUNCTION_FAILED;
2597 			break;
2598 		}
2599 
2600 		/* Locate PCI data structure. */
2601 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2602 
2603 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2604 		bcode = mbuf + (pcihdr % 4);
2605 
2606 		/* Validate signature of PCI data structure. */
2607 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2608 		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2609 			/* Incorrect header. */
2610 			DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
2611 			    "found pcir_adr=%x.\n", pcids));
2612 			ret = QLA_FUNCTION_FAILED;
2613 			break;
2614 		}
2615 
2616 		/* Read version */
2617 		code_type = bcode[0x14];
2618 		switch (code_type) {
2619 		case ROM_CODE_TYPE_BIOS:
2620 			/* Intel x86, PC-AT compatible. */
2621 			ha->bios_revision[0] = bcode[0x12];
2622 			ha->bios_revision[1] = bcode[0x13];
2623 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2624 			    ha->bios_revision[1], ha->bios_revision[0]));
2625 			break;
2626 		case ROM_CODE_TYPE_FCODE:
2627 			/* Open Firmware standard for PCI (FCode). */
2628 			ha->fcode_revision[0] = bcode[0x12];
2629 			ha->fcode_revision[1] = bcode[0x13];
2630 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read FCODE %d.%d.\n",
2631 			    ha->fcode_revision[1], ha->fcode_revision[0]));
2632 			break;
2633 		case ROM_CODE_TYPE_EFI:
2634 			/* Extensible Firmware Interface (EFI). */
2635 			ha->efi_revision[0] = bcode[0x12];
2636 			ha->efi_revision[1] = bcode[0x13];
2637 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2638 			    ha->efi_revision[1], ha->efi_revision[0]));
2639 			break;
2640 		default:
2641 			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
2642 			    "type %x at pcids %x.\n", code_type, pcids));
2643 			break;
2644 		}
2645 
2646 		last_image = bcode[0x15] & BIT_7;
2647 
2648 		/* Locate next PCI expansion ROM. */
2649 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2650 	} while (!last_image);
2651 
2652 	/* Read firmware image information. */
2653 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2654 	dcode = mbuf;
2655 
2656 	qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2657 	for (i = 0; i < 4; i++)
2658 		dcode[i] = be32_to_cpu(dcode[i]);
2659 
2660 	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2661 	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2662 	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2663 	    dcode[3] == 0)) {
2664 		DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
2665 		    "revision at %x.\n", ha->flt_region_fw * 4));
2666 	} else {
2667 		ha->fw_revision[0] = dcode[0];
2668 		ha->fw_revision[1] = dcode[1];
2669 		ha->fw_revision[2] = dcode[2];
2670 		ha->fw_revision[3] = dcode[3];
2671 	}
2672 
2673 	return ret;
2674 }
2675 
2676 static int
2677 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
2678 {
2679 	if (pos >= end || *pos != 0x82)
2680 		return 0;
2681 
2682 	pos += 3 + pos[1];
2683 	if (pos >= end || *pos != 0x90)
2684 		return 0;
2685 
2686 	pos += 3 + pos[1];
2687 	if (pos >= end || *pos != 0x78)
2688 		return 0;
2689 
2690 	return 1;
2691 }
2692 
2693 int
2694 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2695 {
2696 	struct qla_hw_data *ha = vha->hw;
2697 	uint8_t *pos = ha->vpd;
2698 	uint8_t *end = pos + ha->vpd_size;
2699 	int len = 0;
2700 
2701 	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
2702 		return 0;
2703 
2704 	while (pos < end && *pos != 0x78) {
2705 		len = (*pos == 0x82) ? pos[1] : pos[2];
2706 
2707 		if (!strncmp(pos, key, strlen(key)))
2708 			break;
2709 
2710 		if (*pos != 0x90 && *pos != 0x91)
2711 			pos += len;
2712 
2713 		pos += 3;
2714 	}
2715 
2716 	if (pos < end - len && *pos != 0x78)
2717 		return snprintf(str, size, "%.*s", len, pos + 3);
2718 
2719 	return 0;
2720 }
2721