xref: /openbmc/linux/drivers/scsi/qla2xxx/qla_sup.c (revision 64c70b1c)
1 /*
2  * QLogic Fibre Channel HBA Driver
3  * Copyright (c)  2003-2005 QLogic Corporation
4  *
5  * See LICENSE.qla2xxx for copyright and licensing details.
6  */
7 #include "qla_def.h"
8 
9 #include <linux/delay.h>
10 #include <asm/uaccess.h>
11 
12 static uint16_t qla2x00_nvram_request(scsi_qla_host_t *, uint32_t);
13 static void qla2x00_nv_deselect(scsi_qla_host_t *);
14 static void qla2x00_nv_write(scsi_qla_host_t *, uint16_t);
15 
16 /*
17  * NVRAM support routines
18  */
19 
20 /**
21  * qla2x00_lock_nvram_access() -
22  * @ha: HA context
23  */
24 void
25 qla2x00_lock_nvram_access(scsi_qla_host_t *ha)
26 {
27 	uint16_t data;
28 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
29 
30 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
31 		data = RD_REG_WORD(&reg->nvram);
32 		while (data & NVR_BUSY) {
33 			udelay(100);
34 			data = RD_REG_WORD(&reg->nvram);
35 		}
36 
37 		/* Lock resource */
38 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
39 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
40 		udelay(5);
41 		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
42 		while ((data & BIT_0) == 0) {
43 			/* Lock failed */
44 			udelay(100);
45 			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
46 			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
47 			udelay(5);
48 			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
49 		}
50 	}
51 }
52 
53 /**
54  * qla2x00_unlock_nvram_access() -
55  * @ha: HA context
56  */
57 void
58 qla2x00_unlock_nvram_access(scsi_qla_host_t *ha)
59 {
60 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
61 
62 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
63 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
64 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
65 	}
66 }
67 
68 /**
69  * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
70  *	request routine to get the word from NVRAM.
71  * @ha: HA context
72  * @addr: Address in NVRAM to read
73  *
74  * Returns the word read from nvram @addr.
75  */
76 uint16_t
77 qla2x00_get_nvram_word(scsi_qla_host_t *ha, uint32_t addr)
78 {
79 	uint16_t	data;
80 	uint32_t	nv_cmd;
81 
82 	nv_cmd = addr << 16;
83 	nv_cmd |= NV_READ_OP;
84 	data = qla2x00_nvram_request(ha, nv_cmd);
85 
86 	return (data);
87 }
88 
89 /**
90  * qla2x00_write_nvram_word() - Write NVRAM data.
91  * @ha: HA context
92  * @addr: Address in NVRAM to write
93  * @data: word to program
94  */
95 void
96 qla2x00_write_nvram_word(scsi_qla_host_t *ha, uint32_t addr, uint16_t data)
97 {
98 	int count;
99 	uint16_t word;
100 	uint32_t nv_cmd, wait_cnt;
101 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
102 
103 	qla2x00_nv_write(ha, NVR_DATA_OUT);
104 	qla2x00_nv_write(ha, 0);
105 	qla2x00_nv_write(ha, 0);
106 
107 	for (word = 0; word < 8; word++)
108 		qla2x00_nv_write(ha, NVR_DATA_OUT);
109 
110 	qla2x00_nv_deselect(ha);
111 
112 	/* Write data */
113 	nv_cmd = (addr << 16) | NV_WRITE_OP;
114 	nv_cmd |= data;
115 	nv_cmd <<= 5;
116 	for (count = 0; count < 27; count++) {
117 		if (nv_cmd & BIT_31)
118 			qla2x00_nv_write(ha, NVR_DATA_OUT);
119 		else
120 			qla2x00_nv_write(ha, 0);
121 
122 		nv_cmd <<= 1;
123 	}
124 
125 	qla2x00_nv_deselect(ha);
126 
127 	/* Wait for NVRAM to become ready */
128 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
129 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
130 	wait_cnt = NVR_WAIT_CNT;
131 	do {
132 		if (!--wait_cnt) {
133 			DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
134 			    __func__, ha->host_no));
135 			break;
136 		}
137 		NVRAM_DELAY();
138 		word = RD_REG_WORD(&reg->nvram);
139 	} while ((word & NVR_DATA_IN) == 0);
140 
141 	qla2x00_nv_deselect(ha);
142 
143 	/* Disable writes */
144 	qla2x00_nv_write(ha, NVR_DATA_OUT);
145 	for (count = 0; count < 10; count++)
146 		qla2x00_nv_write(ha, 0);
147 
148 	qla2x00_nv_deselect(ha);
149 }
150 
151 static int
152 qla2x00_write_nvram_word_tmo(scsi_qla_host_t *ha, uint32_t addr, uint16_t data,
153     uint32_t tmo)
154 {
155 	int ret, count;
156 	uint16_t word;
157 	uint32_t nv_cmd;
158 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
159 
160 	ret = QLA_SUCCESS;
161 
162 	qla2x00_nv_write(ha, NVR_DATA_OUT);
163 	qla2x00_nv_write(ha, 0);
164 	qla2x00_nv_write(ha, 0);
165 
166 	for (word = 0; word < 8; word++)
167 		qla2x00_nv_write(ha, NVR_DATA_OUT);
168 
169 	qla2x00_nv_deselect(ha);
170 
171 	/* Write data */
172 	nv_cmd = (addr << 16) | NV_WRITE_OP;
173 	nv_cmd |= data;
174 	nv_cmd <<= 5;
175 	for (count = 0; count < 27; count++) {
176 		if (nv_cmd & BIT_31)
177 			qla2x00_nv_write(ha, NVR_DATA_OUT);
178 		else
179 			qla2x00_nv_write(ha, 0);
180 
181 		nv_cmd <<= 1;
182 	}
183 
184 	qla2x00_nv_deselect(ha);
185 
186 	/* Wait for NVRAM to become ready */
187 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
188 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
189 	do {
190 		NVRAM_DELAY();
191 		word = RD_REG_WORD(&reg->nvram);
192 		if (!--tmo) {
193 			ret = QLA_FUNCTION_FAILED;
194 			break;
195 		}
196 	} while ((word & NVR_DATA_IN) == 0);
197 
198 	qla2x00_nv_deselect(ha);
199 
200 	/* Disable writes */
201 	qla2x00_nv_write(ha, NVR_DATA_OUT);
202 	for (count = 0; count < 10; count++)
203 		qla2x00_nv_write(ha, 0);
204 
205 	qla2x00_nv_deselect(ha);
206 
207 	return ret;
208 }
209 
210 /**
211  * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
212  *	NVRAM.
213  * @ha: HA context
214  * @nv_cmd: NVRAM command
215  *
216  * Bit definitions for NVRAM command:
217  *
218  *	Bit 26     = start bit
219  *	Bit 25, 24 = opcode
220  *	Bit 23-16  = address
221  *	Bit 15-0   = write data
222  *
223  * Returns the word read from nvram @addr.
224  */
225 static uint16_t
226 qla2x00_nvram_request(scsi_qla_host_t *ha, uint32_t nv_cmd)
227 {
228 	uint8_t		cnt;
229 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
230 	uint16_t	data = 0;
231 	uint16_t	reg_data;
232 
233 	/* Send command to NVRAM. */
234 	nv_cmd <<= 5;
235 	for (cnt = 0; cnt < 11; cnt++) {
236 		if (nv_cmd & BIT_31)
237 			qla2x00_nv_write(ha, NVR_DATA_OUT);
238 		else
239 			qla2x00_nv_write(ha, 0);
240 		nv_cmd <<= 1;
241 	}
242 
243 	/* Read data from NVRAM. */
244 	for (cnt = 0; cnt < 16; cnt++) {
245 		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
246 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
247 		NVRAM_DELAY();
248 		data <<= 1;
249 		reg_data = RD_REG_WORD(&reg->nvram);
250 		if (reg_data & NVR_DATA_IN)
251 			data |= BIT_0;
252 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
253 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
254 		NVRAM_DELAY();
255 	}
256 
257 	/* Deselect chip. */
258 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
259 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
260 	NVRAM_DELAY();
261 
262 	return (data);
263 }
264 
265 /**
266  * qla2x00_nv_write() - Clean NVRAM operations.
267  * @ha: HA context
268  */
269 static void
270 qla2x00_nv_deselect(scsi_qla_host_t *ha)
271 {
272 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
273 
274 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
275 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
276 	NVRAM_DELAY();
277 }
278 
279 /**
280  * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
281  * @ha: HA context
282  * @data: Serial interface selector
283  */
284 static void
285 qla2x00_nv_write(scsi_qla_host_t *ha, uint16_t data)
286 {
287 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
288 
289 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
290 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
291 	NVRAM_DELAY();
292 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT| NVR_CLOCK |
293 	    NVR_WRT_ENABLE);
294 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
295 	NVRAM_DELAY();
296 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
297 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
298 	NVRAM_DELAY();
299 }
300 
301 /**
302  * qla2x00_clear_nvram_protection() -
303  * @ha: HA context
304  */
305 static int
306 qla2x00_clear_nvram_protection(scsi_qla_host_t *ha)
307 {
308 	int ret, stat;
309 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
310 	uint32_t word, wait_cnt;
311 	uint16_t wprot, wprot_old;
312 
313 	/* Clear NVRAM write protection. */
314 	ret = QLA_FUNCTION_FAILED;
315 
316 	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
317 	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
318 	    __constant_cpu_to_le16(0x1234), 100000);
319 	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
320 	if (stat != QLA_SUCCESS || wprot != 0x1234) {
321 		/* Write enable. */
322 		qla2x00_nv_write(ha, NVR_DATA_OUT);
323 		qla2x00_nv_write(ha, 0);
324 		qla2x00_nv_write(ha, 0);
325 		for (word = 0; word < 8; word++)
326 			qla2x00_nv_write(ha, NVR_DATA_OUT);
327 
328 		qla2x00_nv_deselect(ha);
329 
330 		/* Enable protection register. */
331 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
332 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
333 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
334 		for (word = 0; word < 8; word++)
335 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
336 
337 		qla2x00_nv_deselect(ha);
338 
339 		/* Clear protection register (ffff is cleared). */
340 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
341 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
343 		for (word = 0; word < 8; word++)
344 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
345 
346 		qla2x00_nv_deselect(ha);
347 
348 		/* Wait for NVRAM to become ready. */
349 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
350 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
351 		wait_cnt = NVR_WAIT_CNT;
352 		do {
353 			if (!--wait_cnt) {
354 				DEBUG9_10(printk("%s(%ld): NVRAM didn't go "
355 				    "ready...\n", __func__,
356 				    ha->host_no));
357 				break;
358 			}
359 			NVRAM_DELAY();
360 			word = RD_REG_WORD(&reg->nvram);
361 		} while ((word & NVR_DATA_IN) == 0);
362 
363 		if (wait_cnt)
364 			ret = QLA_SUCCESS;
365 	} else
366 		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
367 
368 	return ret;
369 }
370 
371 static void
372 qla2x00_set_nvram_protection(scsi_qla_host_t *ha, int stat)
373 {
374 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
375 	uint32_t word, wait_cnt;
376 
377 	if (stat != QLA_SUCCESS)
378 		return;
379 
380 	/* Set NVRAM write protection. */
381 	/* Write enable. */
382 	qla2x00_nv_write(ha, NVR_DATA_OUT);
383 	qla2x00_nv_write(ha, 0);
384 	qla2x00_nv_write(ha, 0);
385 	for (word = 0; word < 8; word++)
386 		qla2x00_nv_write(ha, NVR_DATA_OUT);
387 
388 	qla2x00_nv_deselect(ha);
389 
390 	/* Enable protection register. */
391 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
392 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
393 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
394 	for (word = 0; word < 8; word++)
395 		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
396 
397 	qla2x00_nv_deselect(ha);
398 
399 	/* Enable protection register. */
400 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
401 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
402 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
403 	for (word = 0; word < 8; word++)
404 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
405 
406 	qla2x00_nv_deselect(ha);
407 
408 	/* Wait for NVRAM to become ready. */
409 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
410 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
411 	wait_cnt = NVR_WAIT_CNT;
412 	do {
413 		if (!--wait_cnt) {
414 			DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
415 			    __func__, ha->host_no));
416 			break;
417 		}
418 		NVRAM_DELAY();
419 		word = RD_REG_WORD(&reg->nvram);
420 	} while ((word & NVR_DATA_IN) == 0);
421 }
422 
423 
424 /*****************************************************************************/
425 /* Flash Manipulation Routines                                               */
426 /*****************************************************************************/
427 
428 static inline uint32_t
429 flash_conf_to_access_addr(uint32_t faddr)
430 {
431 	return FARX_ACCESS_FLASH_CONF | faddr;
432 }
433 
434 static inline uint32_t
435 flash_data_to_access_addr(uint32_t faddr)
436 {
437 	return FARX_ACCESS_FLASH_DATA | faddr;
438 }
439 
440 static inline uint32_t
441 nvram_conf_to_access_addr(uint32_t naddr)
442 {
443 	return FARX_ACCESS_NVRAM_CONF | naddr;
444 }
445 
446 static inline uint32_t
447 nvram_data_to_access_addr(uint32_t naddr)
448 {
449 	return FARX_ACCESS_NVRAM_DATA | naddr;
450 }
451 
452 static uint32_t
453 qla24xx_read_flash_dword(scsi_qla_host_t *ha, uint32_t addr)
454 {
455 	int rval;
456 	uint32_t cnt, data;
457 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
458 
459 	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
460 	/* Wait for READ cycle to complete. */
461 	rval = QLA_SUCCESS;
462 	for (cnt = 3000;
463 	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
464 	    rval == QLA_SUCCESS; cnt--) {
465 		if (cnt)
466 			udelay(10);
467 		else
468 			rval = QLA_FUNCTION_TIMEOUT;
469 		cond_resched();
470 	}
471 
472 	/* TODO: What happens if we time out? */
473 	data = 0xDEADDEAD;
474 	if (rval == QLA_SUCCESS)
475 		data = RD_REG_DWORD(&reg->flash_data);
476 
477 	return data;
478 }
479 
480 uint32_t *
481 qla24xx_read_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
482     uint32_t dwords)
483 {
484 	uint32_t i;
485 
486 	/* Dword reads to flash. */
487 	for (i = 0; i < dwords; i++, faddr++)
488 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
489 		    flash_data_to_access_addr(faddr)));
490 
491 	return dwptr;
492 }
493 
494 static int
495 qla24xx_write_flash_dword(scsi_qla_host_t *ha, uint32_t addr, uint32_t data)
496 {
497 	int rval;
498 	uint32_t cnt;
499 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
500 
501 	WRT_REG_DWORD(&reg->flash_data, data);
502 	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
503 	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
504 	/* Wait for Write cycle to complete. */
505 	rval = QLA_SUCCESS;
506 	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
507 	    rval == QLA_SUCCESS; cnt--) {
508 		if (cnt)
509 			udelay(10);
510 		else
511 			rval = QLA_FUNCTION_TIMEOUT;
512 		cond_resched();
513 	}
514 	return rval;
515 }
516 
517 static void
518 qla24xx_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
519     uint8_t *flash_id)
520 {
521 	uint32_t ids;
522 
523 	ids = qla24xx_read_flash_dword(ha, flash_data_to_access_addr(0xd03ab));
524 	*man_id = LSB(ids);
525 	*flash_id = MSB(ids);
526 
527 	/* Check if man_id and flash_id are valid. */
528 	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
529 		/* Read information using 0x9f opcode
530 		 * Device ID, Mfg ID would be read in the format:
531 		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
532 		 * Example: ATMEL 0x00 01 45 1F
533 		 * Extract MFG and Dev ID from last two bytes.
534 		 */
535 		ids = qla24xx_read_flash_dword(ha,
536 		    flash_data_to_access_addr(0xd009f));
537 		*man_id = LSB(ids);
538 		*flash_id = MSB(ids);
539 	}
540 }
541 
542 static int
543 qla24xx_write_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
544     uint32_t dwords)
545 {
546 	int ret;
547 	uint32_t liter;
548 	uint32_t sec_mask, rest_addr, conf_addr, sec_end_mask;
549 	uint32_t fdata, findex ;
550 	uint8_t	man_id, flash_id;
551 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
552 
553 	ret = QLA_SUCCESS;
554 
555 	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
556 	DEBUG9(printk("%s(%ld): Flash man_id=%d flash_id=%d\n", __func__,
557 	    ha->host_no, man_id, flash_id));
558 
559 	sec_end_mask = 0;
560 	conf_addr = flash_conf_to_access_addr(0x03d8);
561 	switch (man_id) {
562 	case 0xbf: /* STT flash. */
563 		rest_addr = 0x1fff;
564 		sec_mask = 0x3e000;
565 		if (flash_id == 0x80)
566 			conf_addr = flash_conf_to_access_addr(0x0352);
567 		break;
568 	case 0x13: /* ST M25P80. */
569 		rest_addr = 0x3fff;
570 		sec_mask = 0x3c000;
571 		break;
572 	case 0x1f: // Atmel 26DF081A
573 		rest_addr = 0x0fff;
574 		sec_mask = 0xff000;
575 		sec_end_mask = 0x003ff;
576 		conf_addr = flash_conf_to_access_addr(0x0320);
577 		break;
578 	default:
579 		/* Default to 64 kb sector size. */
580 		rest_addr = 0x3fff;
581 		sec_mask = 0x3c000;
582 		break;
583 	}
584 
585 	/* Enable flash write. */
586 	WRT_REG_DWORD(&reg->ctrl_status,
587 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
588 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
589 
590 	/* Disable flash write-protection. */
591 	qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
592 	/* Some flash parts need an additional zero-write to clear bits.*/
593 	qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
594 
595 	do {    /* Loop once to provide quick error exit. */
596 		for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
597 			if (man_id == 0x1f) {
598 				findex = faddr << 2;
599 				fdata = findex & sec_mask;
600 			} else {
601 				findex = faddr;
602 				fdata = (findex & sec_mask) << 2;
603 			}
604 
605 			/* Are we at the beginning of a sector? */
606 			if ((findex & rest_addr) == 0) {
607 				/*
608 				 * Do sector unprotect at 4K boundry for Atmel
609 				 * part.
610 				 */
611 				if (man_id == 0x1f)
612 					qla24xx_write_flash_dword(ha,
613 					    flash_conf_to_access_addr(0x0339),
614 					    (fdata & 0xff00) | ((fdata << 16) &
615 					    0xff0000) | ((fdata >> 16) & 0xff));
616 				ret = qla24xx_write_flash_dword(ha, conf_addr,
617 				    (fdata & 0xff00) |((fdata << 16) &
618 				    0xff0000) | ((fdata >> 16) & 0xff));
619 				if (ret != QLA_SUCCESS) {
620 					DEBUG9(printk("%s(%ld) Unable to flash "
621 					    "sector: address=%x.\n", __func__,
622 					    ha->host_no, faddr));
623 					break;
624 				}
625 			}
626 			ret = qla24xx_write_flash_dword(ha,
627 			    flash_data_to_access_addr(faddr),
628 			    cpu_to_le32(*dwptr));
629 			if (ret != QLA_SUCCESS) {
630 				DEBUG9(printk("%s(%ld) Unable to program flash "
631 				    "address=%x data=%x.\n", __func__,
632 				    ha->host_no, faddr, *dwptr));
633 				break;
634 			}
635 
636 			/* Do sector protect at 4K boundry for Atmel part. */
637 			if (man_id == 0x1f &&
638 			    ((faddr & sec_end_mask) == 0x3ff))
639 				qla24xx_write_flash_dword(ha,
640 				    flash_conf_to_access_addr(0x0336),
641 				    (fdata & 0xff00) | ((fdata << 16) &
642 				    0xff0000) | ((fdata >> 16) & 0xff));
643 		}
644 	} while (0);
645 
646 	/* Enable flash write-protection. */
647 	qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0x9c);
648 
649 	/* Disable flash write. */
650 	WRT_REG_DWORD(&reg->ctrl_status,
651 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
652 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
653 
654 	return ret;
655 }
656 
657 uint8_t *
658 qla2x00_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
659     uint32_t bytes)
660 {
661 	uint32_t i;
662 	uint16_t *wptr;
663 
664 	/* Word reads to NVRAM via registers. */
665 	wptr = (uint16_t *)buf;
666 	qla2x00_lock_nvram_access(ha);
667 	for (i = 0; i < bytes >> 1; i++, naddr++)
668 		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
669 		    naddr));
670 	qla2x00_unlock_nvram_access(ha);
671 
672 	return buf;
673 }
674 
675 uint8_t *
676 qla24xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
677     uint32_t bytes)
678 {
679 	uint32_t i;
680 	uint32_t *dwptr;
681 
682 	/* Dword reads to flash. */
683 	dwptr = (uint32_t *)buf;
684 	for (i = 0; i < bytes >> 2; i++, naddr++)
685 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
686 		    nvram_data_to_access_addr(naddr)));
687 
688 	return buf;
689 }
690 
691 int
692 qla2x00_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
693     uint32_t bytes)
694 {
695 	int ret, stat;
696 	uint32_t i;
697 	uint16_t *wptr;
698 
699 	ret = QLA_SUCCESS;
700 
701 	qla2x00_lock_nvram_access(ha);
702 
703 	/* Disable NVRAM write-protection. */
704 	stat = qla2x00_clear_nvram_protection(ha);
705 
706 	wptr = (uint16_t *)buf;
707 	for (i = 0; i < bytes >> 1; i++, naddr++) {
708 		qla2x00_write_nvram_word(ha, naddr,
709 		    cpu_to_le16(*wptr));
710 		wptr++;
711 	}
712 
713 	/* Enable NVRAM write-protection. */
714 	qla2x00_set_nvram_protection(ha, stat);
715 
716 	qla2x00_unlock_nvram_access(ha);
717 
718 	return ret;
719 }
720 
721 int
722 qla24xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
723     uint32_t bytes)
724 {
725 	int ret;
726 	uint32_t i;
727 	uint32_t *dwptr;
728 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
729 
730 	ret = QLA_SUCCESS;
731 
732 	/* Enable flash write. */
733 	WRT_REG_DWORD(&reg->ctrl_status,
734 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
735 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
736 
737 	/* Disable NVRAM write-protection. */
738 	qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
739 	    0);
740 	qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
741 	    0);
742 
743 	/* Dword writes to flash. */
744 	dwptr = (uint32_t *)buf;
745 	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
746 		ret = qla24xx_write_flash_dword(ha,
747 		    nvram_data_to_access_addr(naddr),
748 		    cpu_to_le32(*dwptr));
749 		if (ret != QLA_SUCCESS) {
750 			DEBUG9(printk("%s(%ld) Unable to program "
751 			    "nvram address=%x data=%x.\n", __func__,
752 			    ha->host_no, naddr, *dwptr));
753 			break;
754 		}
755 	}
756 
757 	/* Enable NVRAM write-protection. */
758 	qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
759 	    0x8c);
760 
761 	/* Disable flash write. */
762 	WRT_REG_DWORD(&reg->ctrl_status,
763 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
764 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
765 
766 	return ret;
767 }
768 
769 
770 static inline void
771 qla2x00_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
772 {
773 	if (IS_QLA2322(ha)) {
774 		/* Flip all colors. */
775 		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
776 			/* Turn off. */
777 			ha->beacon_color_state = 0;
778 			*pflags = GPIO_LED_ALL_OFF;
779 		} else {
780 			/* Turn on. */
781 			ha->beacon_color_state = QLA_LED_ALL_ON;
782 			*pflags = GPIO_LED_RGA_ON;
783 		}
784 	} else {
785 		/* Flip green led only. */
786 		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
787 			/* Turn off. */
788 			ha->beacon_color_state = 0;
789 			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
790 		} else {
791 			/* Turn on. */
792 			ha->beacon_color_state = QLA_LED_GRN_ON;
793 			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
794 		}
795 	}
796 }
797 
798 void
799 qla2x00_beacon_blink(struct scsi_qla_host *ha)
800 {
801 	uint16_t gpio_enable;
802 	uint16_t gpio_data;
803 	uint16_t led_color = 0;
804 	unsigned long flags;
805 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
806 
807 	if (ha->pio_address)
808 		reg = (struct device_reg_2xxx __iomem *)ha->pio_address;
809 
810 	spin_lock_irqsave(&ha->hardware_lock, flags);
811 
812 	/* Save the Original GPIOE. */
813 	if (ha->pio_address) {
814 		gpio_enable = RD_REG_WORD_PIO(&reg->gpioe);
815 		gpio_data = RD_REG_WORD_PIO(&reg->gpiod);
816 	} else {
817 		gpio_enable = RD_REG_WORD(&reg->gpioe);
818 		gpio_data = RD_REG_WORD(&reg->gpiod);
819 	}
820 
821 	/* Set the modified gpio_enable values */
822 	gpio_enable |= GPIO_LED_MASK;
823 
824 	if (ha->pio_address) {
825 		WRT_REG_WORD_PIO(&reg->gpioe, gpio_enable);
826 	} else {
827 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
828 		RD_REG_WORD(&reg->gpioe);
829 	}
830 
831 	qla2x00_flip_colors(ha, &led_color);
832 
833 	/* Clear out any previously set LED color. */
834 	gpio_data &= ~GPIO_LED_MASK;
835 
836 	/* Set the new input LED color to GPIOD. */
837 	gpio_data |= led_color;
838 
839 	/* Set the modified gpio_data values */
840 	if (ha->pio_address) {
841 		WRT_REG_WORD_PIO(&reg->gpiod, gpio_data);
842 	} else {
843 		WRT_REG_WORD(&reg->gpiod, gpio_data);
844 		RD_REG_WORD(&reg->gpiod);
845 	}
846 
847 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
848 }
849 
850 int
851 qla2x00_beacon_on(struct scsi_qla_host *ha)
852 {
853 	uint16_t gpio_enable;
854 	uint16_t gpio_data;
855 	unsigned long flags;
856 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
857 
858 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
859 	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
860 
861 	if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
862 		qla_printk(KERN_WARNING, ha,
863 		    "Unable to update fw options (beacon on).\n");
864 		return QLA_FUNCTION_FAILED;
865 	}
866 
867 	if (ha->pio_address)
868 		reg = (struct device_reg_2xxx __iomem *)ha->pio_address;
869 
870 	/* Turn off LEDs. */
871 	spin_lock_irqsave(&ha->hardware_lock, flags);
872 	if (ha->pio_address) {
873 		gpio_enable = RD_REG_WORD_PIO(&reg->gpioe);
874 		gpio_data = RD_REG_WORD_PIO(&reg->gpiod);
875 	} else {
876 		gpio_enable = RD_REG_WORD(&reg->gpioe);
877 		gpio_data = RD_REG_WORD(&reg->gpiod);
878 	}
879 	gpio_enable |= GPIO_LED_MASK;
880 
881 	/* Set the modified gpio_enable values. */
882 	if (ha->pio_address) {
883 		WRT_REG_WORD_PIO(&reg->gpioe, gpio_enable);
884 	} else {
885 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
886 		RD_REG_WORD(&reg->gpioe);
887 	}
888 
889 	/* Clear out previously set LED colour. */
890 	gpio_data &= ~GPIO_LED_MASK;
891 	if (ha->pio_address) {
892 		WRT_REG_WORD_PIO(&reg->gpiod, gpio_data);
893 	} else {
894 		WRT_REG_WORD(&reg->gpiod, gpio_data);
895 		RD_REG_WORD(&reg->gpiod);
896 	}
897 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
898 
899 	/*
900 	 * Let the per HBA timer kick off the blinking process based on
901 	 * the following flags. No need to do anything else now.
902 	 */
903 	ha->beacon_blink_led = 1;
904 	ha->beacon_color_state = 0;
905 
906 	return QLA_SUCCESS;
907 }
908 
909 int
910 qla2x00_beacon_off(struct scsi_qla_host *ha)
911 {
912 	int rval = QLA_SUCCESS;
913 
914 	ha->beacon_blink_led = 0;
915 
916 	/* Set the on flag so when it gets flipped it will be off. */
917 	if (IS_QLA2322(ha))
918 		ha->beacon_color_state = QLA_LED_ALL_ON;
919 	else
920 		ha->beacon_color_state = QLA_LED_GRN_ON;
921 
922 	ha->isp_ops.beacon_blink(ha);	/* This turns green LED off */
923 
924 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
925 	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
926 
927 	rval = qla2x00_set_fw_options(ha, ha->fw_options);
928 	if (rval != QLA_SUCCESS)
929 		qla_printk(KERN_WARNING, ha,
930 		    "Unable to update fw options (beacon off).\n");
931 	return rval;
932 }
933 
934 
935 static inline void
936 qla24xx_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
937 {
938 	/* Flip all colors. */
939 	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
940 		/* Turn off. */
941 		ha->beacon_color_state = 0;
942 		*pflags = 0;
943 	} else {
944 		/* Turn on. */
945 		ha->beacon_color_state = QLA_LED_ALL_ON;
946 		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
947 	}
948 }
949 
950 void
951 qla24xx_beacon_blink(struct scsi_qla_host *ha)
952 {
953 	uint16_t led_color = 0;
954 	uint32_t gpio_data;
955 	unsigned long flags;
956 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
957 
958 	/* Save the Original GPIOD. */
959 	spin_lock_irqsave(&ha->hardware_lock, flags);
960 	gpio_data = RD_REG_DWORD(&reg->gpiod);
961 
962 	/* Enable the gpio_data reg for update. */
963 	gpio_data |= GPDX_LED_UPDATE_MASK;
964 
965 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
966 	gpio_data = RD_REG_DWORD(&reg->gpiod);
967 
968 	/* Set the color bits. */
969 	qla24xx_flip_colors(ha, &led_color);
970 
971 	/* Clear out any previously set LED color. */
972 	gpio_data &= ~GPDX_LED_COLOR_MASK;
973 
974 	/* Set the new input LED color to GPIOD. */
975 	gpio_data |= led_color;
976 
977 	/* Set the modified gpio_data values. */
978 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
979 	gpio_data = RD_REG_DWORD(&reg->gpiod);
980 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
981 }
982 
983 int
984 qla24xx_beacon_on(struct scsi_qla_host *ha)
985 {
986 	uint32_t gpio_data;
987 	unsigned long flags;
988 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
989 
990 	if (ha->beacon_blink_led == 0) {
991 		/* Enable firmware for update */
992 		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
993 
994 		if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS)
995 			return QLA_FUNCTION_FAILED;
996 
997 		if (qla2x00_get_fw_options(ha, ha->fw_options) !=
998 		    QLA_SUCCESS) {
999 			qla_printk(KERN_WARNING, ha,
1000 			    "Unable to update fw options (beacon on).\n");
1001 			return QLA_FUNCTION_FAILED;
1002 		}
1003 
1004 		spin_lock_irqsave(&ha->hardware_lock, flags);
1005 		gpio_data = RD_REG_DWORD(&reg->gpiod);
1006 
1007 		/* Enable the gpio_data reg for update. */
1008 		gpio_data |= GPDX_LED_UPDATE_MASK;
1009 		WRT_REG_DWORD(&reg->gpiod, gpio_data);
1010 		RD_REG_DWORD(&reg->gpiod);
1011 
1012 		spin_unlock_irqrestore(&ha->hardware_lock, flags);
1013 	}
1014 
1015 	/* So all colors blink together. */
1016 	ha->beacon_color_state = 0;
1017 
1018 	/* Let the per HBA timer kick off the blinking process. */
1019 	ha->beacon_blink_led = 1;
1020 
1021 	return QLA_SUCCESS;
1022 }
1023 
1024 int
1025 qla24xx_beacon_off(struct scsi_qla_host *ha)
1026 {
1027 	uint32_t gpio_data;
1028 	unsigned long flags;
1029 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1030 
1031 	ha->beacon_blink_led = 0;
1032 	ha->beacon_color_state = QLA_LED_ALL_ON;
1033 
1034 	ha->isp_ops.beacon_blink(ha);	/* Will flip to all off. */
1035 
1036 	/* Give control back to firmware. */
1037 	spin_lock_irqsave(&ha->hardware_lock, flags);
1038 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1039 
1040 	/* Disable the gpio_data reg for update. */
1041 	gpio_data &= ~GPDX_LED_UPDATE_MASK;
1042 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1043 	RD_REG_DWORD(&reg->gpiod);
1044 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1045 
1046 	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1047 
1048 	if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1049 		qla_printk(KERN_WARNING, ha,
1050 		    "Unable to update fw options (beacon off).\n");
1051 		return QLA_FUNCTION_FAILED;
1052 	}
1053 
1054 	if (qla2x00_get_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1055 		qla_printk(KERN_WARNING, ha,
1056 		    "Unable to get fw options (beacon off).\n");
1057 		return QLA_FUNCTION_FAILED;
1058 	}
1059 
1060 	return QLA_SUCCESS;
1061 }
1062 
1063 
1064 /*
1065  * Flash support routines
1066  */
1067 
1068 /**
1069  * qla2x00_flash_enable() - Setup flash for reading and writing.
1070  * @ha: HA context
1071  */
1072 static void
1073 qla2x00_flash_enable(scsi_qla_host_t *ha)
1074 {
1075 	uint16_t data;
1076 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1077 
1078 	data = RD_REG_WORD(&reg->ctrl_status);
1079 	data |= CSR_FLASH_ENABLE;
1080 	WRT_REG_WORD(&reg->ctrl_status, data);
1081 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1082 }
1083 
1084 /**
1085  * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1086  * @ha: HA context
1087  */
1088 static void
1089 qla2x00_flash_disable(scsi_qla_host_t *ha)
1090 {
1091 	uint16_t data;
1092 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1093 
1094 	data = RD_REG_WORD(&reg->ctrl_status);
1095 	data &= ~(CSR_FLASH_ENABLE);
1096 	WRT_REG_WORD(&reg->ctrl_status, data);
1097 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1098 }
1099 
1100 /**
1101  * qla2x00_read_flash_byte() - Reads a byte from flash
1102  * @ha: HA context
1103  * @addr: Address in flash to read
1104  *
1105  * A word is read from the chip, but, only the lower byte is valid.
1106  *
1107  * Returns the byte read from flash @addr.
1108  */
1109 static uint8_t
1110 qla2x00_read_flash_byte(scsi_qla_host_t *ha, uint32_t addr)
1111 {
1112 	uint16_t data;
1113 	uint16_t bank_select;
1114 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1115 
1116 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1117 
1118 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1119 		/* Specify 64K address range: */
1120 		/*  clear out Module Select and Flash Address bits [19:16]. */
1121 		bank_select &= ~0xf8;
1122 		bank_select |= addr >> 12 & 0xf0;
1123 		bank_select |= CSR_FLASH_64K_BANK;
1124 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1125 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1126 
1127 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1128 		data = RD_REG_WORD(&reg->flash_data);
1129 
1130 		return (uint8_t)data;
1131 	}
1132 
1133 	/* Setup bit 16 of flash address. */
1134 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1135 		bank_select |= CSR_FLASH_64K_BANK;
1136 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1137 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1138 	} else if (((addr & BIT_16) == 0) &&
1139 	    (bank_select & CSR_FLASH_64K_BANK)) {
1140 		bank_select &= ~(CSR_FLASH_64K_BANK);
1141 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1142 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1143 	}
1144 
1145 	/* Always perform IO mapped accesses to the FLASH registers. */
1146 	if (ha->pio_address) {
1147 		uint16_t data2;
1148 
1149 		reg = (struct device_reg_2xxx __iomem *)ha->pio_address;
1150 		WRT_REG_WORD_PIO(&reg->flash_address, (uint16_t)addr);
1151 		do {
1152 			data = RD_REG_WORD_PIO(&reg->flash_data);
1153 			barrier();
1154 			cpu_relax();
1155 			data2 = RD_REG_WORD_PIO(&reg->flash_data);
1156 		} while (data != data2);
1157 	} else {
1158 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1159 		data = qla2x00_debounce_register(&reg->flash_data);
1160 	}
1161 
1162 	return (uint8_t)data;
1163 }
1164 
1165 /**
1166  * qla2x00_write_flash_byte() - Write a byte to flash
1167  * @ha: HA context
1168  * @addr: Address in flash to write
1169  * @data: Data to write
1170  */
1171 static void
1172 qla2x00_write_flash_byte(scsi_qla_host_t *ha, uint32_t addr, uint8_t data)
1173 {
1174 	uint16_t bank_select;
1175 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1176 
1177 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1178 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1179 		/* Specify 64K address range: */
1180 		/*  clear out Module Select and Flash Address bits [19:16]. */
1181 		bank_select &= ~0xf8;
1182 		bank_select |= addr >> 12 & 0xf0;
1183 		bank_select |= CSR_FLASH_64K_BANK;
1184 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1185 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1186 
1187 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1188 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1189 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1190 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1191 
1192 		return;
1193 	}
1194 
1195 	/* Setup bit 16 of flash address. */
1196 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1197 		bank_select |= CSR_FLASH_64K_BANK;
1198 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1199 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1200 	} else if (((addr & BIT_16) == 0) &&
1201 	    (bank_select & CSR_FLASH_64K_BANK)) {
1202 		bank_select &= ~(CSR_FLASH_64K_BANK);
1203 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1204 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1205 	}
1206 
1207 	/* Always perform IO mapped accesses to the FLASH registers. */
1208 	if (ha->pio_address) {
1209 		reg = (struct device_reg_2xxx __iomem *)ha->pio_address;
1210 		WRT_REG_WORD_PIO(&reg->flash_address, (uint16_t)addr);
1211 		WRT_REG_WORD_PIO(&reg->flash_data, (uint16_t)data);
1212 	} else {
1213 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1214 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1215 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1216 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1217 	}
1218 }
1219 
1220 /**
1221  * qla2x00_poll_flash() - Polls flash for completion.
1222  * @ha: HA context
1223  * @addr: Address in flash to poll
1224  * @poll_data: Data to be polled
1225  * @man_id: Flash manufacturer ID
1226  * @flash_id: Flash ID
1227  *
1228  * This function polls the device until bit 7 of what is read matches data
1229  * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
1230  * out (a fatal error).  The flash book recommeds reading bit 7 again after
1231  * reading bit 5 as a 1.
1232  *
1233  * Returns 0 on success, else non-zero.
1234  */
1235 static int
1236 qla2x00_poll_flash(scsi_qla_host_t *ha, uint32_t addr, uint8_t poll_data,
1237     uint8_t man_id, uint8_t flash_id)
1238 {
1239 	int status;
1240 	uint8_t flash_data;
1241 	uint32_t cnt;
1242 
1243 	status = 1;
1244 
1245 	/* Wait for 30 seconds for command to finish. */
1246 	poll_data &= BIT_7;
1247 	for (cnt = 3000000; cnt; cnt--) {
1248 		flash_data = qla2x00_read_flash_byte(ha, addr);
1249 		if ((flash_data & BIT_7) == poll_data) {
1250 			status = 0;
1251 			break;
1252 		}
1253 
1254 		if (man_id != 0x40 && man_id != 0xda) {
1255 			if ((flash_data & BIT_5) && cnt > 2)
1256 				cnt = 2;
1257 		}
1258 		udelay(10);
1259 		barrier();
1260 		cond_resched();
1261 	}
1262 	return status;
1263 }
1264 
1265 /**
1266  * qla2x00_program_flash_address() - Programs a flash address
1267  * @ha: HA context
1268  * @addr: Address in flash to program
1269  * @data: Data to be written in flash
1270  * @man_id: Flash manufacturer ID
1271  * @flash_id: Flash ID
1272  *
1273  * Returns 0 on success, else non-zero.
1274  */
1275 static int
1276 qla2x00_program_flash_address(scsi_qla_host_t *ha, uint32_t addr, uint8_t data,
1277     uint8_t man_id, uint8_t flash_id)
1278 {
1279 	/* Write Program Command Sequence. */
1280 	if (IS_OEM_001(ha)) {
1281 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1282 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1283 		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1284 		qla2x00_write_flash_byte(ha, addr, data);
1285 	} else {
1286 		if (man_id == 0xda && flash_id == 0xc1) {
1287 			qla2x00_write_flash_byte(ha, addr, data);
1288 			if (addr & 0x7e)
1289 				return 0;
1290 		} else {
1291 			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1292 			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1293 			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1294 			qla2x00_write_flash_byte(ha, addr, data);
1295 		}
1296 	}
1297 
1298 	udelay(150);
1299 
1300 	/* Wait for write to complete. */
1301 	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1302 }
1303 
1304 /**
1305  * qla2x00_erase_flash() - Erase the flash.
1306  * @ha: HA context
1307  * @man_id: Flash manufacturer ID
1308  * @flash_id: Flash ID
1309  *
1310  * Returns 0 on success, else non-zero.
1311  */
1312 static int
1313 qla2x00_erase_flash(scsi_qla_host_t *ha, uint8_t man_id, uint8_t flash_id)
1314 {
1315 	/* Individual Sector Erase Command Sequence */
1316 	if (IS_OEM_001(ha)) {
1317 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1318 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1319 		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1320 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1321 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1322 		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1323 	} else {
1324 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1325 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1326 		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1327 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1328 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1329 		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1330 	}
1331 
1332 	udelay(150);
1333 
1334 	/* Wait for erase to complete. */
1335 	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1336 }
1337 
1338 /**
1339  * qla2x00_erase_flash_sector() - Erase a flash sector.
1340  * @ha: HA context
1341  * @addr: Flash sector to erase
1342  * @sec_mask: Sector address mask
1343  * @man_id: Flash manufacturer ID
1344  * @flash_id: Flash ID
1345  *
1346  * Returns 0 on success, else non-zero.
1347  */
1348 static int
1349 qla2x00_erase_flash_sector(scsi_qla_host_t *ha, uint32_t addr,
1350     uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1351 {
1352 	/* Individual Sector Erase Command Sequence */
1353 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1354 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1355 	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1356 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1357 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1358 	if (man_id == 0x1f && flash_id == 0x13)
1359 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
1360 	else
1361 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
1362 
1363 	udelay(150);
1364 
1365 	/* Wait for erase to complete. */
1366 	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
1367 }
1368 
1369 /**
1370  * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
1371  * @man_id: Flash manufacturer ID
1372  * @flash_id: Flash ID
1373  */
1374 static void
1375 qla2x00_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
1376     uint8_t *flash_id)
1377 {
1378 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1379 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1380 	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
1381 	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
1382 	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
1383 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1384 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1385 	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
1386 }
1387 
1388 static void
1389 qla2x00_read_flash_data(scsi_qla_host_t *ha, uint8_t *tmp_buf, uint32_t saddr,
1390         uint32_t length)
1391 {
1392 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1393 	uint32_t midpoint, ilength;
1394 	uint8_t data;
1395 
1396 	midpoint = length / 2;
1397 
1398 	WRT_REG_WORD(&reg->nvram, 0);
1399 	RD_REG_WORD(&reg->nvram);
1400 	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
1401 		if (ilength == midpoint) {
1402 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1403 			RD_REG_WORD(&reg->nvram);
1404 		}
1405 		data = qla2x00_read_flash_byte(ha, saddr);
1406 		if (saddr % 100)
1407 			udelay(10);
1408 		*tmp_buf = data;
1409 		cond_resched();
1410 	}
1411 }
1412 
1413 static inline void
1414 qla2x00_suspend_hba(struct scsi_qla_host *ha)
1415 {
1416 	int cnt;
1417 	unsigned long flags;
1418 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1419 
1420 	/* Suspend HBA. */
1421 	scsi_block_requests(ha->host);
1422 	ha->isp_ops.disable_intrs(ha);
1423 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1424 
1425 	/* Pause RISC. */
1426 	spin_lock_irqsave(&ha->hardware_lock, flags);
1427 	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
1428 	RD_REG_WORD(&reg->hccr);
1429 	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
1430 		for (cnt = 0; cnt < 30000; cnt++) {
1431 			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
1432 				break;
1433 			udelay(100);
1434 		}
1435 	} else {
1436 		udelay(10);
1437 	}
1438 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1439 }
1440 
1441 static inline void
1442 qla2x00_resume_hba(struct scsi_qla_host *ha)
1443 {
1444 	/* Resume HBA. */
1445 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1446 	set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
1447 	qla2xxx_wake_dpc(ha);
1448 	qla2x00_wait_for_hba_online(ha);
1449 	scsi_unblock_requests(ha->host);
1450 }
1451 
1452 uint8_t *
1453 qla2x00_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1454     uint32_t offset, uint32_t length)
1455 {
1456 	uint32_t addr, midpoint;
1457 	uint8_t *data;
1458 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1459 
1460 	/* Suspend HBA. */
1461 	qla2x00_suspend_hba(ha);
1462 
1463 	/* Go with read. */
1464 	midpoint = ha->optrom_size / 2;
1465 
1466 	qla2x00_flash_enable(ha);
1467 	WRT_REG_WORD(&reg->nvram, 0);
1468 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
1469 	for (addr = offset, data = buf; addr < length; addr++, data++) {
1470 		if (addr == midpoint) {
1471 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1472 			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
1473 		}
1474 
1475 		*data = qla2x00_read_flash_byte(ha, addr);
1476 	}
1477 	qla2x00_flash_disable(ha);
1478 
1479 	/* Resume HBA. */
1480 	qla2x00_resume_hba(ha);
1481 
1482 	return buf;
1483 }
1484 
1485 int
1486 qla2x00_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1487     uint32_t offset, uint32_t length)
1488 {
1489 
1490 	int rval;
1491 	uint8_t man_id, flash_id, sec_number, data;
1492 	uint16_t wd;
1493 	uint32_t addr, liter, sec_mask, rest_addr;
1494 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1495 
1496 	/* Suspend HBA. */
1497 	qla2x00_suspend_hba(ha);
1498 
1499 	rval = QLA_SUCCESS;
1500 	sec_number = 0;
1501 
1502 	/* Reset ISP chip. */
1503 	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
1504 	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
1505 
1506 	/* Go with write. */
1507 	qla2x00_flash_enable(ha);
1508 	do {	/* Loop once to provide quick error exit */
1509 		/* Structure of flash memory based on manufacturer */
1510 		if (IS_OEM_001(ha)) {
1511 			/* OEM variant with special flash part. */
1512 			man_id = flash_id = 0;
1513 			rest_addr = 0xffff;
1514 			sec_mask   = 0x10000;
1515 			goto update_flash;
1516 		}
1517 		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
1518 		switch (man_id) {
1519 		case 0x20: /* ST flash. */
1520 			if (flash_id == 0xd2 || flash_id == 0xe3) {
1521 				/*
1522 				 * ST m29w008at part - 64kb sector size with
1523 				 * 32kb,8kb,8kb,16kb sectors at memory address
1524 				 * 0xf0000.
1525 				 */
1526 				rest_addr = 0xffff;
1527 				sec_mask = 0x10000;
1528 				break;
1529 			}
1530 			/*
1531 			 * ST m29w010b part - 16kb sector size
1532 			 * Default to 16kb sectors
1533 			 */
1534 			rest_addr = 0x3fff;
1535 			sec_mask = 0x1c000;
1536 			break;
1537 		case 0x40: /* Mostel flash. */
1538 			/* Mostel v29c51001 part - 512 byte sector size. */
1539 			rest_addr = 0x1ff;
1540 			sec_mask = 0x1fe00;
1541 			break;
1542 		case 0xbf: /* SST flash. */
1543 			/* SST39sf10 part - 4kb sector size. */
1544 			rest_addr = 0xfff;
1545 			sec_mask = 0x1f000;
1546 			break;
1547 		case 0xda: /* Winbond flash. */
1548 			/* Winbond W29EE011 part - 256 byte sector size. */
1549 			rest_addr = 0x7f;
1550 			sec_mask = 0x1ff80;
1551 			break;
1552 		case 0xc2: /* Macronix flash. */
1553 			/* 64k sector size. */
1554 			if (flash_id == 0x38 || flash_id == 0x4f) {
1555 				rest_addr = 0xffff;
1556 				sec_mask = 0x10000;
1557 				break;
1558 			}
1559 			/* Fall through... */
1560 
1561 		case 0x1f: /* Atmel flash. */
1562 			/* 512k sector size. */
1563 			if (flash_id == 0x13) {
1564 				rest_addr = 0x7fffffff;
1565 				sec_mask =   0x80000000;
1566 				break;
1567 			}
1568 			/* Fall through... */
1569 
1570 		case 0x01: /* AMD flash. */
1571 			if (flash_id == 0x38 || flash_id == 0x40 ||
1572 			    flash_id == 0x4f) {
1573 				/* Am29LV081 part - 64kb sector size. */
1574 				/* Am29LV002BT part - 64kb sector size. */
1575 				rest_addr = 0xffff;
1576 				sec_mask = 0x10000;
1577 				break;
1578 			} else if (flash_id == 0x3e) {
1579 				/*
1580 				 * Am29LV008b part - 64kb sector size with
1581 				 * 32kb,8kb,8kb,16kb sector at memory address
1582 				 * h0xf0000.
1583 				 */
1584 				rest_addr = 0xffff;
1585 				sec_mask = 0x10000;
1586 				break;
1587 			} else if (flash_id == 0x20 || flash_id == 0x6e) {
1588 				/*
1589 				 * Am29LV010 part or AM29f010 - 16kb sector
1590 				 * size.
1591 				 */
1592 				rest_addr = 0x3fff;
1593 				sec_mask = 0x1c000;
1594 				break;
1595 			} else if (flash_id == 0x6d) {
1596 				/* Am29LV001 part - 8kb sector size. */
1597 				rest_addr = 0x1fff;
1598 				sec_mask = 0x1e000;
1599 				break;
1600 			}
1601 		default:
1602 			/* Default to 16 kb sector size. */
1603 			rest_addr = 0x3fff;
1604 			sec_mask = 0x1c000;
1605 			break;
1606 		}
1607 
1608 update_flash:
1609 		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1610 			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
1611 				rval = QLA_FUNCTION_FAILED;
1612 				break;
1613 			}
1614 		}
1615 
1616 		for (addr = offset, liter = 0; liter < length; liter++,
1617 		    addr++) {
1618 			data = buf[liter];
1619 			/* Are we at the beginning of a sector? */
1620 			if ((addr & rest_addr) == 0) {
1621 				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1622 					if (addr >= 0x10000UL) {
1623 						if (((addr >> 12) & 0xf0) &&
1624 						    ((man_id == 0x01 &&
1625 							flash_id == 0x3e) ||
1626 						     (man_id == 0x20 &&
1627 							 flash_id == 0xd2))) {
1628 							sec_number++;
1629 							if (sec_number == 1) {
1630 								rest_addr =
1631 								    0x7fff;
1632 								sec_mask =
1633 								    0x18000;
1634 							} else if (
1635 							    sec_number == 2 ||
1636 							    sec_number == 3) {
1637 								rest_addr =
1638 								    0x1fff;
1639 								sec_mask =
1640 								    0x1e000;
1641 							} else if (
1642 							    sec_number == 4) {
1643 								rest_addr =
1644 								    0x3fff;
1645 								sec_mask =
1646 								    0x1c000;
1647 							}
1648 						}
1649 					}
1650 				} else if (addr == ha->optrom_size / 2) {
1651 					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1652 					RD_REG_WORD(&reg->nvram);
1653 				}
1654 
1655 				if (flash_id == 0xda && man_id == 0xc1) {
1656 					qla2x00_write_flash_byte(ha, 0x5555,
1657 					    0xaa);
1658 					qla2x00_write_flash_byte(ha, 0x2aaa,
1659 					    0x55);
1660 					qla2x00_write_flash_byte(ha, 0x5555,
1661 					    0xa0);
1662 				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
1663 					/* Then erase it */
1664 					if (qla2x00_erase_flash_sector(ha,
1665 					    addr, sec_mask, man_id,
1666 					    flash_id)) {
1667 						rval = QLA_FUNCTION_FAILED;
1668 						break;
1669 					}
1670 					if (man_id == 0x01 && flash_id == 0x6d)
1671 						sec_number++;
1672 				}
1673 			}
1674 
1675 			if (man_id == 0x01 && flash_id == 0x6d) {
1676 				if (sec_number == 1 &&
1677 				    addr == (rest_addr - 1)) {
1678 					rest_addr = 0x0fff;
1679 					sec_mask   = 0x1f000;
1680 				} else if (sec_number == 3 && (addr & 0x7ffe)) {
1681 					rest_addr = 0x3fff;
1682 					sec_mask   = 0x1c000;
1683 				}
1684 			}
1685 
1686 			if (qla2x00_program_flash_address(ha, addr, data,
1687 			    man_id, flash_id)) {
1688 				rval = QLA_FUNCTION_FAILED;
1689 				break;
1690 			}
1691 			cond_resched();
1692 		}
1693 	} while (0);
1694 	qla2x00_flash_disable(ha);
1695 
1696 	/* Resume HBA. */
1697 	qla2x00_resume_hba(ha);
1698 
1699 	return rval;
1700 }
1701 
1702 uint8_t *
1703 qla24xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1704     uint32_t offset, uint32_t length)
1705 {
1706 	/* Suspend HBA. */
1707 	scsi_block_requests(ha->host);
1708 	ha->isp_ops.disable_intrs(ha);
1709 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1710 
1711 	/* Go with read. */
1712 	qla24xx_read_flash_data(ha, (uint32_t *)buf, offset >> 2, length >> 2);
1713 
1714 	/* Resume HBA. */
1715 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1716 	ha->isp_ops.enable_intrs(ha);
1717 	scsi_unblock_requests(ha->host);
1718 
1719 	return buf;
1720 }
1721 
1722 int
1723 qla24xx_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1724     uint32_t offset, uint32_t length)
1725 {
1726 	int rval;
1727 
1728 	/* Suspend HBA. */
1729 	scsi_block_requests(ha->host);
1730 	ha->isp_ops.disable_intrs(ha);
1731 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1732 
1733 	/* Go with write. */
1734 	rval = qla24xx_write_flash_data(ha, (uint32_t *)buf, offset >> 2,
1735 	    length >> 2);
1736 
1737 	/* Resume HBA -- RISC reset needed. */
1738 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1739 	set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
1740 	qla2xxx_wake_dpc(ha);
1741 	qla2x00_wait_for_hba_online(ha);
1742 	scsi_unblock_requests(ha->host);
1743 
1744 	return rval;
1745 }
1746 
1747 /**
1748  * qla2x00_get_fcode_version() - Determine an FCODE image's version.
1749  * @ha: HA context
1750  * @pcids: Pointer to the FCODE PCI data structure
1751  *
1752  * The process of retrieving the FCODE version information is at best
1753  * described as interesting.
1754  *
1755  * Within the first 100h bytes of the image an ASCII string is present
1756  * which contains several pieces of information including the FCODE
1757  * version.  Unfortunately it seems the only reliable way to retrieve
1758  * the version is by scanning for another sentinel within the string,
1759  * the FCODE build date:
1760  *
1761  *	... 2.00.02 10/17/02 ...
1762  *
1763  * Returns QLA_SUCCESS on successful retrieval of version.
1764  */
1765 static void
1766 qla2x00_get_fcode_version(scsi_qla_host_t *ha, uint32_t pcids)
1767 {
1768 	int ret = QLA_FUNCTION_FAILED;
1769 	uint32_t istart, iend, iter, vend;
1770 	uint8_t do_next, rbyte, *vbyte;
1771 
1772 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
1773 
1774 	/* Skip the PCI data structure. */
1775 	istart = pcids +
1776 	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
1777 		qla2x00_read_flash_byte(ha, pcids + 0x0A));
1778 	iend = istart + 0x100;
1779 	do {
1780 		/* Scan for the sentinel date string...eeewww. */
1781 		do_next = 0;
1782 		iter = istart;
1783 		while ((iter < iend) && !do_next) {
1784 			iter++;
1785 			if (qla2x00_read_flash_byte(ha, iter) == '/') {
1786 				if (qla2x00_read_flash_byte(ha, iter + 2) ==
1787 				    '/')
1788 					do_next++;
1789 				else if (qla2x00_read_flash_byte(ha,
1790 				    iter + 3) == '/')
1791 					do_next++;
1792 			}
1793 		}
1794 		if (!do_next)
1795 			break;
1796 
1797 		/* Backtrack to previous ' ' (space). */
1798 		do_next = 0;
1799 		while ((iter > istart) && !do_next) {
1800 			iter--;
1801 			if (qla2x00_read_flash_byte(ha, iter) == ' ')
1802 				do_next++;
1803 		}
1804 		if (!do_next)
1805 			break;
1806 
1807 		/*
1808 		 * Mark end of version tag, and find previous ' ' (space) or
1809 		 * string length (recent FCODE images -- major hack ahead!!!).
1810 		 */
1811 		vend = iter - 1;
1812 		do_next = 0;
1813 		while ((iter > istart) && !do_next) {
1814 			iter--;
1815 			rbyte = qla2x00_read_flash_byte(ha, iter);
1816 			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
1817 				do_next++;
1818 		}
1819 		if (!do_next)
1820 			break;
1821 
1822 		/* Mark beginning of version tag, and copy data. */
1823 		iter++;
1824 		if ((vend - iter) &&
1825 		    ((vend - iter) < sizeof(ha->fcode_revision))) {
1826 			vbyte = ha->fcode_revision;
1827 			while (iter <= vend) {
1828 				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
1829 				iter++;
1830 			}
1831 			ret = QLA_SUCCESS;
1832 		}
1833 	} while (0);
1834 
1835 	if (ret != QLA_SUCCESS)
1836 		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
1837 }
1838 
1839 int
1840 qla2x00_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
1841 {
1842 	int ret = QLA_SUCCESS;
1843 	uint8_t code_type, last_image;
1844 	uint32_t pcihdr, pcids;
1845 	uint8_t *dbyte;
1846 	uint16_t *dcode;
1847 
1848 	if (!ha->pio_address || !mbuf)
1849 		return QLA_FUNCTION_FAILED;
1850 
1851 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
1852 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
1853 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
1854 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
1855 
1856 	qla2x00_flash_enable(ha);
1857 
1858 	/* Begin with first PCI expansion ROM header. */
1859 	pcihdr = 0;
1860 	last_image = 1;
1861 	do {
1862 		/* Verify PCI expansion ROM header. */
1863 		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
1864 		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
1865 			/* No signature */
1866 			DEBUG2(printk("scsi(%ld): No matching ROM "
1867 			    "signature.\n", ha->host_no));
1868 			ret = QLA_FUNCTION_FAILED;
1869 			break;
1870 		}
1871 
1872 		/* Locate PCI data structure. */
1873 		pcids = pcihdr +
1874 		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
1875 			qla2x00_read_flash_byte(ha, pcihdr + 0x18));
1876 
1877 		/* Validate signature of PCI data structure. */
1878 		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
1879 		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
1880 		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
1881 		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
1882 			/* Incorrect header. */
1883 			DEBUG2(printk("%s(): PCI data struct not found "
1884 			    "pcir_adr=%x.\n", __func__, pcids));
1885 			ret = QLA_FUNCTION_FAILED;
1886 			break;
1887 		}
1888 
1889 		/* Read version */
1890 		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
1891 		switch (code_type) {
1892 		case ROM_CODE_TYPE_BIOS:
1893 			/* Intel x86, PC-AT compatible. */
1894 			ha->bios_revision[0] =
1895 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
1896 			ha->bios_revision[1] =
1897 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
1898 			DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
1899 			    ha->bios_revision[1], ha->bios_revision[0]));
1900 			break;
1901 		case ROM_CODE_TYPE_FCODE:
1902 			/* Open Firmware standard for PCI (FCode). */
1903 			/* Eeeewww... */
1904 			qla2x00_get_fcode_version(ha, pcids);
1905 			break;
1906 		case ROM_CODE_TYPE_EFI:
1907 			/* Extensible Firmware Interface (EFI). */
1908 			ha->efi_revision[0] =
1909 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
1910 			ha->efi_revision[1] =
1911 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
1912 			DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
1913 			    ha->efi_revision[1], ha->efi_revision[0]));
1914 			break;
1915 		default:
1916 			DEBUG2(printk("%s(): Unrecognized code type %x at "
1917 			    "pcids %x.\n", __func__, code_type, pcids));
1918 			break;
1919 		}
1920 
1921 		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
1922 
1923 		/* Locate next PCI expansion ROM. */
1924 		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
1925 		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
1926 	} while (!last_image);
1927 
1928 	if (IS_QLA2322(ha)) {
1929 		/* Read firmware image information. */
1930 		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
1931 		dbyte = mbuf;
1932 		memset(dbyte, 0, 8);
1933 		dcode = (uint16_t *)dbyte;
1934 
1935 		qla2x00_read_flash_data(ha, dbyte, FA_RISC_CODE_ADDR * 4 + 10,
1936 		    8);
1937 		DEBUG3(printk("%s(%ld): dumping fw ver from flash:\n",
1938 		    __func__, ha->host_no));
1939 		DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
1940 
1941 		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
1942 		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
1943 		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
1944 		    dcode[3] == 0)) {
1945 			DEBUG2(printk("%s(): Unrecognized fw revision at "
1946 			    "%x.\n", __func__, FA_RISC_CODE_ADDR * 4));
1947 		} else {
1948 			/* values are in big endian */
1949 			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
1950 			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
1951 			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
1952 		}
1953 	}
1954 
1955 	qla2x00_flash_disable(ha);
1956 
1957 	return ret;
1958 }
1959 
1960 int
1961 qla24xx_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
1962 {
1963 	int ret = QLA_SUCCESS;
1964 	uint32_t pcihdr, pcids;
1965 	uint32_t *dcode;
1966 	uint8_t *bcode;
1967 	uint8_t code_type, last_image;
1968 	int i;
1969 
1970 	if (!mbuf)
1971 		return QLA_FUNCTION_FAILED;
1972 
1973 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
1974 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
1975 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
1976 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
1977 
1978 	dcode = mbuf;
1979 
1980 	/* Begin with first PCI expansion ROM header. */
1981 	pcihdr = 0;
1982 	last_image = 1;
1983 	do {
1984 		/* Verify PCI expansion ROM header. */
1985 		qla24xx_read_flash_data(ha, dcode, pcihdr >> 2, 0x20);
1986 		bcode = mbuf + (pcihdr % 4);
1987 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
1988 			/* No signature */
1989 			DEBUG2(printk("scsi(%ld): No matching ROM "
1990 			    "signature.\n", ha->host_no));
1991 			ret = QLA_FUNCTION_FAILED;
1992 			break;
1993 		}
1994 
1995 		/* Locate PCI data structure. */
1996 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
1997 
1998 		qla24xx_read_flash_data(ha, dcode, pcids >> 2, 0x20);
1999 		bcode = mbuf + (pcihdr % 4);
2000 
2001 		/* Validate signature of PCI data structure. */
2002 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2003 		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2004 			/* Incorrect header. */
2005 			DEBUG2(printk("%s(): PCI data struct not found "
2006 			    "pcir_adr=%x.\n", __func__, pcids));
2007 			ret = QLA_FUNCTION_FAILED;
2008 			break;
2009 		}
2010 
2011 		/* Read version */
2012 		code_type = bcode[0x14];
2013 		switch (code_type) {
2014 		case ROM_CODE_TYPE_BIOS:
2015 			/* Intel x86, PC-AT compatible. */
2016 			ha->bios_revision[0] = bcode[0x12];
2017 			ha->bios_revision[1] = bcode[0x13];
2018 			DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
2019 			    ha->bios_revision[1], ha->bios_revision[0]));
2020 			break;
2021 		case ROM_CODE_TYPE_FCODE:
2022 			/* Open Firmware standard for PCI (FCode). */
2023 			ha->fcode_revision[0] = bcode[0x12];
2024 			ha->fcode_revision[1] = bcode[0x13];
2025 			DEBUG3(printk("%s(): read FCODE %d.%d.\n", __func__,
2026 			    ha->fcode_revision[1], ha->fcode_revision[0]));
2027 			break;
2028 		case ROM_CODE_TYPE_EFI:
2029 			/* Extensible Firmware Interface (EFI). */
2030 			ha->efi_revision[0] = bcode[0x12];
2031 			ha->efi_revision[1] = bcode[0x13];
2032 			DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
2033 			    ha->efi_revision[1], ha->efi_revision[0]));
2034 			break;
2035 		default:
2036 			DEBUG2(printk("%s(): Unrecognized code type %x at "
2037 			    "pcids %x.\n", __func__, code_type, pcids));
2038 			break;
2039 		}
2040 
2041 		last_image = bcode[0x15] & BIT_7;
2042 
2043 		/* Locate next PCI expansion ROM. */
2044 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2045 	} while (!last_image);
2046 
2047 	/* Read firmware image information. */
2048 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2049 	dcode = mbuf;
2050 
2051 	qla24xx_read_flash_data(ha, dcode, FA_RISC_CODE_ADDR + 4, 4);
2052 	for (i = 0; i < 4; i++)
2053 		dcode[i] = be32_to_cpu(dcode[i]);
2054 
2055 	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2056 	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2057 	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2058 	    dcode[3] == 0)) {
2059 		DEBUG2(printk("%s(): Unrecognized fw version at %x.\n",
2060 		    __func__, FA_RISC_CODE_ADDR));
2061 	} else {
2062 		ha->fw_revision[0] = dcode[0];
2063 		ha->fw_revision[1] = dcode[1];
2064 		ha->fw_revision[2] = dcode[2];
2065 		ha->fw_revision[3] = dcode[3];
2066 	}
2067 
2068 	return ret;
2069 }
2070