xref: /openbmc/linux/drivers/scsi/qla2xxx/qla_sup.c (revision 643d1f7f)
1 /*
2  * QLogic Fibre Channel HBA Driver
3  * Copyright (c)  2003-2005 QLogic Corporation
4  *
5  * See LICENSE.qla2xxx for copyright and licensing details.
6  */
7 #include "qla_def.h"
8 
9 #include <linux/delay.h>
10 #include <linux/vmalloc.h>
11 #include <asm/uaccess.h>
12 
13 static uint16_t qla2x00_nvram_request(scsi_qla_host_t *, uint32_t);
14 static void qla2x00_nv_deselect(scsi_qla_host_t *);
15 static void qla2x00_nv_write(scsi_qla_host_t *, uint16_t);
16 
17 /*
18  * NVRAM support routines
19  */
20 
21 /**
22  * qla2x00_lock_nvram_access() -
23  * @ha: HA context
24  */
25 static void
26 qla2x00_lock_nvram_access(scsi_qla_host_t *ha)
27 {
28 	uint16_t data;
29 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
30 
31 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
32 		data = RD_REG_WORD(&reg->nvram);
33 		while (data & NVR_BUSY) {
34 			udelay(100);
35 			data = RD_REG_WORD(&reg->nvram);
36 		}
37 
38 		/* Lock resource */
39 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
40 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
41 		udelay(5);
42 		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
43 		while ((data & BIT_0) == 0) {
44 			/* Lock failed */
45 			udelay(100);
46 			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
47 			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
48 			udelay(5);
49 			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
50 		}
51 	}
52 }
53 
54 /**
55  * qla2x00_unlock_nvram_access() -
56  * @ha: HA context
57  */
58 static void
59 qla2x00_unlock_nvram_access(scsi_qla_host_t *ha)
60 {
61 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
62 
63 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
64 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
65 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
66 	}
67 }
68 
69 /**
70  * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
71  *	request routine to get the word from NVRAM.
72  * @ha: HA context
73  * @addr: Address in NVRAM to read
74  *
75  * Returns the word read from nvram @addr.
76  */
77 static uint16_t
78 qla2x00_get_nvram_word(scsi_qla_host_t *ha, uint32_t addr)
79 {
80 	uint16_t	data;
81 	uint32_t	nv_cmd;
82 
83 	nv_cmd = addr << 16;
84 	nv_cmd |= NV_READ_OP;
85 	data = qla2x00_nvram_request(ha, nv_cmd);
86 
87 	return (data);
88 }
89 
90 /**
91  * qla2x00_write_nvram_word() - Write NVRAM data.
92  * @ha: HA context
93  * @addr: Address in NVRAM to write
94  * @data: word to program
95  */
96 static void
97 qla2x00_write_nvram_word(scsi_qla_host_t *ha, uint32_t addr, uint16_t data)
98 {
99 	int count;
100 	uint16_t word;
101 	uint32_t nv_cmd, wait_cnt;
102 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
103 
104 	qla2x00_nv_write(ha, NVR_DATA_OUT);
105 	qla2x00_nv_write(ha, 0);
106 	qla2x00_nv_write(ha, 0);
107 
108 	for (word = 0; word < 8; word++)
109 		qla2x00_nv_write(ha, NVR_DATA_OUT);
110 
111 	qla2x00_nv_deselect(ha);
112 
113 	/* Write data */
114 	nv_cmd = (addr << 16) | NV_WRITE_OP;
115 	nv_cmd |= data;
116 	nv_cmd <<= 5;
117 	for (count = 0; count < 27; count++) {
118 		if (nv_cmd & BIT_31)
119 			qla2x00_nv_write(ha, NVR_DATA_OUT);
120 		else
121 			qla2x00_nv_write(ha, 0);
122 
123 		nv_cmd <<= 1;
124 	}
125 
126 	qla2x00_nv_deselect(ha);
127 
128 	/* Wait for NVRAM to become ready */
129 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
130 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
131 	wait_cnt = NVR_WAIT_CNT;
132 	do {
133 		if (!--wait_cnt) {
134 			DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
135 			    __func__, ha->host_no));
136 			break;
137 		}
138 		NVRAM_DELAY();
139 		word = RD_REG_WORD(&reg->nvram);
140 	} while ((word & NVR_DATA_IN) == 0);
141 
142 	qla2x00_nv_deselect(ha);
143 
144 	/* Disable writes */
145 	qla2x00_nv_write(ha, NVR_DATA_OUT);
146 	for (count = 0; count < 10; count++)
147 		qla2x00_nv_write(ha, 0);
148 
149 	qla2x00_nv_deselect(ha);
150 }
151 
152 static int
153 qla2x00_write_nvram_word_tmo(scsi_qla_host_t *ha, uint32_t addr, uint16_t data,
154     uint32_t tmo)
155 {
156 	int ret, count;
157 	uint16_t word;
158 	uint32_t nv_cmd;
159 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
160 
161 	ret = QLA_SUCCESS;
162 
163 	qla2x00_nv_write(ha, NVR_DATA_OUT);
164 	qla2x00_nv_write(ha, 0);
165 	qla2x00_nv_write(ha, 0);
166 
167 	for (word = 0; word < 8; word++)
168 		qla2x00_nv_write(ha, NVR_DATA_OUT);
169 
170 	qla2x00_nv_deselect(ha);
171 
172 	/* Write data */
173 	nv_cmd = (addr << 16) | NV_WRITE_OP;
174 	nv_cmd |= data;
175 	nv_cmd <<= 5;
176 	for (count = 0; count < 27; count++) {
177 		if (nv_cmd & BIT_31)
178 			qla2x00_nv_write(ha, NVR_DATA_OUT);
179 		else
180 			qla2x00_nv_write(ha, 0);
181 
182 		nv_cmd <<= 1;
183 	}
184 
185 	qla2x00_nv_deselect(ha);
186 
187 	/* Wait for NVRAM to become ready */
188 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
189 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
190 	do {
191 		NVRAM_DELAY();
192 		word = RD_REG_WORD(&reg->nvram);
193 		if (!--tmo) {
194 			ret = QLA_FUNCTION_FAILED;
195 			break;
196 		}
197 	} while ((word & NVR_DATA_IN) == 0);
198 
199 	qla2x00_nv_deselect(ha);
200 
201 	/* Disable writes */
202 	qla2x00_nv_write(ha, NVR_DATA_OUT);
203 	for (count = 0; count < 10; count++)
204 		qla2x00_nv_write(ha, 0);
205 
206 	qla2x00_nv_deselect(ha);
207 
208 	return ret;
209 }
210 
211 /**
212  * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
213  *	NVRAM.
214  * @ha: HA context
215  * @nv_cmd: NVRAM command
216  *
217  * Bit definitions for NVRAM command:
218  *
219  *	Bit 26     = start bit
220  *	Bit 25, 24 = opcode
221  *	Bit 23-16  = address
222  *	Bit 15-0   = write data
223  *
224  * Returns the word read from nvram @addr.
225  */
226 static uint16_t
227 qla2x00_nvram_request(scsi_qla_host_t *ha, uint32_t nv_cmd)
228 {
229 	uint8_t		cnt;
230 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
231 	uint16_t	data = 0;
232 	uint16_t	reg_data;
233 
234 	/* Send command to NVRAM. */
235 	nv_cmd <<= 5;
236 	for (cnt = 0; cnt < 11; cnt++) {
237 		if (nv_cmd & BIT_31)
238 			qla2x00_nv_write(ha, NVR_DATA_OUT);
239 		else
240 			qla2x00_nv_write(ha, 0);
241 		nv_cmd <<= 1;
242 	}
243 
244 	/* Read data from NVRAM. */
245 	for (cnt = 0; cnt < 16; cnt++) {
246 		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
247 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
248 		NVRAM_DELAY();
249 		data <<= 1;
250 		reg_data = RD_REG_WORD(&reg->nvram);
251 		if (reg_data & NVR_DATA_IN)
252 			data |= BIT_0;
253 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
254 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
255 		NVRAM_DELAY();
256 	}
257 
258 	/* Deselect chip. */
259 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
260 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
261 	NVRAM_DELAY();
262 
263 	return (data);
264 }
265 
266 /**
267  * qla2x00_nv_write() - Clean NVRAM operations.
268  * @ha: HA context
269  */
270 static void
271 qla2x00_nv_deselect(scsi_qla_host_t *ha)
272 {
273 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
274 
275 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
276 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
277 	NVRAM_DELAY();
278 }
279 
280 /**
281  * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
282  * @ha: HA context
283  * @data: Serial interface selector
284  */
285 static void
286 qla2x00_nv_write(scsi_qla_host_t *ha, uint16_t data)
287 {
288 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
289 
290 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
291 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
292 	NVRAM_DELAY();
293 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT| NVR_CLOCK |
294 	    NVR_WRT_ENABLE);
295 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
296 	NVRAM_DELAY();
297 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
298 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
299 	NVRAM_DELAY();
300 }
301 
302 /**
303  * qla2x00_clear_nvram_protection() -
304  * @ha: HA context
305  */
306 static int
307 qla2x00_clear_nvram_protection(scsi_qla_host_t *ha)
308 {
309 	int ret, stat;
310 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
311 	uint32_t word, wait_cnt;
312 	uint16_t wprot, wprot_old;
313 
314 	/* Clear NVRAM write protection. */
315 	ret = QLA_FUNCTION_FAILED;
316 
317 	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319 	    __constant_cpu_to_le16(0x1234), 100000);
320 	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
321 	if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 		/* Write enable. */
323 		qla2x00_nv_write(ha, NVR_DATA_OUT);
324 		qla2x00_nv_write(ha, 0);
325 		qla2x00_nv_write(ha, 0);
326 		for (word = 0; word < 8; word++)
327 			qla2x00_nv_write(ha, NVR_DATA_OUT);
328 
329 		qla2x00_nv_deselect(ha);
330 
331 		/* Enable protection register. */
332 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
333 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
334 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
335 		for (word = 0; word < 8; word++)
336 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
337 
338 		qla2x00_nv_deselect(ha);
339 
340 		/* Clear protection register (ffff is cleared). */
341 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
343 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
344 		for (word = 0; word < 8; word++)
345 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
346 
347 		qla2x00_nv_deselect(ha);
348 
349 		/* Wait for NVRAM to become ready. */
350 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
352 		wait_cnt = NVR_WAIT_CNT;
353 		do {
354 			if (!--wait_cnt) {
355 				DEBUG9_10(printk("%s(%ld): NVRAM didn't go "
356 				    "ready...\n", __func__,
357 				    ha->host_no));
358 				break;
359 			}
360 			NVRAM_DELAY();
361 			word = RD_REG_WORD(&reg->nvram);
362 		} while ((word & NVR_DATA_IN) == 0);
363 
364 		if (wait_cnt)
365 			ret = QLA_SUCCESS;
366 	} else
367 		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
368 
369 	return ret;
370 }
371 
372 static void
373 qla2x00_set_nvram_protection(scsi_qla_host_t *ha, int stat)
374 {
375 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
376 	uint32_t word, wait_cnt;
377 
378 	if (stat != QLA_SUCCESS)
379 		return;
380 
381 	/* Set NVRAM write protection. */
382 	/* Write enable. */
383 	qla2x00_nv_write(ha, NVR_DATA_OUT);
384 	qla2x00_nv_write(ha, 0);
385 	qla2x00_nv_write(ha, 0);
386 	for (word = 0; word < 8; word++)
387 		qla2x00_nv_write(ha, NVR_DATA_OUT);
388 
389 	qla2x00_nv_deselect(ha);
390 
391 	/* Enable protection register. */
392 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
393 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
394 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
395 	for (word = 0; word < 8; word++)
396 		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
397 
398 	qla2x00_nv_deselect(ha);
399 
400 	/* Enable protection register. */
401 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
402 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
403 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
404 	for (word = 0; word < 8; word++)
405 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
406 
407 	qla2x00_nv_deselect(ha);
408 
409 	/* Wait for NVRAM to become ready. */
410 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
412 	wait_cnt = NVR_WAIT_CNT;
413 	do {
414 		if (!--wait_cnt) {
415 			DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
416 			    __func__, ha->host_no));
417 			break;
418 		}
419 		NVRAM_DELAY();
420 		word = RD_REG_WORD(&reg->nvram);
421 	} while ((word & NVR_DATA_IN) == 0);
422 }
423 
424 
425 /*****************************************************************************/
426 /* Flash Manipulation Routines                                               */
427 /*****************************************************************************/
428 
429 #define OPTROM_BURST_SIZE	0x1000
430 #define OPTROM_BURST_DWORDS	(OPTROM_BURST_SIZE / 4)
431 
432 static inline uint32_t
433 flash_conf_to_access_addr(uint32_t faddr)
434 {
435 	return FARX_ACCESS_FLASH_CONF | faddr;
436 }
437 
438 static inline uint32_t
439 flash_data_to_access_addr(uint32_t faddr)
440 {
441 	return FARX_ACCESS_FLASH_DATA | faddr;
442 }
443 
444 static inline uint32_t
445 nvram_conf_to_access_addr(uint32_t naddr)
446 {
447 	return FARX_ACCESS_NVRAM_CONF | naddr;
448 }
449 
450 static inline uint32_t
451 nvram_data_to_access_addr(uint32_t naddr)
452 {
453 	return FARX_ACCESS_NVRAM_DATA | naddr;
454 }
455 
456 static uint32_t
457 qla24xx_read_flash_dword(scsi_qla_host_t *ha, uint32_t addr)
458 {
459 	int rval;
460 	uint32_t cnt, data;
461 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
462 
463 	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
464 	/* Wait for READ cycle to complete. */
465 	rval = QLA_SUCCESS;
466 	for (cnt = 3000;
467 	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
468 	    rval == QLA_SUCCESS; cnt--) {
469 		if (cnt)
470 			udelay(10);
471 		else
472 			rval = QLA_FUNCTION_TIMEOUT;
473 		cond_resched();
474 	}
475 
476 	/* TODO: What happens if we time out? */
477 	data = 0xDEADDEAD;
478 	if (rval == QLA_SUCCESS)
479 		data = RD_REG_DWORD(&reg->flash_data);
480 
481 	return data;
482 }
483 
484 uint32_t *
485 qla24xx_read_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
486     uint32_t dwords)
487 {
488 	uint32_t i;
489 
490 	/* Dword reads to flash. */
491 	for (i = 0; i < dwords; i++, faddr++)
492 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
493 		    flash_data_to_access_addr(faddr)));
494 
495 	return dwptr;
496 }
497 
498 static int
499 qla24xx_write_flash_dword(scsi_qla_host_t *ha, uint32_t addr, uint32_t data)
500 {
501 	int rval;
502 	uint32_t cnt;
503 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
504 
505 	WRT_REG_DWORD(&reg->flash_data, data);
506 	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
507 	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
508 	/* Wait for Write cycle to complete. */
509 	rval = QLA_SUCCESS;
510 	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
511 	    rval == QLA_SUCCESS; cnt--) {
512 		if (cnt)
513 			udelay(10);
514 		else
515 			rval = QLA_FUNCTION_TIMEOUT;
516 		cond_resched();
517 	}
518 	return rval;
519 }
520 
521 static void
522 qla24xx_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
523     uint8_t *flash_id)
524 {
525 	uint32_t ids;
526 
527 	ids = qla24xx_read_flash_dword(ha, flash_data_to_access_addr(0xd03ab));
528 	*man_id = LSB(ids);
529 	*flash_id = MSB(ids);
530 
531 	/* Check if man_id and flash_id are valid. */
532 	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
533 		/* Read information using 0x9f opcode
534 		 * Device ID, Mfg ID would be read in the format:
535 		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
536 		 * Example: ATMEL 0x00 01 45 1F
537 		 * Extract MFG and Dev ID from last two bytes.
538 		 */
539 		ids = qla24xx_read_flash_dword(ha,
540 		    flash_data_to_access_addr(0xd009f));
541 		*man_id = LSB(ids);
542 		*flash_id = MSB(ids);
543 	}
544 }
545 
546 static int
547 qla24xx_write_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
548     uint32_t dwords)
549 {
550 	int ret;
551 	uint32_t liter, miter;
552 	uint32_t sec_mask, rest_addr, conf_addr;
553 	uint32_t fdata, findex, cnt;
554 	uint8_t	man_id, flash_id;
555 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
556 	dma_addr_t optrom_dma;
557 	void *optrom = NULL;
558 	uint32_t *s, *d;
559 
560 	ret = QLA_SUCCESS;
561 
562 	/* Prepare burst-capable write on supported ISPs. */
563 	if (IS_QLA25XX(ha) && !(faddr & 0xfff) &&
564 	    dwords > OPTROM_BURST_DWORDS) {
565 		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
566 		    &optrom_dma, GFP_KERNEL);
567 		if (!optrom) {
568 			qla_printk(KERN_DEBUG, ha,
569 			    "Unable to allocate memory for optrom burst write "
570 			    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
571 		}
572 	}
573 
574 	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
575 	DEBUG9(printk("%s(%ld): Flash man_id=%d flash_id=%d\n", __func__,
576 	    ha->host_no, man_id, flash_id));
577 
578 	conf_addr = flash_conf_to_access_addr(0x03d8);
579 	switch (man_id) {
580 	case 0xbf: /* STT flash. */
581 		if (flash_id == 0x8e) {
582 			rest_addr = 0x3fff;
583 			sec_mask = 0x7c000;
584 		} else {
585 			rest_addr = 0x1fff;
586 			sec_mask = 0x7e000;
587 		}
588 		if (flash_id == 0x80)
589 			conf_addr = flash_conf_to_access_addr(0x0352);
590 		break;
591 	case 0x13: /* ST M25P80. */
592 		rest_addr = 0x3fff;
593 		sec_mask = 0x7c000;
594 		break;
595 	case 0x1f: // Atmel 26DF081A
596 		rest_addr = 0x3fff;
597 		sec_mask = 0x7c000;
598 		conf_addr = flash_conf_to_access_addr(0x0320);
599 		break;
600 	default:
601 		/* Default to 64 kb sector size. */
602 		rest_addr = 0x3fff;
603 		sec_mask = 0x7c000;
604 		break;
605 	}
606 
607 	/* Enable flash write. */
608 	WRT_REG_DWORD(&reg->ctrl_status,
609 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
610 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
611 
612 	/* Disable flash write-protection. */
613 	qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
614 	/* Some flash parts need an additional zero-write to clear bits.*/
615 	qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
616 
617 	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
618 		if (man_id == 0x1f) {
619 			findex = faddr << 2;
620 			fdata = findex & sec_mask;
621 		} else {
622 			findex = faddr;
623 			fdata = (findex & sec_mask) << 2;
624 		}
625 
626 		/* Are we at the beginning of a sector? */
627 		if ((findex & rest_addr) == 0) {
628 			/* Do sector unprotect at 4K boundry for Atmel part. */
629 			if (man_id == 0x1f)
630 				qla24xx_write_flash_dword(ha,
631 				    flash_conf_to_access_addr(0x0339),
632 				    (fdata & 0xff00) | ((fdata << 16) &
633 				    0xff0000) | ((fdata >> 16) & 0xff));
634 			ret = qla24xx_write_flash_dword(ha, conf_addr,
635 			    (fdata & 0xff00) |((fdata << 16) &
636 			    0xff0000) | ((fdata >> 16) & 0xff));
637 			if (ret != QLA_SUCCESS) {
638 				DEBUG9(printk("%s(%ld) Unable to flash "
639 				    "sector: address=%x.\n", __func__,
640 				    ha->host_no, faddr));
641 				break;
642 			}
643 		}
644 
645 		/* Go with burst-write. */
646 		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
647 			/* Copy data to DMA'ble buffer. */
648 			for (miter = 0, s = optrom, d = dwptr;
649 			    miter < OPTROM_BURST_DWORDS; miter++, s++, d++)
650 				*s = cpu_to_le32(*d);
651 
652 			ret = qla2x00_load_ram(ha, optrom_dma,
653 			    flash_data_to_access_addr(faddr),
654 			    OPTROM_BURST_DWORDS);
655 			if (ret != QLA_SUCCESS) {
656 				qla_printk(KERN_WARNING, ha,
657 				    "Unable to burst-write optrom segment "
658 				    "(%x/%x/%llx).\n", ret,
659 				    flash_data_to_access_addr(faddr),
660 				    (unsigned long long)optrom_dma);
661 				qla_printk(KERN_WARNING, ha,
662 				    "Reverting to slow-write.\n");
663 
664 				dma_free_coherent(&ha->pdev->dev,
665 				    OPTROM_BURST_SIZE, optrom, optrom_dma);
666 				optrom = NULL;
667 			} else {
668 				liter += OPTROM_BURST_DWORDS - 1;
669 				faddr += OPTROM_BURST_DWORDS - 1;
670 				dwptr += OPTROM_BURST_DWORDS - 1;
671 				continue;
672 			}
673 		}
674 
675 		ret = qla24xx_write_flash_dword(ha,
676 		    flash_data_to_access_addr(faddr), cpu_to_le32(*dwptr));
677 		if (ret != QLA_SUCCESS) {
678 			DEBUG9(printk("%s(%ld) Unable to program flash "
679 			    "address=%x data=%x.\n", __func__,
680 			    ha->host_no, faddr, *dwptr));
681 			break;
682 		}
683 
684 		/* Do sector protect at 4K boundry for Atmel part. */
685 		if (man_id == 0x1f &&
686 		    ((faddr & rest_addr) == rest_addr))
687 			qla24xx_write_flash_dword(ha,
688 			    flash_conf_to_access_addr(0x0336),
689 			    (fdata & 0xff00) | ((fdata << 16) &
690 			    0xff0000) | ((fdata >> 16) & 0xff));
691 	}
692 
693 	/* Enable flash write-protection and wait for completion. */
694 	qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0x9c);
695 	for (cnt = 300; cnt &&
696 	    qla24xx_read_flash_dword(ha,
697 		    flash_conf_to_access_addr(0x005)) & BIT_0;
698 	    cnt--) {
699 		udelay(10);
700 	}
701 
702 	/* Disable flash write. */
703 	WRT_REG_DWORD(&reg->ctrl_status,
704 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
705 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
706 
707 	if (optrom)
708 		dma_free_coherent(&ha->pdev->dev,
709 		    OPTROM_BURST_SIZE, optrom, optrom_dma);
710 
711 	return ret;
712 }
713 
714 uint8_t *
715 qla2x00_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
716     uint32_t bytes)
717 {
718 	uint32_t i;
719 	uint16_t *wptr;
720 
721 	/* Word reads to NVRAM via registers. */
722 	wptr = (uint16_t *)buf;
723 	qla2x00_lock_nvram_access(ha);
724 	for (i = 0; i < bytes >> 1; i++, naddr++)
725 		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
726 		    naddr));
727 	qla2x00_unlock_nvram_access(ha);
728 
729 	return buf;
730 }
731 
732 uint8_t *
733 qla24xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
734     uint32_t bytes)
735 {
736 	uint32_t i;
737 	uint32_t *dwptr;
738 
739 	/* Dword reads to flash. */
740 	dwptr = (uint32_t *)buf;
741 	for (i = 0; i < bytes >> 2; i++, naddr++)
742 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
743 		    nvram_data_to_access_addr(naddr)));
744 
745 	return buf;
746 }
747 
748 int
749 qla2x00_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
750     uint32_t bytes)
751 {
752 	int ret, stat;
753 	uint32_t i;
754 	uint16_t *wptr;
755 	unsigned long flags;
756 
757 	ret = QLA_SUCCESS;
758 
759 	spin_lock_irqsave(&ha->hardware_lock, flags);
760 	qla2x00_lock_nvram_access(ha);
761 
762 	/* Disable NVRAM write-protection. */
763 	stat = qla2x00_clear_nvram_protection(ha);
764 
765 	wptr = (uint16_t *)buf;
766 	for (i = 0; i < bytes >> 1; i++, naddr++) {
767 		qla2x00_write_nvram_word(ha, naddr,
768 		    cpu_to_le16(*wptr));
769 		wptr++;
770 	}
771 
772 	/* Enable NVRAM write-protection. */
773 	qla2x00_set_nvram_protection(ha, stat);
774 
775 	qla2x00_unlock_nvram_access(ha);
776 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
777 
778 	return ret;
779 }
780 
781 int
782 qla24xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
783     uint32_t bytes)
784 {
785 	int ret;
786 	uint32_t i;
787 	uint32_t *dwptr;
788 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
789 	unsigned long flags;
790 
791 	ret = QLA_SUCCESS;
792 
793 	spin_lock_irqsave(&ha->hardware_lock, flags);
794 	/* Enable flash write. */
795 	WRT_REG_DWORD(&reg->ctrl_status,
796 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
797 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
798 
799 	/* Disable NVRAM write-protection. */
800 	qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
801 	    0);
802 	qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
803 	    0);
804 
805 	/* Dword writes to flash. */
806 	dwptr = (uint32_t *)buf;
807 	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
808 		ret = qla24xx_write_flash_dword(ha,
809 		    nvram_data_to_access_addr(naddr),
810 		    cpu_to_le32(*dwptr));
811 		if (ret != QLA_SUCCESS) {
812 			DEBUG9(printk("%s(%ld) Unable to program "
813 			    "nvram address=%x data=%x.\n", __func__,
814 			    ha->host_no, naddr, *dwptr));
815 			break;
816 		}
817 	}
818 
819 	/* Enable NVRAM write-protection. */
820 	qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
821 	    0x8c);
822 
823 	/* Disable flash write. */
824 	WRT_REG_DWORD(&reg->ctrl_status,
825 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
826 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
827 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
828 
829 	return ret;
830 }
831 
832 uint8_t *
833 qla25xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
834     uint32_t bytes)
835 {
836 	uint32_t i;
837 	uint32_t *dwptr;
838 
839 	/* Dword reads to flash. */
840 	dwptr = (uint32_t *)buf;
841 	for (i = 0; i < bytes >> 2; i++, naddr++)
842 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
843 		    flash_data_to_access_addr(FA_VPD_NVRAM_ADDR | naddr)));
844 
845 	return buf;
846 }
847 
848 int
849 qla25xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
850     uint32_t bytes)
851 {
852 #define RMW_BUFFER_SIZE	(64 * 1024)
853 	uint8_t *dbuf;
854 
855 	dbuf = vmalloc(RMW_BUFFER_SIZE);
856 	if (!dbuf)
857 		return QLA_MEMORY_ALLOC_FAILED;
858 	ha->isp_ops->read_optrom(ha, dbuf, FA_VPD_NVRAM_ADDR << 2,
859 	    RMW_BUFFER_SIZE);
860 	memcpy(dbuf + (naddr << 2), buf, bytes);
861 	ha->isp_ops->write_optrom(ha, dbuf, FA_VPD_NVRAM_ADDR << 2,
862 	    RMW_BUFFER_SIZE);
863 	vfree(dbuf);
864 
865 	return QLA_SUCCESS;
866 }
867 
868 static inline void
869 qla2x00_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
870 {
871 	if (IS_QLA2322(ha)) {
872 		/* Flip all colors. */
873 		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
874 			/* Turn off. */
875 			ha->beacon_color_state = 0;
876 			*pflags = GPIO_LED_ALL_OFF;
877 		} else {
878 			/* Turn on. */
879 			ha->beacon_color_state = QLA_LED_ALL_ON;
880 			*pflags = GPIO_LED_RGA_ON;
881 		}
882 	} else {
883 		/* Flip green led only. */
884 		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
885 			/* Turn off. */
886 			ha->beacon_color_state = 0;
887 			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
888 		} else {
889 			/* Turn on. */
890 			ha->beacon_color_state = QLA_LED_GRN_ON;
891 			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
892 		}
893 	}
894 }
895 
896 void
897 qla2x00_beacon_blink(struct scsi_qla_host *ha)
898 {
899 	uint16_t gpio_enable;
900 	uint16_t gpio_data;
901 	uint16_t led_color = 0;
902 	unsigned long flags;
903 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
904 
905 	if (ha->pio_address)
906 		reg = (struct device_reg_2xxx __iomem *)ha->pio_address;
907 
908 	spin_lock_irqsave(&ha->hardware_lock, flags);
909 
910 	/* Save the Original GPIOE. */
911 	if (ha->pio_address) {
912 		gpio_enable = RD_REG_WORD_PIO(&reg->gpioe);
913 		gpio_data = RD_REG_WORD_PIO(&reg->gpiod);
914 	} else {
915 		gpio_enable = RD_REG_WORD(&reg->gpioe);
916 		gpio_data = RD_REG_WORD(&reg->gpiod);
917 	}
918 
919 	/* Set the modified gpio_enable values */
920 	gpio_enable |= GPIO_LED_MASK;
921 
922 	if (ha->pio_address) {
923 		WRT_REG_WORD_PIO(&reg->gpioe, gpio_enable);
924 	} else {
925 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
926 		RD_REG_WORD(&reg->gpioe);
927 	}
928 
929 	qla2x00_flip_colors(ha, &led_color);
930 
931 	/* Clear out any previously set LED color. */
932 	gpio_data &= ~GPIO_LED_MASK;
933 
934 	/* Set the new input LED color to GPIOD. */
935 	gpio_data |= led_color;
936 
937 	/* Set the modified gpio_data values */
938 	if (ha->pio_address) {
939 		WRT_REG_WORD_PIO(&reg->gpiod, gpio_data);
940 	} else {
941 		WRT_REG_WORD(&reg->gpiod, gpio_data);
942 		RD_REG_WORD(&reg->gpiod);
943 	}
944 
945 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
946 }
947 
948 int
949 qla2x00_beacon_on(struct scsi_qla_host *ha)
950 {
951 	uint16_t gpio_enable;
952 	uint16_t gpio_data;
953 	unsigned long flags;
954 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
955 
956 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
957 	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
958 
959 	if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
960 		qla_printk(KERN_WARNING, ha,
961 		    "Unable to update fw options (beacon on).\n");
962 		return QLA_FUNCTION_FAILED;
963 	}
964 
965 	if (ha->pio_address)
966 		reg = (struct device_reg_2xxx __iomem *)ha->pio_address;
967 
968 	/* Turn off LEDs. */
969 	spin_lock_irqsave(&ha->hardware_lock, flags);
970 	if (ha->pio_address) {
971 		gpio_enable = RD_REG_WORD_PIO(&reg->gpioe);
972 		gpio_data = RD_REG_WORD_PIO(&reg->gpiod);
973 	} else {
974 		gpio_enable = RD_REG_WORD(&reg->gpioe);
975 		gpio_data = RD_REG_WORD(&reg->gpiod);
976 	}
977 	gpio_enable |= GPIO_LED_MASK;
978 
979 	/* Set the modified gpio_enable values. */
980 	if (ha->pio_address) {
981 		WRT_REG_WORD_PIO(&reg->gpioe, gpio_enable);
982 	} else {
983 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
984 		RD_REG_WORD(&reg->gpioe);
985 	}
986 
987 	/* Clear out previously set LED colour. */
988 	gpio_data &= ~GPIO_LED_MASK;
989 	if (ha->pio_address) {
990 		WRT_REG_WORD_PIO(&reg->gpiod, gpio_data);
991 	} else {
992 		WRT_REG_WORD(&reg->gpiod, gpio_data);
993 		RD_REG_WORD(&reg->gpiod);
994 	}
995 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
996 
997 	/*
998 	 * Let the per HBA timer kick off the blinking process based on
999 	 * the following flags. No need to do anything else now.
1000 	 */
1001 	ha->beacon_blink_led = 1;
1002 	ha->beacon_color_state = 0;
1003 
1004 	return QLA_SUCCESS;
1005 }
1006 
1007 int
1008 qla2x00_beacon_off(struct scsi_qla_host *ha)
1009 {
1010 	int rval = QLA_SUCCESS;
1011 
1012 	ha->beacon_blink_led = 0;
1013 
1014 	/* Set the on flag so when it gets flipped it will be off. */
1015 	if (IS_QLA2322(ha))
1016 		ha->beacon_color_state = QLA_LED_ALL_ON;
1017 	else
1018 		ha->beacon_color_state = QLA_LED_GRN_ON;
1019 
1020 	ha->isp_ops->beacon_blink(ha);	/* This turns green LED off */
1021 
1022 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1023 	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1024 
1025 	rval = qla2x00_set_fw_options(ha, ha->fw_options);
1026 	if (rval != QLA_SUCCESS)
1027 		qla_printk(KERN_WARNING, ha,
1028 		    "Unable to update fw options (beacon off).\n");
1029 	return rval;
1030 }
1031 
1032 
1033 static inline void
1034 qla24xx_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
1035 {
1036 	/* Flip all colors. */
1037 	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1038 		/* Turn off. */
1039 		ha->beacon_color_state = 0;
1040 		*pflags = 0;
1041 	} else {
1042 		/* Turn on. */
1043 		ha->beacon_color_state = QLA_LED_ALL_ON;
1044 		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1045 	}
1046 }
1047 
1048 void
1049 qla24xx_beacon_blink(struct scsi_qla_host *ha)
1050 {
1051 	uint16_t led_color = 0;
1052 	uint32_t gpio_data;
1053 	unsigned long flags;
1054 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1055 
1056 	/* Save the Original GPIOD. */
1057 	spin_lock_irqsave(&ha->hardware_lock, flags);
1058 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1059 
1060 	/* Enable the gpio_data reg for update. */
1061 	gpio_data |= GPDX_LED_UPDATE_MASK;
1062 
1063 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1064 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1065 
1066 	/* Set the color bits. */
1067 	qla24xx_flip_colors(ha, &led_color);
1068 
1069 	/* Clear out any previously set LED color. */
1070 	gpio_data &= ~GPDX_LED_COLOR_MASK;
1071 
1072 	/* Set the new input LED color to GPIOD. */
1073 	gpio_data |= led_color;
1074 
1075 	/* Set the modified gpio_data values. */
1076 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1077 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1078 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1079 }
1080 
1081 int
1082 qla24xx_beacon_on(struct scsi_qla_host *ha)
1083 {
1084 	uint32_t gpio_data;
1085 	unsigned long flags;
1086 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1087 
1088 	if (ha->beacon_blink_led == 0) {
1089 		/* Enable firmware for update */
1090 		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1091 
1092 		if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS)
1093 			return QLA_FUNCTION_FAILED;
1094 
1095 		if (qla2x00_get_fw_options(ha, ha->fw_options) !=
1096 		    QLA_SUCCESS) {
1097 			qla_printk(KERN_WARNING, ha,
1098 			    "Unable to update fw options (beacon on).\n");
1099 			return QLA_FUNCTION_FAILED;
1100 		}
1101 
1102 		spin_lock_irqsave(&ha->hardware_lock, flags);
1103 		gpio_data = RD_REG_DWORD(&reg->gpiod);
1104 
1105 		/* Enable the gpio_data reg for update. */
1106 		gpio_data |= GPDX_LED_UPDATE_MASK;
1107 		WRT_REG_DWORD(&reg->gpiod, gpio_data);
1108 		RD_REG_DWORD(&reg->gpiod);
1109 
1110 		spin_unlock_irqrestore(&ha->hardware_lock, flags);
1111 	}
1112 
1113 	/* So all colors blink together. */
1114 	ha->beacon_color_state = 0;
1115 
1116 	/* Let the per HBA timer kick off the blinking process. */
1117 	ha->beacon_blink_led = 1;
1118 
1119 	return QLA_SUCCESS;
1120 }
1121 
1122 int
1123 qla24xx_beacon_off(struct scsi_qla_host *ha)
1124 {
1125 	uint32_t gpio_data;
1126 	unsigned long flags;
1127 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1128 
1129 	ha->beacon_blink_led = 0;
1130 	ha->beacon_color_state = QLA_LED_ALL_ON;
1131 
1132 	ha->isp_ops->beacon_blink(ha);	/* Will flip to all off. */
1133 
1134 	/* Give control back to firmware. */
1135 	spin_lock_irqsave(&ha->hardware_lock, flags);
1136 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1137 
1138 	/* Disable the gpio_data reg for update. */
1139 	gpio_data &= ~GPDX_LED_UPDATE_MASK;
1140 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1141 	RD_REG_DWORD(&reg->gpiod);
1142 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1143 
1144 	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1145 
1146 	if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1147 		qla_printk(KERN_WARNING, ha,
1148 		    "Unable to update fw options (beacon off).\n");
1149 		return QLA_FUNCTION_FAILED;
1150 	}
1151 
1152 	if (qla2x00_get_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1153 		qla_printk(KERN_WARNING, ha,
1154 		    "Unable to get fw options (beacon off).\n");
1155 		return QLA_FUNCTION_FAILED;
1156 	}
1157 
1158 	return QLA_SUCCESS;
1159 }
1160 
1161 
1162 /*
1163  * Flash support routines
1164  */
1165 
1166 /**
1167  * qla2x00_flash_enable() - Setup flash for reading and writing.
1168  * @ha: HA context
1169  */
1170 static void
1171 qla2x00_flash_enable(scsi_qla_host_t *ha)
1172 {
1173 	uint16_t data;
1174 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1175 
1176 	data = RD_REG_WORD(&reg->ctrl_status);
1177 	data |= CSR_FLASH_ENABLE;
1178 	WRT_REG_WORD(&reg->ctrl_status, data);
1179 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1180 }
1181 
1182 /**
1183  * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1184  * @ha: HA context
1185  */
1186 static void
1187 qla2x00_flash_disable(scsi_qla_host_t *ha)
1188 {
1189 	uint16_t data;
1190 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1191 
1192 	data = RD_REG_WORD(&reg->ctrl_status);
1193 	data &= ~(CSR_FLASH_ENABLE);
1194 	WRT_REG_WORD(&reg->ctrl_status, data);
1195 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1196 }
1197 
1198 /**
1199  * qla2x00_read_flash_byte() - Reads a byte from flash
1200  * @ha: HA context
1201  * @addr: Address in flash to read
1202  *
1203  * A word is read from the chip, but, only the lower byte is valid.
1204  *
1205  * Returns the byte read from flash @addr.
1206  */
1207 static uint8_t
1208 qla2x00_read_flash_byte(scsi_qla_host_t *ha, uint32_t addr)
1209 {
1210 	uint16_t data;
1211 	uint16_t bank_select;
1212 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1213 
1214 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1215 
1216 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1217 		/* Specify 64K address range: */
1218 		/*  clear out Module Select and Flash Address bits [19:16]. */
1219 		bank_select &= ~0xf8;
1220 		bank_select |= addr >> 12 & 0xf0;
1221 		bank_select |= CSR_FLASH_64K_BANK;
1222 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1223 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1224 
1225 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1226 		data = RD_REG_WORD(&reg->flash_data);
1227 
1228 		return (uint8_t)data;
1229 	}
1230 
1231 	/* Setup bit 16 of flash address. */
1232 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1233 		bank_select |= CSR_FLASH_64K_BANK;
1234 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1235 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1236 	} else if (((addr & BIT_16) == 0) &&
1237 	    (bank_select & CSR_FLASH_64K_BANK)) {
1238 		bank_select &= ~(CSR_FLASH_64K_BANK);
1239 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1240 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1241 	}
1242 
1243 	/* Always perform IO mapped accesses to the FLASH registers. */
1244 	if (ha->pio_address) {
1245 		uint16_t data2;
1246 
1247 		reg = (struct device_reg_2xxx __iomem *)ha->pio_address;
1248 		WRT_REG_WORD_PIO(&reg->flash_address, (uint16_t)addr);
1249 		do {
1250 			data = RD_REG_WORD_PIO(&reg->flash_data);
1251 			barrier();
1252 			cpu_relax();
1253 			data2 = RD_REG_WORD_PIO(&reg->flash_data);
1254 		} while (data != data2);
1255 	} else {
1256 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1257 		data = qla2x00_debounce_register(&reg->flash_data);
1258 	}
1259 
1260 	return (uint8_t)data;
1261 }
1262 
1263 /**
1264  * qla2x00_write_flash_byte() - Write a byte to flash
1265  * @ha: HA context
1266  * @addr: Address in flash to write
1267  * @data: Data to write
1268  */
1269 static void
1270 qla2x00_write_flash_byte(scsi_qla_host_t *ha, uint32_t addr, uint8_t data)
1271 {
1272 	uint16_t bank_select;
1273 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1274 
1275 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1276 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1277 		/* Specify 64K address range: */
1278 		/*  clear out Module Select and Flash Address bits [19:16]. */
1279 		bank_select &= ~0xf8;
1280 		bank_select |= addr >> 12 & 0xf0;
1281 		bank_select |= CSR_FLASH_64K_BANK;
1282 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1283 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1284 
1285 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1286 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1287 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1288 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1289 
1290 		return;
1291 	}
1292 
1293 	/* Setup bit 16 of flash address. */
1294 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1295 		bank_select |= CSR_FLASH_64K_BANK;
1296 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1297 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1298 	} else if (((addr & BIT_16) == 0) &&
1299 	    (bank_select & CSR_FLASH_64K_BANK)) {
1300 		bank_select &= ~(CSR_FLASH_64K_BANK);
1301 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1302 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1303 	}
1304 
1305 	/* Always perform IO mapped accesses to the FLASH registers. */
1306 	if (ha->pio_address) {
1307 		reg = (struct device_reg_2xxx __iomem *)ha->pio_address;
1308 		WRT_REG_WORD_PIO(&reg->flash_address, (uint16_t)addr);
1309 		WRT_REG_WORD_PIO(&reg->flash_data, (uint16_t)data);
1310 	} else {
1311 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1312 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1313 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1314 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1315 	}
1316 }
1317 
1318 /**
1319  * qla2x00_poll_flash() - Polls flash for completion.
1320  * @ha: HA context
1321  * @addr: Address in flash to poll
1322  * @poll_data: Data to be polled
1323  * @man_id: Flash manufacturer ID
1324  * @flash_id: Flash ID
1325  *
1326  * This function polls the device until bit 7 of what is read matches data
1327  * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
1328  * out (a fatal error).  The flash book recommeds reading bit 7 again after
1329  * reading bit 5 as a 1.
1330  *
1331  * Returns 0 on success, else non-zero.
1332  */
1333 static int
1334 qla2x00_poll_flash(scsi_qla_host_t *ha, uint32_t addr, uint8_t poll_data,
1335     uint8_t man_id, uint8_t flash_id)
1336 {
1337 	int status;
1338 	uint8_t flash_data;
1339 	uint32_t cnt;
1340 
1341 	status = 1;
1342 
1343 	/* Wait for 30 seconds for command to finish. */
1344 	poll_data &= BIT_7;
1345 	for (cnt = 3000000; cnt; cnt--) {
1346 		flash_data = qla2x00_read_flash_byte(ha, addr);
1347 		if ((flash_data & BIT_7) == poll_data) {
1348 			status = 0;
1349 			break;
1350 		}
1351 
1352 		if (man_id != 0x40 && man_id != 0xda) {
1353 			if ((flash_data & BIT_5) && cnt > 2)
1354 				cnt = 2;
1355 		}
1356 		udelay(10);
1357 		barrier();
1358 		cond_resched();
1359 	}
1360 	return status;
1361 }
1362 
1363 /**
1364  * qla2x00_program_flash_address() - Programs a flash address
1365  * @ha: HA context
1366  * @addr: Address in flash to program
1367  * @data: Data to be written in flash
1368  * @man_id: Flash manufacturer ID
1369  * @flash_id: Flash ID
1370  *
1371  * Returns 0 on success, else non-zero.
1372  */
1373 static int
1374 qla2x00_program_flash_address(scsi_qla_host_t *ha, uint32_t addr, uint8_t data,
1375     uint8_t man_id, uint8_t flash_id)
1376 {
1377 	/* Write Program Command Sequence. */
1378 	if (IS_OEM_001(ha)) {
1379 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1380 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1381 		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1382 		qla2x00_write_flash_byte(ha, addr, data);
1383 	} else {
1384 		if (man_id == 0xda && flash_id == 0xc1) {
1385 			qla2x00_write_flash_byte(ha, addr, data);
1386 			if (addr & 0x7e)
1387 				return 0;
1388 		} else {
1389 			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1390 			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1391 			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1392 			qla2x00_write_flash_byte(ha, addr, data);
1393 		}
1394 	}
1395 
1396 	udelay(150);
1397 
1398 	/* Wait for write to complete. */
1399 	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1400 }
1401 
1402 /**
1403  * qla2x00_erase_flash() - Erase the flash.
1404  * @ha: HA context
1405  * @man_id: Flash manufacturer ID
1406  * @flash_id: Flash ID
1407  *
1408  * Returns 0 on success, else non-zero.
1409  */
1410 static int
1411 qla2x00_erase_flash(scsi_qla_host_t *ha, uint8_t man_id, uint8_t flash_id)
1412 {
1413 	/* Individual Sector Erase Command Sequence */
1414 	if (IS_OEM_001(ha)) {
1415 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1416 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1417 		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1418 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1419 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1420 		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1421 	} else {
1422 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1423 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1424 		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1425 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1426 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1427 		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1428 	}
1429 
1430 	udelay(150);
1431 
1432 	/* Wait for erase to complete. */
1433 	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1434 }
1435 
1436 /**
1437  * qla2x00_erase_flash_sector() - Erase a flash sector.
1438  * @ha: HA context
1439  * @addr: Flash sector to erase
1440  * @sec_mask: Sector address mask
1441  * @man_id: Flash manufacturer ID
1442  * @flash_id: Flash ID
1443  *
1444  * Returns 0 on success, else non-zero.
1445  */
1446 static int
1447 qla2x00_erase_flash_sector(scsi_qla_host_t *ha, uint32_t addr,
1448     uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1449 {
1450 	/* Individual Sector Erase Command Sequence */
1451 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1452 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1453 	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1454 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1455 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1456 	if (man_id == 0x1f && flash_id == 0x13)
1457 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
1458 	else
1459 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
1460 
1461 	udelay(150);
1462 
1463 	/* Wait for erase to complete. */
1464 	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
1465 }
1466 
1467 /**
1468  * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
1469  * @man_id: Flash manufacturer ID
1470  * @flash_id: Flash ID
1471  */
1472 static void
1473 qla2x00_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
1474     uint8_t *flash_id)
1475 {
1476 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1477 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1478 	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
1479 	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
1480 	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
1481 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1482 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1483 	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
1484 }
1485 
1486 static void
1487 qla2x00_read_flash_data(scsi_qla_host_t *ha, uint8_t *tmp_buf, uint32_t saddr,
1488         uint32_t length)
1489 {
1490 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1491 	uint32_t midpoint, ilength;
1492 	uint8_t data;
1493 
1494 	midpoint = length / 2;
1495 
1496 	WRT_REG_WORD(&reg->nvram, 0);
1497 	RD_REG_WORD(&reg->nvram);
1498 	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
1499 		if (ilength == midpoint) {
1500 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1501 			RD_REG_WORD(&reg->nvram);
1502 		}
1503 		data = qla2x00_read_flash_byte(ha, saddr);
1504 		if (saddr % 100)
1505 			udelay(10);
1506 		*tmp_buf = data;
1507 		cond_resched();
1508 	}
1509 }
1510 
1511 static inline void
1512 qla2x00_suspend_hba(struct scsi_qla_host *ha)
1513 {
1514 	int cnt;
1515 	unsigned long flags;
1516 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1517 
1518 	/* Suspend HBA. */
1519 	scsi_block_requests(ha->host);
1520 	ha->isp_ops->disable_intrs(ha);
1521 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1522 
1523 	/* Pause RISC. */
1524 	spin_lock_irqsave(&ha->hardware_lock, flags);
1525 	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
1526 	RD_REG_WORD(&reg->hccr);
1527 	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
1528 		for (cnt = 0; cnt < 30000; cnt++) {
1529 			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
1530 				break;
1531 			udelay(100);
1532 		}
1533 	} else {
1534 		udelay(10);
1535 	}
1536 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1537 }
1538 
1539 static inline void
1540 qla2x00_resume_hba(struct scsi_qla_host *ha)
1541 {
1542 	/* Resume HBA. */
1543 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1544 	set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
1545 	qla2xxx_wake_dpc(ha);
1546 	qla2x00_wait_for_hba_online(ha);
1547 	scsi_unblock_requests(ha->host);
1548 }
1549 
1550 uint8_t *
1551 qla2x00_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1552     uint32_t offset, uint32_t length)
1553 {
1554 	uint32_t addr, midpoint;
1555 	uint8_t *data;
1556 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1557 
1558 	/* Suspend HBA. */
1559 	qla2x00_suspend_hba(ha);
1560 
1561 	/* Go with read. */
1562 	midpoint = ha->optrom_size / 2;
1563 
1564 	qla2x00_flash_enable(ha);
1565 	WRT_REG_WORD(&reg->nvram, 0);
1566 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
1567 	for (addr = offset, data = buf; addr < length; addr++, data++) {
1568 		if (addr == midpoint) {
1569 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1570 			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
1571 		}
1572 
1573 		*data = qla2x00_read_flash_byte(ha, addr);
1574 	}
1575 	qla2x00_flash_disable(ha);
1576 
1577 	/* Resume HBA. */
1578 	qla2x00_resume_hba(ha);
1579 
1580 	return buf;
1581 }
1582 
1583 int
1584 qla2x00_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1585     uint32_t offset, uint32_t length)
1586 {
1587 
1588 	int rval;
1589 	uint8_t man_id, flash_id, sec_number, data;
1590 	uint16_t wd;
1591 	uint32_t addr, liter, sec_mask, rest_addr;
1592 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1593 
1594 	/* Suspend HBA. */
1595 	qla2x00_suspend_hba(ha);
1596 
1597 	rval = QLA_SUCCESS;
1598 	sec_number = 0;
1599 
1600 	/* Reset ISP chip. */
1601 	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
1602 	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
1603 
1604 	/* Go with write. */
1605 	qla2x00_flash_enable(ha);
1606 	do {	/* Loop once to provide quick error exit */
1607 		/* Structure of flash memory based on manufacturer */
1608 		if (IS_OEM_001(ha)) {
1609 			/* OEM variant with special flash part. */
1610 			man_id = flash_id = 0;
1611 			rest_addr = 0xffff;
1612 			sec_mask   = 0x10000;
1613 			goto update_flash;
1614 		}
1615 		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
1616 		switch (man_id) {
1617 		case 0x20: /* ST flash. */
1618 			if (flash_id == 0xd2 || flash_id == 0xe3) {
1619 				/*
1620 				 * ST m29w008at part - 64kb sector size with
1621 				 * 32kb,8kb,8kb,16kb sectors at memory address
1622 				 * 0xf0000.
1623 				 */
1624 				rest_addr = 0xffff;
1625 				sec_mask = 0x10000;
1626 				break;
1627 			}
1628 			/*
1629 			 * ST m29w010b part - 16kb sector size
1630 			 * Default to 16kb sectors
1631 			 */
1632 			rest_addr = 0x3fff;
1633 			sec_mask = 0x1c000;
1634 			break;
1635 		case 0x40: /* Mostel flash. */
1636 			/* Mostel v29c51001 part - 512 byte sector size. */
1637 			rest_addr = 0x1ff;
1638 			sec_mask = 0x1fe00;
1639 			break;
1640 		case 0xbf: /* SST flash. */
1641 			/* SST39sf10 part - 4kb sector size. */
1642 			rest_addr = 0xfff;
1643 			sec_mask = 0x1f000;
1644 			break;
1645 		case 0xda: /* Winbond flash. */
1646 			/* Winbond W29EE011 part - 256 byte sector size. */
1647 			rest_addr = 0x7f;
1648 			sec_mask = 0x1ff80;
1649 			break;
1650 		case 0xc2: /* Macronix flash. */
1651 			/* 64k sector size. */
1652 			if (flash_id == 0x38 || flash_id == 0x4f) {
1653 				rest_addr = 0xffff;
1654 				sec_mask = 0x10000;
1655 				break;
1656 			}
1657 			/* Fall through... */
1658 
1659 		case 0x1f: /* Atmel flash. */
1660 			/* 512k sector size. */
1661 			if (flash_id == 0x13) {
1662 				rest_addr = 0x7fffffff;
1663 				sec_mask =   0x80000000;
1664 				break;
1665 			}
1666 			/* Fall through... */
1667 
1668 		case 0x01: /* AMD flash. */
1669 			if (flash_id == 0x38 || flash_id == 0x40 ||
1670 			    flash_id == 0x4f) {
1671 				/* Am29LV081 part - 64kb sector size. */
1672 				/* Am29LV002BT part - 64kb sector size. */
1673 				rest_addr = 0xffff;
1674 				sec_mask = 0x10000;
1675 				break;
1676 			} else if (flash_id == 0x3e) {
1677 				/*
1678 				 * Am29LV008b part - 64kb sector size with
1679 				 * 32kb,8kb,8kb,16kb sector at memory address
1680 				 * h0xf0000.
1681 				 */
1682 				rest_addr = 0xffff;
1683 				sec_mask = 0x10000;
1684 				break;
1685 			} else if (flash_id == 0x20 || flash_id == 0x6e) {
1686 				/*
1687 				 * Am29LV010 part or AM29f010 - 16kb sector
1688 				 * size.
1689 				 */
1690 				rest_addr = 0x3fff;
1691 				sec_mask = 0x1c000;
1692 				break;
1693 			} else if (flash_id == 0x6d) {
1694 				/* Am29LV001 part - 8kb sector size. */
1695 				rest_addr = 0x1fff;
1696 				sec_mask = 0x1e000;
1697 				break;
1698 			}
1699 		default:
1700 			/* Default to 16 kb sector size. */
1701 			rest_addr = 0x3fff;
1702 			sec_mask = 0x1c000;
1703 			break;
1704 		}
1705 
1706 update_flash:
1707 		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1708 			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
1709 				rval = QLA_FUNCTION_FAILED;
1710 				break;
1711 			}
1712 		}
1713 
1714 		for (addr = offset, liter = 0; liter < length; liter++,
1715 		    addr++) {
1716 			data = buf[liter];
1717 			/* Are we at the beginning of a sector? */
1718 			if ((addr & rest_addr) == 0) {
1719 				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1720 					if (addr >= 0x10000UL) {
1721 						if (((addr >> 12) & 0xf0) &&
1722 						    ((man_id == 0x01 &&
1723 							flash_id == 0x3e) ||
1724 						     (man_id == 0x20 &&
1725 							 flash_id == 0xd2))) {
1726 							sec_number++;
1727 							if (sec_number == 1) {
1728 								rest_addr =
1729 								    0x7fff;
1730 								sec_mask =
1731 								    0x18000;
1732 							} else if (
1733 							    sec_number == 2 ||
1734 							    sec_number == 3) {
1735 								rest_addr =
1736 								    0x1fff;
1737 								sec_mask =
1738 								    0x1e000;
1739 							} else if (
1740 							    sec_number == 4) {
1741 								rest_addr =
1742 								    0x3fff;
1743 								sec_mask =
1744 								    0x1c000;
1745 							}
1746 						}
1747 					}
1748 				} else if (addr == ha->optrom_size / 2) {
1749 					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1750 					RD_REG_WORD(&reg->nvram);
1751 				}
1752 
1753 				if (flash_id == 0xda && man_id == 0xc1) {
1754 					qla2x00_write_flash_byte(ha, 0x5555,
1755 					    0xaa);
1756 					qla2x00_write_flash_byte(ha, 0x2aaa,
1757 					    0x55);
1758 					qla2x00_write_flash_byte(ha, 0x5555,
1759 					    0xa0);
1760 				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
1761 					/* Then erase it */
1762 					if (qla2x00_erase_flash_sector(ha,
1763 					    addr, sec_mask, man_id,
1764 					    flash_id)) {
1765 						rval = QLA_FUNCTION_FAILED;
1766 						break;
1767 					}
1768 					if (man_id == 0x01 && flash_id == 0x6d)
1769 						sec_number++;
1770 				}
1771 			}
1772 
1773 			if (man_id == 0x01 && flash_id == 0x6d) {
1774 				if (sec_number == 1 &&
1775 				    addr == (rest_addr - 1)) {
1776 					rest_addr = 0x0fff;
1777 					sec_mask   = 0x1f000;
1778 				} else if (sec_number == 3 && (addr & 0x7ffe)) {
1779 					rest_addr = 0x3fff;
1780 					sec_mask   = 0x1c000;
1781 				}
1782 			}
1783 
1784 			if (qla2x00_program_flash_address(ha, addr, data,
1785 			    man_id, flash_id)) {
1786 				rval = QLA_FUNCTION_FAILED;
1787 				break;
1788 			}
1789 			cond_resched();
1790 		}
1791 	} while (0);
1792 	qla2x00_flash_disable(ha);
1793 
1794 	/* Resume HBA. */
1795 	qla2x00_resume_hba(ha);
1796 
1797 	return rval;
1798 }
1799 
1800 uint8_t *
1801 qla24xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1802     uint32_t offset, uint32_t length)
1803 {
1804 	/* Suspend HBA. */
1805 	scsi_block_requests(ha->host);
1806 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1807 
1808 	/* Go with read. */
1809 	qla24xx_read_flash_data(ha, (uint32_t *)buf, offset >> 2, length >> 2);
1810 
1811 	/* Resume HBA. */
1812 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1813 	scsi_unblock_requests(ha->host);
1814 
1815 	return buf;
1816 }
1817 
1818 int
1819 qla24xx_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1820     uint32_t offset, uint32_t length)
1821 {
1822 	int rval;
1823 
1824 	/* Suspend HBA. */
1825 	scsi_block_requests(ha->host);
1826 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1827 
1828 	/* Go with write. */
1829 	rval = qla24xx_write_flash_data(ha, (uint32_t *)buf, offset >> 2,
1830 	    length >> 2);
1831 
1832 	/* Resume HBA -- RISC reset needed. */
1833 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1834 	set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
1835 	qla2xxx_wake_dpc(ha);
1836 	qla2x00_wait_for_hba_online(ha);
1837 	scsi_unblock_requests(ha->host);
1838 
1839 	return rval;
1840 }
1841 
1842 uint8_t *
1843 qla25xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1844     uint32_t offset, uint32_t length)
1845 {
1846 	int rval;
1847 	dma_addr_t optrom_dma;
1848 	void *optrom;
1849 	uint8_t *pbuf;
1850 	uint32_t faddr, left, burst;
1851 
1852 	if (offset & 0xfff)
1853 		goto slow_read;
1854 	if (length < OPTROM_BURST_SIZE)
1855 		goto slow_read;
1856 
1857 	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1858 	    &optrom_dma, GFP_KERNEL);
1859 	if (!optrom) {
1860 		qla_printk(KERN_DEBUG, ha,
1861 		    "Unable to allocate memory for optrom burst read "
1862 		    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
1863 
1864 		goto slow_read;
1865 	}
1866 
1867 	pbuf = buf;
1868 	faddr = offset >> 2;
1869 	left = length >> 2;
1870 	burst = OPTROM_BURST_DWORDS;
1871 	while (left != 0) {
1872 		if (burst > left)
1873 			burst = left;
1874 
1875 		rval = qla2x00_dump_ram(ha, optrom_dma,
1876 		    flash_data_to_access_addr(faddr), burst);
1877 		if (rval) {
1878 			qla_printk(KERN_WARNING, ha,
1879 			    "Unable to burst-read optrom segment "
1880 			    "(%x/%x/%llx).\n", rval,
1881 			    flash_data_to_access_addr(faddr),
1882 			    (unsigned long long)optrom_dma);
1883 			qla_printk(KERN_WARNING, ha,
1884 			    "Reverting to slow-read.\n");
1885 
1886 			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1887 			    optrom, optrom_dma);
1888 			goto slow_read;
1889 		}
1890 
1891 		memcpy(pbuf, optrom, burst * 4);
1892 
1893 		left -= burst;
1894 		faddr += burst;
1895 		pbuf += burst * 4;
1896 	}
1897 
1898 	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
1899 	    optrom_dma);
1900 
1901 	return buf;
1902 
1903 slow_read:
1904     return qla24xx_read_optrom_data(ha, buf, offset, length);
1905 }
1906 
1907 /**
1908  * qla2x00_get_fcode_version() - Determine an FCODE image's version.
1909  * @ha: HA context
1910  * @pcids: Pointer to the FCODE PCI data structure
1911  *
1912  * The process of retrieving the FCODE version information is at best
1913  * described as interesting.
1914  *
1915  * Within the first 100h bytes of the image an ASCII string is present
1916  * which contains several pieces of information including the FCODE
1917  * version.  Unfortunately it seems the only reliable way to retrieve
1918  * the version is by scanning for another sentinel within the string,
1919  * the FCODE build date:
1920  *
1921  *	... 2.00.02 10/17/02 ...
1922  *
1923  * Returns QLA_SUCCESS on successful retrieval of version.
1924  */
1925 static void
1926 qla2x00_get_fcode_version(scsi_qla_host_t *ha, uint32_t pcids)
1927 {
1928 	int ret = QLA_FUNCTION_FAILED;
1929 	uint32_t istart, iend, iter, vend;
1930 	uint8_t do_next, rbyte, *vbyte;
1931 
1932 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
1933 
1934 	/* Skip the PCI data structure. */
1935 	istart = pcids +
1936 	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
1937 		qla2x00_read_flash_byte(ha, pcids + 0x0A));
1938 	iend = istart + 0x100;
1939 	do {
1940 		/* Scan for the sentinel date string...eeewww. */
1941 		do_next = 0;
1942 		iter = istart;
1943 		while ((iter < iend) && !do_next) {
1944 			iter++;
1945 			if (qla2x00_read_flash_byte(ha, iter) == '/') {
1946 				if (qla2x00_read_flash_byte(ha, iter + 2) ==
1947 				    '/')
1948 					do_next++;
1949 				else if (qla2x00_read_flash_byte(ha,
1950 				    iter + 3) == '/')
1951 					do_next++;
1952 			}
1953 		}
1954 		if (!do_next)
1955 			break;
1956 
1957 		/* Backtrack to previous ' ' (space). */
1958 		do_next = 0;
1959 		while ((iter > istart) && !do_next) {
1960 			iter--;
1961 			if (qla2x00_read_flash_byte(ha, iter) == ' ')
1962 				do_next++;
1963 		}
1964 		if (!do_next)
1965 			break;
1966 
1967 		/*
1968 		 * Mark end of version tag, and find previous ' ' (space) or
1969 		 * string length (recent FCODE images -- major hack ahead!!!).
1970 		 */
1971 		vend = iter - 1;
1972 		do_next = 0;
1973 		while ((iter > istart) && !do_next) {
1974 			iter--;
1975 			rbyte = qla2x00_read_flash_byte(ha, iter);
1976 			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
1977 				do_next++;
1978 		}
1979 		if (!do_next)
1980 			break;
1981 
1982 		/* Mark beginning of version tag, and copy data. */
1983 		iter++;
1984 		if ((vend - iter) &&
1985 		    ((vend - iter) < sizeof(ha->fcode_revision))) {
1986 			vbyte = ha->fcode_revision;
1987 			while (iter <= vend) {
1988 				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
1989 				iter++;
1990 			}
1991 			ret = QLA_SUCCESS;
1992 		}
1993 	} while (0);
1994 
1995 	if (ret != QLA_SUCCESS)
1996 		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
1997 }
1998 
1999 int
2000 qla2x00_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
2001 {
2002 	int ret = QLA_SUCCESS;
2003 	uint8_t code_type, last_image;
2004 	uint32_t pcihdr, pcids;
2005 	uint8_t *dbyte;
2006 	uint16_t *dcode;
2007 
2008 	if (!ha->pio_address || !mbuf)
2009 		return QLA_FUNCTION_FAILED;
2010 
2011 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2012 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2013 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2014 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2015 
2016 	qla2x00_flash_enable(ha);
2017 
2018 	/* Begin with first PCI expansion ROM header. */
2019 	pcihdr = 0;
2020 	last_image = 1;
2021 	do {
2022 		/* Verify PCI expansion ROM header. */
2023 		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2024 		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2025 			/* No signature */
2026 			DEBUG2(printk("scsi(%ld): No matching ROM "
2027 			    "signature.\n", ha->host_no));
2028 			ret = QLA_FUNCTION_FAILED;
2029 			break;
2030 		}
2031 
2032 		/* Locate PCI data structure. */
2033 		pcids = pcihdr +
2034 		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2035 			qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2036 
2037 		/* Validate signature of PCI data structure. */
2038 		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2039 		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2040 		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2041 		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2042 			/* Incorrect header. */
2043 			DEBUG2(printk("%s(): PCI data struct not found "
2044 			    "pcir_adr=%x.\n", __func__, pcids));
2045 			ret = QLA_FUNCTION_FAILED;
2046 			break;
2047 		}
2048 
2049 		/* Read version */
2050 		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2051 		switch (code_type) {
2052 		case ROM_CODE_TYPE_BIOS:
2053 			/* Intel x86, PC-AT compatible. */
2054 			ha->bios_revision[0] =
2055 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2056 			ha->bios_revision[1] =
2057 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2058 			DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
2059 			    ha->bios_revision[1], ha->bios_revision[0]));
2060 			break;
2061 		case ROM_CODE_TYPE_FCODE:
2062 			/* Open Firmware standard for PCI (FCode). */
2063 			/* Eeeewww... */
2064 			qla2x00_get_fcode_version(ha, pcids);
2065 			break;
2066 		case ROM_CODE_TYPE_EFI:
2067 			/* Extensible Firmware Interface (EFI). */
2068 			ha->efi_revision[0] =
2069 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2070 			ha->efi_revision[1] =
2071 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2072 			DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
2073 			    ha->efi_revision[1], ha->efi_revision[0]));
2074 			break;
2075 		default:
2076 			DEBUG2(printk("%s(): Unrecognized code type %x at "
2077 			    "pcids %x.\n", __func__, code_type, pcids));
2078 			break;
2079 		}
2080 
2081 		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2082 
2083 		/* Locate next PCI expansion ROM. */
2084 		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2085 		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2086 	} while (!last_image);
2087 
2088 	if (IS_QLA2322(ha)) {
2089 		/* Read firmware image information. */
2090 		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2091 		dbyte = mbuf;
2092 		memset(dbyte, 0, 8);
2093 		dcode = (uint16_t *)dbyte;
2094 
2095 		qla2x00_read_flash_data(ha, dbyte, FA_RISC_CODE_ADDR * 4 + 10,
2096 		    8);
2097 		DEBUG3(printk("%s(%ld): dumping fw ver from flash:\n",
2098 		    __func__, ha->host_no));
2099 		DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
2100 
2101 		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2102 		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2103 		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2104 		    dcode[3] == 0)) {
2105 			DEBUG2(printk("%s(): Unrecognized fw revision at "
2106 			    "%x.\n", __func__, FA_RISC_CODE_ADDR * 4));
2107 		} else {
2108 			/* values are in big endian */
2109 			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2110 			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2111 			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2112 		}
2113 	}
2114 
2115 	qla2x00_flash_disable(ha);
2116 
2117 	return ret;
2118 }
2119 
2120 int
2121 qla24xx_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
2122 {
2123 	int ret = QLA_SUCCESS;
2124 	uint32_t pcihdr, pcids;
2125 	uint32_t *dcode;
2126 	uint8_t *bcode;
2127 	uint8_t code_type, last_image;
2128 	int i;
2129 
2130 	if (!mbuf)
2131 		return QLA_FUNCTION_FAILED;
2132 
2133 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2134 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2135 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2136 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2137 
2138 	dcode = mbuf;
2139 
2140 	/* Begin with first PCI expansion ROM header. */
2141 	pcihdr = 0;
2142 	last_image = 1;
2143 	do {
2144 		/* Verify PCI expansion ROM header. */
2145 		qla24xx_read_flash_data(ha, dcode, pcihdr >> 2, 0x20);
2146 		bcode = mbuf + (pcihdr % 4);
2147 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2148 			/* No signature */
2149 			DEBUG2(printk("scsi(%ld): No matching ROM "
2150 			    "signature.\n", ha->host_no));
2151 			ret = QLA_FUNCTION_FAILED;
2152 			break;
2153 		}
2154 
2155 		/* Locate PCI data structure. */
2156 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2157 
2158 		qla24xx_read_flash_data(ha, dcode, pcids >> 2, 0x20);
2159 		bcode = mbuf + (pcihdr % 4);
2160 
2161 		/* Validate signature of PCI data structure. */
2162 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2163 		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2164 			/* Incorrect header. */
2165 			DEBUG2(printk("%s(): PCI data struct not found "
2166 			    "pcir_adr=%x.\n", __func__, pcids));
2167 			ret = QLA_FUNCTION_FAILED;
2168 			break;
2169 		}
2170 
2171 		/* Read version */
2172 		code_type = bcode[0x14];
2173 		switch (code_type) {
2174 		case ROM_CODE_TYPE_BIOS:
2175 			/* Intel x86, PC-AT compatible. */
2176 			ha->bios_revision[0] = bcode[0x12];
2177 			ha->bios_revision[1] = bcode[0x13];
2178 			DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
2179 			    ha->bios_revision[1], ha->bios_revision[0]));
2180 			break;
2181 		case ROM_CODE_TYPE_FCODE:
2182 			/* Open Firmware standard for PCI (FCode). */
2183 			ha->fcode_revision[0] = bcode[0x12];
2184 			ha->fcode_revision[1] = bcode[0x13];
2185 			DEBUG3(printk("%s(): read FCODE %d.%d.\n", __func__,
2186 			    ha->fcode_revision[1], ha->fcode_revision[0]));
2187 			break;
2188 		case ROM_CODE_TYPE_EFI:
2189 			/* Extensible Firmware Interface (EFI). */
2190 			ha->efi_revision[0] = bcode[0x12];
2191 			ha->efi_revision[1] = bcode[0x13];
2192 			DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
2193 			    ha->efi_revision[1], ha->efi_revision[0]));
2194 			break;
2195 		default:
2196 			DEBUG2(printk("%s(): Unrecognized code type %x at "
2197 			    "pcids %x.\n", __func__, code_type, pcids));
2198 			break;
2199 		}
2200 
2201 		last_image = bcode[0x15] & BIT_7;
2202 
2203 		/* Locate next PCI expansion ROM. */
2204 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2205 	} while (!last_image);
2206 
2207 	/* Read firmware image information. */
2208 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2209 	dcode = mbuf;
2210 
2211 	qla24xx_read_flash_data(ha, dcode, FA_RISC_CODE_ADDR + 4, 4);
2212 	for (i = 0; i < 4; i++)
2213 		dcode[i] = be32_to_cpu(dcode[i]);
2214 
2215 	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2216 	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2217 	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2218 	    dcode[3] == 0)) {
2219 		DEBUG2(printk("%s(): Unrecognized fw version at %x.\n",
2220 		    __func__, FA_RISC_CODE_ADDR));
2221 	} else {
2222 		ha->fw_revision[0] = dcode[0];
2223 		ha->fw_revision[1] = dcode[1];
2224 		ha->fw_revision[2] = dcode[2];
2225 		ha->fw_revision[3] = dcode[3];
2226 	}
2227 
2228 	return ret;
2229 }
2230