xref: /openbmc/linux/drivers/scsi/qla2xxx/qla_sup.c (revision 565d76cb)
1 /*
2  * QLogic Fibre Channel HBA Driver
3  * Copyright (c)  2003-2010 QLogic Corporation
4  *
5  * See LICENSE.qla2xxx for copyright and licensing details.
6  */
7 #include "qla_def.h"
8 
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/vmalloc.h>
12 #include <asm/uaccess.h>
13 
14 /*
15  * NVRAM support routines
16  */
17 
18 /**
19  * qla2x00_lock_nvram_access() -
20  * @ha: HA context
21  */
22 static void
23 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
24 {
25 	uint16_t data;
26 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
27 
28 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
29 		data = RD_REG_WORD(&reg->nvram);
30 		while (data & NVR_BUSY) {
31 			udelay(100);
32 			data = RD_REG_WORD(&reg->nvram);
33 		}
34 
35 		/* Lock resource */
36 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
37 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
38 		udelay(5);
39 		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
40 		while ((data & BIT_0) == 0) {
41 			/* Lock failed */
42 			udelay(100);
43 			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
44 			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
45 			udelay(5);
46 			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
47 		}
48 	}
49 }
50 
51 /**
52  * qla2x00_unlock_nvram_access() -
53  * @ha: HA context
54  */
55 static void
56 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
57 {
58 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
59 
60 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
61 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
62 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
63 	}
64 }
65 
66 /**
67  * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
68  * @ha: HA context
69  * @data: Serial interface selector
70  */
71 static void
72 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
73 {
74 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
75 
76 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
77 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
78 	NVRAM_DELAY();
79 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
80 	    NVR_WRT_ENABLE);
81 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
82 	NVRAM_DELAY();
83 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
84 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
85 	NVRAM_DELAY();
86 }
87 
88 /**
89  * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
90  *	NVRAM.
91  * @ha: HA context
92  * @nv_cmd: NVRAM command
93  *
94  * Bit definitions for NVRAM command:
95  *
96  *	Bit 26     = start bit
97  *	Bit 25, 24 = opcode
98  *	Bit 23-16  = address
99  *	Bit 15-0   = write data
100  *
101  * Returns the word read from nvram @addr.
102  */
103 static uint16_t
104 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
105 {
106 	uint8_t		cnt;
107 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
108 	uint16_t	data = 0;
109 	uint16_t	reg_data;
110 
111 	/* Send command to NVRAM. */
112 	nv_cmd <<= 5;
113 	for (cnt = 0; cnt < 11; cnt++) {
114 		if (nv_cmd & BIT_31)
115 			qla2x00_nv_write(ha, NVR_DATA_OUT);
116 		else
117 			qla2x00_nv_write(ha, 0);
118 		nv_cmd <<= 1;
119 	}
120 
121 	/* Read data from NVRAM. */
122 	for (cnt = 0; cnt < 16; cnt++) {
123 		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
124 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
125 		NVRAM_DELAY();
126 		data <<= 1;
127 		reg_data = RD_REG_WORD(&reg->nvram);
128 		if (reg_data & NVR_DATA_IN)
129 			data |= BIT_0;
130 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
131 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
132 		NVRAM_DELAY();
133 	}
134 
135 	/* Deselect chip. */
136 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
137 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
138 	NVRAM_DELAY();
139 
140 	return data;
141 }
142 
143 
144 /**
145  * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
146  *	request routine to get the word from NVRAM.
147  * @ha: HA context
148  * @addr: Address in NVRAM to read
149  *
150  * Returns the word read from nvram @addr.
151  */
152 static uint16_t
153 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
154 {
155 	uint16_t	data;
156 	uint32_t	nv_cmd;
157 
158 	nv_cmd = addr << 16;
159 	nv_cmd |= NV_READ_OP;
160 	data = qla2x00_nvram_request(ha, nv_cmd);
161 
162 	return (data);
163 }
164 
165 /**
166  * qla2x00_nv_deselect() - Deselect NVRAM operations.
167  * @ha: HA context
168  */
169 static void
170 qla2x00_nv_deselect(struct qla_hw_data *ha)
171 {
172 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
173 
174 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
175 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
176 	NVRAM_DELAY();
177 }
178 
179 /**
180  * qla2x00_write_nvram_word() - Write NVRAM data.
181  * @ha: HA context
182  * @addr: Address in NVRAM to write
183  * @data: word to program
184  */
185 static void
186 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
187 {
188 	int count;
189 	uint16_t word;
190 	uint32_t nv_cmd, wait_cnt;
191 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
192 
193 	qla2x00_nv_write(ha, NVR_DATA_OUT);
194 	qla2x00_nv_write(ha, 0);
195 	qla2x00_nv_write(ha, 0);
196 
197 	for (word = 0; word < 8; word++)
198 		qla2x00_nv_write(ha, NVR_DATA_OUT);
199 
200 	qla2x00_nv_deselect(ha);
201 
202 	/* Write data */
203 	nv_cmd = (addr << 16) | NV_WRITE_OP;
204 	nv_cmd |= data;
205 	nv_cmd <<= 5;
206 	for (count = 0; count < 27; count++) {
207 		if (nv_cmd & BIT_31)
208 			qla2x00_nv_write(ha, NVR_DATA_OUT);
209 		else
210 			qla2x00_nv_write(ha, 0);
211 
212 		nv_cmd <<= 1;
213 	}
214 
215 	qla2x00_nv_deselect(ha);
216 
217 	/* Wait for NVRAM to become ready */
218 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
219 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
220 	wait_cnt = NVR_WAIT_CNT;
221 	do {
222 		if (!--wait_cnt) {
223 			DEBUG9_10(qla_printk(KERN_WARNING, ha,
224 			    "NVRAM didn't go ready...\n"));
225 			break;
226 		}
227 		NVRAM_DELAY();
228 		word = RD_REG_WORD(&reg->nvram);
229 	} while ((word & NVR_DATA_IN) == 0);
230 
231 	qla2x00_nv_deselect(ha);
232 
233 	/* Disable writes */
234 	qla2x00_nv_write(ha, NVR_DATA_OUT);
235 	for (count = 0; count < 10; count++)
236 		qla2x00_nv_write(ha, 0);
237 
238 	qla2x00_nv_deselect(ha);
239 }
240 
241 static int
242 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
243 	uint16_t data, uint32_t tmo)
244 {
245 	int ret, count;
246 	uint16_t word;
247 	uint32_t nv_cmd;
248 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
249 
250 	ret = QLA_SUCCESS;
251 
252 	qla2x00_nv_write(ha, NVR_DATA_OUT);
253 	qla2x00_nv_write(ha, 0);
254 	qla2x00_nv_write(ha, 0);
255 
256 	for (word = 0; word < 8; word++)
257 		qla2x00_nv_write(ha, NVR_DATA_OUT);
258 
259 	qla2x00_nv_deselect(ha);
260 
261 	/* Write data */
262 	nv_cmd = (addr << 16) | NV_WRITE_OP;
263 	nv_cmd |= data;
264 	nv_cmd <<= 5;
265 	for (count = 0; count < 27; count++) {
266 		if (nv_cmd & BIT_31)
267 			qla2x00_nv_write(ha, NVR_DATA_OUT);
268 		else
269 			qla2x00_nv_write(ha, 0);
270 
271 		nv_cmd <<= 1;
272 	}
273 
274 	qla2x00_nv_deselect(ha);
275 
276 	/* Wait for NVRAM to become ready */
277 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
278 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
279 	do {
280 		NVRAM_DELAY();
281 		word = RD_REG_WORD(&reg->nvram);
282 		if (!--tmo) {
283 			ret = QLA_FUNCTION_FAILED;
284 			break;
285 		}
286 	} while ((word & NVR_DATA_IN) == 0);
287 
288 	qla2x00_nv_deselect(ha);
289 
290 	/* Disable writes */
291 	qla2x00_nv_write(ha, NVR_DATA_OUT);
292 	for (count = 0; count < 10; count++)
293 		qla2x00_nv_write(ha, 0);
294 
295 	qla2x00_nv_deselect(ha);
296 
297 	return ret;
298 }
299 
300 /**
301  * qla2x00_clear_nvram_protection() -
302  * @ha: HA context
303  */
304 static int
305 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
306 {
307 	int ret, stat;
308 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
309 	uint32_t word, wait_cnt;
310 	uint16_t wprot, wprot_old;
311 
312 	/* Clear NVRAM write protection. */
313 	ret = QLA_FUNCTION_FAILED;
314 
315 	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
316 	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
317 	    __constant_cpu_to_le16(0x1234), 100000);
318 	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
319 	if (stat != QLA_SUCCESS || wprot != 0x1234) {
320 		/* Write enable. */
321 		qla2x00_nv_write(ha, NVR_DATA_OUT);
322 		qla2x00_nv_write(ha, 0);
323 		qla2x00_nv_write(ha, 0);
324 		for (word = 0; word < 8; word++)
325 			qla2x00_nv_write(ha, NVR_DATA_OUT);
326 
327 		qla2x00_nv_deselect(ha);
328 
329 		/* Enable protection register. */
330 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
331 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
332 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
333 		for (word = 0; word < 8; word++)
334 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
335 
336 		qla2x00_nv_deselect(ha);
337 
338 		/* Clear protection register (ffff is cleared). */
339 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
340 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
341 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 		for (word = 0; word < 8; word++)
343 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
344 
345 		qla2x00_nv_deselect(ha);
346 
347 		/* Wait for NVRAM to become ready. */
348 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
349 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
350 		wait_cnt = NVR_WAIT_CNT;
351 		do {
352 			if (!--wait_cnt) {
353 				DEBUG9_10(qla_printk(KERN_WARNING, ha,
354 				    "NVRAM didn't go ready...\n"));
355 				break;
356 			}
357 			NVRAM_DELAY();
358 			word = RD_REG_WORD(&reg->nvram);
359 		} while ((word & NVR_DATA_IN) == 0);
360 
361 		if (wait_cnt)
362 			ret = QLA_SUCCESS;
363 	} else
364 		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
365 
366 	return ret;
367 }
368 
369 static void
370 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
371 {
372 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
373 	uint32_t word, wait_cnt;
374 
375 	if (stat != QLA_SUCCESS)
376 		return;
377 
378 	/* Set NVRAM write protection. */
379 	/* Write enable. */
380 	qla2x00_nv_write(ha, NVR_DATA_OUT);
381 	qla2x00_nv_write(ha, 0);
382 	qla2x00_nv_write(ha, 0);
383 	for (word = 0; word < 8; word++)
384 		qla2x00_nv_write(ha, NVR_DATA_OUT);
385 
386 	qla2x00_nv_deselect(ha);
387 
388 	/* Enable protection register. */
389 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
390 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
391 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
392 	for (word = 0; word < 8; word++)
393 		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
394 
395 	qla2x00_nv_deselect(ha);
396 
397 	/* Enable protection register. */
398 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
399 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
400 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
401 	for (word = 0; word < 8; word++)
402 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
403 
404 	qla2x00_nv_deselect(ha);
405 
406 	/* Wait for NVRAM to become ready. */
407 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
408 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
409 	wait_cnt = NVR_WAIT_CNT;
410 	do {
411 		if (!--wait_cnt) {
412 			DEBUG9_10(qla_printk(KERN_WARNING, ha,
413 			    "NVRAM didn't go ready...\n"));
414 			break;
415 		}
416 		NVRAM_DELAY();
417 		word = RD_REG_WORD(&reg->nvram);
418 	} while ((word & NVR_DATA_IN) == 0);
419 }
420 
421 
422 /*****************************************************************************/
423 /* Flash Manipulation Routines                                               */
424 /*****************************************************************************/
425 
426 static inline uint32_t
427 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
428 {
429 	return ha->flash_conf_off | faddr;
430 }
431 
432 static inline uint32_t
433 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
434 {
435 	return ha->flash_data_off | faddr;
436 }
437 
438 static inline uint32_t
439 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
440 {
441 	return ha->nvram_conf_off | naddr;
442 }
443 
444 static inline uint32_t
445 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
446 {
447 	return ha->nvram_data_off | naddr;
448 }
449 
450 static uint32_t
451 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
452 {
453 	int rval;
454 	uint32_t cnt, data;
455 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
456 
457 	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
458 	/* Wait for READ cycle to complete. */
459 	rval = QLA_SUCCESS;
460 	for (cnt = 3000;
461 	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
462 	    rval == QLA_SUCCESS; cnt--) {
463 		if (cnt)
464 			udelay(10);
465 		else
466 			rval = QLA_FUNCTION_TIMEOUT;
467 		cond_resched();
468 	}
469 
470 	/* TODO: What happens if we time out? */
471 	data = 0xDEADDEAD;
472 	if (rval == QLA_SUCCESS)
473 		data = RD_REG_DWORD(&reg->flash_data);
474 
475 	return data;
476 }
477 
478 uint32_t *
479 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
480     uint32_t dwords)
481 {
482 	uint32_t i;
483 	struct qla_hw_data *ha = vha->hw;
484 
485 	/* Dword reads to flash. */
486 	for (i = 0; i < dwords; i++, faddr++)
487 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
488 		    flash_data_addr(ha, faddr)));
489 
490 	return dwptr;
491 }
492 
493 static int
494 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
495 {
496 	int rval;
497 	uint32_t cnt;
498 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
499 
500 	WRT_REG_DWORD(&reg->flash_data, data);
501 	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
502 	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
503 	/* Wait for Write cycle to complete. */
504 	rval = QLA_SUCCESS;
505 	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
506 	    rval == QLA_SUCCESS; cnt--) {
507 		if (cnt)
508 			udelay(10);
509 		else
510 			rval = QLA_FUNCTION_TIMEOUT;
511 		cond_resched();
512 	}
513 	return rval;
514 }
515 
516 static void
517 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
518     uint8_t *flash_id)
519 {
520 	uint32_t ids;
521 
522 	ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
523 	*man_id = LSB(ids);
524 	*flash_id = MSB(ids);
525 
526 	/* Check if man_id and flash_id are valid. */
527 	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
528 		/* Read information using 0x9f opcode
529 		 * Device ID, Mfg ID would be read in the format:
530 		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
531 		 * Example: ATMEL 0x00 01 45 1F
532 		 * Extract MFG and Dev ID from last two bytes.
533 		 */
534 		ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
535 		*man_id = LSB(ids);
536 		*flash_id = MSB(ids);
537 	}
538 }
539 
540 static int
541 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
542 {
543 	const char *loc, *locations[] = { "DEF", "PCI" };
544 	uint32_t pcihdr, pcids;
545 	uint32_t *dcode;
546 	uint8_t *buf, *bcode, last_image;
547 	uint16_t cnt, chksum, *wptr;
548 	struct qla_flt_location *fltl;
549 	struct qla_hw_data *ha = vha->hw;
550 	struct req_que *req = ha->req_q_map[0];
551 
552 	/*
553 	 * FLT-location structure resides after the last PCI region.
554 	 */
555 
556 	/* Begin with sane defaults. */
557 	loc = locations[0];
558 	*start = 0;
559 	if (IS_QLA24XX_TYPE(ha))
560 		*start = FA_FLASH_LAYOUT_ADDR_24;
561 	else if (IS_QLA25XX(ha))
562 		*start = FA_FLASH_LAYOUT_ADDR;
563 	else if (IS_QLA81XX(ha))
564 		*start = FA_FLASH_LAYOUT_ADDR_81;
565 	else if (IS_QLA82XX(ha)) {
566 		*start = FA_FLASH_LAYOUT_ADDR_82;
567 		goto end;
568 	}
569 	/* Begin with first PCI expansion ROM header. */
570 	buf = (uint8_t *)req->ring;
571 	dcode = (uint32_t *)req->ring;
572 	pcihdr = 0;
573 	last_image = 1;
574 	do {
575 		/* Verify PCI expansion ROM header. */
576 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
577 		bcode = buf + (pcihdr % 4);
578 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
579 			goto end;
580 
581 		/* Locate PCI data structure. */
582 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
583 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
584 		bcode = buf + (pcihdr % 4);
585 
586 		/* Validate signature of PCI data structure. */
587 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
588 		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
589 			goto end;
590 
591 		last_image = bcode[0x15] & BIT_7;
592 
593 		/* Locate next PCI expansion ROM. */
594 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
595 	} while (!last_image);
596 
597 	/* Now verify FLT-location structure. */
598 	fltl = (struct qla_flt_location *)req->ring;
599 	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
600 	    sizeof(struct qla_flt_location) >> 2);
601 	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
602 	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
603 		goto end;
604 
605 	wptr = (uint16_t *)req->ring;
606 	cnt = sizeof(struct qla_flt_location) >> 1;
607 	for (chksum = 0; cnt; cnt--)
608 		chksum += le16_to_cpu(*wptr++);
609 	if (chksum) {
610 		qla_printk(KERN_ERR, ha,
611 		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
612 		qla2x00_dump_buffer(buf, sizeof(struct qla_flt_location));
613 		return QLA_FUNCTION_FAILED;
614 	}
615 
616 	/* Good data.  Use specified location. */
617 	loc = locations[1];
618 	*start = (le16_to_cpu(fltl->start_hi) << 16 |
619 	    le16_to_cpu(fltl->start_lo)) >> 2;
620 end:
621 	DEBUG2(qla_printk(KERN_DEBUG, ha, "FLTL[%s] = 0x%x.\n", loc, *start));
622 	return QLA_SUCCESS;
623 }
624 
625 static void
626 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
627 {
628 	const char *loc, *locations[] = { "DEF", "FLT" };
629 	const uint32_t def_fw[] =
630 		{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
631 	const uint32_t def_boot[] =
632 		{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
633 	const uint32_t def_vpd_nvram[] =
634 		{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
635 	const uint32_t def_vpd0[] =
636 		{ 0, 0, FA_VPD0_ADDR_81 };
637 	const uint32_t def_vpd1[] =
638 		{ 0, 0, FA_VPD1_ADDR_81 };
639 	const uint32_t def_nvram0[] =
640 		{ 0, 0, FA_NVRAM0_ADDR_81 };
641 	const uint32_t def_nvram1[] =
642 		{ 0, 0, FA_NVRAM1_ADDR_81 };
643 	const uint32_t def_fdt[] =
644 		{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
645 			FA_FLASH_DESCR_ADDR_81 };
646 	const uint32_t def_npiv_conf0[] =
647 		{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
648 			FA_NPIV_CONF0_ADDR_81 };
649 	const uint32_t def_npiv_conf1[] =
650 		{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
651 			FA_NPIV_CONF1_ADDR_81 };
652 	const uint32_t fcp_prio_cfg0[] =
653 		{ FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25,
654 			0 };
655 	const uint32_t fcp_prio_cfg1[] =
656 		{ FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25,
657 			0 };
658 	uint32_t def;
659 	uint16_t *wptr;
660 	uint16_t cnt, chksum;
661 	uint32_t start;
662 	struct qla_flt_header *flt;
663 	struct qla_flt_region *region;
664 	struct qla_hw_data *ha = vha->hw;
665 	struct req_que *req = ha->req_q_map[0];
666 
667 	def = 0;
668 	if (IS_QLA25XX(ha))
669 		def = 1;
670 	else if (IS_QLA81XX(ha))
671 		def = 2;
672 
673 	/* Assign FCP prio region since older adapters may not have FLT, or
674 	   FCP prio region in it's FLT.
675 	 */
676 	ha->flt_region_fcp_prio = ha->flags.port0 ?
677 	    fcp_prio_cfg0[def] : fcp_prio_cfg1[def];
678 
679 	ha->flt_region_flt = flt_addr;
680 	wptr = (uint16_t *)req->ring;
681 	flt = (struct qla_flt_header *)req->ring;
682 	region = (struct qla_flt_region *)&flt[1];
683 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
684 	    flt_addr << 2, OPTROM_BURST_SIZE);
685 	if (*wptr == __constant_cpu_to_le16(0xffff))
686 		goto no_flash_data;
687 	if (flt->version != __constant_cpu_to_le16(1)) {
688 		DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported FLT detected: "
689 		    "version=0x%x length=0x%x checksum=0x%x.\n",
690 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
691 		    le16_to_cpu(flt->checksum)));
692 		goto no_flash_data;
693 	}
694 
695 	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
696 	for (chksum = 0; cnt; cnt--)
697 		chksum += le16_to_cpu(*wptr++);
698 	if (chksum) {
699 		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FLT detected: "
700 		    "version=0x%x length=0x%x checksum=0x%x.\n",
701 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
702 		    chksum));
703 		goto no_flash_data;
704 	}
705 
706 	loc = locations[1];
707 	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
708 	for ( ; cnt; cnt--, region++) {
709 		/* Store addresses as DWORD offsets. */
710 		start = le32_to_cpu(region->start) >> 2;
711 
712 		DEBUG3(qla_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x "
713 		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start,
714 		    le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size)));
715 
716 		switch (le32_to_cpu(region->code) & 0xff) {
717 		case FLT_REG_FW:
718 			ha->flt_region_fw = start;
719 			break;
720 		case FLT_REG_BOOT_CODE:
721 			ha->flt_region_boot = start;
722 			break;
723 		case FLT_REG_VPD_0:
724 			ha->flt_region_vpd_nvram = start;
725 			if (IS_QLA82XX(ha))
726 				break;
727 			if (ha->flags.port0)
728 				ha->flt_region_vpd = start;
729 			break;
730 		case FLT_REG_VPD_1:
731 			if (IS_QLA82XX(ha))
732 				break;
733 			if (!ha->flags.port0)
734 				ha->flt_region_vpd = start;
735 			break;
736 		case FLT_REG_NVRAM_0:
737 			if (ha->flags.port0)
738 				ha->flt_region_nvram = start;
739 			break;
740 		case FLT_REG_NVRAM_1:
741 			if (!ha->flags.port0)
742 				ha->flt_region_nvram = start;
743 			break;
744 		case FLT_REG_FDT:
745 			ha->flt_region_fdt = start;
746 			break;
747 		case FLT_REG_NPIV_CONF_0:
748 			if (ha->flags.port0)
749 				ha->flt_region_npiv_conf = start;
750 			break;
751 		case FLT_REG_NPIV_CONF_1:
752 			if (!ha->flags.port0)
753 				ha->flt_region_npiv_conf = start;
754 			break;
755 		case FLT_REG_GOLD_FW:
756 			ha->flt_region_gold_fw = start;
757 			break;
758 		case FLT_REG_FCP_PRIO_0:
759 			if (ha->flags.port0)
760 				ha->flt_region_fcp_prio = start;
761 			break;
762 		case FLT_REG_FCP_PRIO_1:
763 			if (!ha->flags.port0)
764 				ha->flt_region_fcp_prio = start;
765 			break;
766 		case FLT_REG_BOOT_CODE_82XX:
767 			ha->flt_region_boot = start;
768 			break;
769 		case FLT_REG_FW_82XX:
770 			ha->flt_region_fw = start;
771 			break;
772 		case FLT_REG_GOLD_FW_82XX:
773 			ha->flt_region_gold_fw = start;
774 			break;
775 		case FLT_REG_BOOTLOAD_82XX:
776 			ha->flt_region_bootload = start;
777 			break;
778 		case FLT_REG_VPD_82XX:
779 			ha->flt_region_vpd = start;
780 			break;
781 		}
782 	}
783 	goto done;
784 
785 no_flash_data:
786 	/* Use hardcoded defaults. */
787 	loc = locations[0];
788 	ha->flt_region_fw = def_fw[def];
789 	ha->flt_region_boot = def_boot[def];
790 	ha->flt_region_vpd_nvram = def_vpd_nvram[def];
791 	ha->flt_region_vpd = ha->flags.port0 ?
792 	    def_vpd0[def] : def_vpd1[def];
793 	ha->flt_region_nvram = ha->flags.port0 ?
794 	    def_nvram0[def] : def_nvram1[def];
795 	ha->flt_region_fdt = def_fdt[def];
796 	ha->flt_region_npiv_conf = ha->flags.port0 ?
797 	    def_npiv_conf0[def] : def_npiv_conf1[def];
798 done:
799 	DEBUG2(qla_printk(KERN_DEBUG, ha, "FLT[%s]: boot=0x%x fw=0x%x "
800 	    "vpd_nvram=0x%x vpd=0x%x nvram=0x%x fdt=0x%x flt=0x%x "
801 	    "npiv=0x%x. fcp_prio_cfg=0x%x\n", loc, ha->flt_region_boot,
802 	    ha->flt_region_fw, ha->flt_region_vpd_nvram, ha->flt_region_vpd,
803 	    ha->flt_region_nvram, ha->flt_region_fdt, ha->flt_region_flt,
804 	    ha->flt_region_npiv_conf, ha->flt_region_fcp_prio));
805 }
806 
807 static void
808 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
809 {
810 #define FLASH_BLK_SIZE_4K	0x1000
811 #define FLASH_BLK_SIZE_32K	0x8000
812 #define FLASH_BLK_SIZE_64K	0x10000
813 	const char *loc, *locations[] = { "MID", "FDT" };
814 	uint16_t cnt, chksum;
815 	uint16_t *wptr;
816 	struct qla_fdt_layout *fdt;
817 	uint8_t	man_id, flash_id;
818 	uint16_t mid = 0, fid = 0;
819 	struct qla_hw_data *ha = vha->hw;
820 	struct req_que *req = ha->req_q_map[0];
821 
822 	wptr = (uint16_t *)req->ring;
823 	fdt = (struct qla_fdt_layout *)req->ring;
824 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
825 	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
826 	if (*wptr == __constant_cpu_to_le16(0xffff))
827 		goto no_flash_data;
828 	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
829 	    fdt->sig[3] != 'D')
830 		goto no_flash_data;
831 
832 	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
833 	    cnt++)
834 		chksum += le16_to_cpu(*wptr++);
835 	if (chksum) {
836 		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
837 		    "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
838 		    le16_to_cpu(fdt->version)));
839 		DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt)));
840 		goto no_flash_data;
841 	}
842 
843 	loc = locations[1];
844 	mid = le16_to_cpu(fdt->man_id);
845 	fid = le16_to_cpu(fdt->id);
846 	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
847 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
848 	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
849 	if (fdt->unprotect_sec_cmd) {
850 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
851 		    fdt->unprotect_sec_cmd);
852 		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
853 		    flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
854 		    flash_conf_addr(ha, 0x0336);
855 	}
856 	goto done;
857 no_flash_data:
858 	loc = locations[0];
859 	if (IS_QLA82XX(ha)) {
860 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
861 		goto done;
862 	}
863 	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
864 	mid = man_id;
865 	fid = flash_id;
866 	ha->fdt_wrt_disable = 0x9c;
867 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
868 	switch (man_id) {
869 	case 0xbf: /* STT flash. */
870 		if (flash_id == 0x8e)
871 			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
872 		else
873 			ha->fdt_block_size = FLASH_BLK_SIZE_32K;
874 
875 		if (flash_id == 0x80)
876 			ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
877 		break;
878 	case 0x13: /* ST M25P80. */
879 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
880 		break;
881 	case 0x1f: /* Atmel 26DF081A. */
882 		ha->fdt_block_size = FLASH_BLK_SIZE_4K;
883 		ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
884 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
885 		ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
886 		break;
887 	default:
888 		/* Default to 64 kb sector size. */
889 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
890 		break;
891 	}
892 done:
893 	DEBUG2(qla_printk(KERN_DEBUG, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x "
894 	    "pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
895 	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
896 	    ha->fdt_unprotect_sec_cmd, ha->fdt_wrt_disable,
897 	    ha->fdt_block_size));
898 }
899 
900 static void
901 qla2xxx_get_idc_param(scsi_qla_host_t *vha)
902 {
903 #define QLA82XX_IDC_PARAM_ADDR       0x003e885c
904 	uint32_t *wptr;
905 	struct qla_hw_data *ha = vha->hw;
906 	struct req_que *req = ha->req_q_map[0];
907 
908 	if (!IS_QLA82XX(ha))
909 		return;
910 
911 	wptr = (uint32_t *)req->ring;
912 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
913 		QLA82XX_IDC_PARAM_ADDR , 8);
914 
915 	if (*wptr == __constant_cpu_to_le32(0xffffffff)) {
916 		ha->nx_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT;
917 		ha->nx_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT;
918 	} else {
919 		ha->nx_dev_init_timeout = le32_to_cpu(*wptr++);
920 		ha->nx_reset_timeout = le32_to_cpu(*wptr);
921 	}
922 	return;
923 }
924 
925 int
926 qla2xxx_get_flash_info(scsi_qla_host_t *vha)
927 {
928 	int ret;
929 	uint32_t flt_addr;
930 	struct qla_hw_data *ha = vha->hw;
931 
932 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA8XXX_TYPE(ha))
933 		return QLA_SUCCESS;
934 
935 	ret = qla2xxx_find_flt_start(vha, &flt_addr);
936 	if (ret != QLA_SUCCESS)
937 		return ret;
938 
939 	qla2xxx_get_flt_info(vha, flt_addr);
940 	qla2xxx_get_fdt_info(vha);
941 	qla2xxx_get_idc_param(vha);
942 
943 	return QLA_SUCCESS;
944 }
945 
946 void
947 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
948 {
949 #define NPIV_CONFIG_SIZE	(16*1024)
950 	void *data;
951 	uint16_t *wptr;
952 	uint16_t cnt, chksum;
953 	int i;
954 	struct qla_npiv_header hdr;
955 	struct qla_npiv_entry *entry;
956 	struct qla_hw_data *ha = vha->hw;
957 
958 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA8XXX_TYPE(ha))
959 		return;
960 
961 	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
962 	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
963 	if (hdr.version == __constant_cpu_to_le16(0xffff))
964 		return;
965 	if (hdr.version != __constant_cpu_to_le16(1)) {
966 		DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported NPIV-Config "
967 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
968 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
969 		    le16_to_cpu(hdr.checksum)));
970 		return;
971 	}
972 
973 	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
974 	if (!data) {
975 		DEBUG2(qla_printk(KERN_INFO, ha, "NPIV-Config: Unable to "
976 		    "allocate memory.\n"));
977 		return;
978 	}
979 
980 	ha->isp_ops->read_optrom(vha, (uint8_t *)data,
981 	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
982 
983 	cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
984 	    sizeof(struct qla_npiv_entry)) >> 1;
985 	for (wptr = data, chksum = 0; cnt; cnt--)
986 		chksum += le16_to_cpu(*wptr++);
987 	if (chksum) {
988 		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent NPIV-Config "
989 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
990 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
991 		    chksum));
992 		goto done;
993 	}
994 
995 	entry = data + sizeof(struct qla_npiv_header);
996 	cnt = le16_to_cpu(hdr.entries);
997 	for (i = 0; cnt; cnt--, entry++, i++) {
998 		uint16_t flags;
999 		struct fc_vport_identifiers vid;
1000 		struct fc_vport *vport;
1001 
1002 		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
1003 
1004 		flags = le16_to_cpu(entry->flags);
1005 		if (flags == 0xffff)
1006 			continue;
1007 		if ((flags & BIT_0) == 0)
1008 			continue;
1009 
1010 		memset(&vid, 0, sizeof(vid));
1011 		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
1012 		vid.vport_type = FC_PORTTYPE_NPIV;
1013 		vid.disable = false;
1014 		vid.port_name = wwn_to_u64(entry->port_name);
1015 		vid.node_name = wwn_to_u64(entry->node_name);
1016 
1017 		DEBUG2(qla_printk(KERN_INFO, ha, "NPIV[%02x]: wwpn=%llx "
1018 			"wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
1019 			(unsigned long long)vid.port_name,
1020 			(unsigned long long)vid.node_name,
1021 			le16_to_cpu(entry->vf_id),
1022 			entry->q_qos, entry->f_qos));
1023 
1024 		if (i < QLA_PRECONFIG_VPORTS) {
1025 			vport = fc_vport_create(vha->host, 0, &vid);
1026 			if (!vport)
1027 				qla_printk(KERN_INFO, ha,
1028 				"NPIV-Config: Failed to create vport [%02x]: "
1029 				"wwpn=%llx wwnn=%llx.\n", cnt,
1030 				(unsigned long long)vid.port_name,
1031 				(unsigned long long)vid.node_name);
1032 		}
1033 	}
1034 done:
1035 	kfree(data);
1036 }
1037 
1038 static int
1039 qla24xx_unprotect_flash(scsi_qla_host_t *vha)
1040 {
1041 	struct qla_hw_data *ha = vha->hw;
1042 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1043 
1044 	if (ha->flags.fac_supported)
1045 		return qla81xx_fac_do_write_enable(vha, 1);
1046 
1047 	/* Enable flash write. */
1048 	WRT_REG_DWORD(&reg->ctrl_status,
1049 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1050 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1051 
1052 	if (!ha->fdt_wrt_disable)
1053 		goto done;
1054 
1055 	/* Disable flash write-protection, first clear SR protection bit */
1056 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1057 	/* Then write zero again to clear remaining SR bits.*/
1058 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1059 done:
1060 	return QLA_SUCCESS;
1061 }
1062 
1063 static int
1064 qla24xx_protect_flash(scsi_qla_host_t *vha)
1065 {
1066 	uint32_t cnt;
1067 	struct qla_hw_data *ha = vha->hw;
1068 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1069 
1070 	if (ha->flags.fac_supported)
1071 		return qla81xx_fac_do_write_enable(vha, 0);
1072 
1073 	if (!ha->fdt_wrt_disable)
1074 		goto skip_wrt_protect;
1075 
1076 	/* Enable flash write-protection and wait for completion. */
1077 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1078 	    ha->fdt_wrt_disable);
1079 	for (cnt = 300; cnt &&
1080 	    qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1081 	    cnt--) {
1082 		udelay(10);
1083 	}
1084 
1085 skip_wrt_protect:
1086 	/* Disable flash write. */
1087 	WRT_REG_DWORD(&reg->ctrl_status,
1088 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1089 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1090 
1091 	return QLA_SUCCESS;
1092 }
1093 
1094 static int
1095 qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
1096 {
1097 	struct qla_hw_data *ha = vha->hw;
1098 	uint32_t start, finish;
1099 
1100 	if (ha->flags.fac_supported) {
1101 		start = fdata >> 2;
1102 		finish = start + (ha->fdt_block_size >> 2) - 1;
1103 		return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
1104 		    start), flash_data_addr(ha, finish));
1105 	}
1106 
1107 	return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1108 	    (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
1109 	    ((fdata >> 16) & 0xff));
1110 }
1111 
1112 static int
1113 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1114     uint32_t dwords)
1115 {
1116 	int ret;
1117 	uint32_t liter;
1118 	uint32_t sec_mask, rest_addr;
1119 	uint32_t fdata;
1120 	dma_addr_t optrom_dma;
1121 	void *optrom = NULL;
1122 	struct qla_hw_data *ha = vha->hw;
1123 
1124 	/* Prepare burst-capable write on supported ISPs. */
1125 	if ((IS_QLA25XX(ha) || IS_QLA81XX(ha)) && !(faddr & 0xfff) &&
1126 	    dwords > OPTROM_BURST_DWORDS) {
1127 		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1128 		    &optrom_dma, GFP_KERNEL);
1129 		if (!optrom) {
1130 			qla_printk(KERN_DEBUG, ha,
1131 			    "Unable to allocate memory for optrom burst write "
1132 			    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
1133 		}
1134 	}
1135 
1136 	rest_addr = (ha->fdt_block_size >> 2) - 1;
1137 	sec_mask = ~rest_addr;
1138 
1139 	ret = qla24xx_unprotect_flash(vha);
1140 	if (ret != QLA_SUCCESS) {
1141 		qla_printk(KERN_WARNING, ha,
1142 		    "Unable to unprotect flash for update.\n");
1143 		goto done;
1144 	}
1145 
1146 	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1147 		fdata = (faddr & sec_mask) << 2;
1148 
1149 		/* Are we at the beginning of a sector? */
1150 		if ((faddr & rest_addr) == 0) {
1151 			/* Do sector unprotect. */
1152 			if (ha->fdt_unprotect_sec_cmd)
1153 				qla24xx_write_flash_dword(ha,
1154 				    ha->fdt_unprotect_sec_cmd,
1155 				    (fdata & 0xff00) | ((fdata << 16) &
1156 				    0xff0000) | ((fdata >> 16) & 0xff));
1157 			ret = qla24xx_erase_sector(vha, fdata);
1158 			if (ret != QLA_SUCCESS) {
1159 				DEBUG9(qla_printk(KERN_WARNING, ha,
1160 				    "Unable to erase sector: address=%x.\n",
1161 				    faddr));
1162 				break;
1163 			}
1164 		}
1165 
1166 		/* Go with burst-write. */
1167 		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1168 			/* Copy data to DMA'ble buffer. */
1169 			memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1170 
1171 			ret = qla2x00_load_ram(vha, optrom_dma,
1172 			    flash_data_addr(ha, faddr),
1173 			    OPTROM_BURST_DWORDS);
1174 			if (ret != QLA_SUCCESS) {
1175 				qla_printk(KERN_WARNING, ha,
1176 				    "Unable to burst-write optrom segment "
1177 				    "(%x/%x/%llx).\n", ret,
1178 				    flash_data_addr(ha, faddr),
1179 				    (unsigned long long)optrom_dma);
1180 				qla_printk(KERN_WARNING, ha,
1181 				    "Reverting to slow-write.\n");
1182 
1183 				dma_free_coherent(&ha->pdev->dev,
1184 				    OPTROM_BURST_SIZE, optrom, optrom_dma);
1185 				optrom = NULL;
1186 			} else {
1187 				liter += OPTROM_BURST_DWORDS - 1;
1188 				faddr += OPTROM_BURST_DWORDS - 1;
1189 				dwptr += OPTROM_BURST_DWORDS - 1;
1190 				continue;
1191 			}
1192 		}
1193 
1194 		ret = qla24xx_write_flash_dword(ha,
1195 		    flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1196 		if (ret != QLA_SUCCESS) {
1197 			DEBUG9(printk("%s(%ld) Unable to program flash "
1198 			    "address=%x data=%x.\n", __func__,
1199 			    vha->host_no, faddr, *dwptr));
1200 			break;
1201 		}
1202 
1203 		/* Do sector protect. */
1204 		if (ha->fdt_unprotect_sec_cmd &&
1205 		    ((faddr & rest_addr) == rest_addr))
1206 			qla24xx_write_flash_dword(ha,
1207 			    ha->fdt_protect_sec_cmd,
1208 			    (fdata & 0xff00) | ((fdata << 16) &
1209 			    0xff0000) | ((fdata >> 16) & 0xff));
1210 	}
1211 
1212 	ret = qla24xx_protect_flash(vha);
1213 	if (ret != QLA_SUCCESS)
1214 		qla_printk(KERN_WARNING, ha,
1215 		    "Unable to protect flash after update.\n");
1216 done:
1217 	if (optrom)
1218 		dma_free_coherent(&ha->pdev->dev,
1219 		    OPTROM_BURST_SIZE, optrom, optrom_dma);
1220 
1221 	return ret;
1222 }
1223 
1224 uint8_t *
1225 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1226     uint32_t bytes)
1227 {
1228 	uint32_t i;
1229 	uint16_t *wptr;
1230 	struct qla_hw_data *ha = vha->hw;
1231 
1232 	/* Word reads to NVRAM via registers. */
1233 	wptr = (uint16_t *)buf;
1234 	qla2x00_lock_nvram_access(ha);
1235 	for (i = 0; i < bytes >> 1; i++, naddr++)
1236 		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1237 		    naddr));
1238 	qla2x00_unlock_nvram_access(ha);
1239 
1240 	return buf;
1241 }
1242 
1243 uint8_t *
1244 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1245     uint32_t bytes)
1246 {
1247 	uint32_t i;
1248 	uint32_t *dwptr;
1249 	struct qla_hw_data *ha = vha->hw;
1250 
1251 	if (IS_QLA82XX(ha))
1252 		return  buf;
1253 
1254 	/* Dword reads to flash. */
1255 	dwptr = (uint32_t *)buf;
1256 	for (i = 0; i < bytes >> 2; i++, naddr++)
1257 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1258 		    nvram_data_addr(ha, naddr)));
1259 
1260 	return buf;
1261 }
1262 
1263 int
1264 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1265     uint32_t bytes)
1266 {
1267 	int ret, stat;
1268 	uint32_t i;
1269 	uint16_t *wptr;
1270 	unsigned long flags;
1271 	struct qla_hw_data *ha = vha->hw;
1272 
1273 	ret = QLA_SUCCESS;
1274 
1275 	spin_lock_irqsave(&ha->hardware_lock, flags);
1276 	qla2x00_lock_nvram_access(ha);
1277 
1278 	/* Disable NVRAM write-protection. */
1279 	stat = qla2x00_clear_nvram_protection(ha);
1280 
1281 	wptr = (uint16_t *)buf;
1282 	for (i = 0; i < bytes >> 1; i++, naddr++) {
1283 		qla2x00_write_nvram_word(ha, naddr,
1284 		    cpu_to_le16(*wptr));
1285 		wptr++;
1286 	}
1287 
1288 	/* Enable NVRAM write-protection. */
1289 	qla2x00_set_nvram_protection(ha, stat);
1290 
1291 	qla2x00_unlock_nvram_access(ha);
1292 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1293 
1294 	return ret;
1295 }
1296 
1297 int
1298 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1299     uint32_t bytes)
1300 {
1301 	int ret;
1302 	uint32_t i;
1303 	uint32_t *dwptr;
1304 	struct qla_hw_data *ha = vha->hw;
1305 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1306 
1307 	ret = QLA_SUCCESS;
1308 
1309 	if (IS_QLA82XX(ha))
1310 		return ret;
1311 
1312 	/* Enable flash write. */
1313 	WRT_REG_DWORD(&reg->ctrl_status,
1314 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1315 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1316 
1317 	/* Disable NVRAM write-protection. */
1318 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1319 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1320 
1321 	/* Dword writes to flash. */
1322 	dwptr = (uint32_t *)buf;
1323 	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1324 		ret = qla24xx_write_flash_dword(ha,
1325 		    nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1326 		if (ret != QLA_SUCCESS) {
1327 			DEBUG9(qla_printk(KERN_WARNING, ha,
1328 			    "Unable to program nvram address=%x data=%x.\n",
1329 			    naddr, *dwptr));
1330 			break;
1331 		}
1332 	}
1333 
1334 	/* Enable NVRAM write-protection. */
1335 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1336 
1337 	/* Disable flash write. */
1338 	WRT_REG_DWORD(&reg->ctrl_status,
1339 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1340 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1341 
1342 	return ret;
1343 }
1344 
1345 uint8_t *
1346 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1347     uint32_t bytes)
1348 {
1349 	uint32_t i;
1350 	uint32_t *dwptr;
1351 	struct qla_hw_data *ha = vha->hw;
1352 
1353 	/* Dword reads to flash. */
1354 	dwptr = (uint32_t *)buf;
1355 	for (i = 0; i < bytes >> 2; i++, naddr++)
1356 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1357 		    flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1358 
1359 	return buf;
1360 }
1361 
1362 int
1363 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1364     uint32_t bytes)
1365 {
1366 	struct qla_hw_data *ha = vha->hw;
1367 #define RMW_BUFFER_SIZE	(64 * 1024)
1368 	uint8_t *dbuf;
1369 
1370 	dbuf = vmalloc(RMW_BUFFER_SIZE);
1371 	if (!dbuf)
1372 		return QLA_MEMORY_ALLOC_FAILED;
1373 	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1374 	    RMW_BUFFER_SIZE);
1375 	memcpy(dbuf + (naddr << 2), buf, bytes);
1376 	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1377 	    RMW_BUFFER_SIZE);
1378 	vfree(dbuf);
1379 
1380 	return QLA_SUCCESS;
1381 }
1382 
1383 static inline void
1384 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1385 {
1386 	if (IS_QLA2322(ha)) {
1387 		/* Flip all colors. */
1388 		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1389 			/* Turn off. */
1390 			ha->beacon_color_state = 0;
1391 			*pflags = GPIO_LED_ALL_OFF;
1392 		} else {
1393 			/* Turn on. */
1394 			ha->beacon_color_state = QLA_LED_ALL_ON;
1395 			*pflags = GPIO_LED_RGA_ON;
1396 		}
1397 	} else {
1398 		/* Flip green led only. */
1399 		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1400 			/* Turn off. */
1401 			ha->beacon_color_state = 0;
1402 			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1403 		} else {
1404 			/* Turn on. */
1405 			ha->beacon_color_state = QLA_LED_GRN_ON;
1406 			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1407 		}
1408 	}
1409 }
1410 
1411 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1412 
1413 void
1414 qla2x00_beacon_blink(struct scsi_qla_host *vha)
1415 {
1416 	uint16_t gpio_enable;
1417 	uint16_t gpio_data;
1418 	uint16_t led_color = 0;
1419 	unsigned long flags;
1420 	struct qla_hw_data *ha = vha->hw;
1421 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1422 
1423 	if (IS_QLA82XX(ha))
1424 		return;
1425 
1426 	spin_lock_irqsave(&ha->hardware_lock, flags);
1427 
1428 	/* Save the Original GPIOE. */
1429 	if (ha->pio_address) {
1430 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1431 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1432 	} else {
1433 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1434 		gpio_data = RD_REG_WORD(&reg->gpiod);
1435 	}
1436 
1437 	/* Set the modified gpio_enable values */
1438 	gpio_enable |= GPIO_LED_MASK;
1439 
1440 	if (ha->pio_address) {
1441 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1442 	} else {
1443 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1444 		RD_REG_WORD(&reg->gpioe);
1445 	}
1446 
1447 	qla2x00_flip_colors(ha, &led_color);
1448 
1449 	/* Clear out any previously set LED color. */
1450 	gpio_data &= ~GPIO_LED_MASK;
1451 
1452 	/* Set the new input LED color to GPIOD. */
1453 	gpio_data |= led_color;
1454 
1455 	/* Set the modified gpio_data values */
1456 	if (ha->pio_address) {
1457 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1458 	} else {
1459 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1460 		RD_REG_WORD(&reg->gpiod);
1461 	}
1462 
1463 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1464 }
1465 
1466 int
1467 qla2x00_beacon_on(struct scsi_qla_host *vha)
1468 {
1469 	uint16_t gpio_enable;
1470 	uint16_t gpio_data;
1471 	unsigned long flags;
1472 	struct qla_hw_data *ha = vha->hw;
1473 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1474 
1475 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1476 	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1477 
1478 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1479 		qla_printk(KERN_WARNING, ha,
1480 		    "Unable to update fw options (beacon on).\n");
1481 		return QLA_FUNCTION_FAILED;
1482 	}
1483 
1484 	/* Turn off LEDs. */
1485 	spin_lock_irqsave(&ha->hardware_lock, flags);
1486 	if (ha->pio_address) {
1487 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1488 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1489 	} else {
1490 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1491 		gpio_data = RD_REG_WORD(&reg->gpiod);
1492 	}
1493 	gpio_enable |= GPIO_LED_MASK;
1494 
1495 	/* Set the modified gpio_enable values. */
1496 	if (ha->pio_address) {
1497 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1498 	} else {
1499 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1500 		RD_REG_WORD(&reg->gpioe);
1501 	}
1502 
1503 	/* Clear out previously set LED colour. */
1504 	gpio_data &= ~GPIO_LED_MASK;
1505 	if (ha->pio_address) {
1506 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1507 	} else {
1508 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1509 		RD_REG_WORD(&reg->gpiod);
1510 	}
1511 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1512 
1513 	/*
1514 	 * Let the per HBA timer kick off the blinking process based on
1515 	 * the following flags. No need to do anything else now.
1516 	 */
1517 	ha->beacon_blink_led = 1;
1518 	ha->beacon_color_state = 0;
1519 
1520 	return QLA_SUCCESS;
1521 }
1522 
1523 int
1524 qla2x00_beacon_off(struct scsi_qla_host *vha)
1525 {
1526 	int rval = QLA_SUCCESS;
1527 	struct qla_hw_data *ha = vha->hw;
1528 
1529 	ha->beacon_blink_led = 0;
1530 
1531 	/* Set the on flag so when it gets flipped it will be off. */
1532 	if (IS_QLA2322(ha))
1533 		ha->beacon_color_state = QLA_LED_ALL_ON;
1534 	else
1535 		ha->beacon_color_state = QLA_LED_GRN_ON;
1536 
1537 	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */
1538 
1539 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1540 	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1541 
1542 	rval = qla2x00_set_fw_options(vha, ha->fw_options);
1543 	if (rval != QLA_SUCCESS)
1544 		qla_printk(KERN_WARNING, ha,
1545 		    "Unable to update fw options (beacon off).\n");
1546 	return rval;
1547 }
1548 
1549 
1550 static inline void
1551 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1552 {
1553 	/* Flip all colors. */
1554 	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1555 		/* Turn off. */
1556 		ha->beacon_color_state = 0;
1557 		*pflags = 0;
1558 	} else {
1559 		/* Turn on. */
1560 		ha->beacon_color_state = QLA_LED_ALL_ON;
1561 		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1562 	}
1563 }
1564 
1565 void
1566 qla24xx_beacon_blink(struct scsi_qla_host *vha)
1567 {
1568 	uint16_t led_color = 0;
1569 	uint32_t gpio_data;
1570 	unsigned long flags;
1571 	struct qla_hw_data *ha = vha->hw;
1572 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1573 
1574 	/* Save the Original GPIOD. */
1575 	spin_lock_irqsave(&ha->hardware_lock, flags);
1576 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1577 
1578 	/* Enable the gpio_data reg for update. */
1579 	gpio_data |= GPDX_LED_UPDATE_MASK;
1580 
1581 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1582 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1583 
1584 	/* Set the color bits. */
1585 	qla24xx_flip_colors(ha, &led_color);
1586 
1587 	/* Clear out any previously set LED color. */
1588 	gpio_data &= ~GPDX_LED_COLOR_MASK;
1589 
1590 	/* Set the new input LED color to GPIOD. */
1591 	gpio_data |= led_color;
1592 
1593 	/* Set the modified gpio_data values. */
1594 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1595 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1596 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1597 }
1598 
1599 int
1600 qla24xx_beacon_on(struct scsi_qla_host *vha)
1601 {
1602 	uint32_t gpio_data;
1603 	unsigned long flags;
1604 	struct qla_hw_data *ha = vha->hw;
1605 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1606 
1607 	if (IS_QLA82XX(ha))
1608 		return QLA_SUCCESS;
1609 
1610 	if (ha->beacon_blink_led == 0) {
1611 		/* Enable firmware for update */
1612 		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1613 
1614 		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1615 			return QLA_FUNCTION_FAILED;
1616 
1617 		if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1618 		    QLA_SUCCESS) {
1619 			qla_printk(KERN_WARNING, ha,
1620 			    "Unable to update fw options (beacon on).\n");
1621 			return QLA_FUNCTION_FAILED;
1622 		}
1623 
1624 		spin_lock_irqsave(&ha->hardware_lock, flags);
1625 		gpio_data = RD_REG_DWORD(&reg->gpiod);
1626 
1627 		/* Enable the gpio_data reg for update. */
1628 		gpio_data |= GPDX_LED_UPDATE_MASK;
1629 		WRT_REG_DWORD(&reg->gpiod, gpio_data);
1630 		RD_REG_DWORD(&reg->gpiod);
1631 
1632 		spin_unlock_irqrestore(&ha->hardware_lock, flags);
1633 	}
1634 
1635 	/* So all colors blink together. */
1636 	ha->beacon_color_state = 0;
1637 
1638 	/* Let the per HBA timer kick off the blinking process. */
1639 	ha->beacon_blink_led = 1;
1640 
1641 	return QLA_SUCCESS;
1642 }
1643 
1644 int
1645 qla24xx_beacon_off(struct scsi_qla_host *vha)
1646 {
1647 	uint32_t gpio_data;
1648 	unsigned long flags;
1649 	struct qla_hw_data *ha = vha->hw;
1650 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1651 
1652 	if (IS_QLA82XX(ha))
1653 		return QLA_SUCCESS;
1654 
1655 	ha->beacon_blink_led = 0;
1656 	ha->beacon_color_state = QLA_LED_ALL_ON;
1657 
1658 	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */
1659 
1660 	/* Give control back to firmware. */
1661 	spin_lock_irqsave(&ha->hardware_lock, flags);
1662 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1663 
1664 	/* Disable the gpio_data reg for update. */
1665 	gpio_data &= ~GPDX_LED_UPDATE_MASK;
1666 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1667 	RD_REG_DWORD(&reg->gpiod);
1668 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1669 
1670 	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1671 
1672 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1673 		qla_printk(KERN_WARNING, ha,
1674 		    "Unable to update fw options (beacon off).\n");
1675 		return QLA_FUNCTION_FAILED;
1676 	}
1677 
1678 	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1679 		qla_printk(KERN_WARNING, ha,
1680 		    "Unable to get fw options (beacon off).\n");
1681 		return QLA_FUNCTION_FAILED;
1682 	}
1683 
1684 	return QLA_SUCCESS;
1685 }
1686 
1687 
1688 /*
1689  * Flash support routines
1690  */
1691 
1692 /**
1693  * qla2x00_flash_enable() - Setup flash for reading and writing.
1694  * @ha: HA context
1695  */
1696 static void
1697 qla2x00_flash_enable(struct qla_hw_data *ha)
1698 {
1699 	uint16_t data;
1700 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1701 
1702 	data = RD_REG_WORD(&reg->ctrl_status);
1703 	data |= CSR_FLASH_ENABLE;
1704 	WRT_REG_WORD(&reg->ctrl_status, data);
1705 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1706 }
1707 
1708 /**
1709  * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1710  * @ha: HA context
1711  */
1712 static void
1713 qla2x00_flash_disable(struct qla_hw_data *ha)
1714 {
1715 	uint16_t data;
1716 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1717 
1718 	data = RD_REG_WORD(&reg->ctrl_status);
1719 	data &= ~(CSR_FLASH_ENABLE);
1720 	WRT_REG_WORD(&reg->ctrl_status, data);
1721 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1722 }
1723 
1724 /**
1725  * qla2x00_read_flash_byte() - Reads a byte from flash
1726  * @ha: HA context
1727  * @addr: Address in flash to read
1728  *
1729  * A word is read from the chip, but, only the lower byte is valid.
1730  *
1731  * Returns the byte read from flash @addr.
1732  */
1733 static uint8_t
1734 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1735 {
1736 	uint16_t data;
1737 	uint16_t bank_select;
1738 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1739 
1740 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1741 
1742 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1743 		/* Specify 64K address range: */
1744 		/*  clear out Module Select and Flash Address bits [19:16]. */
1745 		bank_select &= ~0xf8;
1746 		bank_select |= addr >> 12 & 0xf0;
1747 		bank_select |= CSR_FLASH_64K_BANK;
1748 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1749 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1750 
1751 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1752 		data = RD_REG_WORD(&reg->flash_data);
1753 
1754 		return (uint8_t)data;
1755 	}
1756 
1757 	/* Setup bit 16 of flash address. */
1758 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1759 		bank_select |= CSR_FLASH_64K_BANK;
1760 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1761 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1762 	} else if (((addr & BIT_16) == 0) &&
1763 	    (bank_select & CSR_FLASH_64K_BANK)) {
1764 		bank_select &= ~(CSR_FLASH_64K_BANK);
1765 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1766 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1767 	}
1768 
1769 	/* Always perform IO mapped accesses to the FLASH registers. */
1770 	if (ha->pio_address) {
1771 		uint16_t data2;
1772 
1773 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1774 		do {
1775 			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1776 			barrier();
1777 			cpu_relax();
1778 			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1779 		} while (data != data2);
1780 	} else {
1781 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1782 		data = qla2x00_debounce_register(&reg->flash_data);
1783 	}
1784 
1785 	return (uint8_t)data;
1786 }
1787 
1788 /**
1789  * qla2x00_write_flash_byte() - Write a byte to flash
1790  * @ha: HA context
1791  * @addr: Address in flash to write
1792  * @data: Data to write
1793  */
1794 static void
1795 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1796 {
1797 	uint16_t bank_select;
1798 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1799 
1800 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1801 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1802 		/* Specify 64K address range: */
1803 		/*  clear out Module Select and Flash Address bits [19:16]. */
1804 		bank_select &= ~0xf8;
1805 		bank_select |= addr >> 12 & 0xf0;
1806 		bank_select |= CSR_FLASH_64K_BANK;
1807 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1808 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1809 
1810 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1811 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1812 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1813 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1814 
1815 		return;
1816 	}
1817 
1818 	/* Setup bit 16 of flash address. */
1819 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1820 		bank_select |= CSR_FLASH_64K_BANK;
1821 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1822 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1823 	} else if (((addr & BIT_16) == 0) &&
1824 	    (bank_select & CSR_FLASH_64K_BANK)) {
1825 		bank_select &= ~(CSR_FLASH_64K_BANK);
1826 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1827 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1828 	}
1829 
1830 	/* Always perform IO mapped accesses to the FLASH registers. */
1831 	if (ha->pio_address) {
1832 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1833 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1834 	} else {
1835 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1836 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1837 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1838 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1839 	}
1840 }
1841 
1842 /**
1843  * qla2x00_poll_flash() - Polls flash for completion.
1844  * @ha: HA context
1845  * @addr: Address in flash to poll
1846  * @poll_data: Data to be polled
1847  * @man_id: Flash manufacturer ID
1848  * @flash_id: Flash ID
1849  *
1850  * This function polls the device until bit 7 of what is read matches data
1851  * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
1852  * out (a fatal error).  The flash book recommeds reading bit 7 again after
1853  * reading bit 5 as a 1.
1854  *
1855  * Returns 0 on success, else non-zero.
1856  */
1857 static int
1858 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
1859     uint8_t man_id, uint8_t flash_id)
1860 {
1861 	int status;
1862 	uint8_t flash_data;
1863 	uint32_t cnt;
1864 
1865 	status = 1;
1866 
1867 	/* Wait for 30 seconds for command to finish. */
1868 	poll_data &= BIT_7;
1869 	for (cnt = 3000000; cnt; cnt--) {
1870 		flash_data = qla2x00_read_flash_byte(ha, addr);
1871 		if ((flash_data & BIT_7) == poll_data) {
1872 			status = 0;
1873 			break;
1874 		}
1875 
1876 		if (man_id != 0x40 && man_id != 0xda) {
1877 			if ((flash_data & BIT_5) && cnt > 2)
1878 				cnt = 2;
1879 		}
1880 		udelay(10);
1881 		barrier();
1882 		cond_resched();
1883 	}
1884 	return status;
1885 }
1886 
1887 /**
1888  * qla2x00_program_flash_address() - Programs a flash address
1889  * @ha: HA context
1890  * @addr: Address in flash to program
1891  * @data: Data to be written in flash
1892  * @man_id: Flash manufacturer ID
1893  * @flash_id: Flash ID
1894  *
1895  * Returns 0 on success, else non-zero.
1896  */
1897 static int
1898 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
1899     uint8_t data, uint8_t man_id, uint8_t flash_id)
1900 {
1901 	/* Write Program Command Sequence. */
1902 	if (IS_OEM_001(ha)) {
1903 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1904 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1905 		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1906 		qla2x00_write_flash_byte(ha, addr, data);
1907 	} else {
1908 		if (man_id == 0xda && flash_id == 0xc1) {
1909 			qla2x00_write_flash_byte(ha, addr, data);
1910 			if (addr & 0x7e)
1911 				return 0;
1912 		} else {
1913 			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1914 			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1915 			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1916 			qla2x00_write_flash_byte(ha, addr, data);
1917 		}
1918 	}
1919 
1920 	udelay(150);
1921 
1922 	/* Wait for write to complete. */
1923 	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1924 }
1925 
1926 /**
1927  * qla2x00_erase_flash() - Erase the flash.
1928  * @ha: HA context
1929  * @man_id: Flash manufacturer ID
1930  * @flash_id: Flash ID
1931  *
1932  * Returns 0 on success, else non-zero.
1933  */
1934 static int
1935 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
1936 {
1937 	/* Individual Sector Erase Command Sequence */
1938 	if (IS_OEM_001(ha)) {
1939 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1940 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1941 		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1942 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1943 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1944 		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1945 	} else {
1946 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1947 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1948 		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1949 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1950 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1951 		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1952 	}
1953 
1954 	udelay(150);
1955 
1956 	/* Wait for erase to complete. */
1957 	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1958 }
1959 
1960 /**
1961  * qla2x00_erase_flash_sector() - Erase a flash sector.
1962  * @ha: HA context
1963  * @addr: Flash sector to erase
1964  * @sec_mask: Sector address mask
1965  * @man_id: Flash manufacturer ID
1966  * @flash_id: Flash ID
1967  *
1968  * Returns 0 on success, else non-zero.
1969  */
1970 static int
1971 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
1972     uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1973 {
1974 	/* Individual Sector Erase Command Sequence */
1975 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1976 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1977 	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1978 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1979 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1980 	if (man_id == 0x1f && flash_id == 0x13)
1981 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
1982 	else
1983 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
1984 
1985 	udelay(150);
1986 
1987 	/* Wait for erase to complete. */
1988 	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
1989 }
1990 
1991 /**
1992  * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
1993  * @man_id: Flash manufacturer ID
1994  * @flash_id: Flash ID
1995  */
1996 static void
1997 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
1998     uint8_t *flash_id)
1999 {
2000 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2001 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2002 	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
2003 	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
2004 	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
2005 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2006 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2007 	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
2008 }
2009 
2010 static void
2011 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
2012 	uint32_t saddr, uint32_t length)
2013 {
2014 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2015 	uint32_t midpoint, ilength;
2016 	uint8_t data;
2017 
2018 	midpoint = length / 2;
2019 
2020 	WRT_REG_WORD(&reg->nvram, 0);
2021 	RD_REG_WORD(&reg->nvram);
2022 	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
2023 		if (ilength == midpoint) {
2024 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2025 			RD_REG_WORD(&reg->nvram);
2026 		}
2027 		data = qla2x00_read_flash_byte(ha, saddr);
2028 		if (saddr % 100)
2029 			udelay(10);
2030 		*tmp_buf = data;
2031 		cond_resched();
2032 	}
2033 }
2034 
2035 static inline void
2036 qla2x00_suspend_hba(struct scsi_qla_host *vha)
2037 {
2038 	int cnt;
2039 	unsigned long flags;
2040 	struct qla_hw_data *ha = vha->hw;
2041 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2042 
2043 	/* Suspend HBA. */
2044 	scsi_block_requests(vha->host);
2045 	ha->isp_ops->disable_intrs(ha);
2046 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2047 
2048 	/* Pause RISC. */
2049 	spin_lock_irqsave(&ha->hardware_lock, flags);
2050 	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
2051 	RD_REG_WORD(&reg->hccr);
2052 	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
2053 		for (cnt = 0; cnt < 30000; cnt++) {
2054 			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
2055 				break;
2056 			udelay(100);
2057 		}
2058 	} else {
2059 		udelay(10);
2060 	}
2061 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
2062 }
2063 
2064 static inline void
2065 qla2x00_resume_hba(struct scsi_qla_host *vha)
2066 {
2067 	struct qla_hw_data *ha = vha->hw;
2068 
2069 	/* Resume HBA. */
2070 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2071 	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
2072 	qla2xxx_wake_dpc(vha);
2073 	qla2x00_wait_for_chip_reset(vha);
2074 	scsi_unblock_requests(vha->host);
2075 }
2076 
2077 uint8_t *
2078 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2079     uint32_t offset, uint32_t length)
2080 {
2081 	uint32_t addr, midpoint;
2082 	uint8_t *data;
2083 	struct qla_hw_data *ha = vha->hw;
2084 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2085 
2086 	/* Suspend HBA. */
2087 	qla2x00_suspend_hba(vha);
2088 
2089 	/* Go with read. */
2090 	midpoint = ha->optrom_size / 2;
2091 
2092 	qla2x00_flash_enable(ha);
2093 	WRT_REG_WORD(&reg->nvram, 0);
2094 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
2095 	for (addr = offset, data = buf; addr < length; addr++, data++) {
2096 		if (addr == midpoint) {
2097 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2098 			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
2099 		}
2100 
2101 		*data = qla2x00_read_flash_byte(ha, addr);
2102 	}
2103 	qla2x00_flash_disable(ha);
2104 
2105 	/* Resume HBA. */
2106 	qla2x00_resume_hba(vha);
2107 
2108 	return buf;
2109 }
2110 
2111 int
2112 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2113     uint32_t offset, uint32_t length)
2114 {
2115 
2116 	int rval;
2117 	uint8_t man_id, flash_id, sec_number, data;
2118 	uint16_t wd;
2119 	uint32_t addr, liter, sec_mask, rest_addr;
2120 	struct qla_hw_data *ha = vha->hw;
2121 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2122 
2123 	/* Suspend HBA. */
2124 	qla2x00_suspend_hba(vha);
2125 
2126 	rval = QLA_SUCCESS;
2127 	sec_number = 0;
2128 
2129 	/* Reset ISP chip. */
2130 	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
2131 	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
2132 
2133 	/* Go with write. */
2134 	qla2x00_flash_enable(ha);
2135 	do {	/* Loop once to provide quick error exit */
2136 		/* Structure of flash memory based on manufacturer */
2137 		if (IS_OEM_001(ha)) {
2138 			/* OEM variant with special flash part. */
2139 			man_id = flash_id = 0;
2140 			rest_addr = 0xffff;
2141 			sec_mask   = 0x10000;
2142 			goto update_flash;
2143 		}
2144 		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
2145 		switch (man_id) {
2146 		case 0x20: /* ST flash. */
2147 			if (flash_id == 0xd2 || flash_id == 0xe3) {
2148 				/*
2149 				 * ST m29w008at part - 64kb sector size with
2150 				 * 32kb,8kb,8kb,16kb sectors at memory address
2151 				 * 0xf0000.
2152 				 */
2153 				rest_addr = 0xffff;
2154 				sec_mask = 0x10000;
2155 				break;
2156 			}
2157 			/*
2158 			 * ST m29w010b part - 16kb sector size
2159 			 * Default to 16kb sectors
2160 			 */
2161 			rest_addr = 0x3fff;
2162 			sec_mask = 0x1c000;
2163 			break;
2164 		case 0x40: /* Mostel flash. */
2165 			/* Mostel v29c51001 part - 512 byte sector size. */
2166 			rest_addr = 0x1ff;
2167 			sec_mask = 0x1fe00;
2168 			break;
2169 		case 0xbf: /* SST flash. */
2170 			/* SST39sf10 part - 4kb sector size. */
2171 			rest_addr = 0xfff;
2172 			sec_mask = 0x1f000;
2173 			break;
2174 		case 0xda: /* Winbond flash. */
2175 			/* Winbond W29EE011 part - 256 byte sector size. */
2176 			rest_addr = 0x7f;
2177 			sec_mask = 0x1ff80;
2178 			break;
2179 		case 0xc2: /* Macronix flash. */
2180 			/* 64k sector size. */
2181 			if (flash_id == 0x38 || flash_id == 0x4f) {
2182 				rest_addr = 0xffff;
2183 				sec_mask = 0x10000;
2184 				break;
2185 			}
2186 			/* Fall through... */
2187 
2188 		case 0x1f: /* Atmel flash. */
2189 			/* 512k sector size. */
2190 			if (flash_id == 0x13) {
2191 				rest_addr = 0x7fffffff;
2192 				sec_mask =   0x80000000;
2193 				break;
2194 			}
2195 			/* Fall through... */
2196 
2197 		case 0x01: /* AMD flash. */
2198 			if (flash_id == 0x38 || flash_id == 0x40 ||
2199 			    flash_id == 0x4f) {
2200 				/* Am29LV081 part - 64kb sector size. */
2201 				/* Am29LV002BT part - 64kb sector size. */
2202 				rest_addr = 0xffff;
2203 				sec_mask = 0x10000;
2204 				break;
2205 			} else if (flash_id == 0x3e) {
2206 				/*
2207 				 * Am29LV008b part - 64kb sector size with
2208 				 * 32kb,8kb,8kb,16kb sector at memory address
2209 				 * h0xf0000.
2210 				 */
2211 				rest_addr = 0xffff;
2212 				sec_mask = 0x10000;
2213 				break;
2214 			} else if (flash_id == 0x20 || flash_id == 0x6e) {
2215 				/*
2216 				 * Am29LV010 part or AM29f010 - 16kb sector
2217 				 * size.
2218 				 */
2219 				rest_addr = 0x3fff;
2220 				sec_mask = 0x1c000;
2221 				break;
2222 			} else if (flash_id == 0x6d) {
2223 				/* Am29LV001 part - 8kb sector size. */
2224 				rest_addr = 0x1fff;
2225 				sec_mask = 0x1e000;
2226 				break;
2227 			}
2228 		default:
2229 			/* Default to 16 kb sector size. */
2230 			rest_addr = 0x3fff;
2231 			sec_mask = 0x1c000;
2232 			break;
2233 		}
2234 
2235 update_flash:
2236 		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2237 			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2238 				rval = QLA_FUNCTION_FAILED;
2239 				break;
2240 			}
2241 		}
2242 
2243 		for (addr = offset, liter = 0; liter < length; liter++,
2244 		    addr++) {
2245 			data = buf[liter];
2246 			/* Are we at the beginning of a sector? */
2247 			if ((addr & rest_addr) == 0) {
2248 				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2249 					if (addr >= 0x10000UL) {
2250 						if (((addr >> 12) & 0xf0) &&
2251 						    ((man_id == 0x01 &&
2252 							flash_id == 0x3e) ||
2253 						     (man_id == 0x20 &&
2254 							 flash_id == 0xd2))) {
2255 							sec_number++;
2256 							if (sec_number == 1) {
2257 								rest_addr =
2258 								    0x7fff;
2259 								sec_mask =
2260 								    0x18000;
2261 							} else if (
2262 							    sec_number == 2 ||
2263 							    sec_number == 3) {
2264 								rest_addr =
2265 								    0x1fff;
2266 								sec_mask =
2267 								    0x1e000;
2268 							} else if (
2269 							    sec_number == 4) {
2270 								rest_addr =
2271 								    0x3fff;
2272 								sec_mask =
2273 								    0x1c000;
2274 							}
2275 						}
2276 					}
2277 				} else if (addr == ha->optrom_size / 2) {
2278 					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2279 					RD_REG_WORD(&reg->nvram);
2280 				}
2281 
2282 				if (flash_id == 0xda && man_id == 0xc1) {
2283 					qla2x00_write_flash_byte(ha, 0x5555,
2284 					    0xaa);
2285 					qla2x00_write_flash_byte(ha, 0x2aaa,
2286 					    0x55);
2287 					qla2x00_write_flash_byte(ha, 0x5555,
2288 					    0xa0);
2289 				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2290 					/* Then erase it */
2291 					if (qla2x00_erase_flash_sector(ha,
2292 					    addr, sec_mask, man_id,
2293 					    flash_id)) {
2294 						rval = QLA_FUNCTION_FAILED;
2295 						break;
2296 					}
2297 					if (man_id == 0x01 && flash_id == 0x6d)
2298 						sec_number++;
2299 				}
2300 			}
2301 
2302 			if (man_id == 0x01 && flash_id == 0x6d) {
2303 				if (sec_number == 1 &&
2304 				    addr == (rest_addr - 1)) {
2305 					rest_addr = 0x0fff;
2306 					sec_mask   = 0x1f000;
2307 				} else if (sec_number == 3 && (addr & 0x7ffe)) {
2308 					rest_addr = 0x3fff;
2309 					sec_mask   = 0x1c000;
2310 				}
2311 			}
2312 
2313 			if (qla2x00_program_flash_address(ha, addr, data,
2314 			    man_id, flash_id)) {
2315 				rval = QLA_FUNCTION_FAILED;
2316 				break;
2317 			}
2318 			cond_resched();
2319 		}
2320 	} while (0);
2321 	qla2x00_flash_disable(ha);
2322 
2323 	/* Resume HBA. */
2324 	qla2x00_resume_hba(vha);
2325 
2326 	return rval;
2327 }
2328 
2329 uint8_t *
2330 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2331     uint32_t offset, uint32_t length)
2332 {
2333 	struct qla_hw_data *ha = vha->hw;
2334 
2335 	/* Suspend HBA. */
2336 	scsi_block_requests(vha->host);
2337 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2338 
2339 	/* Go with read. */
2340 	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2341 
2342 	/* Resume HBA. */
2343 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2344 	scsi_unblock_requests(vha->host);
2345 
2346 	return buf;
2347 }
2348 
2349 int
2350 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2351     uint32_t offset, uint32_t length)
2352 {
2353 	int rval;
2354 	struct qla_hw_data *ha = vha->hw;
2355 
2356 	/* Suspend HBA. */
2357 	scsi_block_requests(vha->host);
2358 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2359 
2360 	/* Go with write. */
2361 	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2362 	    length >> 2);
2363 
2364 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2365 	scsi_unblock_requests(vha->host);
2366 
2367 	return rval;
2368 }
2369 
2370 uint8_t *
2371 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2372     uint32_t offset, uint32_t length)
2373 {
2374 	int rval;
2375 	dma_addr_t optrom_dma;
2376 	void *optrom;
2377 	uint8_t *pbuf;
2378 	uint32_t faddr, left, burst;
2379 	struct qla_hw_data *ha = vha->hw;
2380 
2381 	if (IS_QLA25XX(ha) || IS_QLA81XX(ha))
2382 		goto try_fast;
2383 	if (offset & 0xfff)
2384 		goto slow_read;
2385 	if (length < OPTROM_BURST_SIZE)
2386 		goto slow_read;
2387 
2388 try_fast:
2389 	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2390 	    &optrom_dma, GFP_KERNEL);
2391 	if (!optrom) {
2392 		qla_printk(KERN_DEBUG, ha,
2393 		    "Unable to allocate memory for optrom burst read "
2394 		    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
2395 
2396 		goto slow_read;
2397 	}
2398 
2399 	pbuf = buf;
2400 	faddr = offset >> 2;
2401 	left = length >> 2;
2402 	burst = OPTROM_BURST_DWORDS;
2403 	while (left != 0) {
2404 		if (burst > left)
2405 			burst = left;
2406 
2407 		rval = qla2x00_dump_ram(vha, optrom_dma,
2408 		    flash_data_addr(ha, faddr), burst);
2409 		if (rval) {
2410 			qla_printk(KERN_WARNING, ha,
2411 			    "Unable to burst-read optrom segment "
2412 			    "(%x/%x/%llx).\n", rval,
2413 			    flash_data_addr(ha, faddr),
2414 			    (unsigned long long)optrom_dma);
2415 			qla_printk(KERN_WARNING, ha,
2416 			    "Reverting to slow-read.\n");
2417 
2418 			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2419 			    optrom, optrom_dma);
2420 			goto slow_read;
2421 		}
2422 
2423 		memcpy(pbuf, optrom, burst * 4);
2424 
2425 		left -= burst;
2426 		faddr += burst;
2427 		pbuf += burst * 4;
2428 	}
2429 
2430 	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2431 	    optrom_dma);
2432 
2433 	return buf;
2434 
2435 slow_read:
2436     return qla24xx_read_optrom_data(vha, buf, offset, length);
2437 }
2438 
2439 /**
2440  * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2441  * @ha: HA context
2442  * @pcids: Pointer to the FCODE PCI data structure
2443  *
2444  * The process of retrieving the FCODE version information is at best
2445  * described as interesting.
2446  *
2447  * Within the first 100h bytes of the image an ASCII string is present
2448  * which contains several pieces of information including the FCODE
2449  * version.  Unfortunately it seems the only reliable way to retrieve
2450  * the version is by scanning for another sentinel within the string,
2451  * the FCODE build date:
2452  *
2453  *	... 2.00.02 10/17/02 ...
2454  *
2455  * Returns QLA_SUCCESS on successful retrieval of version.
2456  */
2457 static void
2458 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2459 {
2460 	int ret = QLA_FUNCTION_FAILED;
2461 	uint32_t istart, iend, iter, vend;
2462 	uint8_t do_next, rbyte, *vbyte;
2463 
2464 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2465 
2466 	/* Skip the PCI data structure. */
2467 	istart = pcids +
2468 	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2469 		qla2x00_read_flash_byte(ha, pcids + 0x0A));
2470 	iend = istart + 0x100;
2471 	do {
2472 		/* Scan for the sentinel date string...eeewww. */
2473 		do_next = 0;
2474 		iter = istart;
2475 		while ((iter < iend) && !do_next) {
2476 			iter++;
2477 			if (qla2x00_read_flash_byte(ha, iter) == '/') {
2478 				if (qla2x00_read_flash_byte(ha, iter + 2) ==
2479 				    '/')
2480 					do_next++;
2481 				else if (qla2x00_read_flash_byte(ha,
2482 				    iter + 3) == '/')
2483 					do_next++;
2484 			}
2485 		}
2486 		if (!do_next)
2487 			break;
2488 
2489 		/* Backtrack to previous ' ' (space). */
2490 		do_next = 0;
2491 		while ((iter > istart) && !do_next) {
2492 			iter--;
2493 			if (qla2x00_read_flash_byte(ha, iter) == ' ')
2494 				do_next++;
2495 		}
2496 		if (!do_next)
2497 			break;
2498 
2499 		/*
2500 		 * Mark end of version tag, and find previous ' ' (space) or
2501 		 * string length (recent FCODE images -- major hack ahead!!!).
2502 		 */
2503 		vend = iter - 1;
2504 		do_next = 0;
2505 		while ((iter > istart) && !do_next) {
2506 			iter--;
2507 			rbyte = qla2x00_read_flash_byte(ha, iter);
2508 			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2509 				do_next++;
2510 		}
2511 		if (!do_next)
2512 			break;
2513 
2514 		/* Mark beginning of version tag, and copy data. */
2515 		iter++;
2516 		if ((vend - iter) &&
2517 		    ((vend - iter) < sizeof(ha->fcode_revision))) {
2518 			vbyte = ha->fcode_revision;
2519 			while (iter <= vend) {
2520 				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
2521 				iter++;
2522 			}
2523 			ret = QLA_SUCCESS;
2524 		}
2525 	} while (0);
2526 
2527 	if (ret != QLA_SUCCESS)
2528 		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2529 }
2530 
2531 int
2532 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2533 {
2534 	int ret = QLA_SUCCESS;
2535 	uint8_t code_type, last_image;
2536 	uint32_t pcihdr, pcids;
2537 	uint8_t *dbyte;
2538 	uint16_t *dcode;
2539 	struct qla_hw_data *ha = vha->hw;
2540 
2541 	if (!ha->pio_address || !mbuf)
2542 		return QLA_FUNCTION_FAILED;
2543 
2544 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2545 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2546 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2547 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2548 
2549 	qla2x00_flash_enable(ha);
2550 
2551 	/* Begin with first PCI expansion ROM header. */
2552 	pcihdr = 0;
2553 	last_image = 1;
2554 	do {
2555 		/* Verify PCI expansion ROM header. */
2556 		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2557 		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2558 			/* No signature */
2559 			DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
2560 			    "signature.\n"));
2561 			ret = QLA_FUNCTION_FAILED;
2562 			break;
2563 		}
2564 
2565 		/* Locate PCI data structure. */
2566 		pcids = pcihdr +
2567 		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2568 			qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2569 
2570 		/* Validate signature of PCI data structure. */
2571 		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2572 		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2573 		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2574 		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2575 			/* Incorrect header. */
2576 			DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
2577 			    "found pcir_adr=%x.\n", pcids));
2578 			ret = QLA_FUNCTION_FAILED;
2579 			break;
2580 		}
2581 
2582 		/* Read version */
2583 		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2584 		switch (code_type) {
2585 		case ROM_CODE_TYPE_BIOS:
2586 			/* Intel x86, PC-AT compatible. */
2587 			ha->bios_revision[0] =
2588 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2589 			ha->bios_revision[1] =
2590 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2591 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2592 			    ha->bios_revision[1], ha->bios_revision[0]));
2593 			break;
2594 		case ROM_CODE_TYPE_FCODE:
2595 			/* Open Firmware standard for PCI (FCode). */
2596 			/* Eeeewww... */
2597 			qla2x00_get_fcode_version(ha, pcids);
2598 			break;
2599 		case ROM_CODE_TYPE_EFI:
2600 			/* Extensible Firmware Interface (EFI). */
2601 			ha->efi_revision[0] =
2602 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2603 			ha->efi_revision[1] =
2604 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2605 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2606 			    ha->efi_revision[1], ha->efi_revision[0]));
2607 			break;
2608 		default:
2609 			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
2610 			    "type %x at pcids %x.\n", code_type, pcids));
2611 			break;
2612 		}
2613 
2614 		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2615 
2616 		/* Locate next PCI expansion ROM. */
2617 		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2618 		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2619 	} while (!last_image);
2620 
2621 	if (IS_QLA2322(ha)) {
2622 		/* Read firmware image information. */
2623 		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2624 		dbyte = mbuf;
2625 		memset(dbyte, 0, 8);
2626 		dcode = (uint16_t *)dbyte;
2627 
2628 		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2629 		    8);
2630 		DEBUG3(qla_printk(KERN_DEBUG, ha, "dumping fw ver from "
2631 		    "flash:\n"));
2632 		DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
2633 
2634 		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2635 		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2636 		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2637 		    dcode[3] == 0)) {
2638 			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
2639 			    "revision at %x.\n", ha->flt_region_fw * 4));
2640 		} else {
2641 			/* values are in big endian */
2642 			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2643 			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2644 			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2645 		}
2646 	}
2647 
2648 	qla2x00_flash_disable(ha);
2649 
2650 	return ret;
2651 }
2652 
2653 int
2654 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2655 {
2656 	int ret = QLA_SUCCESS;
2657 	uint32_t pcihdr, pcids;
2658 	uint32_t *dcode;
2659 	uint8_t *bcode;
2660 	uint8_t code_type, last_image;
2661 	int i;
2662 	struct qla_hw_data *ha = vha->hw;
2663 
2664 	if (IS_QLA82XX(ha))
2665 		return ret;
2666 
2667 	if (!mbuf)
2668 		return QLA_FUNCTION_FAILED;
2669 
2670 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2671 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2672 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2673 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2674 
2675 	dcode = mbuf;
2676 
2677 	/* Begin with first PCI expansion ROM header. */
2678 	pcihdr = ha->flt_region_boot << 2;
2679 	last_image = 1;
2680 	do {
2681 		/* Verify PCI expansion ROM header. */
2682 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2683 		bcode = mbuf + (pcihdr % 4);
2684 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2685 			/* No signature */
2686 			DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
2687 			    "signature.\n"));
2688 			ret = QLA_FUNCTION_FAILED;
2689 			break;
2690 		}
2691 
2692 		/* Locate PCI data structure. */
2693 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2694 
2695 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2696 		bcode = mbuf + (pcihdr % 4);
2697 
2698 		/* Validate signature of PCI data structure. */
2699 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2700 		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2701 			/* Incorrect header. */
2702 			DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
2703 			    "found pcir_adr=%x.\n", pcids));
2704 			ret = QLA_FUNCTION_FAILED;
2705 			break;
2706 		}
2707 
2708 		/* Read version */
2709 		code_type = bcode[0x14];
2710 		switch (code_type) {
2711 		case ROM_CODE_TYPE_BIOS:
2712 			/* Intel x86, PC-AT compatible. */
2713 			ha->bios_revision[0] = bcode[0x12];
2714 			ha->bios_revision[1] = bcode[0x13];
2715 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2716 			    ha->bios_revision[1], ha->bios_revision[0]));
2717 			break;
2718 		case ROM_CODE_TYPE_FCODE:
2719 			/* Open Firmware standard for PCI (FCode). */
2720 			ha->fcode_revision[0] = bcode[0x12];
2721 			ha->fcode_revision[1] = bcode[0x13];
2722 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read FCODE %d.%d.\n",
2723 			    ha->fcode_revision[1], ha->fcode_revision[0]));
2724 			break;
2725 		case ROM_CODE_TYPE_EFI:
2726 			/* Extensible Firmware Interface (EFI). */
2727 			ha->efi_revision[0] = bcode[0x12];
2728 			ha->efi_revision[1] = bcode[0x13];
2729 			DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2730 			    ha->efi_revision[1], ha->efi_revision[0]));
2731 			break;
2732 		default:
2733 			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
2734 			    "type %x at pcids %x.\n", code_type, pcids));
2735 			break;
2736 		}
2737 
2738 		last_image = bcode[0x15] & BIT_7;
2739 
2740 		/* Locate next PCI expansion ROM. */
2741 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2742 	} while (!last_image);
2743 
2744 	/* Read firmware image information. */
2745 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2746 	dcode = mbuf;
2747 
2748 	qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2749 	for (i = 0; i < 4; i++)
2750 		dcode[i] = be32_to_cpu(dcode[i]);
2751 
2752 	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2753 	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2754 	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2755 	    dcode[3] == 0)) {
2756 		DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
2757 		    "revision at %x.\n", ha->flt_region_fw * 4));
2758 	} else {
2759 		ha->fw_revision[0] = dcode[0];
2760 		ha->fw_revision[1] = dcode[1];
2761 		ha->fw_revision[2] = dcode[2];
2762 		ha->fw_revision[3] = dcode[3];
2763 	}
2764 
2765 	/* Check for golden firmware and get version if available */
2766 	if (!IS_QLA81XX(ha)) {
2767 		/* Golden firmware is not present in non 81XX adapters */
2768 		return ret;
2769 	}
2770 
2771 	memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version));
2772 	dcode = mbuf;
2773 	ha->isp_ops->read_optrom(vha, (uint8_t *)dcode,
2774 	    ha->flt_region_gold_fw << 2, 32);
2775 
2776 	if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF &&
2777 	    dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) {
2778 		DEBUG2(qla_printk(KERN_INFO, ha,
2779 		    "%s(%ld): Unrecognized golden fw at 0x%x.\n",
2780 		    __func__, vha->host_no, ha->flt_region_gold_fw * 4));
2781 		return ret;
2782 	}
2783 
2784 	for (i = 4; i < 8; i++)
2785 		ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]);
2786 
2787 	return ret;
2788 }
2789 
2790 static int
2791 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
2792 {
2793 	if (pos >= end || *pos != 0x82)
2794 		return 0;
2795 
2796 	pos += 3 + pos[1];
2797 	if (pos >= end || *pos != 0x90)
2798 		return 0;
2799 
2800 	pos += 3 + pos[1];
2801 	if (pos >= end || *pos != 0x78)
2802 		return 0;
2803 
2804 	return 1;
2805 }
2806 
2807 int
2808 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2809 {
2810 	struct qla_hw_data *ha = vha->hw;
2811 	uint8_t *pos = ha->vpd;
2812 	uint8_t *end = pos + ha->vpd_size;
2813 	int len = 0;
2814 
2815 	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
2816 		return 0;
2817 
2818 	while (pos < end && *pos != 0x78) {
2819 		len = (*pos == 0x82) ? pos[1] : pos[2];
2820 
2821 		if (!strncmp(pos, key, strlen(key)))
2822 			break;
2823 
2824 		if (*pos != 0x90 && *pos != 0x91)
2825 			pos += len;
2826 
2827 		pos += 3;
2828 	}
2829 
2830 	if (pos < end - len && *pos != 0x78)
2831 		return snprintf(str, size, "%.*s", len, pos + 3);
2832 
2833 	return 0;
2834 }
2835 
2836 int
2837 qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha)
2838 {
2839 	int len, max_len;
2840 	uint32_t fcp_prio_addr;
2841 	struct qla_hw_data *ha = vha->hw;
2842 
2843 	if (!ha->fcp_prio_cfg) {
2844 		ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE);
2845 		if (!ha->fcp_prio_cfg) {
2846 			qla_printk(KERN_WARNING, ha,
2847 			"Unable to allocate memory for fcp priority data "
2848 					"(%x).\n", FCP_PRIO_CFG_SIZE);
2849 			return QLA_FUNCTION_FAILED;
2850 		}
2851 	}
2852 	memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE);
2853 
2854 	fcp_prio_addr = ha->flt_region_fcp_prio;
2855 
2856 	/* first read the fcp priority data header from flash */
2857 	ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
2858 			fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);
2859 
2860 	if (!qla24xx_fcp_prio_cfg_valid(ha->fcp_prio_cfg, 0))
2861 		goto fail;
2862 
2863 	/* read remaining FCP CMD config data from flash */
2864 	fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
2865 	len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
2866 	max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE;
2867 
2868 	ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
2869 			fcp_prio_addr << 2, (len < max_len ? len : max_len));
2870 
2871 	/* revalidate the entire FCP priority config data, including entries */
2872 	if (!qla24xx_fcp_prio_cfg_valid(ha->fcp_prio_cfg, 1))
2873 		goto fail;
2874 
2875 	ha->flags.fcp_prio_enabled = 1;
2876 	return QLA_SUCCESS;
2877 fail:
2878 	vfree(ha->fcp_prio_cfg);
2879 	ha->fcp_prio_cfg = NULL;
2880 	return QLA_FUNCTION_FAILED;
2881 }
2882