xref: /openbmc/linux/drivers/scsi/qla2xxx/qla_sup.c (revision 545e4006)
1 /*
2  * QLogic Fibre Channel HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  *
5  * See LICENSE.qla2xxx for copyright and licensing details.
6  */
7 #include "qla_def.h"
8 
9 #include <linux/delay.h>
10 #include <linux/vmalloc.h>
11 #include <asm/uaccess.h>
12 
13 static uint16_t qla2x00_nvram_request(scsi_qla_host_t *, uint32_t);
14 static void qla2x00_nv_deselect(scsi_qla_host_t *);
15 static void qla2x00_nv_write(scsi_qla_host_t *, uint16_t);
16 
17 /*
18  * NVRAM support routines
19  */
20 
21 /**
22  * qla2x00_lock_nvram_access() -
23  * @ha: HA context
24  */
25 static void
26 qla2x00_lock_nvram_access(scsi_qla_host_t *ha)
27 {
28 	uint16_t data;
29 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
30 
31 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
32 		data = RD_REG_WORD(&reg->nvram);
33 		while (data & NVR_BUSY) {
34 			udelay(100);
35 			data = RD_REG_WORD(&reg->nvram);
36 		}
37 
38 		/* Lock resource */
39 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
40 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
41 		udelay(5);
42 		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
43 		while ((data & BIT_0) == 0) {
44 			/* Lock failed */
45 			udelay(100);
46 			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
47 			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
48 			udelay(5);
49 			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
50 		}
51 	}
52 }
53 
54 /**
55  * qla2x00_unlock_nvram_access() -
56  * @ha: HA context
57  */
58 static void
59 qla2x00_unlock_nvram_access(scsi_qla_host_t *ha)
60 {
61 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
62 
63 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
64 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
65 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
66 	}
67 }
68 
69 /**
70  * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
71  *	request routine to get the word from NVRAM.
72  * @ha: HA context
73  * @addr: Address in NVRAM to read
74  *
75  * Returns the word read from nvram @addr.
76  */
77 static uint16_t
78 qla2x00_get_nvram_word(scsi_qla_host_t *ha, uint32_t addr)
79 {
80 	uint16_t	data;
81 	uint32_t	nv_cmd;
82 
83 	nv_cmd = addr << 16;
84 	nv_cmd |= NV_READ_OP;
85 	data = qla2x00_nvram_request(ha, nv_cmd);
86 
87 	return (data);
88 }
89 
90 /**
91  * qla2x00_write_nvram_word() - Write NVRAM data.
92  * @ha: HA context
93  * @addr: Address in NVRAM to write
94  * @data: word to program
95  */
96 static void
97 qla2x00_write_nvram_word(scsi_qla_host_t *ha, uint32_t addr, uint16_t data)
98 {
99 	int count;
100 	uint16_t word;
101 	uint32_t nv_cmd, wait_cnt;
102 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
103 
104 	qla2x00_nv_write(ha, NVR_DATA_OUT);
105 	qla2x00_nv_write(ha, 0);
106 	qla2x00_nv_write(ha, 0);
107 
108 	for (word = 0; word < 8; word++)
109 		qla2x00_nv_write(ha, NVR_DATA_OUT);
110 
111 	qla2x00_nv_deselect(ha);
112 
113 	/* Write data */
114 	nv_cmd = (addr << 16) | NV_WRITE_OP;
115 	nv_cmd |= data;
116 	nv_cmd <<= 5;
117 	for (count = 0; count < 27; count++) {
118 		if (nv_cmd & BIT_31)
119 			qla2x00_nv_write(ha, NVR_DATA_OUT);
120 		else
121 			qla2x00_nv_write(ha, 0);
122 
123 		nv_cmd <<= 1;
124 	}
125 
126 	qla2x00_nv_deselect(ha);
127 
128 	/* Wait for NVRAM to become ready */
129 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
130 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
131 	wait_cnt = NVR_WAIT_CNT;
132 	do {
133 		if (!--wait_cnt) {
134 			DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
135 			    __func__, ha->host_no));
136 			break;
137 		}
138 		NVRAM_DELAY();
139 		word = RD_REG_WORD(&reg->nvram);
140 	} while ((word & NVR_DATA_IN) == 0);
141 
142 	qla2x00_nv_deselect(ha);
143 
144 	/* Disable writes */
145 	qla2x00_nv_write(ha, NVR_DATA_OUT);
146 	for (count = 0; count < 10; count++)
147 		qla2x00_nv_write(ha, 0);
148 
149 	qla2x00_nv_deselect(ha);
150 }
151 
152 static int
153 qla2x00_write_nvram_word_tmo(scsi_qla_host_t *ha, uint32_t addr, uint16_t data,
154     uint32_t tmo)
155 {
156 	int ret, count;
157 	uint16_t word;
158 	uint32_t nv_cmd;
159 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
160 
161 	ret = QLA_SUCCESS;
162 
163 	qla2x00_nv_write(ha, NVR_DATA_OUT);
164 	qla2x00_nv_write(ha, 0);
165 	qla2x00_nv_write(ha, 0);
166 
167 	for (word = 0; word < 8; word++)
168 		qla2x00_nv_write(ha, NVR_DATA_OUT);
169 
170 	qla2x00_nv_deselect(ha);
171 
172 	/* Write data */
173 	nv_cmd = (addr << 16) | NV_WRITE_OP;
174 	nv_cmd |= data;
175 	nv_cmd <<= 5;
176 	for (count = 0; count < 27; count++) {
177 		if (nv_cmd & BIT_31)
178 			qla2x00_nv_write(ha, NVR_DATA_OUT);
179 		else
180 			qla2x00_nv_write(ha, 0);
181 
182 		nv_cmd <<= 1;
183 	}
184 
185 	qla2x00_nv_deselect(ha);
186 
187 	/* Wait for NVRAM to become ready */
188 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
189 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
190 	do {
191 		NVRAM_DELAY();
192 		word = RD_REG_WORD(&reg->nvram);
193 		if (!--tmo) {
194 			ret = QLA_FUNCTION_FAILED;
195 			break;
196 		}
197 	} while ((word & NVR_DATA_IN) == 0);
198 
199 	qla2x00_nv_deselect(ha);
200 
201 	/* Disable writes */
202 	qla2x00_nv_write(ha, NVR_DATA_OUT);
203 	for (count = 0; count < 10; count++)
204 		qla2x00_nv_write(ha, 0);
205 
206 	qla2x00_nv_deselect(ha);
207 
208 	return ret;
209 }
210 
211 /**
212  * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
213  *	NVRAM.
214  * @ha: HA context
215  * @nv_cmd: NVRAM command
216  *
217  * Bit definitions for NVRAM command:
218  *
219  *	Bit 26     = start bit
220  *	Bit 25, 24 = opcode
221  *	Bit 23-16  = address
222  *	Bit 15-0   = write data
223  *
224  * Returns the word read from nvram @addr.
225  */
226 static uint16_t
227 qla2x00_nvram_request(scsi_qla_host_t *ha, uint32_t nv_cmd)
228 {
229 	uint8_t		cnt;
230 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
231 	uint16_t	data = 0;
232 	uint16_t	reg_data;
233 
234 	/* Send command to NVRAM. */
235 	nv_cmd <<= 5;
236 	for (cnt = 0; cnt < 11; cnt++) {
237 		if (nv_cmd & BIT_31)
238 			qla2x00_nv_write(ha, NVR_DATA_OUT);
239 		else
240 			qla2x00_nv_write(ha, 0);
241 		nv_cmd <<= 1;
242 	}
243 
244 	/* Read data from NVRAM. */
245 	for (cnt = 0; cnt < 16; cnt++) {
246 		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
247 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
248 		NVRAM_DELAY();
249 		data <<= 1;
250 		reg_data = RD_REG_WORD(&reg->nvram);
251 		if (reg_data & NVR_DATA_IN)
252 			data |= BIT_0;
253 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
254 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
255 		NVRAM_DELAY();
256 	}
257 
258 	/* Deselect chip. */
259 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
260 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
261 	NVRAM_DELAY();
262 
263 	return (data);
264 }
265 
266 /**
267  * qla2x00_nv_write() - Clean NVRAM operations.
268  * @ha: HA context
269  */
270 static void
271 qla2x00_nv_deselect(scsi_qla_host_t *ha)
272 {
273 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
274 
275 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
276 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
277 	NVRAM_DELAY();
278 }
279 
280 /**
281  * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
282  * @ha: HA context
283  * @data: Serial interface selector
284  */
285 static void
286 qla2x00_nv_write(scsi_qla_host_t *ha, uint16_t data)
287 {
288 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
289 
290 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
291 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
292 	NVRAM_DELAY();
293 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT| NVR_CLOCK |
294 	    NVR_WRT_ENABLE);
295 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
296 	NVRAM_DELAY();
297 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
298 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
299 	NVRAM_DELAY();
300 }
301 
302 /**
303  * qla2x00_clear_nvram_protection() -
304  * @ha: HA context
305  */
306 static int
307 qla2x00_clear_nvram_protection(scsi_qla_host_t *ha)
308 {
309 	int ret, stat;
310 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
311 	uint32_t word, wait_cnt;
312 	uint16_t wprot, wprot_old;
313 
314 	/* Clear NVRAM write protection. */
315 	ret = QLA_FUNCTION_FAILED;
316 
317 	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319 	    __constant_cpu_to_le16(0x1234), 100000);
320 	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
321 	if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 		/* Write enable. */
323 		qla2x00_nv_write(ha, NVR_DATA_OUT);
324 		qla2x00_nv_write(ha, 0);
325 		qla2x00_nv_write(ha, 0);
326 		for (word = 0; word < 8; word++)
327 			qla2x00_nv_write(ha, NVR_DATA_OUT);
328 
329 		qla2x00_nv_deselect(ha);
330 
331 		/* Enable protection register. */
332 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
333 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
334 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
335 		for (word = 0; word < 8; word++)
336 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
337 
338 		qla2x00_nv_deselect(ha);
339 
340 		/* Clear protection register (ffff is cleared). */
341 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
343 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
344 		for (word = 0; word < 8; word++)
345 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
346 
347 		qla2x00_nv_deselect(ha);
348 
349 		/* Wait for NVRAM to become ready. */
350 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
352 		wait_cnt = NVR_WAIT_CNT;
353 		do {
354 			if (!--wait_cnt) {
355 				DEBUG9_10(printk("%s(%ld): NVRAM didn't go "
356 				    "ready...\n", __func__,
357 				    ha->host_no));
358 				break;
359 			}
360 			NVRAM_DELAY();
361 			word = RD_REG_WORD(&reg->nvram);
362 		} while ((word & NVR_DATA_IN) == 0);
363 
364 		if (wait_cnt)
365 			ret = QLA_SUCCESS;
366 	} else
367 		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
368 
369 	return ret;
370 }
371 
372 static void
373 qla2x00_set_nvram_protection(scsi_qla_host_t *ha, int stat)
374 {
375 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
376 	uint32_t word, wait_cnt;
377 
378 	if (stat != QLA_SUCCESS)
379 		return;
380 
381 	/* Set NVRAM write protection. */
382 	/* Write enable. */
383 	qla2x00_nv_write(ha, NVR_DATA_OUT);
384 	qla2x00_nv_write(ha, 0);
385 	qla2x00_nv_write(ha, 0);
386 	for (word = 0; word < 8; word++)
387 		qla2x00_nv_write(ha, NVR_DATA_OUT);
388 
389 	qla2x00_nv_deselect(ha);
390 
391 	/* Enable protection register. */
392 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
393 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
394 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
395 	for (word = 0; word < 8; word++)
396 		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
397 
398 	qla2x00_nv_deselect(ha);
399 
400 	/* Enable protection register. */
401 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
402 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
403 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
404 	for (word = 0; word < 8; word++)
405 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
406 
407 	qla2x00_nv_deselect(ha);
408 
409 	/* Wait for NVRAM to become ready. */
410 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
412 	wait_cnt = NVR_WAIT_CNT;
413 	do {
414 		if (!--wait_cnt) {
415 			DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
416 			    __func__, ha->host_no));
417 			break;
418 		}
419 		NVRAM_DELAY();
420 		word = RD_REG_WORD(&reg->nvram);
421 	} while ((word & NVR_DATA_IN) == 0);
422 }
423 
424 
425 /*****************************************************************************/
426 /* Flash Manipulation Routines                                               */
427 /*****************************************************************************/
428 
429 #define OPTROM_BURST_SIZE	0x1000
430 #define OPTROM_BURST_DWORDS	(OPTROM_BURST_SIZE / 4)
431 
432 static inline uint32_t
433 flash_conf_to_access_addr(uint32_t faddr)
434 {
435 	return FARX_ACCESS_FLASH_CONF | faddr;
436 }
437 
438 static inline uint32_t
439 flash_data_to_access_addr(uint32_t faddr)
440 {
441 	return FARX_ACCESS_FLASH_DATA | faddr;
442 }
443 
444 static inline uint32_t
445 nvram_conf_to_access_addr(uint32_t naddr)
446 {
447 	return FARX_ACCESS_NVRAM_CONF | naddr;
448 }
449 
450 static inline uint32_t
451 nvram_data_to_access_addr(uint32_t naddr)
452 {
453 	return FARX_ACCESS_NVRAM_DATA | naddr;
454 }
455 
456 static uint32_t
457 qla24xx_read_flash_dword(scsi_qla_host_t *ha, uint32_t addr)
458 {
459 	int rval;
460 	uint32_t cnt, data;
461 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
462 
463 	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
464 	/* Wait for READ cycle to complete. */
465 	rval = QLA_SUCCESS;
466 	for (cnt = 3000;
467 	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
468 	    rval == QLA_SUCCESS; cnt--) {
469 		if (cnt)
470 			udelay(10);
471 		else
472 			rval = QLA_FUNCTION_TIMEOUT;
473 		cond_resched();
474 	}
475 
476 	/* TODO: What happens if we time out? */
477 	data = 0xDEADDEAD;
478 	if (rval == QLA_SUCCESS)
479 		data = RD_REG_DWORD(&reg->flash_data);
480 
481 	return data;
482 }
483 
484 uint32_t *
485 qla24xx_read_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
486     uint32_t dwords)
487 {
488 	uint32_t i;
489 
490 	/* Dword reads to flash. */
491 	for (i = 0; i < dwords; i++, faddr++)
492 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
493 		    flash_data_to_access_addr(faddr)));
494 
495 	return dwptr;
496 }
497 
498 static int
499 qla24xx_write_flash_dword(scsi_qla_host_t *ha, uint32_t addr, uint32_t data)
500 {
501 	int rval;
502 	uint32_t cnt;
503 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
504 
505 	WRT_REG_DWORD(&reg->flash_data, data);
506 	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
507 	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
508 	/* Wait for Write cycle to complete. */
509 	rval = QLA_SUCCESS;
510 	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
511 	    rval == QLA_SUCCESS; cnt--) {
512 		if (cnt)
513 			udelay(10);
514 		else
515 			rval = QLA_FUNCTION_TIMEOUT;
516 		cond_resched();
517 	}
518 	return rval;
519 }
520 
521 static void
522 qla24xx_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
523     uint8_t *flash_id)
524 {
525 	uint32_t ids;
526 
527 	ids = qla24xx_read_flash_dword(ha, flash_data_to_access_addr(0xd03ab));
528 	*man_id = LSB(ids);
529 	*flash_id = MSB(ids);
530 
531 	/* Check if man_id and flash_id are valid. */
532 	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
533 		/* Read information using 0x9f opcode
534 		 * Device ID, Mfg ID would be read in the format:
535 		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
536 		 * Example: ATMEL 0x00 01 45 1F
537 		 * Extract MFG and Dev ID from last two bytes.
538 		 */
539 		ids = qla24xx_read_flash_dword(ha,
540 		    flash_data_to_access_addr(0xd009f));
541 		*man_id = LSB(ids);
542 		*flash_id = MSB(ids);
543 	}
544 }
545 
546 void
547 qla2xxx_get_flash_info(scsi_qla_host_t *ha)
548 {
549 #define FLASH_BLK_SIZE_32K	0x8000
550 #define FLASH_BLK_SIZE_64K	0x10000
551 	uint16_t cnt, chksum;
552 	uint16_t *wptr;
553 	struct qla_fdt_layout *fdt;
554 	uint8_t	man_id, flash_id;
555 
556 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha))
557 		return;
558 
559 	wptr = (uint16_t *)ha->request_ring;
560 	fdt = (struct qla_fdt_layout *)ha->request_ring;
561 	ha->isp_ops->read_optrom(ha, (uint8_t *)ha->request_ring,
562 	    FA_FLASH_DESCR_ADDR << 2, OPTROM_BURST_SIZE);
563 	if (*wptr == __constant_cpu_to_le16(0xffff))
564 		goto no_flash_data;
565 	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
566 	    fdt->sig[3] != 'D')
567 		goto no_flash_data;
568 
569 	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
570 	    cnt++)
571 		chksum += le16_to_cpu(*wptr++);
572 	if (chksum) {
573 		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
574 		    "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
575 		    le16_to_cpu(fdt->version)));
576 		DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt)));
577 		goto no_flash_data;
578 	}
579 
580 	ha->fdt_odd_index = le16_to_cpu(fdt->man_id) == 0x1f;
581 	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
582 	ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0300 | fdt->erase_cmd);
583 	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
584 	if (fdt->unprotect_sec_cmd) {
585 		ha->fdt_unprotect_sec_cmd = flash_conf_to_access_addr(0x0300 |
586 		    fdt->unprotect_sec_cmd);
587 		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
588 		    flash_conf_to_access_addr(0x0300 | fdt->protect_sec_cmd):
589 		    flash_conf_to_access_addr(0x0336);
590 	}
591 
592 	DEBUG2(qla_printk(KERN_DEBUG, ha, "Flash[FDT]: (0x%x/0x%x) erase=0x%x "
593 	    "pro=%x upro=%x idx=%d wrtd=0x%x blk=0x%x.\n",
594 	    le16_to_cpu(fdt->man_id), le16_to_cpu(fdt->id), ha->fdt_erase_cmd,
595 	    ha->fdt_protect_sec_cmd, ha->fdt_unprotect_sec_cmd,
596 	    ha->fdt_odd_index, ha->fdt_wrt_disable, ha->fdt_block_size));
597 	return;
598 
599 no_flash_data:
600 	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
601 	ha->fdt_wrt_disable = 0x9c;
602 	ha->fdt_erase_cmd = flash_conf_to_access_addr(0x03d8);
603 	switch (man_id) {
604 	case 0xbf: /* STT flash. */
605 		if (flash_id == 0x8e)
606 			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
607 		else
608 			ha->fdt_block_size = FLASH_BLK_SIZE_32K;
609 
610 		if (flash_id == 0x80)
611 			ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0352);
612 		break;
613 	case 0x13: /* ST M25P80. */
614 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
615 		break;
616 	case 0x1f: /* Atmel 26DF081A. */
617 		ha->fdt_odd_index = 1;
618 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
619 		ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0320);
620 		ha->fdt_unprotect_sec_cmd = flash_conf_to_access_addr(0x0339);
621 		ha->fdt_protect_sec_cmd = flash_conf_to_access_addr(0x0336);
622 		break;
623 	default:
624 		/* Default to 64 kb sector size. */
625 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
626 		break;
627 	}
628 
629 	DEBUG2(qla_printk(KERN_DEBUG, ha, "Flash[MID]: (0x%x/0x%x) erase=0x%x "
630 	    "pro=%x upro=%x idx=%d wrtd=0x%x blk=0x%x.\n", man_id, flash_id,
631 	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
632 	    ha->fdt_unprotect_sec_cmd, ha->fdt_odd_index, ha->fdt_wrt_disable,
633 	    ha->fdt_block_size));
634 }
635 
636 static void
637 qla24xx_unprotect_flash(scsi_qla_host_t *ha)
638 {
639 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
640 
641 	/* Enable flash write. */
642 	WRT_REG_DWORD(&reg->ctrl_status,
643 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
644 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
645 
646 	if (!ha->fdt_wrt_disable)
647 		return;
648 
649 	/* Disable flash write-protection. */
650 	qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
651 	/* Some flash parts need an additional zero-write to clear bits.*/
652 	qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
653 }
654 
655 static void
656 qla24xx_protect_flash(scsi_qla_host_t *ha)
657 {
658 	uint32_t cnt;
659 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
660 
661 	if (!ha->fdt_wrt_disable)
662 		goto skip_wrt_protect;
663 
664 	/* Enable flash write-protection and wait for completion. */
665 	qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101),
666 	    ha->fdt_wrt_disable);
667 	for (cnt = 300; cnt &&
668 	    qla24xx_read_flash_dword(ha,
669 		    flash_conf_to_access_addr(0x005)) & BIT_0;
670 	    cnt--) {
671 		udelay(10);
672 	}
673 
674 skip_wrt_protect:
675 	/* Disable flash write. */
676 	WRT_REG_DWORD(&reg->ctrl_status,
677 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
678 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
679 }
680 
681 static int
682 qla24xx_write_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
683     uint32_t dwords)
684 {
685 	int ret;
686 	uint32_t liter, miter;
687 	uint32_t sec_mask, rest_addr;
688 	uint32_t fdata, findex;
689 	dma_addr_t optrom_dma;
690 	void *optrom = NULL;
691 	uint32_t *s, *d;
692 
693 	ret = QLA_SUCCESS;
694 
695 	/* Prepare burst-capable write on supported ISPs. */
696 	if (IS_QLA25XX(ha) && !(faddr & 0xfff) &&
697 	    dwords > OPTROM_BURST_DWORDS) {
698 		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
699 		    &optrom_dma, GFP_KERNEL);
700 		if (!optrom) {
701 			qla_printk(KERN_DEBUG, ha,
702 			    "Unable to allocate memory for optrom burst write "
703 			    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
704 		}
705 	}
706 
707 	rest_addr = (ha->fdt_block_size >> 2) - 1;
708 	sec_mask = 0x80000 - (ha->fdt_block_size >> 2);
709 
710 	qla24xx_unprotect_flash(ha);
711 
712 	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
713 		if (ha->fdt_odd_index) {
714 			findex = faddr << 2;
715 			fdata = findex & sec_mask;
716 		} else {
717 			findex = faddr;
718 			fdata = (findex & sec_mask) << 2;
719 		}
720 
721 		/* Are we at the beginning of a sector? */
722 		if ((findex & rest_addr) == 0) {
723 			/* Do sector unprotect. */
724 			if (ha->fdt_unprotect_sec_cmd)
725 				qla24xx_write_flash_dword(ha,
726 				    ha->fdt_unprotect_sec_cmd,
727 				    (fdata & 0xff00) | ((fdata << 16) &
728 				    0xff0000) | ((fdata >> 16) & 0xff));
729 			ret = qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
730 			    (fdata & 0xff00) |((fdata << 16) &
731 			    0xff0000) | ((fdata >> 16) & 0xff));
732 			if (ret != QLA_SUCCESS) {
733 				DEBUG9(printk("%s(%ld) Unable to flash "
734 				    "sector: address=%x.\n", __func__,
735 				    ha->host_no, faddr));
736 				break;
737 			}
738 		}
739 
740 		/* Go with burst-write. */
741 		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
742 			/* Copy data to DMA'ble buffer. */
743 			for (miter = 0, s = optrom, d = dwptr;
744 			    miter < OPTROM_BURST_DWORDS; miter++, s++, d++)
745 				*s = cpu_to_le32(*d);
746 
747 			ret = qla2x00_load_ram(ha, optrom_dma,
748 			    flash_data_to_access_addr(faddr),
749 			    OPTROM_BURST_DWORDS);
750 			if (ret != QLA_SUCCESS) {
751 				qla_printk(KERN_WARNING, ha,
752 				    "Unable to burst-write optrom segment "
753 				    "(%x/%x/%llx).\n", ret,
754 				    flash_data_to_access_addr(faddr),
755 				    (unsigned long long)optrom_dma);
756 				qla_printk(KERN_WARNING, ha,
757 				    "Reverting to slow-write.\n");
758 
759 				dma_free_coherent(&ha->pdev->dev,
760 				    OPTROM_BURST_SIZE, optrom, optrom_dma);
761 				optrom = NULL;
762 			} else {
763 				liter += OPTROM_BURST_DWORDS - 1;
764 				faddr += OPTROM_BURST_DWORDS - 1;
765 				dwptr += OPTROM_BURST_DWORDS - 1;
766 				continue;
767 			}
768 		}
769 
770 		ret = qla24xx_write_flash_dword(ha,
771 		    flash_data_to_access_addr(faddr), cpu_to_le32(*dwptr));
772 		if (ret != QLA_SUCCESS) {
773 			DEBUG9(printk("%s(%ld) Unable to program flash "
774 			    "address=%x data=%x.\n", __func__,
775 			    ha->host_no, faddr, *dwptr));
776 			break;
777 		}
778 
779 		/* Do sector protect. */
780 		if (ha->fdt_unprotect_sec_cmd &&
781 		    ((faddr & rest_addr) == rest_addr))
782 			qla24xx_write_flash_dword(ha,
783 			    ha->fdt_protect_sec_cmd,
784 			    (fdata & 0xff00) | ((fdata << 16) &
785 			    0xff0000) | ((fdata >> 16) & 0xff));
786 	}
787 
788 	qla24xx_protect_flash(ha);
789 
790 	if (optrom)
791 		dma_free_coherent(&ha->pdev->dev,
792 		    OPTROM_BURST_SIZE, optrom, optrom_dma);
793 
794 	return ret;
795 }
796 
797 uint8_t *
798 qla2x00_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
799     uint32_t bytes)
800 {
801 	uint32_t i;
802 	uint16_t *wptr;
803 
804 	/* Word reads to NVRAM via registers. */
805 	wptr = (uint16_t *)buf;
806 	qla2x00_lock_nvram_access(ha);
807 	for (i = 0; i < bytes >> 1; i++, naddr++)
808 		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
809 		    naddr));
810 	qla2x00_unlock_nvram_access(ha);
811 
812 	return buf;
813 }
814 
815 uint8_t *
816 qla24xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
817     uint32_t bytes)
818 {
819 	uint32_t i;
820 	uint32_t *dwptr;
821 
822 	/* Dword reads to flash. */
823 	dwptr = (uint32_t *)buf;
824 	for (i = 0; i < bytes >> 2; i++, naddr++)
825 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
826 		    nvram_data_to_access_addr(naddr)));
827 
828 	return buf;
829 }
830 
831 int
832 qla2x00_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
833     uint32_t bytes)
834 {
835 	int ret, stat;
836 	uint32_t i;
837 	uint16_t *wptr;
838 	unsigned long flags;
839 
840 	ret = QLA_SUCCESS;
841 
842 	spin_lock_irqsave(&ha->hardware_lock, flags);
843 	qla2x00_lock_nvram_access(ha);
844 
845 	/* Disable NVRAM write-protection. */
846 	stat = qla2x00_clear_nvram_protection(ha);
847 
848 	wptr = (uint16_t *)buf;
849 	for (i = 0; i < bytes >> 1; i++, naddr++) {
850 		qla2x00_write_nvram_word(ha, naddr,
851 		    cpu_to_le16(*wptr));
852 		wptr++;
853 	}
854 
855 	/* Enable NVRAM write-protection. */
856 	qla2x00_set_nvram_protection(ha, stat);
857 
858 	qla2x00_unlock_nvram_access(ha);
859 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
860 
861 	return ret;
862 }
863 
864 int
865 qla24xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
866     uint32_t bytes)
867 {
868 	int ret;
869 	uint32_t i;
870 	uint32_t *dwptr;
871 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
872 	unsigned long flags;
873 
874 	ret = QLA_SUCCESS;
875 
876 	spin_lock_irqsave(&ha->hardware_lock, flags);
877 	/* Enable flash write. */
878 	WRT_REG_DWORD(&reg->ctrl_status,
879 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
880 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
881 
882 	/* Disable NVRAM write-protection. */
883 	qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
884 	    0);
885 	qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
886 	    0);
887 
888 	/* Dword writes to flash. */
889 	dwptr = (uint32_t *)buf;
890 	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
891 		ret = qla24xx_write_flash_dword(ha,
892 		    nvram_data_to_access_addr(naddr),
893 		    cpu_to_le32(*dwptr));
894 		if (ret != QLA_SUCCESS) {
895 			DEBUG9(printk("%s(%ld) Unable to program "
896 			    "nvram address=%x data=%x.\n", __func__,
897 			    ha->host_no, naddr, *dwptr));
898 			break;
899 		}
900 	}
901 
902 	/* Enable NVRAM write-protection. */
903 	qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
904 	    0x8c);
905 
906 	/* Disable flash write. */
907 	WRT_REG_DWORD(&reg->ctrl_status,
908 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
909 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
910 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
911 
912 	return ret;
913 }
914 
915 uint8_t *
916 qla25xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
917     uint32_t bytes)
918 {
919 	uint32_t i;
920 	uint32_t *dwptr;
921 
922 	/* Dword reads to flash. */
923 	dwptr = (uint32_t *)buf;
924 	for (i = 0; i < bytes >> 2; i++, naddr++)
925 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
926 		    flash_data_to_access_addr(FA_VPD_NVRAM_ADDR | naddr)));
927 
928 	return buf;
929 }
930 
931 int
932 qla25xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
933     uint32_t bytes)
934 {
935 #define RMW_BUFFER_SIZE	(64 * 1024)
936 	uint8_t *dbuf;
937 
938 	dbuf = vmalloc(RMW_BUFFER_SIZE);
939 	if (!dbuf)
940 		return QLA_MEMORY_ALLOC_FAILED;
941 	ha->isp_ops->read_optrom(ha, dbuf, FA_VPD_NVRAM_ADDR << 2,
942 	    RMW_BUFFER_SIZE);
943 	memcpy(dbuf + (naddr << 2), buf, bytes);
944 	ha->isp_ops->write_optrom(ha, dbuf, FA_VPD_NVRAM_ADDR << 2,
945 	    RMW_BUFFER_SIZE);
946 	vfree(dbuf);
947 
948 	return QLA_SUCCESS;
949 }
950 
951 static inline void
952 qla2x00_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
953 {
954 	if (IS_QLA2322(ha)) {
955 		/* Flip all colors. */
956 		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
957 			/* Turn off. */
958 			ha->beacon_color_state = 0;
959 			*pflags = GPIO_LED_ALL_OFF;
960 		} else {
961 			/* Turn on. */
962 			ha->beacon_color_state = QLA_LED_ALL_ON;
963 			*pflags = GPIO_LED_RGA_ON;
964 		}
965 	} else {
966 		/* Flip green led only. */
967 		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
968 			/* Turn off. */
969 			ha->beacon_color_state = 0;
970 			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
971 		} else {
972 			/* Turn on. */
973 			ha->beacon_color_state = QLA_LED_GRN_ON;
974 			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
975 		}
976 	}
977 }
978 
979 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
980 
981 void
982 qla2x00_beacon_blink(struct scsi_qla_host *ha)
983 {
984 	uint16_t gpio_enable;
985 	uint16_t gpio_data;
986 	uint16_t led_color = 0;
987 	unsigned long flags;
988 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
989 
990 	spin_lock_irqsave(&ha->hardware_lock, flags);
991 
992 	/* Save the Original GPIOE. */
993 	if (ha->pio_address) {
994 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
995 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
996 	} else {
997 		gpio_enable = RD_REG_WORD(&reg->gpioe);
998 		gpio_data = RD_REG_WORD(&reg->gpiod);
999 	}
1000 
1001 	/* Set the modified gpio_enable values */
1002 	gpio_enable |= GPIO_LED_MASK;
1003 
1004 	if (ha->pio_address) {
1005 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1006 	} else {
1007 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1008 		RD_REG_WORD(&reg->gpioe);
1009 	}
1010 
1011 	qla2x00_flip_colors(ha, &led_color);
1012 
1013 	/* Clear out any previously set LED color. */
1014 	gpio_data &= ~GPIO_LED_MASK;
1015 
1016 	/* Set the new input LED color to GPIOD. */
1017 	gpio_data |= led_color;
1018 
1019 	/* Set the modified gpio_data values */
1020 	if (ha->pio_address) {
1021 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1022 	} else {
1023 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1024 		RD_REG_WORD(&reg->gpiod);
1025 	}
1026 
1027 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1028 }
1029 
1030 int
1031 qla2x00_beacon_on(struct scsi_qla_host *ha)
1032 {
1033 	uint16_t gpio_enable;
1034 	uint16_t gpio_data;
1035 	unsigned long flags;
1036 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1037 
1038 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1039 	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1040 
1041 	if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1042 		qla_printk(KERN_WARNING, ha,
1043 		    "Unable to update fw options (beacon on).\n");
1044 		return QLA_FUNCTION_FAILED;
1045 	}
1046 
1047 	/* Turn off LEDs. */
1048 	spin_lock_irqsave(&ha->hardware_lock, flags);
1049 	if (ha->pio_address) {
1050 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1051 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1052 	} else {
1053 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1054 		gpio_data = RD_REG_WORD(&reg->gpiod);
1055 	}
1056 	gpio_enable |= GPIO_LED_MASK;
1057 
1058 	/* Set the modified gpio_enable values. */
1059 	if (ha->pio_address) {
1060 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1061 	} else {
1062 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1063 		RD_REG_WORD(&reg->gpioe);
1064 	}
1065 
1066 	/* Clear out previously set LED colour. */
1067 	gpio_data &= ~GPIO_LED_MASK;
1068 	if (ha->pio_address) {
1069 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1070 	} else {
1071 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1072 		RD_REG_WORD(&reg->gpiod);
1073 	}
1074 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1075 
1076 	/*
1077 	 * Let the per HBA timer kick off the blinking process based on
1078 	 * the following flags. No need to do anything else now.
1079 	 */
1080 	ha->beacon_blink_led = 1;
1081 	ha->beacon_color_state = 0;
1082 
1083 	return QLA_SUCCESS;
1084 }
1085 
1086 int
1087 qla2x00_beacon_off(struct scsi_qla_host *ha)
1088 {
1089 	int rval = QLA_SUCCESS;
1090 
1091 	ha->beacon_blink_led = 0;
1092 
1093 	/* Set the on flag so when it gets flipped it will be off. */
1094 	if (IS_QLA2322(ha))
1095 		ha->beacon_color_state = QLA_LED_ALL_ON;
1096 	else
1097 		ha->beacon_color_state = QLA_LED_GRN_ON;
1098 
1099 	ha->isp_ops->beacon_blink(ha);	/* This turns green LED off */
1100 
1101 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1102 	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1103 
1104 	rval = qla2x00_set_fw_options(ha, ha->fw_options);
1105 	if (rval != QLA_SUCCESS)
1106 		qla_printk(KERN_WARNING, ha,
1107 		    "Unable to update fw options (beacon off).\n");
1108 	return rval;
1109 }
1110 
1111 
1112 static inline void
1113 qla24xx_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
1114 {
1115 	/* Flip all colors. */
1116 	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1117 		/* Turn off. */
1118 		ha->beacon_color_state = 0;
1119 		*pflags = 0;
1120 	} else {
1121 		/* Turn on. */
1122 		ha->beacon_color_state = QLA_LED_ALL_ON;
1123 		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1124 	}
1125 }
1126 
1127 void
1128 qla24xx_beacon_blink(struct scsi_qla_host *ha)
1129 {
1130 	uint16_t led_color = 0;
1131 	uint32_t gpio_data;
1132 	unsigned long flags;
1133 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1134 
1135 	/* Save the Original GPIOD. */
1136 	spin_lock_irqsave(&ha->hardware_lock, flags);
1137 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1138 
1139 	/* Enable the gpio_data reg for update. */
1140 	gpio_data |= GPDX_LED_UPDATE_MASK;
1141 
1142 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1143 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1144 
1145 	/* Set the color bits. */
1146 	qla24xx_flip_colors(ha, &led_color);
1147 
1148 	/* Clear out any previously set LED color. */
1149 	gpio_data &= ~GPDX_LED_COLOR_MASK;
1150 
1151 	/* Set the new input LED color to GPIOD. */
1152 	gpio_data |= led_color;
1153 
1154 	/* Set the modified gpio_data values. */
1155 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1156 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1157 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1158 }
1159 
1160 int
1161 qla24xx_beacon_on(struct scsi_qla_host *ha)
1162 {
1163 	uint32_t gpio_data;
1164 	unsigned long flags;
1165 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1166 
1167 	if (ha->beacon_blink_led == 0) {
1168 		/* Enable firmware for update */
1169 		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1170 
1171 		if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS)
1172 			return QLA_FUNCTION_FAILED;
1173 
1174 		if (qla2x00_get_fw_options(ha, ha->fw_options) !=
1175 		    QLA_SUCCESS) {
1176 			qla_printk(KERN_WARNING, ha,
1177 			    "Unable to update fw options (beacon on).\n");
1178 			return QLA_FUNCTION_FAILED;
1179 		}
1180 
1181 		spin_lock_irqsave(&ha->hardware_lock, flags);
1182 		gpio_data = RD_REG_DWORD(&reg->gpiod);
1183 
1184 		/* Enable the gpio_data reg for update. */
1185 		gpio_data |= GPDX_LED_UPDATE_MASK;
1186 		WRT_REG_DWORD(&reg->gpiod, gpio_data);
1187 		RD_REG_DWORD(&reg->gpiod);
1188 
1189 		spin_unlock_irqrestore(&ha->hardware_lock, flags);
1190 	}
1191 
1192 	/* So all colors blink together. */
1193 	ha->beacon_color_state = 0;
1194 
1195 	/* Let the per HBA timer kick off the blinking process. */
1196 	ha->beacon_blink_led = 1;
1197 
1198 	return QLA_SUCCESS;
1199 }
1200 
1201 int
1202 qla24xx_beacon_off(struct scsi_qla_host *ha)
1203 {
1204 	uint32_t gpio_data;
1205 	unsigned long flags;
1206 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1207 
1208 	ha->beacon_blink_led = 0;
1209 	ha->beacon_color_state = QLA_LED_ALL_ON;
1210 
1211 	ha->isp_ops->beacon_blink(ha);	/* Will flip to all off. */
1212 
1213 	/* Give control back to firmware. */
1214 	spin_lock_irqsave(&ha->hardware_lock, flags);
1215 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1216 
1217 	/* Disable the gpio_data reg for update. */
1218 	gpio_data &= ~GPDX_LED_UPDATE_MASK;
1219 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1220 	RD_REG_DWORD(&reg->gpiod);
1221 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1222 
1223 	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1224 
1225 	if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1226 		qla_printk(KERN_WARNING, ha,
1227 		    "Unable to update fw options (beacon off).\n");
1228 		return QLA_FUNCTION_FAILED;
1229 	}
1230 
1231 	if (qla2x00_get_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1232 		qla_printk(KERN_WARNING, ha,
1233 		    "Unable to get fw options (beacon off).\n");
1234 		return QLA_FUNCTION_FAILED;
1235 	}
1236 
1237 	return QLA_SUCCESS;
1238 }
1239 
1240 
1241 /*
1242  * Flash support routines
1243  */
1244 
1245 /**
1246  * qla2x00_flash_enable() - Setup flash for reading and writing.
1247  * @ha: HA context
1248  */
1249 static void
1250 qla2x00_flash_enable(scsi_qla_host_t *ha)
1251 {
1252 	uint16_t data;
1253 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1254 
1255 	data = RD_REG_WORD(&reg->ctrl_status);
1256 	data |= CSR_FLASH_ENABLE;
1257 	WRT_REG_WORD(&reg->ctrl_status, data);
1258 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1259 }
1260 
1261 /**
1262  * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1263  * @ha: HA context
1264  */
1265 static void
1266 qla2x00_flash_disable(scsi_qla_host_t *ha)
1267 {
1268 	uint16_t data;
1269 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1270 
1271 	data = RD_REG_WORD(&reg->ctrl_status);
1272 	data &= ~(CSR_FLASH_ENABLE);
1273 	WRT_REG_WORD(&reg->ctrl_status, data);
1274 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1275 }
1276 
1277 /**
1278  * qla2x00_read_flash_byte() - Reads a byte from flash
1279  * @ha: HA context
1280  * @addr: Address in flash to read
1281  *
1282  * A word is read from the chip, but, only the lower byte is valid.
1283  *
1284  * Returns the byte read from flash @addr.
1285  */
1286 static uint8_t
1287 qla2x00_read_flash_byte(scsi_qla_host_t *ha, uint32_t addr)
1288 {
1289 	uint16_t data;
1290 	uint16_t bank_select;
1291 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1292 
1293 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1294 
1295 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1296 		/* Specify 64K address range: */
1297 		/*  clear out Module Select and Flash Address bits [19:16]. */
1298 		bank_select &= ~0xf8;
1299 		bank_select |= addr >> 12 & 0xf0;
1300 		bank_select |= CSR_FLASH_64K_BANK;
1301 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1302 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1303 
1304 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1305 		data = RD_REG_WORD(&reg->flash_data);
1306 
1307 		return (uint8_t)data;
1308 	}
1309 
1310 	/* Setup bit 16 of flash address. */
1311 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1312 		bank_select |= CSR_FLASH_64K_BANK;
1313 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1314 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1315 	} else if (((addr & BIT_16) == 0) &&
1316 	    (bank_select & CSR_FLASH_64K_BANK)) {
1317 		bank_select &= ~(CSR_FLASH_64K_BANK);
1318 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1319 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1320 	}
1321 
1322 	/* Always perform IO mapped accesses to the FLASH registers. */
1323 	if (ha->pio_address) {
1324 		uint16_t data2;
1325 
1326 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1327 		do {
1328 			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1329 			barrier();
1330 			cpu_relax();
1331 			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1332 		} while (data != data2);
1333 	} else {
1334 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1335 		data = qla2x00_debounce_register(&reg->flash_data);
1336 	}
1337 
1338 	return (uint8_t)data;
1339 }
1340 
1341 /**
1342  * qla2x00_write_flash_byte() - Write a byte to flash
1343  * @ha: HA context
1344  * @addr: Address in flash to write
1345  * @data: Data to write
1346  */
1347 static void
1348 qla2x00_write_flash_byte(scsi_qla_host_t *ha, uint32_t addr, uint8_t data)
1349 {
1350 	uint16_t bank_select;
1351 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1352 
1353 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1354 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1355 		/* Specify 64K address range: */
1356 		/*  clear out Module Select and Flash Address bits [19:16]. */
1357 		bank_select &= ~0xf8;
1358 		bank_select |= addr >> 12 & 0xf0;
1359 		bank_select |= CSR_FLASH_64K_BANK;
1360 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1361 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1362 
1363 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1364 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1365 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1366 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1367 
1368 		return;
1369 	}
1370 
1371 	/* Setup bit 16 of flash address. */
1372 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1373 		bank_select |= CSR_FLASH_64K_BANK;
1374 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1375 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1376 	} else if (((addr & BIT_16) == 0) &&
1377 	    (bank_select & CSR_FLASH_64K_BANK)) {
1378 		bank_select &= ~(CSR_FLASH_64K_BANK);
1379 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1380 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1381 	}
1382 
1383 	/* Always perform IO mapped accesses to the FLASH registers. */
1384 	if (ha->pio_address) {
1385 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1386 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1387 	} else {
1388 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1389 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1390 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1391 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1392 	}
1393 }
1394 
1395 /**
1396  * qla2x00_poll_flash() - Polls flash for completion.
1397  * @ha: HA context
1398  * @addr: Address in flash to poll
1399  * @poll_data: Data to be polled
1400  * @man_id: Flash manufacturer ID
1401  * @flash_id: Flash ID
1402  *
1403  * This function polls the device until bit 7 of what is read matches data
1404  * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
1405  * out (a fatal error).  The flash book recommeds reading bit 7 again after
1406  * reading bit 5 as a 1.
1407  *
1408  * Returns 0 on success, else non-zero.
1409  */
1410 static int
1411 qla2x00_poll_flash(scsi_qla_host_t *ha, uint32_t addr, uint8_t poll_data,
1412     uint8_t man_id, uint8_t flash_id)
1413 {
1414 	int status;
1415 	uint8_t flash_data;
1416 	uint32_t cnt;
1417 
1418 	status = 1;
1419 
1420 	/* Wait for 30 seconds for command to finish. */
1421 	poll_data &= BIT_7;
1422 	for (cnt = 3000000; cnt; cnt--) {
1423 		flash_data = qla2x00_read_flash_byte(ha, addr);
1424 		if ((flash_data & BIT_7) == poll_data) {
1425 			status = 0;
1426 			break;
1427 		}
1428 
1429 		if (man_id != 0x40 && man_id != 0xda) {
1430 			if ((flash_data & BIT_5) && cnt > 2)
1431 				cnt = 2;
1432 		}
1433 		udelay(10);
1434 		barrier();
1435 		cond_resched();
1436 	}
1437 	return status;
1438 }
1439 
1440 /**
1441  * qla2x00_program_flash_address() - Programs a flash address
1442  * @ha: HA context
1443  * @addr: Address in flash to program
1444  * @data: Data to be written in flash
1445  * @man_id: Flash manufacturer ID
1446  * @flash_id: Flash ID
1447  *
1448  * Returns 0 on success, else non-zero.
1449  */
1450 static int
1451 qla2x00_program_flash_address(scsi_qla_host_t *ha, uint32_t addr, uint8_t data,
1452     uint8_t man_id, uint8_t flash_id)
1453 {
1454 	/* Write Program Command Sequence. */
1455 	if (IS_OEM_001(ha)) {
1456 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1457 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1458 		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1459 		qla2x00_write_flash_byte(ha, addr, data);
1460 	} else {
1461 		if (man_id == 0xda && flash_id == 0xc1) {
1462 			qla2x00_write_flash_byte(ha, addr, data);
1463 			if (addr & 0x7e)
1464 				return 0;
1465 		} else {
1466 			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1467 			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1468 			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1469 			qla2x00_write_flash_byte(ha, addr, data);
1470 		}
1471 	}
1472 
1473 	udelay(150);
1474 
1475 	/* Wait for write to complete. */
1476 	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1477 }
1478 
1479 /**
1480  * qla2x00_erase_flash() - Erase the flash.
1481  * @ha: HA context
1482  * @man_id: Flash manufacturer ID
1483  * @flash_id: Flash ID
1484  *
1485  * Returns 0 on success, else non-zero.
1486  */
1487 static int
1488 qla2x00_erase_flash(scsi_qla_host_t *ha, uint8_t man_id, uint8_t flash_id)
1489 {
1490 	/* Individual Sector Erase Command Sequence */
1491 	if (IS_OEM_001(ha)) {
1492 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1493 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1494 		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1495 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1496 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1497 		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1498 	} else {
1499 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1500 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1501 		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1502 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1503 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1504 		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1505 	}
1506 
1507 	udelay(150);
1508 
1509 	/* Wait for erase to complete. */
1510 	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1511 }
1512 
1513 /**
1514  * qla2x00_erase_flash_sector() - Erase a flash sector.
1515  * @ha: HA context
1516  * @addr: Flash sector to erase
1517  * @sec_mask: Sector address mask
1518  * @man_id: Flash manufacturer ID
1519  * @flash_id: Flash ID
1520  *
1521  * Returns 0 on success, else non-zero.
1522  */
1523 static int
1524 qla2x00_erase_flash_sector(scsi_qla_host_t *ha, uint32_t addr,
1525     uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1526 {
1527 	/* Individual Sector Erase Command Sequence */
1528 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1529 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1530 	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1531 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1532 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1533 	if (man_id == 0x1f && flash_id == 0x13)
1534 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
1535 	else
1536 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
1537 
1538 	udelay(150);
1539 
1540 	/* Wait for erase to complete. */
1541 	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
1542 }
1543 
1544 /**
1545  * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
1546  * @man_id: Flash manufacturer ID
1547  * @flash_id: Flash ID
1548  */
1549 static void
1550 qla2x00_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
1551     uint8_t *flash_id)
1552 {
1553 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1554 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1555 	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
1556 	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
1557 	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
1558 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1559 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1560 	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
1561 }
1562 
1563 static void
1564 qla2x00_read_flash_data(scsi_qla_host_t *ha, uint8_t *tmp_buf, uint32_t saddr,
1565         uint32_t length)
1566 {
1567 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1568 	uint32_t midpoint, ilength;
1569 	uint8_t data;
1570 
1571 	midpoint = length / 2;
1572 
1573 	WRT_REG_WORD(&reg->nvram, 0);
1574 	RD_REG_WORD(&reg->nvram);
1575 	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
1576 		if (ilength == midpoint) {
1577 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1578 			RD_REG_WORD(&reg->nvram);
1579 		}
1580 		data = qla2x00_read_flash_byte(ha, saddr);
1581 		if (saddr % 100)
1582 			udelay(10);
1583 		*tmp_buf = data;
1584 		cond_resched();
1585 	}
1586 }
1587 
1588 static inline void
1589 qla2x00_suspend_hba(struct scsi_qla_host *ha)
1590 {
1591 	int cnt;
1592 	unsigned long flags;
1593 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1594 
1595 	/* Suspend HBA. */
1596 	scsi_block_requests(ha->host);
1597 	ha->isp_ops->disable_intrs(ha);
1598 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1599 
1600 	/* Pause RISC. */
1601 	spin_lock_irqsave(&ha->hardware_lock, flags);
1602 	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
1603 	RD_REG_WORD(&reg->hccr);
1604 	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
1605 		for (cnt = 0; cnt < 30000; cnt++) {
1606 			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
1607 				break;
1608 			udelay(100);
1609 		}
1610 	} else {
1611 		udelay(10);
1612 	}
1613 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1614 }
1615 
1616 static inline void
1617 qla2x00_resume_hba(struct scsi_qla_host *ha)
1618 {
1619 	/* Resume HBA. */
1620 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1621 	set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
1622 	qla2xxx_wake_dpc(ha);
1623 	qla2x00_wait_for_hba_online(ha);
1624 	scsi_unblock_requests(ha->host);
1625 }
1626 
1627 uint8_t *
1628 qla2x00_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1629     uint32_t offset, uint32_t length)
1630 {
1631 	uint32_t addr, midpoint;
1632 	uint8_t *data;
1633 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1634 
1635 	/* Suspend HBA. */
1636 	qla2x00_suspend_hba(ha);
1637 
1638 	/* Go with read. */
1639 	midpoint = ha->optrom_size / 2;
1640 
1641 	qla2x00_flash_enable(ha);
1642 	WRT_REG_WORD(&reg->nvram, 0);
1643 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
1644 	for (addr = offset, data = buf; addr < length; addr++, data++) {
1645 		if (addr == midpoint) {
1646 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1647 			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
1648 		}
1649 
1650 		*data = qla2x00_read_flash_byte(ha, addr);
1651 	}
1652 	qla2x00_flash_disable(ha);
1653 
1654 	/* Resume HBA. */
1655 	qla2x00_resume_hba(ha);
1656 
1657 	return buf;
1658 }
1659 
1660 int
1661 qla2x00_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1662     uint32_t offset, uint32_t length)
1663 {
1664 
1665 	int rval;
1666 	uint8_t man_id, flash_id, sec_number, data;
1667 	uint16_t wd;
1668 	uint32_t addr, liter, sec_mask, rest_addr;
1669 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1670 
1671 	/* Suspend HBA. */
1672 	qla2x00_suspend_hba(ha);
1673 
1674 	rval = QLA_SUCCESS;
1675 	sec_number = 0;
1676 
1677 	/* Reset ISP chip. */
1678 	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
1679 	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
1680 
1681 	/* Go with write. */
1682 	qla2x00_flash_enable(ha);
1683 	do {	/* Loop once to provide quick error exit */
1684 		/* Structure of flash memory based on manufacturer */
1685 		if (IS_OEM_001(ha)) {
1686 			/* OEM variant with special flash part. */
1687 			man_id = flash_id = 0;
1688 			rest_addr = 0xffff;
1689 			sec_mask   = 0x10000;
1690 			goto update_flash;
1691 		}
1692 		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
1693 		switch (man_id) {
1694 		case 0x20: /* ST flash. */
1695 			if (flash_id == 0xd2 || flash_id == 0xe3) {
1696 				/*
1697 				 * ST m29w008at part - 64kb sector size with
1698 				 * 32kb,8kb,8kb,16kb sectors at memory address
1699 				 * 0xf0000.
1700 				 */
1701 				rest_addr = 0xffff;
1702 				sec_mask = 0x10000;
1703 				break;
1704 			}
1705 			/*
1706 			 * ST m29w010b part - 16kb sector size
1707 			 * Default to 16kb sectors
1708 			 */
1709 			rest_addr = 0x3fff;
1710 			sec_mask = 0x1c000;
1711 			break;
1712 		case 0x40: /* Mostel flash. */
1713 			/* Mostel v29c51001 part - 512 byte sector size. */
1714 			rest_addr = 0x1ff;
1715 			sec_mask = 0x1fe00;
1716 			break;
1717 		case 0xbf: /* SST flash. */
1718 			/* SST39sf10 part - 4kb sector size. */
1719 			rest_addr = 0xfff;
1720 			sec_mask = 0x1f000;
1721 			break;
1722 		case 0xda: /* Winbond flash. */
1723 			/* Winbond W29EE011 part - 256 byte sector size. */
1724 			rest_addr = 0x7f;
1725 			sec_mask = 0x1ff80;
1726 			break;
1727 		case 0xc2: /* Macronix flash. */
1728 			/* 64k sector size. */
1729 			if (flash_id == 0x38 || flash_id == 0x4f) {
1730 				rest_addr = 0xffff;
1731 				sec_mask = 0x10000;
1732 				break;
1733 			}
1734 			/* Fall through... */
1735 
1736 		case 0x1f: /* Atmel flash. */
1737 			/* 512k sector size. */
1738 			if (flash_id == 0x13) {
1739 				rest_addr = 0x7fffffff;
1740 				sec_mask =   0x80000000;
1741 				break;
1742 			}
1743 			/* Fall through... */
1744 
1745 		case 0x01: /* AMD flash. */
1746 			if (flash_id == 0x38 || flash_id == 0x40 ||
1747 			    flash_id == 0x4f) {
1748 				/* Am29LV081 part - 64kb sector size. */
1749 				/* Am29LV002BT part - 64kb sector size. */
1750 				rest_addr = 0xffff;
1751 				sec_mask = 0x10000;
1752 				break;
1753 			} else if (flash_id == 0x3e) {
1754 				/*
1755 				 * Am29LV008b part - 64kb sector size with
1756 				 * 32kb,8kb,8kb,16kb sector at memory address
1757 				 * h0xf0000.
1758 				 */
1759 				rest_addr = 0xffff;
1760 				sec_mask = 0x10000;
1761 				break;
1762 			} else if (flash_id == 0x20 || flash_id == 0x6e) {
1763 				/*
1764 				 * Am29LV010 part or AM29f010 - 16kb sector
1765 				 * size.
1766 				 */
1767 				rest_addr = 0x3fff;
1768 				sec_mask = 0x1c000;
1769 				break;
1770 			} else if (flash_id == 0x6d) {
1771 				/* Am29LV001 part - 8kb sector size. */
1772 				rest_addr = 0x1fff;
1773 				sec_mask = 0x1e000;
1774 				break;
1775 			}
1776 		default:
1777 			/* Default to 16 kb sector size. */
1778 			rest_addr = 0x3fff;
1779 			sec_mask = 0x1c000;
1780 			break;
1781 		}
1782 
1783 update_flash:
1784 		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1785 			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
1786 				rval = QLA_FUNCTION_FAILED;
1787 				break;
1788 			}
1789 		}
1790 
1791 		for (addr = offset, liter = 0; liter < length; liter++,
1792 		    addr++) {
1793 			data = buf[liter];
1794 			/* Are we at the beginning of a sector? */
1795 			if ((addr & rest_addr) == 0) {
1796 				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1797 					if (addr >= 0x10000UL) {
1798 						if (((addr >> 12) & 0xf0) &&
1799 						    ((man_id == 0x01 &&
1800 							flash_id == 0x3e) ||
1801 						     (man_id == 0x20 &&
1802 							 flash_id == 0xd2))) {
1803 							sec_number++;
1804 							if (sec_number == 1) {
1805 								rest_addr =
1806 								    0x7fff;
1807 								sec_mask =
1808 								    0x18000;
1809 							} else if (
1810 							    sec_number == 2 ||
1811 							    sec_number == 3) {
1812 								rest_addr =
1813 								    0x1fff;
1814 								sec_mask =
1815 								    0x1e000;
1816 							} else if (
1817 							    sec_number == 4) {
1818 								rest_addr =
1819 								    0x3fff;
1820 								sec_mask =
1821 								    0x1c000;
1822 							}
1823 						}
1824 					}
1825 				} else if (addr == ha->optrom_size / 2) {
1826 					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1827 					RD_REG_WORD(&reg->nvram);
1828 				}
1829 
1830 				if (flash_id == 0xda && man_id == 0xc1) {
1831 					qla2x00_write_flash_byte(ha, 0x5555,
1832 					    0xaa);
1833 					qla2x00_write_flash_byte(ha, 0x2aaa,
1834 					    0x55);
1835 					qla2x00_write_flash_byte(ha, 0x5555,
1836 					    0xa0);
1837 				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
1838 					/* Then erase it */
1839 					if (qla2x00_erase_flash_sector(ha,
1840 					    addr, sec_mask, man_id,
1841 					    flash_id)) {
1842 						rval = QLA_FUNCTION_FAILED;
1843 						break;
1844 					}
1845 					if (man_id == 0x01 && flash_id == 0x6d)
1846 						sec_number++;
1847 				}
1848 			}
1849 
1850 			if (man_id == 0x01 && flash_id == 0x6d) {
1851 				if (sec_number == 1 &&
1852 				    addr == (rest_addr - 1)) {
1853 					rest_addr = 0x0fff;
1854 					sec_mask   = 0x1f000;
1855 				} else if (sec_number == 3 && (addr & 0x7ffe)) {
1856 					rest_addr = 0x3fff;
1857 					sec_mask   = 0x1c000;
1858 				}
1859 			}
1860 
1861 			if (qla2x00_program_flash_address(ha, addr, data,
1862 			    man_id, flash_id)) {
1863 				rval = QLA_FUNCTION_FAILED;
1864 				break;
1865 			}
1866 			cond_resched();
1867 		}
1868 	} while (0);
1869 	qla2x00_flash_disable(ha);
1870 
1871 	/* Resume HBA. */
1872 	qla2x00_resume_hba(ha);
1873 
1874 	return rval;
1875 }
1876 
1877 uint8_t *
1878 qla24xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1879     uint32_t offset, uint32_t length)
1880 {
1881 	/* Suspend HBA. */
1882 	scsi_block_requests(ha->host);
1883 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1884 
1885 	/* Go with read. */
1886 	qla24xx_read_flash_data(ha, (uint32_t *)buf, offset >> 2, length >> 2);
1887 
1888 	/* Resume HBA. */
1889 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1890 	scsi_unblock_requests(ha->host);
1891 
1892 	return buf;
1893 }
1894 
1895 int
1896 qla24xx_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1897     uint32_t offset, uint32_t length)
1898 {
1899 	int rval;
1900 
1901 	/* Suspend HBA. */
1902 	scsi_block_requests(ha->host);
1903 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1904 
1905 	/* Go with write. */
1906 	rval = qla24xx_write_flash_data(ha, (uint32_t *)buf, offset >> 2,
1907 	    length >> 2);
1908 
1909 	/* Resume HBA -- RISC reset needed. */
1910 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1911 	set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
1912 	qla2xxx_wake_dpc(ha);
1913 	qla2x00_wait_for_hba_online(ha);
1914 	scsi_unblock_requests(ha->host);
1915 
1916 	return rval;
1917 }
1918 
1919 uint8_t *
1920 qla25xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1921     uint32_t offset, uint32_t length)
1922 {
1923 	int rval;
1924 	dma_addr_t optrom_dma;
1925 	void *optrom;
1926 	uint8_t *pbuf;
1927 	uint32_t faddr, left, burst;
1928 
1929 	if (offset & 0xfff)
1930 		goto slow_read;
1931 	if (length < OPTROM_BURST_SIZE)
1932 		goto slow_read;
1933 
1934 	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1935 	    &optrom_dma, GFP_KERNEL);
1936 	if (!optrom) {
1937 		qla_printk(KERN_DEBUG, ha,
1938 		    "Unable to allocate memory for optrom burst read "
1939 		    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
1940 
1941 		goto slow_read;
1942 	}
1943 
1944 	pbuf = buf;
1945 	faddr = offset >> 2;
1946 	left = length >> 2;
1947 	burst = OPTROM_BURST_DWORDS;
1948 	while (left != 0) {
1949 		if (burst > left)
1950 			burst = left;
1951 
1952 		rval = qla2x00_dump_ram(ha, optrom_dma,
1953 		    flash_data_to_access_addr(faddr), burst);
1954 		if (rval) {
1955 			qla_printk(KERN_WARNING, ha,
1956 			    "Unable to burst-read optrom segment "
1957 			    "(%x/%x/%llx).\n", rval,
1958 			    flash_data_to_access_addr(faddr),
1959 			    (unsigned long long)optrom_dma);
1960 			qla_printk(KERN_WARNING, ha,
1961 			    "Reverting to slow-read.\n");
1962 
1963 			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1964 			    optrom, optrom_dma);
1965 			goto slow_read;
1966 		}
1967 
1968 		memcpy(pbuf, optrom, burst * 4);
1969 
1970 		left -= burst;
1971 		faddr += burst;
1972 		pbuf += burst * 4;
1973 	}
1974 
1975 	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
1976 	    optrom_dma);
1977 
1978 	return buf;
1979 
1980 slow_read:
1981     return qla24xx_read_optrom_data(ha, buf, offset, length);
1982 }
1983 
1984 /**
1985  * qla2x00_get_fcode_version() - Determine an FCODE image's version.
1986  * @ha: HA context
1987  * @pcids: Pointer to the FCODE PCI data structure
1988  *
1989  * The process of retrieving the FCODE version information is at best
1990  * described as interesting.
1991  *
1992  * Within the first 100h bytes of the image an ASCII string is present
1993  * which contains several pieces of information including the FCODE
1994  * version.  Unfortunately it seems the only reliable way to retrieve
1995  * the version is by scanning for another sentinel within the string,
1996  * the FCODE build date:
1997  *
1998  *	... 2.00.02 10/17/02 ...
1999  *
2000  * Returns QLA_SUCCESS on successful retrieval of version.
2001  */
2002 static void
2003 qla2x00_get_fcode_version(scsi_qla_host_t *ha, uint32_t pcids)
2004 {
2005 	int ret = QLA_FUNCTION_FAILED;
2006 	uint32_t istart, iend, iter, vend;
2007 	uint8_t do_next, rbyte, *vbyte;
2008 
2009 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2010 
2011 	/* Skip the PCI data structure. */
2012 	istart = pcids +
2013 	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2014 		qla2x00_read_flash_byte(ha, pcids + 0x0A));
2015 	iend = istart + 0x100;
2016 	do {
2017 		/* Scan for the sentinel date string...eeewww. */
2018 		do_next = 0;
2019 		iter = istart;
2020 		while ((iter < iend) && !do_next) {
2021 			iter++;
2022 			if (qla2x00_read_flash_byte(ha, iter) == '/') {
2023 				if (qla2x00_read_flash_byte(ha, iter + 2) ==
2024 				    '/')
2025 					do_next++;
2026 				else if (qla2x00_read_flash_byte(ha,
2027 				    iter + 3) == '/')
2028 					do_next++;
2029 			}
2030 		}
2031 		if (!do_next)
2032 			break;
2033 
2034 		/* Backtrack to previous ' ' (space). */
2035 		do_next = 0;
2036 		while ((iter > istart) && !do_next) {
2037 			iter--;
2038 			if (qla2x00_read_flash_byte(ha, iter) == ' ')
2039 				do_next++;
2040 		}
2041 		if (!do_next)
2042 			break;
2043 
2044 		/*
2045 		 * Mark end of version tag, and find previous ' ' (space) or
2046 		 * string length (recent FCODE images -- major hack ahead!!!).
2047 		 */
2048 		vend = iter - 1;
2049 		do_next = 0;
2050 		while ((iter > istart) && !do_next) {
2051 			iter--;
2052 			rbyte = qla2x00_read_flash_byte(ha, iter);
2053 			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2054 				do_next++;
2055 		}
2056 		if (!do_next)
2057 			break;
2058 
2059 		/* Mark beginning of version tag, and copy data. */
2060 		iter++;
2061 		if ((vend - iter) &&
2062 		    ((vend - iter) < sizeof(ha->fcode_revision))) {
2063 			vbyte = ha->fcode_revision;
2064 			while (iter <= vend) {
2065 				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
2066 				iter++;
2067 			}
2068 			ret = QLA_SUCCESS;
2069 		}
2070 	} while (0);
2071 
2072 	if (ret != QLA_SUCCESS)
2073 		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2074 }
2075 
2076 int
2077 qla2x00_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
2078 {
2079 	int ret = QLA_SUCCESS;
2080 	uint8_t code_type, last_image;
2081 	uint32_t pcihdr, pcids;
2082 	uint8_t *dbyte;
2083 	uint16_t *dcode;
2084 
2085 	if (!ha->pio_address || !mbuf)
2086 		return QLA_FUNCTION_FAILED;
2087 
2088 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2089 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2090 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2091 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2092 
2093 	qla2x00_flash_enable(ha);
2094 
2095 	/* Begin with first PCI expansion ROM header. */
2096 	pcihdr = 0;
2097 	last_image = 1;
2098 	do {
2099 		/* Verify PCI expansion ROM header. */
2100 		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2101 		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2102 			/* No signature */
2103 			DEBUG2(printk("scsi(%ld): No matching ROM "
2104 			    "signature.\n", ha->host_no));
2105 			ret = QLA_FUNCTION_FAILED;
2106 			break;
2107 		}
2108 
2109 		/* Locate PCI data structure. */
2110 		pcids = pcihdr +
2111 		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2112 			qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2113 
2114 		/* Validate signature of PCI data structure. */
2115 		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2116 		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2117 		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2118 		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2119 			/* Incorrect header. */
2120 			DEBUG2(printk("%s(): PCI data struct not found "
2121 			    "pcir_adr=%x.\n", __func__, pcids));
2122 			ret = QLA_FUNCTION_FAILED;
2123 			break;
2124 		}
2125 
2126 		/* Read version */
2127 		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2128 		switch (code_type) {
2129 		case ROM_CODE_TYPE_BIOS:
2130 			/* Intel x86, PC-AT compatible. */
2131 			ha->bios_revision[0] =
2132 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2133 			ha->bios_revision[1] =
2134 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2135 			DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
2136 			    ha->bios_revision[1], ha->bios_revision[0]));
2137 			break;
2138 		case ROM_CODE_TYPE_FCODE:
2139 			/* Open Firmware standard for PCI (FCode). */
2140 			/* Eeeewww... */
2141 			qla2x00_get_fcode_version(ha, pcids);
2142 			break;
2143 		case ROM_CODE_TYPE_EFI:
2144 			/* Extensible Firmware Interface (EFI). */
2145 			ha->efi_revision[0] =
2146 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2147 			ha->efi_revision[1] =
2148 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2149 			DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
2150 			    ha->efi_revision[1], ha->efi_revision[0]));
2151 			break;
2152 		default:
2153 			DEBUG2(printk("%s(): Unrecognized code type %x at "
2154 			    "pcids %x.\n", __func__, code_type, pcids));
2155 			break;
2156 		}
2157 
2158 		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2159 
2160 		/* Locate next PCI expansion ROM. */
2161 		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2162 		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2163 	} while (!last_image);
2164 
2165 	if (IS_QLA2322(ha)) {
2166 		/* Read firmware image information. */
2167 		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2168 		dbyte = mbuf;
2169 		memset(dbyte, 0, 8);
2170 		dcode = (uint16_t *)dbyte;
2171 
2172 		qla2x00_read_flash_data(ha, dbyte, FA_RISC_CODE_ADDR * 4 + 10,
2173 		    8);
2174 		DEBUG3(printk("%s(%ld): dumping fw ver from flash:\n",
2175 		    __func__, ha->host_no));
2176 		DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
2177 
2178 		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2179 		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2180 		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2181 		    dcode[3] == 0)) {
2182 			DEBUG2(printk("%s(): Unrecognized fw revision at "
2183 			    "%x.\n", __func__, FA_RISC_CODE_ADDR * 4));
2184 		} else {
2185 			/* values are in big endian */
2186 			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2187 			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2188 			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2189 		}
2190 	}
2191 
2192 	qla2x00_flash_disable(ha);
2193 
2194 	return ret;
2195 }
2196 
2197 int
2198 qla24xx_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
2199 {
2200 	int ret = QLA_SUCCESS;
2201 	uint32_t pcihdr, pcids;
2202 	uint32_t *dcode;
2203 	uint8_t *bcode;
2204 	uint8_t code_type, last_image;
2205 	int i;
2206 
2207 	if (!mbuf)
2208 		return QLA_FUNCTION_FAILED;
2209 
2210 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2211 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2212 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2213 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2214 
2215 	dcode = mbuf;
2216 
2217 	/* Begin with first PCI expansion ROM header. */
2218 	pcihdr = 0;
2219 	last_image = 1;
2220 	do {
2221 		/* Verify PCI expansion ROM header. */
2222 		qla24xx_read_flash_data(ha, dcode, pcihdr >> 2, 0x20);
2223 		bcode = mbuf + (pcihdr % 4);
2224 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2225 			/* No signature */
2226 			DEBUG2(printk("scsi(%ld): No matching ROM "
2227 			    "signature.\n", ha->host_no));
2228 			ret = QLA_FUNCTION_FAILED;
2229 			break;
2230 		}
2231 
2232 		/* Locate PCI data structure. */
2233 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2234 
2235 		qla24xx_read_flash_data(ha, dcode, pcids >> 2, 0x20);
2236 		bcode = mbuf + (pcihdr % 4);
2237 
2238 		/* Validate signature of PCI data structure. */
2239 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2240 		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2241 			/* Incorrect header. */
2242 			DEBUG2(printk("%s(): PCI data struct not found "
2243 			    "pcir_adr=%x.\n", __func__, pcids));
2244 			ret = QLA_FUNCTION_FAILED;
2245 			break;
2246 		}
2247 
2248 		/* Read version */
2249 		code_type = bcode[0x14];
2250 		switch (code_type) {
2251 		case ROM_CODE_TYPE_BIOS:
2252 			/* Intel x86, PC-AT compatible. */
2253 			ha->bios_revision[0] = bcode[0x12];
2254 			ha->bios_revision[1] = bcode[0x13];
2255 			DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
2256 			    ha->bios_revision[1], ha->bios_revision[0]));
2257 			break;
2258 		case ROM_CODE_TYPE_FCODE:
2259 			/* Open Firmware standard for PCI (FCode). */
2260 			ha->fcode_revision[0] = bcode[0x12];
2261 			ha->fcode_revision[1] = bcode[0x13];
2262 			DEBUG3(printk("%s(): read FCODE %d.%d.\n", __func__,
2263 			    ha->fcode_revision[1], ha->fcode_revision[0]));
2264 			break;
2265 		case ROM_CODE_TYPE_EFI:
2266 			/* Extensible Firmware Interface (EFI). */
2267 			ha->efi_revision[0] = bcode[0x12];
2268 			ha->efi_revision[1] = bcode[0x13];
2269 			DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
2270 			    ha->efi_revision[1], ha->efi_revision[0]));
2271 			break;
2272 		default:
2273 			DEBUG2(printk("%s(): Unrecognized code type %x at "
2274 			    "pcids %x.\n", __func__, code_type, pcids));
2275 			break;
2276 		}
2277 
2278 		last_image = bcode[0x15] & BIT_7;
2279 
2280 		/* Locate next PCI expansion ROM. */
2281 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2282 	} while (!last_image);
2283 
2284 	/* Read firmware image information. */
2285 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2286 	dcode = mbuf;
2287 
2288 	qla24xx_read_flash_data(ha, dcode, FA_RISC_CODE_ADDR + 4, 4);
2289 	for (i = 0; i < 4; i++)
2290 		dcode[i] = be32_to_cpu(dcode[i]);
2291 
2292 	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2293 	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2294 	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2295 	    dcode[3] == 0)) {
2296 		DEBUG2(printk("%s(): Unrecognized fw version at %x.\n",
2297 		    __func__, FA_RISC_CODE_ADDR));
2298 	} else {
2299 		ha->fw_revision[0] = dcode[0];
2300 		ha->fw_revision[1] = dcode[1];
2301 		ha->fw_revision[2] = dcode[2];
2302 		ha->fw_revision[3] = dcode[3];
2303 	}
2304 
2305 	return ret;
2306 }
2307 
2308 static int
2309 qla2xxx_hw_event_store(scsi_qla_host_t *ha, uint32_t *fdata)
2310 {
2311 	uint32_t d[2], faddr;
2312 
2313 	/* Locate first empty entry. */
2314 	for (;;) {
2315 		if (ha->hw_event_ptr >=
2316 		    ha->hw_event_start + FA_HW_EVENT_SIZE) {
2317 			DEBUG2(qla_printk(KERN_WARNING, ha,
2318 			    "HW event -- Log Full!\n"));
2319 			return QLA_MEMORY_ALLOC_FAILED;
2320 		}
2321 
2322 		qla24xx_read_flash_data(ha, d, ha->hw_event_ptr, 2);
2323 		faddr = flash_data_to_access_addr(ha->hw_event_ptr);
2324 		ha->hw_event_ptr += FA_HW_EVENT_ENTRY_SIZE;
2325 		if (d[0] == __constant_cpu_to_le32(0xffffffff) &&
2326 		    d[1] == __constant_cpu_to_le32(0xffffffff)) {
2327 			qla24xx_unprotect_flash(ha);
2328 
2329 			qla24xx_write_flash_dword(ha, faddr++,
2330 			    cpu_to_le32(jiffies));
2331 			qla24xx_write_flash_dword(ha, faddr++, 0);
2332 			qla24xx_write_flash_dword(ha, faddr++, *fdata++);
2333 			qla24xx_write_flash_dword(ha, faddr++, *fdata);
2334 
2335 			qla24xx_protect_flash(ha);
2336 			break;
2337 		}
2338 	}
2339 	return QLA_SUCCESS;
2340 }
2341 
2342 int
2343 qla2xxx_hw_event_log(scsi_qla_host_t *ha, uint16_t code, uint16_t d1,
2344     uint16_t d2, uint16_t d3)
2345 {
2346 #define QMARK(a, b, c, d) \
2347     cpu_to_le32(LSB(a) << 24 | LSB(b) << 16 | LSB(c) << 8 | LSB(d))
2348 
2349 	int rval;
2350 	uint32_t marker[2], fdata[4];
2351 
2352 	if (ha->hw_event_start == 0)
2353 		return QLA_FUNCTION_FAILED;
2354 
2355 	DEBUG2(qla_printk(KERN_WARNING, ha,
2356 	    "HW event -- code=%x, d1=%x, d2=%x, d3=%x.\n", code, d1, d2, d3));
2357 
2358 	/* If marker not already found, locate or write.  */
2359 	if (!ha->flags.hw_event_marker_found) {
2360 		/* Create marker. */
2361 		marker[0] = QMARK('L', ha->fw_major_version,
2362 		    ha->fw_minor_version, ha->fw_subminor_version);
2363 		marker[1] = QMARK(QLA_DRIVER_MAJOR_VER, QLA_DRIVER_MINOR_VER,
2364 		    QLA_DRIVER_PATCH_VER, QLA_DRIVER_BETA_VER);
2365 
2366 		/* Locate marker. */
2367 		ha->hw_event_ptr = ha->hw_event_start;
2368 		for (;;) {
2369 			qla24xx_read_flash_data(ha, fdata, ha->hw_event_ptr,
2370 			    4);
2371 			if (fdata[0] == __constant_cpu_to_le32(0xffffffff) &&
2372 			    fdata[1] == __constant_cpu_to_le32(0xffffffff))
2373 				break;
2374 			ha->hw_event_ptr += FA_HW_EVENT_ENTRY_SIZE;
2375 			if (ha->hw_event_ptr >=
2376 			    ha->hw_event_start + FA_HW_EVENT_SIZE) {
2377 				DEBUG2(qla_printk(KERN_WARNING, ha,
2378 				    "HW event -- Log Full!\n"));
2379 				return QLA_MEMORY_ALLOC_FAILED;
2380 			}
2381 			if (fdata[2] == marker[0] && fdata[3] == marker[1]) {
2382 				ha->flags.hw_event_marker_found = 1;
2383 				break;
2384 			}
2385 		}
2386 		/* No marker, write it. */
2387 		if (!ha->flags.hw_event_marker_found) {
2388 			rval = qla2xxx_hw_event_store(ha, marker);
2389 			if (rval != QLA_SUCCESS) {
2390 				DEBUG2(qla_printk(KERN_WARNING, ha,
2391 				    "HW event -- Failed marker write=%x.!\n",
2392 				    rval));
2393 				return rval;
2394 			}
2395 			ha->flags.hw_event_marker_found = 1;
2396 		}
2397 	}
2398 
2399 	/* Store error.  */
2400 	fdata[0] = cpu_to_le32(code << 16 | d1);
2401 	fdata[1] = cpu_to_le32(d2 << 16 | d3);
2402 	rval = qla2xxx_hw_event_store(ha, fdata);
2403 	if (rval != QLA_SUCCESS) {
2404 		DEBUG2(qla_printk(KERN_WARNING, ha,
2405 		    "HW event -- Failed error write=%x.!\n",
2406 		    rval));
2407 	}
2408 
2409 	return rval;
2410 }
2411