xref: /openbmc/linux/drivers/scsi/qla2xxx/qla_sup.c (revision 45cc842d5b75ba8f9a958f2dd12b95c6dd0452bd)
1 /*
2  * QLogic Fibre Channel HBA Driver
3  * Copyright (c)  2003-2014 QLogic Corporation
4  *
5  * See LICENSE.qla2xxx for copyright and licensing details.
6  */
7 #include "qla_def.h"
8 
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/vmalloc.h>
12 #include <linux/uaccess.h>
13 
14 /*
15  * NVRAM support routines
16  */
17 
18 /**
19  * qla2x00_lock_nvram_access() -
20  * @ha: HA context
21  */
22 static void
23 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
24 {
25 	uint16_t data;
26 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
27 
28 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
29 		data = RD_REG_WORD(&reg->nvram);
30 		while (data & NVR_BUSY) {
31 			udelay(100);
32 			data = RD_REG_WORD(&reg->nvram);
33 		}
34 
35 		/* Lock resource */
36 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
37 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
38 		udelay(5);
39 		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
40 		while ((data & BIT_0) == 0) {
41 			/* Lock failed */
42 			udelay(100);
43 			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
44 			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
45 			udelay(5);
46 			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
47 		}
48 	}
49 }
50 
51 /**
52  * qla2x00_unlock_nvram_access() -
53  * @ha: HA context
54  */
55 static void
56 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
57 {
58 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
59 
60 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
61 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
62 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
63 	}
64 }
65 
66 /**
67  * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
68  * @ha: HA context
69  * @data: Serial interface selector
70  */
71 static void
72 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
73 {
74 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
75 
76 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
77 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
78 	NVRAM_DELAY();
79 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
80 	    NVR_WRT_ENABLE);
81 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
82 	NVRAM_DELAY();
83 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
84 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
85 	NVRAM_DELAY();
86 }
87 
88 /**
89  * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
90  *	NVRAM.
91  * @ha: HA context
92  * @nv_cmd: NVRAM command
93  *
94  * Bit definitions for NVRAM command:
95  *
96  *	Bit 26     = start bit
97  *	Bit 25, 24 = opcode
98  *	Bit 23-16  = address
99  *	Bit 15-0   = write data
100  *
101  * Returns the word read from nvram @addr.
102  */
103 static uint16_t
104 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
105 {
106 	uint8_t		cnt;
107 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
108 	uint16_t	data = 0;
109 	uint16_t	reg_data;
110 
111 	/* Send command to NVRAM. */
112 	nv_cmd <<= 5;
113 	for (cnt = 0; cnt < 11; cnt++) {
114 		if (nv_cmd & BIT_31)
115 			qla2x00_nv_write(ha, NVR_DATA_OUT);
116 		else
117 			qla2x00_nv_write(ha, 0);
118 		nv_cmd <<= 1;
119 	}
120 
121 	/* Read data from NVRAM. */
122 	for (cnt = 0; cnt < 16; cnt++) {
123 		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
124 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
125 		NVRAM_DELAY();
126 		data <<= 1;
127 		reg_data = RD_REG_WORD(&reg->nvram);
128 		if (reg_data & NVR_DATA_IN)
129 			data |= BIT_0;
130 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
131 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
132 		NVRAM_DELAY();
133 	}
134 
135 	/* Deselect chip. */
136 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
137 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
138 	NVRAM_DELAY();
139 
140 	return data;
141 }
142 
143 
144 /**
145  * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
146  *	request routine to get the word from NVRAM.
147  * @ha: HA context
148  * @addr: Address in NVRAM to read
149  *
150  * Returns the word read from nvram @addr.
151  */
152 static uint16_t
153 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
154 {
155 	uint16_t	data;
156 	uint32_t	nv_cmd;
157 
158 	nv_cmd = addr << 16;
159 	nv_cmd |= NV_READ_OP;
160 	data = qla2x00_nvram_request(ha, nv_cmd);
161 
162 	return (data);
163 }
164 
165 /**
166  * qla2x00_nv_deselect() - Deselect NVRAM operations.
167  * @ha: HA context
168  */
169 static void
170 qla2x00_nv_deselect(struct qla_hw_data *ha)
171 {
172 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
173 
174 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
175 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
176 	NVRAM_DELAY();
177 }
178 
179 /**
180  * qla2x00_write_nvram_word() - Write NVRAM data.
181  * @ha: HA context
182  * @addr: Address in NVRAM to write
183  * @data: word to program
184  */
185 static void
186 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
187 {
188 	int count;
189 	uint16_t word;
190 	uint32_t nv_cmd, wait_cnt;
191 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
192 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
193 
194 	qla2x00_nv_write(ha, NVR_DATA_OUT);
195 	qla2x00_nv_write(ha, 0);
196 	qla2x00_nv_write(ha, 0);
197 
198 	for (word = 0; word < 8; word++)
199 		qla2x00_nv_write(ha, NVR_DATA_OUT);
200 
201 	qla2x00_nv_deselect(ha);
202 
203 	/* Write data */
204 	nv_cmd = (addr << 16) | NV_WRITE_OP;
205 	nv_cmd |= data;
206 	nv_cmd <<= 5;
207 	for (count = 0; count < 27; count++) {
208 		if (nv_cmd & BIT_31)
209 			qla2x00_nv_write(ha, NVR_DATA_OUT);
210 		else
211 			qla2x00_nv_write(ha, 0);
212 
213 		nv_cmd <<= 1;
214 	}
215 
216 	qla2x00_nv_deselect(ha);
217 
218 	/* Wait for NVRAM to become ready */
219 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
220 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
221 	wait_cnt = NVR_WAIT_CNT;
222 	do {
223 		if (!--wait_cnt) {
224 			ql_dbg(ql_dbg_user, vha, 0x708d,
225 			    "NVRAM didn't go ready...\n");
226 			break;
227 		}
228 		NVRAM_DELAY();
229 		word = RD_REG_WORD(&reg->nvram);
230 	} while ((word & NVR_DATA_IN) == 0);
231 
232 	qla2x00_nv_deselect(ha);
233 
234 	/* Disable writes */
235 	qla2x00_nv_write(ha, NVR_DATA_OUT);
236 	for (count = 0; count < 10; count++)
237 		qla2x00_nv_write(ha, 0);
238 
239 	qla2x00_nv_deselect(ha);
240 }
241 
242 static int
243 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
244 	uint16_t data, uint32_t tmo)
245 {
246 	int ret, count;
247 	uint16_t word;
248 	uint32_t nv_cmd;
249 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
250 
251 	ret = QLA_SUCCESS;
252 
253 	qla2x00_nv_write(ha, NVR_DATA_OUT);
254 	qla2x00_nv_write(ha, 0);
255 	qla2x00_nv_write(ha, 0);
256 
257 	for (word = 0; word < 8; word++)
258 		qla2x00_nv_write(ha, NVR_DATA_OUT);
259 
260 	qla2x00_nv_deselect(ha);
261 
262 	/* Write data */
263 	nv_cmd = (addr << 16) | NV_WRITE_OP;
264 	nv_cmd |= data;
265 	nv_cmd <<= 5;
266 	for (count = 0; count < 27; count++) {
267 		if (nv_cmd & BIT_31)
268 			qla2x00_nv_write(ha, NVR_DATA_OUT);
269 		else
270 			qla2x00_nv_write(ha, 0);
271 
272 		nv_cmd <<= 1;
273 	}
274 
275 	qla2x00_nv_deselect(ha);
276 
277 	/* Wait for NVRAM to become ready */
278 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
279 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
280 	do {
281 		NVRAM_DELAY();
282 		word = RD_REG_WORD(&reg->nvram);
283 		if (!--tmo) {
284 			ret = QLA_FUNCTION_FAILED;
285 			break;
286 		}
287 	} while ((word & NVR_DATA_IN) == 0);
288 
289 	qla2x00_nv_deselect(ha);
290 
291 	/* Disable writes */
292 	qla2x00_nv_write(ha, NVR_DATA_OUT);
293 	for (count = 0; count < 10; count++)
294 		qla2x00_nv_write(ha, 0);
295 
296 	qla2x00_nv_deselect(ha);
297 
298 	return ret;
299 }
300 
301 /**
302  * qla2x00_clear_nvram_protection() -
303  * @ha: HA context
304  */
305 static int
306 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
307 {
308 	int ret, stat;
309 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
310 	uint32_t word, wait_cnt;
311 	uint16_t wprot, wprot_old;
312 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
313 
314 	/* Clear NVRAM write protection. */
315 	ret = QLA_FUNCTION_FAILED;
316 
317 	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319 					    cpu_to_le16(0x1234), 100000);
320 	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
321 	if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 		/* Write enable. */
323 		qla2x00_nv_write(ha, NVR_DATA_OUT);
324 		qla2x00_nv_write(ha, 0);
325 		qla2x00_nv_write(ha, 0);
326 		for (word = 0; word < 8; word++)
327 			qla2x00_nv_write(ha, NVR_DATA_OUT);
328 
329 		qla2x00_nv_deselect(ha);
330 
331 		/* Enable protection register. */
332 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
333 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
334 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
335 		for (word = 0; word < 8; word++)
336 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
337 
338 		qla2x00_nv_deselect(ha);
339 
340 		/* Clear protection register (ffff is cleared). */
341 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
343 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
344 		for (word = 0; word < 8; word++)
345 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
346 
347 		qla2x00_nv_deselect(ha);
348 
349 		/* Wait for NVRAM to become ready. */
350 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
352 		wait_cnt = NVR_WAIT_CNT;
353 		do {
354 			if (!--wait_cnt) {
355 				ql_dbg(ql_dbg_user, vha, 0x708e,
356 				    "NVRAM didn't go ready...\n");
357 				break;
358 			}
359 			NVRAM_DELAY();
360 			word = RD_REG_WORD(&reg->nvram);
361 		} while ((word & NVR_DATA_IN) == 0);
362 
363 		if (wait_cnt)
364 			ret = QLA_SUCCESS;
365 	} else
366 		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
367 
368 	return ret;
369 }
370 
371 static void
372 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
373 {
374 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
375 	uint32_t word, wait_cnt;
376 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
377 
378 	if (stat != QLA_SUCCESS)
379 		return;
380 
381 	/* Set NVRAM write protection. */
382 	/* Write enable. */
383 	qla2x00_nv_write(ha, NVR_DATA_OUT);
384 	qla2x00_nv_write(ha, 0);
385 	qla2x00_nv_write(ha, 0);
386 	for (word = 0; word < 8; word++)
387 		qla2x00_nv_write(ha, NVR_DATA_OUT);
388 
389 	qla2x00_nv_deselect(ha);
390 
391 	/* Enable protection register. */
392 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
393 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
394 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
395 	for (word = 0; word < 8; word++)
396 		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
397 
398 	qla2x00_nv_deselect(ha);
399 
400 	/* Enable protection register. */
401 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
402 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
403 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
404 	for (word = 0; word < 8; word++)
405 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
406 
407 	qla2x00_nv_deselect(ha);
408 
409 	/* Wait for NVRAM to become ready. */
410 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
412 	wait_cnt = NVR_WAIT_CNT;
413 	do {
414 		if (!--wait_cnt) {
415 			ql_dbg(ql_dbg_user, vha, 0x708f,
416 			    "NVRAM didn't go ready...\n");
417 			break;
418 		}
419 		NVRAM_DELAY();
420 		word = RD_REG_WORD(&reg->nvram);
421 	} while ((word & NVR_DATA_IN) == 0);
422 }
423 
424 
425 /*****************************************************************************/
426 /* Flash Manipulation Routines                                               */
427 /*****************************************************************************/
428 
429 static inline uint32_t
430 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
431 {
432 	return ha->flash_conf_off | faddr;
433 }
434 
435 static inline uint32_t
436 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
437 {
438 	return ha->flash_data_off | faddr;
439 }
440 
441 static inline uint32_t
442 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
443 {
444 	return ha->nvram_conf_off | naddr;
445 }
446 
447 static inline uint32_t
448 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
449 {
450 	return ha->nvram_data_off | naddr;
451 }
452 
453 static uint32_t
454 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
455 {
456 	int rval;
457 	uint32_t cnt, data;
458 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
459 
460 	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
461 	/* Wait for READ cycle to complete. */
462 	rval = QLA_SUCCESS;
463 	for (cnt = 3000;
464 	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
465 	    rval == QLA_SUCCESS; cnt--) {
466 		if (cnt)
467 			udelay(10);
468 		else
469 			rval = QLA_FUNCTION_TIMEOUT;
470 		cond_resched();
471 	}
472 
473 	/* TODO: What happens if we time out? */
474 	data = 0xDEADDEAD;
475 	if (rval == QLA_SUCCESS)
476 		data = RD_REG_DWORD(&reg->flash_data);
477 
478 	return data;
479 }
480 
481 uint32_t *
482 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
483     uint32_t dwords)
484 {
485 	uint32_t i;
486 	struct qla_hw_data *ha = vha->hw;
487 
488 	/* Dword reads to flash. */
489 	for (i = 0; i < dwords; i++, faddr++)
490 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
491 		    flash_data_addr(ha, faddr)));
492 
493 	return dwptr;
494 }
495 
496 static int
497 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
498 {
499 	int rval;
500 	uint32_t cnt;
501 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
502 
503 	WRT_REG_DWORD(&reg->flash_data, data);
504 	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
505 	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
506 	/* Wait for Write cycle to complete. */
507 	rval = QLA_SUCCESS;
508 	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
509 	    rval == QLA_SUCCESS; cnt--) {
510 		if (cnt)
511 			udelay(10);
512 		else
513 			rval = QLA_FUNCTION_TIMEOUT;
514 		cond_resched();
515 	}
516 	return rval;
517 }
518 
519 static void
520 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
521     uint8_t *flash_id)
522 {
523 	uint32_t ids;
524 
525 	ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
526 	*man_id = LSB(ids);
527 	*flash_id = MSB(ids);
528 
529 	/* Check if man_id and flash_id are valid. */
530 	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
531 		/* Read information using 0x9f opcode
532 		 * Device ID, Mfg ID would be read in the format:
533 		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
534 		 * Example: ATMEL 0x00 01 45 1F
535 		 * Extract MFG and Dev ID from last two bytes.
536 		 */
537 		ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
538 		*man_id = LSB(ids);
539 		*flash_id = MSB(ids);
540 	}
541 }
542 
543 static int
544 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
545 {
546 	const char *loc, *locations[] = { "DEF", "PCI" };
547 	uint32_t pcihdr, pcids;
548 	uint32_t *dcode;
549 	uint8_t *buf, *bcode, last_image;
550 	uint16_t cnt, chksum, *wptr;
551 	struct qla_flt_location *fltl;
552 	struct qla_hw_data *ha = vha->hw;
553 	struct req_que *req = ha->req_q_map[0];
554 
555 	/*
556 	 * FLT-location structure resides after the last PCI region.
557 	 */
558 
559 	/* Begin with sane defaults. */
560 	loc = locations[0];
561 	*start = 0;
562 	if (IS_QLA24XX_TYPE(ha))
563 		*start = FA_FLASH_LAYOUT_ADDR_24;
564 	else if (IS_QLA25XX(ha))
565 		*start = FA_FLASH_LAYOUT_ADDR;
566 	else if (IS_QLA81XX(ha))
567 		*start = FA_FLASH_LAYOUT_ADDR_81;
568 	else if (IS_P3P_TYPE(ha)) {
569 		*start = FA_FLASH_LAYOUT_ADDR_82;
570 		goto end;
571 	} else if (IS_QLA83XX(ha) || IS_QLA27XX(ha)) {
572 		*start = FA_FLASH_LAYOUT_ADDR_83;
573 		goto end;
574 	}
575 	/* Begin with first PCI expansion ROM header. */
576 	buf = (uint8_t *)req->ring;
577 	dcode = (uint32_t *)req->ring;
578 	pcihdr = 0;
579 	last_image = 1;
580 	do {
581 		/* Verify PCI expansion ROM header. */
582 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
583 		bcode = buf + (pcihdr % 4);
584 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
585 			goto end;
586 
587 		/* Locate PCI data structure. */
588 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
589 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
590 		bcode = buf + (pcihdr % 4);
591 
592 		/* Validate signature of PCI data structure. */
593 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
594 		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
595 			goto end;
596 
597 		last_image = bcode[0x15] & BIT_7;
598 
599 		/* Locate next PCI expansion ROM. */
600 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
601 	} while (!last_image);
602 
603 	/* Now verify FLT-location structure. */
604 	fltl = (struct qla_flt_location *)req->ring;
605 	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
606 	    sizeof(struct qla_flt_location) >> 2);
607 	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
608 	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
609 		goto end;
610 
611 	wptr = (uint16_t *)req->ring;
612 	cnt = sizeof(struct qla_flt_location) >> 1;
613 	for (chksum = 0; cnt--; wptr++)
614 		chksum += le16_to_cpu(*wptr);
615 	if (chksum) {
616 		ql_log(ql_log_fatal, vha, 0x0045,
617 		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
618 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010e,
619 		    buf, sizeof(struct qla_flt_location));
620 		return QLA_FUNCTION_FAILED;
621 	}
622 
623 	/* Good data.  Use specified location. */
624 	loc = locations[1];
625 	*start = (le16_to_cpu(fltl->start_hi) << 16 |
626 	    le16_to_cpu(fltl->start_lo)) >> 2;
627 end:
628 	ql_dbg(ql_dbg_init, vha, 0x0046,
629 	    "FLTL[%s] = 0x%x.\n",
630 	    loc, *start);
631 	return QLA_SUCCESS;
632 }
633 
634 static void
635 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
636 {
637 	const char *loc, *locations[] = { "DEF", "FLT" };
638 	const uint32_t def_fw[] =
639 		{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
640 	const uint32_t def_boot[] =
641 		{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
642 	const uint32_t def_vpd_nvram[] =
643 		{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
644 	const uint32_t def_vpd0[] =
645 		{ 0, 0, FA_VPD0_ADDR_81 };
646 	const uint32_t def_vpd1[] =
647 		{ 0, 0, FA_VPD1_ADDR_81 };
648 	const uint32_t def_nvram0[] =
649 		{ 0, 0, FA_NVRAM0_ADDR_81 };
650 	const uint32_t def_nvram1[] =
651 		{ 0, 0, FA_NVRAM1_ADDR_81 };
652 	const uint32_t def_fdt[] =
653 		{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
654 			FA_FLASH_DESCR_ADDR_81 };
655 	const uint32_t def_npiv_conf0[] =
656 		{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
657 			FA_NPIV_CONF0_ADDR_81 };
658 	const uint32_t def_npiv_conf1[] =
659 		{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
660 			FA_NPIV_CONF1_ADDR_81 };
661 	const uint32_t fcp_prio_cfg0[] =
662 		{ FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25,
663 			0 };
664 	const uint32_t fcp_prio_cfg1[] =
665 		{ FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25,
666 			0 };
667 	uint32_t def;
668 	uint16_t *wptr;
669 	uint16_t cnt, chksum;
670 	uint32_t start;
671 	struct qla_flt_header *flt;
672 	struct qla_flt_region *region;
673 	struct qla_hw_data *ha = vha->hw;
674 	struct req_que *req = ha->req_q_map[0];
675 
676 	def = 0;
677 	if (IS_QLA25XX(ha))
678 		def = 1;
679 	else if (IS_QLA81XX(ha))
680 		def = 2;
681 
682 	/* Assign FCP prio region since older adapters may not have FLT, or
683 	   FCP prio region in it's FLT.
684 	 */
685 	ha->flt_region_fcp_prio = (ha->port_no == 0) ?
686 	    fcp_prio_cfg0[def] : fcp_prio_cfg1[def];
687 
688 	ha->flt_region_flt = flt_addr;
689 	wptr = (uint16_t *)req->ring;
690 	flt = (struct qla_flt_header *)req->ring;
691 	region = (struct qla_flt_region *)&flt[1];
692 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
693 	    flt_addr << 2, OPTROM_BURST_SIZE);
694 	if (*wptr == cpu_to_le16(0xffff))
695 		goto no_flash_data;
696 	if (flt->version != cpu_to_le16(1)) {
697 		ql_log(ql_log_warn, vha, 0x0047,
698 		    "Unsupported FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
699 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
700 		    le16_to_cpu(flt->checksum));
701 		goto no_flash_data;
702 	}
703 
704 	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
705 	for (chksum = 0; cnt--; wptr++)
706 		chksum += le16_to_cpu(*wptr);
707 	if (chksum) {
708 		ql_log(ql_log_fatal, vha, 0x0048,
709 		    "Inconsistent FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
710 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
711 		    le16_to_cpu(flt->checksum));
712 		goto no_flash_data;
713 	}
714 
715 	loc = locations[1];
716 	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
717 	for ( ; cnt; cnt--, region++) {
718 		/* Store addresses as DWORD offsets. */
719 		start = le32_to_cpu(region->start) >> 2;
720 		ql_dbg(ql_dbg_init, vha, 0x0049,
721 		    "FLT[%02x]: start=0x%x "
722 		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code) & 0xff,
723 		    start, le32_to_cpu(region->end) >> 2,
724 		    le32_to_cpu(region->size));
725 
726 		switch (le32_to_cpu(region->code) & 0xff) {
727 		case FLT_REG_FCOE_FW:
728 			if (!IS_QLA8031(ha))
729 				break;
730 			ha->flt_region_fw = start;
731 			break;
732 		case FLT_REG_FW:
733 			if (IS_QLA8031(ha))
734 				break;
735 			ha->flt_region_fw = start;
736 			break;
737 		case FLT_REG_BOOT_CODE:
738 			ha->flt_region_boot = start;
739 			break;
740 		case FLT_REG_VPD_0:
741 			if (IS_QLA8031(ha))
742 				break;
743 			ha->flt_region_vpd_nvram = start;
744 			if (IS_P3P_TYPE(ha))
745 				break;
746 			if (ha->port_no == 0)
747 				ha->flt_region_vpd = start;
748 			break;
749 		case FLT_REG_VPD_1:
750 			if (IS_P3P_TYPE(ha) || IS_QLA8031(ha))
751 				break;
752 			if (ha->port_no == 1)
753 				ha->flt_region_vpd = start;
754 			break;
755 		case FLT_REG_VPD_2:
756 			if (!IS_QLA27XX(ha))
757 				break;
758 			if (ha->port_no == 2)
759 				ha->flt_region_vpd = start;
760 			break;
761 		case FLT_REG_VPD_3:
762 			if (!IS_QLA27XX(ha))
763 				break;
764 			if (ha->port_no == 3)
765 				ha->flt_region_vpd = start;
766 			break;
767 		case FLT_REG_NVRAM_0:
768 			if (IS_QLA8031(ha))
769 				break;
770 			if (ha->port_no == 0)
771 				ha->flt_region_nvram = start;
772 			break;
773 		case FLT_REG_NVRAM_1:
774 			if (IS_QLA8031(ha))
775 				break;
776 			if (ha->port_no == 1)
777 				ha->flt_region_nvram = start;
778 			break;
779 		case FLT_REG_NVRAM_2:
780 			if (!IS_QLA27XX(ha))
781 				break;
782 			if (ha->port_no == 2)
783 				ha->flt_region_nvram = start;
784 			break;
785 		case FLT_REG_NVRAM_3:
786 			if (!IS_QLA27XX(ha))
787 				break;
788 			if (ha->port_no == 3)
789 				ha->flt_region_nvram = start;
790 			break;
791 		case FLT_REG_FDT:
792 			ha->flt_region_fdt = start;
793 			break;
794 		case FLT_REG_NPIV_CONF_0:
795 			if (ha->port_no == 0)
796 				ha->flt_region_npiv_conf = start;
797 			break;
798 		case FLT_REG_NPIV_CONF_1:
799 			if (ha->port_no == 1)
800 				ha->flt_region_npiv_conf = start;
801 			break;
802 		case FLT_REG_GOLD_FW:
803 			ha->flt_region_gold_fw = start;
804 			break;
805 		case FLT_REG_FCP_PRIO_0:
806 			if (ha->port_no == 0)
807 				ha->flt_region_fcp_prio = start;
808 			break;
809 		case FLT_REG_FCP_PRIO_1:
810 			if (ha->port_no == 1)
811 				ha->flt_region_fcp_prio = start;
812 			break;
813 		case FLT_REG_BOOT_CODE_82XX:
814 			ha->flt_region_boot = start;
815 			break;
816 		case FLT_REG_BOOT_CODE_8044:
817 			if (IS_QLA8044(ha))
818 				ha->flt_region_boot = start;
819 			break;
820 		case FLT_REG_FW_82XX:
821 			ha->flt_region_fw = start;
822 			break;
823 		case FLT_REG_CNA_FW:
824 			if (IS_CNA_CAPABLE(ha))
825 				ha->flt_region_fw = start;
826 			break;
827 		case FLT_REG_GOLD_FW_82XX:
828 			ha->flt_region_gold_fw = start;
829 			break;
830 		case FLT_REG_BOOTLOAD_82XX:
831 			ha->flt_region_bootload = start;
832 			break;
833 		case FLT_REG_VPD_8XXX:
834 			if (IS_CNA_CAPABLE(ha))
835 				ha->flt_region_vpd = start;
836 			break;
837 		case FLT_REG_FCOE_NVRAM_0:
838 			if (!(IS_QLA8031(ha) || IS_QLA8044(ha)))
839 				break;
840 			if (ha->port_no == 0)
841 				ha->flt_region_nvram = start;
842 			break;
843 		case FLT_REG_FCOE_NVRAM_1:
844 			if (!(IS_QLA8031(ha) || IS_QLA8044(ha)))
845 				break;
846 			if (ha->port_no == 1)
847 				ha->flt_region_nvram = start;
848 			break;
849 		case FLT_REG_IMG_PRI_27XX:
850 			if (IS_QLA27XX(ha))
851 				ha->flt_region_img_status_pri = start;
852 			break;
853 		case FLT_REG_IMG_SEC_27XX:
854 			if (IS_QLA27XX(ha))
855 				ha->flt_region_img_status_sec = start;
856 			break;
857 		case FLT_REG_FW_SEC_27XX:
858 			if (IS_QLA27XX(ha))
859 				ha->flt_region_fw_sec = start;
860 			break;
861 		case FLT_REG_BOOTLOAD_SEC_27XX:
862 			if (IS_QLA27XX(ha))
863 				ha->flt_region_boot_sec = start;
864 			break;
865 		case FLT_REG_VPD_SEC_27XX_0:
866 			if (IS_QLA27XX(ha))
867 				ha->flt_region_vpd_sec = start;
868 			break;
869 		case FLT_REG_VPD_SEC_27XX_1:
870 			if (IS_QLA27XX(ha))
871 				ha->flt_region_vpd_sec = start;
872 			break;
873 		case FLT_REG_VPD_SEC_27XX_2:
874 			if (IS_QLA27XX(ha))
875 				ha->flt_region_vpd_sec = start;
876 			break;
877 		case FLT_REG_VPD_SEC_27XX_3:
878 			if (IS_QLA27XX(ha))
879 				ha->flt_region_vpd_sec = start;
880 			break;
881 		}
882 	}
883 	goto done;
884 
885 no_flash_data:
886 	/* Use hardcoded defaults. */
887 	loc = locations[0];
888 	ha->flt_region_fw = def_fw[def];
889 	ha->flt_region_boot = def_boot[def];
890 	ha->flt_region_vpd_nvram = def_vpd_nvram[def];
891 	ha->flt_region_vpd = (ha->port_no == 0) ?
892 	    def_vpd0[def] : def_vpd1[def];
893 	ha->flt_region_nvram = (ha->port_no == 0) ?
894 	    def_nvram0[def] : def_nvram1[def];
895 	ha->flt_region_fdt = def_fdt[def];
896 	ha->flt_region_npiv_conf = (ha->port_no == 0) ?
897 	    def_npiv_conf0[def] : def_npiv_conf1[def];
898 done:
899 	ql_dbg(ql_dbg_init, vha, 0x004a,
900 	    "FLT[%s]: boot=0x%x fw=0x%x vpd_nvram=0x%x vpd=0x%x nvram=0x%x "
901 	    "fdt=0x%x flt=0x%x npiv=0x%x fcp_prif_cfg=0x%x.\n",
902 	    loc, ha->flt_region_boot, ha->flt_region_fw,
903 	    ha->flt_region_vpd_nvram, ha->flt_region_vpd, ha->flt_region_nvram,
904 	    ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf,
905 	    ha->flt_region_fcp_prio);
906 }
907 
908 static void
909 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
910 {
911 #define FLASH_BLK_SIZE_4K	0x1000
912 #define FLASH_BLK_SIZE_32K	0x8000
913 #define FLASH_BLK_SIZE_64K	0x10000
914 	const char *loc, *locations[] = { "MID", "FDT" };
915 	uint16_t cnt, chksum;
916 	uint16_t *wptr;
917 	struct qla_fdt_layout *fdt;
918 	uint8_t	man_id, flash_id;
919 	uint16_t mid = 0, fid = 0;
920 	struct qla_hw_data *ha = vha->hw;
921 	struct req_que *req = ha->req_q_map[0];
922 
923 	wptr = (uint16_t *)req->ring;
924 	fdt = (struct qla_fdt_layout *)req->ring;
925 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
926 	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
927 	if (*wptr == cpu_to_le16(0xffff))
928 		goto no_flash_data;
929 	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
930 	    fdt->sig[3] != 'D')
931 		goto no_flash_data;
932 
933 	for (cnt = 0, chksum = 0; cnt < sizeof(*fdt) >> 1; cnt++, wptr++)
934 		chksum += le16_to_cpu(*wptr);
935 	if (chksum) {
936 		ql_dbg(ql_dbg_init, vha, 0x004c,
937 		    "Inconsistent FDT detected:"
938 		    " checksum=0x%x id=%c version0x%x.\n", chksum,
939 		    fdt->sig[0], le16_to_cpu(fdt->version));
940 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x0113,
941 		    (uint8_t *)fdt, sizeof(*fdt));
942 		goto no_flash_data;
943 	}
944 
945 	loc = locations[1];
946 	mid = le16_to_cpu(fdt->man_id);
947 	fid = le16_to_cpu(fdt->id);
948 	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
949 	ha->fdt_wrt_enable = fdt->wrt_enable_bits;
950 	ha->fdt_wrt_sts_reg_cmd = fdt->wrt_sts_reg_cmd;
951 	if (IS_QLA8044(ha))
952 		ha->fdt_erase_cmd = fdt->erase_cmd;
953 	else
954 		ha->fdt_erase_cmd =
955 		    flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
956 	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
957 	if (fdt->unprotect_sec_cmd) {
958 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
959 		    fdt->unprotect_sec_cmd);
960 		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
961 		    flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
962 		    flash_conf_addr(ha, 0x0336);
963 	}
964 	goto done;
965 no_flash_data:
966 	loc = locations[0];
967 	if (IS_P3P_TYPE(ha)) {
968 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
969 		goto done;
970 	}
971 	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
972 	mid = man_id;
973 	fid = flash_id;
974 	ha->fdt_wrt_disable = 0x9c;
975 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
976 	switch (man_id) {
977 	case 0xbf: /* STT flash. */
978 		if (flash_id == 0x8e)
979 			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
980 		else
981 			ha->fdt_block_size = FLASH_BLK_SIZE_32K;
982 
983 		if (flash_id == 0x80)
984 			ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
985 		break;
986 	case 0x13: /* ST M25P80. */
987 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
988 		break;
989 	case 0x1f: /* Atmel 26DF081A. */
990 		ha->fdt_block_size = FLASH_BLK_SIZE_4K;
991 		ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
992 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
993 		ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
994 		break;
995 	default:
996 		/* Default to 64 kb sector size. */
997 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
998 		break;
999 	}
1000 done:
1001 	ql_dbg(ql_dbg_init, vha, 0x004d,
1002 	    "FDT[%s]: (0x%x/0x%x) erase=0x%x "
1003 	    "pr=%x wrtd=0x%x blk=0x%x.\n",
1004 	    loc, mid, fid,
1005 	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
1006 	    ha->fdt_wrt_disable, ha->fdt_block_size);
1007 
1008 }
1009 
1010 static void
1011 qla2xxx_get_idc_param(scsi_qla_host_t *vha)
1012 {
1013 #define QLA82XX_IDC_PARAM_ADDR       0x003e885c
1014 	uint32_t *wptr;
1015 	struct qla_hw_data *ha = vha->hw;
1016 	struct req_que *req = ha->req_q_map[0];
1017 
1018 	if (!(IS_P3P_TYPE(ha)))
1019 		return;
1020 
1021 	wptr = (uint32_t *)req->ring;
1022 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
1023 		QLA82XX_IDC_PARAM_ADDR , 8);
1024 
1025 	if (*wptr == cpu_to_le32(0xffffffff)) {
1026 		ha->fcoe_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT;
1027 		ha->fcoe_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT;
1028 	} else {
1029 		ha->fcoe_dev_init_timeout = le32_to_cpu(*wptr);
1030 		wptr++;
1031 		ha->fcoe_reset_timeout = le32_to_cpu(*wptr);
1032 	}
1033 	ql_dbg(ql_dbg_init, vha, 0x004e,
1034 	    "fcoe_dev_init_timeout=%d "
1035 	    "fcoe_reset_timeout=%d.\n", ha->fcoe_dev_init_timeout,
1036 	    ha->fcoe_reset_timeout);
1037 	return;
1038 }
1039 
1040 int
1041 qla2xxx_get_flash_info(scsi_qla_host_t *vha)
1042 {
1043 	int ret;
1044 	uint32_t flt_addr;
1045 	struct qla_hw_data *ha = vha->hw;
1046 
1047 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
1048 	    !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha) && !IS_QLA27XX(ha))
1049 		return QLA_SUCCESS;
1050 
1051 	ret = qla2xxx_find_flt_start(vha, &flt_addr);
1052 	if (ret != QLA_SUCCESS)
1053 		return ret;
1054 
1055 	qla2xxx_get_flt_info(vha, flt_addr);
1056 	qla2xxx_get_fdt_info(vha);
1057 	qla2xxx_get_idc_param(vha);
1058 
1059 	return QLA_SUCCESS;
1060 }
1061 
1062 void
1063 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
1064 {
1065 #define NPIV_CONFIG_SIZE	(16*1024)
1066 	void *data;
1067 	uint16_t *wptr;
1068 	uint16_t cnt, chksum;
1069 	int i;
1070 	struct qla_npiv_header hdr;
1071 	struct qla_npiv_entry *entry;
1072 	struct qla_hw_data *ha = vha->hw;
1073 
1074 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
1075 	    !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha))
1076 		return;
1077 
1078 	if (ha->flags.nic_core_reset_hdlr_active)
1079 		return;
1080 
1081 	if (IS_QLA8044(ha))
1082 		return;
1083 
1084 	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
1085 	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
1086 	if (hdr.version == cpu_to_le16(0xffff))
1087 		return;
1088 	if (hdr.version != cpu_to_le16(1)) {
1089 		ql_dbg(ql_dbg_user, vha, 0x7090,
1090 		    "Unsupported NPIV-Config "
1091 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1092 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1093 		    le16_to_cpu(hdr.checksum));
1094 		return;
1095 	}
1096 
1097 	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
1098 	if (!data) {
1099 		ql_log(ql_log_warn, vha, 0x7091,
1100 		    "Unable to allocate memory for data.\n");
1101 		return;
1102 	}
1103 
1104 	ha->isp_ops->read_optrom(vha, (uint8_t *)data,
1105 	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
1106 
1107 	cnt = (sizeof(hdr) + le16_to_cpu(hdr.entries) * sizeof(*entry)) >> 1;
1108 	for (wptr = data, chksum = 0; cnt--; wptr++)
1109 		chksum += le16_to_cpu(*wptr);
1110 	if (chksum) {
1111 		ql_dbg(ql_dbg_user, vha, 0x7092,
1112 		    "Inconsistent NPIV-Config "
1113 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1114 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1115 		    le16_to_cpu(hdr.checksum));
1116 		goto done;
1117 	}
1118 
1119 	entry = data + sizeof(struct qla_npiv_header);
1120 	cnt = le16_to_cpu(hdr.entries);
1121 	for (i = 0; cnt; cnt--, entry++, i++) {
1122 		uint16_t flags;
1123 		struct fc_vport_identifiers vid;
1124 		struct fc_vport *vport;
1125 
1126 		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
1127 
1128 		flags = le16_to_cpu(entry->flags);
1129 		if (flags == 0xffff)
1130 			continue;
1131 		if ((flags & BIT_0) == 0)
1132 			continue;
1133 
1134 		memset(&vid, 0, sizeof(vid));
1135 		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
1136 		vid.vport_type = FC_PORTTYPE_NPIV;
1137 		vid.disable = false;
1138 		vid.port_name = wwn_to_u64(entry->port_name);
1139 		vid.node_name = wwn_to_u64(entry->node_name);
1140 
1141 		ql_dbg(ql_dbg_user, vha, 0x7093,
1142 		    "NPIV[%02x]: wwpn=%llx "
1143 		    "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
1144 		    (unsigned long long)vid.port_name,
1145 		    (unsigned long long)vid.node_name,
1146 		    le16_to_cpu(entry->vf_id),
1147 		    entry->q_qos, entry->f_qos);
1148 
1149 		if (i < QLA_PRECONFIG_VPORTS) {
1150 			vport = fc_vport_create(vha->host, 0, &vid);
1151 			if (!vport)
1152 				ql_log(ql_log_warn, vha, 0x7094,
1153 				    "NPIV-Config Failed to create vport [%02x]: "
1154 				    "wwpn=%llx wwnn=%llx.\n", cnt,
1155 				    (unsigned long long)vid.port_name,
1156 				    (unsigned long long)vid.node_name);
1157 		}
1158 	}
1159 done:
1160 	kfree(data);
1161 }
1162 
1163 static int
1164 qla24xx_unprotect_flash(scsi_qla_host_t *vha)
1165 {
1166 	struct qla_hw_data *ha = vha->hw;
1167 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1168 
1169 	if (ha->flags.fac_supported)
1170 		return qla81xx_fac_do_write_enable(vha, 1);
1171 
1172 	/* Enable flash write. */
1173 	WRT_REG_DWORD(&reg->ctrl_status,
1174 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1175 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1176 
1177 	if (!ha->fdt_wrt_disable)
1178 		goto done;
1179 
1180 	/* Disable flash write-protection, first clear SR protection bit */
1181 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1182 	/* Then write zero again to clear remaining SR bits.*/
1183 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1184 done:
1185 	return QLA_SUCCESS;
1186 }
1187 
1188 static int
1189 qla24xx_protect_flash(scsi_qla_host_t *vha)
1190 {
1191 	uint32_t cnt;
1192 	struct qla_hw_data *ha = vha->hw;
1193 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1194 
1195 	if (ha->flags.fac_supported)
1196 		return qla81xx_fac_do_write_enable(vha, 0);
1197 
1198 	if (!ha->fdt_wrt_disable)
1199 		goto skip_wrt_protect;
1200 
1201 	/* Enable flash write-protection and wait for completion. */
1202 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1203 	    ha->fdt_wrt_disable);
1204 	for (cnt = 300; cnt &&
1205 	    qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1206 	    cnt--) {
1207 		udelay(10);
1208 	}
1209 
1210 skip_wrt_protect:
1211 	/* Disable flash write. */
1212 	WRT_REG_DWORD(&reg->ctrl_status,
1213 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1214 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1215 
1216 	return QLA_SUCCESS;
1217 }
1218 
1219 static int
1220 qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
1221 {
1222 	struct qla_hw_data *ha = vha->hw;
1223 	uint32_t start, finish;
1224 
1225 	if (ha->flags.fac_supported) {
1226 		start = fdata >> 2;
1227 		finish = start + (ha->fdt_block_size >> 2) - 1;
1228 		return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
1229 		    start), flash_data_addr(ha, finish));
1230 	}
1231 
1232 	return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1233 	    (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
1234 	    ((fdata >> 16) & 0xff));
1235 }
1236 
1237 static int
1238 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1239     uint32_t dwords)
1240 {
1241 	int ret;
1242 	uint32_t liter;
1243 	uint32_t sec_mask, rest_addr;
1244 	uint32_t fdata;
1245 	dma_addr_t optrom_dma;
1246 	void *optrom = NULL;
1247 	struct qla_hw_data *ha = vha->hw;
1248 
1249 	/* Prepare burst-capable write on supported ISPs. */
1250 	if ((IS_QLA25XX(ha) || IS_QLA81XX(ha) || IS_QLA83XX(ha) ||
1251 	    IS_QLA27XX(ha)) &&
1252 	    !(faddr & 0xfff) && dwords > OPTROM_BURST_DWORDS) {
1253 		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1254 		    &optrom_dma, GFP_KERNEL);
1255 		if (!optrom) {
1256 			ql_log(ql_log_warn, vha, 0x7095,
1257 			    "Unable to allocate "
1258 			    "memory for optrom burst write (%x KB).\n",
1259 			    OPTROM_BURST_SIZE / 1024);
1260 		}
1261 	}
1262 
1263 	rest_addr = (ha->fdt_block_size >> 2) - 1;
1264 	sec_mask = ~rest_addr;
1265 
1266 	ret = qla24xx_unprotect_flash(vha);
1267 	if (ret != QLA_SUCCESS) {
1268 		ql_log(ql_log_warn, vha, 0x7096,
1269 		    "Unable to unprotect flash for update.\n");
1270 		goto done;
1271 	}
1272 
1273 	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1274 		fdata = (faddr & sec_mask) << 2;
1275 
1276 		/* Are we at the beginning of a sector? */
1277 		if ((faddr & rest_addr) == 0) {
1278 			/* Do sector unprotect. */
1279 			if (ha->fdt_unprotect_sec_cmd)
1280 				qla24xx_write_flash_dword(ha,
1281 				    ha->fdt_unprotect_sec_cmd,
1282 				    (fdata & 0xff00) | ((fdata << 16) &
1283 				    0xff0000) | ((fdata >> 16) & 0xff));
1284 			ret = qla24xx_erase_sector(vha, fdata);
1285 			if (ret != QLA_SUCCESS) {
1286 				ql_dbg(ql_dbg_user, vha, 0x7007,
1287 				    "Unable to erase erase sector: address=%x.\n",
1288 				    faddr);
1289 				break;
1290 			}
1291 		}
1292 
1293 		/* Go with burst-write. */
1294 		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1295 			/* Copy data to DMA'ble buffer. */
1296 			memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1297 
1298 			ret = qla2x00_load_ram(vha, optrom_dma,
1299 			    flash_data_addr(ha, faddr),
1300 			    OPTROM_BURST_DWORDS);
1301 			if (ret != QLA_SUCCESS) {
1302 				ql_log(ql_log_warn, vha, 0x7097,
1303 				    "Unable to burst-write optrom segment "
1304 				    "(%x/%x/%llx).\n", ret,
1305 				    flash_data_addr(ha, faddr),
1306 				    (unsigned long long)optrom_dma);
1307 				ql_log(ql_log_warn, vha, 0x7098,
1308 				    "Reverting to slow-write.\n");
1309 
1310 				dma_free_coherent(&ha->pdev->dev,
1311 				    OPTROM_BURST_SIZE, optrom, optrom_dma);
1312 				optrom = NULL;
1313 			} else {
1314 				liter += OPTROM_BURST_DWORDS - 1;
1315 				faddr += OPTROM_BURST_DWORDS - 1;
1316 				dwptr += OPTROM_BURST_DWORDS - 1;
1317 				continue;
1318 			}
1319 		}
1320 
1321 		ret = qla24xx_write_flash_dword(ha,
1322 		    flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1323 		if (ret != QLA_SUCCESS) {
1324 			ql_dbg(ql_dbg_user, vha, 0x7006,
1325 			    "Unable to program flash address=%x data=%x.\n",
1326 			    faddr, *dwptr);
1327 			break;
1328 		}
1329 
1330 		/* Do sector protect. */
1331 		if (ha->fdt_unprotect_sec_cmd &&
1332 		    ((faddr & rest_addr) == rest_addr))
1333 			qla24xx_write_flash_dword(ha,
1334 			    ha->fdt_protect_sec_cmd,
1335 			    (fdata & 0xff00) | ((fdata << 16) &
1336 			    0xff0000) | ((fdata >> 16) & 0xff));
1337 	}
1338 
1339 	ret = qla24xx_protect_flash(vha);
1340 	if (ret != QLA_SUCCESS)
1341 		ql_log(ql_log_warn, vha, 0x7099,
1342 		    "Unable to protect flash after update.\n");
1343 done:
1344 	if (optrom)
1345 		dma_free_coherent(&ha->pdev->dev,
1346 		    OPTROM_BURST_SIZE, optrom, optrom_dma);
1347 
1348 	return ret;
1349 }
1350 
1351 uint8_t *
1352 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1353     uint32_t bytes)
1354 {
1355 	uint32_t i;
1356 	uint16_t *wptr;
1357 	struct qla_hw_data *ha = vha->hw;
1358 
1359 	/* Word reads to NVRAM via registers. */
1360 	wptr = (uint16_t *)buf;
1361 	qla2x00_lock_nvram_access(ha);
1362 	for (i = 0; i < bytes >> 1; i++, naddr++)
1363 		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1364 		    naddr));
1365 	qla2x00_unlock_nvram_access(ha);
1366 
1367 	return buf;
1368 }
1369 
1370 uint8_t *
1371 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1372     uint32_t bytes)
1373 {
1374 	uint32_t i;
1375 	uint32_t *dwptr;
1376 	struct qla_hw_data *ha = vha->hw;
1377 
1378 	if (IS_P3P_TYPE(ha))
1379 		return  buf;
1380 
1381 	/* Dword reads to flash. */
1382 	dwptr = (uint32_t *)buf;
1383 	for (i = 0; i < bytes >> 2; i++, naddr++)
1384 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1385 		    nvram_data_addr(ha, naddr)));
1386 
1387 	return buf;
1388 }
1389 
1390 int
1391 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1392     uint32_t bytes)
1393 {
1394 	int ret, stat;
1395 	uint32_t i;
1396 	uint16_t *wptr;
1397 	unsigned long flags;
1398 	struct qla_hw_data *ha = vha->hw;
1399 
1400 	ret = QLA_SUCCESS;
1401 
1402 	spin_lock_irqsave(&ha->hardware_lock, flags);
1403 	qla2x00_lock_nvram_access(ha);
1404 
1405 	/* Disable NVRAM write-protection. */
1406 	stat = qla2x00_clear_nvram_protection(ha);
1407 
1408 	wptr = (uint16_t *)buf;
1409 	for (i = 0; i < bytes >> 1; i++, naddr++) {
1410 		qla2x00_write_nvram_word(ha, naddr,
1411 		    cpu_to_le16(*wptr));
1412 		wptr++;
1413 	}
1414 
1415 	/* Enable NVRAM write-protection. */
1416 	qla2x00_set_nvram_protection(ha, stat);
1417 
1418 	qla2x00_unlock_nvram_access(ha);
1419 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1420 
1421 	return ret;
1422 }
1423 
1424 int
1425 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1426     uint32_t bytes)
1427 {
1428 	int ret;
1429 	uint32_t i;
1430 	uint32_t *dwptr;
1431 	struct qla_hw_data *ha = vha->hw;
1432 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1433 
1434 	ret = QLA_SUCCESS;
1435 
1436 	if (IS_P3P_TYPE(ha))
1437 		return ret;
1438 
1439 	/* Enable flash write. */
1440 	WRT_REG_DWORD(&reg->ctrl_status,
1441 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1442 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1443 
1444 	/* Disable NVRAM write-protection. */
1445 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1446 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1447 
1448 	/* Dword writes to flash. */
1449 	dwptr = (uint32_t *)buf;
1450 	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1451 		ret = qla24xx_write_flash_dword(ha,
1452 		    nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1453 		if (ret != QLA_SUCCESS) {
1454 			ql_dbg(ql_dbg_user, vha, 0x709a,
1455 			    "Unable to program nvram address=%x data=%x.\n",
1456 			    naddr, *dwptr);
1457 			break;
1458 		}
1459 	}
1460 
1461 	/* Enable NVRAM write-protection. */
1462 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1463 
1464 	/* Disable flash write. */
1465 	WRT_REG_DWORD(&reg->ctrl_status,
1466 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1467 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1468 
1469 	return ret;
1470 }
1471 
1472 uint8_t *
1473 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1474     uint32_t bytes)
1475 {
1476 	uint32_t i;
1477 	uint32_t *dwptr;
1478 	struct qla_hw_data *ha = vha->hw;
1479 
1480 	/* Dword reads to flash. */
1481 	dwptr = (uint32_t *)buf;
1482 	for (i = 0; i < bytes >> 2; i++, naddr++)
1483 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1484 		    flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1485 
1486 	return buf;
1487 }
1488 
1489 int
1490 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1491     uint32_t bytes)
1492 {
1493 	struct qla_hw_data *ha = vha->hw;
1494 #define RMW_BUFFER_SIZE	(64 * 1024)
1495 	uint8_t *dbuf;
1496 
1497 	dbuf = vmalloc(RMW_BUFFER_SIZE);
1498 	if (!dbuf)
1499 		return QLA_MEMORY_ALLOC_FAILED;
1500 	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1501 	    RMW_BUFFER_SIZE);
1502 	memcpy(dbuf + (naddr << 2), buf, bytes);
1503 	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1504 	    RMW_BUFFER_SIZE);
1505 	vfree(dbuf);
1506 
1507 	return QLA_SUCCESS;
1508 }
1509 
1510 static inline void
1511 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1512 {
1513 	if (IS_QLA2322(ha)) {
1514 		/* Flip all colors. */
1515 		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1516 			/* Turn off. */
1517 			ha->beacon_color_state = 0;
1518 			*pflags = GPIO_LED_ALL_OFF;
1519 		} else {
1520 			/* Turn on. */
1521 			ha->beacon_color_state = QLA_LED_ALL_ON;
1522 			*pflags = GPIO_LED_RGA_ON;
1523 		}
1524 	} else {
1525 		/* Flip green led only. */
1526 		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1527 			/* Turn off. */
1528 			ha->beacon_color_state = 0;
1529 			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1530 		} else {
1531 			/* Turn on. */
1532 			ha->beacon_color_state = QLA_LED_GRN_ON;
1533 			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1534 		}
1535 	}
1536 }
1537 
1538 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1539 
1540 void
1541 qla2x00_beacon_blink(struct scsi_qla_host *vha)
1542 {
1543 	uint16_t gpio_enable;
1544 	uint16_t gpio_data;
1545 	uint16_t led_color = 0;
1546 	unsigned long flags;
1547 	struct qla_hw_data *ha = vha->hw;
1548 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1549 
1550 	if (IS_P3P_TYPE(ha))
1551 		return;
1552 
1553 	spin_lock_irqsave(&ha->hardware_lock, flags);
1554 
1555 	/* Save the Original GPIOE. */
1556 	if (ha->pio_address) {
1557 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1558 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1559 	} else {
1560 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1561 		gpio_data = RD_REG_WORD(&reg->gpiod);
1562 	}
1563 
1564 	/* Set the modified gpio_enable values */
1565 	gpio_enable |= GPIO_LED_MASK;
1566 
1567 	if (ha->pio_address) {
1568 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1569 	} else {
1570 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1571 		RD_REG_WORD(&reg->gpioe);
1572 	}
1573 
1574 	qla2x00_flip_colors(ha, &led_color);
1575 
1576 	/* Clear out any previously set LED color. */
1577 	gpio_data &= ~GPIO_LED_MASK;
1578 
1579 	/* Set the new input LED color to GPIOD. */
1580 	gpio_data |= led_color;
1581 
1582 	/* Set the modified gpio_data values */
1583 	if (ha->pio_address) {
1584 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1585 	} else {
1586 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1587 		RD_REG_WORD(&reg->gpiod);
1588 	}
1589 
1590 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1591 }
1592 
1593 int
1594 qla2x00_beacon_on(struct scsi_qla_host *vha)
1595 {
1596 	uint16_t gpio_enable;
1597 	uint16_t gpio_data;
1598 	unsigned long flags;
1599 	struct qla_hw_data *ha = vha->hw;
1600 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1601 
1602 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1603 	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1604 
1605 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1606 		ql_log(ql_log_warn, vha, 0x709b,
1607 		    "Unable to update fw options (beacon on).\n");
1608 		return QLA_FUNCTION_FAILED;
1609 	}
1610 
1611 	/* Turn off LEDs. */
1612 	spin_lock_irqsave(&ha->hardware_lock, flags);
1613 	if (ha->pio_address) {
1614 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1615 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1616 	} else {
1617 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1618 		gpio_data = RD_REG_WORD(&reg->gpiod);
1619 	}
1620 	gpio_enable |= GPIO_LED_MASK;
1621 
1622 	/* Set the modified gpio_enable values. */
1623 	if (ha->pio_address) {
1624 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1625 	} else {
1626 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1627 		RD_REG_WORD(&reg->gpioe);
1628 	}
1629 
1630 	/* Clear out previously set LED colour. */
1631 	gpio_data &= ~GPIO_LED_MASK;
1632 	if (ha->pio_address) {
1633 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1634 	} else {
1635 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1636 		RD_REG_WORD(&reg->gpiod);
1637 	}
1638 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1639 
1640 	/*
1641 	 * Let the per HBA timer kick off the blinking process based on
1642 	 * the following flags. No need to do anything else now.
1643 	 */
1644 	ha->beacon_blink_led = 1;
1645 	ha->beacon_color_state = 0;
1646 
1647 	return QLA_SUCCESS;
1648 }
1649 
1650 int
1651 qla2x00_beacon_off(struct scsi_qla_host *vha)
1652 {
1653 	int rval = QLA_SUCCESS;
1654 	struct qla_hw_data *ha = vha->hw;
1655 
1656 	ha->beacon_blink_led = 0;
1657 
1658 	/* Set the on flag so when it gets flipped it will be off. */
1659 	if (IS_QLA2322(ha))
1660 		ha->beacon_color_state = QLA_LED_ALL_ON;
1661 	else
1662 		ha->beacon_color_state = QLA_LED_GRN_ON;
1663 
1664 	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */
1665 
1666 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1667 	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1668 
1669 	rval = qla2x00_set_fw_options(vha, ha->fw_options);
1670 	if (rval != QLA_SUCCESS)
1671 		ql_log(ql_log_warn, vha, 0x709c,
1672 		    "Unable to update fw options (beacon off).\n");
1673 	return rval;
1674 }
1675 
1676 
1677 static inline void
1678 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1679 {
1680 	/* Flip all colors. */
1681 	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1682 		/* Turn off. */
1683 		ha->beacon_color_state = 0;
1684 		*pflags = 0;
1685 	} else {
1686 		/* Turn on. */
1687 		ha->beacon_color_state = QLA_LED_ALL_ON;
1688 		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1689 	}
1690 }
1691 
1692 void
1693 qla24xx_beacon_blink(struct scsi_qla_host *vha)
1694 {
1695 	uint16_t led_color = 0;
1696 	uint32_t gpio_data;
1697 	unsigned long flags;
1698 	struct qla_hw_data *ha = vha->hw;
1699 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1700 
1701 	/* Save the Original GPIOD. */
1702 	spin_lock_irqsave(&ha->hardware_lock, flags);
1703 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1704 
1705 	/* Enable the gpio_data reg for update. */
1706 	gpio_data |= GPDX_LED_UPDATE_MASK;
1707 
1708 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1709 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1710 
1711 	/* Set the color bits. */
1712 	qla24xx_flip_colors(ha, &led_color);
1713 
1714 	/* Clear out any previously set LED color. */
1715 	gpio_data &= ~GPDX_LED_COLOR_MASK;
1716 
1717 	/* Set the new input LED color to GPIOD. */
1718 	gpio_data |= led_color;
1719 
1720 	/* Set the modified gpio_data values. */
1721 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1722 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1723 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1724 }
1725 
1726 static uint32_t
1727 qla83xx_select_led_port(struct qla_hw_data *ha)
1728 {
1729 	uint32_t led_select_value = 0;
1730 
1731 	if (!IS_QLA83XX(ha) && !IS_QLA27XX(ha))
1732 		goto out;
1733 
1734 	if (ha->port_no == 0)
1735 		led_select_value = QLA83XX_LED_PORT0;
1736 	else
1737 		led_select_value = QLA83XX_LED_PORT1;
1738 
1739 out:
1740 	return led_select_value;
1741 }
1742 
1743 void
1744 qla83xx_beacon_blink(struct scsi_qla_host *vha)
1745 {
1746 	uint32_t led_select_value;
1747 	struct qla_hw_data *ha = vha->hw;
1748 	uint16_t led_cfg[6];
1749 	uint16_t orig_led_cfg[6];
1750 	uint32_t led_10_value, led_43_value;
1751 
1752 	if (!IS_QLA83XX(ha) && !IS_QLA81XX(ha) && !IS_QLA27XX(ha))
1753 		return;
1754 
1755 	if (!ha->beacon_blink_led)
1756 		return;
1757 
1758 	if (IS_QLA27XX(ha)) {
1759 		qla2x00_write_ram_word(vha, 0x1003, 0x40000230);
1760 		qla2x00_write_ram_word(vha, 0x1004, 0x40000230);
1761 	} else if (IS_QLA2031(ha)) {
1762 		led_select_value = qla83xx_select_led_port(ha);
1763 
1764 		qla83xx_wr_reg(vha, led_select_value, 0x40000230);
1765 		qla83xx_wr_reg(vha, led_select_value + 4, 0x40000230);
1766 	} else if (IS_QLA8031(ha)) {
1767 		led_select_value = qla83xx_select_led_port(ha);
1768 
1769 		qla83xx_rd_reg(vha, led_select_value, &led_10_value);
1770 		qla83xx_rd_reg(vha, led_select_value + 0x10, &led_43_value);
1771 		qla83xx_wr_reg(vha, led_select_value, 0x01f44000);
1772 		msleep(500);
1773 		qla83xx_wr_reg(vha, led_select_value, 0x400001f4);
1774 		msleep(1000);
1775 		qla83xx_wr_reg(vha, led_select_value, led_10_value);
1776 		qla83xx_wr_reg(vha, led_select_value + 0x10, led_43_value);
1777 	} else if (IS_QLA81XX(ha)) {
1778 		int rval;
1779 
1780 		/* Save Current */
1781 		rval = qla81xx_get_led_config(vha, orig_led_cfg);
1782 		/* Do the blink */
1783 		if (rval == QLA_SUCCESS) {
1784 			if (IS_QLA81XX(ha)) {
1785 				led_cfg[0] = 0x4000;
1786 				led_cfg[1] = 0x2000;
1787 				led_cfg[2] = 0;
1788 				led_cfg[3] = 0;
1789 				led_cfg[4] = 0;
1790 				led_cfg[5] = 0;
1791 			} else {
1792 				led_cfg[0] = 0x4000;
1793 				led_cfg[1] = 0x4000;
1794 				led_cfg[2] = 0x4000;
1795 				led_cfg[3] = 0x2000;
1796 				led_cfg[4] = 0;
1797 				led_cfg[5] = 0x2000;
1798 			}
1799 			rval = qla81xx_set_led_config(vha, led_cfg);
1800 			msleep(1000);
1801 			if (IS_QLA81XX(ha)) {
1802 				led_cfg[0] = 0x4000;
1803 				led_cfg[1] = 0x2000;
1804 				led_cfg[2] = 0;
1805 			} else {
1806 				led_cfg[0] = 0x4000;
1807 				led_cfg[1] = 0x2000;
1808 				led_cfg[2] = 0x4000;
1809 				led_cfg[3] = 0x4000;
1810 				led_cfg[4] = 0;
1811 				led_cfg[5] = 0x2000;
1812 			}
1813 			rval = qla81xx_set_led_config(vha, led_cfg);
1814 		}
1815 		/* On exit, restore original (presumes no status change) */
1816 		qla81xx_set_led_config(vha, orig_led_cfg);
1817 	}
1818 }
1819 
1820 int
1821 qla24xx_beacon_on(struct scsi_qla_host *vha)
1822 {
1823 	uint32_t gpio_data;
1824 	unsigned long flags;
1825 	struct qla_hw_data *ha = vha->hw;
1826 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1827 
1828 	if (IS_P3P_TYPE(ha))
1829 		return QLA_SUCCESS;
1830 
1831 	if (IS_QLA8031(ha) || IS_QLA81XX(ha))
1832 		goto skip_gpio; /* let blink handle it */
1833 
1834 	if (ha->beacon_blink_led == 0) {
1835 		/* Enable firmware for update */
1836 		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1837 
1838 		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1839 			return QLA_FUNCTION_FAILED;
1840 
1841 		if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1842 		    QLA_SUCCESS) {
1843 			ql_log(ql_log_warn, vha, 0x7009,
1844 			    "Unable to update fw options (beacon on).\n");
1845 			return QLA_FUNCTION_FAILED;
1846 		}
1847 
1848 		if (IS_QLA2031(ha) || IS_QLA27XX(ha))
1849 			goto skip_gpio;
1850 
1851 		spin_lock_irqsave(&ha->hardware_lock, flags);
1852 		gpio_data = RD_REG_DWORD(&reg->gpiod);
1853 
1854 		/* Enable the gpio_data reg for update. */
1855 		gpio_data |= GPDX_LED_UPDATE_MASK;
1856 		WRT_REG_DWORD(&reg->gpiod, gpio_data);
1857 		RD_REG_DWORD(&reg->gpiod);
1858 
1859 		spin_unlock_irqrestore(&ha->hardware_lock, flags);
1860 	}
1861 
1862 	/* So all colors blink together. */
1863 	ha->beacon_color_state = 0;
1864 
1865 skip_gpio:
1866 	/* Let the per HBA timer kick off the blinking process. */
1867 	ha->beacon_blink_led = 1;
1868 
1869 	return QLA_SUCCESS;
1870 }
1871 
1872 int
1873 qla24xx_beacon_off(struct scsi_qla_host *vha)
1874 {
1875 	uint32_t gpio_data;
1876 	unsigned long flags;
1877 	struct qla_hw_data *ha = vha->hw;
1878 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1879 
1880 	if (IS_P3P_TYPE(ha))
1881 		return QLA_SUCCESS;
1882 
1883 	ha->beacon_blink_led = 0;
1884 
1885 	if (IS_QLA2031(ha) || IS_QLA27XX(ha))
1886 		goto set_fw_options;
1887 
1888 	if (IS_QLA8031(ha) || IS_QLA81XX(ha))
1889 		return QLA_SUCCESS;
1890 
1891 	ha->beacon_color_state = QLA_LED_ALL_ON;
1892 
1893 	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */
1894 
1895 	/* Give control back to firmware. */
1896 	spin_lock_irqsave(&ha->hardware_lock, flags);
1897 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1898 
1899 	/* Disable the gpio_data reg for update. */
1900 	gpio_data &= ~GPDX_LED_UPDATE_MASK;
1901 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1902 	RD_REG_DWORD(&reg->gpiod);
1903 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1904 
1905 set_fw_options:
1906 	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1907 
1908 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1909 		ql_log(ql_log_warn, vha, 0x704d,
1910 		    "Unable to update fw options (beacon on).\n");
1911 		return QLA_FUNCTION_FAILED;
1912 	}
1913 
1914 	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1915 		ql_log(ql_log_warn, vha, 0x704e,
1916 		    "Unable to update fw options (beacon on).\n");
1917 		return QLA_FUNCTION_FAILED;
1918 	}
1919 
1920 	return QLA_SUCCESS;
1921 }
1922 
1923 
1924 /*
1925  * Flash support routines
1926  */
1927 
1928 /**
1929  * qla2x00_flash_enable() - Setup flash for reading and writing.
1930  * @ha: HA context
1931  */
1932 static void
1933 qla2x00_flash_enable(struct qla_hw_data *ha)
1934 {
1935 	uint16_t data;
1936 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1937 
1938 	data = RD_REG_WORD(&reg->ctrl_status);
1939 	data |= CSR_FLASH_ENABLE;
1940 	WRT_REG_WORD(&reg->ctrl_status, data);
1941 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1942 }
1943 
1944 /**
1945  * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1946  * @ha: HA context
1947  */
1948 static void
1949 qla2x00_flash_disable(struct qla_hw_data *ha)
1950 {
1951 	uint16_t data;
1952 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1953 
1954 	data = RD_REG_WORD(&reg->ctrl_status);
1955 	data &= ~(CSR_FLASH_ENABLE);
1956 	WRT_REG_WORD(&reg->ctrl_status, data);
1957 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1958 }
1959 
1960 /**
1961  * qla2x00_read_flash_byte() - Reads a byte from flash
1962  * @ha: HA context
1963  * @addr: Address in flash to read
1964  *
1965  * A word is read from the chip, but, only the lower byte is valid.
1966  *
1967  * Returns the byte read from flash @addr.
1968  */
1969 static uint8_t
1970 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1971 {
1972 	uint16_t data;
1973 	uint16_t bank_select;
1974 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1975 
1976 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1977 
1978 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1979 		/* Specify 64K address range: */
1980 		/*  clear out Module Select and Flash Address bits [19:16]. */
1981 		bank_select &= ~0xf8;
1982 		bank_select |= addr >> 12 & 0xf0;
1983 		bank_select |= CSR_FLASH_64K_BANK;
1984 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1985 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1986 
1987 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1988 		data = RD_REG_WORD(&reg->flash_data);
1989 
1990 		return (uint8_t)data;
1991 	}
1992 
1993 	/* Setup bit 16 of flash address. */
1994 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1995 		bank_select |= CSR_FLASH_64K_BANK;
1996 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1997 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1998 	} else if (((addr & BIT_16) == 0) &&
1999 	    (bank_select & CSR_FLASH_64K_BANK)) {
2000 		bank_select &= ~(CSR_FLASH_64K_BANK);
2001 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
2002 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
2003 	}
2004 
2005 	/* Always perform IO mapped accesses to the FLASH registers. */
2006 	if (ha->pio_address) {
2007 		uint16_t data2;
2008 
2009 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
2010 		do {
2011 			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
2012 			barrier();
2013 			cpu_relax();
2014 			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
2015 		} while (data != data2);
2016 	} else {
2017 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
2018 		data = qla2x00_debounce_register(&reg->flash_data);
2019 	}
2020 
2021 	return (uint8_t)data;
2022 }
2023 
2024 /**
2025  * qla2x00_write_flash_byte() - Write a byte to flash
2026  * @ha: HA context
2027  * @addr: Address in flash to write
2028  * @data: Data to write
2029  */
2030 static void
2031 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
2032 {
2033 	uint16_t bank_select;
2034 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2035 
2036 	bank_select = RD_REG_WORD(&reg->ctrl_status);
2037 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2038 		/* Specify 64K address range: */
2039 		/*  clear out Module Select and Flash Address bits [19:16]. */
2040 		bank_select &= ~0xf8;
2041 		bank_select |= addr >> 12 & 0xf0;
2042 		bank_select |= CSR_FLASH_64K_BANK;
2043 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
2044 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
2045 
2046 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
2047 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
2048 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
2049 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
2050 
2051 		return;
2052 	}
2053 
2054 	/* Setup bit 16 of flash address. */
2055 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
2056 		bank_select |= CSR_FLASH_64K_BANK;
2057 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
2058 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
2059 	} else if (((addr & BIT_16) == 0) &&
2060 	    (bank_select & CSR_FLASH_64K_BANK)) {
2061 		bank_select &= ~(CSR_FLASH_64K_BANK);
2062 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
2063 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
2064 	}
2065 
2066 	/* Always perform IO mapped accesses to the FLASH registers. */
2067 	if (ha->pio_address) {
2068 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
2069 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
2070 	} else {
2071 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
2072 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
2073 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
2074 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
2075 	}
2076 }
2077 
2078 /**
2079  * qla2x00_poll_flash() - Polls flash for completion.
2080  * @ha: HA context
2081  * @addr: Address in flash to poll
2082  * @poll_data: Data to be polled
2083  * @man_id: Flash manufacturer ID
2084  * @flash_id: Flash ID
2085  *
2086  * This function polls the device until bit 7 of what is read matches data
2087  * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
2088  * out (a fatal error).  The flash book recommeds reading bit 7 again after
2089  * reading bit 5 as a 1.
2090  *
2091  * Returns 0 on success, else non-zero.
2092  */
2093 static int
2094 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
2095     uint8_t man_id, uint8_t flash_id)
2096 {
2097 	int status;
2098 	uint8_t flash_data;
2099 	uint32_t cnt;
2100 
2101 	status = 1;
2102 
2103 	/* Wait for 30 seconds for command to finish. */
2104 	poll_data &= BIT_7;
2105 	for (cnt = 3000000; cnt; cnt--) {
2106 		flash_data = qla2x00_read_flash_byte(ha, addr);
2107 		if ((flash_data & BIT_7) == poll_data) {
2108 			status = 0;
2109 			break;
2110 		}
2111 
2112 		if (man_id != 0x40 && man_id != 0xda) {
2113 			if ((flash_data & BIT_5) && cnt > 2)
2114 				cnt = 2;
2115 		}
2116 		udelay(10);
2117 		barrier();
2118 		cond_resched();
2119 	}
2120 	return status;
2121 }
2122 
2123 /**
2124  * qla2x00_program_flash_address() - Programs a flash address
2125  * @ha: HA context
2126  * @addr: Address in flash to program
2127  * @data: Data to be written in flash
2128  * @man_id: Flash manufacturer ID
2129  * @flash_id: Flash ID
2130  *
2131  * Returns 0 on success, else non-zero.
2132  */
2133 static int
2134 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
2135     uint8_t data, uint8_t man_id, uint8_t flash_id)
2136 {
2137 	/* Write Program Command Sequence. */
2138 	if (IS_OEM_001(ha)) {
2139 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2140 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
2141 		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
2142 		qla2x00_write_flash_byte(ha, addr, data);
2143 	} else {
2144 		if (man_id == 0xda && flash_id == 0xc1) {
2145 			qla2x00_write_flash_byte(ha, addr, data);
2146 			if (addr & 0x7e)
2147 				return 0;
2148 		} else {
2149 			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2150 			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2151 			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
2152 			qla2x00_write_flash_byte(ha, addr, data);
2153 		}
2154 	}
2155 
2156 	udelay(150);
2157 
2158 	/* Wait for write to complete. */
2159 	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
2160 }
2161 
2162 /**
2163  * qla2x00_erase_flash() - Erase the flash.
2164  * @ha: HA context
2165  * @man_id: Flash manufacturer ID
2166  * @flash_id: Flash ID
2167  *
2168  * Returns 0 on success, else non-zero.
2169  */
2170 static int
2171 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
2172 {
2173 	/* Individual Sector Erase Command Sequence */
2174 	if (IS_OEM_001(ha)) {
2175 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2176 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
2177 		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
2178 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2179 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
2180 		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
2181 	} else {
2182 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2183 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2184 		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
2185 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2186 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2187 		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
2188 	}
2189 
2190 	udelay(150);
2191 
2192 	/* Wait for erase to complete. */
2193 	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
2194 }
2195 
2196 /**
2197  * qla2x00_erase_flash_sector() - Erase a flash sector.
2198  * @ha: HA context
2199  * @addr: Flash sector to erase
2200  * @sec_mask: Sector address mask
2201  * @man_id: Flash manufacturer ID
2202  * @flash_id: Flash ID
2203  *
2204  * Returns 0 on success, else non-zero.
2205  */
2206 static int
2207 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
2208     uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
2209 {
2210 	/* Individual Sector Erase Command Sequence */
2211 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2212 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2213 	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
2214 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2215 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2216 	if (man_id == 0x1f && flash_id == 0x13)
2217 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
2218 	else
2219 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
2220 
2221 	udelay(150);
2222 
2223 	/* Wait for erase to complete. */
2224 	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
2225 }
2226 
2227 /**
2228  * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
2229  * @man_id: Flash manufacturer ID
2230  * @flash_id: Flash ID
2231  */
2232 static void
2233 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
2234     uint8_t *flash_id)
2235 {
2236 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2237 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2238 	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
2239 	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
2240 	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
2241 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2242 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2243 	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
2244 }
2245 
2246 static void
2247 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
2248 	uint32_t saddr, uint32_t length)
2249 {
2250 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2251 	uint32_t midpoint, ilength;
2252 	uint8_t data;
2253 
2254 	midpoint = length / 2;
2255 
2256 	WRT_REG_WORD(&reg->nvram, 0);
2257 	RD_REG_WORD(&reg->nvram);
2258 	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
2259 		if (ilength == midpoint) {
2260 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2261 			RD_REG_WORD(&reg->nvram);
2262 		}
2263 		data = qla2x00_read_flash_byte(ha, saddr);
2264 		if (saddr % 100)
2265 			udelay(10);
2266 		*tmp_buf = data;
2267 		cond_resched();
2268 	}
2269 }
2270 
2271 static inline void
2272 qla2x00_suspend_hba(struct scsi_qla_host *vha)
2273 {
2274 	int cnt;
2275 	unsigned long flags;
2276 	struct qla_hw_data *ha = vha->hw;
2277 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2278 
2279 	/* Suspend HBA. */
2280 	scsi_block_requests(vha->host);
2281 	ha->isp_ops->disable_intrs(ha);
2282 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2283 
2284 	/* Pause RISC. */
2285 	spin_lock_irqsave(&ha->hardware_lock, flags);
2286 	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
2287 	RD_REG_WORD(&reg->hccr);
2288 	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
2289 		for (cnt = 0; cnt < 30000; cnt++) {
2290 			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
2291 				break;
2292 			udelay(100);
2293 		}
2294 	} else {
2295 		udelay(10);
2296 	}
2297 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
2298 }
2299 
2300 static inline void
2301 qla2x00_resume_hba(struct scsi_qla_host *vha)
2302 {
2303 	struct qla_hw_data *ha = vha->hw;
2304 
2305 	/* Resume HBA. */
2306 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2307 	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
2308 	qla2xxx_wake_dpc(vha);
2309 	qla2x00_wait_for_chip_reset(vha);
2310 	scsi_unblock_requests(vha->host);
2311 }
2312 
2313 uint8_t *
2314 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2315     uint32_t offset, uint32_t length)
2316 {
2317 	uint32_t addr, midpoint;
2318 	uint8_t *data;
2319 	struct qla_hw_data *ha = vha->hw;
2320 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2321 
2322 	/* Suspend HBA. */
2323 	qla2x00_suspend_hba(vha);
2324 
2325 	/* Go with read. */
2326 	midpoint = ha->optrom_size / 2;
2327 
2328 	qla2x00_flash_enable(ha);
2329 	WRT_REG_WORD(&reg->nvram, 0);
2330 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
2331 	for (addr = offset, data = buf; addr < length; addr++, data++) {
2332 		if (addr == midpoint) {
2333 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2334 			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
2335 		}
2336 
2337 		*data = qla2x00_read_flash_byte(ha, addr);
2338 	}
2339 	qla2x00_flash_disable(ha);
2340 
2341 	/* Resume HBA. */
2342 	qla2x00_resume_hba(vha);
2343 
2344 	return buf;
2345 }
2346 
2347 int
2348 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2349     uint32_t offset, uint32_t length)
2350 {
2351 
2352 	int rval;
2353 	uint8_t man_id, flash_id, sec_number, data;
2354 	uint16_t wd;
2355 	uint32_t addr, liter, sec_mask, rest_addr;
2356 	struct qla_hw_data *ha = vha->hw;
2357 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2358 
2359 	/* Suspend HBA. */
2360 	qla2x00_suspend_hba(vha);
2361 
2362 	rval = QLA_SUCCESS;
2363 	sec_number = 0;
2364 
2365 	/* Reset ISP chip. */
2366 	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
2367 	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
2368 
2369 	/* Go with write. */
2370 	qla2x00_flash_enable(ha);
2371 	do {	/* Loop once to provide quick error exit */
2372 		/* Structure of flash memory based on manufacturer */
2373 		if (IS_OEM_001(ha)) {
2374 			/* OEM variant with special flash part. */
2375 			man_id = flash_id = 0;
2376 			rest_addr = 0xffff;
2377 			sec_mask   = 0x10000;
2378 			goto update_flash;
2379 		}
2380 		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
2381 		switch (man_id) {
2382 		case 0x20: /* ST flash. */
2383 			if (flash_id == 0xd2 || flash_id == 0xe3) {
2384 				/*
2385 				 * ST m29w008at part - 64kb sector size with
2386 				 * 32kb,8kb,8kb,16kb sectors at memory address
2387 				 * 0xf0000.
2388 				 */
2389 				rest_addr = 0xffff;
2390 				sec_mask = 0x10000;
2391 				break;
2392 			}
2393 			/*
2394 			 * ST m29w010b part - 16kb sector size
2395 			 * Default to 16kb sectors
2396 			 */
2397 			rest_addr = 0x3fff;
2398 			sec_mask = 0x1c000;
2399 			break;
2400 		case 0x40: /* Mostel flash. */
2401 			/* Mostel v29c51001 part - 512 byte sector size. */
2402 			rest_addr = 0x1ff;
2403 			sec_mask = 0x1fe00;
2404 			break;
2405 		case 0xbf: /* SST flash. */
2406 			/* SST39sf10 part - 4kb sector size. */
2407 			rest_addr = 0xfff;
2408 			sec_mask = 0x1f000;
2409 			break;
2410 		case 0xda: /* Winbond flash. */
2411 			/* Winbond W29EE011 part - 256 byte sector size. */
2412 			rest_addr = 0x7f;
2413 			sec_mask = 0x1ff80;
2414 			break;
2415 		case 0xc2: /* Macronix flash. */
2416 			/* 64k sector size. */
2417 			if (flash_id == 0x38 || flash_id == 0x4f) {
2418 				rest_addr = 0xffff;
2419 				sec_mask = 0x10000;
2420 				break;
2421 			}
2422 			/* Fall through... */
2423 
2424 		case 0x1f: /* Atmel flash. */
2425 			/* 512k sector size. */
2426 			if (flash_id == 0x13) {
2427 				rest_addr = 0x7fffffff;
2428 				sec_mask =   0x80000000;
2429 				break;
2430 			}
2431 			/* Fall through... */
2432 
2433 		case 0x01: /* AMD flash. */
2434 			if (flash_id == 0x38 || flash_id == 0x40 ||
2435 			    flash_id == 0x4f) {
2436 				/* Am29LV081 part - 64kb sector size. */
2437 				/* Am29LV002BT part - 64kb sector size. */
2438 				rest_addr = 0xffff;
2439 				sec_mask = 0x10000;
2440 				break;
2441 			} else if (flash_id == 0x3e) {
2442 				/*
2443 				 * Am29LV008b part - 64kb sector size with
2444 				 * 32kb,8kb,8kb,16kb sector at memory address
2445 				 * h0xf0000.
2446 				 */
2447 				rest_addr = 0xffff;
2448 				sec_mask = 0x10000;
2449 				break;
2450 			} else if (flash_id == 0x20 || flash_id == 0x6e) {
2451 				/*
2452 				 * Am29LV010 part or AM29f010 - 16kb sector
2453 				 * size.
2454 				 */
2455 				rest_addr = 0x3fff;
2456 				sec_mask = 0x1c000;
2457 				break;
2458 			} else if (flash_id == 0x6d) {
2459 				/* Am29LV001 part - 8kb sector size. */
2460 				rest_addr = 0x1fff;
2461 				sec_mask = 0x1e000;
2462 				break;
2463 			}
2464 			/* fall through */
2465 		default:
2466 			/* Default to 16 kb sector size. */
2467 			rest_addr = 0x3fff;
2468 			sec_mask = 0x1c000;
2469 			break;
2470 		}
2471 
2472 update_flash:
2473 		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2474 			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2475 				rval = QLA_FUNCTION_FAILED;
2476 				break;
2477 			}
2478 		}
2479 
2480 		for (addr = offset, liter = 0; liter < length; liter++,
2481 		    addr++) {
2482 			data = buf[liter];
2483 			/* Are we at the beginning of a sector? */
2484 			if ((addr & rest_addr) == 0) {
2485 				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2486 					if (addr >= 0x10000UL) {
2487 						if (((addr >> 12) & 0xf0) &&
2488 						    ((man_id == 0x01 &&
2489 							flash_id == 0x3e) ||
2490 						     (man_id == 0x20 &&
2491 							 flash_id == 0xd2))) {
2492 							sec_number++;
2493 							if (sec_number == 1) {
2494 								rest_addr =
2495 								    0x7fff;
2496 								sec_mask =
2497 								    0x18000;
2498 							} else if (
2499 							    sec_number == 2 ||
2500 							    sec_number == 3) {
2501 								rest_addr =
2502 								    0x1fff;
2503 								sec_mask =
2504 								    0x1e000;
2505 							} else if (
2506 							    sec_number == 4) {
2507 								rest_addr =
2508 								    0x3fff;
2509 								sec_mask =
2510 								    0x1c000;
2511 							}
2512 						}
2513 					}
2514 				} else if (addr == ha->optrom_size / 2) {
2515 					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2516 					RD_REG_WORD(&reg->nvram);
2517 				}
2518 
2519 				if (flash_id == 0xda && man_id == 0xc1) {
2520 					qla2x00_write_flash_byte(ha, 0x5555,
2521 					    0xaa);
2522 					qla2x00_write_flash_byte(ha, 0x2aaa,
2523 					    0x55);
2524 					qla2x00_write_flash_byte(ha, 0x5555,
2525 					    0xa0);
2526 				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2527 					/* Then erase it */
2528 					if (qla2x00_erase_flash_sector(ha,
2529 					    addr, sec_mask, man_id,
2530 					    flash_id)) {
2531 						rval = QLA_FUNCTION_FAILED;
2532 						break;
2533 					}
2534 					if (man_id == 0x01 && flash_id == 0x6d)
2535 						sec_number++;
2536 				}
2537 			}
2538 
2539 			if (man_id == 0x01 && flash_id == 0x6d) {
2540 				if (sec_number == 1 &&
2541 				    addr == (rest_addr - 1)) {
2542 					rest_addr = 0x0fff;
2543 					sec_mask   = 0x1f000;
2544 				} else if (sec_number == 3 && (addr & 0x7ffe)) {
2545 					rest_addr = 0x3fff;
2546 					sec_mask   = 0x1c000;
2547 				}
2548 			}
2549 
2550 			if (qla2x00_program_flash_address(ha, addr, data,
2551 			    man_id, flash_id)) {
2552 				rval = QLA_FUNCTION_FAILED;
2553 				break;
2554 			}
2555 			cond_resched();
2556 		}
2557 	} while (0);
2558 	qla2x00_flash_disable(ha);
2559 
2560 	/* Resume HBA. */
2561 	qla2x00_resume_hba(vha);
2562 
2563 	return rval;
2564 }
2565 
2566 uint8_t *
2567 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2568     uint32_t offset, uint32_t length)
2569 {
2570 	struct qla_hw_data *ha = vha->hw;
2571 
2572 	/* Suspend HBA. */
2573 	scsi_block_requests(vha->host);
2574 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2575 
2576 	/* Go with read. */
2577 	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2578 
2579 	/* Resume HBA. */
2580 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2581 	scsi_unblock_requests(vha->host);
2582 
2583 	return buf;
2584 }
2585 
2586 int
2587 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2588     uint32_t offset, uint32_t length)
2589 {
2590 	int rval;
2591 	struct qla_hw_data *ha = vha->hw;
2592 
2593 	/* Suspend HBA. */
2594 	scsi_block_requests(vha->host);
2595 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2596 
2597 	/* Go with write. */
2598 	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2599 	    length >> 2);
2600 
2601 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2602 	scsi_unblock_requests(vha->host);
2603 
2604 	return rval;
2605 }
2606 
2607 uint8_t *
2608 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2609     uint32_t offset, uint32_t length)
2610 {
2611 	int rval;
2612 	dma_addr_t optrom_dma;
2613 	void *optrom;
2614 	uint8_t *pbuf;
2615 	uint32_t faddr, left, burst;
2616 	struct qla_hw_data *ha = vha->hw;
2617 
2618 	if (IS_QLA25XX(ha) || IS_QLA81XX(ha) || IS_QLA83XX(ha) ||
2619 	    IS_QLA27XX(ha))
2620 		goto try_fast;
2621 	if (offset & 0xfff)
2622 		goto slow_read;
2623 	if (length < OPTROM_BURST_SIZE)
2624 		goto slow_read;
2625 
2626 try_fast:
2627 	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2628 	    &optrom_dma, GFP_KERNEL);
2629 	if (!optrom) {
2630 		ql_log(ql_log_warn, vha, 0x00cc,
2631 		    "Unable to allocate memory for optrom burst read (%x KB).\n",
2632 		    OPTROM_BURST_SIZE / 1024);
2633 		goto slow_read;
2634 	}
2635 
2636 	pbuf = buf;
2637 	faddr = offset >> 2;
2638 	left = length >> 2;
2639 	burst = OPTROM_BURST_DWORDS;
2640 	while (left != 0) {
2641 		if (burst > left)
2642 			burst = left;
2643 
2644 		rval = qla2x00_dump_ram(vha, optrom_dma,
2645 		    flash_data_addr(ha, faddr), burst);
2646 		if (rval) {
2647 			ql_log(ql_log_warn, vha, 0x00f5,
2648 			    "Unable to burst-read optrom segment (%x/%x/%llx).\n",
2649 			    rval, flash_data_addr(ha, faddr),
2650 			    (unsigned long long)optrom_dma);
2651 			ql_log(ql_log_warn, vha, 0x00f6,
2652 			    "Reverting to slow-read.\n");
2653 
2654 			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2655 			    optrom, optrom_dma);
2656 			goto slow_read;
2657 		}
2658 
2659 		memcpy(pbuf, optrom, burst * 4);
2660 
2661 		left -= burst;
2662 		faddr += burst;
2663 		pbuf += burst * 4;
2664 	}
2665 
2666 	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2667 	    optrom_dma);
2668 
2669 	return buf;
2670 
2671 slow_read:
2672     return qla24xx_read_optrom_data(vha, buf, offset, length);
2673 }
2674 
2675 /**
2676  * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2677  * @ha: HA context
2678  * @pcids: Pointer to the FCODE PCI data structure
2679  *
2680  * The process of retrieving the FCODE version information is at best
2681  * described as interesting.
2682  *
2683  * Within the first 100h bytes of the image an ASCII string is present
2684  * which contains several pieces of information including the FCODE
2685  * version.  Unfortunately it seems the only reliable way to retrieve
2686  * the version is by scanning for another sentinel within the string,
2687  * the FCODE build date:
2688  *
2689  *	... 2.00.02 10/17/02 ...
2690  *
2691  * Returns QLA_SUCCESS on successful retrieval of version.
2692  */
2693 static void
2694 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2695 {
2696 	int ret = QLA_FUNCTION_FAILED;
2697 	uint32_t istart, iend, iter, vend;
2698 	uint8_t do_next, rbyte, *vbyte;
2699 
2700 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2701 
2702 	/* Skip the PCI data structure. */
2703 	istart = pcids +
2704 	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2705 		qla2x00_read_flash_byte(ha, pcids + 0x0A));
2706 	iend = istart + 0x100;
2707 	do {
2708 		/* Scan for the sentinel date string...eeewww. */
2709 		do_next = 0;
2710 		iter = istart;
2711 		while ((iter < iend) && !do_next) {
2712 			iter++;
2713 			if (qla2x00_read_flash_byte(ha, iter) == '/') {
2714 				if (qla2x00_read_flash_byte(ha, iter + 2) ==
2715 				    '/')
2716 					do_next++;
2717 				else if (qla2x00_read_flash_byte(ha,
2718 				    iter + 3) == '/')
2719 					do_next++;
2720 			}
2721 		}
2722 		if (!do_next)
2723 			break;
2724 
2725 		/* Backtrack to previous ' ' (space). */
2726 		do_next = 0;
2727 		while ((iter > istart) && !do_next) {
2728 			iter--;
2729 			if (qla2x00_read_flash_byte(ha, iter) == ' ')
2730 				do_next++;
2731 		}
2732 		if (!do_next)
2733 			break;
2734 
2735 		/*
2736 		 * Mark end of version tag, and find previous ' ' (space) or
2737 		 * string length (recent FCODE images -- major hack ahead!!!).
2738 		 */
2739 		vend = iter - 1;
2740 		do_next = 0;
2741 		while ((iter > istart) && !do_next) {
2742 			iter--;
2743 			rbyte = qla2x00_read_flash_byte(ha, iter);
2744 			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2745 				do_next++;
2746 		}
2747 		if (!do_next)
2748 			break;
2749 
2750 		/* Mark beginning of version tag, and copy data. */
2751 		iter++;
2752 		if ((vend - iter) &&
2753 		    ((vend - iter) < sizeof(ha->fcode_revision))) {
2754 			vbyte = ha->fcode_revision;
2755 			while (iter <= vend) {
2756 				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
2757 				iter++;
2758 			}
2759 			ret = QLA_SUCCESS;
2760 		}
2761 	} while (0);
2762 
2763 	if (ret != QLA_SUCCESS)
2764 		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2765 }
2766 
2767 int
2768 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2769 {
2770 	int ret = QLA_SUCCESS;
2771 	uint8_t code_type, last_image;
2772 	uint32_t pcihdr, pcids;
2773 	uint8_t *dbyte;
2774 	uint16_t *dcode;
2775 	struct qla_hw_data *ha = vha->hw;
2776 
2777 	if (!ha->pio_address || !mbuf)
2778 		return QLA_FUNCTION_FAILED;
2779 
2780 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2781 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2782 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2783 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2784 
2785 	qla2x00_flash_enable(ha);
2786 
2787 	/* Begin with first PCI expansion ROM header. */
2788 	pcihdr = 0;
2789 	last_image = 1;
2790 	do {
2791 		/* Verify PCI expansion ROM header. */
2792 		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2793 		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2794 			/* No signature */
2795 			ql_log(ql_log_fatal, vha, 0x0050,
2796 			    "No matching ROM signature.\n");
2797 			ret = QLA_FUNCTION_FAILED;
2798 			break;
2799 		}
2800 
2801 		/* Locate PCI data structure. */
2802 		pcids = pcihdr +
2803 		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2804 			qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2805 
2806 		/* Validate signature of PCI data structure. */
2807 		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2808 		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2809 		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2810 		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2811 			/* Incorrect header. */
2812 			ql_log(ql_log_fatal, vha, 0x0051,
2813 			    "PCI data struct not found pcir_adr=%x.\n", pcids);
2814 			ret = QLA_FUNCTION_FAILED;
2815 			break;
2816 		}
2817 
2818 		/* Read version */
2819 		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2820 		switch (code_type) {
2821 		case ROM_CODE_TYPE_BIOS:
2822 			/* Intel x86, PC-AT compatible. */
2823 			ha->bios_revision[0] =
2824 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2825 			ha->bios_revision[1] =
2826 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2827 			ql_dbg(ql_dbg_init, vha, 0x0052,
2828 			    "Read BIOS %d.%d.\n",
2829 			    ha->bios_revision[1], ha->bios_revision[0]);
2830 			break;
2831 		case ROM_CODE_TYPE_FCODE:
2832 			/* Open Firmware standard for PCI (FCode). */
2833 			/* Eeeewww... */
2834 			qla2x00_get_fcode_version(ha, pcids);
2835 			break;
2836 		case ROM_CODE_TYPE_EFI:
2837 			/* Extensible Firmware Interface (EFI). */
2838 			ha->efi_revision[0] =
2839 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2840 			ha->efi_revision[1] =
2841 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2842 			ql_dbg(ql_dbg_init, vha, 0x0053,
2843 			    "Read EFI %d.%d.\n",
2844 			    ha->efi_revision[1], ha->efi_revision[0]);
2845 			break;
2846 		default:
2847 			ql_log(ql_log_warn, vha, 0x0054,
2848 			    "Unrecognized code type %x at pcids %x.\n",
2849 			    code_type, pcids);
2850 			break;
2851 		}
2852 
2853 		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2854 
2855 		/* Locate next PCI expansion ROM. */
2856 		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2857 		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2858 	} while (!last_image);
2859 
2860 	if (IS_QLA2322(ha)) {
2861 		/* Read firmware image information. */
2862 		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2863 		dbyte = mbuf;
2864 		memset(dbyte, 0, 8);
2865 		dcode = (uint16_t *)dbyte;
2866 
2867 		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2868 		    8);
2869 		ql_dbg(ql_dbg_init + ql_dbg_buffer, vha, 0x010a,
2870 		    "Dumping fw "
2871 		    "ver from flash:.\n");
2872 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010b,
2873 		    (uint8_t *)dbyte, 8);
2874 
2875 		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2876 		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2877 		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2878 		    dcode[3] == 0)) {
2879 			ql_log(ql_log_warn, vha, 0x0057,
2880 			    "Unrecognized fw revision at %x.\n",
2881 			    ha->flt_region_fw * 4);
2882 		} else {
2883 			/* values are in big endian */
2884 			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2885 			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2886 			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2887 			ql_dbg(ql_dbg_init, vha, 0x0058,
2888 			    "FW Version: "
2889 			    "%d.%d.%d.\n", ha->fw_revision[0],
2890 			    ha->fw_revision[1], ha->fw_revision[2]);
2891 		}
2892 	}
2893 
2894 	qla2x00_flash_disable(ha);
2895 
2896 	return ret;
2897 }
2898 
2899 int
2900 qla82xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2901 {
2902 	int ret = QLA_SUCCESS;
2903 	uint32_t pcihdr, pcids;
2904 	uint32_t *dcode;
2905 	uint8_t *bcode;
2906 	uint8_t code_type, last_image;
2907 	struct qla_hw_data *ha = vha->hw;
2908 
2909 	if (!mbuf)
2910 		return QLA_FUNCTION_FAILED;
2911 
2912 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2913 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2914 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2915 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2916 
2917 	dcode = mbuf;
2918 
2919 	/* Begin with first PCI expansion ROM header. */
2920 	pcihdr = ha->flt_region_boot << 2;
2921 	last_image = 1;
2922 	do {
2923 		/* Verify PCI expansion ROM header. */
2924 		ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, pcihdr,
2925 		    0x20 * 4);
2926 		bcode = mbuf + (pcihdr % 4);
2927 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2928 			/* No signature */
2929 			ql_log(ql_log_fatal, vha, 0x0154,
2930 			    "No matching ROM signature.\n");
2931 			ret = QLA_FUNCTION_FAILED;
2932 			break;
2933 		}
2934 
2935 		/* Locate PCI data structure. */
2936 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2937 
2938 		ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, pcids,
2939 		    0x20 * 4);
2940 		bcode = mbuf + (pcihdr % 4);
2941 
2942 		/* Validate signature of PCI data structure. */
2943 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2944 		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2945 			/* Incorrect header. */
2946 			ql_log(ql_log_fatal, vha, 0x0155,
2947 			    "PCI data struct not found pcir_adr=%x.\n", pcids);
2948 			ret = QLA_FUNCTION_FAILED;
2949 			break;
2950 		}
2951 
2952 		/* Read version */
2953 		code_type = bcode[0x14];
2954 		switch (code_type) {
2955 		case ROM_CODE_TYPE_BIOS:
2956 			/* Intel x86, PC-AT compatible. */
2957 			ha->bios_revision[0] = bcode[0x12];
2958 			ha->bios_revision[1] = bcode[0x13];
2959 			ql_dbg(ql_dbg_init, vha, 0x0156,
2960 			    "Read BIOS %d.%d.\n",
2961 			    ha->bios_revision[1], ha->bios_revision[0]);
2962 			break;
2963 		case ROM_CODE_TYPE_FCODE:
2964 			/* Open Firmware standard for PCI (FCode). */
2965 			ha->fcode_revision[0] = bcode[0x12];
2966 			ha->fcode_revision[1] = bcode[0x13];
2967 			ql_dbg(ql_dbg_init, vha, 0x0157,
2968 			    "Read FCODE %d.%d.\n",
2969 			    ha->fcode_revision[1], ha->fcode_revision[0]);
2970 			break;
2971 		case ROM_CODE_TYPE_EFI:
2972 			/* Extensible Firmware Interface (EFI). */
2973 			ha->efi_revision[0] = bcode[0x12];
2974 			ha->efi_revision[1] = bcode[0x13];
2975 			ql_dbg(ql_dbg_init, vha, 0x0158,
2976 			    "Read EFI %d.%d.\n",
2977 			    ha->efi_revision[1], ha->efi_revision[0]);
2978 			break;
2979 		default:
2980 			ql_log(ql_log_warn, vha, 0x0159,
2981 			    "Unrecognized code type %x at pcids %x.\n",
2982 			    code_type, pcids);
2983 			break;
2984 		}
2985 
2986 		last_image = bcode[0x15] & BIT_7;
2987 
2988 		/* Locate next PCI expansion ROM. */
2989 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2990 	} while (!last_image);
2991 
2992 	/* Read firmware image information. */
2993 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2994 	dcode = mbuf;
2995 	ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, ha->flt_region_fw << 2,
2996 	    0x20);
2997 	bcode = mbuf + (pcihdr % 4);
2998 
2999 	/* Validate signature of PCI data structure. */
3000 	if (bcode[0x0] == 0x3 && bcode[0x1] == 0x0 &&
3001 	    bcode[0x2] == 0x40 && bcode[0x3] == 0x40) {
3002 		ha->fw_revision[0] = bcode[0x4];
3003 		ha->fw_revision[1] = bcode[0x5];
3004 		ha->fw_revision[2] = bcode[0x6];
3005 		ql_dbg(ql_dbg_init, vha, 0x0153,
3006 		    "Firmware revision %d.%d.%d\n",
3007 		    ha->fw_revision[0], ha->fw_revision[1],
3008 		    ha->fw_revision[2]);
3009 	}
3010 
3011 	return ret;
3012 }
3013 
3014 int
3015 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
3016 {
3017 	int ret = QLA_SUCCESS;
3018 	uint32_t pcihdr, pcids;
3019 	uint32_t *dcode;
3020 	uint8_t *bcode;
3021 	uint8_t code_type, last_image;
3022 	int i;
3023 	struct qla_hw_data *ha = vha->hw;
3024 	uint32_t faddr = 0;
3025 
3026 	pcihdr = pcids = 0;
3027 
3028 	if (IS_P3P_TYPE(ha))
3029 		return ret;
3030 
3031 	if (!mbuf)
3032 		return QLA_FUNCTION_FAILED;
3033 
3034 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
3035 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
3036 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
3037 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
3038 
3039 	dcode = mbuf;
3040 	pcihdr = ha->flt_region_boot << 2;
3041 	if (IS_QLA27XX(ha) &&
3042 	    qla27xx_find_valid_image(vha) == QLA27XX_SECONDARY_IMAGE)
3043 		pcihdr = ha->flt_region_boot_sec << 2;
3044 
3045 	last_image = 1;
3046 	do {
3047 		/* Verify PCI expansion ROM header. */
3048 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
3049 		bcode = mbuf + (pcihdr % 4);
3050 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
3051 			/* No signature */
3052 			ql_log(ql_log_fatal, vha, 0x0059,
3053 			    "No matching ROM signature.\n");
3054 			ret = QLA_FUNCTION_FAILED;
3055 			break;
3056 		}
3057 
3058 		/* Locate PCI data structure. */
3059 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
3060 
3061 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
3062 		bcode = mbuf + (pcihdr % 4);
3063 
3064 		/* Validate signature of PCI data structure. */
3065 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
3066 		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
3067 			/* Incorrect header. */
3068 			ql_log(ql_log_fatal, vha, 0x005a,
3069 			    "PCI data struct not found pcir_adr=%x.\n", pcids);
3070 			ret = QLA_FUNCTION_FAILED;
3071 			break;
3072 		}
3073 
3074 		/* Read version */
3075 		code_type = bcode[0x14];
3076 		switch (code_type) {
3077 		case ROM_CODE_TYPE_BIOS:
3078 			/* Intel x86, PC-AT compatible. */
3079 			ha->bios_revision[0] = bcode[0x12];
3080 			ha->bios_revision[1] = bcode[0x13];
3081 			ql_dbg(ql_dbg_init, vha, 0x005b,
3082 			    "Read BIOS %d.%d.\n",
3083 			    ha->bios_revision[1], ha->bios_revision[0]);
3084 			break;
3085 		case ROM_CODE_TYPE_FCODE:
3086 			/* Open Firmware standard for PCI (FCode). */
3087 			ha->fcode_revision[0] = bcode[0x12];
3088 			ha->fcode_revision[1] = bcode[0x13];
3089 			ql_dbg(ql_dbg_init, vha, 0x005c,
3090 			    "Read FCODE %d.%d.\n",
3091 			    ha->fcode_revision[1], ha->fcode_revision[0]);
3092 			break;
3093 		case ROM_CODE_TYPE_EFI:
3094 			/* Extensible Firmware Interface (EFI). */
3095 			ha->efi_revision[0] = bcode[0x12];
3096 			ha->efi_revision[1] = bcode[0x13];
3097 			ql_dbg(ql_dbg_init, vha, 0x005d,
3098 			    "Read EFI %d.%d.\n",
3099 			    ha->efi_revision[1], ha->efi_revision[0]);
3100 			break;
3101 		default:
3102 			ql_log(ql_log_warn, vha, 0x005e,
3103 			    "Unrecognized code type %x at pcids %x.\n",
3104 			    code_type, pcids);
3105 			break;
3106 		}
3107 
3108 		last_image = bcode[0x15] & BIT_7;
3109 
3110 		/* Locate next PCI expansion ROM. */
3111 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
3112 	} while (!last_image);
3113 
3114 	/* Read firmware image information. */
3115 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
3116 	dcode = mbuf;
3117 	faddr = ha->flt_region_fw;
3118 	if (IS_QLA27XX(ha) &&
3119 	    qla27xx_find_valid_image(vha) == QLA27XX_SECONDARY_IMAGE)
3120 		faddr = ha->flt_region_fw_sec;
3121 
3122 	qla24xx_read_flash_data(vha, dcode, faddr + 4, 4);
3123 	for (i = 0; i < 4; i++)
3124 		dcode[i] = be32_to_cpu(dcode[i]);
3125 
3126 	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
3127 	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
3128 	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
3129 	    dcode[3] == 0)) {
3130 		ql_log(ql_log_warn, vha, 0x005f,
3131 		    "Unrecognized fw revision at %x.\n",
3132 		    ha->flt_region_fw * 4);
3133 	} else {
3134 		ha->fw_revision[0] = dcode[0];
3135 		ha->fw_revision[1] = dcode[1];
3136 		ha->fw_revision[2] = dcode[2];
3137 		ha->fw_revision[3] = dcode[3];
3138 		ql_dbg(ql_dbg_init, vha, 0x0060,
3139 		    "Firmware revision %d.%d.%d (%x).\n",
3140 		    ha->fw_revision[0], ha->fw_revision[1],
3141 		    ha->fw_revision[2], ha->fw_revision[3]);
3142 	}
3143 
3144 	/* Check for golden firmware and get version if available */
3145 	if (!IS_QLA81XX(ha)) {
3146 		/* Golden firmware is not present in non 81XX adapters */
3147 		return ret;
3148 	}
3149 
3150 	memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version));
3151 	dcode = mbuf;
3152 	ha->isp_ops->read_optrom(vha, (uint8_t *)dcode,
3153 	    ha->flt_region_gold_fw << 2, 32);
3154 
3155 	if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF &&
3156 	    dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) {
3157 		ql_log(ql_log_warn, vha, 0x0056,
3158 		    "Unrecognized golden fw at 0x%x.\n",
3159 		    ha->flt_region_gold_fw * 4);
3160 		return ret;
3161 	}
3162 
3163 	for (i = 4; i < 8; i++)
3164 		ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]);
3165 
3166 	return ret;
3167 }
3168 
3169 static int
3170 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
3171 {
3172 	if (pos >= end || *pos != 0x82)
3173 		return 0;
3174 
3175 	pos += 3 + pos[1];
3176 	if (pos >= end || *pos != 0x90)
3177 		return 0;
3178 
3179 	pos += 3 + pos[1];
3180 	if (pos >= end || *pos != 0x78)
3181 		return 0;
3182 
3183 	return 1;
3184 }
3185 
3186 int
3187 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
3188 {
3189 	struct qla_hw_data *ha = vha->hw;
3190 	uint8_t *pos = ha->vpd;
3191 	uint8_t *end = pos + ha->vpd_size;
3192 	int len = 0;
3193 
3194 	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
3195 		return 0;
3196 
3197 	while (pos < end && *pos != 0x78) {
3198 		len = (*pos == 0x82) ? pos[1] : pos[2];
3199 
3200 		if (!strncmp(pos, key, strlen(key)))
3201 			break;
3202 
3203 		if (*pos != 0x90 && *pos != 0x91)
3204 			pos += len;
3205 
3206 		pos += 3;
3207 	}
3208 
3209 	if (pos < end - len && *pos != 0x78)
3210 		return scnprintf(str, size, "%.*s", len, pos + 3);
3211 
3212 	return 0;
3213 }
3214 
3215 int
3216 qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha)
3217 {
3218 	int len, max_len;
3219 	uint32_t fcp_prio_addr;
3220 	struct qla_hw_data *ha = vha->hw;
3221 
3222 	if (!ha->fcp_prio_cfg) {
3223 		ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE);
3224 		if (!ha->fcp_prio_cfg) {
3225 			ql_log(ql_log_warn, vha, 0x00d5,
3226 			    "Unable to allocate memory for fcp priority data (%x).\n",
3227 			    FCP_PRIO_CFG_SIZE);
3228 			return QLA_FUNCTION_FAILED;
3229 		}
3230 	}
3231 	memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE);
3232 
3233 	fcp_prio_addr = ha->flt_region_fcp_prio;
3234 
3235 	/* first read the fcp priority data header from flash */
3236 	ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
3237 			fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);
3238 
3239 	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 0))
3240 		goto fail;
3241 
3242 	/* read remaining FCP CMD config data from flash */
3243 	fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
3244 	len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
3245 	max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE;
3246 
3247 	ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
3248 			fcp_prio_addr << 2, (len < max_len ? len : max_len));
3249 
3250 	/* revalidate the entire FCP priority config data, including entries */
3251 	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 1))
3252 		goto fail;
3253 
3254 	ha->flags.fcp_prio_enabled = 1;
3255 	return QLA_SUCCESS;
3256 fail:
3257 	vfree(ha->fcp_prio_cfg);
3258 	ha->fcp_prio_cfg = NULL;
3259 	return QLA_FUNCTION_FAILED;
3260 }
3261