xref: /openbmc/linux/drivers/scsi/qla2xxx/qla_sup.c (revision 12eb4683)
1 /*
2  * QLogic Fibre Channel HBA Driver
3  * Copyright (c)  2003-2013 QLogic Corporation
4  *
5  * See LICENSE.qla2xxx for copyright and licensing details.
6  */
7 #include "qla_def.h"
8 
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/vmalloc.h>
12 #include <asm/uaccess.h>
13 
14 /*
15  * NVRAM support routines
16  */
17 
18 /**
19  * qla2x00_lock_nvram_access() -
20  * @ha: HA context
21  */
22 static void
23 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
24 {
25 	uint16_t data;
26 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
27 
28 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
29 		data = RD_REG_WORD(&reg->nvram);
30 		while (data & NVR_BUSY) {
31 			udelay(100);
32 			data = RD_REG_WORD(&reg->nvram);
33 		}
34 
35 		/* Lock resource */
36 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
37 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
38 		udelay(5);
39 		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
40 		while ((data & BIT_0) == 0) {
41 			/* Lock failed */
42 			udelay(100);
43 			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
44 			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
45 			udelay(5);
46 			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
47 		}
48 	}
49 }
50 
51 /**
52  * qla2x00_unlock_nvram_access() -
53  * @ha: HA context
54  */
55 static void
56 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
57 {
58 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
59 
60 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
61 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
62 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
63 	}
64 }
65 
66 /**
67  * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
68  * @ha: HA context
69  * @data: Serial interface selector
70  */
71 static void
72 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
73 {
74 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
75 
76 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
77 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
78 	NVRAM_DELAY();
79 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
80 	    NVR_WRT_ENABLE);
81 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
82 	NVRAM_DELAY();
83 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
84 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
85 	NVRAM_DELAY();
86 }
87 
88 /**
89  * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
90  *	NVRAM.
91  * @ha: HA context
92  * @nv_cmd: NVRAM command
93  *
94  * Bit definitions for NVRAM command:
95  *
96  *	Bit 26     = start bit
97  *	Bit 25, 24 = opcode
98  *	Bit 23-16  = address
99  *	Bit 15-0   = write data
100  *
101  * Returns the word read from nvram @addr.
102  */
103 static uint16_t
104 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
105 {
106 	uint8_t		cnt;
107 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
108 	uint16_t	data = 0;
109 	uint16_t	reg_data;
110 
111 	/* Send command to NVRAM. */
112 	nv_cmd <<= 5;
113 	for (cnt = 0; cnt < 11; cnt++) {
114 		if (nv_cmd & BIT_31)
115 			qla2x00_nv_write(ha, NVR_DATA_OUT);
116 		else
117 			qla2x00_nv_write(ha, 0);
118 		nv_cmd <<= 1;
119 	}
120 
121 	/* Read data from NVRAM. */
122 	for (cnt = 0; cnt < 16; cnt++) {
123 		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
124 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
125 		NVRAM_DELAY();
126 		data <<= 1;
127 		reg_data = RD_REG_WORD(&reg->nvram);
128 		if (reg_data & NVR_DATA_IN)
129 			data |= BIT_0;
130 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
131 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
132 		NVRAM_DELAY();
133 	}
134 
135 	/* Deselect chip. */
136 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
137 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
138 	NVRAM_DELAY();
139 
140 	return data;
141 }
142 
143 
144 /**
145  * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
146  *	request routine to get the word from NVRAM.
147  * @ha: HA context
148  * @addr: Address in NVRAM to read
149  *
150  * Returns the word read from nvram @addr.
151  */
152 static uint16_t
153 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
154 {
155 	uint16_t	data;
156 	uint32_t	nv_cmd;
157 
158 	nv_cmd = addr << 16;
159 	nv_cmd |= NV_READ_OP;
160 	data = qla2x00_nvram_request(ha, nv_cmd);
161 
162 	return (data);
163 }
164 
165 /**
166  * qla2x00_nv_deselect() - Deselect NVRAM operations.
167  * @ha: HA context
168  */
169 static void
170 qla2x00_nv_deselect(struct qla_hw_data *ha)
171 {
172 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
173 
174 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
175 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
176 	NVRAM_DELAY();
177 }
178 
179 /**
180  * qla2x00_write_nvram_word() - Write NVRAM data.
181  * @ha: HA context
182  * @addr: Address in NVRAM to write
183  * @data: word to program
184  */
185 static void
186 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
187 {
188 	int count;
189 	uint16_t word;
190 	uint32_t nv_cmd, wait_cnt;
191 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
192 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
193 
194 	qla2x00_nv_write(ha, NVR_DATA_OUT);
195 	qla2x00_nv_write(ha, 0);
196 	qla2x00_nv_write(ha, 0);
197 
198 	for (word = 0; word < 8; word++)
199 		qla2x00_nv_write(ha, NVR_DATA_OUT);
200 
201 	qla2x00_nv_deselect(ha);
202 
203 	/* Write data */
204 	nv_cmd = (addr << 16) | NV_WRITE_OP;
205 	nv_cmd |= data;
206 	nv_cmd <<= 5;
207 	for (count = 0; count < 27; count++) {
208 		if (nv_cmd & BIT_31)
209 			qla2x00_nv_write(ha, NVR_DATA_OUT);
210 		else
211 			qla2x00_nv_write(ha, 0);
212 
213 		nv_cmd <<= 1;
214 	}
215 
216 	qla2x00_nv_deselect(ha);
217 
218 	/* Wait for NVRAM to become ready */
219 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
220 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
221 	wait_cnt = NVR_WAIT_CNT;
222 	do {
223 		if (!--wait_cnt) {
224 			ql_dbg(ql_dbg_user, vha, 0x708d,
225 			    "NVRAM didn't go ready...\n");
226 			break;
227 		}
228 		NVRAM_DELAY();
229 		word = RD_REG_WORD(&reg->nvram);
230 	} while ((word & NVR_DATA_IN) == 0);
231 
232 	qla2x00_nv_deselect(ha);
233 
234 	/* Disable writes */
235 	qla2x00_nv_write(ha, NVR_DATA_OUT);
236 	for (count = 0; count < 10; count++)
237 		qla2x00_nv_write(ha, 0);
238 
239 	qla2x00_nv_deselect(ha);
240 }
241 
242 static int
243 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
244 	uint16_t data, uint32_t tmo)
245 {
246 	int ret, count;
247 	uint16_t word;
248 	uint32_t nv_cmd;
249 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
250 
251 	ret = QLA_SUCCESS;
252 
253 	qla2x00_nv_write(ha, NVR_DATA_OUT);
254 	qla2x00_nv_write(ha, 0);
255 	qla2x00_nv_write(ha, 0);
256 
257 	for (word = 0; word < 8; word++)
258 		qla2x00_nv_write(ha, NVR_DATA_OUT);
259 
260 	qla2x00_nv_deselect(ha);
261 
262 	/* Write data */
263 	nv_cmd = (addr << 16) | NV_WRITE_OP;
264 	nv_cmd |= data;
265 	nv_cmd <<= 5;
266 	for (count = 0; count < 27; count++) {
267 		if (nv_cmd & BIT_31)
268 			qla2x00_nv_write(ha, NVR_DATA_OUT);
269 		else
270 			qla2x00_nv_write(ha, 0);
271 
272 		nv_cmd <<= 1;
273 	}
274 
275 	qla2x00_nv_deselect(ha);
276 
277 	/* Wait for NVRAM to become ready */
278 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
279 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
280 	do {
281 		NVRAM_DELAY();
282 		word = RD_REG_WORD(&reg->nvram);
283 		if (!--tmo) {
284 			ret = QLA_FUNCTION_FAILED;
285 			break;
286 		}
287 	} while ((word & NVR_DATA_IN) == 0);
288 
289 	qla2x00_nv_deselect(ha);
290 
291 	/* Disable writes */
292 	qla2x00_nv_write(ha, NVR_DATA_OUT);
293 	for (count = 0; count < 10; count++)
294 		qla2x00_nv_write(ha, 0);
295 
296 	qla2x00_nv_deselect(ha);
297 
298 	return ret;
299 }
300 
301 /**
302  * qla2x00_clear_nvram_protection() -
303  * @ha: HA context
304  */
305 static int
306 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
307 {
308 	int ret, stat;
309 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
310 	uint32_t word, wait_cnt;
311 	uint16_t wprot, wprot_old;
312 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
313 
314 	/* Clear NVRAM write protection. */
315 	ret = QLA_FUNCTION_FAILED;
316 
317 	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319 	    __constant_cpu_to_le16(0x1234), 100000);
320 	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
321 	if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 		/* Write enable. */
323 		qla2x00_nv_write(ha, NVR_DATA_OUT);
324 		qla2x00_nv_write(ha, 0);
325 		qla2x00_nv_write(ha, 0);
326 		for (word = 0; word < 8; word++)
327 			qla2x00_nv_write(ha, NVR_DATA_OUT);
328 
329 		qla2x00_nv_deselect(ha);
330 
331 		/* Enable protection register. */
332 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
333 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
334 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
335 		for (word = 0; word < 8; word++)
336 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
337 
338 		qla2x00_nv_deselect(ha);
339 
340 		/* Clear protection register (ffff is cleared). */
341 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
343 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
344 		for (word = 0; word < 8; word++)
345 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
346 
347 		qla2x00_nv_deselect(ha);
348 
349 		/* Wait for NVRAM to become ready. */
350 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
352 		wait_cnt = NVR_WAIT_CNT;
353 		do {
354 			if (!--wait_cnt) {
355 				ql_dbg(ql_dbg_user, vha, 0x708e,
356 				    "NVRAM didn't go ready...\n");
357 				break;
358 			}
359 			NVRAM_DELAY();
360 			word = RD_REG_WORD(&reg->nvram);
361 		} while ((word & NVR_DATA_IN) == 0);
362 
363 		if (wait_cnt)
364 			ret = QLA_SUCCESS;
365 	} else
366 		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
367 
368 	return ret;
369 }
370 
371 static void
372 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
373 {
374 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
375 	uint32_t word, wait_cnt;
376 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
377 
378 	if (stat != QLA_SUCCESS)
379 		return;
380 
381 	/* Set NVRAM write protection. */
382 	/* Write enable. */
383 	qla2x00_nv_write(ha, NVR_DATA_OUT);
384 	qla2x00_nv_write(ha, 0);
385 	qla2x00_nv_write(ha, 0);
386 	for (word = 0; word < 8; word++)
387 		qla2x00_nv_write(ha, NVR_DATA_OUT);
388 
389 	qla2x00_nv_deselect(ha);
390 
391 	/* Enable protection register. */
392 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
393 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
394 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
395 	for (word = 0; word < 8; word++)
396 		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
397 
398 	qla2x00_nv_deselect(ha);
399 
400 	/* Enable protection register. */
401 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
402 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
403 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
404 	for (word = 0; word < 8; word++)
405 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
406 
407 	qla2x00_nv_deselect(ha);
408 
409 	/* Wait for NVRAM to become ready. */
410 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
412 	wait_cnt = NVR_WAIT_CNT;
413 	do {
414 		if (!--wait_cnt) {
415 			ql_dbg(ql_dbg_user, vha, 0x708f,
416 			    "NVRAM didn't go ready...\n");
417 			break;
418 		}
419 		NVRAM_DELAY();
420 		word = RD_REG_WORD(&reg->nvram);
421 	} while ((word & NVR_DATA_IN) == 0);
422 }
423 
424 
425 /*****************************************************************************/
426 /* Flash Manipulation Routines                                               */
427 /*****************************************************************************/
428 
429 static inline uint32_t
430 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
431 {
432 	return ha->flash_conf_off | faddr;
433 }
434 
435 static inline uint32_t
436 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
437 {
438 	return ha->flash_data_off | faddr;
439 }
440 
441 static inline uint32_t
442 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
443 {
444 	return ha->nvram_conf_off | naddr;
445 }
446 
447 static inline uint32_t
448 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
449 {
450 	return ha->nvram_data_off | naddr;
451 }
452 
453 static uint32_t
454 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
455 {
456 	int rval;
457 	uint32_t cnt, data;
458 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
459 
460 	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
461 	/* Wait for READ cycle to complete. */
462 	rval = QLA_SUCCESS;
463 	for (cnt = 3000;
464 	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
465 	    rval == QLA_SUCCESS; cnt--) {
466 		if (cnt)
467 			udelay(10);
468 		else
469 			rval = QLA_FUNCTION_TIMEOUT;
470 		cond_resched();
471 	}
472 
473 	/* TODO: What happens if we time out? */
474 	data = 0xDEADDEAD;
475 	if (rval == QLA_SUCCESS)
476 		data = RD_REG_DWORD(&reg->flash_data);
477 
478 	return data;
479 }
480 
481 uint32_t *
482 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
483     uint32_t dwords)
484 {
485 	uint32_t i;
486 	struct qla_hw_data *ha = vha->hw;
487 
488 	/* Dword reads to flash. */
489 	for (i = 0; i < dwords; i++, faddr++)
490 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
491 		    flash_data_addr(ha, faddr)));
492 
493 	return dwptr;
494 }
495 
496 static int
497 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
498 {
499 	int rval;
500 	uint32_t cnt;
501 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
502 
503 	WRT_REG_DWORD(&reg->flash_data, data);
504 	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
505 	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
506 	/* Wait for Write cycle to complete. */
507 	rval = QLA_SUCCESS;
508 	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
509 	    rval == QLA_SUCCESS; cnt--) {
510 		if (cnt)
511 			udelay(10);
512 		else
513 			rval = QLA_FUNCTION_TIMEOUT;
514 		cond_resched();
515 	}
516 	return rval;
517 }
518 
519 static void
520 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
521     uint8_t *flash_id)
522 {
523 	uint32_t ids;
524 
525 	ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
526 	*man_id = LSB(ids);
527 	*flash_id = MSB(ids);
528 
529 	/* Check if man_id and flash_id are valid. */
530 	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
531 		/* Read information using 0x9f opcode
532 		 * Device ID, Mfg ID would be read in the format:
533 		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
534 		 * Example: ATMEL 0x00 01 45 1F
535 		 * Extract MFG and Dev ID from last two bytes.
536 		 */
537 		ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
538 		*man_id = LSB(ids);
539 		*flash_id = MSB(ids);
540 	}
541 }
542 
543 static int
544 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
545 {
546 	const char *loc, *locations[] = { "DEF", "PCI" };
547 	uint32_t pcihdr, pcids;
548 	uint32_t *dcode;
549 	uint8_t *buf, *bcode, last_image;
550 	uint16_t cnt, chksum, *wptr;
551 	struct qla_flt_location *fltl;
552 	struct qla_hw_data *ha = vha->hw;
553 	struct req_que *req = ha->req_q_map[0];
554 
555 	/*
556 	 * FLT-location structure resides after the last PCI region.
557 	 */
558 
559 	/* Begin with sane defaults. */
560 	loc = locations[0];
561 	*start = 0;
562 	if (IS_QLA24XX_TYPE(ha))
563 		*start = FA_FLASH_LAYOUT_ADDR_24;
564 	else if (IS_QLA25XX(ha))
565 		*start = FA_FLASH_LAYOUT_ADDR;
566 	else if (IS_QLA81XX(ha))
567 		*start = FA_FLASH_LAYOUT_ADDR_81;
568 	else if (IS_P3P_TYPE(ha)) {
569 		*start = FA_FLASH_LAYOUT_ADDR_82;
570 		goto end;
571 	} else if (IS_QLA83XX(ha)) {
572 		*start = FA_FLASH_LAYOUT_ADDR_83;
573 		goto end;
574 	}
575 	/* Begin with first PCI expansion ROM header. */
576 	buf = (uint8_t *)req->ring;
577 	dcode = (uint32_t *)req->ring;
578 	pcihdr = 0;
579 	last_image = 1;
580 	do {
581 		/* Verify PCI expansion ROM header. */
582 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
583 		bcode = buf + (pcihdr % 4);
584 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
585 			goto end;
586 
587 		/* Locate PCI data structure. */
588 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
589 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
590 		bcode = buf + (pcihdr % 4);
591 
592 		/* Validate signature of PCI data structure. */
593 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
594 		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
595 			goto end;
596 
597 		last_image = bcode[0x15] & BIT_7;
598 
599 		/* Locate next PCI expansion ROM. */
600 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
601 	} while (!last_image);
602 
603 	/* Now verify FLT-location structure. */
604 	fltl = (struct qla_flt_location *)req->ring;
605 	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
606 	    sizeof(struct qla_flt_location) >> 2);
607 	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
608 	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
609 		goto end;
610 
611 	wptr = (uint16_t *)req->ring;
612 	cnt = sizeof(struct qla_flt_location) >> 1;
613 	for (chksum = 0; cnt; cnt--)
614 		chksum += le16_to_cpu(*wptr++);
615 	if (chksum) {
616 		ql_log(ql_log_fatal, vha, 0x0045,
617 		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
618 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010e,
619 		    buf, sizeof(struct qla_flt_location));
620 		return QLA_FUNCTION_FAILED;
621 	}
622 
623 	/* Good data.  Use specified location. */
624 	loc = locations[1];
625 	*start = (le16_to_cpu(fltl->start_hi) << 16 |
626 	    le16_to_cpu(fltl->start_lo)) >> 2;
627 end:
628 	ql_dbg(ql_dbg_init, vha, 0x0046,
629 	    "FLTL[%s] = 0x%x.\n",
630 	    loc, *start);
631 	return QLA_SUCCESS;
632 }
633 
634 static void
635 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
636 {
637 	const char *loc, *locations[] = { "DEF", "FLT" };
638 	const uint32_t def_fw[] =
639 		{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
640 	const uint32_t def_boot[] =
641 		{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
642 	const uint32_t def_vpd_nvram[] =
643 		{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
644 	const uint32_t def_vpd0[] =
645 		{ 0, 0, FA_VPD0_ADDR_81 };
646 	const uint32_t def_vpd1[] =
647 		{ 0, 0, FA_VPD1_ADDR_81 };
648 	const uint32_t def_nvram0[] =
649 		{ 0, 0, FA_NVRAM0_ADDR_81 };
650 	const uint32_t def_nvram1[] =
651 		{ 0, 0, FA_NVRAM1_ADDR_81 };
652 	const uint32_t def_fdt[] =
653 		{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
654 			FA_FLASH_DESCR_ADDR_81 };
655 	const uint32_t def_npiv_conf0[] =
656 		{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
657 			FA_NPIV_CONF0_ADDR_81 };
658 	const uint32_t def_npiv_conf1[] =
659 		{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
660 			FA_NPIV_CONF1_ADDR_81 };
661 	const uint32_t fcp_prio_cfg0[] =
662 		{ FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25,
663 			0 };
664 	const uint32_t fcp_prio_cfg1[] =
665 		{ FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25,
666 			0 };
667 	uint32_t def;
668 	uint16_t *wptr;
669 	uint16_t cnt, chksum;
670 	uint32_t start;
671 	struct qla_flt_header *flt;
672 	struct qla_flt_region *region;
673 	struct qla_hw_data *ha = vha->hw;
674 	struct req_que *req = ha->req_q_map[0];
675 
676 	def = 0;
677 	if (IS_QLA25XX(ha))
678 		def = 1;
679 	else if (IS_QLA81XX(ha))
680 		def = 2;
681 
682 	/* Assign FCP prio region since older adapters may not have FLT, or
683 	   FCP prio region in it's FLT.
684 	 */
685 	ha->flt_region_fcp_prio = ha->flags.port0 ?
686 	    fcp_prio_cfg0[def] : fcp_prio_cfg1[def];
687 
688 	ha->flt_region_flt = flt_addr;
689 	wptr = (uint16_t *)req->ring;
690 	flt = (struct qla_flt_header *)req->ring;
691 	region = (struct qla_flt_region *)&flt[1];
692 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
693 	    flt_addr << 2, OPTROM_BURST_SIZE);
694 	if (*wptr == __constant_cpu_to_le16(0xffff))
695 		goto no_flash_data;
696 	if (flt->version != __constant_cpu_to_le16(1)) {
697 		ql_log(ql_log_warn, vha, 0x0047,
698 		    "Unsupported FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
699 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
700 		    le16_to_cpu(flt->checksum));
701 		goto no_flash_data;
702 	}
703 
704 	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
705 	for (chksum = 0; cnt; cnt--)
706 		chksum += le16_to_cpu(*wptr++);
707 	if (chksum) {
708 		ql_log(ql_log_fatal, vha, 0x0048,
709 		    "Inconsistent FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
710 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
711 		    le16_to_cpu(flt->checksum));
712 		goto no_flash_data;
713 	}
714 
715 	loc = locations[1];
716 	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
717 	for ( ; cnt; cnt--, region++) {
718 		/* Store addresses as DWORD offsets. */
719 		start = le32_to_cpu(region->start) >> 2;
720 		ql_dbg(ql_dbg_init, vha, 0x0049,
721 		    "FLT[%02x]: start=0x%x "
722 		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code) & 0xff,
723 		    start, le32_to_cpu(region->end) >> 2,
724 		    le32_to_cpu(region->size));
725 
726 		switch (le32_to_cpu(region->code) & 0xff) {
727 		case FLT_REG_FCOE_FW:
728 			if (!IS_QLA8031(ha))
729 				break;
730 			ha->flt_region_fw = start;
731 			break;
732 		case FLT_REG_FW:
733 			if (IS_QLA8031(ha))
734 				break;
735 			ha->flt_region_fw = start;
736 			break;
737 		case FLT_REG_BOOT_CODE:
738 			ha->flt_region_boot = start;
739 			break;
740 		case FLT_REG_VPD_0:
741 			if (IS_QLA8031(ha))
742 				break;
743 			ha->flt_region_vpd_nvram = start;
744 			if (IS_P3P_TYPE(ha))
745 				break;
746 			if (ha->flags.port0)
747 				ha->flt_region_vpd = start;
748 			break;
749 		case FLT_REG_VPD_1:
750 			if (IS_P3P_TYPE(ha) || IS_QLA8031(ha))
751 				break;
752 			if (!ha->flags.port0)
753 				ha->flt_region_vpd = start;
754 			break;
755 		case FLT_REG_NVRAM_0:
756 			if (IS_QLA8031(ha))
757 				break;
758 			if (ha->flags.port0)
759 				ha->flt_region_nvram = start;
760 			break;
761 		case FLT_REG_NVRAM_1:
762 			if (IS_QLA8031(ha))
763 				break;
764 			if (!ha->flags.port0)
765 				ha->flt_region_nvram = start;
766 			break;
767 		case FLT_REG_FDT:
768 			ha->flt_region_fdt = start;
769 			break;
770 		case FLT_REG_NPIV_CONF_0:
771 			if (ha->flags.port0)
772 				ha->flt_region_npiv_conf = start;
773 			break;
774 		case FLT_REG_NPIV_CONF_1:
775 			if (!ha->flags.port0)
776 				ha->flt_region_npiv_conf = start;
777 			break;
778 		case FLT_REG_GOLD_FW:
779 			ha->flt_region_gold_fw = start;
780 			break;
781 		case FLT_REG_FCP_PRIO_0:
782 			if (ha->flags.port0)
783 				ha->flt_region_fcp_prio = start;
784 			break;
785 		case FLT_REG_FCP_PRIO_1:
786 			if (!ha->flags.port0)
787 				ha->flt_region_fcp_prio = start;
788 			break;
789 		case FLT_REG_BOOT_CODE_82XX:
790 			ha->flt_region_boot = start;
791 			break;
792 		case FLT_REG_BOOT_CODE_8044:
793 			if (IS_QLA8044(ha))
794 				ha->flt_region_boot = start;
795 			break;
796 		case FLT_REG_FW_82XX:
797 			ha->flt_region_fw = start;
798 			break;
799 		case FLT_REG_CNA_FW:
800 			if (IS_CNA_CAPABLE(ha))
801 				ha->flt_region_fw = start;
802 			break;
803 		case FLT_REG_GOLD_FW_82XX:
804 			ha->flt_region_gold_fw = start;
805 			break;
806 		case FLT_REG_BOOTLOAD_82XX:
807 			ha->flt_region_bootload = start;
808 			break;
809 		case FLT_REG_VPD_8XXX:
810 			if (IS_CNA_CAPABLE(ha))
811 				ha->flt_region_vpd = start;
812 			break;
813 		case FLT_REG_FCOE_NVRAM_0:
814 			if (!(IS_QLA8031(ha) || IS_QLA8044(ha)))
815 				break;
816 			if (ha->flags.port0)
817 				ha->flt_region_nvram = start;
818 			break;
819 		case FLT_REG_FCOE_NVRAM_1:
820 			if (!(IS_QLA8031(ha) || IS_QLA8044(ha)))
821 				break;
822 			if (!ha->flags.port0)
823 				ha->flt_region_nvram = start;
824 			break;
825 		}
826 	}
827 	goto done;
828 
829 no_flash_data:
830 	/* Use hardcoded defaults. */
831 	loc = locations[0];
832 	ha->flt_region_fw = def_fw[def];
833 	ha->flt_region_boot = def_boot[def];
834 	ha->flt_region_vpd_nvram = def_vpd_nvram[def];
835 	ha->flt_region_vpd = ha->flags.port0 ?
836 	    def_vpd0[def] : def_vpd1[def];
837 	ha->flt_region_nvram = ha->flags.port0 ?
838 	    def_nvram0[def] : def_nvram1[def];
839 	ha->flt_region_fdt = def_fdt[def];
840 	ha->flt_region_npiv_conf = ha->flags.port0 ?
841 	    def_npiv_conf0[def] : def_npiv_conf1[def];
842 done:
843 	ql_dbg(ql_dbg_init, vha, 0x004a,
844 	    "FLT[%s]: boot=0x%x fw=0x%x vpd_nvram=0x%x vpd=0x%x nvram=0x%x "
845 	    "fdt=0x%x flt=0x%x npiv=0x%x fcp_prif_cfg=0x%x.\n",
846 	    loc, ha->flt_region_boot, ha->flt_region_fw,
847 	    ha->flt_region_vpd_nvram, ha->flt_region_vpd, ha->flt_region_nvram,
848 	    ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf,
849 	    ha->flt_region_fcp_prio);
850 }
851 
852 static void
853 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
854 {
855 #define FLASH_BLK_SIZE_4K	0x1000
856 #define FLASH_BLK_SIZE_32K	0x8000
857 #define FLASH_BLK_SIZE_64K	0x10000
858 	const char *loc, *locations[] = { "MID", "FDT" };
859 	uint16_t cnt, chksum;
860 	uint16_t *wptr;
861 	struct qla_fdt_layout *fdt;
862 	uint8_t	man_id, flash_id;
863 	uint16_t mid = 0, fid = 0;
864 	struct qla_hw_data *ha = vha->hw;
865 	struct req_que *req = ha->req_q_map[0];
866 
867 	wptr = (uint16_t *)req->ring;
868 	fdt = (struct qla_fdt_layout *)req->ring;
869 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
870 	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
871 	if (*wptr == __constant_cpu_to_le16(0xffff))
872 		goto no_flash_data;
873 	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
874 	    fdt->sig[3] != 'D')
875 		goto no_flash_data;
876 
877 	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
878 	    cnt++)
879 		chksum += le16_to_cpu(*wptr++);
880 	if (chksum) {
881 		ql_dbg(ql_dbg_init, vha, 0x004c,
882 		    "Inconsistent FDT detected:"
883 		    " checksum=0x%x id=%c version0x%x.\n", chksum,
884 		    fdt->sig[0], le16_to_cpu(fdt->version));
885 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x0113,
886 		    (uint8_t *)fdt, sizeof(*fdt));
887 		goto no_flash_data;
888 	}
889 
890 	loc = locations[1];
891 	mid = le16_to_cpu(fdt->man_id);
892 	fid = le16_to_cpu(fdt->id);
893 	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
894 	ha->fdt_wrt_enable = fdt->wrt_enable_bits;
895 	ha->fdt_wrt_sts_reg_cmd = fdt->wrt_sts_reg_cmd;
896 	if (IS_QLA8044(ha))
897 		ha->fdt_erase_cmd = fdt->erase_cmd;
898 	else
899 		ha->fdt_erase_cmd =
900 		    flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
901 	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
902 	if (fdt->unprotect_sec_cmd) {
903 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
904 		    fdt->unprotect_sec_cmd);
905 		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
906 		    flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
907 		    flash_conf_addr(ha, 0x0336);
908 	}
909 	goto done;
910 no_flash_data:
911 	loc = locations[0];
912 	if (IS_P3P_TYPE(ha)) {
913 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
914 		goto done;
915 	}
916 	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
917 	mid = man_id;
918 	fid = flash_id;
919 	ha->fdt_wrt_disable = 0x9c;
920 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
921 	switch (man_id) {
922 	case 0xbf: /* STT flash. */
923 		if (flash_id == 0x8e)
924 			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
925 		else
926 			ha->fdt_block_size = FLASH_BLK_SIZE_32K;
927 
928 		if (flash_id == 0x80)
929 			ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
930 		break;
931 	case 0x13: /* ST M25P80. */
932 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
933 		break;
934 	case 0x1f: /* Atmel 26DF081A. */
935 		ha->fdt_block_size = FLASH_BLK_SIZE_4K;
936 		ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
937 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
938 		ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
939 		break;
940 	default:
941 		/* Default to 64 kb sector size. */
942 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
943 		break;
944 	}
945 done:
946 	ql_dbg(ql_dbg_init, vha, 0x004d,
947 	    "FDT[%s]: (0x%x/0x%x) erase=0x%x "
948 	    "pr=%x wrtd=0x%x blk=0x%x.\n",
949 	    loc, mid, fid,
950 	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
951 	    ha->fdt_wrt_disable, ha->fdt_block_size);
952 
953 }
954 
955 static void
956 qla2xxx_get_idc_param(scsi_qla_host_t *vha)
957 {
958 #define QLA82XX_IDC_PARAM_ADDR       0x003e885c
959 	uint32_t *wptr;
960 	struct qla_hw_data *ha = vha->hw;
961 	struct req_que *req = ha->req_q_map[0];
962 
963 	if (!(IS_P3P_TYPE(ha)))
964 		return;
965 
966 	wptr = (uint32_t *)req->ring;
967 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
968 		QLA82XX_IDC_PARAM_ADDR , 8);
969 
970 	if (*wptr == __constant_cpu_to_le32(0xffffffff)) {
971 		ha->fcoe_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT;
972 		ha->fcoe_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT;
973 	} else {
974 		ha->fcoe_dev_init_timeout = le32_to_cpu(*wptr++);
975 		ha->fcoe_reset_timeout = le32_to_cpu(*wptr);
976 	}
977 	ql_dbg(ql_dbg_init, vha, 0x004e,
978 	    "fcoe_dev_init_timeout=%d "
979 	    "fcoe_reset_timeout=%d.\n", ha->fcoe_dev_init_timeout,
980 	    ha->fcoe_reset_timeout);
981 	return;
982 }
983 
984 int
985 qla2xxx_get_flash_info(scsi_qla_host_t *vha)
986 {
987 	int ret;
988 	uint32_t flt_addr;
989 	struct qla_hw_data *ha = vha->hw;
990 
991 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
992 	    !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha))
993 		return QLA_SUCCESS;
994 
995 	ret = qla2xxx_find_flt_start(vha, &flt_addr);
996 	if (ret != QLA_SUCCESS)
997 		return ret;
998 
999 	qla2xxx_get_flt_info(vha, flt_addr);
1000 	qla2xxx_get_fdt_info(vha);
1001 	qla2xxx_get_idc_param(vha);
1002 
1003 	return QLA_SUCCESS;
1004 }
1005 
1006 void
1007 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
1008 {
1009 #define NPIV_CONFIG_SIZE	(16*1024)
1010 	void *data;
1011 	uint16_t *wptr;
1012 	uint16_t cnt, chksum;
1013 	int i;
1014 	struct qla_npiv_header hdr;
1015 	struct qla_npiv_entry *entry;
1016 	struct qla_hw_data *ha = vha->hw;
1017 
1018 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
1019 	    !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha))
1020 		return;
1021 
1022 	if (ha->flags.nic_core_reset_hdlr_active)
1023 		return;
1024 
1025 	if (IS_QLA8044(ha))
1026 		return;
1027 
1028 	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
1029 	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
1030 	if (hdr.version == __constant_cpu_to_le16(0xffff))
1031 		return;
1032 	if (hdr.version != __constant_cpu_to_le16(1)) {
1033 		ql_dbg(ql_dbg_user, vha, 0x7090,
1034 		    "Unsupported NPIV-Config "
1035 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1036 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1037 		    le16_to_cpu(hdr.checksum));
1038 		return;
1039 	}
1040 
1041 	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
1042 	if (!data) {
1043 		ql_log(ql_log_warn, vha, 0x7091,
1044 		    "Unable to allocate memory for data.\n");
1045 		return;
1046 	}
1047 
1048 	ha->isp_ops->read_optrom(vha, (uint8_t *)data,
1049 	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
1050 
1051 	cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
1052 	    sizeof(struct qla_npiv_entry)) >> 1;
1053 	for (wptr = data, chksum = 0; cnt; cnt--)
1054 		chksum += le16_to_cpu(*wptr++);
1055 	if (chksum) {
1056 		ql_dbg(ql_dbg_user, vha, 0x7092,
1057 		    "Inconsistent NPIV-Config "
1058 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1059 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1060 		    le16_to_cpu(hdr.checksum));
1061 		goto done;
1062 	}
1063 
1064 	entry = data + sizeof(struct qla_npiv_header);
1065 	cnt = le16_to_cpu(hdr.entries);
1066 	for (i = 0; cnt; cnt--, entry++, i++) {
1067 		uint16_t flags;
1068 		struct fc_vport_identifiers vid;
1069 		struct fc_vport *vport;
1070 
1071 		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
1072 
1073 		flags = le16_to_cpu(entry->flags);
1074 		if (flags == 0xffff)
1075 			continue;
1076 		if ((flags & BIT_0) == 0)
1077 			continue;
1078 
1079 		memset(&vid, 0, sizeof(vid));
1080 		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
1081 		vid.vport_type = FC_PORTTYPE_NPIV;
1082 		vid.disable = false;
1083 		vid.port_name = wwn_to_u64(entry->port_name);
1084 		vid.node_name = wwn_to_u64(entry->node_name);
1085 
1086 		ql_dbg(ql_dbg_user, vha, 0x7093,
1087 		    "NPIV[%02x]: wwpn=%llx "
1088 		    "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
1089 		    (unsigned long long)vid.port_name,
1090 		    (unsigned long long)vid.node_name,
1091 		    le16_to_cpu(entry->vf_id),
1092 		    entry->q_qos, entry->f_qos);
1093 
1094 		if (i < QLA_PRECONFIG_VPORTS) {
1095 			vport = fc_vport_create(vha->host, 0, &vid);
1096 			if (!vport)
1097 				ql_log(ql_log_warn, vha, 0x7094,
1098 				    "NPIV-Config Failed to create vport [%02x]: "
1099 				    "wwpn=%llx wwnn=%llx.\n", cnt,
1100 				    (unsigned long long)vid.port_name,
1101 				    (unsigned long long)vid.node_name);
1102 		}
1103 	}
1104 done:
1105 	kfree(data);
1106 }
1107 
1108 static int
1109 qla24xx_unprotect_flash(scsi_qla_host_t *vha)
1110 {
1111 	struct qla_hw_data *ha = vha->hw;
1112 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1113 
1114 	if (ha->flags.fac_supported)
1115 		return qla81xx_fac_do_write_enable(vha, 1);
1116 
1117 	/* Enable flash write. */
1118 	WRT_REG_DWORD(&reg->ctrl_status,
1119 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1120 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1121 
1122 	if (!ha->fdt_wrt_disable)
1123 		goto done;
1124 
1125 	/* Disable flash write-protection, first clear SR protection bit */
1126 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1127 	/* Then write zero again to clear remaining SR bits.*/
1128 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1129 done:
1130 	return QLA_SUCCESS;
1131 }
1132 
1133 static int
1134 qla24xx_protect_flash(scsi_qla_host_t *vha)
1135 {
1136 	uint32_t cnt;
1137 	struct qla_hw_data *ha = vha->hw;
1138 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1139 
1140 	if (ha->flags.fac_supported)
1141 		return qla81xx_fac_do_write_enable(vha, 0);
1142 
1143 	if (!ha->fdt_wrt_disable)
1144 		goto skip_wrt_protect;
1145 
1146 	/* Enable flash write-protection and wait for completion. */
1147 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1148 	    ha->fdt_wrt_disable);
1149 	for (cnt = 300; cnt &&
1150 	    qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1151 	    cnt--) {
1152 		udelay(10);
1153 	}
1154 
1155 skip_wrt_protect:
1156 	/* Disable flash write. */
1157 	WRT_REG_DWORD(&reg->ctrl_status,
1158 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1159 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1160 
1161 	return QLA_SUCCESS;
1162 }
1163 
1164 static int
1165 qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
1166 {
1167 	struct qla_hw_data *ha = vha->hw;
1168 	uint32_t start, finish;
1169 
1170 	if (ha->flags.fac_supported) {
1171 		start = fdata >> 2;
1172 		finish = start + (ha->fdt_block_size >> 2) - 1;
1173 		return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
1174 		    start), flash_data_addr(ha, finish));
1175 	}
1176 
1177 	return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1178 	    (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
1179 	    ((fdata >> 16) & 0xff));
1180 }
1181 
1182 static int
1183 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1184     uint32_t dwords)
1185 {
1186 	int ret;
1187 	uint32_t liter;
1188 	uint32_t sec_mask, rest_addr;
1189 	uint32_t fdata;
1190 	dma_addr_t optrom_dma;
1191 	void *optrom = NULL;
1192 	struct qla_hw_data *ha = vha->hw;
1193 
1194 	/* Prepare burst-capable write on supported ISPs. */
1195 	if ((IS_QLA25XX(ha) || IS_QLA81XX(ha) || IS_QLA83XX(ha)) &&
1196 	    !(faddr & 0xfff) && dwords > OPTROM_BURST_DWORDS) {
1197 		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1198 		    &optrom_dma, GFP_KERNEL);
1199 		if (!optrom) {
1200 			ql_log(ql_log_warn, vha, 0x7095,
1201 			    "Unable to allocate "
1202 			    "memory for optrom burst write (%x KB).\n",
1203 			    OPTROM_BURST_SIZE / 1024);
1204 		}
1205 	}
1206 
1207 	rest_addr = (ha->fdt_block_size >> 2) - 1;
1208 	sec_mask = ~rest_addr;
1209 
1210 	ret = qla24xx_unprotect_flash(vha);
1211 	if (ret != QLA_SUCCESS) {
1212 		ql_log(ql_log_warn, vha, 0x7096,
1213 		    "Unable to unprotect flash for update.\n");
1214 		goto done;
1215 	}
1216 
1217 	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1218 		fdata = (faddr & sec_mask) << 2;
1219 
1220 		/* Are we at the beginning of a sector? */
1221 		if ((faddr & rest_addr) == 0) {
1222 			/* Do sector unprotect. */
1223 			if (ha->fdt_unprotect_sec_cmd)
1224 				qla24xx_write_flash_dword(ha,
1225 				    ha->fdt_unprotect_sec_cmd,
1226 				    (fdata & 0xff00) | ((fdata << 16) &
1227 				    0xff0000) | ((fdata >> 16) & 0xff));
1228 			ret = qla24xx_erase_sector(vha, fdata);
1229 			if (ret != QLA_SUCCESS) {
1230 				ql_dbg(ql_dbg_user, vha, 0x7007,
1231 				    "Unable to erase erase sector: address=%x.\n",
1232 				    faddr);
1233 				break;
1234 			}
1235 		}
1236 
1237 		/* Go with burst-write. */
1238 		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1239 			/* Copy data to DMA'ble buffer. */
1240 			memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1241 
1242 			ret = qla2x00_load_ram(vha, optrom_dma,
1243 			    flash_data_addr(ha, faddr),
1244 			    OPTROM_BURST_DWORDS);
1245 			if (ret != QLA_SUCCESS) {
1246 				ql_log(ql_log_warn, vha, 0x7097,
1247 				    "Unable to burst-write optrom segment "
1248 				    "(%x/%x/%llx).\n", ret,
1249 				    flash_data_addr(ha, faddr),
1250 				    (unsigned long long)optrom_dma);
1251 				ql_log(ql_log_warn, vha, 0x7098,
1252 				    "Reverting to slow-write.\n");
1253 
1254 				dma_free_coherent(&ha->pdev->dev,
1255 				    OPTROM_BURST_SIZE, optrom, optrom_dma);
1256 				optrom = NULL;
1257 			} else {
1258 				liter += OPTROM_BURST_DWORDS - 1;
1259 				faddr += OPTROM_BURST_DWORDS - 1;
1260 				dwptr += OPTROM_BURST_DWORDS - 1;
1261 				continue;
1262 			}
1263 		}
1264 
1265 		ret = qla24xx_write_flash_dword(ha,
1266 		    flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1267 		if (ret != QLA_SUCCESS) {
1268 			ql_dbg(ql_dbg_user, vha, 0x7006,
1269 			    "Unable to program flash address=%x data=%x.\n",
1270 			    faddr, *dwptr);
1271 			break;
1272 		}
1273 
1274 		/* Do sector protect. */
1275 		if (ha->fdt_unprotect_sec_cmd &&
1276 		    ((faddr & rest_addr) == rest_addr))
1277 			qla24xx_write_flash_dword(ha,
1278 			    ha->fdt_protect_sec_cmd,
1279 			    (fdata & 0xff00) | ((fdata << 16) &
1280 			    0xff0000) | ((fdata >> 16) & 0xff));
1281 	}
1282 
1283 	ret = qla24xx_protect_flash(vha);
1284 	if (ret != QLA_SUCCESS)
1285 		ql_log(ql_log_warn, vha, 0x7099,
1286 		    "Unable to protect flash after update.\n");
1287 done:
1288 	if (optrom)
1289 		dma_free_coherent(&ha->pdev->dev,
1290 		    OPTROM_BURST_SIZE, optrom, optrom_dma);
1291 
1292 	return ret;
1293 }
1294 
1295 uint8_t *
1296 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1297     uint32_t bytes)
1298 {
1299 	uint32_t i;
1300 	uint16_t *wptr;
1301 	struct qla_hw_data *ha = vha->hw;
1302 
1303 	/* Word reads to NVRAM via registers. */
1304 	wptr = (uint16_t *)buf;
1305 	qla2x00_lock_nvram_access(ha);
1306 	for (i = 0; i < bytes >> 1; i++, naddr++)
1307 		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1308 		    naddr));
1309 	qla2x00_unlock_nvram_access(ha);
1310 
1311 	return buf;
1312 }
1313 
1314 uint8_t *
1315 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1316     uint32_t bytes)
1317 {
1318 	uint32_t i;
1319 	uint32_t *dwptr;
1320 	struct qla_hw_data *ha = vha->hw;
1321 
1322 	if (IS_P3P_TYPE(ha))
1323 		return  buf;
1324 
1325 	/* Dword reads to flash. */
1326 	dwptr = (uint32_t *)buf;
1327 	for (i = 0; i < bytes >> 2; i++, naddr++)
1328 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1329 		    nvram_data_addr(ha, naddr)));
1330 
1331 	return buf;
1332 }
1333 
1334 int
1335 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1336     uint32_t bytes)
1337 {
1338 	int ret, stat;
1339 	uint32_t i;
1340 	uint16_t *wptr;
1341 	unsigned long flags;
1342 	struct qla_hw_data *ha = vha->hw;
1343 
1344 	ret = QLA_SUCCESS;
1345 
1346 	spin_lock_irqsave(&ha->hardware_lock, flags);
1347 	qla2x00_lock_nvram_access(ha);
1348 
1349 	/* Disable NVRAM write-protection. */
1350 	stat = qla2x00_clear_nvram_protection(ha);
1351 
1352 	wptr = (uint16_t *)buf;
1353 	for (i = 0; i < bytes >> 1; i++, naddr++) {
1354 		qla2x00_write_nvram_word(ha, naddr,
1355 		    cpu_to_le16(*wptr));
1356 		wptr++;
1357 	}
1358 
1359 	/* Enable NVRAM write-protection. */
1360 	qla2x00_set_nvram_protection(ha, stat);
1361 
1362 	qla2x00_unlock_nvram_access(ha);
1363 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1364 
1365 	return ret;
1366 }
1367 
1368 int
1369 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1370     uint32_t bytes)
1371 {
1372 	int ret;
1373 	uint32_t i;
1374 	uint32_t *dwptr;
1375 	struct qla_hw_data *ha = vha->hw;
1376 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1377 
1378 	ret = QLA_SUCCESS;
1379 
1380 	if (IS_P3P_TYPE(ha))
1381 		return ret;
1382 
1383 	/* Enable flash write. */
1384 	WRT_REG_DWORD(&reg->ctrl_status,
1385 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1386 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1387 
1388 	/* Disable NVRAM write-protection. */
1389 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1390 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1391 
1392 	/* Dword writes to flash. */
1393 	dwptr = (uint32_t *)buf;
1394 	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1395 		ret = qla24xx_write_flash_dword(ha,
1396 		    nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1397 		if (ret != QLA_SUCCESS) {
1398 			ql_dbg(ql_dbg_user, vha, 0x709a,
1399 			    "Unable to program nvram address=%x data=%x.\n",
1400 			    naddr, *dwptr);
1401 			break;
1402 		}
1403 	}
1404 
1405 	/* Enable NVRAM write-protection. */
1406 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1407 
1408 	/* Disable flash write. */
1409 	WRT_REG_DWORD(&reg->ctrl_status,
1410 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1411 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1412 
1413 	return ret;
1414 }
1415 
1416 uint8_t *
1417 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1418     uint32_t bytes)
1419 {
1420 	uint32_t i;
1421 	uint32_t *dwptr;
1422 	struct qla_hw_data *ha = vha->hw;
1423 
1424 	/* Dword reads to flash. */
1425 	dwptr = (uint32_t *)buf;
1426 	for (i = 0; i < bytes >> 2; i++, naddr++)
1427 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1428 		    flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1429 
1430 	return buf;
1431 }
1432 
1433 int
1434 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1435     uint32_t bytes)
1436 {
1437 	struct qla_hw_data *ha = vha->hw;
1438 #define RMW_BUFFER_SIZE	(64 * 1024)
1439 	uint8_t *dbuf;
1440 
1441 	dbuf = vmalloc(RMW_BUFFER_SIZE);
1442 	if (!dbuf)
1443 		return QLA_MEMORY_ALLOC_FAILED;
1444 	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1445 	    RMW_BUFFER_SIZE);
1446 	memcpy(dbuf + (naddr << 2), buf, bytes);
1447 	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1448 	    RMW_BUFFER_SIZE);
1449 	vfree(dbuf);
1450 
1451 	return QLA_SUCCESS;
1452 }
1453 
1454 static inline void
1455 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1456 {
1457 	if (IS_QLA2322(ha)) {
1458 		/* Flip all colors. */
1459 		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1460 			/* Turn off. */
1461 			ha->beacon_color_state = 0;
1462 			*pflags = GPIO_LED_ALL_OFF;
1463 		} else {
1464 			/* Turn on. */
1465 			ha->beacon_color_state = QLA_LED_ALL_ON;
1466 			*pflags = GPIO_LED_RGA_ON;
1467 		}
1468 	} else {
1469 		/* Flip green led only. */
1470 		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1471 			/* Turn off. */
1472 			ha->beacon_color_state = 0;
1473 			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1474 		} else {
1475 			/* Turn on. */
1476 			ha->beacon_color_state = QLA_LED_GRN_ON;
1477 			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1478 		}
1479 	}
1480 }
1481 
1482 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1483 
1484 void
1485 qla2x00_beacon_blink(struct scsi_qla_host *vha)
1486 {
1487 	uint16_t gpio_enable;
1488 	uint16_t gpio_data;
1489 	uint16_t led_color = 0;
1490 	unsigned long flags;
1491 	struct qla_hw_data *ha = vha->hw;
1492 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1493 
1494 	if (IS_P3P_TYPE(ha))
1495 		return;
1496 
1497 	spin_lock_irqsave(&ha->hardware_lock, flags);
1498 
1499 	/* Save the Original GPIOE. */
1500 	if (ha->pio_address) {
1501 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1502 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1503 	} else {
1504 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1505 		gpio_data = RD_REG_WORD(&reg->gpiod);
1506 	}
1507 
1508 	/* Set the modified gpio_enable values */
1509 	gpio_enable |= GPIO_LED_MASK;
1510 
1511 	if (ha->pio_address) {
1512 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1513 	} else {
1514 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1515 		RD_REG_WORD(&reg->gpioe);
1516 	}
1517 
1518 	qla2x00_flip_colors(ha, &led_color);
1519 
1520 	/* Clear out any previously set LED color. */
1521 	gpio_data &= ~GPIO_LED_MASK;
1522 
1523 	/* Set the new input LED color to GPIOD. */
1524 	gpio_data |= led_color;
1525 
1526 	/* Set the modified gpio_data values */
1527 	if (ha->pio_address) {
1528 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1529 	} else {
1530 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1531 		RD_REG_WORD(&reg->gpiod);
1532 	}
1533 
1534 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1535 }
1536 
1537 int
1538 qla2x00_beacon_on(struct scsi_qla_host *vha)
1539 {
1540 	uint16_t gpio_enable;
1541 	uint16_t gpio_data;
1542 	unsigned long flags;
1543 	struct qla_hw_data *ha = vha->hw;
1544 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1545 
1546 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1547 	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1548 
1549 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1550 		ql_log(ql_log_warn, vha, 0x709b,
1551 		    "Unable to update fw options (beacon on).\n");
1552 		return QLA_FUNCTION_FAILED;
1553 	}
1554 
1555 	/* Turn off LEDs. */
1556 	spin_lock_irqsave(&ha->hardware_lock, flags);
1557 	if (ha->pio_address) {
1558 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1559 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1560 	} else {
1561 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1562 		gpio_data = RD_REG_WORD(&reg->gpiod);
1563 	}
1564 	gpio_enable |= GPIO_LED_MASK;
1565 
1566 	/* Set the modified gpio_enable values. */
1567 	if (ha->pio_address) {
1568 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1569 	} else {
1570 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1571 		RD_REG_WORD(&reg->gpioe);
1572 	}
1573 
1574 	/* Clear out previously set LED colour. */
1575 	gpio_data &= ~GPIO_LED_MASK;
1576 	if (ha->pio_address) {
1577 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1578 	} else {
1579 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1580 		RD_REG_WORD(&reg->gpiod);
1581 	}
1582 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1583 
1584 	/*
1585 	 * Let the per HBA timer kick off the blinking process based on
1586 	 * the following flags. No need to do anything else now.
1587 	 */
1588 	ha->beacon_blink_led = 1;
1589 	ha->beacon_color_state = 0;
1590 
1591 	return QLA_SUCCESS;
1592 }
1593 
1594 int
1595 qla2x00_beacon_off(struct scsi_qla_host *vha)
1596 {
1597 	int rval = QLA_SUCCESS;
1598 	struct qla_hw_data *ha = vha->hw;
1599 
1600 	ha->beacon_blink_led = 0;
1601 
1602 	/* Set the on flag so when it gets flipped it will be off. */
1603 	if (IS_QLA2322(ha))
1604 		ha->beacon_color_state = QLA_LED_ALL_ON;
1605 	else
1606 		ha->beacon_color_state = QLA_LED_GRN_ON;
1607 
1608 	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */
1609 
1610 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1611 	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1612 
1613 	rval = qla2x00_set_fw_options(vha, ha->fw_options);
1614 	if (rval != QLA_SUCCESS)
1615 		ql_log(ql_log_warn, vha, 0x709c,
1616 		    "Unable to update fw options (beacon off).\n");
1617 	return rval;
1618 }
1619 
1620 
1621 static inline void
1622 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1623 {
1624 	/* Flip all colors. */
1625 	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1626 		/* Turn off. */
1627 		ha->beacon_color_state = 0;
1628 		*pflags = 0;
1629 	} else {
1630 		/* Turn on. */
1631 		ha->beacon_color_state = QLA_LED_ALL_ON;
1632 		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1633 	}
1634 }
1635 
1636 void
1637 qla24xx_beacon_blink(struct scsi_qla_host *vha)
1638 {
1639 	uint16_t led_color = 0;
1640 	uint32_t gpio_data;
1641 	unsigned long flags;
1642 	struct qla_hw_data *ha = vha->hw;
1643 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1644 
1645 	/* Save the Original GPIOD. */
1646 	spin_lock_irqsave(&ha->hardware_lock, flags);
1647 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1648 
1649 	/* Enable the gpio_data reg for update. */
1650 	gpio_data |= GPDX_LED_UPDATE_MASK;
1651 
1652 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1653 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1654 
1655 	/* Set the color bits. */
1656 	qla24xx_flip_colors(ha, &led_color);
1657 
1658 	/* Clear out any previously set LED color. */
1659 	gpio_data &= ~GPDX_LED_COLOR_MASK;
1660 
1661 	/* Set the new input LED color to GPIOD. */
1662 	gpio_data |= led_color;
1663 
1664 	/* Set the modified gpio_data values. */
1665 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1666 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1667 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1668 }
1669 
1670 static uint32_t
1671 qla83xx_select_led_port(struct qla_hw_data *ha)
1672 {
1673 	uint32_t led_select_value = 0;
1674 
1675 	if (!IS_QLA83XX(ha))
1676 		goto out;
1677 
1678 	if (ha->flags.port0)
1679 		led_select_value = QLA83XX_LED_PORT0;
1680 	else
1681 		led_select_value = QLA83XX_LED_PORT1;
1682 
1683 out:
1684 	return led_select_value;
1685 }
1686 
1687 void
1688 qla83xx_beacon_blink(struct scsi_qla_host *vha)
1689 {
1690 	uint32_t led_select_value;
1691 	struct qla_hw_data *ha = vha->hw;
1692 	uint16_t led_cfg[6];
1693 	uint16_t orig_led_cfg[6];
1694 	uint32_t led_10_value, led_43_value;
1695 
1696 	if (!IS_QLA83XX(ha) && !IS_QLA81XX(ha))
1697 		return;
1698 
1699 	if (!ha->beacon_blink_led)
1700 		return;
1701 
1702 	if (IS_QLA2031(ha)) {
1703 		led_select_value = qla83xx_select_led_port(ha);
1704 
1705 		qla83xx_wr_reg(vha, led_select_value, 0x40002000);
1706 		qla83xx_wr_reg(vha, led_select_value + 4, 0x40002000);
1707 		msleep(1000);
1708 		qla83xx_wr_reg(vha, led_select_value, 0x40004000);
1709 		qla83xx_wr_reg(vha, led_select_value + 4, 0x40004000);
1710 	} else if (IS_QLA8031(ha)) {
1711 		led_select_value = qla83xx_select_led_port(ha);
1712 
1713 		qla83xx_rd_reg(vha, led_select_value, &led_10_value);
1714 		qla83xx_rd_reg(vha, led_select_value + 0x10, &led_43_value);
1715 		qla83xx_wr_reg(vha, led_select_value, 0x01f44000);
1716 		msleep(500);
1717 		qla83xx_wr_reg(vha, led_select_value, 0x400001f4);
1718 		msleep(1000);
1719 		qla83xx_wr_reg(vha, led_select_value, led_10_value);
1720 		qla83xx_wr_reg(vha, led_select_value + 0x10, led_43_value);
1721 	} else if (IS_QLA81XX(ha)) {
1722 		int rval;
1723 
1724 		/* Save Current */
1725 		rval = qla81xx_get_led_config(vha, orig_led_cfg);
1726 		/* Do the blink */
1727 		if (rval == QLA_SUCCESS) {
1728 			if (IS_QLA81XX(ha)) {
1729 				led_cfg[0] = 0x4000;
1730 				led_cfg[1] = 0x2000;
1731 				led_cfg[2] = 0;
1732 				led_cfg[3] = 0;
1733 				led_cfg[4] = 0;
1734 				led_cfg[5] = 0;
1735 			} else {
1736 				led_cfg[0] = 0x4000;
1737 				led_cfg[1] = 0x4000;
1738 				led_cfg[2] = 0x4000;
1739 				led_cfg[3] = 0x2000;
1740 				led_cfg[4] = 0;
1741 				led_cfg[5] = 0x2000;
1742 			}
1743 			rval = qla81xx_set_led_config(vha, led_cfg);
1744 			msleep(1000);
1745 			if (IS_QLA81XX(ha)) {
1746 				led_cfg[0] = 0x4000;
1747 				led_cfg[1] = 0x2000;
1748 				led_cfg[2] = 0;
1749 			} else {
1750 				led_cfg[0] = 0x4000;
1751 				led_cfg[1] = 0x2000;
1752 				led_cfg[2] = 0x4000;
1753 				led_cfg[3] = 0x4000;
1754 				led_cfg[4] = 0;
1755 				led_cfg[5] = 0x2000;
1756 			}
1757 			rval = qla81xx_set_led_config(vha, led_cfg);
1758 		}
1759 		/* On exit, restore original (presumes no status change) */
1760 		qla81xx_set_led_config(vha, orig_led_cfg);
1761 	}
1762 }
1763 
1764 int
1765 qla24xx_beacon_on(struct scsi_qla_host *vha)
1766 {
1767 	uint32_t gpio_data;
1768 	unsigned long flags;
1769 	struct qla_hw_data *ha = vha->hw;
1770 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1771 
1772 	if (IS_P3P_TYPE(ha))
1773 		return QLA_SUCCESS;
1774 
1775 	if (IS_QLA8031(ha) || IS_QLA81XX(ha))
1776 		goto skip_gpio; /* let blink handle it */
1777 
1778 	if (ha->beacon_blink_led == 0) {
1779 		/* Enable firmware for update */
1780 		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1781 
1782 		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1783 			return QLA_FUNCTION_FAILED;
1784 
1785 		if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1786 		    QLA_SUCCESS) {
1787 			ql_log(ql_log_warn, vha, 0x7009,
1788 			    "Unable to update fw options (beacon on).\n");
1789 			return QLA_FUNCTION_FAILED;
1790 		}
1791 
1792 		if (IS_QLA2031(ha))
1793 			goto skip_gpio;
1794 
1795 		spin_lock_irqsave(&ha->hardware_lock, flags);
1796 		gpio_data = RD_REG_DWORD(&reg->gpiod);
1797 
1798 		/* Enable the gpio_data reg for update. */
1799 		gpio_data |= GPDX_LED_UPDATE_MASK;
1800 		WRT_REG_DWORD(&reg->gpiod, gpio_data);
1801 		RD_REG_DWORD(&reg->gpiod);
1802 
1803 		spin_unlock_irqrestore(&ha->hardware_lock, flags);
1804 	}
1805 
1806 	/* So all colors blink together. */
1807 	ha->beacon_color_state = 0;
1808 
1809 skip_gpio:
1810 	/* Let the per HBA timer kick off the blinking process. */
1811 	ha->beacon_blink_led = 1;
1812 
1813 	return QLA_SUCCESS;
1814 }
1815 
1816 int
1817 qla24xx_beacon_off(struct scsi_qla_host *vha)
1818 {
1819 	uint32_t gpio_data;
1820 	unsigned long flags;
1821 	struct qla_hw_data *ha = vha->hw;
1822 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1823 
1824 	if (IS_P3P_TYPE(ha))
1825 		return QLA_SUCCESS;
1826 
1827 	ha->beacon_blink_led = 0;
1828 
1829 	if (IS_QLA2031(ha))
1830 		goto set_fw_options;
1831 
1832 	if (IS_QLA8031(ha) || IS_QLA81XX(ha))
1833 		return QLA_SUCCESS;
1834 
1835 	ha->beacon_color_state = QLA_LED_ALL_ON;
1836 
1837 	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */
1838 
1839 	/* Give control back to firmware. */
1840 	spin_lock_irqsave(&ha->hardware_lock, flags);
1841 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1842 
1843 	/* Disable the gpio_data reg for update. */
1844 	gpio_data &= ~GPDX_LED_UPDATE_MASK;
1845 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1846 	RD_REG_DWORD(&reg->gpiod);
1847 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1848 
1849 set_fw_options:
1850 	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1851 
1852 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1853 		ql_log(ql_log_warn, vha, 0x704d,
1854 		    "Unable to update fw options (beacon on).\n");
1855 		return QLA_FUNCTION_FAILED;
1856 	}
1857 
1858 	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1859 		ql_log(ql_log_warn, vha, 0x704e,
1860 		    "Unable to update fw options (beacon on).\n");
1861 		return QLA_FUNCTION_FAILED;
1862 	}
1863 
1864 	return QLA_SUCCESS;
1865 }
1866 
1867 
1868 /*
1869  * Flash support routines
1870  */
1871 
1872 /**
1873  * qla2x00_flash_enable() - Setup flash for reading and writing.
1874  * @ha: HA context
1875  */
1876 static void
1877 qla2x00_flash_enable(struct qla_hw_data *ha)
1878 {
1879 	uint16_t data;
1880 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1881 
1882 	data = RD_REG_WORD(&reg->ctrl_status);
1883 	data |= CSR_FLASH_ENABLE;
1884 	WRT_REG_WORD(&reg->ctrl_status, data);
1885 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1886 }
1887 
1888 /**
1889  * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1890  * @ha: HA context
1891  */
1892 static void
1893 qla2x00_flash_disable(struct qla_hw_data *ha)
1894 {
1895 	uint16_t data;
1896 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1897 
1898 	data = RD_REG_WORD(&reg->ctrl_status);
1899 	data &= ~(CSR_FLASH_ENABLE);
1900 	WRT_REG_WORD(&reg->ctrl_status, data);
1901 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1902 }
1903 
1904 /**
1905  * qla2x00_read_flash_byte() - Reads a byte from flash
1906  * @ha: HA context
1907  * @addr: Address in flash to read
1908  *
1909  * A word is read from the chip, but, only the lower byte is valid.
1910  *
1911  * Returns the byte read from flash @addr.
1912  */
1913 static uint8_t
1914 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1915 {
1916 	uint16_t data;
1917 	uint16_t bank_select;
1918 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1919 
1920 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1921 
1922 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1923 		/* Specify 64K address range: */
1924 		/*  clear out Module Select and Flash Address bits [19:16]. */
1925 		bank_select &= ~0xf8;
1926 		bank_select |= addr >> 12 & 0xf0;
1927 		bank_select |= CSR_FLASH_64K_BANK;
1928 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1929 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1930 
1931 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1932 		data = RD_REG_WORD(&reg->flash_data);
1933 
1934 		return (uint8_t)data;
1935 	}
1936 
1937 	/* Setup bit 16 of flash address. */
1938 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1939 		bank_select |= CSR_FLASH_64K_BANK;
1940 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1941 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1942 	} else if (((addr & BIT_16) == 0) &&
1943 	    (bank_select & CSR_FLASH_64K_BANK)) {
1944 		bank_select &= ~(CSR_FLASH_64K_BANK);
1945 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1946 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1947 	}
1948 
1949 	/* Always perform IO mapped accesses to the FLASH registers. */
1950 	if (ha->pio_address) {
1951 		uint16_t data2;
1952 
1953 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1954 		do {
1955 			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1956 			barrier();
1957 			cpu_relax();
1958 			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1959 		} while (data != data2);
1960 	} else {
1961 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1962 		data = qla2x00_debounce_register(&reg->flash_data);
1963 	}
1964 
1965 	return (uint8_t)data;
1966 }
1967 
1968 /**
1969  * qla2x00_write_flash_byte() - Write a byte to flash
1970  * @ha: HA context
1971  * @addr: Address in flash to write
1972  * @data: Data to write
1973  */
1974 static void
1975 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1976 {
1977 	uint16_t bank_select;
1978 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1979 
1980 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1981 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1982 		/* Specify 64K address range: */
1983 		/*  clear out Module Select and Flash Address bits [19:16]. */
1984 		bank_select &= ~0xf8;
1985 		bank_select |= addr >> 12 & 0xf0;
1986 		bank_select |= CSR_FLASH_64K_BANK;
1987 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1988 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1989 
1990 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1991 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1992 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1993 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1994 
1995 		return;
1996 	}
1997 
1998 	/* Setup bit 16 of flash address. */
1999 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
2000 		bank_select |= CSR_FLASH_64K_BANK;
2001 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
2002 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
2003 	} else if (((addr & BIT_16) == 0) &&
2004 	    (bank_select & CSR_FLASH_64K_BANK)) {
2005 		bank_select &= ~(CSR_FLASH_64K_BANK);
2006 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
2007 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
2008 	}
2009 
2010 	/* Always perform IO mapped accesses to the FLASH registers. */
2011 	if (ha->pio_address) {
2012 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
2013 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
2014 	} else {
2015 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
2016 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
2017 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
2018 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
2019 	}
2020 }
2021 
2022 /**
2023  * qla2x00_poll_flash() - Polls flash for completion.
2024  * @ha: HA context
2025  * @addr: Address in flash to poll
2026  * @poll_data: Data to be polled
2027  * @man_id: Flash manufacturer ID
2028  * @flash_id: Flash ID
2029  *
2030  * This function polls the device until bit 7 of what is read matches data
2031  * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
2032  * out (a fatal error).  The flash book recommeds reading bit 7 again after
2033  * reading bit 5 as a 1.
2034  *
2035  * Returns 0 on success, else non-zero.
2036  */
2037 static int
2038 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
2039     uint8_t man_id, uint8_t flash_id)
2040 {
2041 	int status;
2042 	uint8_t flash_data;
2043 	uint32_t cnt;
2044 
2045 	status = 1;
2046 
2047 	/* Wait for 30 seconds for command to finish. */
2048 	poll_data &= BIT_7;
2049 	for (cnt = 3000000; cnt; cnt--) {
2050 		flash_data = qla2x00_read_flash_byte(ha, addr);
2051 		if ((flash_data & BIT_7) == poll_data) {
2052 			status = 0;
2053 			break;
2054 		}
2055 
2056 		if (man_id != 0x40 && man_id != 0xda) {
2057 			if ((flash_data & BIT_5) && cnt > 2)
2058 				cnt = 2;
2059 		}
2060 		udelay(10);
2061 		barrier();
2062 		cond_resched();
2063 	}
2064 	return status;
2065 }
2066 
2067 /**
2068  * qla2x00_program_flash_address() - Programs a flash address
2069  * @ha: HA context
2070  * @addr: Address in flash to program
2071  * @data: Data to be written in flash
2072  * @man_id: Flash manufacturer ID
2073  * @flash_id: Flash ID
2074  *
2075  * Returns 0 on success, else non-zero.
2076  */
2077 static int
2078 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
2079     uint8_t data, uint8_t man_id, uint8_t flash_id)
2080 {
2081 	/* Write Program Command Sequence. */
2082 	if (IS_OEM_001(ha)) {
2083 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2084 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
2085 		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
2086 		qla2x00_write_flash_byte(ha, addr, data);
2087 	} else {
2088 		if (man_id == 0xda && flash_id == 0xc1) {
2089 			qla2x00_write_flash_byte(ha, addr, data);
2090 			if (addr & 0x7e)
2091 				return 0;
2092 		} else {
2093 			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2094 			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2095 			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
2096 			qla2x00_write_flash_byte(ha, addr, data);
2097 		}
2098 	}
2099 
2100 	udelay(150);
2101 
2102 	/* Wait for write to complete. */
2103 	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
2104 }
2105 
2106 /**
2107  * qla2x00_erase_flash() - Erase the flash.
2108  * @ha: HA context
2109  * @man_id: Flash manufacturer ID
2110  * @flash_id: Flash ID
2111  *
2112  * Returns 0 on success, else non-zero.
2113  */
2114 static int
2115 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
2116 {
2117 	/* Individual Sector Erase Command Sequence */
2118 	if (IS_OEM_001(ha)) {
2119 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2120 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
2121 		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
2122 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2123 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
2124 		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
2125 	} else {
2126 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2127 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2128 		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
2129 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2130 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2131 		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
2132 	}
2133 
2134 	udelay(150);
2135 
2136 	/* Wait for erase to complete. */
2137 	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
2138 }
2139 
2140 /**
2141  * qla2x00_erase_flash_sector() - Erase a flash sector.
2142  * @ha: HA context
2143  * @addr: Flash sector to erase
2144  * @sec_mask: Sector address mask
2145  * @man_id: Flash manufacturer ID
2146  * @flash_id: Flash ID
2147  *
2148  * Returns 0 on success, else non-zero.
2149  */
2150 static int
2151 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
2152     uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
2153 {
2154 	/* Individual Sector Erase Command Sequence */
2155 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2156 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2157 	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
2158 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2159 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2160 	if (man_id == 0x1f && flash_id == 0x13)
2161 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
2162 	else
2163 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
2164 
2165 	udelay(150);
2166 
2167 	/* Wait for erase to complete. */
2168 	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
2169 }
2170 
2171 /**
2172  * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
2173  * @man_id: Flash manufacturer ID
2174  * @flash_id: Flash ID
2175  */
2176 static void
2177 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
2178     uint8_t *flash_id)
2179 {
2180 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2181 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2182 	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
2183 	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
2184 	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
2185 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2186 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2187 	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
2188 }
2189 
2190 static void
2191 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
2192 	uint32_t saddr, uint32_t length)
2193 {
2194 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2195 	uint32_t midpoint, ilength;
2196 	uint8_t data;
2197 
2198 	midpoint = length / 2;
2199 
2200 	WRT_REG_WORD(&reg->nvram, 0);
2201 	RD_REG_WORD(&reg->nvram);
2202 	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
2203 		if (ilength == midpoint) {
2204 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2205 			RD_REG_WORD(&reg->nvram);
2206 		}
2207 		data = qla2x00_read_flash_byte(ha, saddr);
2208 		if (saddr % 100)
2209 			udelay(10);
2210 		*tmp_buf = data;
2211 		cond_resched();
2212 	}
2213 }
2214 
2215 static inline void
2216 qla2x00_suspend_hba(struct scsi_qla_host *vha)
2217 {
2218 	int cnt;
2219 	unsigned long flags;
2220 	struct qla_hw_data *ha = vha->hw;
2221 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2222 
2223 	/* Suspend HBA. */
2224 	scsi_block_requests(vha->host);
2225 	ha->isp_ops->disable_intrs(ha);
2226 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2227 
2228 	/* Pause RISC. */
2229 	spin_lock_irqsave(&ha->hardware_lock, flags);
2230 	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
2231 	RD_REG_WORD(&reg->hccr);
2232 	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
2233 		for (cnt = 0; cnt < 30000; cnt++) {
2234 			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
2235 				break;
2236 			udelay(100);
2237 		}
2238 	} else {
2239 		udelay(10);
2240 	}
2241 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
2242 }
2243 
2244 static inline void
2245 qla2x00_resume_hba(struct scsi_qla_host *vha)
2246 {
2247 	struct qla_hw_data *ha = vha->hw;
2248 
2249 	/* Resume HBA. */
2250 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2251 	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
2252 	qla2xxx_wake_dpc(vha);
2253 	qla2x00_wait_for_chip_reset(vha);
2254 	scsi_unblock_requests(vha->host);
2255 }
2256 
2257 uint8_t *
2258 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2259     uint32_t offset, uint32_t length)
2260 {
2261 	uint32_t addr, midpoint;
2262 	uint8_t *data;
2263 	struct qla_hw_data *ha = vha->hw;
2264 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2265 
2266 	/* Suspend HBA. */
2267 	qla2x00_suspend_hba(vha);
2268 
2269 	/* Go with read. */
2270 	midpoint = ha->optrom_size / 2;
2271 
2272 	qla2x00_flash_enable(ha);
2273 	WRT_REG_WORD(&reg->nvram, 0);
2274 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
2275 	for (addr = offset, data = buf; addr < length; addr++, data++) {
2276 		if (addr == midpoint) {
2277 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2278 			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
2279 		}
2280 
2281 		*data = qla2x00_read_flash_byte(ha, addr);
2282 	}
2283 	qla2x00_flash_disable(ha);
2284 
2285 	/* Resume HBA. */
2286 	qla2x00_resume_hba(vha);
2287 
2288 	return buf;
2289 }
2290 
2291 int
2292 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2293     uint32_t offset, uint32_t length)
2294 {
2295 
2296 	int rval;
2297 	uint8_t man_id, flash_id, sec_number, data;
2298 	uint16_t wd;
2299 	uint32_t addr, liter, sec_mask, rest_addr;
2300 	struct qla_hw_data *ha = vha->hw;
2301 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2302 
2303 	/* Suspend HBA. */
2304 	qla2x00_suspend_hba(vha);
2305 
2306 	rval = QLA_SUCCESS;
2307 	sec_number = 0;
2308 
2309 	/* Reset ISP chip. */
2310 	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
2311 	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
2312 
2313 	/* Go with write. */
2314 	qla2x00_flash_enable(ha);
2315 	do {	/* Loop once to provide quick error exit */
2316 		/* Structure of flash memory based on manufacturer */
2317 		if (IS_OEM_001(ha)) {
2318 			/* OEM variant with special flash part. */
2319 			man_id = flash_id = 0;
2320 			rest_addr = 0xffff;
2321 			sec_mask   = 0x10000;
2322 			goto update_flash;
2323 		}
2324 		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
2325 		switch (man_id) {
2326 		case 0x20: /* ST flash. */
2327 			if (flash_id == 0xd2 || flash_id == 0xe3) {
2328 				/*
2329 				 * ST m29w008at part - 64kb sector size with
2330 				 * 32kb,8kb,8kb,16kb sectors at memory address
2331 				 * 0xf0000.
2332 				 */
2333 				rest_addr = 0xffff;
2334 				sec_mask = 0x10000;
2335 				break;
2336 			}
2337 			/*
2338 			 * ST m29w010b part - 16kb sector size
2339 			 * Default to 16kb sectors
2340 			 */
2341 			rest_addr = 0x3fff;
2342 			sec_mask = 0x1c000;
2343 			break;
2344 		case 0x40: /* Mostel flash. */
2345 			/* Mostel v29c51001 part - 512 byte sector size. */
2346 			rest_addr = 0x1ff;
2347 			sec_mask = 0x1fe00;
2348 			break;
2349 		case 0xbf: /* SST flash. */
2350 			/* SST39sf10 part - 4kb sector size. */
2351 			rest_addr = 0xfff;
2352 			sec_mask = 0x1f000;
2353 			break;
2354 		case 0xda: /* Winbond flash. */
2355 			/* Winbond W29EE011 part - 256 byte sector size. */
2356 			rest_addr = 0x7f;
2357 			sec_mask = 0x1ff80;
2358 			break;
2359 		case 0xc2: /* Macronix flash. */
2360 			/* 64k sector size. */
2361 			if (flash_id == 0x38 || flash_id == 0x4f) {
2362 				rest_addr = 0xffff;
2363 				sec_mask = 0x10000;
2364 				break;
2365 			}
2366 			/* Fall through... */
2367 
2368 		case 0x1f: /* Atmel flash. */
2369 			/* 512k sector size. */
2370 			if (flash_id == 0x13) {
2371 				rest_addr = 0x7fffffff;
2372 				sec_mask =   0x80000000;
2373 				break;
2374 			}
2375 			/* Fall through... */
2376 
2377 		case 0x01: /* AMD flash. */
2378 			if (flash_id == 0x38 || flash_id == 0x40 ||
2379 			    flash_id == 0x4f) {
2380 				/* Am29LV081 part - 64kb sector size. */
2381 				/* Am29LV002BT part - 64kb sector size. */
2382 				rest_addr = 0xffff;
2383 				sec_mask = 0x10000;
2384 				break;
2385 			} else if (flash_id == 0x3e) {
2386 				/*
2387 				 * Am29LV008b part - 64kb sector size with
2388 				 * 32kb,8kb,8kb,16kb sector at memory address
2389 				 * h0xf0000.
2390 				 */
2391 				rest_addr = 0xffff;
2392 				sec_mask = 0x10000;
2393 				break;
2394 			} else if (flash_id == 0x20 || flash_id == 0x6e) {
2395 				/*
2396 				 * Am29LV010 part or AM29f010 - 16kb sector
2397 				 * size.
2398 				 */
2399 				rest_addr = 0x3fff;
2400 				sec_mask = 0x1c000;
2401 				break;
2402 			} else if (flash_id == 0x6d) {
2403 				/* Am29LV001 part - 8kb sector size. */
2404 				rest_addr = 0x1fff;
2405 				sec_mask = 0x1e000;
2406 				break;
2407 			}
2408 		default:
2409 			/* Default to 16 kb sector size. */
2410 			rest_addr = 0x3fff;
2411 			sec_mask = 0x1c000;
2412 			break;
2413 		}
2414 
2415 update_flash:
2416 		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2417 			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2418 				rval = QLA_FUNCTION_FAILED;
2419 				break;
2420 			}
2421 		}
2422 
2423 		for (addr = offset, liter = 0; liter < length; liter++,
2424 		    addr++) {
2425 			data = buf[liter];
2426 			/* Are we at the beginning of a sector? */
2427 			if ((addr & rest_addr) == 0) {
2428 				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2429 					if (addr >= 0x10000UL) {
2430 						if (((addr >> 12) & 0xf0) &&
2431 						    ((man_id == 0x01 &&
2432 							flash_id == 0x3e) ||
2433 						     (man_id == 0x20 &&
2434 							 flash_id == 0xd2))) {
2435 							sec_number++;
2436 							if (sec_number == 1) {
2437 								rest_addr =
2438 								    0x7fff;
2439 								sec_mask =
2440 								    0x18000;
2441 							} else if (
2442 							    sec_number == 2 ||
2443 							    sec_number == 3) {
2444 								rest_addr =
2445 								    0x1fff;
2446 								sec_mask =
2447 								    0x1e000;
2448 							} else if (
2449 							    sec_number == 4) {
2450 								rest_addr =
2451 								    0x3fff;
2452 								sec_mask =
2453 								    0x1c000;
2454 							}
2455 						}
2456 					}
2457 				} else if (addr == ha->optrom_size / 2) {
2458 					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2459 					RD_REG_WORD(&reg->nvram);
2460 				}
2461 
2462 				if (flash_id == 0xda && man_id == 0xc1) {
2463 					qla2x00_write_flash_byte(ha, 0x5555,
2464 					    0xaa);
2465 					qla2x00_write_flash_byte(ha, 0x2aaa,
2466 					    0x55);
2467 					qla2x00_write_flash_byte(ha, 0x5555,
2468 					    0xa0);
2469 				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2470 					/* Then erase it */
2471 					if (qla2x00_erase_flash_sector(ha,
2472 					    addr, sec_mask, man_id,
2473 					    flash_id)) {
2474 						rval = QLA_FUNCTION_FAILED;
2475 						break;
2476 					}
2477 					if (man_id == 0x01 && flash_id == 0x6d)
2478 						sec_number++;
2479 				}
2480 			}
2481 
2482 			if (man_id == 0x01 && flash_id == 0x6d) {
2483 				if (sec_number == 1 &&
2484 				    addr == (rest_addr - 1)) {
2485 					rest_addr = 0x0fff;
2486 					sec_mask   = 0x1f000;
2487 				} else if (sec_number == 3 && (addr & 0x7ffe)) {
2488 					rest_addr = 0x3fff;
2489 					sec_mask   = 0x1c000;
2490 				}
2491 			}
2492 
2493 			if (qla2x00_program_flash_address(ha, addr, data,
2494 			    man_id, flash_id)) {
2495 				rval = QLA_FUNCTION_FAILED;
2496 				break;
2497 			}
2498 			cond_resched();
2499 		}
2500 	} while (0);
2501 	qla2x00_flash_disable(ha);
2502 
2503 	/* Resume HBA. */
2504 	qla2x00_resume_hba(vha);
2505 
2506 	return rval;
2507 }
2508 
2509 uint8_t *
2510 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2511     uint32_t offset, uint32_t length)
2512 {
2513 	struct qla_hw_data *ha = vha->hw;
2514 
2515 	/* Suspend HBA. */
2516 	scsi_block_requests(vha->host);
2517 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2518 
2519 	/* Go with read. */
2520 	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2521 
2522 	/* Resume HBA. */
2523 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2524 	scsi_unblock_requests(vha->host);
2525 
2526 	return buf;
2527 }
2528 
2529 int
2530 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2531     uint32_t offset, uint32_t length)
2532 {
2533 	int rval;
2534 	struct qla_hw_data *ha = vha->hw;
2535 
2536 	/* Suspend HBA. */
2537 	scsi_block_requests(vha->host);
2538 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2539 
2540 	/* Go with write. */
2541 	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2542 	    length >> 2);
2543 
2544 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2545 	scsi_unblock_requests(vha->host);
2546 
2547 	return rval;
2548 }
2549 
2550 uint8_t *
2551 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2552     uint32_t offset, uint32_t length)
2553 {
2554 	int rval;
2555 	dma_addr_t optrom_dma;
2556 	void *optrom;
2557 	uint8_t *pbuf;
2558 	uint32_t faddr, left, burst;
2559 	struct qla_hw_data *ha = vha->hw;
2560 
2561 	if (IS_QLA25XX(ha) || IS_QLA81XX(ha))
2562 		goto try_fast;
2563 	if (offset & 0xfff)
2564 		goto slow_read;
2565 	if (length < OPTROM_BURST_SIZE)
2566 		goto slow_read;
2567 
2568 try_fast:
2569 	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2570 	    &optrom_dma, GFP_KERNEL);
2571 	if (!optrom) {
2572 		ql_log(ql_log_warn, vha, 0x00cc,
2573 		    "Unable to allocate memory for optrom burst read (%x KB).\n",
2574 		    OPTROM_BURST_SIZE / 1024);
2575 		goto slow_read;
2576 	}
2577 
2578 	pbuf = buf;
2579 	faddr = offset >> 2;
2580 	left = length >> 2;
2581 	burst = OPTROM_BURST_DWORDS;
2582 	while (left != 0) {
2583 		if (burst > left)
2584 			burst = left;
2585 
2586 		rval = qla2x00_dump_ram(vha, optrom_dma,
2587 		    flash_data_addr(ha, faddr), burst);
2588 		if (rval) {
2589 			ql_log(ql_log_warn, vha, 0x00f5,
2590 			    "Unable to burst-read optrom segment (%x/%x/%llx).\n",
2591 			    rval, flash_data_addr(ha, faddr),
2592 			    (unsigned long long)optrom_dma);
2593 			ql_log(ql_log_warn, vha, 0x00f6,
2594 			    "Reverting to slow-read.\n");
2595 
2596 			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2597 			    optrom, optrom_dma);
2598 			goto slow_read;
2599 		}
2600 
2601 		memcpy(pbuf, optrom, burst * 4);
2602 
2603 		left -= burst;
2604 		faddr += burst;
2605 		pbuf += burst * 4;
2606 	}
2607 
2608 	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2609 	    optrom_dma);
2610 
2611 	return buf;
2612 
2613 slow_read:
2614     return qla24xx_read_optrom_data(vha, buf, offset, length);
2615 }
2616 
2617 /**
2618  * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2619  * @ha: HA context
2620  * @pcids: Pointer to the FCODE PCI data structure
2621  *
2622  * The process of retrieving the FCODE version information is at best
2623  * described as interesting.
2624  *
2625  * Within the first 100h bytes of the image an ASCII string is present
2626  * which contains several pieces of information including the FCODE
2627  * version.  Unfortunately it seems the only reliable way to retrieve
2628  * the version is by scanning for another sentinel within the string,
2629  * the FCODE build date:
2630  *
2631  *	... 2.00.02 10/17/02 ...
2632  *
2633  * Returns QLA_SUCCESS on successful retrieval of version.
2634  */
2635 static void
2636 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2637 {
2638 	int ret = QLA_FUNCTION_FAILED;
2639 	uint32_t istart, iend, iter, vend;
2640 	uint8_t do_next, rbyte, *vbyte;
2641 
2642 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2643 
2644 	/* Skip the PCI data structure. */
2645 	istart = pcids +
2646 	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2647 		qla2x00_read_flash_byte(ha, pcids + 0x0A));
2648 	iend = istart + 0x100;
2649 	do {
2650 		/* Scan for the sentinel date string...eeewww. */
2651 		do_next = 0;
2652 		iter = istart;
2653 		while ((iter < iend) && !do_next) {
2654 			iter++;
2655 			if (qla2x00_read_flash_byte(ha, iter) == '/') {
2656 				if (qla2x00_read_flash_byte(ha, iter + 2) ==
2657 				    '/')
2658 					do_next++;
2659 				else if (qla2x00_read_flash_byte(ha,
2660 				    iter + 3) == '/')
2661 					do_next++;
2662 			}
2663 		}
2664 		if (!do_next)
2665 			break;
2666 
2667 		/* Backtrack to previous ' ' (space). */
2668 		do_next = 0;
2669 		while ((iter > istart) && !do_next) {
2670 			iter--;
2671 			if (qla2x00_read_flash_byte(ha, iter) == ' ')
2672 				do_next++;
2673 		}
2674 		if (!do_next)
2675 			break;
2676 
2677 		/*
2678 		 * Mark end of version tag, and find previous ' ' (space) or
2679 		 * string length (recent FCODE images -- major hack ahead!!!).
2680 		 */
2681 		vend = iter - 1;
2682 		do_next = 0;
2683 		while ((iter > istart) && !do_next) {
2684 			iter--;
2685 			rbyte = qla2x00_read_flash_byte(ha, iter);
2686 			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2687 				do_next++;
2688 		}
2689 		if (!do_next)
2690 			break;
2691 
2692 		/* Mark beginning of version tag, and copy data. */
2693 		iter++;
2694 		if ((vend - iter) &&
2695 		    ((vend - iter) < sizeof(ha->fcode_revision))) {
2696 			vbyte = ha->fcode_revision;
2697 			while (iter <= vend) {
2698 				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
2699 				iter++;
2700 			}
2701 			ret = QLA_SUCCESS;
2702 		}
2703 	} while (0);
2704 
2705 	if (ret != QLA_SUCCESS)
2706 		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2707 }
2708 
2709 int
2710 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2711 {
2712 	int ret = QLA_SUCCESS;
2713 	uint8_t code_type, last_image;
2714 	uint32_t pcihdr, pcids;
2715 	uint8_t *dbyte;
2716 	uint16_t *dcode;
2717 	struct qla_hw_data *ha = vha->hw;
2718 
2719 	if (!ha->pio_address || !mbuf)
2720 		return QLA_FUNCTION_FAILED;
2721 
2722 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2723 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2724 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2725 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2726 
2727 	qla2x00_flash_enable(ha);
2728 
2729 	/* Begin with first PCI expansion ROM header. */
2730 	pcihdr = 0;
2731 	last_image = 1;
2732 	do {
2733 		/* Verify PCI expansion ROM header. */
2734 		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2735 		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2736 			/* No signature */
2737 			ql_log(ql_log_fatal, vha, 0x0050,
2738 			    "No matching ROM signature.\n");
2739 			ret = QLA_FUNCTION_FAILED;
2740 			break;
2741 		}
2742 
2743 		/* Locate PCI data structure. */
2744 		pcids = pcihdr +
2745 		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2746 			qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2747 
2748 		/* Validate signature of PCI data structure. */
2749 		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2750 		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2751 		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2752 		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2753 			/* Incorrect header. */
2754 			ql_log(ql_log_fatal, vha, 0x0051,
2755 			    "PCI data struct not found pcir_adr=%x.\n", pcids);
2756 			ret = QLA_FUNCTION_FAILED;
2757 			break;
2758 		}
2759 
2760 		/* Read version */
2761 		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2762 		switch (code_type) {
2763 		case ROM_CODE_TYPE_BIOS:
2764 			/* Intel x86, PC-AT compatible. */
2765 			ha->bios_revision[0] =
2766 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2767 			ha->bios_revision[1] =
2768 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2769 			ql_dbg(ql_dbg_init, vha, 0x0052,
2770 			    "Read BIOS %d.%d.\n",
2771 			    ha->bios_revision[1], ha->bios_revision[0]);
2772 			break;
2773 		case ROM_CODE_TYPE_FCODE:
2774 			/* Open Firmware standard for PCI (FCode). */
2775 			/* Eeeewww... */
2776 			qla2x00_get_fcode_version(ha, pcids);
2777 			break;
2778 		case ROM_CODE_TYPE_EFI:
2779 			/* Extensible Firmware Interface (EFI). */
2780 			ha->efi_revision[0] =
2781 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2782 			ha->efi_revision[1] =
2783 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2784 			ql_dbg(ql_dbg_init, vha, 0x0053,
2785 			    "Read EFI %d.%d.\n",
2786 			    ha->efi_revision[1], ha->efi_revision[0]);
2787 			break;
2788 		default:
2789 			ql_log(ql_log_warn, vha, 0x0054,
2790 			    "Unrecognized code type %x at pcids %x.\n",
2791 			    code_type, pcids);
2792 			break;
2793 		}
2794 
2795 		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2796 
2797 		/* Locate next PCI expansion ROM. */
2798 		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2799 		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2800 	} while (!last_image);
2801 
2802 	if (IS_QLA2322(ha)) {
2803 		/* Read firmware image information. */
2804 		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2805 		dbyte = mbuf;
2806 		memset(dbyte, 0, 8);
2807 		dcode = (uint16_t *)dbyte;
2808 
2809 		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2810 		    8);
2811 		ql_dbg(ql_dbg_init + ql_dbg_buffer, vha, 0x010a,
2812 		    "Dumping fw "
2813 		    "ver from flash:.\n");
2814 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010b,
2815 		    (uint8_t *)dbyte, 8);
2816 
2817 		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2818 		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2819 		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2820 		    dcode[3] == 0)) {
2821 			ql_log(ql_log_warn, vha, 0x0057,
2822 			    "Unrecognized fw revision at %x.\n",
2823 			    ha->flt_region_fw * 4);
2824 		} else {
2825 			/* values are in big endian */
2826 			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2827 			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2828 			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2829 			ql_dbg(ql_dbg_init, vha, 0x0058,
2830 			    "FW Version: "
2831 			    "%d.%d.%d.\n", ha->fw_revision[0],
2832 			    ha->fw_revision[1], ha->fw_revision[2]);
2833 		}
2834 	}
2835 
2836 	qla2x00_flash_disable(ha);
2837 
2838 	return ret;
2839 }
2840 
2841 int
2842 qla82xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2843 {
2844 	int ret = QLA_SUCCESS;
2845 	uint32_t pcihdr, pcids;
2846 	uint32_t *dcode;
2847 	uint8_t *bcode;
2848 	uint8_t code_type, last_image;
2849 	struct qla_hw_data *ha = vha->hw;
2850 
2851 	if (!mbuf)
2852 		return QLA_FUNCTION_FAILED;
2853 
2854 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2855 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2856 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2857 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2858 
2859 	dcode = mbuf;
2860 
2861 	/* Begin with first PCI expansion ROM header. */
2862 	pcihdr = ha->flt_region_boot << 2;
2863 	last_image = 1;
2864 	do {
2865 		/* Verify PCI expansion ROM header. */
2866 		ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, pcihdr,
2867 		    0x20 * 4);
2868 		bcode = mbuf + (pcihdr % 4);
2869 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2870 			/* No signature */
2871 			ql_log(ql_log_fatal, vha, 0x0154,
2872 			    "No matching ROM signature.\n");
2873 			ret = QLA_FUNCTION_FAILED;
2874 			break;
2875 		}
2876 
2877 		/* Locate PCI data structure. */
2878 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2879 
2880 		ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, pcids,
2881 		    0x20 * 4);
2882 		bcode = mbuf + (pcihdr % 4);
2883 
2884 		/* Validate signature of PCI data structure. */
2885 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2886 		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2887 			/* Incorrect header. */
2888 			ql_log(ql_log_fatal, vha, 0x0155,
2889 			    "PCI data struct not found pcir_adr=%x.\n", pcids);
2890 			ret = QLA_FUNCTION_FAILED;
2891 			break;
2892 		}
2893 
2894 		/* Read version */
2895 		code_type = bcode[0x14];
2896 		switch (code_type) {
2897 		case ROM_CODE_TYPE_BIOS:
2898 			/* Intel x86, PC-AT compatible. */
2899 			ha->bios_revision[0] = bcode[0x12];
2900 			ha->bios_revision[1] = bcode[0x13];
2901 			ql_dbg(ql_dbg_init, vha, 0x0156,
2902 			    "Read BIOS %d.%d.\n",
2903 			    ha->bios_revision[1], ha->bios_revision[0]);
2904 			break;
2905 		case ROM_CODE_TYPE_FCODE:
2906 			/* Open Firmware standard for PCI (FCode). */
2907 			ha->fcode_revision[0] = bcode[0x12];
2908 			ha->fcode_revision[1] = bcode[0x13];
2909 			ql_dbg(ql_dbg_init, vha, 0x0157,
2910 			    "Read FCODE %d.%d.\n",
2911 			    ha->fcode_revision[1], ha->fcode_revision[0]);
2912 			break;
2913 		case ROM_CODE_TYPE_EFI:
2914 			/* Extensible Firmware Interface (EFI). */
2915 			ha->efi_revision[0] = bcode[0x12];
2916 			ha->efi_revision[1] = bcode[0x13];
2917 			ql_dbg(ql_dbg_init, vha, 0x0158,
2918 			    "Read EFI %d.%d.\n",
2919 			    ha->efi_revision[1], ha->efi_revision[0]);
2920 			break;
2921 		default:
2922 			ql_log(ql_log_warn, vha, 0x0159,
2923 			    "Unrecognized code type %x at pcids %x.\n",
2924 			    code_type, pcids);
2925 			break;
2926 		}
2927 
2928 		last_image = bcode[0x15] & BIT_7;
2929 
2930 		/* Locate next PCI expansion ROM. */
2931 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2932 	} while (!last_image);
2933 
2934 	/* Read firmware image information. */
2935 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2936 	dcode = mbuf;
2937 	ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, ha->flt_region_fw << 2,
2938 	    0x20);
2939 	bcode = mbuf + (pcihdr % 4);
2940 
2941 	/* Validate signature of PCI data structure. */
2942 	if (bcode[0x0] == 0x3 && bcode[0x1] == 0x0 &&
2943 	    bcode[0x2] == 0x40 && bcode[0x3] == 0x40) {
2944 		ha->fw_revision[0] = bcode[0x4];
2945 		ha->fw_revision[1] = bcode[0x5];
2946 		ha->fw_revision[2] = bcode[0x6];
2947 		ql_dbg(ql_dbg_init, vha, 0x0153,
2948 		    "Firmware revision %d.%d.%d\n",
2949 		    ha->fw_revision[0], ha->fw_revision[1],
2950 		    ha->fw_revision[2]);
2951 	}
2952 
2953 	return ret;
2954 }
2955 
2956 int
2957 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2958 {
2959 	int ret = QLA_SUCCESS;
2960 	uint32_t pcihdr, pcids;
2961 	uint32_t *dcode;
2962 	uint8_t *bcode;
2963 	uint8_t code_type, last_image;
2964 	int i;
2965 	struct qla_hw_data *ha = vha->hw;
2966 
2967 	if (IS_P3P_TYPE(ha))
2968 		return ret;
2969 
2970 	if (!mbuf)
2971 		return QLA_FUNCTION_FAILED;
2972 
2973 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2974 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2975 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2976 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2977 
2978 	dcode = mbuf;
2979 
2980 	/* Begin with first PCI expansion ROM header. */
2981 	pcihdr = ha->flt_region_boot << 2;
2982 	last_image = 1;
2983 	do {
2984 		/* Verify PCI expansion ROM header. */
2985 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2986 		bcode = mbuf + (pcihdr % 4);
2987 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2988 			/* No signature */
2989 			ql_log(ql_log_fatal, vha, 0x0059,
2990 			    "No matching ROM signature.\n");
2991 			ret = QLA_FUNCTION_FAILED;
2992 			break;
2993 		}
2994 
2995 		/* Locate PCI data structure. */
2996 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2997 
2998 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2999 		bcode = mbuf + (pcihdr % 4);
3000 
3001 		/* Validate signature of PCI data structure. */
3002 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
3003 		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
3004 			/* Incorrect header. */
3005 			ql_log(ql_log_fatal, vha, 0x005a,
3006 			    "PCI data struct not found pcir_adr=%x.\n", pcids);
3007 			ret = QLA_FUNCTION_FAILED;
3008 			break;
3009 		}
3010 
3011 		/* Read version */
3012 		code_type = bcode[0x14];
3013 		switch (code_type) {
3014 		case ROM_CODE_TYPE_BIOS:
3015 			/* Intel x86, PC-AT compatible. */
3016 			ha->bios_revision[0] = bcode[0x12];
3017 			ha->bios_revision[1] = bcode[0x13];
3018 			ql_dbg(ql_dbg_init, vha, 0x005b,
3019 			    "Read BIOS %d.%d.\n",
3020 			    ha->bios_revision[1], ha->bios_revision[0]);
3021 			break;
3022 		case ROM_CODE_TYPE_FCODE:
3023 			/* Open Firmware standard for PCI (FCode). */
3024 			ha->fcode_revision[0] = bcode[0x12];
3025 			ha->fcode_revision[1] = bcode[0x13];
3026 			ql_dbg(ql_dbg_init, vha, 0x005c,
3027 			    "Read FCODE %d.%d.\n",
3028 			    ha->fcode_revision[1], ha->fcode_revision[0]);
3029 			break;
3030 		case ROM_CODE_TYPE_EFI:
3031 			/* Extensible Firmware Interface (EFI). */
3032 			ha->efi_revision[0] = bcode[0x12];
3033 			ha->efi_revision[1] = bcode[0x13];
3034 			ql_dbg(ql_dbg_init, vha, 0x005d,
3035 			    "Read EFI %d.%d.\n",
3036 			    ha->efi_revision[1], ha->efi_revision[0]);
3037 			break;
3038 		default:
3039 			ql_log(ql_log_warn, vha, 0x005e,
3040 			    "Unrecognized code type %x at pcids %x.\n",
3041 			    code_type, pcids);
3042 			break;
3043 		}
3044 
3045 		last_image = bcode[0x15] & BIT_7;
3046 
3047 		/* Locate next PCI expansion ROM. */
3048 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
3049 	} while (!last_image);
3050 
3051 	/* Read firmware image information. */
3052 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
3053 	dcode = mbuf;
3054 
3055 	qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
3056 	for (i = 0; i < 4; i++)
3057 		dcode[i] = be32_to_cpu(dcode[i]);
3058 
3059 	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
3060 	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
3061 	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
3062 	    dcode[3] == 0)) {
3063 		ql_log(ql_log_warn, vha, 0x005f,
3064 		    "Unrecognized fw revision at %x.\n",
3065 		    ha->flt_region_fw * 4);
3066 	} else {
3067 		ha->fw_revision[0] = dcode[0];
3068 		ha->fw_revision[1] = dcode[1];
3069 		ha->fw_revision[2] = dcode[2];
3070 		ha->fw_revision[3] = dcode[3];
3071 		ql_dbg(ql_dbg_init, vha, 0x0060,
3072 		    "Firmware revision %d.%d.%d.%d.\n",
3073 		    ha->fw_revision[0], ha->fw_revision[1],
3074 		    ha->fw_revision[2], ha->fw_revision[3]);
3075 	}
3076 
3077 	/* Check for golden firmware and get version if available */
3078 	if (!IS_QLA81XX(ha)) {
3079 		/* Golden firmware is not present in non 81XX adapters */
3080 		return ret;
3081 	}
3082 
3083 	memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version));
3084 	dcode = mbuf;
3085 	ha->isp_ops->read_optrom(vha, (uint8_t *)dcode,
3086 	    ha->flt_region_gold_fw << 2, 32);
3087 
3088 	if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF &&
3089 	    dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) {
3090 		ql_log(ql_log_warn, vha, 0x0056,
3091 		    "Unrecognized golden fw at 0x%x.\n",
3092 		    ha->flt_region_gold_fw * 4);
3093 		return ret;
3094 	}
3095 
3096 	for (i = 4; i < 8; i++)
3097 		ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]);
3098 
3099 	return ret;
3100 }
3101 
3102 static int
3103 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
3104 {
3105 	if (pos >= end || *pos != 0x82)
3106 		return 0;
3107 
3108 	pos += 3 + pos[1];
3109 	if (pos >= end || *pos != 0x90)
3110 		return 0;
3111 
3112 	pos += 3 + pos[1];
3113 	if (pos >= end || *pos != 0x78)
3114 		return 0;
3115 
3116 	return 1;
3117 }
3118 
3119 int
3120 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
3121 {
3122 	struct qla_hw_data *ha = vha->hw;
3123 	uint8_t *pos = ha->vpd;
3124 	uint8_t *end = pos + ha->vpd_size;
3125 	int len = 0;
3126 
3127 	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
3128 		return 0;
3129 
3130 	while (pos < end && *pos != 0x78) {
3131 		len = (*pos == 0x82) ? pos[1] : pos[2];
3132 
3133 		if (!strncmp(pos, key, strlen(key)))
3134 			break;
3135 
3136 		if (*pos != 0x90 && *pos != 0x91)
3137 			pos += len;
3138 
3139 		pos += 3;
3140 	}
3141 
3142 	if (pos < end - len && *pos != 0x78)
3143 		return snprintf(str, size, "%.*s", len, pos + 3);
3144 
3145 	return 0;
3146 }
3147 
3148 int
3149 qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha)
3150 {
3151 	int len, max_len;
3152 	uint32_t fcp_prio_addr;
3153 	struct qla_hw_data *ha = vha->hw;
3154 
3155 	if (!ha->fcp_prio_cfg) {
3156 		ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE);
3157 		if (!ha->fcp_prio_cfg) {
3158 			ql_log(ql_log_warn, vha, 0x00d5,
3159 			    "Unable to allocate memory for fcp priorty data (%x).\n",
3160 			    FCP_PRIO_CFG_SIZE);
3161 			return QLA_FUNCTION_FAILED;
3162 		}
3163 	}
3164 	memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE);
3165 
3166 	fcp_prio_addr = ha->flt_region_fcp_prio;
3167 
3168 	/* first read the fcp priority data header from flash */
3169 	ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
3170 			fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);
3171 
3172 	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 0))
3173 		goto fail;
3174 
3175 	/* read remaining FCP CMD config data from flash */
3176 	fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
3177 	len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
3178 	max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE;
3179 
3180 	ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
3181 			fcp_prio_addr << 2, (len < max_len ? len : max_len));
3182 
3183 	/* revalidate the entire FCP priority config data, including entries */
3184 	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 1))
3185 		goto fail;
3186 
3187 	ha->flags.fcp_prio_enabled = 1;
3188 	return QLA_SUCCESS;
3189 fail:
3190 	vfree(ha->fcp_prio_cfg);
3191 	ha->fcp_prio_cfg = NULL;
3192 	return QLA_FUNCTION_FAILED;
3193 }
3194