xref: /openbmc/linux/drivers/scsi/qla2xxx/qla_sup.c (revision 05bcf503)
1 /*
2  * QLogic Fibre Channel HBA Driver
3  * Copyright (c)  2003-2012 QLogic Corporation
4  *
5  * See LICENSE.qla2xxx for copyright and licensing details.
6  */
7 #include "qla_def.h"
8 
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/vmalloc.h>
12 #include <asm/uaccess.h>
13 
14 /*
15  * NVRAM support routines
16  */
17 
18 /**
19  * qla2x00_lock_nvram_access() -
20  * @ha: HA context
21  */
22 static void
23 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
24 {
25 	uint16_t data;
26 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
27 
28 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
29 		data = RD_REG_WORD(&reg->nvram);
30 		while (data & NVR_BUSY) {
31 			udelay(100);
32 			data = RD_REG_WORD(&reg->nvram);
33 		}
34 
35 		/* Lock resource */
36 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
37 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
38 		udelay(5);
39 		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
40 		while ((data & BIT_0) == 0) {
41 			/* Lock failed */
42 			udelay(100);
43 			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
44 			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
45 			udelay(5);
46 			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
47 		}
48 	}
49 }
50 
51 /**
52  * qla2x00_unlock_nvram_access() -
53  * @ha: HA context
54  */
55 static void
56 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
57 {
58 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
59 
60 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
61 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
62 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
63 	}
64 }
65 
66 /**
67  * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
68  * @ha: HA context
69  * @data: Serial interface selector
70  */
71 static void
72 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
73 {
74 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
75 
76 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
77 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
78 	NVRAM_DELAY();
79 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
80 	    NVR_WRT_ENABLE);
81 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
82 	NVRAM_DELAY();
83 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
84 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
85 	NVRAM_DELAY();
86 }
87 
88 /**
89  * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
90  *	NVRAM.
91  * @ha: HA context
92  * @nv_cmd: NVRAM command
93  *
94  * Bit definitions for NVRAM command:
95  *
96  *	Bit 26     = start bit
97  *	Bit 25, 24 = opcode
98  *	Bit 23-16  = address
99  *	Bit 15-0   = write data
100  *
101  * Returns the word read from nvram @addr.
102  */
103 static uint16_t
104 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
105 {
106 	uint8_t		cnt;
107 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
108 	uint16_t	data = 0;
109 	uint16_t	reg_data;
110 
111 	/* Send command to NVRAM. */
112 	nv_cmd <<= 5;
113 	for (cnt = 0; cnt < 11; cnt++) {
114 		if (nv_cmd & BIT_31)
115 			qla2x00_nv_write(ha, NVR_DATA_OUT);
116 		else
117 			qla2x00_nv_write(ha, 0);
118 		nv_cmd <<= 1;
119 	}
120 
121 	/* Read data from NVRAM. */
122 	for (cnt = 0; cnt < 16; cnt++) {
123 		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
124 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
125 		NVRAM_DELAY();
126 		data <<= 1;
127 		reg_data = RD_REG_WORD(&reg->nvram);
128 		if (reg_data & NVR_DATA_IN)
129 			data |= BIT_0;
130 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
131 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
132 		NVRAM_DELAY();
133 	}
134 
135 	/* Deselect chip. */
136 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
137 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
138 	NVRAM_DELAY();
139 
140 	return data;
141 }
142 
143 
144 /**
145  * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
146  *	request routine to get the word from NVRAM.
147  * @ha: HA context
148  * @addr: Address in NVRAM to read
149  *
150  * Returns the word read from nvram @addr.
151  */
152 static uint16_t
153 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
154 {
155 	uint16_t	data;
156 	uint32_t	nv_cmd;
157 
158 	nv_cmd = addr << 16;
159 	nv_cmd |= NV_READ_OP;
160 	data = qla2x00_nvram_request(ha, nv_cmd);
161 
162 	return (data);
163 }
164 
165 /**
166  * qla2x00_nv_deselect() - Deselect NVRAM operations.
167  * @ha: HA context
168  */
169 static void
170 qla2x00_nv_deselect(struct qla_hw_data *ha)
171 {
172 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
173 
174 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
175 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
176 	NVRAM_DELAY();
177 }
178 
179 /**
180  * qla2x00_write_nvram_word() - Write NVRAM data.
181  * @ha: HA context
182  * @addr: Address in NVRAM to write
183  * @data: word to program
184  */
185 static void
186 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
187 {
188 	int count;
189 	uint16_t word;
190 	uint32_t nv_cmd, wait_cnt;
191 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
192 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
193 
194 	qla2x00_nv_write(ha, NVR_DATA_OUT);
195 	qla2x00_nv_write(ha, 0);
196 	qla2x00_nv_write(ha, 0);
197 
198 	for (word = 0; word < 8; word++)
199 		qla2x00_nv_write(ha, NVR_DATA_OUT);
200 
201 	qla2x00_nv_deselect(ha);
202 
203 	/* Write data */
204 	nv_cmd = (addr << 16) | NV_WRITE_OP;
205 	nv_cmd |= data;
206 	nv_cmd <<= 5;
207 	for (count = 0; count < 27; count++) {
208 		if (nv_cmd & BIT_31)
209 			qla2x00_nv_write(ha, NVR_DATA_OUT);
210 		else
211 			qla2x00_nv_write(ha, 0);
212 
213 		nv_cmd <<= 1;
214 	}
215 
216 	qla2x00_nv_deselect(ha);
217 
218 	/* Wait for NVRAM to become ready */
219 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
220 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
221 	wait_cnt = NVR_WAIT_CNT;
222 	do {
223 		if (!--wait_cnt) {
224 			ql_dbg(ql_dbg_user, vha, 0x708d,
225 			    "NVRAM didn't go ready...\n");
226 			break;
227 		}
228 		NVRAM_DELAY();
229 		word = RD_REG_WORD(&reg->nvram);
230 	} while ((word & NVR_DATA_IN) == 0);
231 
232 	qla2x00_nv_deselect(ha);
233 
234 	/* Disable writes */
235 	qla2x00_nv_write(ha, NVR_DATA_OUT);
236 	for (count = 0; count < 10; count++)
237 		qla2x00_nv_write(ha, 0);
238 
239 	qla2x00_nv_deselect(ha);
240 }
241 
242 static int
243 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
244 	uint16_t data, uint32_t tmo)
245 {
246 	int ret, count;
247 	uint16_t word;
248 	uint32_t nv_cmd;
249 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
250 
251 	ret = QLA_SUCCESS;
252 
253 	qla2x00_nv_write(ha, NVR_DATA_OUT);
254 	qla2x00_nv_write(ha, 0);
255 	qla2x00_nv_write(ha, 0);
256 
257 	for (word = 0; word < 8; word++)
258 		qla2x00_nv_write(ha, NVR_DATA_OUT);
259 
260 	qla2x00_nv_deselect(ha);
261 
262 	/* Write data */
263 	nv_cmd = (addr << 16) | NV_WRITE_OP;
264 	nv_cmd |= data;
265 	nv_cmd <<= 5;
266 	for (count = 0; count < 27; count++) {
267 		if (nv_cmd & BIT_31)
268 			qla2x00_nv_write(ha, NVR_DATA_OUT);
269 		else
270 			qla2x00_nv_write(ha, 0);
271 
272 		nv_cmd <<= 1;
273 	}
274 
275 	qla2x00_nv_deselect(ha);
276 
277 	/* Wait for NVRAM to become ready */
278 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
279 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
280 	do {
281 		NVRAM_DELAY();
282 		word = RD_REG_WORD(&reg->nvram);
283 		if (!--tmo) {
284 			ret = QLA_FUNCTION_FAILED;
285 			break;
286 		}
287 	} while ((word & NVR_DATA_IN) == 0);
288 
289 	qla2x00_nv_deselect(ha);
290 
291 	/* Disable writes */
292 	qla2x00_nv_write(ha, NVR_DATA_OUT);
293 	for (count = 0; count < 10; count++)
294 		qla2x00_nv_write(ha, 0);
295 
296 	qla2x00_nv_deselect(ha);
297 
298 	return ret;
299 }
300 
301 /**
302  * qla2x00_clear_nvram_protection() -
303  * @ha: HA context
304  */
305 static int
306 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
307 {
308 	int ret, stat;
309 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
310 	uint32_t word, wait_cnt;
311 	uint16_t wprot, wprot_old;
312 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
313 
314 	/* Clear NVRAM write protection. */
315 	ret = QLA_FUNCTION_FAILED;
316 
317 	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319 	    __constant_cpu_to_le16(0x1234), 100000);
320 	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
321 	if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 		/* Write enable. */
323 		qla2x00_nv_write(ha, NVR_DATA_OUT);
324 		qla2x00_nv_write(ha, 0);
325 		qla2x00_nv_write(ha, 0);
326 		for (word = 0; word < 8; word++)
327 			qla2x00_nv_write(ha, NVR_DATA_OUT);
328 
329 		qla2x00_nv_deselect(ha);
330 
331 		/* Enable protection register. */
332 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
333 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
334 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
335 		for (word = 0; word < 8; word++)
336 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
337 
338 		qla2x00_nv_deselect(ha);
339 
340 		/* Clear protection register (ffff is cleared). */
341 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
343 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
344 		for (word = 0; word < 8; word++)
345 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
346 
347 		qla2x00_nv_deselect(ha);
348 
349 		/* Wait for NVRAM to become ready. */
350 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
352 		wait_cnt = NVR_WAIT_CNT;
353 		do {
354 			if (!--wait_cnt) {
355 				ql_dbg(ql_dbg_user, vha, 0x708e,
356 				    "NVRAM didn't go ready...\n");
357 				break;
358 			}
359 			NVRAM_DELAY();
360 			word = RD_REG_WORD(&reg->nvram);
361 		} while ((word & NVR_DATA_IN) == 0);
362 
363 		if (wait_cnt)
364 			ret = QLA_SUCCESS;
365 	} else
366 		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
367 
368 	return ret;
369 }
370 
371 static void
372 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
373 {
374 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
375 	uint32_t word, wait_cnt;
376 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
377 
378 	if (stat != QLA_SUCCESS)
379 		return;
380 
381 	/* Set NVRAM write protection. */
382 	/* Write enable. */
383 	qla2x00_nv_write(ha, NVR_DATA_OUT);
384 	qla2x00_nv_write(ha, 0);
385 	qla2x00_nv_write(ha, 0);
386 	for (word = 0; word < 8; word++)
387 		qla2x00_nv_write(ha, NVR_DATA_OUT);
388 
389 	qla2x00_nv_deselect(ha);
390 
391 	/* Enable protection register. */
392 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
393 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
394 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
395 	for (word = 0; word < 8; word++)
396 		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
397 
398 	qla2x00_nv_deselect(ha);
399 
400 	/* Enable protection register. */
401 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
402 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
403 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
404 	for (word = 0; word < 8; word++)
405 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
406 
407 	qla2x00_nv_deselect(ha);
408 
409 	/* Wait for NVRAM to become ready. */
410 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
412 	wait_cnt = NVR_WAIT_CNT;
413 	do {
414 		if (!--wait_cnt) {
415 			ql_dbg(ql_dbg_user, vha, 0x708f,
416 			    "NVRAM didn't go ready...\n");
417 			break;
418 		}
419 		NVRAM_DELAY();
420 		word = RD_REG_WORD(&reg->nvram);
421 	} while ((word & NVR_DATA_IN) == 0);
422 }
423 
424 
425 /*****************************************************************************/
426 /* Flash Manipulation Routines                                               */
427 /*****************************************************************************/
428 
429 static inline uint32_t
430 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
431 {
432 	return ha->flash_conf_off | faddr;
433 }
434 
435 static inline uint32_t
436 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
437 {
438 	return ha->flash_data_off | faddr;
439 }
440 
441 static inline uint32_t
442 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
443 {
444 	return ha->nvram_conf_off | naddr;
445 }
446 
447 static inline uint32_t
448 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
449 {
450 	return ha->nvram_data_off | naddr;
451 }
452 
453 static uint32_t
454 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
455 {
456 	int rval;
457 	uint32_t cnt, data;
458 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
459 
460 	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
461 	/* Wait for READ cycle to complete. */
462 	rval = QLA_SUCCESS;
463 	for (cnt = 3000;
464 	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
465 	    rval == QLA_SUCCESS; cnt--) {
466 		if (cnt)
467 			udelay(10);
468 		else
469 			rval = QLA_FUNCTION_TIMEOUT;
470 		cond_resched();
471 	}
472 
473 	/* TODO: What happens if we time out? */
474 	data = 0xDEADDEAD;
475 	if (rval == QLA_SUCCESS)
476 		data = RD_REG_DWORD(&reg->flash_data);
477 
478 	return data;
479 }
480 
481 uint32_t *
482 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
483     uint32_t dwords)
484 {
485 	uint32_t i;
486 	struct qla_hw_data *ha = vha->hw;
487 
488 	/* Dword reads to flash. */
489 	for (i = 0; i < dwords; i++, faddr++)
490 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
491 		    flash_data_addr(ha, faddr)));
492 
493 	return dwptr;
494 }
495 
496 static int
497 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
498 {
499 	int rval;
500 	uint32_t cnt;
501 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
502 
503 	WRT_REG_DWORD(&reg->flash_data, data);
504 	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
505 	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
506 	/* Wait for Write cycle to complete. */
507 	rval = QLA_SUCCESS;
508 	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
509 	    rval == QLA_SUCCESS; cnt--) {
510 		if (cnt)
511 			udelay(10);
512 		else
513 			rval = QLA_FUNCTION_TIMEOUT;
514 		cond_resched();
515 	}
516 	return rval;
517 }
518 
519 static void
520 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
521     uint8_t *flash_id)
522 {
523 	uint32_t ids;
524 
525 	ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
526 	*man_id = LSB(ids);
527 	*flash_id = MSB(ids);
528 
529 	/* Check if man_id and flash_id are valid. */
530 	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
531 		/* Read information using 0x9f opcode
532 		 * Device ID, Mfg ID would be read in the format:
533 		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
534 		 * Example: ATMEL 0x00 01 45 1F
535 		 * Extract MFG and Dev ID from last two bytes.
536 		 */
537 		ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
538 		*man_id = LSB(ids);
539 		*flash_id = MSB(ids);
540 	}
541 }
542 
543 static int
544 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
545 {
546 	const char *loc, *locations[] = { "DEF", "PCI" };
547 	uint32_t pcihdr, pcids;
548 	uint32_t *dcode;
549 	uint8_t *buf, *bcode, last_image;
550 	uint16_t cnt, chksum, *wptr;
551 	struct qla_flt_location *fltl;
552 	struct qla_hw_data *ha = vha->hw;
553 	struct req_que *req = ha->req_q_map[0];
554 
555 	/*
556 	 * FLT-location structure resides after the last PCI region.
557 	 */
558 
559 	/* Begin with sane defaults. */
560 	loc = locations[0];
561 	*start = 0;
562 	if (IS_QLA24XX_TYPE(ha))
563 		*start = FA_FLASH_LAYOUT_ADDR_24;
564 	else if (IS_QLA25XX(ha))
565 		*start = FA_FLASH_LAYOUT_ADDR;
566 	else if (IS_QLA81XX(ha))
567 		*start = FA_FLASH_LAYOUT_ADDR_81;
568 	else if (IS_QLA82XX(ha)) {
569 		*start = FA_FLASH_LAYOUT_ADDR_82;
570 		goto end;
571 	} else if (IS_QLA83XX(ha)) {
572 		*start = FA_FLASH_LAYOUT_ADDR_83;
573 		goto end;
574 	}
575 	/* Begin with first PCI expansion ROM header. */
576 	buf = (uint8_t *)req->ring;
577 	dcode = (uint32_t *)req->ring;
578 	pcihdr = 0;
579 	last_image = 1;
580 	do {
581 		/* Verify PCI expansion ROM header. */
582 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
583 		bcode = buf + (pcihdr % 4);
584 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
585 			goto end;
586 
587 		/* Locate PCI data structure. */
588 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
589 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
590 		bcode = buf + (pcihdr % 4);
591 
592 		/* Validate signature of PCI data structure. */
593 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
594 		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
595 			goto end;
596 
597 		last_image = bcode[0x15] & BIT_7;
598 
599 		/* Locate next PCI expansion ROM. */
600 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
601 	} while (!last_image);
602 
603 	/* Now verify FLT-location structure. */
604 	fltl = (struct qla_flt_location *)req->ring;
605 	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
606 	    sizeof(struct qla_flt_location) >> 2);
607 	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
608 	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
609 		goto end;
610 
611 	wptr = (uint16_t *)req->ring;
612 	cnt = sizeof(struct qla_flt_location) >> 1;
613 	for (chksum = 0; cnt; cnt--)
614 		chksum += le16_to_cpu(*wptr++);
615 	if (chksum) {
616 		ql_log(ql_log_fatal, vha, 0x0045,
617 		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
618 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010e,
619 		    buf, sizeof(struct qla_flt_location));
620 		return QLA_FUNCTION_FAILED;
621 	}
622 
623 	/* Good data.  Use specified location. */
624 	loc = locations[1];
625 	*start = (le16_to_cpu(fltl->start_hi) << 16 |
626 	    le16_to_cpu(fltl->start_lo)) >> 2;
627 end:
628 	ql_dbg(ql_dbg_init, vha, 0x0046,
629 	    "FLTL[%s] = 0x%x.\n",
630 	    loc, *start);
631 	return QLA_SUCCESS;
632 }
633 
634 static void
635 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
636 {
637 	const char *loc, *locations[] = { "DEF", "FLT" };
638 	const uint32_t def_fw[] =
639 		{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
640 	const uint32_t def_boot[] =
641 		{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
642 	const uint32_t def_vpd_nvram[] =
643 		{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
644 	const uint32_t def_vpd0[] =
645 		{ 0, 0, FA_VPD0_ADDR_81 };
646 	const uint32_t def_vpd1[] =
647 		{ 0, 0, FA_VPD1_ADDR_81 };
648 	const uint32_t def_nvram0[] =
649 		{ 0, 0, FA_NVRAM0_ADDR_81 };
650 	const uint32_t def_nvram1[] =
651 		{ 0, 0, FA_NVRAM1_ADDR_81 };
652 	const uint32_t def_fdt[] =
653 		{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
654 			FA_FLASH_DESCR_ADDR_81 };
655 	const uint32_t def_npiv_conf0[] =
656 		{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
657 			FA_NPIV_CONF0_ADDR_81 };
658 	const uint32_t def_npiv_conf1[] =
659 		{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
660 			FA_NPIV_CONF1_ADDR_81 };
661 	const uint32_t fcp_prio_cfg0[] =
662 		{ FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25,
663 			0 };
664 	const uint32_t fcp_prio_cfg1[] =
665 		{ FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25,
666 			0 };
667 	uint32_t def;
668 	uint16_t *wptr;
669 	uint16_t cnt, chksum;
670 	uint32_t start;
671 	struct qla_flt_header *flt;
672 	struct qla_flt_region *region;
673 	struct qla_hw_data *ha = vha->hw;
674 	struct req_que *req = ha->req_q_map[0];
675 
676 	def = 0;
677 	if (IS_QLA25XX(ha))
678 		def = 1;
679 	else if (IS_QLA81XX(ha))
680 		def = 2;
681 
682 	/* Assign FCP prio region since older adapters may not have FLT, or
683 	   FCP prio region in it's FLT.
684 	 */
685 	ha->flt_region_fcp_prio = ha->flags.port0 ?
686 	    fcp_prio_cfg0[def] : fcp_prio_cfg1[def];
687 
688 	ha->flt_region_flt = flt_addr;
689 	wptr = (uint16_t *)req->ring;
690 	flt = (struct qla_flt_header *)req->ring;
691 	region = (struct qla_flt_region *)&flt[1];
692 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
693 	    flt_addr << 2, OPTROM_BURST_SIZE);
694 	if (*wptr == __constant_cpu_to_le16(0xffff))
695 		goto no_flash_data;
696 	if (flt->version != __constant_cpu_to_le16(1)) {
697 		ql_log(ql_log_warn, vha, 0x0047,
698 		    "Unsupported FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
699 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
700 		    le16_to_cpu(flt->checksum));
701 		goto no_flash_data;
702 	}
703 
704 	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
705 	for (chksum = 0; cnt; cnt--)
706 		chksum += le16_to_cpu(*wptr++);
707 	if (chksum) {
708 		ql_log(ql_log_fatal, vha, 0x0048,
709 		    "Inconsistent FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
710 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
711 		    le16_to_cpu(flt->checksum));
712 		goto no_flash_data;
713 	}
714 
715 	loc = locations[1];
716 	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
717 	for ( ; cnt; cnt--, region++) {
718 		/* Store addresses as DWORD offsets. */
719 		start = le32_to_cpu(region->start) >> 2;
720 		ql_dbg(ql_dbg_init, vha, 0x0049,
721 		    "FLT[%02x]: start=0x%x "
722 		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code),
723 		    start, le32_to_cpu(region->end) >> 2,
724 		    le32_to_cpu(region->size));
725 
726 		switch (le32_to_cpu(region->code) & 0xff) {
727 		case FLT_REG_FCOE_FW:
728 			if (!IS_QLA8031(ha))
729 				break;
730 			ha->flt_region_fw = start;
731 			break;
732 		case FLT_REG_FW:
733 			if (IS_QLA8031(ha))
734 				break;
735 			ha->flt_region_fw = start;
736 			break;
737 		case FLT_REG_BOOT_CODE:
738 			ha->flt_region_boot = start;
739 			break;
740 		case FLT_REG_VPD_0:
741 			if (IS_QLA8031(ha))
742 				break;
743 			ha->flt_region_vpd_nvram = start;
744 			if (IS_QLA82XX(ha))
745 				break;
746 			if (ha->flags.port0)
747 				ha->flt_region_vpd = start;
748 			break;
749 		case FLT_REG_VPD_1:
750 			if (IS_QLA82XX(ha) || IS_QLA8031(ha))
751 				break;
752 			if (!ha->flags.port0)
753 				ha->flt_region_vpd = start;
754 			break;
755 		case FLT_REG_NVRAM_0:
756 			if (IS_QLA8031(ha))
757 				break;
758 			if (ha->flags.port0)
759 				ha->flt_region_nvram = start;
760 			break;
761 		case FLT_REG_NVRAM_1:
762 			if (IS_QLA8031(ha))
763 				break;
764 			if (!ha->flags.port0)
765 				ha->flt_region_nvram = start;
766 			break;
767 		case FLT_REG_FDT:
768 			ha->flt_region_fdt = start;
769 			break;
770 		case FLT_REG_NPIV_CONF_0:
771 			if (ha->flags.port0)
772 				ha->flt_region_npiv_conf = start;
773 			break;
774 		case FLT_REG_NPIV_CONF_1:
775 			if (!ha->flags.port0)
776 				ha->flt_region_npiv_conf = start;
777 			break;
778 		case FLT_REG_GOLD_FW:
779 			ha->flt_region_gold_fw = start;
780 			break;
781 		case FLT_REG_FCP_PRIO_0:
782 			if (ha->flags.port0)
783 				ha->flt_region_fcp_prio = start;
784 			break;
785 		case FLT_REG_FCP_PRIO_1:
786 			if (!ha->flags.port0)
787 				ha->flt_region_fcp_prio = start;
788 			break;
789 		case FLT_REG_BOOT_CODE_82XX:
790 			ha->flt_region_boot = start;
791 			break;
792 		case FLT_REG_FW_82XX:
793 			ha->flt_region_fw = start;
794 			break;
795 		case FLT_REG_GOLD_FW_82XX:
796 			ha->flt_region_gold_fw = start;
797 			break;
798 		case FLT_REG_BOOTLOAD_82XX:
799 			ha->flt_region_bootload = start;
800 			break;
801 		case FLT_REG_VPD_82XX:
802 			ha->flt_region_vpd = start;
803 			break;
804 		case FLT_REG_FCOE_VPD_0:
805 			if (!IS_QLA8031(ha))
806 				break;
807 			ha->flt_region_vpd_nvram = start;
808 			if (ha->flags.port0)
809 				ha->flt_region_vpd = start;
810 			break;
811 		case FLT_REG_FCOE_VPD_1:
812 			if (!IS_QLA8031(ha))
813 				break;
814 			if (!ha->flags.port0)
815 				ha->flt_region_vpd = start;
816 			break;
817 		case FLT_REG_FCOE_NVRAM_0:
818 			if (!IS_QLA8031(ha))
819 				break;
820 			if (ha->flags.port0)
821 				ha->flt_region_nvram = start;
822 			break;
823 		case FLT_REG_FCOE_NVRAM_1:
824 			if (!IS_QLA8031(ha))
825 				break;
826 			if (!ha->flags.port0)
827 				ha->flt_region_nvram = start;
828 			break;
829 		}
830 	}
831 	goto done;
832 
833 no_flash_data:
834 	/* Use hardcoded defaults. */
835 	loc = locations[0];
836 	ha->flt_region_fw = def_fw[def];
837 	ha->flt_region_boot = def_boot[def];
838 	ha->flt_region_vpd_nvram = def_vpd_nvram[def];
839 	ha->flt_region_vpd = ha->flags.port0 ?
840 	    def_vpd0[def] : def_vpd1[def];
841 	ha->flt_region_nvram = ha->flags.port0 ?
842 	    def_nvram0[def] : def_nvram1[def];
843 	ha->flt_region_fdt = def_fdt[def];
844 	ha->flt_region_npiv_conf = ha->flags.port0 ?
845 	    def_npiv_conf0[def] : def_npiv_conf1[def];
846 done:
847 	ql_dbg(ql_dbg_init, vha, 0x004a,
848 	    "FLT[%s]: boot=0x%x fw=0x%x vpd_nvram=0x%x vpd=0x%x nvram=0x%x "
849 	    "fdt=0x%x flt=0x%x npiv=0x%x fcp_prif_cfg=0x%x.\n",
850 	    loc, ha->flt_region_boot, ha->flt_region_fw,
851 	    ha->flt_region_vpd_nvram, ha->flt_region_vpd, ha->flt_region_nvram,
852 	    ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf,
853 	    ha->flt_region_fcp_prio);
854 }
855 
856 static void
857 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
858 {
859 #define FLASH_BLK_SIZE_4K	0x1000
860 #define FLASH_BLK_SIZE_32K	0x8000
861 #define FLASH_BLK_SIZE_64K	0x10000
862 	const char *loc, *locations[] = { "MID", "FDT" };
863 	uint16_t cnt, chksum;
864 	uint16_t *wptr;
865 	struct qla_fdt_layout *fdt;
866 	uint8_t	man_id, flash_id;
867 	uint16_t mid = 0, fid = 0;
868 	struct qla_hw_data *ha = vha->hw;
869 	struct req_que *req = ha->req_q_map[0];
870 
871 	wptr = (uint16_t *)req->ring;
872 	fdt = (struct qla_fdt_layout *)req->ring;
873 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
874 	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
875 	if (*wptr == __constant_cpu_to_le16(0xffff))
876 		goto no_flash_data;
877 	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
878 	    fdt->sig[3] != 'D')
879 		goto no_flash_data;
880 
881 	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
882 	    cnt++)
883 		chksum += le16_to_cpu(*wptr++);
884 	if (chksum) {
885 		ql_dbg(ql_dbg_init, vha, 0x004c,
886 		    "Inconsistent FDT detected:"
887 		    " checksum=0x%x id=%c version0x%x.\n", chksum,
888 		    fdt->sig[0], le16_to_cpu(fdt->version));
889 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x0113,
890 		    (uint8_t *)fdt, sizeof(*fdt));
891 		goto no_flash_data;
892 	}
893 
894 	loc = locations[1];
895 	mid = le16_to_cpu(fdt->man_id);
896 	fid = le16_to_cpu(fdt->id);
897 	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
898 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
899 	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
900 	if (fdt->unprotect_sec_cmd) {
901 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
902 		    fdt->unprotect_sec_cmd);
903 		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
904 		    flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
905 		    flash_conf_addr(ha, 0x0336);
906 	}
907 	goto done;
908 no_flash_data:
909 	loc = locations[0];
910 	if (IS_QLA82XX(ha)) {
911 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
912 		goto done;
913 	}
914 	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
915 	mid = man_id;
916 	fid = flash_id;
917 	ha->fdt_wrt_disable = 0x9c;
918 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
919 	switch (man_id) {
920 	case 0xbf: /* STT flash. */
921 		if (flash_id == 0x8e)
922 			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
923 		else
924 			ha->fdt_block_size = FLASH_BLK_SIZE_32K;
925 
926 		if (flash_id == 0x80)
927 			ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
928 		break;
929 	case 0x13: /* ST M25P80. */
930 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
931 		break;
932 	case 0x1f: /* Atmel 26DF081A. */
933 		ha->fdt_block_size = FLASH_BLK_SIZE_4K;
934 		ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
935 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
936 		ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
937 		break;
938 	default:
939 		/* Default to 64 kb sector size. */
940 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
941 		break;
942 	}
943 done:
944 	ql_dbg(ql_dbg_init, vha, 0x004d,
945 	    "FDT[%s]: (0x%x/0x%x) erase=0x%x "
946 	    "pr=%x wrtd=0x%x blk=0x%x.\n",
947 	    loc, mid, fid,
948 	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
949 	    ha->fdt_wrt_disable, ha->fdt_block_size);
950 
951 }
952 
953 static void
954 qla2xxx_get_idc_param(scsi_qla_host_t *vha)
955 {
956 #define QLA82XX_IDC_PARAM_ADDR       0x003e885c
957 	uint32_t *wptr;
958 	struct qla_hw_data *ha = vha->hw;
959 	struct req_que *req = ha->req_q_map[0];
960 
961 	if (!IS_QLA82XX(ha))
962 		return;
963 
964 	wptr = (uint32_t *)req->ring;
965 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
966 		QLA82XX_IDC_PARAM_ADDR , 8);
967 
968 	if (*wptr == __constant_cpu_to_le32(0xffffffff)) {
969 		ha->fcoe_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT;
970 		ha->fcoe_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT;
971 	} else {
972 		ha->fcoe_dev_init_timeout = le32_to_cpu(*wptr++);
973 		ha->fcoe_reset_timeout = le32_to_cpu(*wptr);
974 	}
975 	ql_dbg(ql_dbg_init, vha, 0x004e,
976 	    "fcoe_dev_init_timeout=%d "
977 	    "fcoe_reset_timeout=%d.\n", ha->fcoe_dev_init_timeout,
978 	    ha->fcoe_reset_timeout);
979 	return;
980 }
981 
982 int
983 qla2xxx_get_flash_info(scsi_qla_host_t *vha)
984 {
985 	int ret;
986 	uint32_t flt_addr;
987 	struct qla_hw_data *ha = vha->hw;
988 
989 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
990 	    !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha))
991 		return QLA_SUCCESS;
992 
993 	ret = qla2xxx_find_flt_start(vha, &flt_addr);
994 	if (ret != QLA_SUCCESS)
995 		return ret;
996 
997 	qla2xxx_get_flt_info(vha, flt_addr);
998 	qla2xxx_get_fdt_info(vha);
999 	qla2xxx_get_idc_param(vha);
1000 
1001 	return QLA_SUCCESS;
1002 }
1003 
1004 void
1005 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
1006 {
1007 #define NPIV_CONFIG_SIZE	(16*1024)
1008 	void *data;
1009 	uint16_t *wptr;
1010 	uint16_t cnt, chksum;
1011 	int i;
1012 	struct qla_npiv_header hdr;
1013 	struct qla_npiv_entry *entry;
1014 	struct qla_hw_data *ha = vha->hw;
1015 
1016 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
1017 	    !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha))
1018 		return;
1019 
1020 	if (ha->flags.nic_core_reset_hdlr_active)
1021 		return;
1022 
1023 	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
1024 	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
1025 	if (hdr.version == __constant_cpu_to_le16(0xffff))
1026 		return;
1027 	if (hdr.version != __constant_cpu_to_le16(1)) {
1028 		ql_dbg(ql_dbg_user, vha, 0x7090,
1029 		    "Unsupported NPIV-Config "
1030 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1031 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1032 		    le16_to_cpu(hdr.checksum));
1033 		return;
1034 	}
1035 
1036 	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
1037 	if (!data) {
1038 		ql_log(ql_log_warn, vha, 0x7091,
1039 		    "Unable to allocate memory for data.\n");
1040 		return;
1041 	}
1042 
1043 	ha->isp_ops->read_optrom(vha, (uint8_t *)data,
1044 	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
1045 
1046 	cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
1047 	    sizeof(struct qla_npiv_entry)) >> 1;
1048 	for (wptr = data, chksum = 0; cnt; cnt--)
1049 		chksum += le16_to_cpu(*wptr++);
1050 	if (chksum) {
1051 		ql_dbg(ql_dbg_user, vha, 0x7092,
1052 		    "Inconsistent NPIV-Config "
1053 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1054 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1055 		    le16_to_cpu(hdr.checksum));
1056 		goto done;
1057 	}
1058 
1059 	entry = data + sizeof(struct qla_npiv_header);
1060 	cnt = le16_to_cpu(hdr.entries);
1061 	for (i = 0; cnt; cnt--, entry++, i++) {
1062 		uint16_t flags;
1063 		struct fc_vport_identifiers vid;
1064 		struct fc_vport *vport;
1065 
1066 		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
1067 
1068 		flags = le16_to_cpu(entry->flags);
1069 		if (flags == 0xffff)
1070 			continue;
1071 		if ((flags & BIT_0) == 0)
1072 			continue;
1073 
1074 		memset(&vid, 0, sizeof(vid));
1075 		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
1076 		vid.vport_type = FC_PORTTYPE_NPIV;
1077 		vid.disable = false;
1078 		vid.port_name = wwn_to_u64(entry->port_name);
1079 		vid.node_name = wwn_to_u64(entry->node_name);
1080 
1081 		ql_dbg(ql_dbg_user, vha, 0x7093,
1082 		    "NPIV[%02x]: wwpn=%llx "
1083 		    "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
1084 		    (unsigned long long)vid.port_name,
1085 		    (unsigned long long)vid.node_name,
1086 		    le16_to_cpu(entry->vf_id),
1087 		    entry->q_qos, entry->f_qos);
1088 
1089 		if (i < QLA_PRECONFIG_VPORTS) {
1090 			vport = fc_vport_create(vha->host, 0, &vid);
1091 			if (!vport)
1092 				ql_log(ql_log_warn, vha, 0x7094,
1093 				    "NPIV-Config Failed to create vport [%02x]: "
1094 				    "wwpn=%llx wwnn=%llx.\n", cnt,
1095 				    (unsigned long long)vid.port_name,
1096 				    (unsigned long long)vid.node_name);
1097 		}
1098 	}
1099 done:
1100 	kfree(data);
1101 }
1102 
1103 static int
1104 qla24xx_unprotect_flash(scsi_qla_host_t *vha)
1105 {
1106 	struct qla_hw_data *ha = vha->hw;
1107 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1108 
1109 	if (ha->flags.fac_supported)
1110 		return qla81xx_fac_do_write_enable(vha, 1);
1111 
1112 	/* Enable flash write. */
1113 	WRT_REG_DWORD(&reg->ctrl_status,
1114 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1115 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1116 
1117 	if (!ha->fdt_wrt_disable)
1118 		goto done;
1119 
1120 	/* Disable flash write-protection, first clear SR protection bit */
1121 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1122 	/* Then write zero again to clear remaining SR bits.*/
1123 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1124 done:
1125 	return QLA_SUCCESS;
1126 }
1127 
1128 static int
1129 qla24xx_protect_flash(scsi_qla_host_t *vha)
1130 {
1131 	uint32_t cnt;
1132 	struct qla_hw_data *ha = vha->hw;
1133 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1134 
1135 	if (ha->flags.fac_supported)
1136 		return qla81xx_fac_do_write_enable(vha, 0);
1137 
1138 	if (!ha->fdt_wrt_disable)
1139 		goto skip_wrt_protect;
1140 
1141 	/* Enable flash write-protection and wait for completion. */
1142 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1143 	    ha->fdt_wrt_disable);
1144 	for (cnt = 300; cnt &&
1145 	    qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1146 	    cnt--) {
1147 		udelay(10);
1148 	}
1149 
1150 skip_wrt_protect:
1151 	/* Disable flash write. */
1152 	WRT_REG_DWORD(&reg->ctrl_status,
1153 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1154 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1155 
1156 	return QLA_SUCCESS;
1157 }
1158 
1159 static int
1160 qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
1161 {
1162 	struct qla_hw_data *ha = vha->hw;
1163 	uint32_t start, finish;
1164 
1165 	if (ha->flags.fac_supported) {
1166 		start = fdata >> 2;
1167 		finish = start + (ha->fdt_block_size >> 2) - 1;
1168 		return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
1169 		    start), flash_data_addr(ha, finish));
1170 	}
1171 
1172 	return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1173 	    (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
1174 	    ((fdata >> 16) & 0xff));
1175 }
1176 
1177 static int
1178 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1179     uint32_t dwords)
1180 {
1181 	int ret;
1182 	uint32_t liter;
1183 	uint32_t sec_mask, rest_addr;
1184 	uint32_t fdata;
1185 	dma_addr_t optrom_dma;
1186 	void *optrom = NULL;
1187 	struct qla_hw_data *ha = vha->hw;
1188 
1189 	/* Prepare burst-capable write on supported ISPs. */
1190 	if ((IS_QLA25XX(ha) || IS_QLA81XX(ha) || IS_QLA83XX(ha)) &&
1191 	    !(faddr & 0xfff) && dwords > OPTROM_BURST_DWORDS) {
1192 		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1193 		    &optrom_dma, GFP_KERNEL);
1194 		if (!optrom) {
1195 			ql_log(ql_log_warn, vha, 0x7095,
1196 			    "Unable to allocate "
1197 			    "memory for optrom burst write (%x KB).\n",
1198 			    OPTROM_BURST_SIZE / 1024);
1199 		}
1200 	}
1201 
1202 	rest_addr = (ha->fdt_block_size >> 2) - 1;
1203 	sec_mask = ~rest_addr;
1204 
1205 	ret = qla24xx_unprotect_flash(vha);
1206 	if (ret != QLA_SUCCESS) {
1207 		ql_log(ql_log_warn, vha, 0x7096,
1208 		    "Unable to unprotect flash for update.\n");
1209 		goto done;
1210 	}
1211 
1212 	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1213 		fdata = (faddr & sec_mask) << 2;
1214 
1215 		/* Are we at the beginning of a sector? */
1216 		if ((faddr & rest_addr) == 0) {
1217 			/* Do sector unprotect. */
1218 			if (ha->fdt_unprotect_sec_cmd)
1219 				qla24xx_write_flash_dword(ha,
1220 				    ha->fdt_unprotect_sec_cmd,
1221 				    (fdata & 0xff00) | ((fdata << 16) &
1222 				    0xff0000) | ((fdata >> 16) & 0xff));
1223 			ret = qla24xx_erase_sector(vha, fdata);
1224 			if (ret != QLA_SUCCESS) {
1225 				ql_dbg(ql_dbg_user, vha, 0x7007,
1226 				    "Unable to erase erase sector: address=%x.\n",
1227 				    faddr);
1228 				break;
1229 			}
1230 		}
1231 
1232 		/* Go with burst-write. */
1233 		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1234 			/* Copy data to DMA'ble buffer. */
1235 			memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1236 
1237 			ret = qla2x00_load_ram(vha, optrom_dma,
1238 			    flash_data_addr(ha, faddr),
1239 			    OPTROM_BURST_DWORDS);
1240 			if (ret != QLA_SUCCESS) {
1241 				ql_log(ql_log_warn, vha, 0x7097,
1242 				    "Unable to burst-write optrom segment "
1243 				    "(%x/%x/%llx).\n", ret,
1244 				    flash_data_addr(ha, faddr),
1245 				    (unsigned long long)optrom_dma);
1246 				ql_log(ql_log_warn, vha, 0x7098,
1247 				    "Reverting to slow-write.\n");
1248 
1249 				dma_free_coherent(&ha->pdev->dev,
1250 				    OPTROM_BURST_SIZE, optrom, optrom_dma);
1251 				optrom = NULL;
1252 			} else {
1253 				liter += OPTROM_BURST_DWORDS - 1;
1254 				faddr += OPTROM_BURST_DWORDS - 1;
1255 				dwptr += OPTROM_BURST_DWORDS - 1;
1256 				continue;
1257 			}
1258 		}
1259 
1260 		ret = qla24xx_write_flash_dword(ha,
1261 		    flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1262 		if (ret != QLA_SUCCESS) {
1263 			ql_dbg(ql_dbg_user, vha, 0x7006,
1264 			    "Unable to program flash address=%x data=%x.\n",
1265 			    faddr, *dwptr);
1266 			break;
1267 		}
1268 
1269 		/* Do sector protect. */
1270 		if (ha->fdt_unprotect_sec_cmd &&
1271 		    ((faddr & rest_addr) == rest_addr))
1272 			qla24xx_write_flash_dword(ha,
1273 			    ha->fdt_protect_sec_cmd,
1274 			    (fdata & 0xff00) | ((fdata << 16) &
1275 			    0xff0000) | ((fdata >> 16) & 0xff));
1276 	}
1277 
1278 	ret = qla24xx_protect_flash(vha);
1279 	if (ret != QLA_SUCCESS)
1280 		ql_log(ql_log_warn, vha, 0x7099,
1281 		    "Unable to protect flash after update.\n");
1282 done:
1283 	if (optrom)
1284 		dma_free_coherent(&ha->pdev->dev,
1285 		    OPTROM_BURST_SIZE, optrom, optrom_dma);
1286 
1287 	return ret;
1288 }
1289 
1290 uint8_t *
1291 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1292     uint32_t bytes)
1293 {
1294 	uint32_t i;
1295 	uint16_t *wptr;
1296 	struct qla_hw_data *ha = vha->hw;
1297 
1298 	/* Word reads to NVRAM via registers. */
1299 	wptr = (uint16_t *)buf;
1300 	qla2x00_lock_nvram_access(ha);
1301 	for (i = 0; i < bytes >> 1; i++, naddr++)
1302 		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1303 		    naddr));
1304 	qla2x00_unlock_nvram_access(ha);
1305 
1306 	return buf;
1307 }
1308 
1309 uint8_t *
1310 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1311     uint32_t bytes)
1312 {
1313 	uint32_t i;
1314 	uint32_t *dwptr;
1315 	struct qla_hw_data *ha = vha->hw;
1316 
1317 	if (IS_QLA82XX(ha))
1318 		return  buf;
1319 
1320 	/* Dword reads to flash. */
1321 	dwptr = (uint32_t *)buf;
1322 	for (i = 0; i < bytes >> 2; i++, naddr++)
1323 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1324 		    nvram_data_addr(ha, naddr)));
1325 
1326 	return buf;
1327 }
1328 
1329 int
1330 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1331     uint32_t bytes)
1332 {
1333 	int ret, stat;
1334 	uint32_t i;
1335 	uint16_t *wptr;
1336 	unsigned long flags;
1337 	struct qla_hw_data *ha = vha->hw;
1338 
1339 	ret = QLA_SUCCESS;
1340 
1341 	spin_lock_irqsave(&ha->hardware_lock, flags);
1342 	qla2x00_lock_nvram_access(ha);
1343 
1344 	/* Disable NVRAM write-protection. */
1345 	stat = qla2x00_clear_nvram_protection(ha);
1346 
1347 	wptr = (uint16_t *)buf;
1348 	for (i = 0; i < bytes >> 1; i++, naddr++) {
1349 		qla2x00_write_nvram_word(ha, naddr,
1350 		    cpu_to_le16(*wptr));
1351 		wptr++;
1352 	}
1353 
1354 	/* Enable NVRAM write-protection. */
1355 	qla2x00_set_nvram_protection(ha, stat);
1356 
1357 	qla2x00_unlock_nvram_access(ha);
1358 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1359 
1360 	return ret;
1361 }
1362 
1363 int
1364 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1365     uint32_t bytes)
1366 {
1367 	int ret;
1368 	uint32_t i;
1369 	uint32_t *dwptr;
1370 	struct qla_hw_data *ha = vha->hw;
1371 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1372 
1373 	ret = QLA_SUCCESS;
1374 
1375 	if (IS_QLA82XX(ha))
1376 		return ret;
1377 
1378 	/* Enable flash write. */
1379 	WRT_REG_DWORD(&reg->ctrl_status,
1380 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1381 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1382 
1383 	/* Disable NVRAM write-protection. */
1384 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1385 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1386 
1387 	/* Dword writes to flash. */
1388 	dwptr = (uint32_t *)buf;
1389 	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1390 		ret = qla24xx_write_flash_dword(ha,
1391 		    nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1392 		if (ret != QLA_SUCCESS) {
1393 			ql_dbg(ql_dbg_user, vha, 0x709a,
1394 			    "Unable to program nvram address=%x data=%x.\n",
1395 			    naddr, *dwptr);
1396 			break;
1397 		}
1398 	}
1399 
1400 	/* Enable NVRAM write-protection. */
1401 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1402 
1403 	/* Disable flash write. */
1404 	WRT_REG_DWORD(&reg->ctrl_status,
1405 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1406 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1407 
1408 	return ret;
1409 }
1410 
1411 uint8_t *
1412 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1413     uint32_t bytes)
1414 {
1415 	uint32_t i;
1416 	uint32_t *dwptr;
1417 	struct qla_hw_data *ha = vha->hw;
1418 
1419 	/* Dword reads to flash. */
1420 	dwptr = (uint32_t *)buf;
1421 	for (i = 0; i < bytes >> 2; i++, naddr++)
1422 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1423 		    flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1424 
1425 	return buf;
1426 }
1427 
1428 int
1429 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1430     uint32_t bytes)
1431 {
1432 	struct qla_hw_data *ha = vha->hw;
1433 #define RMW_BUFFER_SIZE	(64 * 1024)
1434 	uint8_t *dbuf;
1435 
1436 	dbuf = vmalloc(RMW_BUFFER_SIZE);
1437 	if (!dbuf)
1438 		return QLA_MEMORY_ALLOC_FAILED;
1439 	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1440 	    RMW_BUFFER_SIZE);
1441 	memcpy(dbuf + (naddr << 2), buf, bytes);
1442 	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1443 	    RMW_BUFFER_SIZE);
1444 	vfree(dbuf);
1445 
1446 	return QLA_SUCCESS;
1447 }
1448 
1449 static inline void
1450 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1451 {
1452 	if (IS_QLA2322(ha)) {
1453 		/* Flip all colors. */
1454 		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1455 			/* Turn off. */
1456 			ha->beacon_color_state = 0;
1457 			*pflags = GPIO_LED_ALL_OFF;
1458 		} else {
1459 			/* Turn on. */
1460 			ha->beacon_color_state = QLA_LED_ALL_ON;
1461 			*pflags = GPIO_LED_RGA_ON;
1462 		}
1463 	} else {
1464 		/* Flip green led only. */
1465 		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1466 			/* Turn off. */
1467 			ha->beacon_color_state = 0;
1468 			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1469 		} else {
1470 			/* Turn on. */
1471 			ha->beacon_color_state = QLA_LED_GRN_ON;
1472 			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1473 		}
1474 	}
1475 }
1476 
1477 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1478 
1479 void
1480 qla2x00_beacon_blink(struct scsi_qla_host *vha)
1481 {
1482 	uint16_t gpio_enable;
1483 	uint16_t gpio_data;
1484 	uint16_t led_color = 0;
1485 	unsigned long flags;
1486 	struct qla_hw_data *ha = vha->hw;
1487 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1488 
1489 	if (IS_QLA82XX(ha))
1490 		return;
1491 
1492 	spin_lock_irqsave(&ha->hardware_lock, flags);
1493 
1494 	/* Save the Original GPIOE. */
1495 	if (ha->pio_address) {
1496 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1497 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1498 	} else {
1499 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1500 		gpio_data = RD_REG_WORD(&reg->gpiod);
1501 	}
1502 
1503 	/* Set the modified gpio_enable values */
1504 	gpio_enable |= GPIO_LED_MASK;
1505 
1506 	if (ha->pio_address) {
1507 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1508 	} else {
1509 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1510 		RD_REG_WORD(&reg->gpioe);
1511 	}
1512 
1513 	qla2x00_flip_colors(ha, &led_color);
1514 
1515 	/* Clear out any previously set LED color. */
1516 	gpio_data &= ~GPIO_LED_MASK;
1517 
1518 	/* Set the new input LED color to GPIOD. */
1519 	gpio_data |= led_color;
1520 
1521 	/* Set the modified gpio_data values */
1522 	if (ha->pio_address) {
1523 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1524 	} else {
1525 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1526 		RD_REG_WORD(&reg->gpiod);
1527 	}
1528 
1529 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1530 }
1531 
1532 int
1533 qla2x00_beacon_on(struct scsi_qla_host *vha)
1534 {
1535 	uint16_t gpio_enable;
1536 	uint16_t gpio_data;
1537 	unsigned long flags;
1538 	struct qla_hw_data *ha = vha->hw;
1539 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1540 
1541 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1542 	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1543 
1544 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1545 		ql_log(ql_log_warn, vha, 0x709b,
1546 		    "Unable to update fw options (beacon on).\n");
1547 		return QLA_FUNCTION_FAILED;
1548 	}
1549 
1550 	/* Turn off LEDs. */
1551 	spin_lock_irqsave(&ha->hardware_lock, flags);
1552 	if (ha->pio_address) {
1553 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1554 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1555 	} else {
1556 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1557 		gpio_data = RD_REG_WORD(&reg->gpiod);
1558 	}
1559 	gpio_enable |= GPIO_LED_MASK;
1560 
1561 	/* Set the modified gpio_enable values. */
1562 	if (ha->pio_address) {
1563 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1564 	} else {
1565 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1566 		RD_REG_WORD(&reg->gpioe);
1567 	}
1568 
1569 	/* Clear out previously set LED colour. */
1570 	gpio_data &= ~GPIO_LED_MASK;
1571 	if (ha->pio_address) {
1572 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1573 	} else {
1574 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1575 		RD_REG_WORD(&reg->gpiod);
1576 	}
1577 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1578 
1579 	/*
1580 	 * Let the per HBA timer kick off the blinking process based on
1581 	 * the following flags. No need to do anything else now.
1582 	 */
1583 	ha->beacon_blink_led = 1;
1584 	ha->beacon_color_state = 0;
1585 
1586 	return QLA_SUCCESS;
1587 }
1588 
1589 int
1590 qla2x00_beacon_off(struct scsi_qla_host *vha)
1591 {
1592 	int rval = QLA_SUCCESS;
1593 	struct qla_hw_data *ha = vha->hw;
1594 
1595 	ha->beacon_blink_led = 0;
1596 
1597 	/* Set the on flag so when it gets flipped it will be off. */
1598 	if (IS_QLA2322(ha))
1599 		ha->beacon_color_state = QLA_LED_ALL_ON;
1600 	else
1601 		ha->beacon_color_state = QLA_LED_GRN_ON;
1602 
1603 	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */
1604 
1605 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1606 	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1607 
1608 	rval = qla2x00_set_fw_options(vha, ha->fw_options);
1609 	if (rval != QLA_SUCCESS)
1610 		ql_log(ql_log_warn, vha, 0x709c,
1611 		    "Unable to update fw options (beacon off).\n");
1612 	return rval;
1613 }
1614 
1615 
1616 static inline void
1617 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1618 {
1619 	/* Flip all colors. */
1620 	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1621 		/* Turn off. */
1622 		ha->beacon_color_state = 0;
1623 		*pflags = 0;
1624 	} else {
1625 		/* Turn on. */
1626 		ha->beacon_color_state = QLA_LED_ALL_ON;
1627 		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1628 	}
1629 }
1630 
1631 void
1632 qla24xx_beacon_blink(struct scsi_qla_host *vha)
1633 {
1634 	uint16_t led_color = 0;
1635 	uint32_t gpio_data;
1636 	unsigned long flags;
1637 	struct qla_hw_data *ha = vha->hw;
1638 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1639 
1640 	/* Save the Original GPIOD. */
1641 	spin_lock_irqsave(&ha->hardware_lock, flags);
1642 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1643 
1644 	/* Enable the gpio_data reg for update. */
1645 	gpio_data |= GPDX_LED_UPDATE_MASK;
1646 
1647 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1648 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1649 
1650 	/* Set the color bits. */
1651 	qla24xx_flip_colors(ha, &led_color);
1652 
1653 	/* Clear out any previously set LED color. */
1654 	gpio_data &= ~GPDX_LED_COLOR_MASK;
1655 
1656 	/* Set the new input LED color to GPIOD. */
1657 	gpio_data |= led_color;
1658 
1659 	/* Set the modified gpio_data values. */
1660 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1661 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1662 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1663 }
1664 
1665 static uint32_t
1666 qla83xx_select_led_port(struct qla_hw_data *ha)
1667 {
1668 	uint32_t led_select_value = 0;
1669 
1670 	if (!IS_QLA83XX(ha))
1671 		goto out;
1672 
1673 	if (ha->flags.port0)
1674 		led_select_value = QLA83XX_LED_PORT0;
1675 	else
1676 		led_select_value = QLA83XX_LED_PORT1;
1677 
1678 out:
1679 	return led_select_value;
1680 }
1681 
1682 void
1683 qla83xx_beacon_blink(struct scsi_qla_host *vha)
1684 {
1685 	uint32_t led_select_value;
1686 	struct qla_hw_data *ha = vha->hw;
1687 	uint16_t led_cfg[6];
1688 	uint16_t orig_led_cfg[6];
1689 	uint32_t led_10_value, led_43_value;
1690 
1691 	if (!IS_QLA83XX(ha) && !IS_QLA81XX(ha))
1692 		return;
1693 
1694 	if (!ha->beacon_blink_led)
1695 		return;
1696 
1697 	if (IS_QLA2031(ha)) {
1698 		led_select_value = qla83xx_select_led_port(ha);
1699 
1700 		qla83xx_wr_reg(vha, led_select_value, 0x40002000);
1701 		qla83xx_wr_reg(vha, led_select_value + 4, 0x40002000);
1702 		msleep(1000);
1703 		qla83xx_wr_reg(vha, led_select_value, 0x40004000);
1704 		qla83xx_wr_reg(vha, led_select_value + 4, 0x40004000);
1705 	} else if (IS_QLA8031(ha)) {
1706 		led_select_value = qla83xx_select_led_port(ha);
1707 
1708 		qla83xx_rd_reg(vha, led_select_value, &led_10_value);
1709 		qla83xx_rd_reg(vha, led_select_value + 0x10, &led_43_value);
1710 		qla83xx_wr_reg(vha, led_select_value, 0x01f44000);
1711 		msleep(500);
1712 		qla83xx_wr_reg(vha, led_select_value, 0x400001f4);
1713 		msleep(1000);
1714 		qla83xx_wr_reg(vha, led_select_value, led_10_value);
1715 		qla83xx_wr_reg(vha, led_select_value + 0x10, led_43_value);
1716 	} else if (IS_QLA81XX(ha)) {
1717 		int rval;
1718 
1719 		/* Save Current */
1720 		rval = qla81xx_get_led_config(vha, orig_led_cfg);
1721 		/* Do the blink */
1722 		if (rval == QLA_SUCCESS) {
1723 			if (IS_QLA81XX(ha)) {
1724 				led_cfg[0] = 0x4000;
1725 				led_cfg[1] = 0x2000;
1726 				led_cfg[2] = 0;
1727 				led_cfg[3] = 0;
1728 				led_cfg[4] = 0;
1729 				led_cfg[5] = 0;
1730 			} else {
1731 				led_cfg[0] = 0x4000;
1732 				led_cfg[1] = 0x4000;
1733 				led_cfg[2] = 0x4000;
1734 				led_cfg[3] = 0x2000;
1735 				led_cfg[4] = 0;
1736 				led_cfg[5] = 0x2000;
1737 			}
1738 			rval = qla81xx_set_led_config(vha, led_cfg);
1739 			msleep(1000);
1740 			if (IS_QLA81XX(ha)) {
1741 				led_cfg[0] = 0x4000;
1742 				led_cfg[1] = 0x2000;
1743 				led_cfg[2] = 0;
1744 			} else {
1745 				led_cfg[0] = 0x4000;
1746 				led_cfg[1] = 0x2000;
1747 				led_cfg[2] = 0x4000;
1748 				led_cfg[3] = 0x4000;
1749 				led_cfg[4] = 0;
1750 				led_cfg[5] = 0x2000;
1751 			}
1752 			rval = qla81xx_set_led_config(vha, led_cfg);
1753 		}
1754 		/* On exit, restore original (presumes no status change) */
1755 		qla81xx_set_led_config(vha, orig_led_cfg);
1756 	}
1757 }
1758 
1759 int
1760 qla24xx_beacon_on(struct scsi_qla_host *vha)
1761 {
1762 	uint32_t gpio_data;
1763 	unsigned long flags;
1764 	struct qla_hw_data *ha = vha->hw;
1765 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1766 
1767 	if (IS_QLA82XX(ha))
1768 		return QLA_SUCCESS;
1769 
1770 	if (IS_QLA8031(ha) || IS_QLA81XX(ha))
1771 		goto skip_gpio; /* let blink handle it */
1772 
1773 	if (ha->beacon_blink_led == 0) {
1774 		/* Enable firmware for update */
1775 		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1776 
1777 		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1778 			return QLA_FUNCTION_FAILED;
1779 
1780 		if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1781 		    QLA_SUCCESS) {
1782 			ql_log(ql_log_warn, vha, 0x7009,
1783 			    "Unable to update fw options (beacon on).\n");
1784 			return QLA_FUNCTION_FAILED;
1785 		}
1786 
1787 		if (IS_QLA2031(ha))
1788 			goto skip_gpio;
1789 
1790 		spin_lock_irqsave(&ha->hardware_lock, flags);
1791 		gpio_data = RD_REG_DWORD(&reg->gpiod);
1792 
1793 		/* Enable the gpio_data reg for update. */
1794 		gpio_data |= GPDX_LED_UPDATE_MASK;
1795 		WRT_REG_DWORD(&reg->gpiod, gpio_data);
1796 		RD_REG_DWORD(&reg->gpiod);
1797 
1798 		spin_unlock_irqrestore(&ha->hardware_lock, flags);
1799 	}
1800 
1801 	/* So all colors blink together. */
1802 	ha->beacon_color_state = 0;
1803 
1804 skip_gpio:
1805 	/* Let the per HBA timer kick off the blinking process. */
1806 	ha->beacon_blink_led = 1;
1807 
1808 	return QLA_SUCCESS;
1809 }
1810 
1811 int
1812 qla24xx_beacon_off(struct scsi_qla_host *vha)
1813 {
1814 	uint32_t gpio_data;
1815 	unsigned long flags;
1816 	struct qla_hw_data *ha = vha->hw;
1817 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1818 
1819 	if (IS_QLA82XX(ha))
1820 		return QLA_SUCCESS;
1821 
1822 	ha->beacon_blink_led = 0;
1823 
1824 	if (IS_QLA2031(ha))
1825 		goto set_fw_options;
1826 
1827 	if (IS_QLA8031(ha) || IS_QLA81XX(ha))
1828 		return QLA_SUCCESS;
1829 
1830 	ha->beacon_color_state = QLA_LED_ALL_ON;
1831 
1832 	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */
1833 
1834 	/* Give control back to firmware. */
1835 	spin_lock_irqsave(&ha->hardware_lock, flags);
1836 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1837 
1838 	/* Disable the gpio_data reg for update. */
1839 	gpio_data &= ~GPDX_LED_UPDATE_MASK;
1840 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1841 	RD_REG_DWORD(&reg->gpiod);
1842 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1843 
1844 set_fw_options:
1845 	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1846 
1847 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1848 		ql_log(ql_log_warn, vha, 0x704d,
1849 		    "Unable to update fw options (beacon on).\n");
1850 		return QLA_FUNCTION_FAILED;
1851 	}
1852 
1853 	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1854 		ql_log(ql_log_warn, vha, 0x704e,
1855 		    "Unable to update fw options (beacon on).\n");
1856 		return QLA_FUNCTION_FAILED;
1857 	}
1858 
1859 	return QLA_SUCCESS;
1860 }
1861 
1862 
1863 /*
1864  * Flash support routines
1865  */
1866 
1867 /**
1868  * qla2x00_flash_enable() - Setup flash for reading and writing.
1869  * @ha: HA context
1870  */
1871 static void
1872 qla2x00_flash_enable(struct qla_hw_data *ha)
1873 {
1874 	uint16_t data;
1875 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1876 
1877 	data = RD_REG_WORD(&reg->ctrl_status);
1878 	data |= CSR_FLASH_ENABLE;
1879 	WRT_REG_WORD(&reg->ctrl_status, data);
1880 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1881 }
1882 
1883 /**
1884  * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1885  * @ha: HA context
1886  */
1887 static void
1888 qla2x00_flash_disable(struct qla_hw_data *ha)
1889 {
1890 	uint16_t data;
1891 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1892 
1893 	data = RD_REG_WORD(&reg->ctrl_status);
1894 	data &= ~(CSR_FLASH_ENABLE);
1895 	WRT_REG_WORD(&reg->ctrl_status, data);
1896 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1897 }
1898 
1899 /**
1900  * qla2x00_read_flash_byte() - Reads a byte from flash
1901  * @ha: HA context
1902  * @addr: Address in flash to read
1903  *
1904  * A word is read from the chip, but, only the lower byte is valid.
1905  *
1906  * Returns the byte read from flash @addr.
1907  */
1908 static uint8_t
1909 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1910 {
1911 	uint16_t data;
1912 	uint16_t bank_select;
1913 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1914 
1915 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1916 
1917 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1918 		/* Specify 64K address range: */
1919 		/*  clear out Module Select and Flash Address bits [19:16]. */
1920 		bank_select &= ~0xf8;
1921 		bank_select |= addr >> 12 & 0xf0;
1922 		bank_select |= CSR_FLASH_64K_BANK;
1923 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1924 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1925 
1926 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1927 		data = RD_REG_WORD(&reg->flash_data);
1928 
1929 		return (uint8_t)data;
1930 	}
1931 
1932 	/* Setup bit 16 of flash address. */
1933 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1934 		bank_select |= CSR_FLASH_64K_BANK;
1935 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1936 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1937 	} else if (((addr & BIT_16) == 0) &&
1938 	    (bank_select & CSR_FLASH_64K_BANK)) {
1939 		bank_select &= ~(CSR_FLASH_64K_BANK);
1940 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1941 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1942 	}
1943 
1944 	/* Always perform IO mapped accesses to the FLASH registers. */
1945 	if (ha->pio_address) {
1946 		uint16_t data2;
1947 
1948 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1949 		do {
1950 			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1951 			barrier();
1952 			cpu_relax();
1953 			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1954 		} while (data != data2);
1955 	} else {
1956 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1957 		data = qla2x00_debounce_register(&reg->flash_data);
1958 	}
1959 
1960 	return (uint8_t)data;
1961 }
1962 
1963 /**
1964  * qla2x00_write_flash_byte() - Write a byte to flash
1965  * @ha: HA context
1966  * @addr: Address in flash to write
1967  * @data: Data to write
1968  */
1969 static void
1970 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1971 {
1972 	uint16_t bank_select;
1973 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1974 
1975 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1976 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1977 		/* Specify 64K address range: */
1978 		/*  clear out Module Select and Flash Address bits [19:16]. */
1979 		bank_select &= ~0xf8;
1980 		bank_select |= addr >> 12 & 0xf0;
1981 		bank_select |= CSR_FLASH_64K_BANK;
1982 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1983 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1984 
1985 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1986 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1987 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1988 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1989 
1990 		return;
1991 	}
1992 
1993 	/* Setup bit 16 of flash address. */
1994 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1995 		bank_select |= CSR_FLASH_64K_BANK;
1996 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1997 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1998 	} else if (((addr & BIT_16) == 0) &&
1999 	    (bank_select & CSR_FLASH_64K_BANK)) {
2000 		bank_select &= ~(CSR_FLASH_64K_BANK);
2001 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
2002 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
2003 	}
2004 
2005 	/* Always perform IO mapped accesses to the FLASH registers. */
2006 	if (ha->pio_address) {
2007 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
2008 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
2009 	} else {
2010 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
2011 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
2012 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
2013 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
2014 	}
2015 }
2016 
2017 /**
2018  * qla2x00_poll_flash() - Polls flash for completion.
2019  * @ha: HA context
2020  * @addr: Address in flash to poll
2021  * @poll_data: Data to be polled
2022  * @man_id: Flash manufacturer ID
2023  * @flash_id: Flash ID
2024  *
2025  * This function polls the device until bit 7 of what is read matches data
2026  * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
2027  * out (a fatal error).  The flash book recommeds reading bit 7 again after
2028  * reading bit 5 as a 1.
2029  *
2030  * Returns 0 on success, else non-zero.
2031  */
2032 static int
2033 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
2034     uint8_t man_id, uint8_t flash_id)
2035 {
2036 	int status;
2037 	uint8_t flash_data;
2038 	uint32_t cnt;
2039 
2040 	status = 1;
2041 
2042 	/* Wait for 30 seconds for command to finish. */
2043 	poll_data &= BIT_7;
2044 	for (cnt = 3000000; cnt; cnt--) {
2045 		flash_data = qla2x00_read_flash_byte(ha, addr);
2046 		if ((flash_data & BIT_7) == poll_data) {
2047 			status = 0;
2048 			break;
2049 		}
2050 
2051 		if (man_id != 0x40 && man_id != 0xda) {
2052 			if ((flash_data & BIT_5) && cnt > 2)
2053 				cnt = 2;
2054 		}
2055 		udelay(10);
2056 		barrier();
2057 		cond_resched();
2058 	}
2059 	return status;
2060 }
2061 
2062 /**
2063  * qla2x00_program_flash_address() - Programs a flash address
2064  * @ha: HA context
2065  * @addr: Address in flash to program
2066  * @data: Data to be written in flash
2067  * @man_id: Flash manufacturer ID
2068  * @flash_id: Flash ID
2069  *
2070  * Returns 0 on success, else non-zero.
2071  */
2072 static int
2073 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
2074     uint8_t data, uint8_t man_id, uint8_t flash_id)
2075 {
2076 	/* Write Program Command Sequence. */
2077 	if (IS_OEM_001(ha)) {
2078 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2079 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
2080 		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
2081 		qla2x00_write_flash_byte(ha, addr, data);
2082 	} else {
2083 		if (man_id == 0xda && flash_id == 0xc1) {
2084 			qla2x00_write_flash_byte(ha, addr, data);
2085 			if (addr & 0x7e)
2086 				return 0;
2087 		} else {
2088 			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2089 			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2090 			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
2091 			qla2x00_write_flash_byte(ha, addr, data);
2092 		}
2093 	}
2094 
2095 	udelay(150);
2096 
2097 	/* Wait for write to complete. */
2098 	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
2099 }
2100 
2101 /**
2102  * qla2x00_erase_flash() - Erase the flash.
2103  * @ha: HA context
2104  * @man_id: Flash manufacturer ID
2105  * @flash_id: Flash ID
2106  *
2107  * Returns 0 on success, else non-zero.
2108  */
2109 static int
2110 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
2111 {
2112 	/* Individual Sector Erase Command Sequence */
2113 	if (IS_OEM_001(ha)) {
2114 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2115 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
2116 		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
2117 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2118 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
2119 		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
2120 	} else {
2121 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2122 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2123 		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
2124 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2125 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2126 		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
2127 	}
2128 
2129 	udelay(150);
2130 
2131 	/* Wait for erase to complete. */
2132 	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
2133 }
2134 
2135 /**
2136  * qla2x00_erase_flash_sector() - Erase a flash sector.
2137  * @ha: HA context
2138  * @addr: Flash sector to erase
2139  * @sec_mask: Sector address mask
2140  * @man_id: Flash manufacturer ID
2141  * @flash_id: Flash ID
2142  *
2143  * Returns 0 on success, else non-zero.
2144  */
2145 static int
2146 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
2147     uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
2148 {
2149 	/* Individual Sector Erase Command Sequence */
2150 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2151 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2152 	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
2153 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2154 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2155 	if (man_id == 0x1f && flash_id == 0x13)
2156 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
2157 	else
2158 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
2159 
2160 	udelay(150);
2161 
2162 	/* Wait for erase to complete. */
2163 	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
2164 }
2165 
2166 /**
2167  * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
2168  * @man_id: Flash manufacturer ID
2169  * @flash_id: Flash ID
2170  */
2171 static void
2172 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
2173     uint8_t *flash_id)
2174 {
2175 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2176 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2177 	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
2178 	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
2179 	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
2180 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2181 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2182 	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
2183 }
2184 
2185 static void
2186 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
2187 	uint32_t saddr, uint32_t length)
2188 {
2189 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2190 	uint32_t midpoint, ilength;
2191 	uint8_t data;
2192 
2193 	midpoint = length / 2;
2194 
2195 	WRT_REG_WORD(&reg->nvram, 0);
2196 	RD_REG_WORD(&reg->nvram);
2197 	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
2198 		if (ilength == midpoint) {
2199 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2200 			RD_REG_WORD(&reg->nvram);
2201 		}
2202 		data = qla2x00_read_flash_byte(ha, saddr);
2203 		if (saddr % 100)
2204 			udelay(10);
2205 		*tmp_buf = data;
2206 		cond_resched();
2207 	}
2208 }
2209 
2210 static inline void
2211 qla2x00_suspend_hba(struct scsi_qla_host *vha)
2212 {
2213 	int cnt;
2214 	unsigned long flags;
2215 	struct qla_hw_data *ha = vha->hw;
2216 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2217 
2218 	/* Suspend HBA. */
2219 	scsi_block_requests(vha->host);
2220 	ha->isp_ops->disable_intrs(ha);
2221 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2222 
2223 	/* Pause RISC. */
2224 	spin_lock_irqsave(&ha->hardware_lock, flags);
2225 	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
2226 	RD_REG_WORD(&reg->hccr);
2227 	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
2228 		for (cnt = 0; cnt < 30000; cnt++) {
2229 			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
2230 				break;
2231 			udelay(100);
2232 		}
2233 	} else {
2234 		udelay(10);
2235 	}
2236 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
2237 }
2238 
2239 static inline void
2240 qla2x00_resume_hba(struct scsi_qla_host *vha)
2241 {
2242 	struct qla_hw_data *ha = vha->hw;
2243 
2244 	/* Resume HBA. */
2245 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2246 	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
2247 	qla2xxx_wake_dpc(vha);
2248 	qla2x00_wait_for_chip_reset(vha);
2249 	scsi_unblock_requests(vha->host);
2250 }
2251 
2252 uint8_t *
2253 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2254     uint32_t offset, uint32_t length)
2255 {
2256 	uint32_t addr, midpoint;
2257 	uint8_t *data;
2258 	struct qla_hw_data *ha = vha->hw;
2259 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2260 
2261 	/* Suspend HBA. */
2262 	qla2x00_suspend_hba(vha);
2263 
2264 	/* Go with read. */
2265 	midpoint = ha->optrom_size / 2;
2266 
2267 	qla2x00_flash_enable(ha);
2268 	WRT_REG_WORD(&reg->nvram, 0);
2269 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
2270 	for (addr = offset, data = buf; addr < length; addr++, data++) {
2271 		if (addr == midpoint) {
2272 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2273 			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
2274 		}
2275 
2276 		*data = qla2x00_read_flash_byte(ha, addr);
2277 	}
2278 	qla2x00_flash_disable(ha);
2279 
2280 	/* Resume HBA. */
2281 	qla2x00_resume_hba(vha);
2282 
2283 	return buf;
2284 }
2285 
2286 int
2287 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2288     uint32_t offset, uint32_t length)
2289 {
2290 
2291 	int rval;
2292 	uint8_t man_id, flash_id, sec_number, data;
2293 	uint16_t wd;
2294 	uint32_t addr, liter, sec_mask, rest_addr;
2295 	struct qla_hw_data *ha = vha->hw;
2296 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2297 
2298 	/* Suspend HBA. */
2299 	qla2x00_suspend_hba(vha);
2300 
2301 	rval = QLA_SUCCESS;
2302 	sec_number = 0;
2303 
2304 	/* Reset ISP chip. */
2305 	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
2306 	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
2307 
2308 	/* Go with write. */
2309 	qla2x00_flash_enable(ha);
2310 	do {	/* Loop once to provide quick error exit */
2311 		/* Structure of flash memory based on manufacturer */
2312 		if (IS_OEM_001(ha)) {
2313 			/* OEM variant with special flash part. */
2314 			man_id = flash_id = 0;
2315 			rest_addr = 0xffff;
2316 			sec_mask   = 0x10000;
2317 			goto update_flash;
2318 		}
2319 		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
2320 		switch (man_id) {
2321 		case 0x20: /* ST flash. */
2322 			if (flash_id == 0xd2 || flash_id == 0xe3) {
2323 				/*
2324 				 * ST m29w008at part - 64kb sector size with
2325 				 * 32kb,8kb,8kb,16kb sectors at memory address
2326 				 * 0xf0000.
2327 				 */
2328 				rest_addr = 0xffff;
2329 				sec_mask = 0x10000;
2330 				break;
2331 			}
2332 			/*
2333 			 * ST m29w010b part - 16kb sector size
2334 			 * Default to 16kb sectors
2335 			 */
2336 			rest_addr = 0x3fff;
2337 			sec_mask = 0x1c000;
2338 			break;
2339 		case 0x40: /* Mostel flash. */
2340 			/* Mostel v29c51001 part - 512 byte sector size. */
2341 			rest_addr = 0x1ff;
2342 			sec_mask = 0x1fe00;
2343 			break;
2344 		case 0xbf: /* SST flash. */
2345 			/* SST39sf10 part - 4kb sector size. */
2346 			rest_addr = 0xfff;
2347 			sec_mask = 0x1f000;
2348 			break;
2349 		case 0xda: /* Winbond flash. */
2350 			/* Winbond W29EE011 part - 256 byte sector size. */
2351 			rest_addr = 0x7f;
2352 			sec_mask = 0x1ff80;
2353 			break;
2354 		case 0xc2: /* Macronix flash. */
2355 			/* 64k sector size. */
2356 			if (flash_id == 0x38 || flash_id == 0x4f) {
2357 				rest_addr = 0xffff;
2358 				sec_mask = 0x10000;
2359 				break;
2360 			}
2361 			/* Fall through... */
2362 
2363 		case 0x1f: /* Atmel flash. */
2364 			/* 512k sector size. */
2365 			if (flash_id == 0x13) {
2366 				rest_addr = 0x7fffffff;
2367 				sec_mask =   0x80000000;
2368 				break;
2369 			}
2370 			/* Fall through... */
2371 
2372 		case 0x01: /* AMD flash. */
2373 			if (flash_id == 0x38 || flash_id == 0x40 ||
2374 			    flash_id == 0x4f) {
2375 				/* Am29LV081 part - 64kb sector size. */
2376 				/* Am29LV002BT part - 64kb sector size. */
2377 				rest_addr = 0xffff;
2378 				sec_mask = 0x10000;
2379 				break;
2380 			} else if (flash_id == 0x3e) {
2381 				/*
2382 				 * Am29LV008b part - 64kb sector size with
2383 				 * 32kb,8kb,8kb,16kb sector at memory address
2384 				 * h0xf0000.
2385 				 */
2386 				rest_addr = 0xffff;
2387 				sec_mask = 0x10000;
2388 				break;
2389 			} else if (flash_id == 0x20 || flash_id == 0x6e) {
2390 				/*
2391 				 * Am29LV010 part or AM29f010 - 16kb sector
2392 				 * size.
2393 				 */
2394 				rest_addr = 0x3fff;
2395 				sec_mask = 0x1c000;
2396 				break;
2397 			} else if (flash_id == 0x6d) {
2398 				/* Am29LV001 part - 8kb sector size. */
2399 				rest_addr = 0x1fff;
2400 				sec_mask = 0x1e000;
2401 				break;
2402 			}
2403 		default:
2404 			/* Default to 16 kb sector size. */
2405 			rest_addr = 0x3fff;
2406 			sec_mask = 0x1c000;
2407 			break;
2408 		}
2409 
2410 update_flash:
2411 		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2412 			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2413 				rval = QLA_FUNCTION_FAILED;
2414 				break;
2415 			}
2416 		}
2417 
2418 		for (addr = offset, liter = 0; liter < length; liter++,
2419 		    addr++) {
2420 			data = buf[liter];
2421 			/* Are we at the beginning of a sector? */
2422 			if ((addr & rest_addr) == 0) {
2423 				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2424 					if (addr >= 0x10000UL) {
2425 						if (((addr >> 12) & 0xf0) &&
2426 						    ((man_id == 0x01 &&
2427 							flash_id == 0x3e) ||
2428 						     (man_id == 0x20 &&
2429 							 flash_id == 0xd2))) {
2430 							sec_number++;
2431 							if (sec_number == 1) {
2432 								rest_addr =
2433 								    0x7fff;
2434 								sec_mask =
2435 								    0x18000;
2436 							} else if (
2437 							    sec_number == 2 ||
2438 							    sec_number == 3) {
2439 								rest_addr =
2440 								    0x1fff;
2441 								sec_mask =
2442 								    0x1e000;
2443 							} else if (
2444 							    sec_number == 4) {
2445 								rest_addr =
2446 								    0x3fff;
2447 								sec_mask =
2448 								    0x1c000;
2449 							}
2450 						}
2451 					}
2452 				} else if (addr == ha->optrom_size / 2) {
2453 					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2454 					RD_REG_WORD(&reg->nvram);
2455 				}
2456 
2457 				if (flash_id == 0xda && man_id == 0xc1) {
2458 					qla2x00_write_flash_byte(ha, 0x5555,
2459 					    0xaa);
2460 					qla2x00_write_flash_byte(ha, 0x2aaa,
2461 					    0x55);
2462 					qla2x00_write_flash_byte(ha, 0x5555,
2463 					    0xa0);
2464 				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2465 					/* Then erase it */
2466 					if (qla2x00_erase_flash_sector(ha,
2467 					    addr, sec_mask, man_id,
2468 					    flash_id)) {
2469 						rval = QLA_FUNCTION_FAILED;
2470 						break;
2471 					}
2472 					if (man_id == 0x01 && flash_id == 0x6d)
2473 						sec_number++;
2474 				}
2475 			}
2476 
2477 			if (man_id == 0x01 && flash_id == 0x6d) {
2478 				if (sec_number == 1 &&
2479 				    addr == (rest_addr - 1)) {
2480 					rest_addr = 0x0fff;
2481 					sec_mask   = 0x1f000;
2482 				} else if (sec_number == 3 && (addr & 0x7ffe)) {
2483 					rest_addr = 0x3fff;
2484 					sec_mask   = 0x1c000;
2485 				}
2486 			}
2487 
2488 			if (qla2x00_program_flash_address(ha, addr, data,
2489 			    man_id, flash_id)) {
2490 				rval = QLA_FUNCTION_FAILED;
2491 				break;
2492 			}
2493 			cond_resched();
2494 		}
2495 	} while (0);
2496 	qla2x00_flash_disable(ha);
2497 
2498 	/* Resume HBA. */
2499 	qla2x00_resume_hba(vha);
2500 
2501 	return rval;
2502 }
2503 
2504 uint8_t *
2505 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2506     uint32_t offset, uint32_t length)
2507 {
2508 	struct qla_hw_data *ha = vha->hw;
2509 
2510 	/* Suspend HBA. */
2511 	scsi_block_requests(vha->host);
2512 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2513 
2514 	/* Go with read. */
2515 	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2516 
2517 	/* Resume HBA. */
2518 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2519 	scsi_unblock_requests(vha->host);
2520 
2521 	return buf;
2522 }
2523 
2524 int
2525 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2526     uint32_t offset, uint32_t length)
2527 {
2528 	int rval;
2529 	struct qla_hw_data *ha = vha->hw;
2530 
2531 	/* Suspend HBA. */
2532 	scsi_block_requests(vha->host);
2533 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2534 
2535 	/* Go with write. */
2536 	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2537 	    length >> 2);
2538 
2539 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2540 	scsi_unblock_requests(vha->host);
2541 
2542 	return rval;
2543 }
2544 
2545 uint8_t *
2546 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2547     uint32_t offset, uint32_t length)
2548 {
2549 	int rval;
2550 	dma_addr_t optrom_dma;
2551 	void *optrom;
2552 	uint8_t *pbuf;
2553 	uint32_t faddr, left, burst;
2554 	struct qla_hw_data *ha = vha->hw;
2555 
2556 	if (IS_QLA25XX(ha) || IS_QLA81XX(ha))
2557 		goto try_fast;
2558 	if (offset & 0xfff)
2559 		goto slow_read;
2560 	if (length < OPTROM_BURST_SIZE)
2561 		goto slow_read;
2562 
2563 try_fast:
2564 	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2565 	    &optrom_dma, GFP_KERNEL);
2566 	if (!optrom) {
2567 		ql_log(ql_log_warn, vha, 0x00cc,
2568 		    "Unable to allocate memory for optrom burst read (%x KB).\n",
2569 		    OPTROM_BURST_SIZE / 1024);
2570 		goto slow_read;
2571 	}
2572 
2573 	pbuf = buf;
2574 	faddr = offset >> 2;
2575 	left = length >> 2;
2576 	burst = OPTROM_BURST_DWORDS;
2577 	while (left != 0) {
2578 		if (burst > left)
2579 			burst = left;
2580 
2581 		rval = qla2x00_dump_ram(vha, optrom_dma,
2582 		    flash_data_addr(ha, faddr), burst);
2583 		if (rval) {
2584 			ql_log(ql_log_warn, vha, 0x00f5,
2585 			    "Unable to burst-read optrom segment (%x/%x/%llx).\n",
2586 			    rval, flash_data_addr(ha, faddr),
2587 			    (unsigned long long)optrom_dma);
2588 			ql_log(ql_log_warn, vha, 0x00f6,
2589 			    "Reverting to slow-read.\n");
2590 
2591 			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2592 			    optrom, optrom_dma);
2593 			goto slow_read;
2594 		}
2595 
2596 		memcpy(pbuf, optrom, burst * 4);
2597 
2598 		left -= burst;
2599 		faddr += burst;
2600 		pbuf += burst * 4;
2601 	}
2602 
2603 	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2604 	    optrom_dma);
2605 
2606 	return buf;
2607 
2608 slow_read:
2609     return qla24xx_read_optrom_data(vha, buf, offset, length);
2610 }
2611 
2612 /**
2613  * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2614  * @ha: HA context
2615  * @pcids: Pointer to the FCODE PCI data structure
2616  *
2617  * The process of retrieving the FCODE version information is at best
2618  * described as interesting.
2619  *
2620  * Within the first 100h bytes of the image an ASCII string is present
2621  * which contains several pieces of information including the FCODE
2622  * version.  Unfortunately it seems the only reliable way to retrieve
2623  * the version is by scanning for another sentinel within the string,
2624  * the FCODE build date:
2625  *
2626  *	... 2.00.02 10/17/02 ...
2627  *
2628  * Returns QLA_SUCCESS on successful retrieval of version.
2629  */
2630 static void
2631 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2632 {
2633 	int ret = QLA_FUNCTION_FAILED;
2634 	uint32_t istart, iend, iter, vend;
2635 	uint8_t do_next, rbyte, *vbyte;
2636 
2637 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2638 
2639 	/* Skip the PCI data structure. */
2640 	istart = pcids +
2641 	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2642 		qla2x00_read_flash_byte(ha, pcids + 0x0A));
2643 	iend = istart + 0x100;
2644 	do {
2645 		/* Scan for the sentinel date string...eeewww. */
2646 		do_next = 0;
2647 		iter = istart;
2648 		while ((iter < iend) && !do_next) {
2649 			iter++;
2650 			if (qla2x00_read_flash_byte(ha, iter) == '/') {
2651 				if (qla2x00_read_flash_byte(ha, iter + 2) ==
2652 				    '/')
2653 					do_next++;
2654 				else if (qla2x00_read_flash_byte(ha,
2655 				    iter + 3) == '/')
2656 					do_next++;
2657 			}
2658 		}
2659 		if (!do_next)
2660 			break;
2661 
2662 		/* Backtrack to previous ' ' (space). */
2663 		do_next = 0;
2664 		while ((iter > istart) && !do_next) {
2665 			iter--;
2666 			if (qla2x00_read_flash_byte(ha, iter) == ' ')
2667 				do_next++;
2668 		}
2669 		if (!do_next)
2670 			break;
2671 
2672 		/*
2673 		 * Mark end of version tag, and find previous ' ' (space) or
2674 		 * string length (recent FCODE images -- major hack ahead!!!).
2675 		 */
2676 		vend = iter - 1;
2677 		do_next = 0;
2678 		while ((iter > istart) && !do_next) {
2679 			iter--;
2680 			rbyte = qla2x00_read_flash_byte(ha, iter);
2681 			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2682 				do_next++;
2683 		}
2684 		if (!do_next)
2685 			break;
2686 
2687 		/* Mark beginning of version tag, and copy data. */
2688 		iter++;
2689 		if ((vend - iter) &&
2690 		    ((vend - iter) < sizeof(ha->fcode_revision))) {
2691 			vbyte = ha->fcode_revision;
2692 			while (iter <= vend) {
2693 				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
2694 				iter++;
2695 			}
2696 			ret = QLA_SUCCESS;
2697 		}
2698 	} while (0);
2699 
2700 	if (ret != QLA_SUCCESS)
2701 		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2702 }
2703 
2704 int
2705 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2706 {
2707 	int ret = QLA_SUCCESS;
2708 	uint8_t code_type, last_image;
2709 	uint32_t pcihdr, pcids;
2710 	uint8_t *dbyte;
2711 	uint16_t *dcode;
2712 	struct qla_hw_data *ha = vha->hw;
2713 
2714 	if (!ha->pio_address || !mbuf)
2715 		return QLA_FUNCTION_FAILED;
2716 
2717 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2718 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2719 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2720 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2721 
2722 	qla2x00_flash_enable(ha);
2723 
2724 	/* Begin with first PCI expansion ROM header. */
2725 	pcihdr = 0;
2726 	last_image = 1;
2727 	do {
2728 		/* Verify PCI expansion ROM header. */
2729 		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2730 		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2731 			/* No signature */
2732 			ql_log(ql_log_fatal, vha, 0x0050,
2733 			    "No matching ROM signature.\n");
2734 			ret = QLA_FUNCTION_FAILED;
2735 			break;
2736 		}
2737 
2738 		/* Locate PCI data structure. */
2739 		pcids = pcihdr +
2740 		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2741 			qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2742 
2743 		/* Validate signature of PCI data structure. */
2744 		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2745 		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2746 		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2747 		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2748 			/* Incorrect header. */
2749 			ql_log(ql_log_fatal, vha, 0x0051,
2750 			    "PCI data struct not found pcir_adr=%x.\n", pcids);
2751 			ret = QLA_FUNCTION_FAILED;
2752 			break;
2753 		}
2754 
2755 		/* Read version */
2756 		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2757 		switch (code_type) {
2758 		case ROM_CODE_TYPE_BIOS:
2759 			/* Intel x86, PC-AT compatible. */
2760 			ha->bios_revision[0] =
2761 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2762 			ha->bios_revision[1] =
2763 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2764 			ql_dbg(ql_dbg_init, vha, 0x0052,
2765 			    "Read BIOS %d.%d.\n",
2766 			    ha->bios_revision[1], ha->bios_revision[0]);
2767 			break;
2768 		case ROM_CODE_TYPE_FCODE:
2769 			/* Open Firmware standard for PCI (FCode). */
2770 			/* Eeeewww... */
2771 			qla2x00_get_fcode_version(ha, pcids);
2772 			break;
2773 		case ROM_CODE_TYPE_EFI:
2774 			/* Extensible Firmware Interface (EFI). */
2775 			ha->efi_revision[0] =
2776 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2777 			ha->efi_revision[1] =
2778 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2779 			ql_dbg(ql_dbg_init, vha, 0x0053,
2780 			    "Read EFI %d.%d.\n",
2781 			    ha->efi_revision[1], ha->efi_revision[0]);
2782 			break;
2783 		default:
2784 			ql_log(ql_log_warn, vha, 0x0054,
2785 			    "Unrecognized code type %x at pcids %x.\n",
2786 			    code_type, pcids);
2787 			break;
2788 		}
2789 
2790 		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2791 
2792 		/* Locate next PCI expansion ROM. */
2793 		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2794 		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2795 	} while (!last_image);
2796 
2797 	if (IS_QLA2322(ha)) {
2798 		/* Read firmware image information. */
2799 		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2800 		dbyte = mbuf;
2801 		memset(dbyte, 0, 8);
2802 		dcode = (uint16_t *)dbyte;
2803 
2804 		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2805 		    8);
2806 		ql_dbg(ql_dbg_init + ql_dbg_buffer, vha, 0x010a,
2807 		    "Dumping fw "
2808 		    "ver from flash:.\n");
2809 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010b,
2810 		    (uint8_t *)dbyte, 8);
2811 
2812 		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2813 		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2814 		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2815 		    dcode[3] == 0)) {
2816 			ql_log(ql_log_warn, vha, 0x0057,
2817 			    "Unrecognized fw revision at %x.\n",
2818 			    ha->flt_region_fw * 4);
2819 		} else {
2820 			/* values are in big endian */
2821 			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2822 			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2823 			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2824 			ql_dbg(ql_dbg_init, vha, 0x0058,
2825 			    "FW Version: "
2826 			    "%d.%d.%d.\n", ha->fw_revision[0],
2827 			    ha->fw_revision[1], ha->fw_revision[2]);
2828 		}
2829 	}
2830 
2831 	qla2x00_flash_disable(ha);
2832 
2833 	return ret;
2834 }
2835 
2836 int
2837 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2838 {
2839 	int ret = QLA_SUCCESS;
2840 	uint32_t pcihdr, pcids;
2841 	uint32_t *dcode;
2842 	uint8_t *bcode;
2843 	uint8_t code_type, last_image;
2844 	int i;
2845 	struct qla_hw_data *ha = vha->hw;
2846 
2847 	if (IS_QLA82XX(ha))
2848 		return ret;
2849 
2850 	if (!mbuf)
2851 		return QLA_FUNCTION_FAILED;
2852 
2853 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2854 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2855 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2856 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2857 
2858 	dcode = mbuf;
2859 
2860 	/* Begin with first PCI expansion ROM header. */
2861 	pcihdr = ha->flt_region_boot << 2;
2862 	last_image = 1;
2863 	do {
2864 		/* Verify PCI expansion ROM header. */
2865 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2866 		bcode = mbuf + (pcihdr % 4);
2867 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2868 			/* No signature */
2869 			ql_log(ql_log_fatal, vha, 0x0059,
2870 			    "No matching ROM signature.\n");
2871 			ret = QLA_FUNCTION_FAILED;
2872 			break;
2873 		}
2874 
2875 		/* Locate PCI data structure. */
2876 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2877 
2878 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2879 		bcode = mbuf + (pcihdr % 4);
2880 
2881 		/* Validate signature of PCI data structure. */
2882 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2883 		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2884 			/* Incorrect header. */
2885 			ql_log(ql_log_fatal, vha, 0x005a,
2886 			    "PCI data struct not found pcir_adr=%x.\n", pcids);
2887 			ret = QLA_FUNCTION_FAILED;
2888 			break;
2889 		}
2890 
2891 		/* Read version */
2892 		code_type = bcode[0x14];
2893 		switch (code_type) {
2894 		case ROM_CODE_TYPE_BIOS:
2895 			/* Intel x86, PC-AT compatible. */
2896 			ha->bios_revision[0] = bcode[0x12];
2897 			ha->bios_revision[1] = bcode[0x13];
2898 			ql_dbg(ql_dbg_init, vha, 0x005b,
2899 			    "Read BIOS %d.%d.\n",
2900 			    ha->bios_revision[1], ha->bios_revision[0]);
2901 			break;
2902 		case ROM_CODE_TYPE_FCODE:
2903 			/* Open Firmware standard for PCI (FCode). */
2904 			ha->fcode_revision[0] = bcode[0x12];
2905 			ha->fcode_revision[1] = bcode[0x13];
2906 			ql_dbg(ql_dbg_init, vha, 0x005c,
2907 			    "Read FCODE %d.%d.\n",
2908 			    ha->fcode_revision[1], ha->fcode_revision[0]);
2909 			break;
2910 		case ROM_CODE_TYPE_EFI:
2911 			/* Extensible Firmware Interface (EFI). */
2912 			ha->efi_revision[0] = bcode[0x12];
2913 			ha->efi_revision[1] = bcode[0x13];
2914 			ql_dbg(ql_dbg_init, vha, 0x005d,
2915 			    "Read EFI %d.%d.\n",
2916 			    ha->efi_revision[1], ha->efi_revision[0]);
2917 			break;
2918 		default:
2919 			ql_log(ql_log_warn, vha, 0x005e,
2920 			    "Unrecognized code type %x at pcids %x.\n",
2921 			    code_type, pcids);
2922 			break;
2923 		}
2924 
2925 		last_image = bcode[0x15] & BIT_7;
2926 
2927 		/* Locate next PCI expansion ROM. */
2928 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2929 	} while (!last_image);
2930 
2931 	/* Read firmware image information. */
2932 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2933 	dcode = mbuf;
2934 
2935 	qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2936 	for (i = 0; i < 4; i++)
2937 		dcode[i] = be32_to_cpu(dcode[i]);
2938 
2939 	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2940 	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2941 	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2942 	    dcode[3] == 0)) {
2943 		ql_log(ql_log_warn, vha, 0x005f,
2944 		    "Unrecognized fw revision at %x.\n",
2945 		    ha->flt_region_fw * 4);
2946 	} else {
2947 		ha->fw_revision[0] = dcode[0];
2948 		ha->fw_revision[1] = dcode[1];
2949 		ha->fw_revision[2] = dcode[2];
2950 		ha->fw_revision[3] = dcode[3];
2951 		ql_dbg(ql_dbg_init, vha, 0x0060,
2952 		    "Firmware revision %d.%d.%d.%d.\n",
2953 		    ha->fw_revision[0], ha->fw_revision[1],
2954 		    ha->fw_revision[2], ha->fw_revision[3]);
2955 	}
2956 
2957 	/* Check for golden firmware and get version if available */
2958 	if (!IS_QLA81XX(ha)) {
2959 		/* Golden firmware is not present in non 81XX adapters */
2960 		return ret;
2961 	}
2962 
2963 	memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version));
2964 	dcode = mbuf;
2965 	ha->isp_ops->read_optrom(vha, (uint8_t *)dcode,
2966 	    ha->flt_region_gold_fw << 2, 32);
2967 
2968 	if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF &&
2969 	    dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) {
2970 		ql_log(ql_log_warn, vha, 0x0056,
2971 		    "Unrecognized golden fw at 0x%x.\n",
2972 		    ha->flt_region_gold_fw * 4);
2973 		return ret;
2974 	}
2975 
2976 	for (i = 4; i < 8; i++)
2977 		ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]);
2978 
2979 	return ret;
2980 }
2981 
2982 static int
2983 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
2984 {
2985 	if (pos >= end || *pos != 0x82)
2986 		return 0;
2987 
2988 	pos += 3 + pos[1];
2989 	if (pos >= end || *pos != 0x90)
2990 		return 0;
2991 
2992 	pos += 3 + pos[1];
2993 	if (pos >= end || *pos != 0x78)
2994 		return 0;
2995 
2996 	return 1;
2997 }
2998 
2999 int
3000 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
3001 {
3002 	struct qla_hw_data *ha = vha->hw;
3003 	uint8_t *pos = ha->vpd;
3004 	uint8_t *end = pos + ha->vpd_size;
3005 	int len = 0;
3006 
3007 	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
3008 		return 0;
3009 
3010 	while (pos < end && *pos != 0x78) {
3011 		len = (*pos == 0x82) ? pos[1] : pos[2];
3012 
3013 		if (!strncmp(pos, key, strlen(key)))
3014 			break;
3015 
3016 		if (*pos != 0x90 && *pos != 0x91)
3017 			pos += len;
3018 
3019 		pos += 3;
3020 	}
3021 
3022 	if (pos < end - len && *pos != 0x78)
3023 		return snprintf(str, size, "%.*s", len, pos + 3);
3024 
3025 	return 0;
3026 }
3027 
3028 int
3029 qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha)
3030 {
3031 	int len, max_len;
3032 	uint32_t fcp_prio_addr;
3033 	struct qla_hw_data *ha = vha->hw;
3034 
3035 	if (!ha->fcp_prio_cfg) {
3036 		ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE);
3037 		if (!ha->fcp_prio_cfg) {
3038 			ql_log(ql_log_warn, vha, 0x00d5,
3039 			    "Unable to allocate memory for fcp priorty data (%x).\n",
3040 			    FCP_PRIO_CFG_SIZE);
3041 			return QLA_FUNCTION_FAILED;
3042 		}
3043 	}
3044 	memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE);
3045 
3046 	fcp_prio_addr = ha->flt_region_fcp_prio;
3047 
3048 	/* first read the fcp priority data header from flash */
3049 	ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
3050 			fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);
3051 
3052 	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 0))
3053 		goto fail;
3054 
3055 	/* read remaining FCP CMD config data from flash */
3056 	fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
3057 	len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
3058 	max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE;
3059 
3060 	ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
3061 			fcp_prio_addr << 2, (len < max_len ? len : max_len));
3062 
3063 	/* revalidate the entire FCP priority config data, including entries */
3064 	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 1))
3065 		goto fail;
3066 
3067 	ha->flags.fcp_prio_enabled = 1;
3068 	return QLA_SUCCESS;
3069 fail:
3070 	vfree(ha->fcp_prio_cfg);
3071 	ha->fcp_prio_cfg = NULL;
3072 	return QLA_FUNCTION_FAILED;
3073 }
3074