1 /* 2 * PMC-Sierra PM8001/8081/8088/8089 SAS/SATA based host adapters driver 3 * 4 * Copyright (c) 2008-2009 USI Co., Ltd. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * substantially similar to the "NO WARRANTY" disclaimer below 15 * ("Disclaimer") and any redistribution must be conditioned upon 16 * including a substantially similar Disclaimer requirement for further 17 * binary redistribution. 18 * 3. Neither the names of the above-listed copyright holders nor the names 19 * of any contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * Alternatively, this software may be distributed under the terms of the 23 * GNU General Public License ("GPL") version 2 as published by the Free 24 * Software Foundation. 25 * 26 * NO WARRANTY 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 35 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 36 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGES. 38 * 39 */ 40 41 #include <linux/slab.h> 42 #include "pm8001_sas.h" 43 44 /** 45 * pm8001_find_tag - from sas task to find out tag that belongs to this task 46 * @task: the task sent to the LLDD 47 * @tag: the found tag associated with the task 48 */ 49 static int pm8001_find_tag(struct sas_task *task, u32 *tag) 50 { 51 if (task->lldd_task) { 52 struct pm8001_ccb_info *ccb; 53 ccb = task->lldd_task; 54 *tag = ccb->ccb_tag; 55 return 1; 56 } 57 return 0; 58 } 59 60 /** 61 * pm8001_tag_free - free the no more needed tag 62 * @pm8001_ha: our hba struct 63 * @tag: the found tag associated with the task 64 */ 65 void pm8001_tag_free(struct pm8001_hba_info *pm8001_ha, u32 tag) 66 { 67 void *bitmap = pm8001_ha->tags; 68 clear_bit(tag, bitmap); 69 } 70 71 /** 72 * pm8001_tag_alloc - allocate a empty tag for task used. 73 * @pm8001_ha: our hba struct 74 * @tag_out: the found empty tag . 75 */ 76 inline int pm8001_tag_alloc(struct pm8001_hba_info *pm8001_ha, u32 *tag_out) 77 { 78 unsigned int tag; 79 void *bitmap = pm8001_ha->tags; 80 unsigned long flags; 81 82 spin_lock_irqsave(&pm8001_ha->bitmap_lock, flags); 83 tag = find_first_zero_bit(bitmap, pm8001_ha->tags_num); 84 if (tag >= pm8001_ha->tags_num) { 85 spin_unlock_irqrestore(&pm8001_ha->bitmap_lock, flags); 86 return -SAS_QUEUE_FULL; 87 } 88 set_bit(tag, bitmap); 89 spin_unlock_irqrestore(&pm8001_ha->bitmap_lock, flags); 90 *tag_out = tag; 91 return 0; 92 } 93 94 void pm8001_tag_init(struct pm8001_hba_info *pm8001_ha) 95 { 96 int i; 97 for (i = 0; i < pm8001_ha->tags_num; ++i) 98 pm8001_tag_free(pm8001_ha, i); 99 } 100 101 /** 102 * pm8001_mem_alloc - allocate memory for pm8001. 103 * @pdev: pci device. 104 * @virt_addr: the allocated virtual address 105 * @pphys_addr_hi: the physical address high byte address. 106 * @pphys_addr_lo: the physical address low byte address. 107 * @mem_size: memory size. 108 */ 109 int pm8001_mem_alloc(struct pci_dev *pdev, void **virt_addr, 110 dma_addr_t *pphys_addr, u32 *pphys_addr_hi, 111 u32 *pphys_addr_lo, u32 mem_size, u32 align) 112 { 113 caddr_t mem_virt_alloc; 114 dma_addr_t mem_dma_handle; 115 u64 phys_align; 116 u64 align_offset = 0; 117 if (align) 118 align_offset = (dma_addr_t)align - 1; 119 mem_virt_alloc = dma_alloc_coherent(&pdev->dev, mem_size + align, 120 &mem_dma_handle, GFP_KERNEL); 121 if (!mem_virt_alloc) { 122 pr_err("pm80xx: memory allocation error\n"); 123 return -1; 124 } 125 *pphys_addr = mem_dma_handle; 126 phys_align = (*pphys_addr + align_offset) & ~align_offset; 127 *virt_addr = (void *)mem_virt_alloc + phys_align - *pphys_addr; 128 *pphys_addr_hi = upper_32_bits(phys_align); 129 *pphys_addr_lo = lower_32_bits(phys_align); 130 return 0; 131 } 132 133 /** 134 * pm8001_find_ha_by_dev - from domain device which come from sas layer to 135 * find out our hba struct. 136 * @dev: the domain device which from sas layer. 137 */ 138 static 139 struct pm8001_hba_info *pm8001_find_ha_by_dev(struct domain_device *dev) 140 { 141 struct sas_ha_struct *sha = dev->port->ha; 142 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha; 143 return pm8001_ha; 144 } 145 146 /** 147 * pm8001_phy_control - this function should be registered to 148 * sas_domain_function_template to provide libsas used, note: this is just 149 * control the HBA phy rather than other expander phy if you want control 150 * other phy, you should use SMP command. 151 * @sas_phy: which phy in HBA phys. 152 * @func: the operation. 153 * @funcdata: always NULL. 154 */ 155 int pm8001_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func, 156 void *funcdata) 157 { 158 int rc = 0, phy_id = sas_phy->id; 159 struct pm8001_hba_info *pm8001_ha = NULL; 160 struct sas_phy_linkrates *rates; 161 struct pm8001_phy *phy; 162 DECLARE_COMPLETION_ONSTACK(completion); 163 unsigned long flags; 164 pm8001_ha = sas_phy->ha->lldd_ha; 165 phy = &pm8001_ha->phy[phy_id]; 166 pm8001_ha->phy[phy_id].enable_completion = &completion; 167 switch (func) { 168 case PHY_FUNC_SET_LINK_RATE: 169 rates = funcdata; 170 if (rates->minimum_linkrate) { 171 pm8001_ha->phy[phy_id].minimum_linkrate = 172 rates->minimum_linkrate; 173 } 174 if (rates->maximum_linkrate) { 175 pm8001_ha->phy[phy_id].maximum_linkrate = 176 rates->maximum_linkrate; 177 } 178 if (pm8001_ha->phy[phy_id].phy_state == PHY_LINK_DISABLE) { 179 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); 180 wait_for_completion(&completion); 181 } 182 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 183 PHY_LINK_RESET); 184 break; 185 case PHY_FUNC_HARD_RESET: 186 if (pm8001_ha->phy[phy_id].phy_state == PHY_LINK_DISABLE) { 187 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); 188 wait_for_completion(&completion); 189 } 190 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 191 PHY_HARD_RESET); 192 break; 193 case PHY_FUNC_LINK_RESET: 194 if (pm8001_ha->phy[phy_id].phy_state == PHY_LINK_DISABLE) { 195 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); 196 wait_for_completion(&completion); 197 } 198 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 199 PHY_LINK_RESET); 200 break; 201 case PHY_FUNC_RELEASE_SPINUP_HOLD: 202 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 203 PHY_LINK_RESET); 204 break; 205 case PHY_FUNC_DISABLE: 206 if (pm8001_ha->chip_id != chip_8001) { 207 if (pm8001_ha->phy[phy_id].phy_state == 208 PHY_STATE_LINK_UP_SPCV) { 209 sas_phy_disconnected(&phy->sas_phy); 210 sas_notify_phy_event(&phy->sas_phy, 211 PHYE_LOSS_OF_SIGNAL, GFP_KERNEL); 212 phy->phy_attached = 0; 213 } 214 } else { 215 if (pm8001_ha->phy[phy_id].phy_state == 216 PHY_STATE_LINK_UP_SPC) { 217 sas_phy_disconnected(&phy->sas_phy); 218 sas_notify_phy_event(&phy->sas_phy, 219 PHYE_LOSS_OF_SIGNAL, GFP_KERNEL); 220 phy->phy_attached = 0; 221 } 222 } 223 PM8001_CHIP_DISP->phy_stop_req(pm8001_ha, phy_id); 224 break; 225 case PHY_FUNC_GET_EVENTS: 226 spin_lock_irqsave(&pm8001_ha->lock, flags); 227 if (pm8001_ha->chip_id == chip_8001) { 228 if (-1 == pm8001_bar4_shift(pm8001_ha, 229 (phy_id < 4) ? 0x30000 : 0x40000)) { 230 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 231 return -EINVAL; 232 } 233 } 234 { 235 struct sas_phy *phy = sas_phy->phy; 236 uint32_t *qp = (uint32_t *)(((char *) 237 pm8001_ha->io_mem[2].memvirtaddr) 238 + 0x1034 + (0x4000 * (phy_id & 3))); 239 240 phy->invalid_dword_count = qp[0]; 241 phy->running_disparity_error_count = qp[1]; 242 phy->loss_of_dword_sync_count = qp[3]; 243 phy->phy_reset_problem_count = qp[4]; 244 } 245 if (pm8001_ha->chip_id == chip_8001) 246 pm8001_bar4_shift(pm8001_ha, 0); 247 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 248 return 0; 249 default: 250 pm8001_dbg(pm8001_ha, DEVIO, "func 0x%x\n", func); 251 rc = -EOPNOTSUPP; 252 } 253 msleep(300); 254 return rc; 255 } 256 257 /** 258 * pm8001_scan_start - we should enable all HBA phys by sending the phy_start 259 * command to HBA. 260 * @shost: the scsi host data. 261 */ 262 void pm8001_scan_start(struct Scsi_Host *shost) 263 { 264 int i; 265 struct pm8001_hba_info *pm8001_ha; 266 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); 267 pm8001_ha = sha->lldd_ha; 268 /* SAS_RE_INITIALIZATION not available in SPCv/ve */ 269 if (pm8001_ha->chip_id == chip_8001) 270 PM8001_CHIP_DISP->sas_re_init_req(pm8001_ha); 271 for (i = 0; i < pm8001_ha->chip->n_phy; ++i) 272 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, i); 273 } 274 275 int pm8001_scan_finished(struct Scsi_Host *shost, unsigned long time) 276 { 277 struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost); 278 279 /* give the phy enabling interrupt event time to come in (1s 280 * is empirically about all it takes) */ 281 if (time < HZ) 282 return 0; 283 /* Wait for discovery to finish */ 284 sas_drain_work(ha); 285 return 1; 286 } 287 288 /** 289 * pm8001_task_prep_smp - the dispatcher function, prepare data for smp task 290 * @pm8001_ha: our hba card information 291 * @ccb: the ccb which attached to smp task 292 */ 293 static int pm8001_task_prep_smp(struct pm8001_hba_info *pm8001_ha, 294 struct pm8001_ccb_info *ccb) 295 { 296 return PM8001_CHIP_DISP->smp_req(pm8001_ha, ccb); 297 } 298 299 u32 pm8001_get_ncq_tag(struct sas_task *task, u32 *tag) 300 { 301 struct ata_queued_cmd *qc = task->uldd_task; 302 if (qc) { 303 if (qc->tf.command == ATA_CMD_FPDMA_WRITE || 304 qc->tf.command == ATA_CMD_FPDMA_READ || 305 qc->tf.command == ATA_CMD_FPDMA_RECV || 306 qc->tf.command == ATA_CMD_FPDMA_SEND || 307 qc->tf.command == ATA_CMD_NCQ_NON_DATA) { 308 *tag = qc->tag; 309 return 1; 310 } 311 } 312 return 0; 313 } 314 315 /** 316 * pm8001_task_prep_ata - the dispatcher function, prepare data for sata task 317 * @pm8001_ha: our hba card information 318 * @ccb: the ccb which attached to sata task 319 */ 320 static int pm8001_task_prep_ata(struct pm8001_hba_info *pm8001_ha, 321 struct pm8001_ccb_info *ccb) 322 { 323 return PM8001_CHIP_DISP->sata_req(pm8001_ha, ccb); 324 } 325 326 /** 327 * pm8001_task_prep_ssp_tm - the dispatcher function, prepare task management data 328 * @pm8001_ha: our hba card information 329 * @ccb: the ccb which attached to TM 330 * @tmf: the task management IU 331 */ 332 static int pm8001_task_prep_ssp_tm(struct pm8001_hba_info *pm8001_ha, 333 struct pm8001_ccb_info *ccb, struct pm8001_tmf_task *tmf) 334 { 335 return PM8001_CHIP_DISP->ssp_tm_req(pm8001_ha, ccb, tmf); 336 } 337 338 /** 339 * pm8001_task_prep_ssp - the dispatcher function,prepare ssp data for ssp task 340 * @pm8001_ha: our hba card information 341 * @ccb: the ccb which attached to ssp task 342 */ 343 static int pm8001_task_prep_ssp(struct pm8001_hba_info *pm8001_ha, 344 struct pm8001_ccb_info *ccb) 345 { 346 return PM8001_CHIP_DISP->ssp_io_req(pm8001_ha, ccb); 347 } 348 349 /* Find the local port id that's attached to this device */ 350 static int sas_find_local_port_id(struct domain_device *dev) 351 { 352 struct domain_device *pdev = dev->parent; 353 354 /* Directly attached device */ 355 if (!pdev) 356 return dev->port->id; 357 while (pdev) { 358 struct domain_device *pdev_p = pdev->parent; 359 if (!pdev_p) 360 return pdev->port->id; 361 pdev = pdev->parent; 362 } 363 return 0; 364 } 365 366 #define DEV_IS_GONE(pm8001_dev) \ 367 ((!pm8001_dev || (pm8001_dev->dev_type == SAS_PHY_UNUSED))) 368 /** 369 * pm8001_task_exec - queue the task(ssp, smp && ata) to the hardware. 370 * @task: the task to be execute. 371 * @gfp_flags: gfp_flags. 372 * @is_tmf: if it is task management task. 373 * @tmf: the task management IU 374 */ 375 static int pm8001_task_exec(struct sas_task *task, 376 gfp_t gfp_flags, int is_tmf, struct pm8001_tmf_task *tmf) 377 { 378 struct domain_device *dev = task->dev; 379 struct pm8001_hba_info *pm8001_ha; 380 struct pm8001_device *pm8001_dev; 381 struct pm8001_port *port = NULL; 382 struct sas_task *t = task; 383 struct pm8001_ccb_info *ccb; 384 u32 tag = 0xdeadbeef, rc = 0, n_elem = 0; 385 unsigned long flags = 0; 386 enum sas_protocol task_proto = t->task_proto; 387 388 if (!dev->port) { 389 struct task_status_struct *tsm = &t->task_status; 390 tsm->resp = SAS_TASK_UNDELIVERED; 391 tsm->stat = SAS_PHY_DOWN; 392 if (dev->dev_type != SAS_SATA_DEV) 393 t->task_done(t); 394 return 0; 395 } 396 pm8001_ha = pm8001_find_ha_by_dev(task->dev); 397 if (pm8001_ha->controller_fatal_error) { 398 struct task_status_struct *ts = &t->task_status; 399 400 ts->resp = SAS_TASK_UNDELIVERED; 401 t->task_done(t); 402 return 0; 403 } 404 pm8001_dbg(pm8001_ha, IO, "pm8001_task_exec device\n"); 405 spin_lock_irqsave(&pm8001_ha->lock, flags); 406 do { 407 dev = t->dev; 408 pm8001_dev = dev->lldd_dev; 409 port = &pm8001_ha->port[sas_find_local_port_id(dev)]; 410 if (DEV_IS_GONE(pm8001_dev) || !port->port_attached) { 411 if (sas_protocol_ata(task_proto)) { 412 struct task_status_struct *ts = &t->task_status; 413 ts->resp = SAS_TASK_UNDELIVERED; 414 ts->stat = SAS_PHY_DOWN; 415 416 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 417 t->task_done(t); 418 spin_lock_irqsave(&pm8001_ha->lock, flags); 419 continue; 420 } else { 421 struct task_status_struct *ts = &t->task_status; 422 ts->resp = SAS_TASK_UNDELIVERED; 423 ts->stat = SAS_PHY_DOWN; 424 t->task_done(t); 425 continue; 426 } 427 } 428 rc = pm8001_tag_alloc(pm8001_ha, &tag); 429 if (rc) 430 goto err_out; 431 ccb = &pm8001_ha->ccb_info[tag]; 432 433 if (!sas_protocol_ata(task_proto)) { 434 if (t->num_scatter) { 435 n_elem = dma_map_sg(pm8001_ha->dev, 436 t->scatter, 437 t->num_scatter, 438 t->data_dir); 439 if (!n_elem) { 440 rc = -ENOMEM; 441 goto err_out_tag; 442 } 443 } 444 } else { 445 n_elem = t->num_scatter; 446 } 447 448 t->lldd_task = ccb; 449 ccb->n_elem = n_elem; 450 ccb->ccb_tag = tag; 451 ccb->task = t; 452 ccb->device = pm8001_dev; 453 switch (task_proto) { 454 case SAS_PROTOCOL_SMP: 455 atomic_inc(&pm8001_dev->running_req); 456 rc = pm8001_task_prep_smp(pm8001_ha, ccb); 457 break; 458 case SAS_PROTOCOL_SSP: 459 atomic_inc(&pm8001_dev->running_req); 460 if (is_tmf) 461 rc = pm8001_task_prep_ssp_tm(pm8001_ha, 462 ccb, tmf); 463 else 464 rc = pm8001_task_prep_ssp(pm8001_ha, ccb); 465 break; 466 case SAS_PROTOCOL_SATA: 467 case SAS_PROTOCOL_STP: 468 atomic_inc(&pm8001_dev->running_req); 469 rc = pm8001_task_prep_ata(pm8001_ha, ccb); 470 break; 471 default: 472 dev_printk(KERN_ERR, pm8001_ha->dev, 473 "unknown sas_task proto: 0x%x\n", task_proto); 474 rc = -EINVAL; 475 break; 476 } 477 478 if (rc) { 479 pm8001_dbg(pm8001_ha, IO, "rc is %x\n", rc); 480 atomic_dec(&pm8001_dev->running_req); 481 goto err_out_tag; 482 } 483 /* TODO: select normal or high priority */ 484 spin_lock(&t->task_state_lock); 485 t->task_state_flags |= SAS_TASK_AT_INITIATOR; 486 spin_unlock(&t->task_state_lock); 487 } while (0); 488 rc = 0; 489 goto out_done; 490 491 err_out_tag: 492 pm8001_tag_free(pm8001_ha, tag); 493 err_out: 494 dev_printk(KERN_ERR, pm8001_ha->dev, "pm8001 exec failed[%d]!\n", rc); 495 if (!sas_protocol_ata(task_proto)) 496 if (n_elem) 497 dma_unmap_sg(pm8001_ha->dev, t->scatter, t->num_scatter, 498 t->data_dir); 499 out_done: 500 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 501 return rc; 502 } 503 504 /** 505 * pm8001_queue_command - register for upper layer used, all IO commands sent 506 * to HBA are from this interface. 507 * @task: the task to be execute. 508 * @gfp_flags: gfp_flags 509 */ 510 int pm8001_queue_command(struct sas_task *task, gfp_t gfp_flags) 511 { 512 return pm8001_task_exec(task, gfp_flags, 0, NULL); 513 } 514 515 /** 516 * pm8001_ccb_task_free - free the sg for ssp and smp command, free the ccb. 517 * @pm8001_ha: our hba card information 518 * @ccb: the ccb which attached to ssp task 519 * @task: the task to be free. 520 * @ccb_idx: ccb index. 521 */ 522 void pm8001_ccb_task_free(struct pm8001_hba_info *pm8001_ha, 523 struct sas_task *task, struct pm8001_ccb_info *ccb, u32 ccb_idx) 524 { 525 if (!ccb->task) 526 return; 527 if (!sas_protocol_ata(task->task_proto)) 528 if (ccb->n_elem) 529 dma_unmap_sg(pm8001_ha->dev, task->scatter, 530 task->num_scatter, task->data_dir); 531 532 switch (task->task_proto) { 533 case SAS_PROTOCOL_SMP: 534 dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_resp, 1, 535 DMA_FROM_DEVICE); 536 dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_req, 1, 537 DMA_TO_DEVICE); 538 break; 539 540 case SAS_PROTOCOL_SATA: 541 case SAS_PROTOCOL_STP: 542 case SAS_PROTOCOL_SSP: 543 default: 544 /* do nothing */ 545 break; 546 } 547 task->lldd_task = NULL; 548 ccb->task = NULL; 549 ccb->ccb_tag = 0xFFFFFFFF; 550 ccb->open_retry = 0; 551 pm8001_tag_free(pm8001_ha, ccb_idx); 552 } 553 554 /** 555 * pm8001_alloc_dev - find a empty pm8001_device 556 * @pm8001_ha: our hba card information 557 */ 558 static struct pm8001_device *pm8001_alloc_dev(struct pm8001_hba_info *pm8001_ha) 559 { 560 u32 dev; 561 for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) { 562 if (pm8001_ha->devices[dev].dev_type == SAS_PHY_UNUSED) { 563 pm8001_ha->devices[dev].id = dev; 564 return &pm8001_ha->devices[dev]; 565 } 566 } 567 if (dev == PM8001_MAX_DEVICES) { 568 pm8001_dbg(pm8001_ha, FAIL, 569 "max support %d devices, ignore ..\n", 570 PM8001_MAX_DEVICES); 571 } 572 return NULL; 573 } 574 /** 575 * pm8001_find_dev - find a matching pm8001_device 576 * @pm8001_ha: our hba card information 577 * @device_id: device ID to match against 578 */ 579 struct pm8001_device *pm8001_find_dev(struct pm8001_hba_info *pm8001_ha, 580 u32 device_id) 581 { 582 u32 dev; 583 for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) { 584 if (pm8001_ha->devices[dev].device_id == device_id) 585 return &pm8001_ha->devices[dev]; 586 } 587 if (dev == PM8001_MAX_DEVICES) { 588 pm8001_dbg(pm8001_ha, FAIL, "NO MATCHING DEVICE FOUND !!!\n"); 589 } 590 return NULL; 591 } 592 593 void pm8001_free_dev(struct pm8001_device *pm8001_dev) 594 { 595 u32 id = pm8001_dev->id; 596 memset(pm8001_dev, 0, sizeof(*pm8001_dev)); 597 pm8001_dev->id = id; 598 pm8001_dev->dev_type = SAS_PHY_UNUSED; 599 pm8001_dev->device_id = PM8001_MAX_DEVICES; 600 pm8001_dev->sas_device = NULL; 601 } 602 603 /** 604 * pm8001_dev_found_notify - libsas notify a device is found. 605 * @dev: the device structure which sas layer used. 606 * 607 * when libsas find a sas domain device, it should tell the LLDD that 608 * device is found, and then LLDD register this device to HBA firmware 609 * by the command "OPC_INB_REG_DEV", after that the HBA will assign a 610 * device ID(according to device's sas address) and returned it to LLDD. From 611 * now on, we communicate with HBA FW with the device ID which HBA assigned 612 * rather than sas address. it is the necessary step for our HBA but it is 613 * the optional for other HBA driver. 614 */ 615 static int pm8001_dev_found_notify(struct domain_device *dev) 616 { 617 unsigned long flags = 0; 618 int res = 0; 619 struct pm8001_hba_info *pm8001_ha = NULL; 620 struct domain_device *parent_dev = dev->parent; 621 struct pm8001_device *pm8001_device; 622 DECLARE_COMPLETION_ONSTACK(completion); 623 u32 flag = 0; 624 pm8001_ha = pm8001_find_ha_by_dev(dev); 625 spin_lock_irqsave(&pm8001_ha->lock, flags); 626 627 pm8001_device = pm8001_alloc_dev(pm8001_ha); 628 if (!pm8001_device) { 629 res = -1; 630 goto found_out; 631 } 632 pm8001_device->sas_device = dev; 633 dev->lldd_dev = pm8001_device; 634 pm8001_device->dev_type = dev->dev_type; 635 pm8001_device->dcompletion = &completion; 636 if (parent_dev && dev_is_expander(parent_dev->dev_type)) { 637 int phy_id; 638 struct ex_phy *phy; 639 for (phy_id = 0; phy_id < parent_dev->ex_dev.num_phys; 640 phy_id++) { 641 phy = &parent_dev->ex_dev.ex_phy[phy_id]; 642 if (SAS_ADDR(phy->attached_sas_addr) 643 == SAS_ADDR(dev->sas_addr)) { 644 pm8001_device->attached_phy = phy_id; 645 break; 646 } 647 } 648 if (phy_id == parent_dev->ex_dev.num_phys) { 649 pm8001_dbg(pm8001_ha, FAIL, 650 "Error: no attached dev:%016llx at ex:%016llx.\n", 651 SAS_ADDR(dev->sas_addr), 652 SAS_ADDR(parent_dev->sas_addr)); 653 res = -1; 654 } 655 } else { 656 if (dev->dev_type == SAS_SATA_DEV) { 657 pm8001_device->attached_phy = 658 dev->rphy->identify.phy_identifier; 659 flag = 1; /* directly sata */ 660 } 661 } /*register this device to HBA*/ 662 pm8001_dbg(pm8001_ha, DISC, "Found device\n"); 663 PM8001_CHIP_DISP->reg_dev_req(pm8001_ha, pm8001_device, flag); 664 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 665 wait_for_completion(&completion); 666 if (dev->dev_type == SAS_END_DEVICE) 667 msleep(50); 668 pm8001_ha->flags = PM8001F_RUN_TIME; 669 return 0; 670 found_out: 671 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 672 return res; 673 } 674 675 int pm8001_dev_found(struct domain_device *dev) 676 { 677 return pm8001_dev_found_notify(dev); 678 } 679 680 void pm8001_task_done(struct sas_task *task) 681 { 682 if (!del_timer(&task->slow_task->timer)) 683 return; 684 complete(&task->slow_task->completion); 685 } 686 687 static void pm8001_tmf_timedout(struct timer_list *t) 688 { 689 struct sas_task_slow *slow = from_timer(slow, t, timer); 690 struct sas_task *task = slow->task; 691 692 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 693 complete(&task->slow_task->completion); 694 } 695 696 #define PM8001_TASK_TIMEOUT 20 697 /** 698 * pm8001_exec_internal_tmf_task - execute some task management commands. 699 * @dev: the wanted device. 700 * @tmf: which task management wanted to be take. 701 * @para_len: para_len. 702 * @parameter: ssp task parameter. 703 * 704 * when errors or exception happened, we may want to do something, for example 705 * abort the issued task which result in this execption, it is done by calling 706 * this function, note it is also with the task execute interface. 707 */ 708 static int pm8001_exec_internal_tmf_task(struct domain_device *dev, 709 void *parameter, u32 para_len, struct pm8001_tmf_task *tmf) 710 { 711 int res, retry; 712 struct sas_task *task = NULL; 713 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); 714 struct pm8001_device *pm8001_dev = dev->lldd_dev; 715 DECLARE_COMPLETION_ONSTACK(completion_setstate); 716 717 for (retry = 0; retry < 3; retry++) { 718 task = sas_alloc_slow_task(GFP_KERNEL); 719 if (!task) 720 return -ENOMEM; 721 722 task->dev = dev; 723 task->task_proto = dev->tproto; 724 memcpy(&task->ssp_task, parameter, para_len); 725 task->task_done = pm8001_task_done; 726 task->slow_task->timer.function = pm8001_tmf_timedout; 727 task->slow_task->timer.expires = jiffies + PM8001_TASK_TIMEOUT*HZ; 728 add_timer(&task->slow_task->timer); 729 730 res = pm8001_task_exec(task, GFP_KERNEL, 1, tmf); 731 732 if (res) { 733 del_timer(&task->slow_task->timer); 734 pm8001_dbg(pm8001_ha, FAIL, "Executing internal task failed\n"); 735 goto ex_err; 736 } 737 wait_for_completion(&task->slow_task->completion); 738 if (pm8001_ha->chip_id != chip_8001) { 739 pm8001_dev->setds_completion = &completion_setstate; 740 PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, 741 pm8001_dev, DS_OPERATIONAL); 742 wait_for_completion(&completion_setstate); 743 } 744 res = -TMF_RESP_FUNC_FAILED; 745 /* Even TMF timed out, return direct. */ 746 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 747 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 748 pm8001_dbg(pm8001_ha, FAIL, 749 "TMF task[%x]timeout.\n", 750 tmf->tmf); 751 goto ex_err; 752 } 753 } 754 755 if (task->task_status.resp == SAS_TASK_COMPLETE && 756 task->task_status.stat == SAM_STAT_GOOD) { 757 res = TMF_RESP_FUNC_COMPLETE; 758 break; 759 } 760 761 if (task->task_status.resp == SAS_TASK_COMPLETE && 762 task->task_status.stat == SAS_DATA_UNDERRUN) { 763 /* no error, but return the number of bytes of 764 * underrun */ 765 res = task->task_status.residual; 766 break; 767 } 768 769 if (task->task_status.resp == SAS_TASK_COMPLETE && 770 task->task_status.stat == SAS_DATA_OVERRUN) { 771 pm8001_dbg(pm8001_ha, FAIL, "Blocked task error.\n"); 772 res = -EMSGSIZE; 773 break; 774 } else { 775 pm8001_dbg(pm8001_ha, EH, 776 " Task to dev %016llx response:0x%x status 0x%x\n", 777 SAS_ADDR(dev->sas_addr), 778 task->task_status.resp, 779 task->task_status.stat); 780 sas_free_task(task); 781 task = NULL; 782 } 783 } 784 ex_err: 785 BUG_ON(retry == 3 && task != NULL); 786 sas_free_task(task); 787 return res; 788 } 789 790 static int 791 pm8001_exec_internal_task_abort(struct pm8001_hba_info *pm8001_ha, 792 struct pm8001_device *pm8001_dev, struct domain_device *dev, u32 flag, 793 u32 task_tag) 794 { 795 int res, retry; 796 u32 ccb_tag; 797 struct pm8001_ccb_info *ccb; 798 struct sas_task *task = NULL; 799 800 for (retry = 0; retry < 3; retry++) { 801 task = sas_alloc_slow_task(GFP_KERNEL); 802 if (!task) 803 return -ENOMEM; 804 805 task->dev = dev; 806 task->task_proto = dev->tproto; 807 task->task_done = pm8001_task_done; 808 task->slow_task->timer.function = pm8001_tmf_timedout; 809 task->slow_task->timer.expires = jiffies + PM8001_TASK_TIMEOUT * HZ; 810 add_timer(&task->slow_task->timer); 811 812 res = pm8001_tag_alloc(pm8001_ha, &ccb_tag); 813 if (res) 814 goto ex_err; 815 ccb = &pm8001_ha->ccb_info[ccb_tag]; 816 ccb->device = pm8001_dev; 817 ccb->ccb_tag = ccb_tag; 818 ccb->task = task; 819 ccb->n_elem = 0; 820 821 res = PM8001_CHIP_DISP->task_abort(pm8001_ha, 822 pm8001_dev, flag, task_tag, ccb_tag); 823 824 if (res) { 825 del_timer(&task->slow_task->timer); 826 pm8001_dbg(pm8001_ha, FAIL, "Executing internal task failed\n"); 827 goto ex_err; 828 } 829 wait_for_completion(&task->slow_task->completion); 830 res = TMF_RESP_FUNC_FAILED; 831 /* Even TMF timed out, return direct. */ 832 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 833 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 834 pm8001_dbg(pm8001_ha, FAIL, 835 "TMF task timeout.\n"); 836 goto ex_err; 837 } 838 } 839 840 if (task->task_status.resp == SAS_TASK_COMPLETE && 841 task->task_status.stat == SAM_STAT_GOOD) { 842 res = TMF_RESP_FUNC_COMPLETE; 843 break; 844 845 } else { 846 pm8001_dbg(pm8001_ha, EH, 847 " Task to dev %016llx response: 0x%x status 0x%x\n", 848 SAS_ADDR(dev->sas_addr), 849 task->task_status.resp, 850 task->task_status.stat); 851 sas_free_task(task); 852 task = NULL; 853 } 854 } 855 ex_err: 856 BUG_ON(retry == 3 && task != NULL); 857 sas_free_task(task); 858 return res; 859 } 860 861 /** 862 * pm8001_dev_gone_notify - see the comments for "pm8001_dev_found_notify" 863 * @dev: the device structure which sas layer used. 864 */ 865 static void pm8001_dev_gone_notify(struct domain_device *dev) 866 { 867 unsigned long flags = 0; 868 struct pm8001_hba_info *pm8001_ha; 869 struct pm8001_device *pm8001_dev = dev->lldd_dev; 870 871 pm8001_ha = pm8001_find_ha_by_dev(dev); 872 spin_lock_irqsave(&pm8001_ha->lock, flags); 873 if (pm8001_dev) { 874 u32 device_id = pm8001_dev->device_id; 875 876 pm8001_dbg(pm8001_ha, DISC, "found dev[%d:%x] is gone.\n", 877 pm8001_dev->device_id, pm8001_dev->dev_type); 878 if (atomic_read(&pm8001_dev->running_req)) { 879 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 880 pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 881 dev, 1, 0); 882 while (atomic_read(&pm8001_dev->running_req)) 883 msleep(20); 884 spin_lock_irqsave(&pm8001_ha->lock, flags); 885 } 886 PM8001_CHIP_DISP->dereg_dev_req(pm8001_ha, device_id); 887 pm8001_free_dev(pm8001_dev); 888 } else { 889 pm8001_dbg(pm8001_ha, DISC, "Found dev has gone.\n"); 890 } 891 dev->lldd_dev = NULL; 892 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 893 } 894 895 void pm8001_dev_gone(struct domain_device *dev) 896 { 897 pm8001_dev_gone_notify(dev); 898 } 899 900 static int pm8001_issue_ssp_tmf(struct domain_device *dev, 901 u8 *lun, struct pm8001_tmf_task *tmf) 902 { 903 struct sas_ssp_task ssp_task; 904 if (!(dev->tproto & SAS_PROTOCOL_SSP)) 905 return TMF_RESP_FUNC_ESUPP; 906 907 memcpy((u8 *)&ssp_task.LUN, lun, 8); 908 return pm8001_exec_internal_tmf_task(dev, &ssp_task, sizeof(ssp_task), 909 tmf); 910 } 911 912 /* retry commands by ha, by task and/or by device */ 913 void pm8001_open_reject_retry( 914 struct pm8001_hba_info *pm8001_ha, 915 struct sas_task *task_to_close, 916 struct pm8001_device *device_to_close) 917 { 918 int i; 919 unsigned long flags; 920 921 if (pm8001_ha == NULL) 922 return; 923 924 spin_lock_irqsave(&pm8001_ha->lock, flags); 925 926 for (i = 0; i < PM8001_MAX_CCB; i++) { 927 struct sas_task *task; 928 struct task_status_struct *ts; 929 struct pm8001_device *pm8001_dev; 930 unsigned long flags1; 931 u32 tag; 932 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[i]; 933 934 pm8001_dev = ccb->device; 935 if (!pm8001_dev || (pm8001_dev->dev_type == SAS_PHY_UNUSED)) 936 continue; 937 if (!device_to_close) { 938 uintptr_t d = (uintptr_t)pm8001_dev 939 - (uintptr_t)&pm8001_ha->devices; 940 if (((d % sizeof(*pm8001_dev)) != 0) 941 || ((d / sizeof(*pm8001_dev)) >= PM8001_MAX_DEVICES)) 942 continue; 943 } else if (pm8001_dev != device_to_close) 944 continue; 945 tag = ccb->ccb_tag; 946 if (!tag || (tag == 0xFFFFFFFF)) 947 continue; 948 task = ccb->task; 949 if (!task || !task->task_done) 950 continue; 951 if (task_to_close && (task != task_to_close)) 952 continue; 953 ts = &task->task_status; 954 ts->resp = SAS_TASK_COMPLETE; 955 /* Force the midlayer to retry */ 956 ts->stat = SAS_OPEN_REJECT; 957 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 958 if (pm8001_dev) 959 atomic_dec(&pm8001_dev->running_req); 960 spin_lock_irqsave(&task->task_state_lock, flags1); 961 task->task_state_flags &= ~SAS_TASK_STATE_PENDING; 962 task->task_state_flags &= ~SAS_TASK_AT_INITIATOR; 963 task->task_state_flags |= SAS_TASK_STATE_DONE; 964 if (unlikely((task->task_state_flags 965 & SAS_TASK_STATE_ABORTED))) { 966 spin_unlock_irqrestore(&task->task_state_lock, 967 flags1); 968 pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); 969 } else { 970 spin_unlock_irqrestore(&task->task_state_lock, 971 flags1); 972 pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); 973 mb();/* in order to force CPU ordering */ 974 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 975 task->task_done(task); 976 spin_lock_irqsave(&pm8001_ha->lock, flags); 977 } 978 } 979 980 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 981 } 982 983 /** 984 * pm8001_I_T_nexus_reset() 985 * Standard mandates link reset for ATA (type 0) and hard reset for 986 * SSP (type 1) , only for RECOVERY 987 * @dev: the device structure for the device to reset. 988 */ 989 int pm8001_I_T_nexus_reset(struct domain_device *dev) 990 { 991 int rc = TMF_RESP_FUNC_FAILED; 992 struct pm8001_device *pm8001_dev; 993 struct pm8001_hba_info *pm8001_ha; 994 struct sas_phy *phy; 995 996 if (!dev || !dev->lldd_dev) 997 return -ENODEV; 998 999 pm8001_dev = dev->lldd_dev; 1000 pm8001_ha = pm8001_find_ha_by_dev(dev); 1001 phy = sas_get_local_phy(dev); 1002 1003 if (dev_is_sata(dev)) { 1004 if (scsi_is_sas_phy_local(phy)) { 1005 rc = 0; 1006 goto out; 1007 } 1008 rc = sas_phy_reset(phy, 1); 1009 if (rc) { 1010 pm8001_dbg(pm8001_ha, EH, 1011 "phy reset failed for device %x\n" 1012 "with rc %d\n", pm8001_dev->device_id, rc); 1013 rc = TMF_RESP_FUNC_FAILED; 1014 goto out; 1015 } 1016 msleep(2000); 1017 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1018 dev, 1, 0); 1019 if (rc) { 1020 pm8001_dbg(pm8001_ha, EH, "task abort failed %x\n" 1021 "with rc %d\n", pm8001_dev->device_id, rc); 1022 rc = TMF_RESP_FUNC_FAILED; 1023 } 1024 } else { 1025 rc = sas_phy_reset(phy, 1); 1026 msleep(2000); 1027 } 1028 pm8001_dbg(pm8001_ha, EH, " for device[%x]:rc=%d\n", 1029 pm8001_dev->device_id, rc); 1030 out: 1031 sas_put_local_phy(phy); 1032 return rc; 1033 } 1034 1035 /* 1036 * This function handle the IT_NEXUS_XXX event or completion 1037 * status code for SSP/SATA/SMP I/O request. 1038 */ 1039 int pm8001_I_T_nexus_event_handler(struct domain_device *dev) 1040 { 1041 int rc = TMF_RESP_FUNC_FAILED; 1042 struct pm8001_device *pm8001_dev; 1043 struct pm8001_hba_info *pm8001_ha; 1044 struct sas_phy *phy; 1045 1046 if (!dev || !dev->lldd_dev) 1047 return -1; 1048 1049 pm8001_dev = dev->lldd_dev; 1050 pm8001_ha = pm8001_find_ha_by_dev(dev); 1051 1052 pm8001_dbg(pm8001_ha, EH, "I_T_Nexus handler invoked !!\n"); 1053 1054 phy = sas_get_local_phy(dev); 1055 1056 if (dev_is_sata(dev)) { 1057 DECLARE_COMPLETION_ONSTACK(completion_setstate); 1058 if (scsi_is_sas_phy_local(phy)) { 1059 rc = 0; 1060 goto out; 1061 } 1062 /* send internal ssp/sata/smp abort command to FW */ 1063 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1064 dev, 1, 0); 1065 msleep(100); 1066 1067 /* deregister the target device */ 1068 pm8001_dev_gone_notify(dev); 1069 msleep(200); 1070 1071 /*send phy reset to hard reset target */ 1072 rc = sas_phy_reset(phy, 1); 1073 msleep(2000); 1074 pm8001_dev->setds_completion = &completion_setstate; 1075 1076 wait_for_completion(&completion_setstate); 1077 } else { 1078 /* send internal ssp/sata/smp abort command to FW */ 1079 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1080 dev, 1, 0); 1081 msleep(100); 1082 1083 /* deregister the target device */ 1084 pm8001_dev_gone_notify(dev); 1085 msleep(200); 1086 1087 /*send phy reset to hard reset target */ 1088 rc = sas_phy_reset(phy, 1); 1089 msleep(2000); 1090 } 1091 pm8001_dbg(pm8001_ha, EH, " for device[%x]:rc=%d\n", 1092 pm8001_dev->device_id, rc); 1093 out: 1094 sas_put_local_phy(phy); 1095 1096 return rc; 1097 } 1098 /* mandatory SAM-3, the task reset the specified LUN*/ 1099 int pm8001_lu_reset(struct domain_device *dev, u8 *lun) 1100 { 1101 int rc = TMF_RESP_FUNC_FAILED; 1102 struct pm8001_tmf_task tmf_task; 1103 struct pm8001_device *pm8001_dev = dev->lldd_dev; 1104 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); 1105 DECLARE_COMPLETION_ONSTACK(completion_setstate); 1106 if (dev_is_sata(dev)) { 1107 struct sas_phy *phy = sas_get_local_phy(dev); 1108 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1109 dev, 1, 0); 1110 rc = sas_phy_reset(phy, 1); 1111 sas_put_local_phy(phy); 1112 pm8001_dev->setds_completion = &completion_setstate; 1113 rc = PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, 1114 pm8001_dev, DS_OPERATIONAL); 1115 wait_for_completion(&completion_setstate); 1116 } else { 1117 tmf_task.tmf = TMF_LU_RESET; 1118 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1119 } 1120 /* If failed, fall-through I_T_Nexus reset */ 1121 pm8001_dbg(pm8001_ha, EH, "for device[%x]:rc=%d\n", 1122 pm8001_dev->device_id, rc); 1123 return rc; 1124 } 1125 1126 /* optional SAM-3 */ 1127 int pm8001_query_task(struct sas_task *task) 1128 { 1129 u32 tag = 0xdeadbeef; 1130 struct scsi_lun lun; 1131 struct pm8001_tmf_task tmf_task; 1132 int rc = TMF_RESP_FUNC_FAILED; 1133 if (unlikely(!task || !task->lldd_task || !task->dev)) 1134 return rc; 1135 1136 if (task->task_proto & SAS_PROTOCOL_SSP) { 1137 struct scsi_cmnd *cmnd = task->uldd_task; 1138 struct domain_device *dev = task->dev; 1139 struct pm8001_hba_info *pm8001_ha = 1140 pm8001_find_ha_by_dev(dev); 1141 1142 int_to_scsilun(cmnd->device->lun, &lun); 1143 rc = pm8001_find_tag(task, &tag); 1144 if (rc == 0) { 1145 rc = TMF_RESP_FUNC_FAILED; 1146 return rc; 1147 } 1148 pm8001_dbg(pm8001_ha, EH, "Query:[%16ph]\n", cmnd->cmnd); 1149 tmf_task.tmf = TMF_QUERY_TASK; 1150 tmf_task.tag_of_task_to_be_managed = tag; 1151 1152 rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task); 1153 switch (rc) { 1154 /* The task is still in Lun, release it then */ 1155 case TMF_RESP_FUNC_SUCC: 1156 pm8001_dbg(pm8001_ha, EH, 1157 "The task is still in Lun\n"); 1158 break; 1159 /* The task is not in Lun or failed, reset the phy */ 1160 case TMF_RESP_FUNC_FAILED: 1161 case TMF_RESP_FUNC_COMPLETE: 1162 pm8001_dbg(pm8001_ha, EH, 1163 "The task is not in Lun or failed, reset the phy\n"); 1164 break; 1165 } 1166 } 1167 pr_err("pm80xx: rc= %d\n", rc); 1168 return rc; 1169 } 1170 1171 /* mandatory SAM-3, still need free task/ccb info, abort the specified task */ 1172 int pm8001_abort_task(struct sas_task *task) 1173 { 1174 unsigned long flags; 1175 u32 tag; 1176 struct domain_device *dev ; 1177 struct pm8001_hba_info *pm8001_ha; 1178 struct scsi_lun lun; 1179 struct pm8001_device *pm8001_dev; 1180 struct pm8001_tmf_task tmf_task; 1181 int rc = TMF_RESP_FUNC_FAILED, ret; 1182 u32 phy_id; 1183 struct sas_task_slow slow_task; 1184 1185 if (unlikely(!task || !task->lldd_task || !task->dev)) 1186 return TMF_RESP_FUNC_FAILED; 1187 1188 dev = task->dev; 1189 pm8001_dev = dev->lldd_dev; 1190 pm8001_ha = pm8001_find_ha_by_dev(dev); 1191 phy_id = pm8001_dev->attached_phy; 1192 1193 if (PM8001_CHIP_DISP->fatal_errors(pm8001_ha)) { 1194 // If the controller is seeing fatal errors 1195 // abort task will not get a response from the controller 1196 return TMF_RESP_FUNC_FAILED; 1197 } 1198 1199 ret = pm8001_find_tag(task, &tag); 1200 if (ret == 0) { 1201 pm8001_info(pm8001_ha, "no tag for task:%p\n", task); 1202 return TMF_RESP_FUNC_FAILED; 1203 } 1204 spin_lock_irqsave(&task->task_state_lock, flags); 1205 if (task->task_state_flags & SAS_TASK_STATE_DONE) { 1206 spin_unlock_irqrestore(&task->task_state_lock, flags); 1207 return TMF_RESP_FUNC_COMPLETE; 1208 } 1209 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 1210 if (task->slow_task == NULL) { 1211 init_completion(&slow_task.completion); 1212 task->slow_task = &slow_task; 1213 } 1214 spin_unlock_irqrestore(&task->task_state_lock, flags); 1215 if (task->task_proto & SAS_PROTOCOL_SSP) { 1216 struct scsi_cmnd *cmnd = task->uldd_task; 1217 int_to_scsilun(cmnd->device->lun, &lun); 1218 tmf_task.tmf = TMF_ABORT_TASK; 1219 tmf_task.tag_of_task_to_be_managed = tag; 1220 rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task); 1221 pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1222 pm8001_dev->sas_device, 0, tag); 1223 } else if (task->task_proto & SAS_PROTOCOL_SATA || 1224 task->task_proto & SAS_PROTOCOL_STP) { 1225 if (pm8001_ha->chip_id == chip_8006) { 1226 DECLARE_COMPLETION_ONSTACK(completion_reset); 1227 DECLARE_COMPLETION_ONSTACK(completion); 1228 struct pm8001_phy *phy = pm8001_ha->phy + phy_id; 1229 1230 /* 1. Set Device state as Recovery */ 1231 pm8001_dev->setds_completion = &completion; 1232 PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, 1233 pm8001_dev, DS_IN_RECOVERY); 1234 wait_for_completion(&completion); 1235 1236 /* 2. Send Phy Control Hard Reset */ 1237 reinit_completion(&completion); 1238 phy->port_reset_status = PORT_RESET_TMO; 1239 phy->reset_success = false; 1240 phy->enable_completion = &completion; 1241 phy->reset_completion = &completion_reset; 1242 ret = PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 1243 PHY_HARD_RESET); 1244 if (ret) { 1245 phy->enable_completion = NULL; 1246 phy->reset_completion = NULL; 1247 goto out; 1248 } 1249 1250 /* In the case of the reset timeout/fail we still 1251 * abort the command at the firmware. The assumption 1252 * here is that the drive is off doing something so 1253 * that it's not processing requests, and we want to 1254 * avoid getting a completion for this and either 1255 * leaking the task in libsas or losing the race and 1256 * getting a double free. 1257 */ 1258 pm8001_dbg(pm8001_ha, MSG, 1259 "Waiting for local phy ctl\n"); 1260 ret = wait_for_completion_timeout(&completion, 1261 PM8001_TASK_TIMEOUT * HZ); 1262 if (!ret || !phy->reset_success) { 1263 phy->enable_completion = NULL; 1264 phy->reset_completion = NULL; 1265 } else { 1266 /* 3. Wait for Port Reset complete or 1267 * Port reset TMO 1268 */ 1269 pm8001_dbg(pm8001_ha, MSG, 1270 "Waiting for Port reset\n"); 1271 ret = wait_for_completion_timeout( 1272 &completion_reset, 1273 PM8001_TASK_TIMEOUT * HZ); 1274 if (!ret) 1275 phy->reset_completion = NULL; 1276 WARN_ON(phy->port_reset_status == 1277 PORT_RESET_TMO); 1278 if (phy->port_reset_status == PORT_RESET_TMO) { 1279 pm8001_dev_gone_notify(dev); 1280 goto out; 1281 } 1282 } 1283 1284 /* 1285 * 4. SATA Abort ALL 1286 * we wait for the task to be aborted so that the task 1287 * is removed from the ccb. on success the caller is 1288 * going to free the task. 1289 */ 1290 ret = pm8001_exec_internal_task_abort(pm8001_ha, 1291 pm8001_dev, pm8001_dev->sas_device, 1, tag); 1292 if (ret) 1293 goto out; 1294 ret = wait_for_completion_timeout( 1295 &task->slow_task->completion, 1296 PM8001_TASK_TIMEOUT * HZ); 1297 if (!ret) 1298 goto out; 1299 1300 /* 5. Set Device State as Operational */ 1301 reinit_completion(&completion); 1302 pm8001_dev->setds_completion = &completion; 1303 PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, 1304 pm8001_dev, DS_OPERATIONAL); 1305 wait_for_completion(&completion); 1306 } else { 1307 rc = pm8001_exec_internal_task_abort(pm8001_ha, 1308 pm8001_dev, pm8001_dev->sas_device, 0, tag); 1309 } 1310 rc = TMF_RESP_FUNC_COMPLETE; 1311 } else if (task->task_proto & SAS_PROTOCOL_SMP) { 1312 /* SMP */ 1313 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1314 pm8001_dev->sas_device, 0, tag); 1315 1316 } 1317 out: 1318 spin_lock_irqsave(&task->task_state_lock, flags); 1319 if (task->slow_task == &slow_task) 1320 task->slow_task = NULL; 1321 spin_unlock_irqrestore(&task->task_state_lock, flags); 1322 if (rc != TMF_RESP_FUNC_COMPLETE) 1323 pm8001_info(pm8001_ha, "rc= %d\n", rc); 1324 return rc; 1325 } 1326 1327 int pm8001_abort_task_set(struct domain_device *dev, u8 *lun) 1328 { 1329 struct pm8001_tmf_task tmf_task; 1330 1331 tmf_task.tmf = TMF_ABORT_TASK_SET; 1332 return pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1333 } 1334 1335 int pm8001_clear_aca(struct domain_device *dev, u8 *lun) 1336 { 1337 struct pm8001_tmf_task tmf_task; 1338 1339 tmf_task.tmf = TMF_CLEAR_ACA; 1340 return pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1341 } 1342 1343 int pm8001_clear_task_set(struct domain_device *dev, u8 *lun) 1344 { 1345 struct pm8001_tmf_task tmf_task; 1346 struct pm8001_device *pm8001_dev = dev->lldd_dev; 1347 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); 1348 1349 pm8001_dbg(pm8001_ha, EH, "I_T_L_Q clear task set[%x]\n", 1350 pm8001_dev->device_id); 1351 tmf_task.tmf = TMF_CLEAR_TASK_SET; 1352 return pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1353 } 1354