1 /* 2 * PMC-Sierra PM8001/8081/8088/8089 SAS/SATA based host adapters driver 3 * 4 * Copyright (c) 2008-2009 USI Co., Ltd. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * substantially similar to the "NO WARRANTY" disclaimer below 15 * ("Disclaimer") and any redistribution must be conditioned upon 16 * including a substantially similar Disclaimer requirement for further 17 * binary redistribution. 18 * 3. Neither the names of the above-listed copyright holders nor the names 19 * of any contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * Alternatively, this software may be distributed under the terms of the 23 * GNU General Public License ("GPL") version 2 as published by the Free 24 * Software Foundation. 25 * 26 * NO WARRANTY 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 35 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 36 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGES. 38 * 39 */ 40 41 #include <linux/slab.h> 42 #include "pm8001_sas.h" 43 44 /** 45 * pm8001_find_tag - from sas task to find out tag that belongs to this task 46 * @task: the task sent to the LLDD 47 * @tag: the found tag associated with the task 48 */ 49 static int pm8001_find_tag(struct sas_task *task, u32 *tag) 50 { 51 if (task->lldd_task) { 52 struct pm8001_ccb_info *ccb; 53 ccb = task->lldd_task; 54 *tag = ccb->ccb_tag; 55 return 1; 56 } 57 return 0; 58 } 59 60 /** 61 * pm8001_tag_clear - clear the tags bitmap 62 * @pm8001_ha: our hba struct 63 * @tag: the found tag associated with the task 64 */ 65 static void pm8001_tag_clear(struct pm8001_hba_info *pm8001_ha, u32 tag) 66 { 67 void *bitmap = pm8001_ha->tags; 68 clear_bit(tag, bitmap); 69 } 70 71 void pm8001_tag_free(struct pm8001_hba_info *pm8001_ha, u32 tag) 72 { 73 pm8001_tag_clear(pm8001_ha, tag); 74 } 75 76 static void pm8001_tag_set(struct pm8001_hba_info *pm8001_ha, u32 tag) 77 { 78 void *bitmap = pm8001_ha->tags; 79 set_bit(tag, bitmap); 80 } 81 82 /** 83 * pm8001_tag_alloc - allocate a empty tag for task used. 84 * @pm8001_ha: our hba struct 85 * @tag_out: the found empty tag . 86 */ 87 inline int pm8001_tag_alloc(struct pm8001_hba_info *pm8001_ha, u32 *tag_out) 88 { 89 unsigned int index, tag; 90 void *bitmap = pm8001_ha->tags; 91 92 index = find_first_zero_bit(bitmap, pm8001_ha->tags_num); 93 tag = index; 94 if (tag >= pm8001_ha->tags_num) 95 return -SAS_QUEUE_FULL; 96 pm8001_tag_set(pm8001_ha, tag); 97 *tag_out = tag; 98 return 0; 99 } 100 101 void pm8001_tag_init(struct pm8001_hba_info *pm8001_ha) 102 { 103 int i; 104 for (i = 0; i < pm8001_ha->tags_num; ++i) 105 pm8001_tag_clear(pm8001_ha, i); 106 } 107 108 /** 109 * pm8001_mem_alloc - allocate memory for pm8001. 110 * @pdev: pci device. 111 * @virt_addr: the allocated virtual address 112 * @pphys_addr_hi: the physical address high byte address. 113 * @pphys_addr_lo: the physical address low byte address. 114 * @mem_size: memory size. 115 */ 116 int pm8001_mem_alloc(struct pci_dev *pdev, void **virt_addr, 117 dma_addr_t *pphys_addr, u32 *pphys_addr_hi, 118 u32 *pphys_addr_lo, u32 mem_size, u32 align) 119 { 120 caddr_t mem_virt_alloc; 121 dma_addr_t mem_dma_handle; 122 u64 phys_align; 123 u64 align_offset = 0; 124 if (align) 125 align_offset = (dma_addr_t)align - 1; 126 mem_virt_alloc = 127 pci_alloc_consistent(pdev, mem_size + align, &mem_dma_handle); 128 if (!mem_virt_alloc) { 129 pm8001_printk("memory allocation error\n"); 130 return -1; 131 } 132 memset((void *)mem_virt_alloc, 0, mem_size+align); 133 *pphys_addr = mem_dma_handle; 134 phys_align = (*pphys_addr + align_offset) & ~align_offset; 135 *virt_addr = (void *)mem_virt_alloc + phys_align - *pphys_addr; 136 *pphys_addr_hi = upper_32_bits(phys_align); 137 *pphys_addr_lo = lower_32_bits(phys_align); 138 return 0; 139 } 140 /** 141 * pm8001_find_ha_by_dev - from domain device which come from sas layer to 142 * find out our hba struct. 143 * @dev: the domain device which from sas layer. 144 */ 145 static 146 struct pm8001_hba_info *pm8001_find_ha_by_dev(struct domain_device *dev) 147 { 148 struct sas_ha_struct *sha = dev->port->ha; 149 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha; 150 return pm8001_ha; 151 } 152 153 /** 154 * pm8001_phy_control - this function should be registered to 155 * sas_domain_function_template to provide libsas used, note: this is just 156 * control the HBA phy rather than other expander phy if you want control 157 * other phy, you should use SMP command. 158 * @sas_phy: which phy in HBA phys. 159 * @func: the operation. 160 * @funcdata: always NULL. 161 */ 162 int pm8001_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func, 163 void *funcdata) 164 { 165 int rc = 0, phy_id = sas_phy->id; 166 struct pm8001_hba_info *pm8001_ha = NULL; 167 struct sas_phy_linkrates *rates; 168 DECLARE_COMPLETION_ONSTACK(completion); 169 unsigned long flags; 170 pm8001_ha = sas_phy->ha->lldd_ha; 171 pm8001_ha->phy[phy_id].enable_completion = &completion; 172 switch (func) { 173 case PHY_FUNC_SET_LINK_RATE: 174 rates = funcdata; 175 if (rates->minimum_linkrate) { 176 pm8001_ha->phy[phy_id].minimum_linkrate = 177 rates->minimum_linkrate; 178 } 179 if (rates->maximum_linkrate) { 180 pm8001_ha->phy[phy_id].maximum_linkrate = 181 rates->maximum_linkrate; 182 } 183 if (pm8001_ha->phy[phy_id].phy_state == 0) { 184 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); 185 wait_for_completion(&completion); 186 } 187 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 188 PHY_LINK_RESET); 189 break; 190 case PHY_FUNC_HARD_RESET: 191 if (pm8001_ha->phy[phy_id].phy_state == 0) { 192 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); 193 wait_for_completion(&completion); 194 } 195 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 196 PHY_HARD_RESET); 197 break; 198 case PHY_FUNC_LINK_RESET: 199 if (pm8001_ha->phy[phy_id].phy_state == 0) { 200 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); 201 wait_for_completion(&completion); 202 } 203 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 204 PHY_LINK_RESET); 205 break; 206 case PHY_FUNC_RELEASE_SPINUP_HOLD: 207 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 208 PHY_LINK_RESET); 209 break; 210 case PHY_FUNC_DISABLE: 211 PM8001_CHIP_DISP->phy_stop_req(pm8001_ha, phy_id); 212 break; 213 case PHY_FUNC_GET_EVENTS: 214 spin_lock_irqsave(&pm8001_ha->lock, flags); 215 if (pm8001_ha->chip_id == chip_8001) { 216 if (-1 == pm8001_bar4_shift(pm8001_ha, 217 (phy_id < 4) ? 0x30000 : 0x40000)) { 218 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 219 return -EINVAL; 220 } 221 } 222 { 223 struct sas_phy *phy = sas_phy->phy; 224 uint32_t *qp = (uint32_t *)(((char *) 225 pm8001_ha->io_mem[2].memvirtaddr) 226 + 0x1034 + (0x4000 * (phy_id & 3))); 227 228 phy->invalid_dword_count = qp[0]; 229 phy->running_disparity_error_count = qp[1]; 230 phy->loss_of_dword_sync_count = qp[3]; 231 phy->phy_reset_problem_count = qp[4]; 232 } 233 if (pm8001_ha->chip_id == chip_8001) 234 pm8001_bar4_shift(pm8001_ha, 0); 235 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 236 return 0; 237 default: 238 rc = -EOPNOTSUPP; 239 } 240 msleep(300); 241 return rc; 242 } 243 244 /** 245 * pm8001_scan_start - we should enable all HBA phys by sending the phy_start 246 * command to HBA. 247 * @shost: the scsi host data. 248 */ 249 void pm8001_scan_start(struct Scsi_Host *shost) 250 { 251 int i; 252 struct pm8001_hba_info *pm8001_ha; 253 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); 254 pm8001_ha = sha->lldd_ha; 255 /* SAS_RE_INITIALIZATION not available in SPCv/ve */ 256 if (pm8001_ha->chip_id == chip_8001) 257 PM8001_CHIP_DISP->sas_re_init_req(pm8001_ha); 258 for (i = 0; i < pm8001_ha->chip->n_phy; ++i) 259 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, i); 260 } 261 262 int pm8001_scan_finished(struct Scsi_Host *shost, unsigned long time) 263 { 264 struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost); 265 266 /* give the phy enabling interrupt event time to come in (1s 267 * is empirically about all it takes) */ 268 if (time < HZ) 269 return 0; 270 /* Wait for discovery to finish */ 271 sas_drain_work(ha); 272 return 1; 273 } 274 275 /** 276 * pm8001_task_prep_smp - the dispatcher function, prepare data for smp task 277 * @pm8001_ha: our hba card information 278 * @ccb: the ccb which attached to smp task 279 */ 280 static int pm8001_task_prep_smp(struct pm8001_hba_info *pm8001_ha, 281 struct pm8001_ccb_info *ccb) 282 { 283 return PM8001_CHIP_DISP->smp_req(pm8001_ha, ccb); 284 } 285 286 u32 pm8001_get_ncq_tag(struct sas_task *task, u32 *tag) 287 { 288 struct ata_queued_cmd *qc = task->uldd_task; 289 if (qc) { 290 if (qc->tf.command == ATA_CMD_FPDMA_WRITE || 291 qc->tf.command == ATA_CMD_FPDMA_READ) { 292 *tag = qc->tag; 293 return 1; 294 } 295 } 296 return 0; 297 } 298 299 /** 300 * pm8001_task_prep_ata - the dispatcher function, prepare data for sata task 301 * @pm8001_ha: our hba card information 302 * @ccb: the ccb which attached to sata task 303 */ 304 static int pm8001_task_prep_ata(struct pm8001_hba_info *pm8001_ha, 305 struct pm8001_ccb_info *ccb) 306 { 307 return PM8001_CHIP_DISP->sata_req(pm8001_ha, ccb); 308 } 309 310 /** 311 * pm8001_task_prep_ssp_tm - the dispatcher function, prepare task management data 312 * @pm8001_ha: our hba card information 313 * @ccb: the ccb which attached to TM 314 * @tmf: the task management IU 315 */ 316 static int pm8001_task_prep_ssp_tm(struct pm8001_hba_info *pm8001_ha, 317 struct pm8001_ccb_info *ccb, struct pm8001_tmf_task *tmf) 318 { 319 return PM8001_CHIP_DISP->ssp_tm_req(pm8001_ha, ccb, tmf); 320 } 321 322 /** 323 * pm8001_task_prep_ssp - the dispatcher function,prepare ssp data for ssp task 324 * @pm8001_ha: our hba card information 325 * @ccb: the ccb which attached to ssp task 326 */ 327 static int pm8001_task_prep_ssp(struct pm8001_hba_info *pm8001_ha, 328 struct pm8001_ccb_info *ccb) 329 { 330 return PM8001_CHIP_DISP->ssp_io_req(pm8001_ha, ccb); 331 } 332 333 /* Find the local port id that's attached to this device */ 334 static int sas_find_local_port_id(struct domain_device *dev) 335 { 336 struct domain_device *pdev = dev->parent; 337 338 /* Directly attached device */ 339 if (!pdev) 340 return dev->port->id; 341 while (pdev) { 342 struct domain_device *pdev_p = pdev->parent; 343 if (!pdev_p) 344 return pdev->port->id; 345 pdev = pdev->parent; 346 } 347 return 0; 348 } 349 350 /** 351 * pm8001_task_exec - queue the task(ssp, smp && ata) to the hardware. 352 * @task: the task to be execute. 353 * @num: if can_queue great than 1, the task can be queued up. for SMP task, 354 * we always execute one one time. 355 * @gfp_flags: gfp_flags. 356 * @is_tmf: if it is task management task. 357 * @tmf: the task management IU 358 */ 359 #define DEV_IS_GONE(pm8001_dev) \ 360 ((!pm8001_dev || (pm8001_dev->dev_type == SAS_PHY_UNUSED))) 361 static int pm8001_task_exec(struct sas_task *task, const int num, 362 gfp_t gfp_flags, int is_tmf, struct pm8001_tmf_task *tmf) 363 { 364 struct domain_device *dev = task->dev; 365 struct pm8001_hba_info *pm8001_ha; 366 struct pm8001_device *pm8001_dev; 367 struct pm8001_port *port = NULL; 368 struct sas_task *t = task; 369 struct pm8001_ccb_info *ccb; 370 u32 tag = 0xdeadbeef, rc, n_elem = 0; 371 u32 n = num; 372 unsigned long flags = 0; 373 374 if (!dev->port) { 375 struct task_status_struct *tsm = &t->task_status; 376 tsm->resp = SAS_TASK_UNDELIVERED; 377 tsm->stat = SAS_PHY_DOWN; 378 if (dev->dev_type != SAS_SATA_DEV) 379 t->task_done(t); 380 return 0; 381 } 382 pm8001_ha = pm8001_find_ha_by_dev(task->dev); 383 PM8001_IO_DBG(pm8001_ha, pm8001_printk("pm8001_task_exec device \n ")); 384 spin_lock_irqsave(&pm8001_ha->lock, flags); 385 do { 386 dev = t->dev; 387 pm8001_dev = dev->lldd_dev; 388 port = &pm8001_ha->port[sas_find_local_port_id(dev)]; 389 if (DEV_IS_GONE(pm8001_dev) || !port->port_attached) { 390 if (sas_protocol_ata(t->task_proto)) { 391 struct task_status_struct *ts = &t->task_status; 392 ts->resp = SAS_TASK_UNDELIVERED; 393 ts->stat = SAS_PHY_DOWN; 394 395 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 396 t->task_done(t); 397 spin_lock_irqsave(&pm8001_ha->lock, flags); 398 if (n > 1) 399 t = list_entry(t->list.next, 400 struct sas_task, list); 401 continue; 402 } else { 403 struct task_status_struct *ts = &t->task_status; 404 ts->resp = SAS_TASK_UNDELIVERED; 405 ts->stat = SAS_PHY_DOWN; 406 t->task_done(t); 407 if (n > 1) 408 t = list_entry(t->list.next, 409 struct sas_task, list); 410 continue; 411 } 412 } 413 rc = pm8001_tag_alloc(pm8001_ha, &tag); 414 if (rc) 415 goto err_out; 416 ccb = &pm8001_ha->ccb_info[tag]; 417 418 if (!sas_protocol_ata(t->task_proto)) { 419 if (t->num_scatter) { 420 n_elem = dma_map_sg(pm8001_ha->dev, 421 t->scatter, 422 t->num_scatter, 423 t->data_dir); 424 if (!n_elem) { 425 rc = -ENOMEM; 426 goto err_out_tag; 427 } 428 } 429 } else { 430 n_elem = t->num_scatter; 431 } 432 433 t->lldd_task = ccb; 434 ccb->n_elem = n_elem; 435 ccb->ccb_tag = tag; 436 ccb->task = t; 437 switch (t->task_proto) { 438 case SAS_PROTOCOL_SMP: 439 rc = pm8001_task_prep_smp(pm8001_ha, ccb); 440 break; 441 case SAS_PROTOCOL_SSP: 442 if (is_tmf) 443 rc = pm8001_task_prep_ssp_tm(pm8001_ha, 444 ccb, tmf); 445 else 446 rc = pm8001_task_prep_ssp(pm8001_ha, ccb); 447 break; 448 case SAS_PROTOCOL_SATA: 449 case SAS_PROTOCOL_STP: 450 rc = pm8001_task_prep_ata(pm8001_ha, ccb); 451 break; 452 default: 453 dev_printk(KERN_ERR, pm8001_ha->dev, 454 "unknown sas_task proto: 0x%x\n", 455 t->task_proto); 456 rc = -EINVAL; 457 break; 458 } 459 460 if (rc) { 461 PM8001_IO_DBG(pm8001_ha, 462 pm8001_printk("rc is %x\n", rc)); 463 goto err_out_tag; 464 } 465 /* TODO: select normal or high priority */ 466 spin_lock(&t->task_state_lock); 467 t->task_state_flags |= SAS_TASK_AT_INITIATOR; 468 spin_unlock(&t->task_state_lock); 469 pm8001_dev->running_req++; 470 if (n > 1) 471 t = list_entry(t->list.next, struct sas_task, list); 472 } while (--n); 473 rc = 0; 474 goto out_done; 475 476 err_out_tag: 477 pm8001_tag_free(pm8001_ha, tag); 478 err_out: 479 dev_printk(KERN_ERR, pm8001_ha->dev, "pm8001 exec failed[%d]!\n", rc); 480 if (!sas_protocol_ata(t->task_proto)) 481 if (n_elem) 482 dma_unmap_sg(pm8001_ha->dev, t->scatter, n_elem, 483 t->data_dir); 484 out_done: 485 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 486 return rc; 487 } 488 489 /** 490 * pm8001_queue_command - register for upper layer used, all IO commands sent 491 * to HBA are from this interface. 492 * @task: the task to be execute. 493 * @num: if can_queue great than 1, the task can be queued up. for SMP task, 494 * we always execute one one time 495 * @gfp_flags: gfp_flags 496 */ 497 int pm8001_queue_command(struct sas_task *task, const int num, 498 gfp_t gfp_flags) 499 { 500 return pm8001_task_exec(task, num, gfp_flags, 0, NULL); 501 } 502 503 void pm8001_ccb_free(struct pm8001_hba_info *pm8001_ha, u32 ccb_idx) 504 { 505 pm8001_tag_clear(pm8001_ha, ccb_idx); 506 } 507 508 /** 509 * pm8001_ccb_task_free - free the sg for ssp and smp command, free the ccb. 510 * @pm8001_ha: our hba card information 511 * @ccb: the ccb which attached to ssp task 512 * @task: the task to be free. 513 * @ccb_idx: ccb index. 514 */ 515 void pm8001_ccb_task_free(struct pm8001_hba_info *pm8001_ha, 516 struct sas_task *task, struct pm8001_ccb_info *ccb, u32 ccb_idx) 517 { 518 if (!ccb->task) 519 return; 520 if (!sas_protocol_ata(task->task_proto)) 521 if (ccb->n_elem) 522 dma_unmap_sg(pm8001_ha->dev, task->scatter, 523 task->num_scatter, task->data_dir); 524 525 switch (task->task_proto) { 526 case SAS_PROTOCOL_SMP: 527 dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_resp, 1, 528 PCI_DMA_FROMDEVICE); 529 dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_req, 1, 530 PCI_DMA_TODEVICE); 531 break; 532 533 case SAS_PROTOCOL_SATA: 534 case SAS_PROTOCOL_STP: 535 case SAS_PROTOCOL_SSP: 536 default: 537 /* do nothing */ 538 break; 539 } 540 task->lldd_task = NULL; 541 ccb->task = NULL; 542 ccb->ccb_tag = 0xFFFFFFFF; 543 ccb->open_retry = 0; 544 pm8001_ccb_free(pm8001_ha, ccb_idx); 545 } 546 547 /** 548 * pm8001_alloc_dev - find a empty pm8001_device 549 * @pm8001_ha: our hba card information 550 */ 551 struct pm8001_device *pm8001_alloc_dev(struct pm8001_hba_info *pm8001_ha) 552 { 553 u32 dev; 554 for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) { 555 if (pm8001_ha->devices[dev].dev_type == SAS_PHY_UNUSED) { 556 pm8001_ha->devices[dev].id = dev; 557 return &pm8001_ha->devices[dev]; 558 } 559 } 560 if (dev == PM8001_MAX_DEVICES) { 561 PM8001_FAIL_DBG(pm8001_ha, 562 pm8001_printk("max support %d devices, ignore ..\n", 563 PM8001_MAX_DEVICES)); 564 } 565 return NULL; 566 } 567 /** 568 * pm8001_find_dev - find a matching pm8001_device 569 * @pm8001_ha: our hba card information 570 */ 571 struct pm8001_device *pm8001_find_dev(struct pm8001_hba_info *pm8001_ha, 572 u32 device_id) 573 { 574 u32 dev; 575 for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) { 576 if (pm8001_ha->devices[dev].device_id == device_id) 577 return &pm8001_ha->devices[dev]; 578 } 579 if (dev == PM8001_MAX_DEVICES) { 580 PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("NO MATCHING " 581 "DEVICE FOUND !!!\n")); 582 } 583 return NULL; 584 } 585 586 static void pm8001_free_dev(struct pm8001_device *pm8001_dev) 587 { 588 u32 id = pm8001_dev->id; 589 memset(pm8001_dev, 0, sizeof(*pm8001_dev)); 590 pm8001_dev->id = id; 591 pm8001_dev->dev_type = SAS_PHY_UNUSED; 592 pm8001_dev->device_id = PM8001_MAX_DEVICES; 593 pm8001_dev->sas_device = NULL; 594 } 595 596 /** 597 * pm8001_dev_found_notify - libsas notify a device is found. 598 * @dev: the device structure which sas layer used. 599 * 600 * when libsas find a sas domain device, it should tell the LLDD that 601 * device is found, and then LLDD register this device to HBA firmware 602 * by the command "OPC_INB_REG_DEV", after that the HBA will assign a 603 * device ID(according to device's sas address) and returned it to LLDD. From 604 * now on, we communicate with HBA FW with the device ID which HBA assigned 605 * rather than sas address. it is the necessary step for our HBA but it is 606 * the optional for other HBA driver. 607 */ 608 static int pm8001_dev_found_notify(struct domain_device *dev) 609 { 610 unsigned long flags = 0; 611 int res = 0; 612 struct pm8001_hba_info *pm8001_ha = NULL; 613 struct domain_device *parent_dev = dev->parent; 614 struct pm8001_device *pm8001_device; 615 DECLARE_COMPLETION_ONSTACK(completion); 616 u32 flag = 0; 617 pm8001_ha = pm8001_find_ha_by_dev(dev); 618 spin_lock_irqsave(&pm8001_ha->lock, flags); 619 620 pm8001_device = pm8001_alloc_dev(pm8001_ha); 621 if (!pm8001_device) { 622 res = -1; 623 goto found_out; 624 } 625 pm8001_device->sas_device = dev; 626 dev->lldd_dev = pm8001_device; 627 pm8001_device->dev_type = dev->dev_type; 628 pm8001_device->dcompletion = &completion; 629 if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) { 630 int phy_id; 631 struct ex_phy *phy; 632 for (phy_id = 0; phy_id < parent_dev->ex_dev.num_phys; 633 phy_id++) { 634 phy = &parent_dev->ex_dev.ex_phy[phy_id]; 635 if (SAS_ADDR(phy->attached_sas_addr) 636 == SAS_ADDR(dev->sas_addr)) { 637 pm8001_device->attached_phy = phy_id; 638 break; 639 } 640 } 641 if (phy_id == parent_dev->ex_dev.num_phys) { 642 PM8001_FAIL_DBG(pm8001_ha, 643 pm8001_printk("Error: no attached dev:%016llx" 644 " at ex:%016llx.\n", SAS_ADDR(dev->sas_addr), 645 SAS_ADDR(parent_dev->sas_addr))); 646 res = -1; 647 } 648 } else { 649 if (dev->dev_type == SAS_SATA_DEV) { 650 pm8001_device->attached_phy = 651 dev->rphy->identify.phy_identifier; 652 flag = 1; /* directly sata*/ 653 } 654 } /*register this device to HBA*/ 655 PM8001_DISC_DBG(pm8001_ha, pm8001_printk("Found device\n")); 656 PM8001_CHIP_DISP->reg_dev_req(pm8001_ha, pm8001_device, flag); 657 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 658 wait_for_completion(&completion); 659 if (dev->dev_type == SAS_END_DEVICE) 660 msleep(50); 661 pm8001_ha->flags = PM8001F_RUN_TIME; 662 return 0; 663 found_out: 664 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 665 return res; 666 } 667 668 int pm8001_dev_found(struct domain_device *dev) 669 { 670 return pm8001_dev_found_notify(dev); 671 } 672 673 void pm8001_task_done(struct sas_task *task) 674 { 675 if (!del_timer(&task->slow_task->timer)) 676 return; 677 complete(&task->slow_task->completion); 678 } 679 680 static void pm8001_tmf_timedout(unsigned long data) 681 { 682 struct sas_task *task = (struct sas_task *)data; 683 684 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 685 complete(&task->slow_task->completion); 686 } 687 688 #define PM8001_TASK_TIMEOUT 20 689 /** 690 * pm8001_exec_internal_tmf_task - execute some task management commands. 691 * @dev: the wanted device. 692 * @tmf: which task management wanted to be take. 693 * @para_len: para_len. 694 * @parameter: ssp task parameter. 695 * 696 * when errors or exception happened, we may want to do something, for example 697 * abort the issued task which result in this execption, it is done by calling 698 * this function, note it is also with the task execute interface. 699 */ 700 static int pm8001_exec_internal_tmf_task(struct domain_device *dev, 701 void *parameter, u32 para_len, struct pm8001_tmf_task *tmf) 702 { 703 int res, retry; 704 struct sas_task *task = NULL; 705 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); 706 struct pm8001_device *pm8001_dev = dev->lldd_dev; 707 DECLARE_COMPLETION_ONSTACK(completion_setstate); 708 709 for (retry = 0; retry < 3; retry++) { 710 task = sas_alloc_slow_task(GFP_KERNEL); 711 if (!task) 712 return -ENOMEM; 713 714 task->dev = dev; 715 task->task_proto = dev->tproto; 716 memcpy(&task->ssp_task, parameter, para_len); 717 task->task_done = pm8001_task_done; 718 task->slow_task->timer.data = (unsigned long)task; 719 task->slow_task->timer.function = pm8001_tmf_timedout; 720 task->slow_task->timer.expires = jiffies + PM8001_TASK_TIMEOUT*HZ; 721 add_timer(&task->slow_task->timer); 722 723 res = pm8001_task_exec(task, 1, GFP_KERNEL, 1, tmf); 724 725 if (res) { 726 del_timer(&task->slow_task->timer); 727 PM8001_FAIL_DBG(pm8001_ha, 728 pm8001_printk("Executing internal task " 729 "failed\n")); 730 goto ex_err; 731 } 732 wait_for_completion(&task->slow_task->completion); 733 if (pm8001_ha->chip_id != chip_8001) { 734 pm8001_dev->setds_completion = &completion_setstate; 735 PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, 736 pm8001_dev, 0x01); 737 wait_for_completion(&completion_setstate); 738 } 739 res = -TMF_RESP_FUNC_FAILED; 740 /* Even TMF timed out, return direct. */ 741 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 742 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 743 PM8001_FAIL_DBG(pm8001_ha, 744 pm8001_printk("TMF task[%x]timeout.\n", 745 tmf->tmf)); 746 goto ex_err; 747 } 748 } 749 750 if (task->task_status.resp == SAS_TASK_COMPLETE && 751 task->task_status.stat == SAM_STAT_GOOD) { 752 res = TMF_RESP_FUNC_COMPLETE; 753 break; 754 } 755 756 if (task->task_status.resp == SAS_TASK_COMPLETE && 757 task->task_status.stat == SAS_DATA_UNDERRUN) { 758 /* no error, but return the number of bytes of 759 * underrun */ 760 res = task->task_status.residual; 761 break; 762 } 763 764 if (task->task_status.resp == SAS_TASK_COMPLETE && 765 task->task_status.stat == SAS_DATA_OVERRUN) { 766 PM8001_FAIL_DBG(pm8001_ha, 767 pm8001_printk("Blocked task error.\n")); 768 res = -EMSGSIZE; 769 break; 770 } else { 771 PM8001_EH_DBG(pm8001_ha, 772 pm8001_printk(" Task to dev %016llx response:" 773 "0x%x status 0x%x\n", 774 SAS_ADDR(dev->sas_addr), 775 task->task_status.resp, 776 task->task_status.stat)); 777 sas_free_task(task); 778 task = NULL; 779 } 780 } 781 ex_err: 782 BUG_ON(retry == 3 && task != NULL); 783 sas_free_task(task); 784 return res; 785 } 786 787 static int 788 pm8001_exec_internal_task_abort(struct pm8001_hba_info *pm8001_ha, 789 struct pm8001_device *pm8001_dev, struct domain_device *dev, u32 flag, 790 u32 task_tag) 791 { 792 int res, retry; 793 u32 ccb_tag; 794 struct pm8001_ccb_info *ccb; 795 struct sas_task *task = NULL; 796 797 for (retry = 0; retry < 3; retry++) { 798 task = sas_alloc_slow_task(GFP_KERNEL); 799 if (!task) 800 return -ENOMEM; 801 802 task->dev = dev; 803 task->task_proto = dev->tproto; 804 task->task_done = pm8001_task_done; 805 task->slow_task->timer.data = (unsigned long)task; 806 task->slow_task->timer.function = pm8001_tmf_timedout; 807 task->slow_task->timer.expires = jiffies + PM8001_TASK_TIMEOUT * HZ; 808 add_timer(&task->slow_task->timer); 809 810 res = pm8001_tag_alloc(pm8001_ha, &ccb_tag); 811 if (res) 812 return res; 813 ccb = &pm8001_ha->ccb_info[ccb_tag]; 814 ccb->device = pm8001_dev; 815 ccb->ccb_tag = ccb_tag; 816 ccb->task = task; 817 818 res = PM8001_CHIP_DISP->task_abort(pm8001_ha, 819 pm8001_dev, flag, task_tag, ccb_tag); 820 821 if (res) { 822 del_timer(&task->slow_task->timer); 823 PM8001_FAIL_DBG(pm8001_ha, 824 pm8001_printk("Executing internal task " 825 "failed\n")); 826 goto ex_err; 827 } 828 wait_for_completion(&task->slow_task->completion); 829 res = TMF_RESP_FUNC_FAILED; 830 /* Even TMF timed out, return direct. */ 831 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 832 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 833 PM8001_FAIL_DBG(pm8001_ha, 834 pm8001_printk("TMF task timeout.\n")); 835 goto ex_err; 836 } 837 } 838 839 if (task->task_status.resp == SAS_TASK_COMPLETE && 840 task->task_status.stat == SAM_STAT_GOOD) { 841 res = TMF_RESP_FUNC_COMPLETE; 842 break; 843 844 } else { 845 PM8001_EH_DBG(pm8001_ha, 846 pm8001_printk(" Task to dev %016llx response: " 847 "0x%x status 0x%x\n", 848 SAS_ADDR(dev->sas_addr), 849 task->task_status.resp, 850 task->task_status.stat)); 851 sas_free_task(task); 852 task = NULL; 853 } 854 } 855 ex_err: 856 BUG_ON(retry == 3 && task != NULL); 857 sas_free_task(task); 858 return res; 859 } 860 861 /** 862 * pm8001_dev_gone_notify - see the comments for "pm8001_dev_found_notify" 863 * @dev: the device structure which sas layer used. 864 */ 865 static void pm8001_dev_gone_notify(struct domain_device *dev) 866 { 867 unsigned long flags = 0; 868 u32 tag; 869 struct pm8001_hba_info *pm8001_ha; 870 struct pm8001_device *pm8001_dev = dev->lldd_dev; 871 872 pm8001_ha = pm8001_find_ha_by_dev(dev); 873 spin_lock_irqsave(&pm8001_ha->lock, flags); 874 pm8001_tag_alloc(pm8001_ha, &tag); 875 if (pm8001_dev) { 876 u32 device_id = pm8001_dev->device_id; 877 878 PM8001_DISC_DBG(pm8001_ha, 879 pm8001_printk("found dev[%d:%x] is gone.\n", 880 pm8001_dev->device_id, pm8001_dev->dev_type)); 881 if (pm8001_dev->running_req) { 882 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 883 pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , 884 dev, 1, 0); 885 spin_lock_irqsave(&pm8001_ha->lock, flags); 886 } 887 PM8001_CHIP_DISP->dereg_dev_req(pm8001_ha, device_id); 888 pm8001_free_dev(pm8001_dev); 889 } else { 890 PM8001_DISC_DBG(pm8001_ha, 891 pm8001_printk("Found dev has gone.\n")); 892 } 893 dev->lldd_dev = NULL; 894 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 895 } 896 897 void pm8001_dev_gone(struct domain_device *dev) 898 { 899 pm8001_dev_gone_notify(dev); 900 } 901 902 static int pm8001_issue_ssp_tmf(struct domain_device *dev, 903 u8 *lun, struct pm8001_tmf_task *tmf) 904 { 905 struct sas_ssp_task ssp_task; 906 if (!(dev->tproto & SAS_PROTOCOL_SSP)) 907 return TMF_RESP_FUNC_ESUPP; 908 909 strncpy((u8 *)&ssp_task.LUN, lun, 8); 910 return pm8001_exec_internal_tmf_task(dev, &ssp_task, sizeof(ssp_task), 911 tmf); 912 } 913 914 /* retry commands by ha, by task and/or by device */ 915 void pm8001_open_reject_retry( 916 struct pm8001_hba_info *pm8001_ha, 917 struct sas_task *task_to_close, 918 struct pm8001_device *device_to_close) 919 { 920 int i; 921 unsigned long flags; 922 923 if (pm8001_ha == NULL) 924 return; 925 926 spin_lock_irqsave(&pm8001_ha->lock, flags); 927 928 for (i = 0; i < PM8001_MAX_CCB; i++) { 929 struct sas_task *task; 930 struct task_status_struct *ts; 931 struct pm8001_device *pm8001_dev; 932 unsigned long flags1; 933 u32 tag; 934 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[i]; 935 936 pm8001_dev = ccb->device; 937 if (!pm8001_dev || (pm8001_dev->dev_type == SAS_PHY_UNUSED)) 938 continue; 939 if (!device_to_close) { 940 uintptr_t d = (uintptr_t)pm8001_dev 941 - (uintptr_t)&pm8001_ha->devices; 942 if (((d % sizeof(*pm8001_dev)) != 0) 943 || ((d / sizeof(*pm8001_dev)) >= PM8001_MAX_DEVICES)) 944 continue; 945 } else if (pm8001_dev != device_to_close) 946 continue; 947 tag = ccb->ccb_tag; 948 if (!tag || (tag == 0xFFFFFFFF)) 949 continue; 950 task = ccb->task; 951 if (!task || !task->task_done) 952 continue; 953 if (task_to_close && (task != task_to_close)) 954 continue; 955 ts = &task->task_status; 956 ts->resp = SAS_TASK_COMPLETE; 957 /* Force the midlayer to retry */ 958 ts->stat = SAS_OPEN_REJECT; 959 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 960 if (pm8001_dev) 961 pm8001_dev->running_req--; 962 spin_lock_irqsave(&task->task_state_lock, flags1); 963 task->task_state_flags &= ~SAS_TASK_STATE_PENDING; 964 task->task_state_flags &= ~SAS_TASK_AT_INITIATOR; 965 task->task_state_flags |= SAS_TASK_STATE_DONE; 966 if (unlikely((task->task_state_flags 967 & SAS_TASK_STATE_ABORTED))) { 968 spin_unlock_irqrestore(&task->task_state_lock, 969 flags1); 970 pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); 971 } else { 972 spin_unlock_irqrestore(&task->task_state_lock, 973 flags1); 974 pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); 975 mb();/* in order to force CPU ordering */ 976 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 977 task->task_done(task); 978 spin_lock_irqsave(&pm8001_ha->lock, flags); 979 } 980 } 981 982 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 983 } 984 985 /** 986 * Standard mandates link reset for ATA (type 0) and hard reset for 987 * SSP (type 1) , only for RECOVERY 988 */ 989 int pm8001_I_T_nexus_reset(struct domain_device *dev) 990 { 991 int rc = TMF_RESP_FUNC_FAILED; 992 struct pm8001_device *pm8001_dev; 993 struct pm8001_hba_info *pm8001_ha; 994 struct sas_phy *phy; 995 996 if (!dev || !dev->lldd_dev) 997 return -ENODEV; 998 999 pm8001_dev = dev->lldd_dev; 1000 pm8001_ha = pm8001_find_ha_by_dev(dev); 1001 phy = sas_get_local_phy(dev); 1002 1003 if (dev_is_sata(dev)) { 1004 DECLARE_COMPLETION_ONSTACK(completion_setstate); 1005 if (scsi_is_sas_phy_local(phy)) { 1006 rc = 0; 1007 goto out; 1008 } 1009 rc = sas_phy_reset(phy, 1); 1010 msleep(2000); 1011 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , 1012 dev, 1, 0); 1013 pm8001_dev->setds_completion = &completion_setstate; 1014 rc = PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, 1015 pm8001_dev, 0x01); 1016 wait_for_completion(&completion_setstate); 1017 } else { 1018 rc = sas_phy_reset(phy, 1); 1019 msleep(2000); 1020 } 1021 PM8001_EH_DBG(pm8001_ha, pm8001_printk(" for device[%x]:rc=%d\n", 1022 pm8001_dev->device_id, rc)); 1023 out: 1024 sas_put_local_phy(phy); 1025 return rc; 1026 } 1027 1028 /* 1029 * This function handle the IT_NEXUS_XXX event or completion 1030 * status code for SSP/SATA/SMP I/O request. 1031 */ 1032 int pm8001_I_T_nexus_event_handler(struct domain_device *dev) 1033 { 1034 int rc = TMF_RESP_FUNC_FAILED; 1035 struct pm8001_device *pm8001_dev; 1036 struct pm8001_hba_info *pm8001_ha; 1037 struct sas_phy *phy; 1038 u32 device_id = 0; 1039 1040 if (!dev || !dev->lldd_dev) 1041 return -1; 1042 1043 pm8001_dev = dev->lldd_dev; 1044 device_id = pm8001_dev->device_id; 1045 pm8001_ha = pm8001_find_ha_by_dev(dev); 1046 1047 PM8001_EH_DBG(pm8001_ha, 1048 pm8001_printk("I_T_Nexus handler invoked !!")); 1049 1050 phy = sas_get_local_phy(dev); 1051 1052 if (dev_is_sata(dev)) { 1053 DECLARE_COMPLETION_ONSTACK(completion_setstate); 1054 if (scsi_is_sas_phy_local(phy)) { 1055 rc = 0; 1056 goto out; 1057 } 1058 /* send internal ssp/sata/smp abort command to FW */ 1059 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , 1060 dev, 1, 0); 1061 msleep(100); 1062 1063 /* deregister the target device */ 1064 pm8001_dev_gone_notify(dev); 1065 msleep(200); 1066 1067 /*send phy reset to hard reset target */ 1068 rc = sas_phy_reset(phy, 1); 1069 msleep(2000); 1070 pm8001_dev->setds_completion = &completion_setstate; 1071 1072 wait_for_completion(&completion_setstate); 1073 } else { 1074 /* send internal ssp/sata/smp abort command to FW */ 1075 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , 1076 dev, 1, 0); 1077 msleep(100); 1078 1079 /* deregister the target device */ 1080 pm8001_dev_gone_notify(dev); 1081 msleep(200); 1082 1083 /*send phy reset to hard reset target */ 1084 rc = sas_phy_reset(phy, 1); 1085 msleep(2000); 1086 } 1087 PM8001_EH_DBG(pm8001_ha, pm8001_printk(" for device[%x]:rc=%d\n", 1088 pm8001_dev->device_id, rc)); 1089 out: 1090 sas_put_local_phy(phy); 1091 1092 return rc; 1093 } 1094 /* mandatory SAM-3, the task reset the specified LUN*/ 1095 int pm8001_lu_reset(struct domain_device *dev, u8 *lun) 1096 { 1097 int rc = TMF_RESP_FUNC_FAILED; 1098 struct pm8001_tmf_task tmf_task; 1099 struct pm8001_device *pm8001_dev = dev->lldd_dev; 1100 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); 1101 DECLARE_COMPLETION_ONSTACK(completion_setstate); 1102 if (dev_is_sata(dev)) { 1103 struct sas_phy *phy = sas_get_local_phy(dev); 1104 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , 1105 dev, 1, 0); 1106 rc = sas_phy_reset(phy, 1); 1107 sas_put_local_phy(phy); 1108 pm8001_dev->setds_completion = &completion_setstate; 1109 rc = PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, 1110 pm8001_dev, 0x01); 1111 wait_for_completion(&completion_setstate); 1112 } else { 1113 tmf_task.tmf = TMF_LU_RESET; 1114 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1115 } 1116 /* If failed, fall-through I_T_Nexus reset */ 1117 PM8001_EH_DBG(pm8001_ha, pm8001_printk("for device[%x]:rc=%d\n", 1118 pm8001_dev->device_id, rc)); 1119 return rc; 1120 } 1121 1122 /* optional SAM-3 */ 1123 int pm8001_query_task(struct sas_task *task) 1124 { 1125 u32 tag = 0xdeadbeef; 1126 int i = 0; 1127 struct scsi_lun lun; 1128 struct pm8001_tmf_task tmf_task; 1129 int rc = TMF_RESP_FUNC_FAILED; 1130 if (unlikely(!task || !task->lldd_task || !task->dev)) 1131 return rc; 1132 1133 if (task->task_proto & SAS_PROTOCOL_SSP) { 1134 struct scsi_cmnd *cmnd = task->uldd_task; 1135 struct domain_device *dev = task->dev; 1136 struct pm8001_hba_info *pm8001_ha = 1137 pm8001_find_ha_by_dev(dev); 1138 1139 int_to_scsilun(cmnd->device->lun, &lun); 1140 rc = pm8001_find_tag(task, &tag); 1141 if (rc == 0) { 1142 rc = TMF_RESP_FUNC_FAILED; 1143 return rc; 1144 } 1145 PM8001_EH_DBG(pm8001_ha, pm8001_printk("Query:[")); 1146 for (i = 0; i < 16; i++) 1147 printk(KERN_INFO "%02x ", cmnd->cmnd[i]); 1148 printk(KERN_INFO "]\n"); 1149 tmf_task.tmf = TMF_QUERY_TASK; 1150 tmf_task.tag_of_task_to_be_managed = tag; 1151 1152 rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task); 1153 switch (rc) { 1154 /* The task is still in Lun, release it then */ 1155 case TMF_RESP_FUNC_SUCC: 1156 PM8001_EH_DBG(pm8001_ha, 1157 pm8001_printk("The task is still in Lun\n")); 1158 break; 1159 /* The task is not in Lun or failed, reset the phy */ 1160 case TMF_RESP_FUNC_FAILED: 1161 case TMF_RESP_FUNC_COMPLETE: 1162 PM8001_EH_DBG(pm8001_ha, 1163 pm8001_printk("The task is not in Lun or failed," 1164 " reset the phy\n")); 1165 break; 1166 } 1167 } 1168 pm8001_printk(":rc= %d\n", rc); 1169 return rc; 1170 } 1171 1172 /* mandatory SAM-3, still need free task/ccb info, abord the specified task */ 1173 int pm8001_abort_task(struct sas_task *task) 1174 { 1175 unsigned long flags; 1176 u32 tag = 0xdeadbeef; 1177 u32 device_id; 1178 struct domain_device *dev ; 1179 struct pm8001_hba_info *pm8001_ha = NULL; 1180 struct pm8001_ccb_info *ccb; 1181 struct scsi_lun lun; 1182 struct pm8001_device *pm8001_dev; 1183 struct pm8001_tmf_task tmf_task; 1184 int rc = TMF_RESP_FUNC_FAILED; 1185 if (unlikely(!task || !task->lldd_task || !task->dev)) 1186 return rc; 1187 spin_lock_irqsave(&task->task_state_lock, flags); 1188 if (task->task_state_flags & SAS_TASK_STATE_DONE) { 1189 spin_unlock_irqrestore(&task->task_state_lock, flags); 1190 rc = TMF_RESP_FUNC_COMPLETE; 1191 goto out; 1192 } 1193 spin_unlock_irqrestore(&task->task_state_lock, flags); 1194 if (task->task_proto & SAS_PROTOCOL_SSP) { 1195 struct scsi_cmnd *cmnd = task->uldd_task; 1196 dev = task->dev; 1197 ccb = task->lldd_task; 1198 pm8001_dev = dev->lldd_dev; 1199 pm8001_ha = pm8001_find_ha_by_dev(dev); 1200 int_to_scsilun(cmnd->device->lun, &lun); 1201 rc = pm8001_find_tag(task, &tag); 1202 if (rc == 0) { 1203 printk(KERN_INFO "No such tag in %s\n", __func__); 1204 rc = TMF_RESP_FUNC_FAILED; 1205 return rc; 1206 } 1207 device_id = pm8001_dev->device_id; 1208 PM8001_EH_DBG(pm8001_ha, 1209 pm8001_printk("abort io to deviceid= %d\n", device_id)); 1210 tmf_task.tmf = TMF_ABORT_TASK; 1211 tmf_task.tag_of_task_to_be_managed = tag; 1212 rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task); 1213 pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1214 pm8001_dev->sas_device, 0, tag); 1215 } else if (task->task_proto & SAS_PROTOCOL_SATA || 1216 task->task_proto & SAS_PROTOCOL_STP) { 1217 dev = task->dev; 1218 pm8001_dev = dev->lldd_dev; 1219 pm8001_ha = pm8001_find_ha_by_dev(dev); 1220 rc = pm8001_find_tag(task, &tag); 1221 if (rc == 0) { 1222 printk(KERN_INFO "No such tag in %s\n", __func__); 1223 rc = TMF_RESP_FUNC_FAILED; 1224 return rc; 1225 } 1226 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1227 pm8001_dev->sas_device, 0, tag); 1228 } else if (task->task_proto & SAS_PROTOCOL_SMP) { 1229 /* SMP */ 1230 dev = task->dev; 1231 pm8001_dev = dev->lldd_dev; 1232 pm8001_ha = pm8001_find_ha_by_dev(dev); 1233 rc = pm8001_find_tag(task, &tag); 1234 if (rc == 0) { 1235 printk(KERN_INFO "No such tag in %s\n", __func__); 1236 rc = TMF_RESP_FUNC_FAILED; 1237 return rc; 1238 } 1239 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1240 pm8001_dev->sas_device, 0, tag); 1241 1242 } 1243 out: 1244 if (rc != TMF_RESP_FUNC_COMPLETE) 1245 pm8001_printk("rc= %d\n", rc); 1246 return rc; 1247 } 1248 1249 int pm8001_abort_task_set(struct domain_device *dev, u8 *lun) 1250 { 1251 int rc = TMF_RESP_FUNC_FAILED; 1252 struct pm8001_tmf_task tmf_task; 1253 1254 tmf_task.tmf = TMF_ABORT_TASK_SET; 1255 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1256 return rc; 1257 } 1258 1259 int pm8001_clear_aca(struct domain_device *dev, u8 *lun) 1260 { 1261 int rc = TMF_RESP_FUNC_FAILED; 1262 struct pm8001_tmf_task tmf_task; 1263 1264 tmf_task.tmf = TMF_CLEAR_ACA; 1265 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1266 1267 return rc; 1268 } 1269 1270 int pm8001_clear_task_set(struct domain_device *dev, u8 *lun) 1271 { 1272 int rc = TMF_RESP_FUNC_FAILED; 1273 struct pm8001_tmf_task tmf_task; 1274 struct pm8001_device *pm8001_dev = dev->lldd_dev; 1275 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); 1276 1277 PM8001_EH_DBG(pm8001_ha, 1278 pm8001_printk("I_T_L_Q clear task set[%x]\n", 1279 pm8001_dev->device_id)); 1280 tmf_task.tmf = TMF_CLEAR_TASK_SET; 1281 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1282 return rc; 1283 } 1284 1285