1 /* 2 * PMC-Sierra PM8001/8081/8088/8089 SAS/SATA based host adapters driver 3 * 4 * Copyright (c) 2008-2009 USI Co., Ltd. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * substantially similar to the "NO WARRANTY" disclaimer below 15 * ("Disclaimer") and any redistribution must be conditioned upon 16 * including a substantially similar Disclaimer requirement for further 17 * binary redistribution. 18 * 3. Neither the names of the above-listed copyright holders nor the names 19 * of any contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * Alternatively, this software may be distributed under the terms of the 23 * GNU General Public License ("GPL") version 2 as published by the Free 24 * Software Foundation. 25 * 26 * NO WARRANTY 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 35 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 36 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGES. 38 * 39 */ 40 41 #include <linux/slab.h> 42 #include "pm8001_sas.h" 43 44 /** 45 * pm8001_find_tag - from sas task to find out tag that belongs to this task 46 * @task: the task sent to the LLDD 47 * @tag: the found tag associated with the task 48 */ 49 static int pm8001_find_tag(struct sas_task *task, u32 *tag) 50 { 51 if (task->lldd_task) { 52 struct pm8001_ccb_info *ccb; 53 ccb = task->lldd_task; 54 *tag = ccb->ccb_tag; 55 return 1; 56 } 57 return 0; 58 } 59 60 /** 61 * pm8001_tag_free - free the no more needed tag 62 * @pm8001_ha: our hba struct 63 * @tag: the found tag associated with the task 64 */ 65 void pm8001_tag_free(struct pm8001_hba_info *pm8001_ha, u32 tag) 66 { 67 void *bitmap = pm8001_ha->tags; 68 clear_bit(tag, bitmap); 69 } 70 71 /** 72 * pm8001_tag_alloc - allocate a empty tag for task used. 73 * @pm8001_ha: our hba struct 74 * @tag_out: the found empty tag . 75 */ 76 inline int pm8001_tag_alloc(struct pm8001_hba_info *pm8001_ha, u32 *tag_out) 77 { 78 unsigned int tag; 79 void *bitmap = pm8001_ha->tags; 80 unsigned long flags; 81 82 spin_lock_irqsave(&pm8001_ha->bitmap_lock, flags); 83 tag = find_first_zero_bit(bitmap, pm8001_ha->tags_num); 84 if (tag >= pm8001_ha->tags_num) { 85 spin_unlock_irqrestore(&pm8001_ha->bitmap_lock, flags); 86 return -SAS_QUEUE_FULL; 87 } 88 set_bit(tag, bitmap); 89 spin_unlock_irqrestore(&pm8001_ha->bitmap_lock, flags); 90 *tag_out = tag; 91 return 0; 92 } 93 94 void pm8001_tag_init(struct pm8001_hba_info *pm8001_ha) 95 { 96 int i; 97 for (i = 0; i < pm8001_ha->tags_num; ++i) 98 pm8001_tag_free(pm8001_ha, i); 99 } 100 101 /** 102 * pm8001_mem_alloc - allocate memory for pm8001. 103 * @pdev: pci device. 104 * @virt_addr: the allocated virtual address 105 * @pphys_addr_hi: the physical address high byte address. 106 * @pphys_addr_lo: the physical address low byte address. 107 * @mem_size: memory size. 108 */ 109 int pm8001_mem_alloc(struct pci_dev *pdev, void **virt_addr, 110 dma_addr_t *pphys_addr, u32 *pphys_addr_hi, 111 u32 *pphys_addr_lo, u32 mem_size, u32 align) 112 { 113 caddr_t mem_virt_alloc; 114 dma_addr_t mem_dma_handle; 115 u64 phys_align; 116 u64 align_offset = 0; 117 if (align) 118 align_offset = (dma_addr_t)align - 1; 119 mem_virt_alloc = pci_zalloc_consistent(pdev, mem_size + align, 120 &mem_dma_handle); 121 if (!mem_virt_alloc) { 122 pm8001_printk("memory allocation error\n"); 123 return -1; 124 } 125 *pphys_addr = mem_dma_handle; 126 phys_align = (*pphys_addr + align_offset) & ~align_offset; 127 *virt_addr = (void *)mem_virt_alloc + phys_align - *pphys_addr; 128 *pphys_addr_hi = upper_32_bits(phys_align); 129 *pphys_addr_lo = lower_32_bits(phys_align); 130 return 0; 131 } 132 /** 133 * pm8001_find_ha_by_dev - from domain device which come from sas layer to 134 * find out our hba struct. 135 * @dev: the domain device which from sas layer. 136 */ 137 static 138 struct pm8001_hba_info *pm8001_find_ha_by_dev(struct domain_device *dev) 139 { 140 struct sas_ha_struct *sha = dev->port->ha; 141 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha; 142 return pm8001_ha; 143 } 144 145 /** 146 * pm8001_phy_control - this function should be registered to 147 * sas_domain_function_template to provide libsas used, note: this is just 148 * control the HBA phy rather than other expander phy if you want control 149 * other phy, you should use SMP command. 150 * @sas_phy: which phy in HBA phys. 151 * @func: the operation. 152 * @funcdata: always NULL. 153 */ 154 int pm8001_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func, 155 void *funcdata) 156 { 157 int rc = 0, phy_id = sas_phy->id; 158 struct pm8001_hba_info *pm8001_ha = NULL; 159 struct sas_phy_linkrates *rates; 160 DECLARE_COMPLETION_ONSTACK(completion); 161 unsigned long flags; 162 pm8001_ha = sas_phy->ha->lldd_ha; 163 pm8001_ha->phy[phy_id].enable_completion = &completion; 164 switch (func) { 165 case PHY_FUNC_SET_LINK_RATE: 166 rates = funcdata; 167 if (rates->minimum_linkrate) { 168 pm8001_ha->phy[phy_id].minimum_linkrate = 169 rates->minimum_linkrate; 170 } 171 if (rates->maximum_linkrate) { 172 pm8001_ha->phy[phy_id].maximum_linkrate = 173 rates->maximum_linkrate; 174 } 175 if (pm8001_ha->phy[phy_id].phy_state == 0) { 176 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); 177 wait_for_completion(&completion); 178 } 179 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 180 PHY_LINK_RESET); 181 break; 182 case PHY_FUNC_HARD_RESET: 183 if (pm8001_ha->phy[phy_id].phy_state == 0) { 184 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); 185 wait_for_completion(&completion); 186 } 187 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 188 PHY_HARD_RESET); 189 break; 190 case PHY_FUNC_LINK_RESET: 191 if (pm8001_ha->phy[phy_id].phy_state == 0) { 192 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); 193 wait_for_completion(&completion); 194 } 195 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 196 PHY_LINK_RESET); 197 break; 198 case PHY_FUNC_RELEASE_SPINUP_HOLD: 199 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 200 PHY_LINK_RESET); 201 break; 202 case PHY_FUNC_DISABLE: 203 PM8001_CHIP_DISP->phy_stop_req(pm8001_ha, phy_id); 204 break; 205 case PHY_FUNC_GET_EVENTS: 206 spin_lock_irqsave(&pm8001_ha->lock, flags); 207 if (pm8001_ha->chip_id == chip_8001) { 208 if (-1 == pm8001_bar4_shift(pm8001_ha, 209 (phy_id < 4) ? 0x30000 : 0x40000)) { 210 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 211 return -EINVAL; 212 } 213 } 214 { 215 struct sas_phy *phy = sas_phy->phy; 216 uint32_t *qp = (uint32_t *)(((char *) 217 pm8001_ha->io_mem[2].memvirtaddr) 218 + 0x1034 + (0x4000 * (phy_id & 3))); 219 220 phy->invalid_dword_count = qp[0]; 221 phy->running_disparity_error_count = qp[1]; 222 phy->loss_of_dword_sync_count = qp[3]; 223 phy->phy_reset_problem_count = qp[4]; 224 } 225 if (pm8001_ha->chip_id == chip_8001) 226 pm8001_bar4_shift(pm8001_ha, 0); 227 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 228 return 0; 229 default: 230 rc = -EOPNOTSUPP; 231 } 232 msleep(300); 233 return rc; 234 } 235 236 /** 237 * pm8001_scan_start - we should enable all HBA phys by sending the phy_start 238 * command to HBA. 239 * @shost: the scsi host data. 240 */ 241 void pm8001_scan_start(struct Scsi_Host *shost) 242 { 243 int i; 244 struct pm8001_hba_info *pm8001_ha; 245 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); 246 pm8001_ha = sha->lldd_ha; 247 /* SAS_RE_INITIALIZATION not available in SPCv/ve */ 248 if (pm8001_ha->chip_id == chip_8001) 249 PM8001_CHIP_DISP->sas_re_init_req(pm8001_ha); 250 for (i = 0; i < pm8001_ha->chip->n_phy; ++i) 251 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, i); 252 } 253 254 int pm8001_scan_finished(struct Scsi_Host *shost, unsigned long time) 255 { 256 struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost); 257 258 /* give the phy enabling interrupt event time to come in (1s 259 * is empirically about all it takes) */ 260 if (time < HZ) 261 return 0; 262 /* Wait for discovery to finish */ 263 sas_drain_work(ha); 264 return 1; 265 } 266 267 /** 268 * pm8001_task_prep_smp - the dispatcher function, prepare data for smp task 269 * @pm8001_ha: our hba card information 270 * @ccb: the ccb which attached to smp task 271 */ 272 static int pm8001_task_prep_smp(struct pm8001_hba_info *pm8001_ha, 273 struct pm8001_ccb_info *ccb) 274 { 275 return PM8001_CHIP_DISP->smp_req(pm8001_ha, ccb); 276 } 277 278 u32 pm8001_get_ncq_tag(struct sas_task *task, u32 *tag) 279 { 280 struct ata_queued_cmd *qc = task->uldd_task; 281 if (qc) { 282 if (qc->tf.command == ATA_CMD_FPDMA_WRITE || 283 qc->tf.command == ATA_CMD_FPDMA_READ) { 284 *tag = qc->tag; 285 return 1; 286 } 287 } 288 return 0; 289 } 290 291 /** 292 * pm8001_task_prep_ata - the dispatcher function, prepare data for sata task 293 * @pm8001_ha: our hba card information 294 * @ccb: the ccb which attached to sata task 295 */ 296 static int pm8001_task_prep_ata(struct pm8001_hba_info *pm8001_ha, 297 struct pm8001_ccb_info *ccb) 298 { 299 return PM8001_CHIP_DISP->sata_req(pm8001_ha, ccb); 300 } 301 302 /** 303 * pm8001_task_prep_ssp_tm - the dispatcher function, prepare task management data 304 * @pm8001_ha: our hba card information 305 * @ccb: the ccb which attached to TM 306 * @tmf: the task management IU 307 */ 308 static int pm8001_task_prep_ssp_tm(struct pm8001_hba_info *pm8001_ha, 309 struct pm8001_ccb_info *ccb, struct pm8001_tmf_task *tmf) 310 { 311 return PM8001_CHIP_DISP->ssp_tm_req(pm8001_ha, ccb, tmf); 312 } 313 314 /** 315 * pm8001_task_prep_ssp - the dispatcher function,prepare ssp data for ssp task 316 * @pm8001_ha: our hba card information 317 * @ccb: the ccb which attached to ssp task 318 */ 319 static int pm8001_task_prep_ssp(struct pm8001_hba_info *pm8001_ha, 320 struct pm8001_ccb_info *ccb) 321 { 322 return PM8001_CHIP_DISP->ssp_io_req(pm8001_ha, ccb); 323 } 324 325 /* Find the local port id that's attached to this device */ 326 static int sas_find_local_port_id(struct domain_device *dev) 327 { 328 struct domain_device *pdev = dev->parent; 329 330 /* Directly attached device */ 331 if (!pdev) 332 return dev->port->id; 333 while (pdev) { 334 struct domain_device *pdev_p = pdev->parent; 335 if (!pdev_p) 336 return pdev->port->id; 337 pdev = pdev->parent; 338 } 339 return 0; 340 } 341 342 /** 343 * pm8001_task_exec - queue the task(ssp, smp && ata) to the hardware. 344 * @task: the task to be execute. 345 * @num: if can_queue great than 1, the task can be queued up. for SMP task, 346 * we always execute one one time. 347 * @gfp_flags: gfp_flags. 348 * @is_tmf: if it is task management task. 349 * @tmf: the task management IU 350 */ 351 #define DEV_IS_GONE(pm8001_dev) \ 352 ((!pm8001_dev || (pm8001_dev->dev_type == SAS_PHY_UNUSED))) 353 static int pm8001_task_exec(struct sas_task *task, const int num, 354 gfp_t gfp_flags, int is_tmf, struct pm8001_tmf_task *tmf) 355 { 356 struct domain_device *dev = task->dev; 357 struct pm8001_hba_info *pm8001_ha; 358 struct pm8001_device *pm8001_dev; 359 struct pm8001_port *port = NULL; 360 struct sas_task *t = task; 361 struct pm8001_ccb_info *ccb; 362 u32 tag = 0xdeadbeef, rc, n_elem = 0; 363 u32 n = num; 364 unsigned long flags = 0; 365 366 if (!dev->port) { 367 struct task_status_struct *tsm = &t->task_status; 368 tsm->resp = SAS_TASK_UNDELIVERED; 369 tsm->stat = SAS_PHY_DOWN; 370 if (dev->dev_type != SAS_SATA_DEV) 371 t->task_done(t); 372 return 0; 373 } 374 pm8001_ha = pm8001_find_ha_by_dev(task->dev); 375 PM8001_IO_DBG(pm8001_ha, pm8001_printk("pm8001_task_exec device \n ")); 376 spin_lock_irqsave(&pm8001_ha->lock, flags); 377 do { 378 dev = t->dev; 379 pm8001_dev = dev->lldd_dev; 380 port = &pm8001_ha->port[sas_find_local_port_id(dev)]; 381 if (DEV_IS_GONE(pm8001_dev) || !port->port_attached) { 382 if (sas_protocol_ata(t->task_proto)) { 383 struct task_status_struct *ts = &t->task_status; 384 ts->resp = SAS_TASK_UNDELIVERED; 385 ts->stat = SAS_PHY_DOWN; 386 387 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 388 t->task_done(t); 389 spin_lock_irqsave(&pm8001_ha->lock, flags); 390 if (n > 1) 391 t = list_entry(t->list.next, 392 struct sas_task, list); 393 continue; 394 } else { 395 struct task_status_struct *ts = &t->task_status; 396 ts->resp = SAS_TASK_UNDELIVERED; 397 ts->stat = SAS_PHY_DOWN; 398 t->task_done(t); 399 if (n > 1) 400 t = list_entry(t->list.next, 401 struct sas_task, list); 402 continue; 403 } 404 } 405 rc = pm8001_tag_alloc(pm8001_ha, &tag); 406 if (rc) 407 goto err_out; 408 ccb = &pm8001_ha->ccb_info[tag]; 409 410 if (!sas_protocol_ata(t->task_proto)) { 411 if (t->num_scatter) { 412 n_elem = dma_map_sg(pm8001_ha->dev, 413 t->scatter, 414 t->num_scatter, 415 t->data_dir); 416 if (!n_elem) { 417 rc = -ENOMEM; 418 goto err_out_tag; 419 } 420 } 421 } else { 422 n_elem = t->num_scatter; 423 } 424 425 t->lldd_task = ccb; 426 ccb->n_elem = n_elem; 427 ccb->ccb_tag = tag; 428 ccb->task = t; 429 ccb->device = pm8001_dev; 430 switch (t->task_proto) { 431 case SAS_PROTOCOL_SMP: 432 rc = pm8001_task_prep_smp(pm8001_ha, ccb); 433 break; 434 case SAS_PROTOCOL_SSP: 435 if (is_tmf) 436 rc = pm8001_task_prep_ssp_tm(pm8001_ha, 437 ccb, tmf); 438 else 439 rc = pm8001_task_prep_ssp(pm8001_ha, ccb); 440 break; 441 case SAS_PROTOCOL_SATA: 442 case SAS_PROTOCOL_STP: 443 rc = pm8001_task_prep_ata(pm8001_ha, ccb); 444 break; 445 default: 446 dev_printk(KERN_ERR, pm8001_ha->dev, 447 "unknown sas_task proto: 0x%x\n", 448 t->task_proto); 449 rc = -EINVAL; 450 break; 451 } 452 453 if (rc) { 454 PM8001_IO_DBG(pm8001_ha, 455 pm8001_printk("rc is %x\n", rc)); 456 goto err_out_tag; 457 } 458 /* TODO: select normal or high priority */ 459 spin_lock(&t->task_state_lock); 460 t->task_state_flags |= SAS_TASK_AT_INITIATOR; 461 spin_unlock(&t->task_state_lock); 462 pm8001_dev->running_req++; 463 if (n > 1) 464 t = list_entry(t->list.next, struct sas_task, list); 465 } while (--n); 466 rc = 0; 467 goto out_done; 468 469 err_out_tag: 470 pm8001_tag_free(pm8001_ha, tag); 471 err_out: 472 dev_printk(KERN_ERR, pm8001_ha->dev, "pm8001 exec failed[%d]!\n", rc); 473 if (!sas_protocol_ata(t->task_proto)) 474 if (n_elem) 475 dma_unmap_sg(pm8001_ha->dev, t->scatter, n_elem, 476 t->data_dir); 477 out_done: 478 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 479 return rc; 480 } 481 482 /** 483 * pm8001_queue_command - register for upper layer used, all IO commands sent 484 * to HBA are from this interface. 485 * @task: the task to be execute. 486 * @num: if can_queue great than 1, the task can be queued up. for SMP task, 487 * we always execute one one time 488 * @gfp_flags: gfp_flags 489 */ 490 int pm8001_queue_command(struct sas_task *task, const int num, 491 gfp_t gfp_flags) 492 { 493 return pm8001_task_exec(task, num, gfp_flags, 0, NULL); 494 } 495 496 /** 497 * pm8001_ccb_task_free - free the sg for ssp and smp command, free the ccb. 498 * @pm8001_ha: our hba card information 499 * @ccb: the ccb which attached to ssp task 500 * @task: the task to be free. 501 * @ccb_idx: ccb index. 502 */ 503 void pm8001_ccb_task_free(struct pm8001_hba_info *pm8001_ha, 504 struct sas_task *task, struct pm8001_ccb_info *ccb, u32 ccb_idx) 505 { 506 if (!ccb->task) 507 return; 508 if (!sas_protocol_ata(task->task_proto)) 509 if (ccb->n_elem) 510 dma_unmap_sg(pm8001_ha->dev, task->scatter, 511 task->num_scatter, task->data_dir); 512 513 switch (task->task_proto) { 514 case SAS_PROTOCOL_SMP: 515 dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_resp, 1, 516 PCI_DMA_FROMDEVICE); 517 dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_req, 1, 518 PCI_DMA_TODEVICE); 519 break; 520 521 case SAS_PROTOCOL_SATA: 522 case SAS_PROTOCOL_STP: 523 case SAS_PROTOCOL_SSP: 524 default: 525 /* do nothing */ 526 break; 527 } 528 task->lldd_task = NULL; 529 ccb->task = NULL; 530 ccb->ccb_tag = 0xFFFFFFFF; 531 ccb->open_retry = 0; 532 pm8001_tag_free(pm8001_ha, ccb_idx); 533 } 534 535 /** 536 * pm8001_alloc_dev - find a empty pm8001_device 537 * @pm8001_ha: our hba card information 538 */ 539 struct pm8001_device *pm8001_alloc_dev(struct pm8001_hba_info *pm8001_ha) 540 { 541 u32 dev; 542 for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) { 543 if (pm8001_ha->devices[dev].dev_type == SAS_PHY_UNUSED) { 544 pm8001_ha->devices[dev].id = dev; 545 return &pm8001_ha->devices[dev]; 546 } 547 } 548 if (dev == PM8001_MAX_DEVICES) { 549 PM8001_FAIL_DBG(pm8001_ha, 550 pm8001_printk("max support %d devices, ignore ..\n", 551 PM8001_MAX_DEVICES)); 552 } 553 return NULL; 554 } 555 /** 556 * pm8001_find_dev - find a matching pm8001_device 557 * @pm8001_ha: our hba card information 558 */ 559 struct pm8001_device *pm8001_find_dev(struct pm8001_hba_info *pm8001_ha, 560 u32 device_id) 561 { 562 u32 dev; 563 for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) { 564 if (pm8001_ha->devices[dev].device_id == device_id) 565 return &pm8001_ha->devices[dev]; 566 } 567 if (dev == PM8001_MAX_DEVICES) { 568 PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("NO MATCHING " 569 "DEVICE FOUND !!!\n")); 570 } 571 return NULL; 572 } 573 574 static void pm8001_free_dev(struct pm8001_device *pm8001_dev) 575 { 576 u32 id = pm8001_dev->id; 577 memset(pm8001_dev, 0, sizeof(*pm8001_dev)); 578 pm8001_dev->id = id; 579 pm8001_dev->dev_type = SAS_PHY_UNUSED; 580 pm8001_dev->device_id = PM8001_MAX_DEVICES; 581 pm8001_dev->sas_device = NULL; 582 } 583 584 /** 585 * pm8001_dev_found_notify - libsas notify a device is found. 586 * @dev: the device structure which sas layer used. 587 * 588 * when libsas find a sas domain device, it should tell the LLDD that 589 * device is found, and then LLDD register this device to HBA firmware 590 * by the command "OPC_INB_REG_DEV", after that the HBA will assign a 591 * device ID(according to device's sas address) and returned it to LLDD. From 592 * now on, we communicate with HBA FW with the device ID which HBA assigned 593 * rather than sas address. it is the necessary step for our HBA but it is 594 * the optional for other HBA driver. 595 */ 596 static int pm8001_dev_found_notify(struct domain_device *dev) 597 { 598 unsigned long flags = 0; 599 int res = 0; 600 struct pm8001_hba_info *pm8001_ha = NULL; 601 struct domain_device *parent_dev = dev->parent; 602 struct pm8001_device *pm8001_device; 603 DECLARE_COMPLETION_ONSTACK(completion); 604 u32 flag = 0; 605 pm8001_ha = pm8001_find_ha_by_dev(dev); 606 spin_lock_irqsave(&pm8001_ha->lock, flags); 607 608 pm8001_device = pm8001_alloc_dev(pm8001_ha); 609 if (!pm8001_device) { 610 res = -1; 611 goto found_out; 612 } 613 pm8001_device->sas_device = dev; 614 dev->lldd_dev = pm8001_device; 615 pm8001_device->dev_type = dev->dev_type; 616 pm8001_device->dcompletion = &completion; 617 if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) { 618 int phy_id; 619 struct ex_phy *phy; 620 for (phy_id = 0; phy_id < parent_dev->ex_dev.num_phys; 621 phy_id++) { 622 phy = &parent_dev->ex_dev.ex_phy[phy_id]; 623 if (SAS_ADDR(phy->attached_sas_addr) 624 == SAS_ADDR(dev->sas_addr)) { 625 pm8001_device->attached_phy = phy_id; 626 break; 627 } 628 } 629 if (phy_id == parent_dev->ex_dev.num_phys) { 630 PM8001_FAIL_DBG(pm8001_ha, 631 pm8001_printk("Error: no attached dev:%016llx" 632 " at ex:%016llx.\n", SAS_ADDR(dev->sas_addr), 633 SAS_ADDR(parent_dev->sas_addr))); 634 res = -1; 635 } 636 } else { 637 if (dev->dev_type == SAS_SATA_DEV) { 638 pm8001_device->attached_phy = 639 dev->rphy->identify.phy_identifier; 640 flag = 1; /* directly sata*/ 641 } 642 } /*register this device to HBA*/ 643 PM8001_DISC_DBG(pm8001_ha, pm8001_printk("Found device\n")); 644 PM8001_CHIP_DISP->reg_dev_req(pm8001_ha, pm8001_device, flag); 645 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 646 wait_for_completion(&completion); 647 if (dev->dev_type == SAS_END_DEVICE) 648 msleep(50); 649 pm8001_ha->flags = PM8001F_RUN_TIME; 650 return 0; 651 found_out: 652 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 653 return res; 654 } 655 656 int pm8001_dev_found(struct domain_device *dev) 657 { 658 return pm8001_dev_found_notify(dev); 659 } 660 661 void pm8001_task_done(struct sas_task *task) 662 { 663 if (!del_timer(&task->slow_task->timer)) 664 return; 665 complete(&task->slow_task->completion); 666 } 667 668 static void pm8001_tmf_timedout(unsigned long data) 669 { 670 struct sas_task *task = (struct sas_task *)data; 671 672 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 673 complete(&task->slow_task->completion); 674 } 675 676 #define PM8001_TASK_TIMEOUT 20 677 /** 678 * pm8001_exec_internal_tmf_task - execute some task management commands. 679 * @dev: the wanted device. 680 * @tmf: which task management wanted to be take. 681 * @para_len: para_len. 682 * @parameter: ssp task parameter. 683 * 684 * when errors or exception happened, we may want to do something, for example 685 * abort the issued task which result in this execption, it is done by calling 686 * this function, note it is also with the task execute interface. 687 */ 688 static int pm8001_exec_internal_tmf_task(struct domain_device *dev, 689 void *parameter, u32 para_len, struct pm8001_tmf_task *tmf) 690 { 691 int res, retry; 692 struct sas_task *task = NULL; 693 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); 694 struct pm8001_device *pm8001_dev = dev->lldd_dev; 695 DECLARE_COMPLETION_ONSTACK(completion_setstate); 696 697 for (retry = 0; retry < 3; retry++) { 698 task = sas_alloc_slow_task(GFP_KERNEL); 699 if (!task) 700 return -ENOMEM; 701 702 task->dev = dev; 703 task->task_proto = dev->tproto; 704 memcpy(&task->ssp_task, parameter, para_len); 705 task->task_done = pm8001_task_done; 706 task->slow_task->timer.data = (unsigned long)task; 707 task->slow_task->timer.function = pm8001_tmf_timedout; 708 task->slow_task->timer.expires = jiffies + PM8001_TASK_TIMEOUT*HZ; 709 add_timer(&task->slow_task->timer); 710 711 res = pm8001_task_exec(task, 1, GFP_KERNEL, 1, tmf); 712 713 if (res) { 714 del_timer(&task->slow_task->timer); 715 PM8001_FAIL_DBG(pm8001_ha, 716 pm8001_printk("Executing internal task " 717 "failed\n")); 718 goto ex_err; 719 } 720 wait_for_completion(&task->slow_task->completion); 721 if (pm8001_ha->chip_id != chip_8001) { 722 pm8001_dev->setds_completion = &completion_setstate; 723 PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, 724 pm8001_dev, 0x01); 725 wait_for_completion(&completion_setstate); 726 } 727 res = -TMF_RESP_FUNC_FAILED; 728 /* Even TMF timed out, return direct. */ 729 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 730 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 731 PM8001_FAIL_DBG(pm8001_ha, 732 pm8001_printk("TMF task[%x]timeout.\n", 733 tmf->tmf)); 734 goto ex_err; 735 } 736 } 737 738 if (task->task_status.resp == SAS_TASK_COMPLETE && 739 task->task_status.stat == SAM_STAT_GOOD) { 740 res = TMF_RESP_FUNC_COMPLETE; 741 break; 742 } 743 744 if (task->task_status.resp == SAS_TASK_COMPLETE && 745 task->task_status.stat == SAS_DATA_UNDERRUN) { 746 /* no error, but return the number of bytes of 747 * underrun */ 748 res = task->task_status.residual; 749 break; 750 } 751 752 if (task->task_status.resp == SAS_TASK_COMPLETE && 753 task->task_status.stat == SAS_DATA_OVERRUN) { 754 PM8001_FAIL_DBG(pm8001_ha, 755 pm8001_printk("Blocked task error.\n")); 756 res = -EMSGSIZE; 757 break; 758 } else { 759 PM8001_EH_DBG(pm8001_ha, 760 pm8001_printk(" Task to dev %016llx response:" 761 "0x%x status 0x%x\n", 762 SAS_ADDR(dev->sas_addr), 763 task->task_status.resp, 764 task->task_status.stat)); 765 sas_free_task(task); 766 task = NULL; 767 } 768 } 769 ex_err: 770 BUG_ON(retry == 3 && task != NULL); 771 sas_free_task(task); 772 return res; 773 } 774 775 static int 776 pm8001_exec_internal_task_abort(struct pm8001_hba_info *pm8001_ha, 777 struct pm8001_device *pm8001_dev, struct domain_device *dev, u32 flag, 778 u32 task_tag) 779 { 780 int res, retry; 781 u32 ccb_tag; 782 struct pm8001_ccb_info *ccb; 783 struct sas_task *task = NULL; 784 785 for (retry = 0; retry < 3; retry++) { 786 task = sas_alloc_slow_task(GFP_KERNEL); 787 if (!task) 788 return -ENOMEM; 789 790 task->dev = dev; 791 task->task_proto = dev->tproto; 792 task->task_done = pm8001_task_done; 793 task->slow_task->timer.data = (unsigned long)task; 794 task->slow_task->timer.function = pm8001_tmf_timedout; 795 task->slow_task->timer.expires = jiffies + PM8001_TASK_TIMEOUT * HZ; 796 add_timer(&task->slow_task->timer); 797 798 res = pm8001_tag_alloc(pm8001_ha, &ccb_tag); 799 if (res) 800 return res; 801 ccb = &pm8001_ha->ccb_info[ccb_tag]; 802 ccb->device = pm8001_dev; 803 ccb->ccb_tag = ccb_tag; 804 ccb->task = task; 805 806 res = PM8001_CHIP_DISP->task_abort(pm8001_ha, 807 pm8001_dev, flag, task_tag, ccb_tag); 808 809 if (res) { 810 del_timer(&task->slow_task->timer); 811 PM8001_FAIL_DBG(pm8001_ha, 812 pm8001_printk("Executing internal task " 813 "failed\n")); 814 goto ex_err; 815 } 816 wait_for_completion(&task->slow_task->completion); 817 res = TMF_RESP_FUNC_FAILED; 818 /* Even TMF timed out, return direct. */ 819 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 820 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 821 PM8001_FAIL_DBG(pm8001_ha, 822 pm8001_printk("TMF task timeout.\n")); 823 goto ex_err; 824 } 825 } 826 827 if (task->task_status.resp == SAS_TASK_COMPLETE && 828 task->task_status.stat == SAM_STAT_GOOD) { 829 res = TMF_RESP_FUNC_COMPLETE; 830 break; 831 832 } else { 833 PM8001_EH_DBG(pm8001_ha, 834 pm8001_printk(" Task to dev %016llx response: " 835 "0x%x status 0x%x\n", 836 SAS_ADDR(dev->sas_addr), 837 task->task_status.resp, 838 task->task_status.stat)); 839 sas_free_task(task); 840 task = NULL; 841 } 842 } 843 ex_err: 844 BUG_ON(retry == 3 && task != NULL); 845 sas_free_task(task); 846 return res; 847 } 848 849 /** 850 * pm8001_dev_gone_notify - see the comments for "pm8001_dev_found_notify" 851 * @dev: the device structure which sas layer used. 852 */ 853 static void pm8001_dev_gone_notify(struct domain_device *dev) 854 { 855 unsigned long flags = 0; 856 struct pm8001_hba_info *pm8001_ha; 857 struct pm8001_device *pm8001_dev = dev->lldd_dev; 858 859 pm8001_ha = pm8001_find_ha_by_dev(dev); 860 spin_lock_irqsave(&pm8001_ha->lock, flags); 861 if (pm8001_dev) { 862 u32 device_id = pm8001_dev->device_id; 863 864 PM8001_DISC_DBG(pm8001_ha, 865 pm8001_printk("found dev[%d:%x] is gone.\n", 866 pm8001_dev->device_id, pm8001_dev->dev_type)); 867 if (pm8001_dev->running_req) { 868 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 869 pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , 870 dev, 1, 0); 871 spin_lock_irqsave(&pm8001_ha->lock, flags); 872 } 873 PM8001_CHIP_DISP->dereg_dev_req(pm8001_ha, device_id); 874 pm8001_free_dev(pm8001_dev); 875 } else { 876 PM8001_DISC_DBG(pm8001_ha, 877 pm8001_printk("Found dev has gone.\n")); 878 } 879 dev->lldd_dev = NULL; 880 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 881 } 882 883 void pm8001_dev_gone(struct domain_device *dev) 884 { 885 pm8001_dev_gone_notify(dev); 886 } 887 888 static int pm8001_issue_ssp_tmf(struct domain_device *dev, 889 u8 *lun, struct pm8001_tmf_task *tmf) 890 { 891 struct sas_ssp_task ssp_task; 892 if (!(dev->tproto & SAS_PROTOCOL_SSP)) 893 return TMF_RESP_FUNC_ESUPP; 894 895 strncpy((u8 *)&ssp_task.LUN, lun, 8); 896 return pm8001_exec_internal_tmf_task(dev, &ssp_task, sizeof(ssp_task), 897 tmf); 898 } 899 900 /* retry commands by ha, by task and/or by device */ 901 void pm8001_open_reject_retry( 902 struct pm8001_hba_info *pm8001_ha, 903 struct sas_task *task_to_close, 904 struct pm8001_device *device_to_close) 905 { 906 int i; 907 unsigned long flags; 908 909 if (pm8001_ha == NULL) 910 return; 911 912 spin_lock_irqsave(&pm8001_ha->lock, flags); 913 914 for (i = 0; i < PM8001_MAX_CCB; i++) { 915 struct sas_task *task; 916 struct task_status_struct *ts; 917 struct pm8001_device *pm8001_dev; 918 unsigned long flags1; 919 u32 tag; 920 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[i]; 921 922 pm8001_dev = ccb->device; 923 if (!pm8001_dev || (pm8001_dev->dev_type == SAS_PHY_UNUSED)) 924 continue; 925 if (!device_to_close) { 926 uintptr_t d = (uintptr_t)pm8001_dev 927 - (uintptr_t)&pm8001_ha->devices; 928 if (((d % sizeof(*pm8001_dev)) != 0) 929 || ((d / sizeof(*pm8001_dev)) >= PM8001_MAX_DEVICES)) 930 continue; 931 } else if (pm8001_dev != device_to_close) 932 continue; 933 tag = ccb->ccb_tag; 934 if (!tag || (tag == 0xFFFFFFFF)) 935 continue; 936 task = ccb->task; 937 if (!task || !task->task_done) 938 continue; 939 if (task_to_close && (task != task_to_close)) 940 continue; 941 ts = &task->task_status; 942 ts->resp = SAS_TASK_COMPLETE; 943 /* Force the midlayer to retry */ 944 ts->stat = SAS_OPEN_REJECT; 945 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 946 if (pm8001_dev) 947 pm8001_dev->running_req--; 948 spin_lock_irqsave(&task->task_state_lock, flags1); 949 task->task_state_flags &= ~SAS_TASK_STATE_PENDING; 950 task->task_state_flags &= ~SAS_TASK_AT_INITIATOR; 951 task->task_state_flags |= SAS_TASK_STATE_DONE; 952 if (unlikely((task->task_state_flags 953 & SAS_TASK_STATE_ABORTED))) { 954 spin_unlock_irqrestore(&task->task_state_lock, 955 flags1); 956 pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); 957 } else { 958 spin_unlock_irqrestore(&task->task_state_lock, 959 flags1); 960 pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); 961 mb();/* in order to force CPU ordering */ 962 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 963 task->task_done(task); 964 spin_lock_irqsave(&pm8001_ha->lock, flags); 965 } 966 } 967 968 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 969 } 970 971 /** 972 * Standard mandates link reset for ATA (type 0) and hard reset for 973 * SSP (type 1) , only for RECOVERY 974 */ 975 int pm8001_I_T_nexus_reset(struct domain_device *dev) 976 { 977 int rc = TMF_RESP_FUNC_FAILED; 978 struct pm8001_device *pm8001_dev; 979 struct pm8001_hba_info *pm8001_ha; 980 struct sas_phy *phy; 981 982 if (!dev || !dev->lldd_dev) 983 return -ENODEV; 984 985 pm8001_dev = dev->lldd_dev; 986 pm8001_ha = pm8001_find_ha_by_dev(dev); 987 phy = sas_get_local_phy(dev); 988 989 if (dev_is_sata(dev)) { 990 DECLARE_COMPLETION_ONSTACK(completion_setstate); 991 if (scsi_is_sas_phy_local(phy)) { 992 rc = 0; 993 goto out; 994 } 995 rc = sas_phy_reset(phy, 1); 996 msleep(2000); 997 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , 998 dev, 1, 0); 999 pm8001_dev->setds_completion = &completion_setstate; 1000 rc = PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, 1001 pm8001_dev, 0x01); 1002 wait_for_completion(&completion_setstate); 1003 } else { 1004 rc = sas_phy_reset(phy, 1); 1005 msleep(2000); 1006 } 1007 PM8001_EH_DBG(pm8001_ha, pm8001_printk(" for device[%x]:rc=%d\n", 1008 pm8001_dev->device_id, rc)); 1009 out: 1010 sas_put_local_phy(phy); 1011 return rc; 1012 } 1013 1014 /* 1015 * This function handle the IT_NEXUS_XXX event or completion 1016 * status code for SSP/SATA/SMP I/O request. 1017 */ 1018 int pm8001_I_T_nexus_event_handler(struct domain_device *dev) 1019 { 1020 int rc = TMF_RESP_FUNC_FAILED; 1021 struct pm8001_device *pm8001_dev; 1022 struct pm8001_hba_info *pm8001_ha; 1023 struct sas_phy *phy; 1024 u32 device_id = 0; 1025 1026 if (!dev || !dev->lldd_dev) 1027 return -1; 1028 1029 pm8001_dev = dev->lldd_dev; 1030 device_id = pm8001_dev->device_id; 1031 pm8001_ha = pm8001_find_ha_by_dev(dev); 1032 1033 PM8001_EH_DBG(pm8001_ha, 1034 pm8001_printk("I_T_Nexus handler invoked !!")); 1035 1036 phy = sas_get_local_phy(dev); 1037 1038 if (dev_is_sata(dev)) { 1039 DECLARE_COMPLETION_ONSTACK(completion_setstate); 1040 if (scsi_is_sas_phy_local(phy)) { 1041 rc = 0; 1042 goto out; 1043 } 1044 /* send internal ssp/sata/smp abort command to FW */ 1045 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , 1046 dev, 1, 0); 1047 msleep(100); 1048 1049 /* deregister the target device */ 1050 pm8001_dev_gone_notify(dev); 1051 msleep(200); 1052 1053 /*send phy reset to hard reset target */ 1054 rc = sas_phy_reset(phy, 1); 1055 msleep(2000); 1056 pm8001_dev->setds_completion = &completion_setstate; 1057 1058 wait_for_completion(&completion_setstate); 1059 } else { 1060 /* send internal ssp/sata/smp abort command to FW */ 1061 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , 1062 dev, 1, 0); 1063 msleep(100); 1064 1065 /* deregister the target device */ 1066 pm8001_dev_gone_notify(dev); 1067 msleep(200); 1068 1069 /*send phy reset to hard reset target */ 1070 rc = sas_phy_reset(phy, 1); 1071 msleep(2000); 1072 } 1073 PM8001_EH_DBG(pm8001_ha, pm8001_printk(" for device[%x]:rc=%d\n", 1074 pm8001_dev->device_id, rc)); 1075 out: 1076 sas_put_local_phy(phy); 1077 1078 return rc; 1079 } 1080 /* mandatory SAM-3, the task reset the specified LUN*/ 1081 int pm8001_lu_reset(struct domain_device *dev, u8 *lun) 1082 { 1083 int rc = TMF_RESP_FUNC_FAILED; 1084 struct pm8001_tmf_task tmf_task; 1085 struct pm8001_device *pm8001_dev = dev->lldd_dev; 1086 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); 1087 DECLARE_COMPLETION_ONSTACK(completion_setstate); 1088 if (dev_is_sata(dev)) { 1089 struct sas_phy *phy = sas_get_local_phy(dev); 1090 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , 1091 dev, 1, 0); 1092 rc = sas_phy_reset(phy, 1); 1093 sas_put_local_phy(phy); 1094 pm8001_dev->setds_completion = &completion_setstate; 1095 rc = PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, 1096 pm8001_dev, 0x01); 1097 wait_for_completion(&completion_setstate); 1098 } else { 1099 tmf_task.tmf = TMF_LU_RESET; 1100 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1101 } 1102 /* If failed, fall-through I_T_Nexus reset */ 1103 PM8001_EH_DBG(pm8001_ha, pm8001_printk("for device[%x]:rc=%d\n", 1104 pm8001_dev->device_id, rc)); 1105 return rc; 1106 } 1107 1108 /* optional SAM-3 */ 1109 int pm8001_query_task(struct sas_task *task) 1110 { 1111 u32 tag = 0xdeadbeef; 1112 int i = 0; 1113 struct scsi_lun lun; 1114 struct pm8001_tmf_task tmf_task; 1115 int rc = TMF_RESP_FUNC_FAILED; 1116 if (unlikely(!task || !task->lldd_task || !task->dev)) 1117 return rc; 1118 1119 if (task->task_proto & SAS_PROTOCOL_SSP) { 1120 struct scsi_cmnd *cmnd = task->uldd_task; 1121 struct domain_device *dev = task->dev; 1122 struct pm8001_hba_info *pm8001_ha = 1123 pm8001_find_ha_by_dev(dev); 1124 1125 int_to_scsilun(cmnd->device->lun, &lun); 1126 rc = pm8001_find_tag(task, &tag); 1127 if (rc == 0) { 1128 rc = TMF_RESP_FUNC_FAILED; 1129 return rc; 1130 } 1131 PM8001_EH_DBG(pm8001_ha, pm8001_printk("Query:[")); 1132 for (i = 0; i < 16; i++) 1133 printk(KERN_INFO "%02x ", cmnd->cmnd[i]); 1134 printk(KERN_INFO "]\n"); 1135 tmf_task.tmf = TMF_QUERY_TASK; 1136 tmf_task.tag_of_task_to_be_managed = tag; 1137 1138 rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task); 1139 switch (rc) { 1140 /* The task is still in Lun, release it then */ 1141 case TMF_RESP_FUNC_SUCC: 1142 PM8001_EH_DBG(pm8001_ha, 1143 pm8001_printk("The task is still in Lun\n")); 1144 break; 1145 /* The task is not in Lun or failed, reset the phy */ 1146 case TMF_RESP_FUNC_FAILED: 1147 case TMF_RESP_FUNC_COMPLETE: 1148 PM8001_EH_DBG(pm8001_ha, 1149 pm8001_printk("The task is not in Lun or failed," 1150 " reset the phy\n")); 1151 break; 1152 } 1153 } 1154 pm8001_printk(":rc= %d\n", rc); 1155 return rc; 1156 } 1157 1158 /* mandatory SAM-3, still need free task/ccb info, abord the specified task */ 1159 int pm8001_abort_task(struct sas_task *task) 1160 { 1161 unsigned long flags; 1162 u32 tag = 0xdeadbeef; 1163 u32 device_id; 1164 struct domain_device *dev ; 1165 struct pm8001_hba_info *pm8001_ha = NULL; 1166 struct pm8001_ccb_info *ccb; 1167 struct scsi_lun lun; 1168 struct pm8001_device *pm8001_dev; 1169 struct pm8001_tmf_task tmf_task; 1170 int rc = TMF_RESP_FUNC_FAILED; 1171 if (unlikely(!task || !task->lldd_task || !task->dev)) 1172 return rc; 1173 spin_lock_irqsave(&task->task_state_lock, flags); 1174 if (task->task_state_flags & SAS_TASK_STATE_DONE) { 1175 spin_unlock_irqrestore(&task->task_state_lock, flags); 1176 rc = TMF_RESP_FUNC_COMPLETE; 1177 goto out; 1178 } 1179 spin_unlock_irqrestore(&task->task_state_lock, flags); 1180 if (task->task_proto & SAS_PROTOCOL_SSP) { 1181 struct scsi_cmnd *cmnd = task->uldd_task; 1182 dev = task->dev; 1183 ccb = task->lldd_task; 1184 pm8001_dev = dev->lldd_dev; 1185 pm8001_ha = pm8001_find_ha_by_dev(dev); 1186 int_to_scsilun(cmnd->device->lun, &lun); 1187 rc = pm8001_find_tag(task, &tag); 1188 if (rc == 0) { 1189 printk(KERN_INFO "No such tag in %s\n", __func__); 1190 rc = TMF_RESP_FUNC_FAILED; 1191 return rc; 1192 } 1193 device_id = pm8001_dev->device_id; 1194 PM8001_EH_DBG(pm8001_ha, 1195 pm8001_printk("abort io to deviceid= %d\n", device_id)); 1196 tmf_task.tmf = TMF_ABORT_TASK; 1197 tmf_task.tag_of_task_to_be_managed = tag; 1198 rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task); 1199 pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1200 pm8001_dev->sas_device, 0, tag); 1201 } else if (task->task_proto & SAS_PROTOCOL_SATA || 1202 task->task_proto & SAS_PROTOCOL_STP) { 1203 dev = task->dev; 1204 pm8001_dev = dev->lldd_dev; 1205 pm8001_ha = pm8001_find_ha_by_dev(dev); 1206 rc = pm8001_find_tag(task, &tag); 1207 if (rc == 0) { 1208 printk(KERN_INFO "No such tag in %s\n", __func__); 1209 rc = TMF_RESP_FUNC_FAILED; 1210 return rc; 1211 } 1212 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1213 pm8001_dev->sas_device, 0, tag); 1214 } else if (task->task_proto & SAS_PROTOCOL_SMP) { 1215 /* SMP */ 1216 dev = task->dev; 1217 pm8001_dev = dev->lldd_dev; 1218 pm8001_ha = pm8001_find_ha_by_dev(dev); 1219 rc = pm8001_find_tag(task, &tag); 1220 if (rc == 0) { 1221 printk(KERN_INFO "No such tag in %s\n", __func__); 1222 rc = TMF_RESP_FUNC_FAILED; 1223 return rc; 1224 } 1225 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1226 pm8001_dev->sas_device, 0, tag); 1227 1228 } 1229 out: 1230 if (rc != TMF_RESP_FUNC_COMPLETE) 1231 pm8001_printk("rc= %d\n", rc); 1232 return rc; 1233 } 1234 1235 int pm8001_abort_task_set(struct domain_device *dev, u8 *lun) 1236 { 1237 int rc = TMF_RESP_FUNC_FAILED; 1238 struct pm8001_tmf_task tmf_task; 1239 1240 tmf_task.tmf = TMF_ABORT_TASK_SET; 1241 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1242 return rc; 1243 } 1244 1245 int pm8001_clear_aca(struct domain_device *dev, u8 *lun) 1246 { 1247 int rc = TMF_RESP_FUNC_FAILED; 1248 struct pm8001_tmf_task tmf_task; 1249 1250 tmf_task.tmf = TMF_CLEAR_ACA; 1251 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1252 1253 return rc; 1254 } 1255 1256 int pm8001_clear_task_set(struct domain_device *dev, u8 *lun) 1257 { 1258 int rc = TMF_RESP_FUNC_FAILED; 1259 struct pm8001_tmf_task tmf_task; 1260 struct pm8001_device *pm8001_dev = dev->lldd_dev; 1261 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); 1262 1263 PM8001_EH_DBG(pm8001_ha, 1264 pm8001_printk("I_T_L_Q clear task set[%x]\n", 1265 pm8001_dev->device_id)); 1266 tmf_task.tmf = TMF_CLEAR_TASK_SET; 1267 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1268 return rc; 1269 } 1270 1271