1 /* 2 * PMC-Sierra PM8001/8081/8088/8089 SAS/SATA based host adapters driver 3 * 4 * Copyright (c) 2008-2009 USI Co., Ltd. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * substantially similar to the "NO WARRANTY" disclaimer below 15 * ("Disclaimer") and any redistribution must be conditioned upon 16 * including a substantially similar Disclaimer requirement for further 17 * binary redistribution. 18 * 3. Neither the names of the above-listed copyright holders nor the names 19 * of any contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * Alternatively, this software may be distributed under the terms of the 23 * GNU General Public License ("GPL") version 2 as published by the Free 24 * Software Foundation. 25 * 26 * NO WARRANTY 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 35 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 36 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGES. 38 * 39 */ 40 41 #include <linux/slab.h> 42 #include "pm8001_sas.h" 43 44 /** 45 * pm8001_find_tag - from sas task to find out tag that belongs to this task 46 * @task: the task sent to the LLDD 47 * @tag: the found tag associated with the task 48 */ 49 static int pm8001_find_tag(struct sas_task *task, u32 *tag) 50 { 51 if (task->lldd_task) { 52 struct pm8001_ccb_info *ccb; 53 ccb = task->lldd_task; 54 *tag = ccb->ccb_tag; 55 return 1; 56 } 57 return 0; 58 } 59 60 /** 61 * pm8001_tag_clear - clear the tags bitmap 62 * @pm8001_ha: our hba struct 63 * @tag: the found tag associated with the task 64 */ 65 static void pm8001_tag_clear(struct pm8001_hba_info *pm8001_ha, u32 tag) 66 { 67 void *bitmap = pm8001_ha->tags; 68 clear_bit(tag, bitmap); 69 } 70 71 void pm8001_tag_free(struct pm8001_hba_info *pm8001_ha, u32 tag) 72 { 73 pm8001_tag_clear(pm8001_ha, tag); 74 } 75 76 static void pm8001_tag_set(struct pm8001_hba_info *pm8001_ha, u32 tag) 77 { 78 void *bitmap = pm8001_ha->tags; 79 set_bit(tag, bitmap); 80 } 81 82 /** 83 * pm8001_tag_alloc - allocate a empty tag for task used. 84 * @pm8001_ha: our hba struct 85 * @tag_out: the found empty tag . 86 */ 87 inline int pm8001_tag_alloc(struct pm8001_hba_info *pm8001_ha, u32 *tag_out) 88 { 89 unsigned int index, tag; 90 void *bitmap = pm8001_ha->tags; 91 92 index = find_first_zero_bit(bitmap, pm8001_ha->tags_num); 93 tag = index; 94 if (tag >= pm8001_ha->tags_num) 95 return -SAS_QUEUE_FULL; 96 pm8001_tag_set(pm8001_ha, tag); 97 *tag_out = tag; 98 return 0; 99 } 100 101 void pm8001_tag_init(struct pm8001_hba_info *pm8001_ha) 102 { 103 int i; 104 for (i = 0; i < pm8001_ha->tags_num; ++i) 105 pm8001_tag_clear(pm8001_ha, i); 106 } 107 108 /** 109 * pm8001_mem_alloc - allocate memory for pm8001. 110 * @pdev: pci device. 111 * @virt_addr: the allocated virtual address 112 * @pphys_addr_hi: the physical address high byte address. 113 * @pphys_addr_lo: the physical address low byte address. 114 * @mem_size: memory size. 115 */ 116 int pm8001_mem_alloc(struct pci_dev *pdev, void **virt_addr, 117 dma_addr_t *pphys_addr, u32 *pphys_addr_hi, 118 u32 *pphys_addr_lo, u32 mem_size, u32 align) 119 { 120 caddr_t mem_virt_alloc; 121 dma_addr_t mem_dma_handle; 122 u64 phys_align; 123 u64 align_offset = 0; 124 if (align) 125 align_offset = (dma_addr_t)align - 1; 126 mem_virt_alloc = 127 pci_alloc_consistent(pdev, mem_size + align, &mem_dma_handle); 128 if (!mem_virt_alloc) { 129 pm8001_printk("memory allocation error\n"); 130 return -1; 131 } 132 memset((void *)mem_virt_alloc, 0, mem_size+align); 133 *pphys_addr = mem_dma_handle; 134 phys_align = (*pphys_addr + align_offset) & ~align_offset; 135 *virt_addr = (void *)mem_virt_alloc + phys_align - *pphys_addr; 136 *pphys_addr_hi = upper_32_bits(phys_align); 137 *pphys_addr_lo = lower_32_bits(phys_align); 138 return 0; 139 } 140 /** 141 * pm8001_find_ha_by_dev - from domain device which come from sas layer to 142 * find out our hba struct. 143 * @dev: the domain device which from sas layer. 144 */ 145 static 146 struct pm8001_hba_info *pm8001_find_ha_by_dev(struct domain_device *dev) 147 { 148 struct sas_ha_struct *sha = dev->port->ha; 149 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha; 150 return pm8001_ha; 151 } 152 153 /** 154 * pm8001_phy_control - this function should be registered to 155 * sas_domain_function_template to provide libsas used, note: this is just 156 * control the HBA phy rather than other expander phy if you want control 157 * other phy, you should use SMP command. 158 * @sas_phy: which phy in HBA phys. 159 * @func: the operation. 160 * @funcdata: always NULL. 161 */ 162 int pm8001_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func, 163 void *funcdata) 164 { 165 int rc = 0, phy_id = sas_phy->id; 166 struct pm8001_hba_info *pm8001_ha = NULL; 167 struct sas_phy_linkrates *rates; 168 DECLARE_COMPLETION_ONSTACK(completion); 169 unsigned long flags; 170 pm8001_ha = sas_phy->ha->lldd_ha; 171 pm8001_ha->phy[phy_id].enable_completion = &completion; 172 switch (func) { 173 case PHY_FUNC_SET_LINK_RATE: 174 rates = funcdata; 175 if (rates->minimum_linkrate) { 176 pm8001_ha->phy[phy_id].minimum_linkrate = 177 rates->minimum_linkrate; 178 } 179 if (rates->maximum_linkrate) { 180 pm8001_ha->phy[phy_id].maximum_linkrate = 181 rates->maximum_linkrate; 182 } 183 if (pm8001_ha->phy[phy_id].phy_state == 0) { 184 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); 185 wait_for_completion(&completion); 186 } 187 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 188 PHY_LINK_RESET); 189 break; 190 case PHY_FUNC_HARD_RESET: 191 if (pm8001_ha->phy[phy_id].phy_state == 0) { 192 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); 193 wait_for_completion(&completion); 194 } 195 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 196 PHY_HARD_RESET); 197 break; 198 case PHY_FUNC_LINK_RESET: 199 if (pm8001_ha->phy[phy_id].phy_state == 0) { 200 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); 201 wait_for_completion(&completion); 202 } 203 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 204 PHY_LINK_RESET); 205 break; 206 case PHY_FUNC_RELEASE_SPINUP_HOLD: 207 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 208 PHY_LINK_RESET); 209 break; 210 case PHY_FUNC_DISABLE: 211 PM8001_CHIP_DISP->phy_stop_req(pm8001_ha, phy_id); 212 break; 213 case PHY_FUNC_GET_EVENTS: 214 spin_lock_irqsave(&pm8001_ha->lock, flags); 215 if (pm8001_ha->chip_id == chip_8001) { 216 if (-1 == pm8001_bar4_shift(pm8001_ha, 217 (phy_id < 4) ? 0x30000 : 0x40000)) { 218 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 219 return -EINVAL; 220 } 221 } 222 { 223 struct sas_phy *phy = sas_phy->phy; 224 uint32_t *qp = (uint32_t *)(((char *) 225 pm8001_ha->io_mem[2].memvirtaddr) 226 + 0x1034 + (0x4000 * (phy_id & 3))); 227 228 phy->invalid_dword_count = qp[0]; 229 phy->running_disparity_error_count = qp[1]; 230 phy->loss_of_dword_sync_count = qp[3]; 231 phy->phy_reset_problem_count = qp[4]; 232 } 233 if (pm8001_ha->chip_id == chip_8001) 234 pm8001_bar4_shift(pm8001_ha, 0); 235 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 236 return 0; 237 default: 238 rc = -EOPNOTSUPP; 239 } 240 msleep(300); 241 return rc; 242 } 243 244 /** 245 * pm8001_scan_start - we should enable all HBA phys by sending the phy_start 246 * command to HBA. 247 * @shost: the scsi host data. 248 */ 249 void pm8001_scan_start(struct Scsi_Host *shost) 250 { 251 int i; 252 struct pm8001_hba_info *pm8001_ha; 253 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); 254 pm8001_ha = sha->lldd_ha; 255 /* SAS_RE_INITIALIZATION not available in SPCv/ve */ 256 if (pm8001_ha->chip_id == chip_8001) 257 PM8001_CHIP_DISP->sas_re_init_req(pm8001_ha); 258 for (i = 0; i < pm8001_ha->chip->n_phy; ++i) 259 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, i); 260 } 261 262 int pm8001_scan_finished(struct Scsi_Host *shost, unsigned long time) 263 { 264 struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost); 265 266 /* give the phy enabling interrupt event time to come in (1s 267 * is empirically about all it takes) */ 268 if (time < HZ) 269 return 0; 270 /* Wait for discovery to finish */ 271 sas_drain_work(ha); 272 return 1; 273 } 274 275 /** 276 * pm8001_task_prep_smp - the dispatcher function, prepare data for smp task 277 * @pm8001_ha: our hba card information 278 * @ccb: the ccb which attached to smp task 279 */ 280 static int pm8001_task_prep_smp(struct pm8001_hba_info *pm8001_ha, 281 struct pm8001_ccb_info *ccb) 282 { 283 return PM8001_CHIP_DISP->smp_req(pm8001_ha, ccb); 284 } 285 286 u32 pm8001_get_ncq_tag(struct sas_task *task, u32 *tag) 287 { 288 struct ata_queued_cmd *qc = task->uldd_task; 289 if (qc) { 290 if (qc->tf.command == ATA_CMD_FPDMA_WRITE || 291 qc->tf.command == ATA_CMD_FPDMA_READ) { 292 *tag = qc->tag; 293 return 1; 294 } 295 } 296 return 0; 297 } 298 299 /** 300 * pm8001_task_prep_ata - the dispatcher function, prepare data for sata task 301 * @pm8001_ha: our hba card information 302 * @ccb: the ccb which attached to sata task 303 */ 304 static int pm8001_task_prep_ata(struct pm8001_hba_info *pm8001_ha, 305 struct pm8001_ccb_info *ccb) 306 { 307 return PM8001_CHIP_DISP->sata_req(pm8001_ha, ccb); 308 } 309 310 /** 311 * pm8001_task_prep_ssp_tm - the dispatcher function, prepare task management data 312 * @pm8001_ha: our hba card information 313 * @ccb: the ccb which attached to TM 314 * @tmf: the task management IU 315 */ 316 static int pm8001_task_prep_ssp_tm(struct pm8001_hba_info *pm8001_ha, 317 struct pm8001_ccb_info *ccb, struct pm8001_tmf_task *tmf) 318 { 319 return PM8001_CHIP_DISP->ssp_tm_req(pm8001_ha, ccb, tmf); 320 } 321 322 /** 323 * pm8001_task_prep_ssp - the dispatcher function,prepare ssp data for ssp task 324 * @pm8001_ha: our hba card information 325 * @ccb: the ccb which attached to ssp task 326 */ 327 static int pm8001_task_prep_ssp(struct pm8001_hba_info *pm8001_ha, 328 struct pm8001_ccb_info *ccb) 329 { 330 return PM8001_CHIP_DISP->ssp_io_req(pm8001_ha, ccb); 331 } 332 333 /* Find the local port id that's attached to this device */ 334 static int sas_find_local_port_id(struct domain_device *dev) 335 { 336 struct domain_device *pdev = dev->parent; 337 338 /* Directly attached device */ 339 if (!pdev) 340 return dev->port->id; 341 while (pdev) { 342 struct domain_device *pdev_p = pdev->parent; 343 if (!pdev_p) 344 return pdev->port->id; 345 pdev = pdev->parent; 346 } 347 return 0; 348 } 349 350 /** 351 * pm8001_task_exec - queue the task(ssp, smp && ata) to the hardware. 352 * @task: the task to be execute. 353 * @num: if can_queue great than 1, the task can be queued up. for SMP task, 354 * we always execute one one time. 355 * @gfp_flags: gfp_flags. 356 * @is_tmf: if it is task management task. 357 * @tmf: the task management IU 358 */ 359 #define DEV_IS_GONE(pm8001_dev) \ 360 ((!pm8001_dev || (pm8001_dev->dev_type == SAS_PHY_UNUSED))) 361 static int pm8001_task_exec(struct sas_task *task, const int num, 362 gfp_t gfp_flags, int is_tmf, struct pm8001_tmf_task *tmf) 363 { 364 struct domain_device *dev = task->dev; 365 struct pm8001_hba_info *pm8001_ha; 366 struct pm8001_device *pm8001_dev; 367 struct pm8001_port *port = NULL; 368 struct sas_task *t = task; 369 struct pm8001_ccb_info *ccb; 370 u32 tag = 0xdeadbeef, rc, n_elem = 0; 371 u32 n = num; 372 unsigned long flags = 0; 373 374 if (!dev->port) { 375 struct task_status_struct *tsm = &t->task_status; 376 tsm->resp = SAS_TASK_UNDELIVERED; 377 tsm->stat = SAS_PHY_DOWN; 378 if (dev->dev_type != SAS_SATA_DEV) 379 t->task_done(t); 380 return 0; 381 } 382 pm8001_ha = pm8001_find_ha_by_dev(task->dev); 383 PM8001_IO_DBG(pm8001_ha, pm8001_printk("pm8001_task_exec device \n ")); 384 spin_lock_irqsave(&pm8001_ha->lock, flags); 385 do { 386 dev = t->dev; 387 pm8001_dev = dev->lldd_dev; 388 port = &pm8001_ha->port[sas_find_local_port_id(dev)]; 389 if (DEV_IS_GONE(pm8001_dev) || !port->port_attached) { 390 if (sas_protocol_ata(t->task_proto)) { 391 struct task_status_struct *ts = &t->task_status; 392 ts->resp = SAS_TASK_UNDELIVERED; 393 ts->stat = SAS_PHY_DOWN; 394 395 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 396 t->task_done(t); 397 spin_lock_irqsave(&pm8001_ha->lock, flags); 398 if (n > 1) 399 t = list_entry(t->list.next, 400 struct sas_task, list); 401 continue; 402 } else { 403 struct task_status_struct *ts = &t->task_status; 404 ts->resp = SAS_TASK_UNDELIVERED; 405 ts->stat = SAS_PHY_DOWN; 406 t->task_done(t); 407 if (n > 1) 408 t = list_entry(t->list.next, 409 struct sas_task, list); 410 continue; 411 } 412 } 413 rc = pm8001_tag_alloc(pm8001_ha, &tag); 414 if (rc) 415 goto err_out; 416 ccb = &pm8001_ha->ccb_info[tag]; 417 418 if (!sas_protocol_ata(t->task_proto)) { 419 if (t->num_scatter) { 420 n_elem = dma_map_sg(pm8001_ha->dev, 421 t->scatter, 422 t->num_scatter, 423 t->data_dir); 424 if (!n_elem) { 425 rc = -ENOMEM; 426 goto err_out_tag; 427 } 428 } 429 } else { 430 n_elem = t->num_scatter; 431 } 432 433 t->lldd_task = ccb; 434 ccb->n_elem = n_elem; 435 ccb->ccb_tag = tag; 436 ccb->task = t; 437 ccb->device = pm8001_dev; 438 switch (t->task_proto) { 439 case SAS_PROTOCOL_SMP: 440 rc = pm8001_task_prep_smp(pm8001_ha, ccb); 441 break; 442 case SAS_PROTOCOL_SSP: 443 if (is_tmf) 444 rc = pm8001_task_prep_ssp_tm(pm8001_ha, 445 ccb, tmf); 446 else 447 rc = pm8001_task_prep_ssp(pm8001_ha, ccb); 448 break; 449 case SAS_PROTOCOL_SATA: 450 case SAS_PROTOCOL_STP: 451 rc = pm8001_task_prep_ata(pm8001_ha, ccb); 452 break; 453 default: 454 dev_printk(KERN_ERR, pm8001_ha->dev, 455 "unknown sas_task proto: 0x%x\n", 456 t->task_proto); 457 rc = -EINVAL; 458 break; 459 } 460 461 if (rc) { 462 PM8001_IO_DBG(pm8001_ha, 463 pm8001_printk("rc is %x\n", rc)); 464 goto err_out_tag; 465 } 466 /* TODO: select normal or high priority */ 467 spin_lock(&t->task_state_lock); 468 t->task_state_flags |= SAS_TASK_AT_INITIATOR; 469 spin_unlock(&t->task_state_lock); 470 pm8001_dev->running_req++; 471 if (n > 1) 472 t = list_entry(t->list.next, struct sas_task, list); 473 } while (--n); 474 rc = 0; 475 goto out_done; 476 477 err_out_tag: 478 pm8001_tag_free(pm8001_ha, tag); 479 err_out: 480 dev_printk(KERN_ERR, pm8001_ha->dev, "pm8001 exec failed[%d]!\n", rc); 481 if (!sas_protocol_ata(t->task_proto)) 482 if (n_elem) 483 dma_unmap_sg(pm8001_ha->dev, t->scatter, n_elem, 484 t->data_dir); 485 out_done: 486 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 487 return rc; 488 } 489 490 /** 491 * pm8001_queue_command - register for upper layer used, all IO commands sent 492 * to HBA are from this interface. 493 * @task: the task to be execute. 494 * @num: if can_queue great than 1, the task can be queued up. for SMP task, 495 * we always execute one one time 496 * @gfp_flags: gfp_flags 497 */ 498 int pm8001_queue_command(struct sas_task *task, const int num, 499 gfp_t gfp_flags) 500 { 501 return pm8001_task_exec(task, num, gfp_flags, 0, NULL); 502 } 503 504 void pm8001_ccb_free(struct pm8001_hba_info *pm8001_ha, u32 ccb_idx) 505 { 506 pm8001_tag_clear(pm8001_ha, ccb_idx); 507 } 508 509 /** 510 * pm8001_ccb_task_free - free the sg for ssp and smp command, free the ccb. 511 * @pm8001_ha: our hba card information 512 * @ccb: the ccb which attached to ssp task 513 * @task: the task to be free. 514 * @ccb_idx: ccb index. 515 */ 516 void pm8001_ccb_task_free(struct pm8001_hba_info *pm8001_ha, 517 struct sas_task *task, struct pm8001_ccb_info *ccb, u32 ccb_idx) 518 { 519 if (!ccb->task) 520 return; 521 if (!sas_protocol_ata(task->task_proto)) 522 if (ccb->n_elem) 523 dma_unmap_sg(pm8001_ha->dev, task->scatter, 524 task->num_scatter, task->data_dir); 525 526 switch (task->task_proto) { 527 case SAS_PROTOCOL_SMP: 528 dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_resp, 1, 529 PCI_DMA_FROMDEVICE); 530 dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_req, 1, 531 PCI_DMA_TODEVICE); 532 break; 533 534 case SAS_PROTOCOL_SATA: 535 case SAS_PROTOCOL_STP: 536 case SAS_PROTOCOL_SSP: 537 default: 538 /* do nothing */ 539 break; 540 } 541 task->lldd_task = NULL; 542 ccb->task = NULL; 543 ccb->ccb_tag = 0xFFFFFFFF; 544 ccb->open_retry = 0; 545 pm8001_ccb_free(pm8001_ha, ccb_idx); 546 } 547 548 /** 549 * pm8001_alloc_dev - find a empty pm8001_device 550 * @pm8001_ha: our hba card information 551 */ 552 struct pm8001_device *pm8001_alloc_dev(struct pm8001_hba_info *pm8001_ha) 553 { 554 u32 dev; 555 for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) { 556 if (pm8001_ha->devices[dev].dev_type == SAS_PHY_UNUSED) { 557 pm8001_ha->devices[dev].id = dev; 558 return &pm8001_ha->devices[dev]; 559 } 560 } 561 if (dev == PM8001_MAX_DEVICES) { 562 PM8001_FAIL_DBG(pm8001_ha, 563 pm8001_printk("max support %d devices, ignore ..\n", 564 PM8001_MAX_DEVICES)); 565 } 566 return NULL; 567 } 568 /** 569 * pm8001_find_dev - find a matching pm8001_device 570 * @pm8001_ha: our hba card information 571 */ 572 struct pm8001_device *pm8001_find_dev(struct pm8001_hba_info *pm8001_ha, 573 u32 device_id) 574 { 575 u32 dev; 576 for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) { 577 if (pm8001_ha->devices[dev].device_id == device_id) 578 return &pm8001_ha->devices[dev]; 579 } 580 if (dev == PM8001_MAX_DEVICES) { 581 PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("NO MATCHING " 582 "DEVICE FOUND !!!\n")); 583 } 584 return NULL; 585 } 586 587 static void pm8001_free_dev(struct pm8001_device *pm8001_dev) 588 { 589 u32 id = pm8001_dev->id; 590 memset(pm8001_dev, 0, sizeof(*pm8001_dev)); 591 pm8001_dev->id = id; 592 pm8001_dev->dev_type = SAS_PHY_UNUSED; 593 pm8001_dev->device_id = PM8001_MAX_DEVICES; 594 pm8001_dev->sas_device = NULL; 595 } 596 597 /** 598 * pm8001_dev_found_notify - libsas notify a device is found. 599 * @dev: the device structure which sas layer used. 600 * 601 * when libsas find a sas domain device, it should tell the LLDD that 602 * device is found, and then LLDD register this device to HBA firmware 603 * by the command "OPC_INB_REG_DEV", after that the HBA will assign a 604 * device ID(according to device's sas address) and returned it to LLDD. From 605 * now on, we communicate with HBA FW with the device ID which HBA assigned 606 * rather than sas address. it is the necessary step for our HBA but it is 607 * the optional for other HBA driver. 608 */ 609 static int pm8001_dev_found_notify(struct domain_device *dev) 610 { 611 unsigned long flags = 0; 612 int res = 0; 613 struct pm8001_hba_info *pm8001_ha = NULL; 614 struct domain_device *parent_dev = dev->parent; 615 struct pm8001_device *pm8001_device; 616 DECLARE_COMPLETION_ONSTACK(completion); 617 u32 flag = 0; 618 pm8001_ha = pm8001_find_ha_by_dev(dev); 619 spin_lock_irqsave(&pm8001_ha->lock, flags); 620 621 pm8001_device = pm8001_alloc_dev(pm8001_ha); 622 if (!pm8001_device) { 623 res = -1; 624 goto found_out; 625 } 626 pm8001_device->sas_device = dev; 627 dev->lldd_dev = pm8001_device; 628 pm8001_device->dev_type = dev->dev_type; 629 pm8001_device->dcompletion = &completion; 630 if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) { 631 int phy_id; 632 struct ex_phy *phy; 633 for (phy_id = 0; phy_id < parent_dev->ex_dev.num_phys; 634 phy_id++) { 635 phy = &parent_dev->ex_dev.ex_phy[phy_id]; 636 if (SAS_ADDR(phy->attached_sas_addr) 637 == SAS_ADDR(dev->sas_addr)) { 638 pm8001_device->attached_phy = phy_id; 639 break; 640 } 641 } 642 if (phy_id == parent_dev->ex_dev.num_phys) { 643 PM8001_FAIL_DBG(pm8001_ha, 644 pm8001_printk("Error: no attached dev:%016llx" 645 " at ex:%016llx.\n", SAS_ADDR(dev->sas_addr), 646 SAS_ADDR(parent_dev->sas_addr))); 647 res = -1; 648 } 649 } else { 650 if (dev->dev_type == SAS_SATA_DEV) { 651 pm8001_device->attached_phy = 652 dev->rphy->identify.phy_identifier; 653 flag = 1; /* directly sata*/ 654 } 655 } /*register this device to HBA*/ 656 PM8001_DISC_DBG(pm8001_ha, pm8001_printk("Found device\n")); 657 PM8001_CHIP_DISP->reg_dev_req(pm8001_ha, pm8001_device, flag); 658 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 659 wait_for_completion(&completion); 660 if (dev->dev_type == SAS_END_DEVICE) 661 msleep(50); 662 pm8001_ha->flags = PM8001F_RUN_TIME; 663 return 0; 664 found_out: 665 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 666 return res; 667 } 668 669 int pm8001_dev_found(struct domain_device *dev) 670 { 671 return pm8001_dev_found_notify(dev); 672 } 673 674 void pm8001_task_done(struct sas_task *task) 675 { 676 if (!del_timer(&task->slow_task->timer)) 677 return; 678 complete(&task->slow_task->completion); 679 } 680 681 static void pm8001_tmf_timedout(unsigned long data) 682 { 683 struct sas_task *task = (struct sas_task *)data; 684 685 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 686 complete(&task->slow_task->completion); 687 } 688 689 #define PM8001_TASK_TIMEOUT 20 690 /** 691 * pm8001_exec_internal_tmf_task - execute some task management commands. 692 * @dev: the wanted device. 693 * @tmf: which task management wanted to be take. 694 * @para_len: para_len. 695 * @parameter: ssp task parameter. 696 * 697 * when errors or exception happened, we may want to do something, for example 698 * abort the issued task which result in this execption, it is done by calling 699 * this function, note it is also with the task execute interface. 700 */ 701 static int pm8001_exec_internal_tmf_task(struct domain_device *dev, 702 void *parameter, u32 para_len, struct pm8001_tmf_task *tmf) 703 { 704 int res, retry; 705 struct sas_task *task = NULL; 706 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); 707 struct pm8001_device *pm8001_dev = dev->lldd_dev; 708 DECLARE_COMPLETION_ONSTACK(completion_setstate); 709 710 for (retry = 0; retry < 3; retry++) { 711 task = sas_alloc_slow_task(GFP_KERNEL); 712 if (!task) 713 return -ENOMEM; 714 715 task->dev = dev; 716 task->task_proto = dev->tproto; 717 memcpy(&task->ssp_task, parameter, para_len); 718 task->task_done = pm8001_task_done; 719 task->slow_task->timer.data = (unsigned long)task; 720 task->slow_task->timer.function = pm8001_tmf_timedout; 721 task->slow_task->timer.expires = jiffies + PM8001_TASK_TIMEOUT*HZ; 722 add_timer(&task->slow_task->timer); 723 724 res = pm8001_task_exec(task, 1, GFP_KERNEL, 1, tmf); 725 726 if (res) { 727 del_timer(&task->slow_task->timer); 728 PM8001_FAIL_DBG(pm8001_ha, 729 pm8001_printk("Executing internal task " 730 "failed\n")); 731 goto ex_err; 732 } 733 wait_for_completion(&task->slow_task->completion); 734 if (pm8001_ha->chip_id != chip_8001) { 735 pm8001_dev->setds_completion = &completion_setstate; 736 PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, 737 pm8001_dev, 0x01); 738 wait_for_completion(&completion_setstate); 739 } 740 res = -TMF_RESP_FUNC_FAILED; 741 /* Even TMF timed out, return direct. */ 742 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 743 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 744 PM8001_FAIL_DBG(pm8001_ha, 745 pm8001_printk("TMF task[%x]timeout.\n", 746 tmf->tmf)); 747 goto ex_err; 748 } 749 } 750 751 if (task->task_status.resp == SAS_TASK_COMPLETE && 752 task->task_status.stat == SAM_STAT_GOOD) { 753 res = TMF_RESP_FUNC_COMPLETE; 754 break; 755 } 756 757 if (task->task_status.resp == SAS_TASK_COMPLETE && 758 task->task_status.stat == SAS_DATA_UNDERRUN) { 759 /* no error, but return the number of bytes of 760 * underrun */ 761 res = task->task_status.residual; 762 break; 763 } 764 765 if (task->task_status.resp == SAS_TASK_COMPLETE && 766 task->task_status.stat == SAS_DATA_OVERRUN) { 767 PM8001_FAIL_DBG(pm8001_ha, 768 pm8001_printk("Blocked task error.\n")); 769 res = -EMSGSIZE; 770 break; 771 } else { 772 PM8001_EH_DBG(pm8001_ha, 773 pm8001_printk(" Task to dev %016llx response:" 774 "0x%x status 0x%x\n", 775 SAS_ADDR(dev->sas_addr), 776 task->task_status.resp, 777 task->task_status.stat)); 778 sas_free_task(task); 779 task = NULL; 780 } 781 } 782 ex_err: 783 BUG_ON(retry == 3 && task != NULL); 784 sas_free_task(task); 785 return res; 786 } 787 788 static int 789 pm8001_exec_internal_task_abort(struct pm8001_hba_info *pm8001_ha, 790 struct pm8001_device *pm8001_dev, struct domain_device *dev, u32 flag, 791 u32 task_tag) 792 { 793 int res, retry; 794 u32 ccb_tag; 795 struct pm8001_ccb_info *ccb; 796 struct sas_task *task = NULL; 797 798 for (retry = 0; retry < 3; retry++) { 799 task = sas_alloc_slow_task(GFP_KERNEL); 800 if (!task) 801 return -ENOMEM; 802 803 task->dev = dev; 804 task->task_proto = dev->tproto; 805 task->task_done = pm8001_task_done; 806 task->slow_task->timer.data = (unsigned long)task; 807 task->slow_task->timer.function = pm8001_tmf_timedout; 808 task->slow_task->timer.expires = jiffies + PM8001_TASK_TIMEOUT * HZ; 809 add_timer(&task->slow_task->timer); 810 811 res = pm8001_tag_alloc(pm8001_ha, &ccb_tag); 812 if (res) 813 return res; 814 ccb = &pm8001_ha->ccb_info[ccb_tag]; 815 ccb->device = pm8001_dev; 816 ccb->ccb_tag = ccb_tag; 817 ccb->task = task; 818 819 res = PM8001_CHIP_DISP->task_abort(pm8001_ha, 820 pm8001_dev, flag, task_tag, ccb_tag); 821 822 if (res) { 823 del_timer(&task->slow_task->timer); 824 PM8001_FAIL_DBG(pm8001_ha, 825 pm8001_printk("Executing internal task " 826 "failed\n")); 827 goto ex_err; 828 } 829 wait_for_completion(&task->slow_task->completion); 830 res = TMF_RESP_FUNC_FAILED; 831 /* Even TMF timed out, return direct. */ 832 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 833 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 834 PM8001_FAIL_DBG(pm8001_ha, 835 pm8001_printk("TMF task timeout.\n")); 836 goto ex_err; 837 } 838 } 839 840 if (task->task_status.resp == SAS_TASK_COMPLETE && 841 task->task_status.stat == SAM_STAT_GOOD) { 842 res = TMF_RESP_FUNC_COMPLETE; 843 break; 844 845 } else { 846 PM8001_EH_DBG(pm8001_ha, 847 pm8001_printk(" Task to dev %016llx response: " 848 "0x%x status 0x%x\n", 849 SAS_ADDR(dev->sas_addr), 850 task->task_status.resp, 851 task->task_status.stat)); 852 sas_free_task(task); 853 task = NULL; 854 } 855 } 856 ex_err: 857 BUG_ON(retry == 3 && task != NULL); 858 sas_free_task(task); 859 return res; 860 } 861 862 /** 863 * pm8001_dev_gone_notify - see the comments for "pm8001_dev_found_notify" 864 * @dev: the device structure which sas layer used. 865 */ 866 static void pm8001_dev_gone_notify(struct domain_device *dev) 867 { 868 unsigned long flags = 0; 869 struct pm8001_hba_info *pm8001_ha; 870 struct pm8001_device *pm8001_dev = dev->lldd_dev; 871 872 pm8001_ha = pm8001_find_ha_by_dev(dev); 873 spin_lock_irqsave(&pm8001_ha->lock, flags); 874 if (pm8001_dev) { 875 u32 device_id = pm8001_dev->device_id; 876 877 PM8001_DISC_DBG(pm8001_ha, 878 pm8001_printk("found dev[%d:%x] is gone.\n", 879 pm8001_dev->device_id, pm8001_dev->dev_type)); 880 if (pm8001_dev->running_req) { 881 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 882 pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , 883 dev, 1, 0); 884 spin_lock_irqsave(&pm8001_ha->lock, flags); 885 } 886 PM8001_CHIP_DISP->dereg_dev_req(pm8001_ha, device_id); 887 pm8001_free_dev(pm8001_dev); 888 } else { 889 PM8001_DISC_DBG(pm8001_ha, 890 pm8001_printk("Found dev has gone.\n")); 891 } 892 dev->lldd_dev = NULL; 893 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 894 } 895 896 void pm8001_dev_gone(struct domain_device *dev) 897 { 898 pm8001_dev_gone_notify(dev); 899 } 900 901 static int pm8001_issue_ssp_tmf(struct domain_device *dev, 902 u8 *lun, struct pm8001_tmf_task *tmf) 903 { 904 struct sas_ssp_task ssp_task; 905 if (!(dev->tproto & SAS_PROTOCOL_SSP)) 906 return TMF_RESP_FUNC_ESUPP; 907 908 strncpy((u8 *)&ssp_task.LUN, lun, 8); 909 return pm8001_exec_internal_tmf_task(dev, &ssp_task, sizeof(ssp_task), 910 tmf); 911 } 912 913 /* retry commands by ha, by task and/or by device */ 914 void pm8001_open_reject_retry( 915 struct pm8001_hba_info *pm8001_ha, 916 struct sas_task *task_to_close, 917 struct pm8001_device *device_to_close) 918 { 919 int i; 920 unsigned long flags; 921 922 if (pm8001_ha == NULL) 923 return; 924 925 spin_lock_irqsave(&pm8001_ha->lock, flags); 926 927 for (i = 0; i < PM8001_MAX_CCB; i++) { 928 struct sas_task *task; 929 struct task_status_struct *ts; 930 struct pm8001_device *pm8001_dev; 931 unsigned long flags1; 932 u32 tag; 933 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[i]; 934 935 pm8001_dev = ccb->device; 936 if (!pm8001_dev || (pm8001_dev->dev_type == SAS_PHY_UNUSED)) 937 continue; 938 if (!device_to_close) { 939 uintptr_t d = (uintptr_t)pm8001_dev 940 - (uintptr_t)&pm8001_ha->devices; 941 if (((d % sizeof(*pm8001_dev)) != 0) 942 || ((d / sizeof(*pm8001_dev)) >= PM8001_MAX_DEVICES)) 943 continue; 944 } else if (pm8001_dev != device_to_close) 945 continue; 946 tag = ccb->ccb_tag; 947 if (!tag || (tag == 0xFFFFFFFF)) 948 continue; 949 task = ccb->task; 950 if (!task || !task->task_done) 951 continue; 952 if (task_to_close && (task != task_to_close)) 953 continue; 954 ts = &task->task_status; 955 ts->resp = SAS_TASK_COMPLETE; 956 /* Force the midlayer to retry */ 957 ts->stat = SAS_OPEN_REJECT; 958 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 959 if (pm8001_dev) 960 pm8001_dev->running_req--; 961 spin_lock_irqsave(&task->task_state_lock, flags1); 962 task->task_state_flags &= ~SAS_TASK_STATE_PENDING; 963 task->task_state_flags &= ~SAS_TASK_AT_INITIATOR; 964 task->task_state_flags |= SAS_TASK_STATE_DONE; 965 if (unlikely((task->task_state_flags 966 & SAS_TASK_STATE_ABORTED))) { 967 spin_unlock_irqrestore(&task->task_state_lock, 968 flags1); 969 pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); 970 } else { 971 spin_unlock_irqrestore(&task->task_state_lock, 972 flags1); 973 pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); 974 mb();/* in order to force CPU ordering */ 975 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 976 task->task_done(task); 977 spin_lock_irqsave(&pm8001_ha->lock, flags); 978 } 979 } 980 981 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 982 } 983 984 /** 985 * Standard mandates link reset for ATA (type 0) and hard reset for 986 * SSP (type 1) , only for RECOVERY 987 */ 988 int pm8001_I_T_nexus_reset(struct domain_device *dev) 989 { 990 int rc = TMF_RESP_FUNC_FAILED; 991 struct pm8001_device *pm8001_dev; 992 struct pm8001_hba_info *pm8001_ha; 993 struct sas_phy *phy; 994 995 if (!dev || !dev->lldd_dev) 996 return -ENODEV; 997 998 pm8001_dev = dev->lldd_dev; 999 pm8001_ha = pm8001_find_ha_by_dev(dev); 1000 phy = sas_get_local_phy(dev); 1001 1002 if (dev_is_sata(dev)) { 1003 DECLARE_COMPLETION_ONSTACK(completion_setstate); 1004 if (scsi_is_sas_phy_local(phy)) { 1005 rc = 0; 1006 goto out; 1007 } 1008 rc = sas_phy_reset(phy, 1); 1009 msleep(2000); 1010 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , 1011 dev, 1, 0); 1012 pm8001_dev->setds_completion = &completion_setstate; 1013 rc = PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, 1014 pm8001_dev, 0x01); 1015 wait_for_completion(&completion_setstate); 1016 } else { 1017 rc = sas_phy_reset(phy, 1); 1018 msleep(2000); 1019 } 1020 PM8001_EH_DBG(pm8001_ha, pm8001_printk(" for device[%x]:rc=%d\n", 1021 pm8001_dev->device_id, rc)); 1022 out: 1023 sas_put_local_phy(phy); 1024 return rc; 1025 } 1026 1027 /* 1028 * This function handle the IT_NEXUS_XXX event or completion 1029 * status code for SSP/SATA/SMP I/O request. 1030 */ 1031 int pm8001_I_T_nexus_event_handler(struct domain_device *dev) 1032 { 1033 int rc = TMF_RESP_FUNC_FAILED; 1034 struct pm8001_device *pm8001_dev; 1035 struct pm8001_hba_info *pm8001_ha; 1036 struct sas_phy *phy; 1037 u32 device_id = 0; 1038 1039 if (!dev || !dev->lldd_dev) 1040 return -1; 1041 1042 pm8001_dev = dev->lldd_dev; 1043 device_id = pm8001_dev->device_id; 1044 pm8001_ha = pm8001_find_ha_by_dev(dev); 1045 1046 PM8001_EH_DBG(pm8001_ha, 1047 pm8001_printk("I_T_Nexus handler invoked !!")); 1048 1049 phy = sas_get_local_phy(dev); 1050 1051 if (dev_is_sata(dev)) { 1052 DECLARE_COMPLETION_ONSTACK(completion_setstate); 1053 if (scsi_is_sas_phy_local(phy)) { 1054 rc = 0; 1055 goto out; 1056 } 1057 /* send internal ssp/sata/smp abort command to FW */ 1058 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , 1059 dev, 1, 0); 1060 msleep(100); 1061 1062 /* deregister the target device */ 1063 pm8001_dev_gone_notify(dev); 1064 msleep(200); 1065 1066 /*send phy reset to hard reset target */ 1067 rc = sas_phy_reset(phy, 1); 1068 msleep(2000); 1069 pm8001_dev->setds_completion = &completion_setstate; 1070 1071 wait_for_completion(&completion_setstate); 1072 } else { 1073 /* send internal ssp/sata/smp abort command to FW */ 1074 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , 1075 dev, 1, 0); 1076 msleep(100); 1077 1078 /* deregister the target device */ 1079 pm8001_dev_gone_notify(dev); 1080 msleep(200); 1081 1082 /*send phy reset to hard reset target */ 1083 rc = sas_phy_reset(phy, 1); 1084 msleep(2000); 1085 } 1086 PM8001_EH_DBG(pm8001_ha, pm8001_printk(" for device[%x]:rc=%d\n", 1087 pm8001_dev->device_id, rc)); 1088 out: 1089 sas_put_local_phy(phy); 1090 1091 return rc; 1092 } 1093 /* mandatory SAM-3, the task reset the specified LUN*/ 1094 int pm8001_lu_reset(struct domain_device *dev, u8 *lun) 1095 { 1096 int rc = TMF_RESP_FUNC_FAILED; 1097 struct pm8001_tmf_task tmf_task; 1098 struct pm8001_device *pm8001_dev = dev->lldd_dev; 1099 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); 1100 DECLARE_COMPLETION_ONSTACK(completion_setstate); 1101 if (dev_is_sata(dev)) { 1102 struct sas_phy *phy = sas_get_local_phy(dev); 1103 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , 1104 dev, 1, 0); 1105 rc = sas_phy_reset(phy, 1); 1106 sas_put_local_phy(phy); 1107 pm8001_dev->setds_completion = &completion_setstate; 1108 rc = PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, 1109 pm8001_dev, 0x01); 1110 wait_for_completion(&completion_setstate); 1111 } else { 1112 tmf_task.tmf = TMF_LU_RESET; 1113 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1114 } 1115 /* If failed, fall-through I_T_Nexus reset */ 1116 PM8001_EH_DBG(pm8001_ha, pm8001_printk("for device[%x]:rc=%d\n", 1117 pm8001_dev->device_id, rc)); 1118 return rc; 1119 } 1120 1121 /* optional SAM-3 */ 1122 int pm8001_query_task(struct sas_task *task) 1123 { 1124 u32 tag = 0xdeadbeef; 1125 int i = 0; 1126 struct scsi_lun lun; 1127 struct pm8001_tmf_task tmf_task; 1128 int rc = TMF_RESP_FUNC_FAILED; 1129 if (unlikely(!task || !task->lldd_task || !task->dev)) 1130 return rc; 1131 1132 if (task->task_proto & SAS_PROTOCOL_SSP) { 1133 struct scsi_cmnd *cmnd = task->uldd_task; 1134 struct domain_device *dev = task->dev; 1135 struct pm8001_hba_info *pm8001_ha = 1136 pm8001_find_ha_by_dev(dev); 1137 1138 int_to_scsilun(cmnd->device->lun, &lun); 1139 rc = pm8001_find_tag(task, &tag); 1140 if (rc == 0) { 1141 rc = TMF_RESP_FUNC_FAILED; 1142 return rc; 1143 } 1144 PM8001_EH_DBG(pm8001_ha, pm8001_printk("Query:[")); 1145 for (i = 0; i < 16; i++) 1146 printk(KERN_INFO "%02x ", cmnd->cmnd[i]); 1147 printk(KERN_INFO "]\n"); 1148 tmf_task.tmf = TMF_QUERY_TASK; 1149 tmf_task.tag_of_task_to_be_managed = tag; 1150 1151 rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task); 1152 switch (rc) { 1153 /* The task is still in Lun, release it then */ 1154 case TMF_RESP_FUNC_SUCC: 1155 PM8001_EH_DBG(pm8001_ha, 1156 pm8001_printk("The task is still in Lun\n")); 1157 break; 1158 /* The task is not in Lun or failed, reset the phy */ 1159 case TMF_RESP_FUNC_FAILED: 1160 case TMF_RESP_FUNC_COMPLETE: 1161 PM8001_EH_DBG(pm8001_ha, 1162 pm8001_printk("The task is not in Lun or failed," 1163 " reset the phy\n")); 1164 break; 1165 } 1166 } 1167 pm8001_printk(":rc= %d\n", rc); 1168 return rc; 1169 } 1170 1171 /* mandatory SAM-3, still need free task/ccb info, abord the specified task */ 1172 int pm8001_abort_task(struct sas_task *task) 1173 { 1174 unsigned long flags; 1175 u32 tag = 0xdeadbeef; 1176 u32 device_id; 1177 struct domain_device *dev ; 1178 struct pm8001_hba_info *pm8001_ha = NULL; 1179 struct pm8001_ccb_info *ccb; 1180 struct scsi_lun lun; 1181 struct pm8001_device *pm8001_dev; 1182 struct pm8001_tmf_task tmf_task; 1183 int rc = TMF_RESP_FUNC_FAILED; 1184 if (unlikely(!task || !task->lldd_task || !task->dev)) 1185 return rc; 1186 spin_lock_irqsave(&task->task_state_lock, flags); 1187 if (task->task_state_flags & SAS_TASK_STATE_DONE) { 1188 spin_unlock_irqrestore(&task->task_state_lock, flags); 1189 rc = TMF_RESP_FUNC_COMPLETE; 1190 goto out; 1191 } 1192 spin_unlock_irqrestore(&task->task_state_lock, flags); 1193 if (task->task_proto & SAS_PROTOCOL_SSP) { 1194 struct scsi_cmnd *cmnd = task->uldd_task; 1195 dev = task->dev; 1196 ccb = task->lldd_task; 1197 pm8001_dev = dev->lldd_dev; 1198 pm8001_ha = pm8001_find_ha_by_dev(dev); 1199 int_to_scsilun(cmnd->device->lun, &lun); 1200 rc = pm8001_find_tag(task, &tag); 1201 if (rc == 0) { 1202 printk(KERN_INFO "No such tag in %s\n", __func__); 1203 rc = TMF_RESP_FUNC_FAILED; 1204 return rc; 1205 } 1206 device_id = pm8001_dev->device_id; 1207 PM8001_EH_DBG(pm8001_ha, 1208 pm8001_printk("abort io to deviceid= %d\n", device_id)); 1209 tmf_task.tmf = TMF_ABORT_TASK; 1210 tmf_task.tag_of_task_to_be_managed = tag; 1211 rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task); 1212 pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1213 pm8001_dev->sas_device, 0, tag); 1214 } else if (task->task_proto & SAS_PROTOCOL_SATA || 1215 task->task_proto & SAS_PROTOCOL_STP) { 1216 dev = task->dev; 1217 pm8001_dev = dev->lldd_dev; 1218 pm8001_ha = pm8001_find_ha_by_dev(dev); 1219 rc = pm8001_find_tag(task, &tag); 1220 if (rc == 0) { 1221 printk(KERN_INFO "No such tag in %s\n", __func__); 1222 rc = TMF_RESP_FUNC_FAILED; 1223 return rc; 1224 } 1225 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1226 pm8001_dev->sas_device, 0, tag); 1227 } else if (task->task_proto & SAS_PROTOCOL_SMP) { 1228 /* SMP */ 1229 dev = task->dev; 1230 pm8001_dev = dev->lldd_dev; 1231 pm8001_ha = pm8001_find_ha_by_dev(dev); 1232 rc = pm8001_find_tag(task, &tag); 1233 if (rc == 0) { 1234 printk(KERN_INFO "No such tag in %s\n", __func__); 1235 rc = TMF_RESP_FUNC_FAILED; 1236 return rc; 1237 } 1238 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1239 pm8001_dev->sas_device, 0, tag); 1240 1241 } 1242 out: 1243 if (rc != TMF_RESP_FUNC_COMPLETE) 1244 pm8001_printk("rc= %d\n", rc); 1245 return rc; 1246 } 1247 1248 int pm8001_abort_task_set(struct domain_device *dev, u8 *lun) 1249 { 1250 int rc = TMF_RESP_FUNC_FAILED; 1251 struct pm8001_tmf_task tmf_task; 1252 1253 tmf_task.tmf = TMF_ABORT_TASK_SET; 1254 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1255 return rc; 1256 } 1257 1258 int pm8001_clear_aca(struct domain_device *dev, u8 *lun) 1259 { 1260 int rc = TMF_RESP_FUNC_FAILED; 1261 struct pm8001_tmf_task tmf_task; 1262 1263 tmf_task.tmf = TMF_CLEAR_ACA; 1264 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1265 1266 return rc; 1267 } 1268 1269 int pm8001_clear_task_set(struct domain_device *dev, u8 *lun) 1270 { 1271 int rc = TMF_RESP_FUNC_FAILED; 1272 struct pm8001_tmf_task tmf_task; 1273 struct pm8001_device *pm8001_dev = dev->lldd_dev; 1274 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); 1275 1276 PM8001_EH_DBG(pm8001_ha, 1277 pm8001_printk("I_T_L_Q clear task set[%x]\n", 1278 pm8001_dev->device_id)); 1279 tmf_task.tmf = TMF_CLEAR_TASK_SET; 1280 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1281 return rc; 1282 } 1283 1284