xref: /openbmc/linux/drivers/scsi/pm8001/pm8001_sas.c (revision 206204a1)
1 /*
2  * PMC-Sierra PM8001/8081/8088/8089 SAS/SATA based host adapters driver
3  *
4  * Copyright (c) 2008-2009 USI Co., Ltd.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    substantially similar to the "NO WARRANTY" disclaimer below
15  *    ("Disclaimer") and any redistribution must be conditioned upon
16  *    including a substantially similar Disclaimer requirement for further
17  *    binary redistribution.
18  * 3. Neither the names of the above-listed copyright holders nor the names
19  *    of any contributors may be used to endorse or promote products derived
20  *    from this software without specific prior written permission.
21  *
22  * Alternatively, this software may be distributed under the terms of the
23  * GNU General Public License ("GPL") version 2 as published by the Free
24  * Software Foundation.
25  *
26  * NO WARRANTY
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
35  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
36  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGES.
38  *
39  */
40 
41 #include <linux/slab.h>
42 #include "pm8001_sas.h"
43 
44 /**
45  * pm8001_find_tag - from sas task to find out  tag that belongs to this task
46  * @task: the task sent to the LLDD
47  * @tag: the found tag associated with the task
48  */
49 static int pm8001_find_tag(struct sas_task *task, u32 *tag)
50 {
51 	if (task->lldd_task) {
52 		struct pm8001_ccb_info *ccb;
53 		ccb = task->lldd_task;
54 		*tag = ccb->ccb_tag;
55 		return 1;
56 	}
57 	return 0;
58 }
59 
60 /**
61   * pm8001_tag_clear - clear the tags bitmap
62   * @pm8001_ha: our hba struct
63   * @tag: the found tag associated with the task
64   */
65 static void pm8001_tag_clear(struct pm8001_hba_info *pm8001_ha, u32 tag)
66 {
67 	void *bitmap = pm8001_ha->tags;
68 	clear_bit(tag, bitmap);
69 }
70 
71 void pm8001_tag_free(struct pm8001_hba_info *pm8001_ha, u32 tag)
72 {
73 	pm8001_tag_clear(pm8001_ha, tag);
74 }
75 
76 static void pm8001_tag_set(struct pm8001_hba_info *pm8001_ha, u32 tag)
77 {
78 	void *bitmap = pm8001_ha->tags;
79 	set_bit(tag, bitmap);
80 }
81 
82 /**
83   * pm8001_tag_alloc - allocate a empty tag for task used.
84   * @pm8001_ha: our hba struct
85   * @tag_out: the found empty tag .
86   */
87 inline int pm8001_tag_alloc(struct pm8001_hba_info *pm8001_ha, u32 *tag_out)
88 {
89 	unsigned int index, tag;
90 	void *bitmap = pm8001_ha->tags;
91 
92 	index = find_first_zero_bit(bitmap, pm8001_ha->tags_num);
93 	tag = index;
94 	if (tag >= pm8001_ha->tags_num)
95 		return -SAS_QUEUE_FULL;
96 	pm8001_tag_set(pm8001_ha, tag);
97 	*tag_out = tag;
98 	return 0;
99 }
100 
101 void pm8001_tag_init(struct pm8001_hba_info *pm8001_ha)
102 {
103 	int i;
104 	for (i = 0; i < pm8001_ha->tags_num; ++i)
105 		pm8001_tag_clear(pm8001_ha, i);
106 }
107 
108  /**
109   * pm8001_mem_alloc - allocate memory for pm8001.
110   * @pdev: pci device.
111   * @virt_addr: the allocated virtual address
112   * @pphys_addr_hi: the physical address high byte address.
113   * @pphys_addr_lo: the physical address low byte address.
114   * @mem_size: memory size.
115   */
116 int pm8001_mem_alloc(struct pci_dev *pdev, void **virt_addr,
117 	dma_addr_t *pphys_addr, u32 *pphys_addr_hi,
118 	u32 *pphys_addr_lo, u32 mem_size, u32 align)
119 {
120 	caddr_t mem_virt_alloc;
121 	dma_addr_t mem_dma_handle;
122 	u64 phys_align;
123 	u64 align_offset = 0;
124 	if (align)
125 		align_offset = (dma_addr_t)align - 1;
126 	mem_virt_alloc =
127 		pci_alloc_consistent(pdev, mem_size + align, &mem_dma_handle);
128 	if (!mem_virt_alloc) {
129 		pm8001_printk("memory allocation error\n");
130 		return -1;
131 	}
132 	memset((void *)mem_virt_alloc, 0, mem_size+align);
133 	*pphys_addr = mem_dma_handle;
134 	phys_align = (*pphys_addr + align_offset) & ~align_offset;
135 	*virt_addr = (void *)mem_virt_alloc + phys_align - *pphys_addr;
136 	*pphys_addr_hi = upper_32_bits(phys_align);
137 	*pphys_addr_lo = lower_32_bits(phys_align);
138 	return 0;
139 }
140 /**
141   * pm8001_find_ha_by_dev - from domain device which come from sas layer to
142   * find out our hba struct.
143   * @dev: the domain device which from sas layer.
144   */
145 static
146 struct pm8001_hba_info *pm8001_find_ha_by_dev(struct domain_device *dev)
147 {
148 	struct sas_ha_struct *sha = dev->port->ha;
149 	struct pm8001_hba_info *pm8001_ha = sha->lldd_ha;
150 	return pm8001_ha;
151 }
152 
153 /**
154   * pm8001_phy_control - this function should be registered to
155   * sas_domain_function_template to provide libsas used, note: this is just
156   * control the HBA phy rather than other expander phy if you want control
157   * other phy, you should use SMP command.
158   * @sas_phy: which phy in HBA phys.
159   * @func: the operation.
160   * @funcdata: always NULL.
161   */
162 int pm8001_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func,
163 	void *funcdata)
164 {
165 	int rc = 0, phy_id = sas_phy->id;
166 	struct pm8001_hba_info *pm8001_ha = NULL;
167 	struct sas_phy_linkrates *rates;
168 	DECLARE_COMPLETION_ONSTACK(completion);
169 	unsigned long flags;
170 	pm8001_ha = sas_phy->ha->lldd_ha;
171 	pm8001_ha->phy[phy_id].enable_completion = &completion;
172 	switch (func) {
173 	case PHY_FUNC_SET_LINK_RATE:
174 		rates = funcdata;
175 		if (rates->minimum_linkrate) {
176 			pm8001_ha->phy[phy_id].minimum_linkrate =
177 				rates->minimum_linkrate;
178 		}
179 		if (rates->maximum_linkrate) {
180 			pm8001_ha->phy[phy_id].maximum_linkrate =
181 				rates->maximum_linkrate;
182 		}
183 		if (pm8001_ha->phy[phy_id].phy_state == 0) {
184 			PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id);
185 			wait_for_completion(&completion);
186 		}
187 		PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id,
188 					      PHY_LINK_RESET);
189 		break;
190 	case PHY_FUNC_HARD_RESET:
191 		if (pm8001_ha->phy[phy_id].phy_state == 0) {
192 			PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id);
193 			wait_for_completion(&completion);
194 		}
195 		PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id,
196 					      PHY_HARD_RESET);
197 		break;
198 	case PHY_FUNC_LINK_RESET:
199 		if (pm8001_ha->phy[phy_id].phy_state == 0) {
200 			PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id);
201 			wait_for_completion(&completion);
202 		}
203 		PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id,
204 					      PHY_LINK_RESET);
205 		break;
206 	case PHY_FUNC_RELEASE_SPINUP_HOLD:
207 		PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id,
208 					      PHY_LINK_RESET);
209 		break;
210 	case PHY_FUNC_DISABLE:
211 		PM8001_CHIP_DISP->phy_stop_req(pm8001_ha, phy_id);
212 		break;
213 	case PHY_FUNC_GET_EVENTS:
214 		spin_lock_irqsave(&pm8001_ha->lock, flags);
215 		if (pm8001_ha->chip_id == chip_8001) {
216 			if (-1 == pm8001_bar4_shift(pm8001_ha,
217 					(phy_id < 4) ? 0x30000 : 0x40000)) {
218 				spin_unlock_irqrestore(&pm8001_ha->lock, flags);
219 				return -EINVAL;
220 			}
221 		}
222 		{
223 			struct sas_phy *phy = sas_phy->phy;
224 			uint32_t *qp = (uint32_t *)(((char *)
225 				pm8001_ha->io_mem[2].memvirtaddr)
226 				+ 0x1034 + (0x4000 * (phy_id & 3)));
227 
228 			phy->invalid_dword_count = qp[0];
229 			phy->running_disparity_error_count = qp[1];
230 			phy->loss_of_dword_sync_count = qp[3];
231 			phy->phy_reset_problem_count = qp[4];
232 		}
233 		if (pm8001_ha->chip_id == chip_8001)
234 			pm8001_bar4_shift(pm8001_ha, 0);
235 		spin_unlock_irqrestore(&pm8001_ha->lock, flags);
236 		return 0;
237 	default:
238 		rc = -EOPNOTSUPP;
239 	}
240 	msleep(300);
241 	return rc;
242 }
243 
244 /**
245   * pm8001_scan_start - we should enable all HBA phys by sending the phy_start
246   * command to HBA.
247   * @shost: the scsi host data.
248   */
249 void pm8001_scan_start(struct Scsi_Host *shost)
250 {
251 	int i;
252 	struct pm8001_hba_info *pm8001_ha;
253 	struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
254 	pm8001_ha = sha->lldd_ha;
255 	/* SAS_RE_INITIALIZATION not available in SPCv/ve */
256 	if (pm8001_ha->chip_id == chip_8001)
257 		PM8001_CHIP_DISP->sas_re_init_req(pm8001_ha);
258 	for (i = 0; i < pm8001_ha->chip->n_phy; ++i)
259 		PM8001_CHIP_DISP->phy_start_req(pm8001_ha, i);
260 }
261 
262 int pm8001_scan_finished(struct Scsi_Host *shost, unsigned long time)
263 {
264 	struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
265 
266 	/* give the phy enabling interrupt event time to come in (1s
267 	* is empirically about all it takes) */
268 	if (time < HZ)
269 		return 0;
270 	/* Wait for discovery to finish */
271 	sas_drain_work(ha);
272 	return 1;
273 }
274 
275 /**
276   * pm8001_task_prep_smp - the dispatcher function, prepare data for smp task
277   * @pm8001_ha: our hba card information
278   * @ccb: the ccb which attached to smp task
279   */
280 static int pm8001_task_prep_smp(struct pm8001_hba_info *pm8001_ha,
281 	struct pm8001_ccb_info *ccb)
282 {
283 	return PM8001_CHIP_DISP->smp_req(pm8001_ha, ccb);
284 }
285 
286 u32 pm8001_get_ncq_tag(struct sas_task *task, u32 *tag)
287 {
288 	struct ata_queued_cmd *qc = task->uldd_task;
289 	if (qc) {
290 		if (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
291 			qc->tf.command == ATA_CMD_FPDMA_READ) {
292 			*tag = qc->tag;
293 			return 1;
294 		}
295 	}
296 	return 0;
297 }
298 
299 /**
300   * pm8001_task_prep_ata - the dispatcher function, prepare data for sata task
301   * @pm8001_ha: our hba card information
302   * @ccb: the ccb which attached to sata task
303   */
304 static int pm8001_task_prep_ata(struct pm8001_hba_info *pm8001_ha,
305 	struct pm8001_ccb_info *ccb)
306 {
307 	return PM8001_CHIP_DISP->sata_req(pm8001_ha, ccb);
308 }
309 
310 /**
311   * pm8001_task_prep_ssp_tm - the dispatcher function, prepare task management data
312   * @pm8001_ha: our hba card information
313   * @ccb: the ccb which attached to TM
314   * @tmf: the task management IU
315   */
316 static int pm8001_task_prep_ssp_tm(struct pm8001_hba_info *pm8001_ha,
317 	struct pm8001_ccb_info *ccb, struct pm8001_tmf_task *tmf)
318 {
319 	return PM8001_CHIP_DISP->ssp_tm_req(pm8001_ha, ccb, tmf);
320 }
321 
322 /**
323   * pm8001_task_prep_ssp - the dispatcher function,prepare ssp data for ssp task
324   * @pm8001_ha: our hba card information
325   * @ccb: the ccb which attached to ssp task
326   */
327 static int pm8001_task_prep_ssp(struct pm8001_hba_info *pm8001_ha,
328 	struct pm8001_ccb_info *ccb)
329 {
330 	return PM8001_CHIP_DISP->ssp_io_req(pm8001_ha, ccb);
331 }
332 
333  /* Find the local port id that's attached to this device */
334 static int sas_find_local_port_id(struct domain_device *dev)
335 {
336 	struct domain_device *pdev = dev->parent;
337 
338 	/* Directly attached device */
339 	if (!pdev)
340 		return dev->port->id;
341 	while (pdev) {
342 		struct domain_device *pdev_p = pdev->parent;
343 		if (!pdev_p)
344 			return pdev->port->id;
345 		pdev = pdev->parent;
346 	}
347 	return 0;
348 }
349 
350 /**
351   * pm8001_task_exec - queue the task(ssp, smp && ata) to the hardware.
352   * @task: the task to be execute.
353   * @num: if can_queue great than 1, the task can be queued up. for SMP task,
354   * we always execute one one time.
355   * @gfp_flags: gfp_flags.
356   * @is_tmf: if it is task management task.
357   * @tmf: the task management IU
358   */
359 #define DEV_IS_GONE(pm8001_dev)	\
360 	((!pm8001_dev || (pm8001_dev->dev_type == SAS_PHY_UNUSED)))
361 static int pm8001_task_exec(struct sas_task *task, const int num,
362 	gfp_t gfp_flags, int is_tmf, struct pm8001_tmf_task *tmf)
363 {
364 	struct domain_device *dev = task->dev;
365 	struct pm8001_hba_info *pm8001_ha;
366 	struct pm8001_device *pm8001_dev;
367 	struct pm8001_port *port = NULL;
368 	struct sas_task *t = task;
369 	struct pm8001_ccb_info *ccb;
370 	u32 tag = 0xdeadbeef, rc, n_elem = 0;
371 	u32 n = num;
372 	unsigned long flags = 0;
373 
374 	if (!dev->port) {
375 		struct task_status_struct *tsm = &t->task_status;
376 		tsm->resp = SAS_TASK_UNDELIVERED;
377 		tsm->stat = SAS_PHY_DOWN;
378 		if (dev->dev_type != SAS_SATA_DEV)
379 			t->task_done(t);
380 		return 0;
381 	}
382 	pm8001_ha = pm8001_find_ha_by_dev(task->dev);
383 	PM8001_IO_DBG(pm8001_ha, pm8001_printk("pm8001_task_exec device \n "));
384 	spin_lock_irqsave(&pm8001_ha->lock, flags);
385 	do {
386 		dev = t->dev;
387 		pm8001_dev = dev->lldd_dev;
388 		port = &pm8001_ha->port[sas_find_local_port_id(dev)];
389 		if (DEV_IS_GONE(pm8001_dev) || !port->port_attached) {
390 			if (sas_protocol_ata(t->task_proto)) {
391 				struct task_status_struct *ts = &t->task_status;
392 				ts->resp = SAS_TASK_UNDELIVERED;
393 				ts->stat = SAS_PHY_DOWN;
394 
395 				spin_unlock_irqrestore(&pm8001_ha->lock, flags);
396 				t->task_done(t);
397 				spin_lock_irqsave(&pm8001_ha->lock, flags);
398 				if (n > 1)
399 					t = list_entry(t->list.next,
400 							struct sas_task, list);
401 				continue;
402 			} else {
403 				struct task_status_struct *ts = &t->task_status;
404 				ts->resp = SAS_TASK_UNDELIVERED;
405 				ts->stat = SAS_PHY_DOWN;
406 				t->task_done(t);
407 				if (n > 1)
408 					t = list_entry(t->list.next,
409 							struct sas_task, list);
410 				continue;
411 			}
412 		}
413 		rc = pm8001_tag_alloc(pm8001_ha, &tag);
414 		if (rc)
415 			goto err_out;
416 		ccb = &pm8001_ha->ccb_info[tag];
417 
418 		if (!sas_protocol_ata(t->task_proto)) {
419 			if (t->num_scatter) {
420 				n_elem = dma_map_sg(pm8001_ha->dev,
421 					t->scatter,
422 					t->num_scatter,
423 					t->data_dir);
424 				if (!n_elem) {
425 					rc = -ENOMEM;
426 					goto err_out_tag;
427 				}
428 			}
429 		} else {
430 			n_elem = t->num_scatter;
431 		}
432 
433 		t->lldd_task = ccb;
434 		ccb->n_elem = n_elem;
435 		ccb->ccb_tag = tag;
436 		ccb->task = t;
437 		ccb->device = pm8001_dev;
438 		switch (t->task_proto) {
439 		case SAS_PROTOCOL_SMP:
440 			rc = pm8001_task_prep_smp(pm8001_ha, ccb);
441 			break;
442 		case SAS_PROTOCOL_SSP:
443 			if (is_tmf)
444 				rc = pm8001_task_prep_ssp_tm(pm8001_ha,
445 					ccb, tmf);
446 			else
447 				rc = pm8001_task_prep_ssp(pm8001_ha, ccb);
448 			break;
449 		case SAS_PROTOCOL_SATA:
450 		case SAS_PROTOCOL_STP:
451 			rc = pm8001_task_prep_ata(pm8001_ha, ccb);
452 			break;
453 		default:
454 			dev_printk(KERN_ERR, pm8001_ha->dev,
455 				"unknown sas_task proto: 0x%x\n",
456 				t->task_proto);
457 			rc = -EINVAL;
458 			break;
459 		}
460 
461 		if (rc) {
462 			PM8001_IO_DBG(pm8001_ha,
463 				pm8001_printk("rc is %x\n", rc));
464 			goto err_out_tag;
465 		}
466 		/* TODO: select normal or high priority */
467 		spin_lock(&t->task_state_lock);
468 		t->task_state_flags |= SAS_TASK_AT_INITIATOR;
469 		spin_unlock(&t->task_state_lock);
470 		pm8001_dev->running_req++;
471 		if (n > 1)
472 			t = list_entry(t->list.next, struct sas_task, list);
473 	} while (--n);
474 	rc = 0;
475 	goto out_done;
476 
477 err_out_tag:
478 	pm8001_tag_free(pm8001_ha, tag);
479 err_out:
480 	dev_printk(KERN_ERR, pm8001_ha->dev, "pm8001 exec failed[%d]!\n", rc);
481 	if (!sas_protocol_ata(t->task_proto))
482 		if (n_elem)
483 			dma_unmap_sg(pm8001_ha->dev, t->scatter, n_elem,
484 				t->data_dir);
485 out_done:
486 	spin_unlock_irqrestore(&pm8001_ha->lock, flags);
487 	return rc;
488 }
489 
490 /**
491   * pm8001_queue_command - register for upper layer used, all IO commands sent
492   * to HBA are from this interface.
493   * @task: the task to be execute.
494   * @num: if can_queue great than 1, the task can be queued up. for SMP task,
495   * we always execute one one time
496   * @gfp_flags: gfp_flags
497   */
498 int pm8001_queue_command(struct sas_task *task, const int num,
499 		gfp_t gfp_flags)
500 {
501 	return pm8001_task_exec(task, num, gfp_flags, 0, NULL);
502 }
503 
504 void pm8001_ccb_free(struct pm8001_hba_info *pm8001_ha, u32 ccb_idx)
505 {
506 	pm8001_tag_clear(pm8001_ha, ccb_idx);
507 }
508 
509 /**
510   * pm8001_ccb_task_free - free the sg for ssp and smp command, free the ccb.
511   * @pm8001_ha: our hba card information
512   * @ccb: the ccb which attached to ssp task
513   * @task: the task to be free.
514   * @ccb_idx: ccb index.
515   */
516 void pm8001_ccb_task_free(struct pm8001_hba_info *pm8001_ha,
517 	struct sas_task *task, struct pm8001_ccb_info *ccb, u32 ccb_idx)
518 {
519 	if (!ccb->task)
520 		return;
521 	if (!sas_protocol_ata(task->task_proto))
522 		if (ccb->n_elem)
523 			dma_unmap_sg(pm8001_ha->dev, task->scatter,
524 				task->num_scatter, task->data_dir);
525 
526 	switch (task->task_proto) {
527 	case SAS_PROTOCOL_SMP:
528 		dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_resp, 1,
529 			PCI_DMA_FROMDEVICE);
530 		dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_req, 1,
531 			PCI_DMA_TODEVICE);
532 		break;
533 
534 	case SAS_PROTOCOL_SATA:
535 	case SAS_PROTOCOL_STP:
536 	case SAS_PROTOCOL_SSP:
537 	default:
538 		/* do nothing */
539 		break;
540 	}
541 	task->lldd_task = NULL;
542 	ccb->task = NULL;
543 	ccb->ccb_tag = 0xFFFFFFFF;
544 	ccb->open_retry = 0;
545 	pm8001_ccb_free(pm8001_ha, ccb_idx);
546 }
547 
548  /**
549   * pm8001_alloc_dev - find a empty pm8001_device
550   * @pm8001_ha: our hba card information
551   */
552 struct pm8001_device *pm8001_alloc_dev(struct pm8001_hba_info *pm8001_ha)
553 {
554 	u32 dev;
555 	for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) {
556 		if (pm8001_ha->devices[dev].dev_type == SAS_PHY_UNUSED) {
557 			pm8001_ha->devices[dev].id = dev;
558 			return &pm8001_ha->devices[dev];
559 		}
560 	}
561 	if (dev == PM8001_MAX_DEVICES) {
562 		PM8001_FAIL_DBG(pm8001_ha,
563 			pm8001_printk("max support %d devices, ignore ..\n",
564 			PM8001_MAX_DEVICES));
565 	}
566 	return NULL;
567 }
568 /**
569   * pm8001_find_dev - find a matching pm8001_device
570   * @pm8001_ha: our hba card information
571   */
572 struct pm8001_device *pm8001_find_dev(struct pm8001_hba_info *pm8001_ha,
573 					u32 device_id)
574 {
575 	u32 dev;
576 	for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) {
577 		if (pm8001_ha->devices[dev].device_id == device_id)
578 			return &pm8001_ha->devices[dev];
579 	}
580 	if (dev == PM8001_MAX_DEVICES) {
581 		PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("NO MATCHING "
582 				"DEVICE FOUND !!!\n"));
583 	}
584 	return NULL;
585 }
586 
587 static void pm8001_free_dev(struct pm8001_device *pm8001_dev)
588 {
589 	u32 id = pm8001_dev->id;
590 	memset(pm8001_dev, 0, sizeof(*pm8001_dev));
591 	pm8001_dev->id = id;
592 	pm8001_dev->dev_type = SAS_PHY_UNUSED;
593 	pm8001_dev->device_id = PM8001_MAX_DEVICES;
594 	pm8001_dev->sas_device = NULL;
595 }
596 
597 /**
598   * pm8001_dev_found_notify - libsas notify a device is found.
599   * @dev: the device structure which sas layer used.
600   *
601   * when libsas find a sas domain device, it should tell the LLDD that
602   * device is found, and then LLDD register this device to HBA firmware
603   * by the command "OPC_INB_REG_DEV", after that the HBA will assign a
604   * device ID(according to device's sas address) and returned it to LLDD. From
605   * now on, we communicate with HBA FW with the device ID which HBA assigned
606   * rather than sas address. it is the necessary step for our HBA but it is
607   * the optional for other HBA driver.
608   */
609 static int pm8001_dev_found_notify(struct domain_device *dev)
610 {
611 	unsigned long flags = 0;
612 	int res = 0;
613 	struct pm8001_hba_info *pm8001_ha = NULL;
614 	struct domain_device *parent_dev = dev->parent;
615 	struct pm8001_device *pm8001_device;
616 	DECLARE_COMPLETION_ONSTACK(completion);
617 	u32 flag = 0;
618 	pm8001_ha = pm8001_find_ha_by_dev(dev);
619 	spin_lock_irqsave(&pm8001_ha->lock, flags);
620 
621 	pm8001_device = pm8001_alloc_dev(pm8001_ha);
622 	if (!pm8001_device) {
623 		res = -1;
624 		goto found_out;
625 	}
626 	pm8001_device->sas_device = dev;
627 	dev->lldd_dev = pm8001_device;
628 	pm8001_device->dev_type = dev->dev_type;
629 	pm8001_device->dcompletion = &completion;
630 	if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) {
631 		int phy_id;
632 		struct ex_phy *phy;
633 		for (phy_id = 0; phy_id < parent_dev->ex_dev.num_phys;
634 		phy_id++) {
635 			phy = &parent_dev->ex_dev.ex_phy[phy_id];
636 			if (SAS_ADDR(phy->attached_sas_addr)
637 				== SAS_ADDR(dev->sas_addr)) {
638 				pm8001_device->attached_phy = phy_id;
639 				break;
640 			}
641 		}
642 		if (phy_id == parent_dev->ex_dev.num_phys) {
643 			PM8001_FAIL_DBG(pm8001_ha,
644 			pm8001_printk("Error: no attached dev:%016llx"
645 			" at ex:%016llx.\n", SAS_ADDR(dev->sas_addr),
646 				SAS_ADDR(parent_dev->sas_addr)));
647 			res = -1;
648 		}
649 	} else {
650 		if (dev->dev_type == SAS_SATA_DEV) {
651 			pm8001_device->attached_phy =
652 				dev->rphy->identify.phy_identifier;
653 				flag = 1; /* directly sata*/
654 		}
655 	} /*register this device to HBA*/
656 	PM8001_DISC_DBG(pm8001_ha, pm8001_printk("Found device\n"));
657 	PM8001_CHIP_DISP->reg_dev_req(pm8001_ha, pm8001_device, flag);
658 	spin_unlock_irqrestore(&pm8001_ha->lock, flags);
659 	wait_for_completion(&completion);
660 	if (dev->dev_type == SAS_END_DEVICE)
661 		msleep(50);
662 	pm8001_ha->flags = PM8001F_RUN_TIME;
663 	return 0;
664 found_out:
665 	spin_unlock_irqrestore(&pm8001_ha->lock, flags);
666 	return res;
667 }
668 
669 int pm8001_dev_found(struct domain_device *dev)
670 {
671 	return pm8001_dev_found_notify(dev);
672 }
673 
674 void pm8001_task_done(struct sas_task *task)
675 {
676 	if (!del_timer(&task->slow_task->timer))
677 		return;
678 	complete(&task->slow_task->completion);
679 }
680 
681 static void pm8001_tmf_timedout(unsigned long data)
682 {
683 	struct sas_task *task = (struct sas_task *)data;
684 
685 	task->task_state_flags |= SAS_TASK_STATE_ABORTED;
686 	complete(&task->slow_task->completion);
687 }
688 
689 #define PM8001_TASK_TIMEOUT 20
690 /**
691   * pm8001_exec_internal_tmf_task - execute some task management commands.
692   * @dev: the wanted device.
693   * @tmf: which task management wanted to be take.
694   * @para_len: para_len.
695   * @parameter: ssp task parameter.
696   *
697   * when errors or exception happened, we may want to do something, for example
698   * abort the issued task which result in this execption, it is done by calling
699   * this function, note it is also with the task execute interface.
700   */
701 static int pm8001_exec_internal_tmf_task(struct domain_device *dev,
702 	void *parameter, u32 para_len, struct pm8001_tmf_task *tmf)
703 {
704 	int res, retry;
705 	struct sas_task *task = NULL;
706 	struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev);
707 	struct pm8001_device *pm8001_dev = dev->lldd_dev;
708 	DECLARE_COMPLETION_ONSTACK(completion_setstate);
709 
710 	for (retry = 0; retry < 3; retry++) {
711 		task = sas_alloc_slow_task(GFP_KERNEL);
712 		if (!task)
713 			return -ENOMEM;
714 
715 		task->dev = dev;
716 		task->task_proto = dev->tproto;
717 		memcpy(&task->ssp_task, parameter, para_len);
718 		task->task_done = pm8001_task_done;
719 		task->slow_task->timer.data = (unsigned long)task;
720 		task->slow_task->timer.function = pm8001_tmf_timedout;
721 		task->slow_task->timer.expires = jiffies + PM8001_TASK_TIMEOUT*HZ;
722 		add_timer(&task->slow_task->timer);
723 
724 		res = pm8001_task_exec(task, 1, GFP_KERNEL, 1, tmf);
725 
726 		if (res) {
727 			del_timer(&task->slow_task->timer);
728 			PM8001_FAIL_DBG(pm8001_ha,
729 				pm8001_printk("Executing internal task "
730 				"failed\n"));
731 			goto ex_err;
732 		}
733 		wait_for_completion(&task->slow_task->completion);
734 		if (pm8001_ha->chip_id != chip_8001) {
735 			pm8001_dev->setds_completion = &completion_setstate;
736 				PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha,
737 					pm8001_dev, 0x01);
738 			wait_for_completion(&completion_setstate);
739 		}
740 		res = -TMF_RESP_FUNC_FAILED;
741 		/* Even TMF timed out, return direct. */
742 		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
743 			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
744 				PM8001_FAIL_DBG(pm8001_ha,
745 					pm8001_printk("TMF task[%x]timeout.\n",
746 					tmf->tmf));
747 				goto ex_err;
748 			}
749 		}
750 
751 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
752 			task->task_status.stat == SAM_STAT_GOOD) {
753 			res = TMF_RESP_FUNC_COMPLETE;
754 			break;
755 		}
756 
757 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
758 		task->task_status.stat == SAS_DATA_UNDERRUN) {
759 			/* no error, but return the number of bytes of
760 			* underrun */
761 			res = task->task_status.residual;
762 			break;
763 		}
764 
765 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
766 			task->task_status.stat == SAS_DATA_OVERRUN) {
767 			PM8001_FAIL_DBG(pm8001_ha,
768 				pm8001_printk("Blocked task error.\n"));
769 			res = -EMSGSIZE;
770 			break;
771 		} else {
772 			PM8001_EH_DBG(pm8001_ha,
773 				pm8001_printk(" Task to dev %016llx response:"
774 				"0x%x status 0x%x\n",
775 				SAS_ADDR(dev->sas_addr),
776 				task->task_status.resp,
777 				task->task_status.stat));
778 			sas_free_task(task);
779 			task = NULL;
780 		}
781 	}
782 ex_err:
783 	BUG_ON(retry == 3 && task != NULL);
784 	sas_free_task(task);
785 	return res;
786 }
787 
788 static int
789 pm8001_exec_internal_task_abort(struct pm8001_hba_info *pm8001_ha,
790 	struct pm8001_device *pm8001_dev, struct domain_device *dev, u32 flag,
791 	u32 task_tag)
792 {
793 	int res, retry;
794 	u32 ccb_tag;
795 	struct pm8001_ccb_info *ccb;
796 	struct sas_task *task = NULL;
797 
798 	for (retry = 0; retry < 3; retry++) {
799 		task = sas_alloc_slow_task(GFP_KERNEL);
800 		if (!task)
801 			return -ENOMEM;
802 
803 		task->dev = dev;
804 		task->task_proto = dev->tproto;
805 		task->task_done = pm8001_task_done;
806 		task->slow_task->timer.data = (unsigned long)task;
807 		task->slow_task->timer.function = pm8001_tmf_timedout;
808 		task->slow_task->timer.expires = jiffies + PM8001_TASK_TIMEOUT * HZ;
809 		add_timer(&task->slow_task->timer);
810 
811 		res = pm8001_tag_alloc(pm8001_ha, &ccb_tag);
812 		if (res)
813 			return res;
814 		ccb = &pm8001_ha->ccb_info[ccb_tag];
815 		ccb->device = pm8001_dev;
816 		ccb->ccb_tag = ccb_tag;
817 		ccb->task = task;
818 
819 		res = PM8001_CHIP_DISP->task_abort(pm8001_ha,
820 			pm8001_dev, flag, task_tag, ccb_tag);
821 
822 		if (res) {
823 			del_timer(&task->slow_task->timer);
824 			PM8001_FAIL_DBG(pm8001_ha,
825 				pm8001_printk("Executing internal task "
826 				"failed\n"));
827 			goto ex_err;
828 		}
829 		wait_for_completion(&task->slow_task->completion);
830 		res = TMF_RESP_FUNC_FAILED;
831 		/* Even TMF timed out, return direct. */
832 		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
833 			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
834 				PM8001_FAIL_DBG(pm8001_ha,
835 					pm8001_printk("TMF task timeout.\n"));
836 				goto ex_err;
837 			}
838 		}
839 
840 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
841 			task->task_status.stat == SAM_STAT_GOOD) {
842 			res = TMF_RESP_FUNC_COMPLETE;
843 			break;
844 
845 		} else {
846 			PM8001_EH_DBG(pm8001_ha,
847 				pm8001_printk(" Task to dev %016llx response: "
848 					"0x%x status 0x%x\n",
849 				SAS_ADDR(dev->sas_addr),
850 				task->task_status.resp,
851 				task->task_status.stat));
852 			sas_free_task(task);
853 			task = NULL;
854 		}
855 	}
856 ex_err:
857 	BUG_ON(retry == 3 && task != NULL);
858 	sas_free_task(task);
859 	return res;
860 }
861 
862 /**
863   * pm8001_dev_gone_notify - see the comments for "pm8001_dev_found_notify"
864   * @dev: the device structure which sas layer used.
865   */
866 static void pm8001_dev_gone_notify(struct domain_device *dev)
867 {
868 	unsigned long flags = 0;
869 	struct pm8001_hba_info *pm8001_ha;
870 	struct pm8001_device *pm8001_dev = dev->lldd_dev;
871 
872 	pm8001_ha = pm8001_find_ha_by_dev(dev);
873 	spin_lock_irqsave(&pm8001_ha->lock, flags);
874 	if (pm8001_dev) {
875 		u32 device_id = pm8001_dev->device_id;
876 
877 		PM8001_DISC_DBG(pm8001_ha,
878 			pm8001_printk("found dev[%d:%x] is gone.\n",
879 			pm8001_dev->device_id, pm8001_dev->dev_type));
880 		if (pm8001_dev->running_req) {
881 			spin_unlock_irqrestore(&pm8001_ha->lock, flags);
882 			pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev ,
883 				dev, 1, 0);
884 			spin_lock_irqsave(&pm8001_ha->lock, flags);
885 		}
886 		PM8001_CHIP_DISP->dereg_dev_req(pm8001_ha, device_id);
887 		pm8001_free_dev(pm8001_dev);
888 	} else {
889 		PM8001_DISC_DBG(pm8001_ha,
890 			pm8001_printk("Found dev has gone.\n"));
891 	}
892 	dev->lldd_dev = NULL;
893 	spin_unlock_irqrestore(&pm8001_ha->lock, flags);
894 }
895 
896 void pm8001_dev_gone(struct domain_device *dev)
897 {
898 	pm8001_dev_gone_notify(dev);
899 }
900 
901 static int pm8001_issue_ssp_tmf(struct domain_device *dev,
902 	u8 *lun, struct pm8001_tmf_task *tmf)
903 {
904 	struct sas_ssp_task ssp_task;
905 	if (!(dev->tproto & SAS_PROTOCOL_SSP))
906 		return TMF_RESP_FUNC_ESUPP;
907 
908 	strncpy((u8 *)&ssp_task.LUN, lun, 8);
909 	return pm8001_exec_internal_tmf_task(dev, &ssp_task, sizeof(ssp_task),
910 		tmf);
911 }
912 
913 /* retry commands by ha, by task and/or by device */
914 void pm8001_open_reject_retry(
915 	struct pm8001_hba_info *pm8001_ha,
916 	struct sas_task *task_to_close,
917 	struct pm8001_device *device_to_close)
918 {
919 	int i;
920 	unsigned long flags;
921 
922 	if (pm8001_ha == NULL)
923 		return;
924 
925 	spin_lock_irqsave(&pm8001_ha->lock, flags);
926 
927 	for (i = 0; i < PM8001_MAX_CCB; i++) {
928 		struct sas_task *task;
929 		struct task_status_struct *ts;
930 		struct pm8001_device *pm8001_dev;
931 		unsigned long flags1;
932 		u32 tag;
933 		struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[i];
934 
935 		pm8001_dev = ccb->device;
936 		if (!pm8001_dev || (pm8001_dev->dev_type == SAS_PHY_UNUSED))
937 			continue;
938 		if (!device_to_close) {
939 			uintptr_t d = (uintptr_t)pm8001_dev
940 					- (uintptr_t)&pm8001_ha->devices;
941 			if (((d % sizeof(*pm8001_dev)) != 0)
942 			 || ((d / sizeof(*pm8001_dev)) >= PM8001_MAX_DEVICES))
943 				continue;
944 		} else if (pm8001_dev != device_to_close)
945 			continue;
946 		tag = ccb->ccb_tag;
947 		if (!tag || (tag == 0xFFFFFFFF))
948 			continue;
949 		task = ccb->task;
950 		if (!task || !task->task_done)
951 			continue;
952 		if (task_to_close && (task != task_to_close))
953 			continue;
954 		ts = &task->task_status;
955 		ts->resp = SAS_TASK_COMPLETE;
956 		/* Force the midlayer to retry */
957 		ts->stat = SAS_OPEN_REJECT;
958 		ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
959 		if (pm8001_dev)
960 			pm8001_dev->running_req--;
961 		spin_lock_irqsave(&task->task_state_lock, flags1);
962 		task->task_state_flags &= ~SAS_TASK_STATE_PENDING;
963 		task->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
964 		task->task_state_flags |= SAS_TASK_STATE_DONE;
965 		if (unlikely((task->task_state_flags
966 				& SAS_TASK_STATE_ABORTED))) {
967 			spin_unlock_irqrestore(&task->task_state_lock,
968 				flags1);
969 			pm8001_ccb_task_free(pm8001_ha, task, ccb, tag);
970 		} else {
971 			spin_unlock_irqrestore(&task->task_state_lock,
972 				flags1);
973 			pm8001_ccb_task_free(pm8001_ha, task, ccb, tag);
974 			mb();/* in order to force CPU ordering */
975 			spin_unlock_irqrestore(&pm8001_ha->lock, flags);
976 			task->task_done(task);
977 			spin_lock_irqsave(&pm8001_ha->lock, flags);
978 		}
979 	}
980 
981 	spin_unlock_irqrestore(&pm8001_ha->lock, flags);
982 }
983 
984 /**
985   * Standard mandates link reset for ATA  (type 0) and hard reset for
986   * SSP (type 1) , only for RECOVERY
987   */
988 int pm8001_I_T_nexus_reset(struct domain_device *dev)
989 {
990 	int rc = TMF_RESP_FUNC_FAILED;
991 	struct pm8001_device *pm8001_dev;
992 	struct pm8001_hba_info *pm8001_ha;
993 	struct sas_phy *phy;
994 
995 	if (!dev || !dev->lldd_dev)
996 		return -ENODEV;
997 
998 	pm8001_dev = dev->lldd_dev;
999 	pm8001_ha = pm8001_find_ha_by_dev(dev);
1000 	phy = sas_get_local_phy(dev);
1001 
1002 	if (dev_is_sata(dev)) {
1003 		DECLARE_COMPLETION_ONSTACK(completion_setstate);
1004 		if (scsi_is_sas_phy_local(phy)) {
1005 			rc = 0;
1006 			goto out;
1007 		}
1008 		rc = sas_phy_reset(phy, 1);
1009 		msleep(2000);
1010 		rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev ,
1011 			dev, 1, 0);
1012 		pm8001_dev->setds_completion = &completion_setstate;
1013 		rc = PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha,
1014 			pm8001_dev, 0x01);
1015 		wait_for_completion(&completion_setstate);
1016 	} else {
1017 		rc = sas_phy_reset(phy, 1);
1018 		msleep(2000);
1019 	}
1020 	PM8001_EH_DBG(pm8001_ha, pm8001_printk(" for device[%x]:rc=%d\n",
1021 		pm8001_dev->device_id, rc));
1022  out:
1023 	sas_put_local_phy(phy);
1024 	return rc;
1025 }
1026 
1027 /*
1028 * This function handle the IT_NEXUS_XXX event or completion
1029 * status code for SSP/SATA/SMP I/O request.
1030 */
1031 int pm8001_I_T_nexus_event_handler(struct domain_device *dev)
1032 {
1033 	int rc = TMF_RESP_FUNC_FAILED;
1034 	struct pm8001_device *pm8001_dev;
1035 	struct pm8001_hba_info *pm8001_ha;
1036 	struct sas_phy *phy;
1037 	u32 device_id = 0;
1038 
1039 	if (!dev || !dev->lldd_dev)
1040 		return -1;
1041 
1042 	pm8001_dev = dev->lldd_dev;
1043 	device_id = pm8001_dev->device_id;
1044 	pm8001_ha = pm8001_find_ha_by_dev(dev);
1045 
1046 	PM8001_EH_DBG(pm8001_ha,
1047 			pm8001_printk("I_T_Nexus handler invoked !!"));
1048 
1049 	phy = sas_get_local_phy(dev);
1050 
1051 	if (dev_is_sata(dev)) {
1052 		DECLARE_COMPLETION_ONSTACK(completion_setstate);
1053 		if (scsi_is_sas_phy_local(phy)) {
1054 			rc = 0;
1055 			goto out;
1056 		}
1057 		/* send internal ssp/sata/smp abort command to FW */
1058 		rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev ,
1059 							dev, 1, 0);
1060 		msleep(100);
1061 
1062 		/* deregister the target device */
1063 		pm8001_dev_gone_notify(dev);
1064 		msleep(200);
1065 
1066 		/*send phy reset to hard reset target */
1067 		rc = sas_phy_reset(phy, 1);
1068 		msleep(2000);
1069 		pm8001_dev->setds_completion = &completion_setstate;
1070 
1071 		wait_for_completion(&completion_setstate);
1072 	} else {
1073 		/* send internal ssp/sata/smp abort command to FW */
1074 		rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev ,
1075 							dev, 1, 0);
1076 		msleep(100);
1077 
1078 		/* deregister the target device */
1079 		pm8001_dev_gone_notify(dev);
1080 		msleep(200);
1081 
1082 		/*send phy reset to hard reset target */
1083 		rc = sas_phy_reset(phy, 1);
1084 		msleep(2000);
1085 	}
1086 	PM8001_EH_DBG(pm8001_ha, pm8001_printk(" for device[%x]:rc=%d\n",
1087 		pm8001_dev->device_id, rc));
1088 out:
1089 	sas_put_local_phy(phy);
1090 
1091 	return rc;
1092 }
1093 /* mandatory SAM-3, the task reset the specified LUN*/
1094 int pm8001_lu_reset(struct domain_device *dev, u8 *lun)
1095 {
1096 	int rc = TMF_RESP_FUNC_FAILED;
1097 	struct pm8001_tmf_task tmf_task;
1098 	struct pm8001_device *pm8001_dev = dev->lldd_dev;
1099 	struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev);
1100 	DECLARE_COMPLETION_ONSTACK(completion_setstate);
1101 	if (dev_is_sata(dev)) {
1102 		struct sas_phy *phy = sas_get_local_phy(dev);
1103 		rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev ,
1104 			dev, 1, 0);
1105 		rc = sas_phy_reset(phy, 1);
1106 		sas_put_local_phy(phy);
1107 		pm8001_dev->setds_completion = &completion_setstate;
1108 		rc = PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha,
1109 			pm8001_dev, 0x01);
1110 		wait_for_completion(&completion_setstate);
1111 	} else {
1112 		tmf_task.tmf = TMF_LU_RESET;
1113 		rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task);
1114 	}
1115 	/* If failed, fall-through I_T_Nexus reset */
1116 	PM8001_EH_DBG(pm8001_ha, pm8001_printk("for device[%x]:rc=%d\n",
1117 		pm8001_dev->device_id, rc));
1118 	return rc;
1119 }
1120 
1121 /* optional SAM-3 */
1122 int pm8001_query_task(struct sas_task *task)
1123 {
1124 	u32 tag = 0xdeadbeef;
1125 	int i = 0;
1126 	struct scsi_lun lun;
1127 	struct pm8001_tmf_task tmf_task;
1128 	int rc = TMF_RESP_FUNC_FAILED;
1129 	if (unlikely(!task || !task->lldd_task || !task->dev))
1130 		return rc;
1131 
1132 	if (task->task_proto & SAS_PROTOCOL_SSP) {
1133 		struct scsi_cmnd *cmnd = task->uldd_task;
1134 		struct domain_device *dev = task->dev;
1135 		struct pm8001_hba_info *pm8001_ha =
1136 			pm8001_find_ha_by_dev(dev);
1137 
1138 		int_to_scsilun(cmnd->device->lun, &lun);
1139 		rc = pm8001_find_tag(task, &tag);
1140 		if (rc == 0) {
1141 			rc = TMF_RESP_FUNC_FAILED;
1142 			return rc;
1143 		}
1144 		PM8001_EH_DBG(pm8001_ha, pm8001_printk("Query:["));
1145 		for (i = 0; i < 16; i++)
1146 			printk(KERN_INFO "%02x ", cmnd->cmnd[i]);
1147 		printk(KERN_INFO "]\n");
1148 		tmf_task.tmf = 	TMF_QUERY_TASK;
1149 		tmf_task.tag_of_task_to_be_managed = tag;
1150 
1151 		rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task);
1152 		switch (rc) {
1153 		/* The task is still in Lun, release it then */
1154 		case TMF_RESP_FUNC_SUCC:
1155 			PM8001_EH_DBG(pm8001_ha,
1156 				pm8001_printk("The task is still in Lun\n"));
1157 			break;
1158 		/* The task is not in Lun or failed, reset the phy */
1159 		case TMF_RESP_FUNC_FAILED:
1160 		case TMF_RESP_FUNC_COMPLETE:
1161 			PM8001_EH_DBG(pm8001_ha,
1162 			pm8001_printk("The task is not in Lun or failed,"
1163 			" reset the phy\n"));
1164 			break;
1165 		}
1166 	}
1167 	pm8001_printk(":rc= %d\n", rc);
1168 	return rc;
1169 }
1170 
1171 /*  mandatory SAM-3, still need free task/ccb info, abord the specified task */
1172 int pm8001_abort_task(struct sas_task *task)
1173 {
1174 	unsigned long flags;
1175 	u32 tag = 0xdeadbeef;
1176 	u32 device_id;
1177 	struct domain_device *dev ;
1178 	struct pm8001_hba_info *pm8001_ha = NULL;
1179 	struct pm8001_ccb_info *ccb;
1180 	struct scsi_lun lun;
1181 	struct pm8001_device *pm8001_dev;
1182 	struct pm8001_tmf_task tmf_task;
1183 	int rc = TMF_RESP_FUNC_FAILED;
1184 	if (unlikely(!task || !task->lldd_task || !task->dev))
1185 		return rc;
1186 	spin_lock_irqsave(&task->task_state_lock, flags);
1187 	if (task->task_state_flags & SAS_TASK_STATE_DONE) {
1188 		spin_unlock_irqrestore(&task->task_state_lock, flags);
1189 		rc = TMF_RESP_FUNC_COMPLETE;
1190 		goto out;
1191 	}
1192 	spin_unlock_irqrestore(&task->task_state_lock, flags);
1193 	if (task->task_proto & SAS_PROTOCOL_SSP) {
1194 		struct scsi_cmnd *cmnd = task->uldd_task;
1195 		dev = task->dev;
1196 		ccb = task->lldd_task;
1197 		pm8001_dev = dev->lldd_dev;
1198 		pm8001_ha = pm8001_find_ha_by_dev(dev);
1199 		int_to_scsilun(cmnd->device->lun, &lun);
1200 		rc = pm8001_find_tag(task, &tag);
1201 		if (rc == 0) {
1202 			printk(KERN_INFO "No such tag in %s\n", __func__);
1203 			rc = TMF_RESP_FUNC_FAILED;
1204 			return rc;
1205 		}
1206 		device_id = pm8001_dev->device_id;
1207 		PM8001_EH_DBG(pm8001_ha,
1208 			pm8001_printk("abort io to deviceid= %d\n", device_id));
1209 		tmf_task.tmf = TMF_ABORT_TASK;
1210 		tmf_task.tag_of_task_to_be_managed = tag;
1211 		rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task);
1212 		pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev,
1213 			pm8001_dev->sas_device, 0, tag);
1214 	} else if (task->task_proto & SAS_PROTOCOL_SATA ||
1215 		task->task_proto & SAS_PROTOCOL_STP) {
1216 		dev = task->dev;
1217 		pm8001_dev = dev->lldd_dev;
1218 		pm8001_ha = pm8001_find_ha_by_dev(dev);
1219 		rc = pm8001_find_tag(task, &tag);
1220 		if (rc == 0) {
1221 			printk(KERN_INFO "No such tag in %s\n", __func__);
1222 			rc = TMF_RESP_FUNC_FAILED;
1223 			return rc;
1224 		}
1225 		rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev,
1226 			pm8001_dev->sas_device, 0, tag);
1227 	} else if (task->task_proto & SAS_PROTOCOL_SMP) {
1228 		/* SMP */
1229 		dev = task->dev;
1230 		pm8001_dev = dev->lldd_dev;
1231 		pm8001_ha = pm8001_find_ha_by_dev(dev);
1232 		rc = pm8001_find_tag(task, &tag);
1233 		if (rc == 0) {
1234 			printk(KERN_INFO "No such tag in %s\n", __func__);
1235 			rc = TMF_RESP_FUNC_FAILED;
1236 			return rc;
1237 		}
1238 		rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev,
1239 			pm8001_dev->sas_device, 0, tag);
1240 
1241 	}
1242 out:
1243 	if (rc != TMF_RESP_FUNC_COMPLETE)
1244 		pm8001_printk("rc= %d\n", rc);
1245 	return rc;
1246 }
1247 
1248 int pm8001_abort_task_set(struct domain_device *dev, u8 *lun)
1249 {
1250 	int rc = TMF_RESP_FUNC_FAILED;
1251 	struct pm8001_tmf_task tmf_task;
1252 
1253 	tmf_task.tmf = TMF_ABORT_TASK_SET;
1254 	rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task);
1255 	return rc;
1256 }
1257 
1258 int pm8001_clear_aca(struct domain_device *dev, u8 *lun)
1259 {
1260 	int rc = TMF_RESP_FUNC_FAILED;
1261 	struct pm8001_tmf_task tmf_task;
1262 
1263 	tmf_task.tmf = TMF_CLEAR_ACA;
1264 	rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task);
1265 
1266 	return rc;
1267 }
1268 
1269 int pm8001_clear_task_set(struct domain_device *dev, u8 *lun)
1270 {
1271 	int rc = TMF_RESP_FUNC_FAILED;
1272 	struct pm8001_tmf_task tmf_task;
1273 	struct pm8001_device *pm8001_dev = dev->lldd_dev;
1274 	struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev);
1275 
1276 	PM8001_EH_DBG(pm8001_ha,
1277 		pm8001_printk("I_T_L_Q clear task set[%x]\n",
1278 		pm8001_dev->device_id));
1279 	tmf_task.tmf = TMF_CLEAR_TASK_SET;
1280 	rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task);
1281 	return rc;
1282 }
1283 
1284