1 /* 2 * PMC-Sierra PM8001/8081/8088/8089 SAS/SATA based host adapters driver 3 * 4 * Copyright (c) 2008-2009 USI Co., Ltd. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * substantially similar to the "NO WARRANTY" disclaimer below 15 * ("Disclaimer") and any redistribution must be conditioned upon 16 * including a substantially similar Disclaimer requirement for further 17 * binary redistribution. 18 * 3. Neither the names of the above-listed copyright holders nor the names 19 * of any contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * Alternatively, this software may be distributed under the terms of the 23 * GNU General Public License ("GPL") version 2 as published by the Free 24 * Software Foundation. 25 * 26 * NO WARRANTY 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 35 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 36 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGES. 38 * 39 */ 40 41 #include <linux/slab.h> 42 #include "pm8001_sas.h" 43 44 /** 45 * pm8001_find_tag - from sas task to find out tag that belongs to this task 46 * @task: the task sent to the LLDD 47 * @tag: the found tag associated with the task 48 */ 49 static int pm8001_find_tag(struct sas_task *task, u32 *tag) 50 { 51 if (task->lldd_task) { 52 struct pm8001_ccb_info *ccb; 53 ccb = task->lldd_task; 54 *tag = ccb->ccb_tag; 55 return 1; 56 } 57 return 0; 58 } 59 60 /** 61 * pm8001_tag_free - free the no more needed tag 62 * @pm8001_ha: our hba struct 63 * @tag: the found tag associated with the task 64 */ 65 void pm8001_tag_free(struct pm8001_hba_info *pm8001_ha, u32 tag) 66 { 67 void *bitmap = pm8001_ha->tags; 68 clear_bit(tag, bitmap); 69 } 70 71 /** 72 * pm8001_tag_alloc - allocate a empty tag for task used. 73 * @pm8001_ha: our hba struct 74 * @tag_out: the found empty tag . 75 */ 76 inline int pm8001_tag_alloc(struct pm8001_hba_info *pm8001_ha, u32 *tag_out) 77 { 78 unsigned int tag; 79 void *bitmap = pm8001_ha->tags; 80 unsigned long flags; 81 82 spin_lock_irqsave(&pm8001_ha->bitmap_lock, flags); 83 tag = find_first_zero_bit(bitmap, pm8001_ha->tags_num); 84 if (tag >= pm8001_ha->tags_num) { 85 spin_unlock_irqrestore(&pm8001_ha->bitmap_lock, flags); 86 return -SAS_QUEUE_FULL; 87 } 88 set_bit(tag, bitmap); 89 spin_unlock_irqrestore(&pm8001_ha->bitmap_lock, flags); 90 *tag_out = tag; 91 return 0; 92 } 93 94 void pm8001_tag_init(struct pm8001_hba_info *pm8001_ha) 95 { 96 int i; 97 for (i = 0; i < pm8001_ha->tags_num; ++i) 98 pm8001_tag_free(pm8001_ha, i); 99 } 100 101 /** 102 * pm8001_mem_alloc - allocate memory for pm8001. 103 * @pdev: pci device. 104 * @virt_addr: the allocated virtual address 105 * @pphys_addr_hi: the physical address high byte address. 106 * @pphys_addr_lo: the physical address low byte address. 107 * @mem_size: memory size. 108 */ 109 int pm8001_mem_alloc(struct pci_dev *pdev, void **virt_addr, 110 dma_addr_t *pphys_addr, u32 *pphys_addr_hi, 111 u32 *pphys_addr_lo, u32 mem_size, u32 align) 112 { 113 caddr_t mem_virt_alloc; 114 dma_addr_t mem_dma_handle; 115 u64 phys_align; 116 u64 align_offset = 0; 117 if (align) 118 align_offset = (dma_addr_t)align - 1; 119 mem_virt_alloc = dma_alloc_coherent(&pdev->dev, mem_size + align, 120 &mem_dma_handle, GFP_KERNEL); 121 if (!mem_virt_alloc) { 122 pr_err("pm80xx: memory allocation error\n"); 123 return -1; 124 } 125 *pphys_addr = mem_dma_handle; 126 phys_align = (*pphys_addr + align_offset) & ~align_offset; 127 *virt_addr = (void *)mem_virt_alloc + phys_align - *pphys_addr; 128 *pphys_addr_hi = upper_32_bits(phys_align); 129 *pphys_addr_lo = lower_32_bits(phys_align); 130 return 0; 131 } 132 133 /** 134 * pm8001_find_ha_by_dev - from domain device which come from sas layer to 135 * find out our hba struct. 136 * @dev: the domain device which from sas layer. 137 */ 138 static 139 struct pm8001_hba_info *pm8001_find_ha_by_dev(struct domain_device *dev) 140 { 141 struct sas_ha_struct *sha = dev->port->ha; 142 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha; 143 return pm8001_ha; 144 } 145 146 /** 147 * pm8001_phy_control - this function should be registered to 148 * sas_domain_function_template to provide libsas used, note: this is just 149 * control the HBA phy rather than other expander phy if you want control 150 * other phy, you should use SMP command. 151 * @sas_phy: which phy in HBA phys. 152 * @func: the operation. 153 * @funcdata: always NULL. 154 */ 155 int pm8001_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func, 156 void *funcdata) 157 { 158 int rc = 0, phy_id = sas_phy->id; 159 struct pm8001_hba_info *pm8001_ha = NULL; 160 struct sas_phy_linkrates *rates; 161 struct sas_ha_struct *sas_ha; 162 struct pm8001_phy *phy; 163 DECLARE_COMPLETION_ONSTACK(completion); 164 unsigned long flags; 165 pm8001_ha = sas_phy->ha->lldd_ha; 166 phy = &pm8001_ha->phy[phy_id]; 167 pm8001_ha->phy[phy_id].enable_completion = &completion; 168 switch (func) { 169 case PHY_FUNC_SET_LINK_RATE: 170 rates = funcdata; 171 if (rates->minimum_linkrate) { 172 pm8001_ha->phy[phy_id].minimum_linkrate = 173 rates->minimum_linkrate; 174 } 175 if (rates->maximum_linkrate) { 176 pm8001_ha->phy[phy_id].maximum_linkrate = 177 rates->maximum_linkrate; 178 } 179 if (pm8001_ha->phy[phy_id].phy_state == PHY_LINK_DISABLE) { 180 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); 181 wait_for_completion(&completion); 182 } 183 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 184 PHY_LINK_RESET); 185 break; 186 case PHY_FUNC_HARD_RESET: 187 if (pm8001_ha->phy[phy_id].phy_state == PHY_LINK_DISABLE) { 188 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); 189 wait_for_completion(&completion); 190 } 191 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 192 PHY_HARD_RESET); 193 break; 194 case PHY_FUNC_LINK_RESET: 195 if (pm8001_ha->phy[phy_id].phy_state == PHY_LINK_DISABLE) { 196 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); 197 wait_for_completion(&completion); 198 } 199 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 200 PHY_LINK_RESET); 201 break; 202 case PHY_FUNC_RELEASE_SPINUP_HOLD: 203 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 204 PHY_LINK_RESET); 205 break; 206 case PHY_FUNC_DISABLE: 207 if (pm8001_ha->chip_id != chip_8001) { 208 if (pm8001_ha->phy[phy_id].phy_state == 209 PHY_STATE_LINK_UP_SPCV) { 210 sas_ha = pm8001_ha->sas; 211 sas_phy_disconnected(&phy->sas_phy); 212 sas_ha->notify_phy_event(&phy->sas_phy, 213 PHYE_LOSS_OF_SIGNAL); 214 phy->phy_attached = 0; 215 } 216 } else { 217 if (pm8001_ha->phy[phy_id].phy_state == 218 PHY_STATE_LINK_UP_SPC) { 219 sas_ha = pm8001_ha->sas; 220 sas_phy_disconnected(&phy->sas_phy); 221 sas_ha->notify_phy_event(&phy->sas_phy, 222 PHYE_LOSS_OF_SIGNAL); 223 phy->phy_attached = 0; 224 } 225 } 226 PM8001_CHIP_DISP->phy_stop_req(pm8001_ha, phy_id); 227 break; 228 case PHY_FUNC_GET_EVENTS: 229 spin_lock_irqsave(&pm8001_ha->lock, flags); 230 if (pm8001_ha->chip_id == chip_8001) { 231 if (-1 == pm8001_bar4_shift(pm8001_ha, 232 (phy_id < 4) ? 0x30000 : 0x40000)) { 233 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 234 return -EINVAL; 235 } 236 } 237 { 238 struct sas_phy *phy = sas_phy->phy; 239 uint32_t *qp = (uint32_t *)(((char *) 240 pm8001_ha->io_mem[2].memvirtaddr) 241 + 0x1034 + (0x4000 * (phy_id & 3))); 242 243 phy->invalid_dword_count = qp[0]; 244 phy->running_disparity_error_count = qp[1]; 245 phy->loss_of_dword_sync_count = qp[3]; 246 phy->phy_reset_problem_count = qp[4]; 247 } 248 if (pm8001_ha->chip_id == chip_8001) 249 pm8001_bar4_shift(pm8001_ha, 0); 250 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 251 return 0; 252 default: 253 pm8001_dbg(pm8001_ha, DEVIO, "func 0x%x\n", func); 254 rc = -EOPNOTSUPP; 255 } 256 msleep(300); 257 return rc; 258 } 259 260 /** 261 * pm8001_scan_start - we should enable all HBA phys by sending the phy_start 262 * command to HBA. 263 * @shost: the scsi host data. 264 */ 265 void pm8001_scan_start(struct Scsi_Host *shost) 266 { 267 int i; 268 struct pm8001_hba_info *pm8001_ha; 269 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); 270 pm8001_ha = sha->lldd_ha; 271 /* SAS_RE_INITIALIZATION not available in SPCv/ve */ 272 if (pm8001_ha->chip_id == chip_8001) 273 PM8001_CHIP_DISP->sas_re_init_req(pm8001_ha); 274 for (i = 0; i < pm8001_ha->chip->n_phy; ++i) 275 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, i); 276 } 277 278 int pm8001_scan_finished(struct Scsi_Host *shost, unsigned long time) 279 { 280 struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost); 281 282 /* give the phy enabling interrupt event time to come in (1s 283 * is empirically about all it takes) */ 284 if (time < HZ) 285 return 0; 286 /* Wait for discovery to finish */ 287 sas_drain_work(ha); 288 return 1; 289 } 290 291 /** 292 * pm8001_task_prep_smp - the dispatcher function, prepare data for smp task 293 * @pm8001_ha: our hba card information 294 * @ccb: the ccb which attached to smp task 295 */ 296 static int pm8001_task_prep_smp(struct pm8001_hba_info *pm8001_ha, 297 struct pm8001_ccb_info *ccb) 298 { 299 return PM8001_CHIP_DISP->smp_req(pm8001_ha, ccb); 300 } 301 302 u32 pm8001_get_ncq_tag(struct sas_task *task, u32 *tag) 303 { 304 struct ata_queued_cmd *qc = task->uldd_task; 305 if (qc) { 306 if (qc->tf.command == ATA_CMD_FPDMA_WRITE || 307 qc->tf.command == ATA_CMD_FPDMA_READ || 308 qc->tf.command == ATA_CMD_FPDMA_RECV || 309 qc->tf.command == ATA_CMD_FPDMA_SEND || 310 qc->tf.command == ATA_CMD_NCQ_NON_DATA) { 311 *tag = qc->tag; 312 return 1; 313 } 314 } 315 return 0; 316 } 317 318 /** 319 * pm8001_task_prep_ata - the dispatcher function, prepare data for sata task 320 * @pm8001_ha: our hba card information 321 * @ccb: the ccb which attached to sata task 322 */ 323 static int pm8001_task_prep_ata(struct pm8001_hba_info *pm8001_ha, 324 struct pm8001_ccb_info *ccb) 325 { 326 return PM8001_CHIP_DISP->sata_req(pm8001_ha, ccb); 327 } 328 329 /** 330 * pm8001_task_prep_ssp_tm - the dispatcher function, prepare task management data 331 * @pm8001_ha: our hba card information 332 * @ccb: the ccb which attached to TM 333 * @tmf: the task management IU 334 */ 335 static int pm8001_task_prep_ssp_tm(struct pm8001_hba_info *pm8001_ha, 336 struct pm8001_ccb_info *ccb, struct pm8001_tmf_task *tmf) 337 { 338 return PM8001_CHIP_DISP->ssp_tm_req(pm8001_ha, ccb, tmf); 339 } 340 341 /** 342 * pm8001_task_prep_ssp - the dispatcher function,prepare ssp data for ssp task 343 * @pm8001_ha: our hba card information 344 * @ccb: the ccb which attached to ssp task 345 */ 346 static int pm8001_task_prep_ssp(struct pm8001_hba_info *pm8001_ha, 347 struct pm8001_ccb_info *ccb) 348 { 349 return PM8001_CHIP_DISP->ssp_io_req(pm8001_ha, ccb); 350 } 351 352 /* Find the local port id that's attached to this device */ 353 static int sas_find_local_port_id(struct domain_device *dev) 354 { 355 struct domain_device *pdev = dev->parent; 356 357 /* Directly attached device */ 358 if (!pdev) 359 return dev->port->id; 360 while (pdev) { 361 struct domain_device *pdev_p = pdev->parent; 362 if (!pdev_p) 363 return pdev->port->id; 364 pdev = pdev->parent; 365 } 366 return 0; 367 } 368 369 #define DEV_IS_GONE(pm8001_dev) \ 370 ((!pm8001_dev || (pm8001_dev->dev_type == SAS_PHY_UNUSED))) 371 /** 372 * pm8001_task_exec - queue the task(ssp, smp && ata) to the hardware. 373 * @task: the task to be execute. 374 * @gfp_flags: gfp_flags. 375 * @is_tmf: if it is task management task. 376 * @tmf: the task management IU 377 */ 378 static int pm8001_task_exec(struct sas_task *task, 379 gfp_t gfp_flags, int is_tmf, struct pm8001_tmf_task *tmf) 380 { 381 struct domain_device *dev = task->dev; 382 struct pm8001_hba_info *pm8001_ha; 383 struct pm8001_device *pm8001_dev; 384 struct pm8001_port *port = NULL; 385 struct sas_task *t = task; 386 struct pm8001_ccb_info *ccb; 387 u32 tag = 0xdeadbeef, rc = 0, n_elem = 0; 388 unsigned long flags = 0; 389 enum sas_protocol task_proto = t->task_proto; 390 391 if (!dev->port) { 392 struct task_status_struct *tsm = &t->task_status; 393 tsm->resp = SAS_TASK_UNDELIVERED; 394 tsm->stat = SAS_PHY_DOWN; 395 if (dev->dev_type != SAS_SATA_DEV) 396 t->task_done(t); 397 return 0; 398 } 399 pm8001_ha = pm8001_find_ha_by_dev(task->dev); 400 if (pm8001_ha->controller_fatal_error) { 401 struct task_status_struct *ts = &t->task_status; 402 403 ts->resp = SAS_TASK_UNDELIVERED; 404 t->task_done(t); 405 return 0; 406 } 407 pm8001_dbg(pm8001_ha, IO, "pm8001_task_exec device\n"); 408 spin_lock_irqsave(&pm8001_ha->lock, flags); 409 do { 410 dev = t->dev; 411 pm8001_dev = dev->lldd_dev; 412 port = &pm8001_ha->port[sas_find_local_port_id(dev)]; 413 if (DEV_IS_GONE(pm8001_dev) || !port->port_attached) { 414 if (sas_protocol_ata(task_proto)) { 415 struct task_status_struct *ts = &t->task_status; 416 ts->resp = SAS_TASK_UNDELIVERED; 417 ts->stat = SAS_PHY_DOWN; 418 419 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 420 t->task_done(t); 421 spin_lock_irqsave(&pm8001_ha->lock, flags); 422 continue; 423 } else { 424 struct task_status_struct *ts = &t->task_status; 425 ts->resp = SAS_TASK_UNDELIVERED; 426 ts->stat = SAS_PHY_DOWN; 427 t->task_done(t); 428 continue; 429 } 430 } 431 rc = pm8001_tag_alloc(pm8001_ha, &tag); 432 if (rc) 433 goto err_out; 434 ccb = &pm8001_ha->ccb_info[tag]; 435 436 if (!sas_protocol_ata(task_proto)) { 437 if (t->num_scatter) { 438 n_elem = dma_map_sg(pm8001_ha->dev, 439 t->scatter, 440 t->num_scatter, 441 t->data_dir); 442 if (!n_elem) { 443 rc = -ENOMEM; 444 goto err_out_tag; 445 } 446 } 447 } else { 448 n_elem = t->num_scatter; 449 } 450 451 t->lldd_task = ccb; 452 ccb->n_elem = n_elem; 453 ccb->ccb_tag = tag; 454 ccb->task = t; 455 ccb->device = pm8001_dev; 456 switch (task_proto) { 457 case SAS_PROTOCOL_SMP: 458 atomic_inc(&pm8001_dev->running_req); 459 rc = pm8001_task_prep_smp(pm8001_ha, ccb); 460 break; 461 case SAS_PROTOCOL_SSP: 462 atomic_inc(&pm8001_dev->running_req); 463 if (is_tmf) 464 rc = pm8001_task_prep_ssp_tm(pm8001_ha, 465 ccb, tmf); 466 else 467 rc = pm8001_task_prep_ssp(pm8001_ha, ccb); 468 break; 469 case SAS_PROTOCOL_SATA: 470 case SAS_PROTOCOL_STP: 471 atomic_inc(&pm8001_dev->running_req); 472 rc = pm8001_task_prep_ata(pm8001_ha, ccb); 473 break; 474 default: 475 dev_printk(KERN_ERR, pm8001_ha->dev, 476 "unknown sas_task proto: 0x%x\n", task_proto); 477 rc = -EINVAL; 478 break; 479 } 480 481 if (rc) { 482 pm8001_dbg(pm8001_ha, IO, "rc is %x\n", rc); 483 atomic_dec(&pm8001_dev->running_req); 484 goto err_out_tag; 485 } 486 /* TODO: select normal or high priority */ 487 spin_lock(&t->task_state_lock); 488 t->task_state_flags |= SAS_TASK_AT_INITIATOR; 489 spin_unlock(&t->task_state_lock); 490 } while (0); 491 rc = 0; 492 goto out_done; 493 494 err_out_tag: 495 pm8001_tag_free(pm8001_ha, tag); 496 err_out: 497 dev_printk(KERN_ERR, pm8001_ha->dev, "pm8001 exec failed[%d]!\n", rc); 498 if (!sas_protocol_ata(task_proto)) 499 if (n_elem) 500 dma_unmap_sg(pm8001_ha->dev, t->scatter, t->num_scatter, 501 t->data_dir); 502 out_done: 503 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 504 return rc; 505 } 506 507 /** 508 * pm8001_queue_command - register for upper layer used, all IO commands sent 509 * to HBA are from this interface. 510 * @task: the task to be execute. 511 * @gfp_flags: gfp_flags 512 */ 513 int pm8001_queue_command(struct sas_task *task, gfp_t gfp_flags) 514 { 515 return pm8001_task_exec(task, gfp_flags, 0, NULL); 516 } 517 518 /** 519 * pm8001_ccb_task_free - free the sg for ssp and smp command, free the ccb. 520 * @pm8001_ha: our hba card information 521 * @ccb: the ccb which attached to ssp task 522 * @task: the task to be free. 523 * @ccb_idx: ccb index. 524 */ 525 void pm8001_ccb_task_free(struct pm8001_hba_info *pm8001_ha, 526 struct sas_task *task, struct pm8001_ccb_info *ccb, u32 ccb_idx) 527 { 528 if (!ccb->task) 529 return; 530 if (!sas_protocol_ata(task->task_proto)) 531 if (ccb->n_elem) 532 dma_unmap_sg(pm8001_ha->dev, task->scatter, 533 task->num_scatter, task->data_dir); 534 535 switch (task->task_proto) { 536 case SAS_PROTOCOL_SMP: 537 dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_resp, 1, 538 DMA_FROM_DEVICE); 539 dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_req, 1, 540 DMA_TO_DEVICE); 541 break; 542 543 case SAS_PROTOCOL_SATA: 544 case SAS_PROTOCOL_STP: 545 case SAS_PROTOCOL_SSP: 546 default: 547 /* do nothing */ 548 break; 549 } 550 task->lldd_task = NULL; 551 ccb->task = NULL; 552 ccb->ccb_tag = 0xFFFFFFFF; 553 ccb->open_retry = 0; 554 pm8001_tag_free(pm8001_ha, ccb_idx); 555 } 556 557 /** 558 * pm8001_alloc_dev - find a empty pm8001_device 559 * @pm8001_ha: our hba card information 560 */ 561 static struct pm8001_device *pm8001_alloc_dev(struct pm8001_hba_info *pm8001_ha) 562 { 563 u32 dev; 564 for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) { 565 if (pm8001_ha->devices[dev].dev_type == SAS_PHY_UNUSED) { 566 pm8001_ha->devices[dev].id = dev; 567 return &pm8001_ha->devices[dev]; 568 } 569 } 570 if (dev == PM8001_MAX_DEVICES) { 571 pm8001_dbg(pm8001_ha, FAIL, 572 "max support %d devices, ignore ..\n", 573 PM8001_MAX_DEVICES); 574 } 575 return NULL; 576 } 577 /** 578 * pm8001_find_dev - find a matching pm8001_device 579 * @pm8001_ha: our hba card information 580 * @device_id: device ID to match against 581 */ 582 struct pm8001_device *pm8001_find_dev(struct pm8001_hba_info *pm8001_ha, 583 u32 device_id) 584 { 585 u32 dev; 586 for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) { 587 if (pm8001_ha->devices[dev].device_id == device_id) 588 return &pm8001_ha->devices[dev]; 589 } 590 if (dev == PM8001_MAX_DEVICES) { 591 pm8001_dbg(pm8001_ha, FAIL, "NO MATCHING DEVICE FOUND !!!\n"); 592 } 593 return NULL; 594 } 595 596 static void pm8001_free_dev(struct pm8001_device *pm8001_dev) 597 { 598 u32 id = pm8001_dev->id; 599 memset(pm8001_dev, 0, sizeof(*pm8001_dev)); 600 pm8001_dev->id = id; 601 pm8001_dev->dev_type = SAS_PHY_UNUSED; 602 pm8001_dev->device_id = PM8001_MAX_DEVICES; 603 pm8001_dev->sas_device = NULL; 604 } 605 606 /** 607 * pm8001_dev_found_notify - libsas notify a device is found. 608 * @dev: the device structure which sas layer used. 609 * 610 * when libsas find a sas domain device, it should tell the LLDD that 611 * device is found, and then LLDD register this device to HBA firmware 612 * by the command "OPC_INB_REG_DEV", after that the HBA will assign a 613 * device ID(according to device's sas address) and returned it to LLDD. From 614 * now on, we communicate with HBA FW with the device ID which HBA assigned 615 * rather than sas address. it is the necessary step for our HBA but it is 616 * the optional for other HBA driver. 617 */ 618 static int pm8001_dev_found_notify(struct domain_device *dev) 619 { 620 unsigned long flags = 0; 621 int res = 0; 622 struct pm8001_hba_info *pm8001_ha = NULL; 623 struct domain_device *parent_dev = dev->parent; 624 struct pm8001_device *pm8001_device; 625 DECLARE_COMPLETION_ONSTACK(completion); 626 u32 flag = 0; 627 pm8001_ha = pm8001_find_ha_by_dev(dev); 628 spin_lock_irqsave(&pm8001_ha->lock, flags); 629 630 pm8001_device = pm8001_alloc_dev(pm8001_ha); 631 if (!pm8001_device) { 632 res = -1; 633 goto found_out; 634 } 635 pm8001_device->sas_device = dev; 636 dev->lldd_dev = pm8001_device; 637 pm8001_device->dev_type = dev->dev_type; 638 pm8001_device->dcompletion = &completion; 639 if (parent_dev && dev_is_expander(parent_dev->dev_type)) { 640 int phy_id; 641 struct ex_phy *phy; 642 for (phy_id = 0; phy_id < parent_dev->ex_dev.num_phys; 643 phy_id++) { 644 phy = &parent_dev->ex_dev.ex_phy[phy_id]; 645 if (SAS_ADDR(phy->attached_sas_addr) 646 == SAS_ADDR(dev->sas_addr)) { 647 pm8001_device->attached_phy = phy_id; 648 break; 649 } 650 } 651 if (phy_id == parent_dev->ex_dev.num_phys) { 652 pm8001_dbg(pm8001_ha, FAIL, 653 "Error: no attached dev:%016llx at ex:%016llx.\n", 654 SAS_ADDR(dev->sas_addr), 655 SAS_ADDR(parent_dev->sas_addr)); 656 res = -1; 657 } 658 } else { 659 if (dev->dev_type == SAS_SATA_DEV) { 660 pm8001_device->attached_phy = 661 dev->rphy->identify.phy_identifier; 662 flag = 1; /* directly sata */ 663 } 664 } /*register this device to HBA*/ 665 pm8001_dbg(pm8001_ha, DISC, "Found device\n"); 666 PM8001_CHIP_DISP->reg_dev_req(pm8001_ha, pm8001_device, flag); 667 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 668 wait_for_completion(&completion); 669 if (dev->dev_type == SAS_END_DEVICE) 670 msleep(50); 671 pm8001_ha->flags = PM8001F_RUN_TIME; 672 return 0; 673 found_out: 674 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 675 return res; 676 } 677 678 int pm8001_dev_found(struct domain_device *dev) 679 { 680 return pm8001_dev_found_notify(dev); 681 } 682 683 void pm8001_task_done(struct sas_task *task) 684 { 685 if (!del_timer(&task->slow_task->timer)) 686 return; 687 complete(&task->slow_task->completion); 688 } 689 690 static void pm8001_tmf_timedout(struct timer_list *t) 691 { 692 struct sas_task_slow *slow = from_timer(slow, t, timer); 693 struct sas_task *task = slow->task; 694 695 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 696 complete(&task->slow_task->completion); 697 } 698 699 #define PM8001_TASK_TIMEOUT 20 700 /** 701 * pm8001_exec_internal_tmf_task - execute some task management commands. 702 * @dev: the wanted device. 703 * @tmf: which task management wanted to be take. 704 * @para_len: para_len. 705 * @parameter: ssp task parameter. 706 * 707 * when errors or exception happened, we may want to do something, for example 708 * abort the issued task which result in this execption, it is done by calling 709 * this function, note it is also with the task execute interface. 710 */ 711 static int pm8001_exec_internal_tmf_task(struct domain_device *dev, 712 void *parameter, u32 para_len, struct pm8001_tmf_task *tmf) 713 { 714 int res, retry; 715 struct sas_task *task = NULL; 716 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); 717 struct pm8001_device *pm8001_dev = dev->lldd_dev; 718 DECLARE_COMPLETION_ONSTACK(completion_setstate); 719 720 for (retry = 0; retry < 3; retry++) { 721 task = sas_alloc_slow_task(GFP_KERNEL); 722 if (!task) 723 return -ENOMEM; 724 725 task->dev = dev; 726 task->task_proto = dev->tproto; 727 memcpy(&task->ssp_task, parameter, para_len); 728 task->task_done = pm8001_task_done; 729 task->slow_task->timer.function = pm8001_tmf_timedout; 730 task->slow_task->timer.expires = jiffies + PM8001_TASK_TIMEOUT*HZ; 731 add_timer(&task->slow_task->timer); 732 733 res = pm8001_task_exec(task, GFP_KERNEL, 1, tmf); 734 735 if (res) { 736 del_timer(&task->slow_task->timer); 737 pm8001_dbg(pm8001_ha, FAIL, "Executing internal task failed\n"); 738 goto ex_err; 739 } 740 wait_for_completion(&task->slow_task->completion); 741 if (pm8001_ha->chip_id != chip_8001) { 742 pm8001_dev->setds_completion = &completion_setstate; 743 PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, 744 pm8001_dev, 0x01); 745 wait_for_completion(&completion_setstate); 746 } 747 res = -TMF_RESP_FUNC_FAILED; 748 /* Even TMF timed out, return direct. */ 749 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 750 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 751 pm8001_dbg(pm8001_ha, FAIL, 752 "TMF task[%x]timeout.\n", 753 tmf->tmf); 754 goto ex_err; 755 } 756 } 757 758 if (task->task_status.resp == SAS_TASK_COMPLETE && 759 task->task_status.stat == SAM_STAT_GOOD) { 760 res = TMF_RESP_FUNC_COMPLETE; 761 break; 762 } 763 764 if (task->task_status.resp == SAS_TASK_COMPLETE && 765 task->task_status.stat == SAS_DATA_UNDERRUN) { 766 /* no error, but return the number of bytes of 767 * underrun */ 768 res = task->task_status.residual; 769 break; 770 } 771 772 if (task->task_status.resp == SAS_TASK_COMPLETE && 773 task->task_status.stat == SAS_DATA_OVERRUN) { 774 pm8001_dbg(pm8001_ha, FAIL, "Blocked task error.\n"); 775 res = -EMSGSIZE; 776 break; 777 } else { 778 pm8001_dbg(pm8001_ha, EH, 779 " Task to dev %016llx response:0x%x status 0x%x\n", 780 SAS_ADDR(dev->sas_addr), 781 task->task_status.resp, 782 task->task_status.stat); 783 sas_free_task(task); 784 task = NULL; 785 } 786 } 787 ex_err: 788 BUG_ON(retry == 3 && task != NULL); 789 sas_free_task(task); 790 return res; 791 } 792 793 static int 794 pm8001_exec_internal_task_abort(struct pm8001_hba_info *pm8001_ha, 795 struct pm8001_device *pm8001_dev, struct domain_device *dev, u32 flag, 796 u32 task_tag) 797 { 798 int res, retry; 799 u32 ccb_tag; 800 struct pm8001_ccb_info *ccb; 801 struct sas_task *task = NULL; 802 803 for (retry = 0; retry < 3; retry++) { 804 task = sas_alloc_slow_task(GFP_KERNEL); 805 if (!task) 806 return -ENOMEM; 807 808 task->dev = dev; 809 task->task_proto = dev->tproto; 810 task->task_done = pm8001_task_done; 811 task->slow_task->timer.function = pm8001_tmf_timedout; 812 task->slow_task->timer.expires = jiffies + PM8001_TASK_TIMEOUT * HZ; 813 add_timer(&task->slow_task->timer); 814 815 res = pm8001_tag_alloc(pm8001_ha, &ccb_tag); 816 if (res) 817 goto ex_err; 818 ccb = &pm8001_ha->ccb_info[ccb_tag]; 819 ccb->device = pm8001_dev; 820 ccb->ccb_tag = ccb_tag; 821 ccb->task = task; 822 ccb->n_elem = 0; 823 824 res = PM8001_CHIP_DISP->task_abort(pm8001_ha, 825 pm8001_dev, flag, task_tag, ccb_tag); 826 827 if (res) { 828 del_timer(&task->slow_task->timer); 829 pm8001_dbg(pm8001_ha, FAIL, "Executing internal task failed\n"); 830 goto ex_err; 831 } 832 wait_for_completion(&task->slow_task->completion); 833 res = TMF_RESP_FUNC_FAILED; 834 /* Even TMF timed out, return direct. */ 835 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 836 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 837 pm8001_dbg(pm8001_ha, FAIL, 838 "TMF task timeout.\n"); 839 goto ex_err; 840 } 841 } 842 843 if (task->task_status.resp == SAS_TASK_COMPLETE && 844 task->task_status.stat == SAM_STAT_GOOD) { 845 res = TMF_RESP_FUNC_COMPLETE; 846 break; 847 848 } else { 849 pm8001_dbg(pm8001_ha, EH, 850 " Task to dev %016llx response: 0x%x status 0x%x\n", 851 SAS_ADDR(dev->sas_addr), 852 task->task_status.resp, 853 task->task_status.stat); 854 sas_free_task(task); 855 task = NULL; 856 } 857 } 858 ex_err: 859 BUG_ON(retry == 3 && task != NULL); 860 sas_free_task(task); 861 return res; 862 } 863 864 /** 865 * pm8001_dev_gone_notify - see the comments for "pm8001_dev_found_notify" 866 * @dev: the device structure which sas layer used. 867 */ 868 static void pm8001_dev_gone_notify(struct domain_device *dev) 869 { 870 unsigned long flags = 0; 871 struct pm8001_hba_info *pm8001_ha; 872 struct pm8001_device *pm8001_dev = dev->lldd_dev; 873 874 pm8001_ha = pm8001_find_ha_by_dev(dev); 875 spin_lock_irqsave(&pm8001_ha->lock, flags); 876 if (pm8001_dev) { 877 u32 device_id = pm8001_dev->device_id; 878 879 pm8001_dbg(pm8001_ha, DISC, "found dev[%d:%x] is gone.\n", 880 pm8001_dev->device_id, pm8001_dev->dev_type); 881 if (atomic_read(&pm8001_dev->running_req)) { 882 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 883 pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , 884 dev, 1, 0); 885 while (atomic_read(&pm8001_dev->running_req)) 886 msleep(20); 887 spin_lock_irqsave(&pm8001_ha->lock, flags); 888 } 889 PM8001_CHIP_DISP->dereg_dev_req(pm8001_ha, device_id); 890 pm8001_free_dev(pm8001_dev); 891 } else { 892 pm8001_dbg(pm8001_ha, DISC, "Found dev has gone.\n"); 893 } 894 dev->lldd_dev = NULL; 895 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 896 } 897 898 void pm8001_dev_gone(struct domain_device *dev) 899 { 900 pm8001_dev_gone_notify(dev); 901 } 902 903 static int pm8001_issue_ssp_tmf(struct domain_device *dev, 904 u8 *lun, struct pm8001_tmf_task *tmf) 905 { 906 struct sas_ssp_task ssp_task; 907 if (!(dev->tproto & SAS_PROTOCOL_SSP)) 908 return TMF_RESP_FUNC_ESUPP; 909 910 memcpy((u8 *)&ssp_task.LUN, lun, 8); 911 return pm8001_exec_internal_tmf_task(dev, &ssp_task, sizeof(ssp_task), 912 tmf); 913 } 914 915 /* retry commands by ha, by task and/or by device */ 916 void pm8001_open_reject_retry( 917 struct pm8001_hba_info *pm8001_ha, 918 struct sas_task *task_to_close, 919 struct pm8001_device *device_to_close) 920 { 921 int i; 922 unsigned long flags; 923 924 if (pm8001_ha == NULL) 925 return; 926 927 spin_lock_irqsave(&pm8001_ha->lock, flags); 928 929 for (i = 0; i < PM8001_MAX_CCB; i++) { 930 struct sas_task *task; 931 struct task_status_struct *ts; 932 struct pm8001_device *pm8001_dev; 933 unsigned long flags1; 934 u32 tag; 935 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[i]; 936 937 pm8001_dev = ccb->device; 938 if (!pm8001_dev || (pm8001_dev->dev_type == SAS_PHY_UNUSED)) 939 continue; 940 if (!device_to_close) { 941 uintptr_t d = (uintptr_t)pm8001_dev 942 - (uintptr_t)&pm8001_ha->devices; 943 if (((d % sizeof(*pm8001_dev)) != 0) 944 || ((d / sizeof(*pm8001_dev)) >= PM8001_MAX_DEVICES)) 945 continue; 946 } else if (pm8001_dev != device_to_close) 947 continue; 948 tag = ccb->ccb_tag; 949 if (!tag || (tag == 0xFFFFFFFF)) 950 continue; 951 task = ccb->task; 952 if (!task || !task->task_done) 953 continue; 954 if (task_to_close && (task != task_to_close)) 955 continue; 956 ts = &task->task_status; 957 ts->resp = SAS_TASK_COMPLETE; 958 /* Force the midlayer to retry */ 959 ts->stat = SAS_OPEN_REJECT; 960 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 961 if (pm8001_dev) 962 atomic_dec(&pm8001_dev->running_req); 963 spin_lock_irqsave(&task->task_state_lock, flags1); 964 task->task_state_flags &= ~SAS_TASK_STATE_PENDING; 965 task->task_state_flags &= ~SAS_TASK_AT_INITIATOR; 966 task->task_state_flags |= SAS_TASK_STATE_DONE; 967 if (unlikely((task->task_state_flags 968 & SAS_TASK_STATE_ABORTED))) { 969 spin_unlock_irqrestore(&task->task_state_lock, 970 flags1); 971 pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); 972 } else { 973 spin_unlock_irqrestore(&task->task_state_lock, 974 flags1); 975 pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); 976 mb();/* in order to force CPU ordering */ 977 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 978 task->task_done(task); 979 spin_lock_irqsave(&pm8001_ha->lock, flags); 980 } 981 } 982 983 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 984 } 985 986 /** 987 * Standard mandates link reset for ATA (type 0) and hard reset for 988 * SSP (type 1) , only for RECOVERY 989 * @dev: the device structure for the device to reset. 990 */ 991 int pm8001_I_T_nexus_reset(struct domain_device *dev) 992 { 993 int rc = TMF_RESP_FUNC_FAILED; 994 struct pm8001_device *pm8001_dev; 995 struct pm8001_hba_info *pm8001_ha; 996 struct sas_phy *phy; 997 998 if (!dev || !dev->lldd_dev) 999 return -ENODEV; 1000 1001 pm8001_dev = dev->lldd_dev; 1002 pm8001_ha = pm8001_find_ha_by_dev(dev); 1003 phy = sas_get_local_phy(dev); 1004 1005 if (dev_is_sata(dev)) { 1006 if (scsi_is_sas_phy_local(phy)) { 1007 rc = 0; 1008 goto out; 1009 } 1010 rc = sas_phy_reset(phy, 1); 1011 if (rc) { 1012 pm8001_dbg(pm8001_ha, EH, 1013 "phy reset failed for device %x\n" 1014 "with rc %d\n", pm8001_dev->device_id, rc); 1015 rc = TMF_RESP_FUNC_FAILED; 1016 goto out; 1017 } 1018 msleep(2000); 1019 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , 1020 dev, 1, 0); 1021 if (rc) { 1022 pm8001_dbg(pm8001_ha, EH, "task abort failed %x\n" 1023 "with rc %d\n", pm8001_dev->device_id, rc); 1024 rc = TMF_RESP_FUNC_FAILED; 1025 } 1026 } else { 1027 rc = sas_phy_reset(phy, 1); 1028 msleep(2000); 1029 } 1030 pm8001_dbg(pm8001_ha, EH, " for device[%x]:rc=%d\n", 1031 pm8001_dev->device_id, rc); 1032 out: 1033 sas_put_local_phy(phy); 1034 return rc; 1035 } 1036 1037 /* 1038 * This function handle the IT_NEXUS_XXX event or completion 1039 * status code for SSP/SATA/SMP I/O request. 1040 */ 1041 int pm8001_I_T_nexus_event_handler(struct domain_device *dev) 1042 { 1043 int rc = TMF_RESP_FUNC_FAILED; 1044 struct pm8001_device *pm8001_dev; 1045 struct pm8001_hba_info *pm8001_ha; 1046 struct sas_phy *phy; 1047 1048 if (!dev || !dev->lldd_dev) 1049 return -1; 1050 1051 pm8001_dev = dev->lldd_dev; 1052 pm8001_ha = pm8001_find_ha_by_dev(dev); 1053 1054 pm8001_dbg(pm8001_ha, EH, "I_T_Nexus handler invoked !!\n"); 1055 1056 phy = sas_get_local_phy(dev); 1057 1058 if (dev_is_sata(dev)) { 1059 DECLARE_COMPLETION_ONSTACK(completion_setstate); 1060 if (scsi_is_sas_phy_local(phy)) { 1061 rc = 0; 1062 goto out; 1063 } 1064 /* send internal ssp/sata/smp abort command to FW */ 1065 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , 1066 dev, 1, 0); 1067 msleep(100); 1068 1069 /* deregister the target device */ 1070 pm8001_dev_gone_notify(dev); 1071 msleep(200); 1072 1073 /*send phy reset to hard reset target */ 1074 rc = sas_phy_reset(phy, 1); 1075 msleep(2000); 1076 pm8001_dev->setds_completion = &completion_setstate; 1077 1078 wait_for_completion(&completion_setstate); 1079 } else { 1080 /* send internal ssp/sata/smp abort command to FW */ 1081 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , 1082 dev, 1, 0); 1083 msleep(100); 1084 1085 /* deregister the target device */ 1086 pm8001_dev_gone_notify(dev); 1087 msleep(200); 1088 1089 /*send phy reset to hard reset target */ 1090 rc = sas_phy_reset(phy, 1); 1091 msleep(2000); 1092 } 1093 pm8001_dbg(pm8001_ha, EH, " for device[%x]:rc=%d\n", 1094 pm8001_dev->device_id, rc); 1095 out: 1096 sas_put_local_phy(phy); 1097 1098 return rc; 1099 } 1100 /* mandatory SAM-3, the task reset the specified LUN*/ 1101 int pm8001_lu_reset(struct domain_device *dev, u8 *lun) 1102 { 1103 int rc = TMF_RESP_FUNC_FAILED; 1104 struct pm8001_tmf_task tmf_task; 1105 struct pm8001_device *pm8001_dev = dev->lldd_dev; 1106 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); 1107 DECLARE_COMPLETION_ONSTACK(completion_setstate); 1108 if (dev_is_sata(dev)) { 1109 struct sas_phy *phy = sas_get_local_phy(dev); 1110 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev , 1111 dev, 1, 0); 1112 rc = sas_phy_reset(phy, 1); 1113 sas_put_local_phy(phy); 1114 pm8001_dev->setds_completion = &completion_setstate; 1115 rc = PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, 1116 pm8001_dev, 0x01); 1117 wait_for_completion(&completion_setstate); 1118 } else { 1119 tmf_task.tmf = TMF_LU_RESET; 1120 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1121 } 1122 /* If failed, fall-through I_T_Nexus reset */ 1123 pm8001_dbg(pm8001_ha, EH, "for device[%x]:rc=%d\n", 1124 pm8001_dev->device_id, rc); 1125 return rc; 1126 } 1127 1128 /* optional SAM-3 */ 1129 int pm8001_query_task(struct sas_task *task) 1130 { 1131 u32 tag = 0xdeadbeef; 1132 struct scsi_lun lun; 1133 struct pm8001_tmf_task tmf_task; 1134 int rc = TMF_RESP_FUNC_FAILED; 1135 if (unlikely(!task || !task->lldd_task || !task->dev)) 1136 return rc; 1137 1138 if (task->task_proto & SAS_PROTOCOL_SSP) { 1139 struct scsi_cmnd *cmnd = task->uldd_task; 1140 struct domain_device *dev = task->dev; 1141 struct pm8001_hba_info *pm8001_ha = 1142 pm8001_find_ha_by_dev(dev); 1143 1144 int_to_scsilun(cmnd->device->lun, &lun); 1145 rc = pm8001_find_tag(task, &tag); 1146 if (rc == 0) { 1147 rc = TMF_RESP_FUNC_FAILED; 1148 return rc; 1149 } 1150 pm8001_dbg(pm8001_ha, EH, "Query:[%16ph]\n", cmnd->cmnd); 1151 tmf_task.tmf = TMF_QUERY_TASK; 1152 tmf_task.tag_of_task_to_be_managed = tag; 1153 1154 rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task); 1155 switch (rc) { 1156 /* The task is still in Lun, release it then */ 1157 case TMF_RESP_FUNC_SUCC: 1158 pm8001_dbg(pm8001_ha, EH, 1159 "The task is still in Lun\n"); 1160 break; 1161 /* The task is not in Lun or failed, reset the phy */ 1162 case TMF_RESP_FUNC_FAILED: 1163 case TMF_RESP_FUNC_COMPLETE: 1164 pm8001_dbg(pm8001_ha, EH, 1165 "The task is not in Lun or failed, reset the phy\n"); 1166 break; 1167 } 1168 } 1169 pr_err("pm80xx: rc= %d\n", rc); 1170 return rc; 1171 } 1172 1173 /* mandatory SAM-3, still need free task/ccb info, abort the specified task */ 1174 int pm8001_abort_task(struct sas_task *task) 1175 { 1176 unsigned long flags; 1177 u32 tag; 1178 struct domain_device *dev ; 1179 struct pm8001_hba_info *pm8001_ha; 1180 struct scsi_lun lun; 1181 struct pm8001_device *pm8001_dev; 1182 struct pm8001_tmf_task tmf_task; 1183 int rc = TMF_RESP_FUNC_FAILED, ret; 1184 u32 phy_id; 1185 struct sas_task_slow slow_task; 1186 if (unlikely(!task || !task->lldd_task || !task->dev)) 1187 return TMF_RESP_FUNC_FAILED; 1188 dev = task->dev; 1189 pm8001_dev = dev->lldd_dev; 1190 pm8001_ha = pm8001_find_ha_by_dev(dev); 1191 phy_id = pm8001_dev->attached_phy; 1192 ret = pm8001_find_tag(task, &tag); 1193 if (ret == 0) { 1194 pm8001_info(pm8001_ha, "no tag for task:%p\n", task); 1195 return TMF_RESP_FUNC_FAILED; 1196 } 1197 spin_lock_irqsave(&task->task_state_lock, flags); 1198 if (task->task_state_flags & SAS_TASK_STATE_DONE) { 1199 spin_unlock_irqrestore(&task->task_state_lock, flags); 1200 return TMF_RESP_FUNC_COMPLETE; 1201 } 1202 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 1203 if (task->slow_task == NULL) { 1204 init_completion(&slow_task.completion); 1205 task->slow_task = &slow_task; 1206 } 1207 spin_unlock_irqrestore(&task->task_state_lock, flags); 1208 if (task->task_proto & SAS_PROTOCOL_SSP) { 1209 struct scsi_cmnd *cmnd = task->uldd_task; 1210 int_to_scsilun(cmnd->device->lun, &lun); 1211 tmf_task.tmf = TMF_ABORT_TASK; 1212 tmf_task.tag_of_task_to_be_managed = tag; 1213 rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task); 1214 pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1215 pm8001_dev->sas_device, 0, tag); 1216 } else if (task->task_proto & SAS_PROTOCOL_SATA || 1217 task->task_proto & SAS_PROTOCOL_STP) { 1218 if (pm8001_ha->chip_id == chip_8006) { 1219 DECLARE_COMPLETION_ONSTACK(completion_reset); 1220 DECLARE_COMPLETION_ONSTACK(completion); 1221 struct pm8001_phy *phy = pm8001_ha->phy + phy_id; 1222 1223 /* 1. Set Device state as Recovery */ 1224 pm8001_dev->setds_completion = &completion; 1225 PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, 1226 pm8001_dev, 0x03); 1227 wait_for_completion(&completion); 1228 1229 /* 2. Send Phy Control Hard Reset */ 1230 reinit_completion(&completion); 1231 phy->port_reset_status = PORT_RESET_TMO; 1232 phy->reset_success = false; 1233 phy->enable_completion = &completion; 1234 phy->reset_completion = &completion_reset; 1235 ret = PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 1236 PHY_HARD_RESET); 1237 if (ret) { 1238 phy->enable_completion = NULL; 1239 phy->reset_completion = NULL; 1240 goto out; 1241 } 1242 1243 /* In the case of the reset timeout/fail we still 1244 * abort the command at the firmware. The assumption 1245 * here is that the drive is off doing something so 1246 * that it's not processing requests, and we want to 1247 * avoid getting a completion for this and either 1248 * leaking the task in libsas or losing the race and 1249 * getting a double free. 1250 */ 1251 pm8001_dbg(pm8001_ha, MSG, 1252 "Waiting for local phy ctl\n"); 1253 ret = wait_for_completion_timeout(&completion, 1254 PM8001_TASK_TIMEOUT * HZ); 1255 if (!ret || !phy->reset_success) { 1256 phy->enable_completion = NULL; 1257 phy->reset_completion = NULL; 1258 } else { 1259 /* 3. Wait for Port Reset complete or 1260 * Port reset TMO 1261 */ 1262 pm8001_dbg(pm8001_ha, MSG, 1263 "Waiting for Port reset\n"); 1264 ret = wait_for_completion_timeout( 1265 &completion_reset, 1266 PM8001_TASK_TIMEOUT * HZ); 1267 if (!ret) 1268 phy->reset_completion = NULL; 1269 WARN_ON(phy->port_reset_status == 1270 PORT_RESET_TMO); 1271 if (phy->port_reset_status == PORT_RESET_TMO) { 1272 pm8001_dev_gone_notify(dev); 1273 goto out; 1274 } 1275 } 1276 1277 /* 1278 * 4. SATA Abort ALL 1279 * we wait for the task to be aborted so that the task 1280 * is removed from the ccb. on success the caller is 1281 * going to free the task. 1282 */ 1283 ret = pm8001_exec_internal_task_abort(pm8001_ha, 1284 pm8001_dev, pm8001_dev->sas_device, 1, tag); 1285 if (ret) 1286 goto out; 1287 ret = wait_for_completion_timeout( 1288 &task->slow_task->completion, 1289 PM8001_TASK_TIMEOUT * HZ); 1290 if (!ret) 1291 goto out; 1292 1293 /* 5. Set Device State as Operational */ 1294 reinit_completion(&completion); 1295 pm8001_dev->setds_completion = &completion; 1296 PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, 1297 pm8001_dev, 0x01); 1298 wait_for_completion(&completion); 1299 } else { 1300 rc = pm8001_exec_internal_task_abort(pm8001_ha, 1301 pm8001_dev, pm8001_dev->sas_device, 0, tag); 1302 } 1303 rc = TMF_RESP_FUNC_COMPLETE; 1304 } else if (task->task_proto & SAS_PROTOCOL_SMP) { 1305 /* SMP */ 1306 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1307 pm8001_dev->sas_device, 0, tag); 1308 1309 } 1310 out: 1311 spin_lock_irqsave(&task->task_state_lock, flags); 1312 if (task->slow_task == &slow_task) 1313 task->slow_task = NULL; 1314 spin_unlock_irqrestore(&task->task_state_lock, flags); 1315 if (rc != TMF_RESP_FUNC_COMPLETE) 1316 pm8001_info(pm8001_ha, "rc= %d\n", rc); 1317 return rc; 1318 } 1319 1320 int pm8001_abort_task_set(struct domain_device *dev, u8 *lun) 1321 { 1322 struct pm8001_tmf_task tmf_task; 1323 1324 tmf_task.tmf = TMF_ABORT_TASK_SET; 1325 return pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1326 } 1327 1328 int pm8001_clear_aca(struct domain_device *dev, u8 *lun) 1329 { 1330 struct pm8001_tmf_task tmf_task; 1331 1332 tmf_task.tmf = TMF_CLEAR_ACA; 1333 return pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1334 } 1335 1336 int pm8001_clear_task_set(struct domain_device *dev, u8 *lun) 1337 { 1338 struct pm8001_tmf_task tmf_task; 1339 struct pm8001_device *pm8001_dev = dev->lldd_dev; 1340 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); 1341 1342 pm8001_dbg(pm8001_ha, EH, "I_T_L_Q clear task set[%x]\n", 1343 pm8001_dev->device_id); 1344 tmf_task.tmf = TMF_CLEAR_TASK_SET; 1345 return pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1346 } 1347 1348