1 /* 2 * PMC-Sierra PM8001/8081/8088/8089 SAS/SATA based host adapters driver 3 * 4 * Copyright (c) 2008-2009 USI Co., Ltd. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * substantially similar to the "NO WARRANTY" disclaimer below 15 * ("Disclaimer") and any redistribution must be conditioned upon 16 * including a substantially similar Disclaimer requirement for further 17 * binary redistribution. 18 * 3. Neither the names of the above-listed copyright holders nor the names 19 * of any contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * Alternatively, this software may be distributed under the terms of the 23 * GNU General Public License ("GPL") version 2 as published by the Free 24 * Software Foundation. 25 * 26 * NO WARRANTY 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 35 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 36 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGES. 38 * 39 */ 40 41 #include <linux/slab.h> 42 #include "pm8001_sas.h" 43 44 /** 45 * pm8001_find_tag - from sas task to find out tag that belongs to this task 46 * @task: the task sent to the LLDD 47 * @tag: the found tag associated with the task 48 */ 49 static int pm8001_find_tag(struct sas_task *task, u32 *tag) 50 { 51 if (task->lldd_task) { 52 struct pm8001_ccb_info *ccb; 53 ccb = task->lldd_task; 54 *tag = ccb->ccb_tag; 55 return 1; 56 } 57 return 0; 58 } 59 60 /** 61 * pm8001_tag_free - free the no more needed tag 62 * @pm8001_ha: our hba struct 63 * @tag: the found tag associated with the task 64 */ 65 void pm8001_tag_free(struct pm8001_hba_info *pm8001_ha, u32 tag) 66 { 67 void *bitmap = pm8001_ha->tags; 68 clear_bit(tag, bitmap); 69 } 70 71 /** 72 * pm8001_tag_alloc - allocate a empty tag for task used. 73 * @pm8001_ha: our hba struct 74 * @tag_out: the found empty tag . 75 */ 76 inline int pm8001_tag_alloc(struct pm8001_hba_info *pm8001_ha, u32 *tag_out) 77 { 78 unsigned int tag; 79 void *bitmap = pm8001_ha->tags; 80 unsigned long flags; 81 82 spin_lock_irqsave(&pm8001_ha->bitmap_lock, flags); 83 tag = find_first_zero_bit(bitmap, pm8001_ha->tags_num); 84 if (tag >= pm8001_ha->tags_num) { 85 spin_unlock_irqrestore(&pm8001_ha->bitmap_lock, flags); 86 return -SAS_QUEUE_FULL; 87 } 88 set_bit(tag, bitmap); 89 spin_unlock_irqrestore(&pm8001_ha->bitmap_lock, flags); 90 *tag_out = tag; 91 return 0; 92 } 93 94 void pm8001_tag_init(struct pm8001_hba_info *pm8001_ha) 95 { 96 int i; 97 for (i = 0; i < pm8001_ha->tags_num; ++i) 98 pm8001_tag_free(pm8001_ha, i); 99 } 100 101 /** 102 * pm8001_mem_alloc - allocate memory for pm8001. 103 * @pdev: pci device. 104 * @virt_addr: the allocated virtual address 105 * @pphys_addr: DMA address for this device 106 * @pphys_addr_hi: the physical address high byte address. 107 * @pphys_addr_lo: the physical address low byte address. 108 * @mem_size: memory size. 109 * @align: requested byte alignment 110 */ 111 int pm8001_mem_alloc(struct pci_dev *pdev, void **virt_addr, 112 dma_addr_t *pphys_addr, u32 *pphys_addr_hi, 113 u32 *pphys_addr_lo, u32 mem_size, u32 align) 114 { 115 caddr_t mem_virt_alloc; 116 dma_addr_t mem_dma_handle; 117 u64 phys_align; 118 u64 align_offset = 0; 119 if (align) 120 align_offset = (dma_addr_t)align - 1; 121 mem_virt_alloc = dma_alloc_coherent(&pdev->dev, mem_size + align, 122 &mem_dma_handle, GFP_KERNEL); 123 if (!mem_virt_alloc) 124 return -ENOMEM; 125 *pphys_addr = mem_dma_handle; 126 phys_align = (*pphys_addr + align_offset) & ~align_offset; 127 *virt_addr = (void *)mem_virt_alloc + phys_align - *pphys_addr; 128 *pphys_addr_hi = upper_32_bits(phys_align); 129 *pphys_addr_lo = lower_32_bits(phys_align); 130 return 0; 131 } 132 133 /** 134 * pm8001_find_ha_by_dev - from domain device which come from sas layer to 135 * find out our hba struct. 136 * @dev: the domain device which from sas layer. 137 */ 138 static 139 struct pm8001_hba_info *pm8001_find_ha_by_dev(struct domain_device *dev) 140 { 141 struct sas_ha_struct *sha = dev->port->ha; 142 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha; 143 return pm8001_ha; 144 } 145 146 /** 147 * pm8001_phy_control - this function should be registered to 148 * sas_domain_function_template to provide libsas used, note: this is just 149 * control the HBA phy rather than other expander phy if you want control 150 * other phy, you should use SMP command. 151 * @sas_phy: which phy in HBA phys. 152 * @func: the operation. 153 * @funcdata: always NULL. 154 */ 155 int pm8001_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func, 156 void *funcdata) 157 { 158 int rc = 0, phy_id = sas_phy->id; 159 struct pm8001_hba_info *pm8001_ha = NULL; 160 struct sas_phy_linkrates *rates; 161 struct pm8001_phy *phy; 162 DECLARE_COMPLETION_ONSTACK(completion); 163 unsigned long flags; 164 pm8001_ha = sas_phy->ha->lldd_ha; 165 phy = &pm8001_ha->phy[phy_id]; 166 pm8001_ha->phy[phy_id].enable_completion = &completion; 167 switch (func) { 168 case PHY_FUNC_SET_LINK_RATE: 169 rates = funcdata; 170 if (rates->minimum_linkrate) { 171 pm8001_ha->phy[phy_id].minimum_linkrate = 172 rates->minimum_linkrate; 173 } 174 if (rates->maximum_linkrate) { 175 pm8001_ha->phy[phy_id].maximum_linkrate = 176 rates->maximum_linkrate; 177 } 178 if (pm8001_ha->phy[phy_id].phy_state == PHY_LINK_DISABLE) { 179 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); 180 wait_for_completion(&completion); 181 } 182 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 183 PHY_LINK_RESET); 184 break; 185 case PHY_FUNC_HARD_RESET: 186 if (pm8001_ha->phy[phy_id].phy_state == PHY_LINK_DISABLE) { 187 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); 188 wait_for_completion(&completion); 189 } 190 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 191 PHY_HARD_RESET); 192 break; 193 case PHY_FUNC_LINK_RESET: 194 if (pm8001_ha->phy[phy_id].phy_state == PHY_LINK_DISABLE) { 195 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); 196 wait_for_completion(&completion); 197 } 198 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 199 PHY_LINK_RESET); 200 break; 201 case PHY_FUNC_RELEASE_SPINUP_HOLD: 202 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 203 PHY_LINK_RESET); 204 break; 205 case PHY_FUNC_DISABLE: 206 if (pm8001_ha->chip_id != chip_8001) { 207 if (pm8001_ha->phy[phy_id].phy_state == 208 PHY_STATE_LINK_UP_SPCV) { 209 sas_phy_disconnected(&phy->sas_phy); 210 sas_notify_phy_event(&phy->sas_phy, 211 PHYE_LOSS_OF_SIGNAL, GFP_KERNEL); 212 phy->phy_attached = 0; 213 } 214 } else { 215 if (pm8001_ha->phy[phy_id].phy_state == 216 PHY_STATE_LINK_UP_SPC) { 217 sas_phy_disconnected(&phy->sas_phy); 218 sas_notify_phy_event(&phy->sas_phy, 219 PHYE_LOSS_OF_SIGNAL, GFP_KERNEL); 220 phy->phy_attached = 0; 221 } 222 } 223 PM8001_CHIP_DISP->phy_stop_req(pm8001_ha, phy_id); 224 break; 225 case PHY_FUNC_GET_EVENTS: 226 spin_lock_irqsave(&pm8001_ha->lock, flags); 227 if (pm8001_ha->chip_id == chip_8001) { 228 if (-1 == pm8001_bar4_shift(pm8001_ha, 229 (phy_id < 4) ? 0x30000 : 0x40000)) { 230 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 231 return -EINVAL; 232 } 233 } 234 { 235 struct sas_phy *phy = sas_phy->phy; 236 uint32_t *qp = (uint32_t *)(((char *) 237 pm8001_ha->io_mem[2].memvirtaddr) 238 + 0x1034 + (0x4000 * (phy_id & 3))); 239 240 phy->invalid_dword_count = qp[0]; 241 phy->running_disparity_error_count = qp[1]; 242 phy->loss_of_dword_sync_count = qp[3]; 243 phy->phy_reset_problem_count = qp[4]; 244 } 245 if (pm8001_ha->chip_id == chip_8001) 246 pm8001_bar4_shift(pm8001_ha, 0); 247 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 248 return 0; 249 default: 250 pm8001_dbg(pm8001_ha, DEVIO, "func 0x%x\n", func); 251 rc = -EOPNOTSUPP; 252 } 253 msleep(300); 254 return rc; 255 } 256 257 /** 258 * pm8001_scan_start - we should enable all HBA phys by sending the phy_start 259 * command to HBA. 260 * @shost: the scsi host data. 261 */ 262 void pm8001_scan_start(struct Scsi_Host *shost) 263 { 264 int i; 265 struct pm8001_hba_info *pm8001_ha; 266 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); 267 DECLARE_COMPLETION_ONSTACK(completion); 268 pm8001_ha = sha->lldd_ha; 269 /* SAS_RE_INITIALIZATION not available in SPCv/ve */ 270 if (pm8001_ha->chip_id == chip_8001) 271 PM8001_CHIP_DISP->sas_re_init_req(pm8001_ha); 272 for (i = 0; i < pm8001_ha->chip->n_phy; ++i) { 273 pm8001_ha->phy[i].enable_completion = &completion; 274 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, i); 275 wait_for_completion(&completion); 276 msleep(300); 277 } 278 } 279 280 int pm8001_scan_finished(struct Scsi_Host *shost, unsigned long time) 281 { 282 struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost); 283 284 /* give the phy enabling interrupt event time to come in (1s 285 * is empirically about all it takes) */ 286 if (time < HZ) 287 return 0; 288 /* Wait for discovery to finish */ 289 sas_drain_work(ha); 290 return 1; 291 } 292 293 /** 294 * pm8001_task_prep_smp - the dispatcher function, prepare data for smp task 295 * @pm8001_ha: our hba card information 296 * @ccb: the ccb which attached to smp task 297 */ 298 static int pm8001_task_prep_smp(struct pm8001_hba_info *pm8001_ha, 299 struct pm8001_ccb_info *ccb) 300 { 301 return PM8001_CHIP_DISP->smp_req(pm8001_ha, ccb); 302 } 303 304 u32 pm8001_get_ncq_tag(struct sas_task *task, u32 *tag) 305 { 306 struct ata_queued_cmd *qc = task->uldd_task; 307 if (qc) { 308 if (qc->tf.command == ATA_CMD_FPDMA_WRITE || 309 qc->tf.command == ATA_CMD_FPDMA_READ || 310 qc->tf.command == ATA_CMD_FPDMA_RECV || 311 qc->tf.command == ATA_CMD_FPDMA_SEND || 312 qc->tf.command == ATA_CMD_NCQ_NON_DATA) { 313 *tag = qc->tag; 314 return 1; 315 } 316 } 317 return 0; 318 } 319 320 /** 321 * pm8001_task_prep_ata - the dispatcher function, prepare data for sata task 322 * @pm8001_ha: our hba card information 323 * @ccb: the ccb which attached to sata task 324 */ 325 static int pm8001_task_prep_ata(struct pm8001_hba_info *pm8001_ha, 326 struct pm8001_ccb_info *ccb) 327 { 328 return PM8001_CHIP_DISP->sata_req(pm8001_ha, ccb); 329 } 330 331 /** 332 * pm8001_task_prep_ssp_tm - the dispatcher function, prepare task management data 333 * @pm8001_ha: our hba card information 334 * @ccb: the ccb which attached to TM 335 * @tmf: the task management IU 336 */ 337 static int pm8001_task_prep_ssp_tm(struct pm8001_hba_info *pm8001_ha, 338 struct pm8001_ccb_info *ccb, struct pm8001_tmf_task *tmf) 339 { 340 return PM8001_CHIP_DISP->ssp_tm_req(pm8001_ha, ccb, tmf); 341 } 342 343 /** 344 * pm8001_task_prep_ssp - the dispatcher function, prepare ssp data for ssp task 345 * @pm8001_ha: our hba card information 346 * @ccb: the ccb which attached to ssp task 347 */ 348 static int pm8001_task_prep_ssp(struct pm8001_hba_info *pm8001_ha, 349 struct pm8001_ccb_info *ccb) 350 { 351 return PM8001_CHIP_DISP->ssp_io_req(pm8001_ha, ccb); 352 } 353 354 /* Find the local port id that's attached to this device */ 355 static int sas_find_local_port_id(struct domain_device *dev) 356 { 357 struct domain_device *pdev = dev->parent; 358 359 /* Directly attached device */ 360 if (!pdev) 361 return dev->port->id; 362 while (pdev) { 363 struct domain_device *pdev_p = pdev->parent; 364 if (!pdev_p) 365 return pdev->port->id; 366 pdev = pdev->parent; 367 } 368 return 0; 369 } 370 371 #define DEV_IS_GONE(pm8001_dev) \ 372 ((!pm8001_dev || (pm8001_dev->dev_type == SAS_PHY_UNUSED))) 373 /** 374 * pm8001_task_exec - queue the task(ssp, smp && ata) to the hardware. 375 * @task: the task to be execute. 376 * @gfp_flags: gfp_flags. 377 * @is_tmf: if it is task management task. 378 * @tmf: the task management IU 379 */ 380 static int pm8001_task_exec(struct sas_task *task, 381 gfp_t gfp_flags, int is_tmf, struct pm8001_tmf_task *tmf) 382 { 383 struct domain_device *dev = task->dev; 384 struct pm8001_hba_info *pm8001_ha; 385 struct pm8001_device *pm8001_dev; 386 struct pm8001_port *port = NULL; 387 struct sas_task *t = task; 388 struct pm8001_ccb_info *ccb; 389 u32 tag = 0xdeadbeef, rc = 0, n_elem = 0; 390 unsigned long flags = 0; 391 enum sas_protocol task_proto = t->task_proto; 392 393 if (!dev->port) { 394 struct task_status_struct *tsm = &t->task_status; 395 tsm->resp = SAS_TASK_UNDELIVERED; 396 tsm->stat = SAS_PHY_DOWN; 397 if (dev->dev_type != SAS_SATA_DEV) 398 t->task_done(t); 399 return 0; 400 } 401 pm8001_ha = pm8001_find_ha_by_dev(task->dev); 402 if (pm8001_ha->controller_fatal_error) { 403 struct task_status_struct *ts = &t->task_status; 404 405 ts->resp = SAS_TASK_UNDELIVERED; 406 t->task_done(t); 407 return 0; 408 } 409 pm8001_dbg(pm8001_ha, IO, "pm8001_task_exec device\n"); 410 spin_lock_irqsave(&pm8001_ha->lock, flags); 411 do { 412 dev = t->dev; 413 pm8001_dev = dev->lldd_dev; 414 port = &pm8001_ha->port[sas_find_local_port_id(dev)]; 415 if (DEV_IS_GONE(pm8001_dev) || !port->port_attached) { 416 if (sas_protocol_ata(task_proto)) { 417 struct task_status_struct *ts = &t->task_status; 418 ts->resp = SAS_TASK_UNDELIVERED; 419 ts->stat = SAS_PHY_DOWN; 420 421 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 422 t->task_done(t); 423 spin_lock_irqsave(&pm8001_ha->lock, flags); 424 continue; 425 } else { 426 struct task_status_struct *ts = &t->task_status; 427 ts->resp = SAS_TASK_UNDELIVERED; 428 ts->stat = SAS_PHY_DOWN; 429 t->task_done(t); 430 continue; 431 } 432 } 433 rc = pm8001_tag_alloc(pm8001_ha, &tag); 434 if (rc) 435 goto err_out; 436 ccb = &pm8001_ha->ccb_info[tag]; 437 438 if (!sas_protocol_ata(task_proto)) { 439 if (t->num_scatter) { 440 n_elem = dma_map_sg(pm8001_ha->dev, 441 t->scatter, 442 t->num_scatter, 443 t->data_dir); 444 if (!n_elem) { 445 rc = -ENOMEM; 446 goto err_out_tag; 447 } 448 } 449 } else { 450 n_elem = t->num_scatter; 451 } 452 453 t->lldd_task = ccb; 454 ccb->n_elem = n_elem; 455 ccb->ccb_tag = tag; 456 ccb->task = t; 457 ccb->device = pm8001_dev; 458 switch (task_proto) { 459 case SAS_PROTOCOL_SMP: 460 atomic_inc(&pm8001_dev->running_req); 461 rc = pm8001_task_prep_smp(pm8001_ha, ccb); 462 break; 463 case SAS_PROTOCOL_SSP: 464 atomic_inc(&pm8001_dev->running_req); 465 if (is_tmf) 466 rc = pm8001_task_prep_ssp_tm(pm8001_ha, 467 ccb, tmf); 468 else 469 rc = pm8001_task_prep_ssp(pm8001_ha, ccb); 470 break; 471 case SAS_PROTOCOL_SATA: 472 case SAS_PROTOCOL_STP: 473 atomic_inc(&pm8001_dev->running_req); 474 rc = pm8001_task_prep_ata(pm8001_ha, ccb); 475 break; 476 default: 477 dev_printk(KERN_ERR, pm8001_ha->dev, 478 "unknown sas_task proto: 0x%x\n", task_proto); 479 rc = -EINVAL; 480 break; 481 } 482 483 if (rc) { 484 pm8001_dbg(pm8001_ha, IO, "rc is %x\n", rc); 485 atomic_dec(&pm8001_dev->running_req); 486 goto err_out_tag; 487 } 488 /* TODO: select normal or high priority */ 489 spin_lock(&t->task_state_lock); 490 t->task_state_flags |= SAS_TASK_AT_INITIATOR; 491 spin_unlock(&t->task_state_lock); 492 } while (0); 493 rc = 0; 494 goto out_done; 495 496 err_out_tag: 497 pm8001_tag_free(pm8001_ha, tag); 498 err_out: 499 dev_printk(KERN_ERR, pm8001_ha->dev, "pm8001 exec failed[%d]!\n", rc); 500 if (!sas_protocol_ata(task_proto)) 501 if (n_elem) 502 dma_unmap_sg(pm8001_ha->dev, t->scatter, t->num_scatter, 503 t->data_dir); 504 out_done: 505 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 506 return rc; 507 } 508 509 /** 510 * pm8001_queue_command - register for upper layer used, all IO commands sent 511 * to HBA are from this interface. 512 * @task: the task to be execute. 513 * @gfp_flags: gfp_flags 514 */ 515 int pm8001_queue_command(struct sas_task *task, gfp_t gfp_flags) 516 { 517 return pm8001_task_exec(task, gfp_flags, 0, NULL); 518 } 519 520 /** 521 * pm8001_ccb_task_free - free the sg for ssp and smp command, free the ccb. 522 * @pm8001_ha: our hba card information 523 * @ccb: the ccb which attached to ssp task 524 * @task: the task to be free. 525 * @ccb_idx: ccb index. 526 */ 527 void pm8001_ccb_task_free(struct pm8001_hba_info *pm8001_ha, 528 struct sas_task *task, struct pm8001_ccb_info *ccb, u32 ccb_idx) 529 { 530 if (!ccb->task) 531 return; 532 if (!sas_protocol_ata(task->task_proto)) 533 if (ccb->n_elem) 534 dma_unmap_sg(pm8001_ha->dev, task->scatter, 535 task->num_scatter, task->data_dir); 536 537 switch (task->task_proto) { 538 case SAS_PROTOCOL_SMP: 539 dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_resp, 1, 540 DMA_FROM_DEVICE); 541 dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_req, 1, 542 DMA_TO_DEVICE); 543 break; 544 545 case SAS_PROTOCOL_SATA: 546 case SAS_PROTOCOL_STP: 547 case SAS_PROTOCOL_SSP: 548 default: 549 /* do nothing */ 550 break; 551 } 552 task->lldd_task = NULL; 553 ccb->task = NULL; 554 ccb->ccb_tag = 0xFFFFFFFF; 555 ccb->open_retry = 0; 556 pm8001_tag_free(pm8001_ha, ccb_idx); 557 } 558 559 /** 560 * pm8001_alloc_dev - find a empty pm8001_device 561 * @pm8001_ha: our hba card information 562 */ 563 static struct pm8001_device *pm8001_alloc_dev(struct pm8001_hba_info *pm8001_ha) 564 { 565 u32 dev; 566 for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) { 567 if (pm8001_ha->devices[dev].dev_type == SAS_PHY_UNUSED) { 568 pm8001_ha->devices[dev].id = dev; 569 return &pm8001_ha->devices[dev]; 570 } 571 } 572 if (dev == PM8001_MAX_DEVICES) { 573 pm8001_dbg(pm8001_ha, FAIL, 574 "max support %d devices, ignore ..\n", 575 PM8001_MAX_DEVICES); 576 } 577 return NULL; 578 } 579 /** 580 * pm8001_find_dev - find a matching pm8001_device 581 * @pm8001_ha: our hba card information 582 * @device_id: device ID to match against 583 */ 584 struct pm8001_device *pm8001_find_dev(struct pm8001_hba_info *pm8001_ha, 585 u32 device_id) 586 { 587 u32 dev; 588 for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) { 589 if (pm8001_ha->devices[dev].device_id == device_id) 590 return &pm8001_ha->devices[dev]; 591 } 592 if (dev == PM8001_MAX_DEVICES) { 593 pm8001_dbg(pm8001_ha, FAIL, "NO MATCHING DEVICE FOUND !!!\n"); 594 } 595 return NULL; 596 } 597 598 void pm8001_free_dev(struct pm8001_device *pm8001_dev) 599 { 600 u32 id = pm8001_dev->id; 601 memset(pm8001_dev, 0, sizeof(*pm8001_dev)); 602 pm8001_dev->id = id; 603 pm8001_dev->dev_type = SAS_PHY_UNUSED; 604 pm8001_dev->device_id = PM8001_MAX_DEVICES; 605 pm8001_dev->sas_device = NULL; 606 } 607 608 /** 609 * pm8001_dev_found_notify - libsas notify a device is found. 610 * @dev: the device structure which sas layer used. 611 * 612 * when libsas find a sas domain device, it should tell the LLDD that 613 * device is found, and then LLDD register this device to HBA firmware 614 * by the command "OPC_INB_REG_DEV", after that the HBA will assign a 615 * device ID(according to device's sas address) and returned it to LLDD. From 616 * now on, we communicate with HBA FW with the device ID which HBA assigned 617 * rather than sas address. it is the necessary step for our HBA but it is 618 * the optional for other HBA driver. 619 */ 620 static int pm8001_dev_found_notify(struct domain_device *dev) 621 { 622 unsigned long flags = 0; 623 int res = 0; 624 struct pm8001_hba_info *pm8001_ha = NULL; 625 struct domain_device *parent_dev = dev->parent; 626 struct pm8001_device *pm8001_device; 627 DECLARE_COMPLETION_ONSTACK(completion); 628 u32 flag = 0; 629 pm8001_ha = pm8001_find_ha_by_dev(dev); 630 spin_lock_irqsave(&pm8001_ha->lock, flags); 631 632 pm8001_device = pm8001_alloc_dev(pm8001_ha); 633 if (!pm8001_device) { 634 res = -1; 635 goto found_out; 636 } 637 pm8001_device->sas_device = dev; 638 dev->lldd_dev = pm8001_device; 639 pm8001_device->dev_type = dev->dev_type; 640 pm8001_device->dcompletion = &completion; 641 if (parent_dev && dev_is_expander(parent_dev->dev_type)) { 642 int phy_id; 643 struct ex_phy *phy; 644 for (phy_id = 0; phy_id < parent_dev->ex_dev.num_phys; 645 phy_id++) { 646 phy = &parent_dev->ex_dev.ex_phy[phy_id]; 647 if (SAS_ADDR(phy->attached_sas_addr) 648 == SAS_ADDR(dev->sas_addr)) { 649 pm8001_device->attached_phy = phy_id; 650 break; 651 } 652 } 653 if (phy_id == parent_dev->ex_dev.num_phys) { 654 pm8001_dbg(pm8001_ha, FAIL, 655 "Error: no attached dev:%016llx at ex:%016llx.\n", 656 SAS_ADDR(dev->sas_addr), 657 SAS_ADDR(parent_dev->sas_addr)); 658 res = -1; 659 } 660 } else { 661 if (dev->dev_type == SAS_SATA_DEV) { 662 pm8001_device->attached_phy = 663 dev->rphy->identify.phy_identifier; 664 flag = 1; /* directly sata */ 665 } 666 } /*register this device to HBA*/ 667 pm8001_dbg(pm8001_ha, DISC, "Found device\n"); 668 PM8001_CHIP_DISP->reg_dev_req(pm8001_ha, pm8001_device, flag); 669 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 670 wait_for_completion(&completion); 671 if (dev->dev_type == SAS_END_DEVICE) 672 msleep(50); 673 pm8001_ha->flags = PM8001F_RUN_TIME; 674 return 0; 675 found_out: 676 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 677 return res; 678 } 679 680 int pm8001_dev_found(struct domain_device *dev) 681 { 682 return pm8001_dev_found_notify(dev); 683 } 684 685 void pm8001_task_done(struct sas_task *task) 686 { 687 if (!del_timer(&task->slow_task->timer)) 688 return; 689 complete(&task->slow_task->completion); 690 } 691 692 static void pm8001_tmf_timedout(struct timer_list *t) 693 { 694 struct sas_task_slow *slow = from_timer(slow, t, timer); 695 struct sas_task *task = slow->task; 696 697 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 698 complete(&task->slow_task->completion); 699 } 700 701 #define PM8001_TASK_TIMEOUT 20 702 /** 703 * pm8001_exec_internal_tmf_task - execute some task management commands. 704 * @dev: the wanted device. 705 * @tmf: which task management wanted to be take. 706 * @para_len: para_len. 707 * @parameter: ssp task parameter. 708 * 709 * when errors or exception happened, we may want to do something, for example 710 * abort the issued task which result in this exception, it is done by calling 711 * this function, note it is also with the task execute interface. 712 */ 713 static int pm8001_exec_internal_tmf_task(struct domain_device *dev, 714 void *parameter, u32 para_len, struct pm8001_tmf_task *tmf) 715 { 716 int res, retry; 717 struct sas_task *task = NULL; 718 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); 719 struct pm8001_device *pm8001_dev = dev->lldd_dev; 720 DECLARE_COMPLETION_ONSTACK(completion_setstate); 721 722 for (retry = 0; retry < 3; retry++) { 723 task = sas_alloc_slow_task(GFP_KERNEL); 724 if (!task) 725 return -ENOMEM; 726 727 task->dev = dev; 728 task->task_proto = dev->tproto; 729 memcpy(&task->ssp_task, parameter, para_len); 730 task->task_done = pm8001_task_done; 731 task->slow_task->timer.function = pm8001_tmf_timedout; 732 task->slow_task->timer.expires = jiffies + PM8001_TASK_TIMEOUT*HZ; 733 add_timer(&task->slow_task->timer); 734 735 res = pm8001_task_exec(task, GFP_KERNEL, 1, tmf); 736 737 if (res) { 738 del_timer(&task->slow_task->timer); 739 pm8001_dbg(pm8001_ha, FAIL, "Executing internal task failed\n"); 740 goto ex_err; 741 } 742 wait_for_completion(&task->slow_task->completion); 743 if (pm8001_ha->chip_id != chip_8001) { 744 pm8001_dev->setds_completion = &completion_setstate; 745 PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, 746 pm8001_dev, DS_OPERATIONAL); 747 wait_for_completion(&completion_setstate); 748 } 749 res = -TMF_RESP_FUNC_FAILED; 750 /* Even TMF timed out, return direct. */ 751 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 752 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 753 pm8001_dbg(pm8001_ha, FAIL, 754 "TMF task[%x]timeout.\n", 755 tmf->tmf); 756 goto ex_err; 757 } 758 } 759 760 if (task->task_status.resp == SAS_TASK_COMPLETE && 761 task->task_status.stat == SAS_SAM_STAT_GOOD) { 762 res = TMF_RESP_FUNC_COMPLETE; 763 break; 764 } 765 766 if (task->task_status.resp == SAS_TASK_COMPLETE && 767 task->task_status.stat == SAS_DATA_UNDERRUN) { 768 /* no error, but return the number of bytes of 769 * underrun */ 770 res = task->task_status.residual; 771 break; 772 } 773 774 if (task->task_status.resp == SAS_TASK_COMPLETE && 775 task->task_status.stat == SAS_DATA_OVERRUN) { 776 pm8001_dbg(pm8001_ha, FAIL, "Blocked task error.\n"); 777 res = -EMSGSIZE; 778 break; 779 } else { 780 pm8001_dbg(pm8001_ha, EH, 781 " Task to dev %016llx response:0x%x status 0x%x\n", 782 SAS_ADDR(dev->sas_addr), 783 task->task_status.resp, 784 task->task_status.stat); 785 sas_free_task(task); 786 task = NULL; 787 } 788 } 789 ex_err: 790 BUG_ON(retry == 3 && task != NULL); 791 sas_free_task(task); 792 return res; 793 } 794 795 static int 796 pm8001_exec_internal_task_abort(struct pm8001_hba_info *pm8001_ha, 797 struct pm8001_device *pm8001_dev, struct domain_device *dev, u32 flag, 798 u32 task_tag) 799 { 800 int res, retry; 801 u32 ccb_tag; 802 struct pm8001_ccb_info *ccb; 803 struct sas_task *task = NULL; 804 805 for (retry = 0; retry < 3; retry++) { 806 task = sas_alloc_slow_task(GFP_KERNEL); 807 if (!task) 808 return -ENOMEM; 809 810 task->dev = dev; 811 task->task_proto = dev->tproto; 812 task->task_done = pm8001_task_done; 813 task->slow_task->timer.function = pm8001_tmf_timedout; 814 task->slow_task->timer.expires = jiffies + PM8001_TASK_TIMEOUT * HZ; 815 add_timer(&task->slow_task->timer); 816 817 res = pm8001_tag_alloc(pm8001_ha, &ccb_tag); 818 if (res) 819 goto ex_err; 820 ccb = &pm8001_ha->ccb_info[ccb_tag]; 821 ccb->device = pm8001_dev; 822 ccb->ccb_tag = ccb_tag; 823 ccb->task = task; 824 ccb->n_elem = 0; 825 826 res = PM8001_CHIP_DISP->task_abort(pm8001_ha, 827 pm8001_dev, flag, task_tag, ccb_tag); 828 829 if (res) { 830 del_timer(&task->slow_task->timer); 831 pm8001_dbg(pm8001_ha, FAIL, "Executing internal task failed\n"); 832 goto ex_err; 833 } 834 wait_for_completion(&task->slow_task->completion); 835 res = TMF_RESP_FUNC_FAILED; 836 /* Even TMF timed out, return direct. */ 837 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 838 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 839 pm8001_dbg(pm8001_ha, FAIL, 840 "TMF task timeout.\n"); 841 goto ex_err; 842 } 843 } 844 845 if (task->task_status.resp == SAS_TASK_COMPLETE && 846 task->task_status.stat == SAS_SAM_STAT_GOOD) { 847 res = TMF_RESP_FUNC_COMPLETE; 848 break; 849 850 } else { 851 pm8001_dbg(pm8001_ha, EH, 852 " Task to dev %016llx response: 0x%x status 0x%x\n", 853 SAS_ADDR(dev->sas_addr), 854 task->task_status.resp, 855 task->task_status.stat); 856 sas_free_task(task); 857 task = NULL; 858 } 859 } 860 ex_err: 861 BUG_ON(retry == 3 && task != NULL); 862 sas_free_task(task); 863 return res; 864 } 865 866 /** 867 * pm8001_dev_gone_notify - see the comments for "pm8001_dev_found_notify" 868 * @dev: the device structure which sas layer used. 869 */ 870 static void pm8001_dev_gone_notify(struct domain_device *dev) 871 { 872 unsigned long flags = 0; 873 struct pm8001_hba_info *pm8001_ha; 874 struct pm8001_device *pm8001_dev = dev->lldd_dev; 875 876 pm8001_ha = pm8001_find_ha_by_dev(dev); 877 spin_lock_irqsave(&pm8001_ha->lock, flags); 878 if (pm8001_dev) { 879 u32 device_id = pm8001_dev->device_id; 880 881 pm8001_dbg(pm8001_ha, DISC, "found dev[%d:%x] is gone.\n", 882 pm8001_dev->device_id, pm8001_dev->dev_type); 883 if (atomic_read(&pm8001_dev->running_req)) { 884 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 885 pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 886 dev, 1, 0); 887 while (atomic_read(&pm8001_dev->running_req)) 888 msleep(20); 889 spin_lock_irqsave(&pm8001_ha->lock, flags); 890 } 891 PM8001_CHIP_DISP->dereg_dev_req(pm8001_ha, device_id); 892 pm8001_free_dev(pm8001_dev); 893 } else { 894 pm8001_dbg(pm8001_ha, DISC, "Found dev has gone.\n"); 895 } 896 dev->lldd_dev = NULL; 897 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 898 } 899 900 void pm8001_dev_gone(struct domain_device *dev) 901 { 902 pm8001_dev_gone_notify(dev); 903 } 904 905 static int pm8001_issue_ssp_tmf(struct domain_device *dev, 906 u8 *lun, struct pm8001_tmf_task *tmf) 907 { 908 struct sas_ssp_task ssp_task; 909 if (!(dev->tproto & SAS_PROTOCOL_SSP)) 910 return TMF_RESP_FUNC_ESUPP; 911 912 memcpy((u8 *)&ssp_task.LUN, lun, 8); 913 return pm8001_exec_internal_tmf_task(dev, &ssp_task, sizeof(ssp_task), 914 tmf); 915 } 916 917 /* retry commands by ha, by task and/or by device */ 918 void pm8001_open_reject_retry( 919 struct pm8001_hba_info *pm8001_ha, 920 struct sas_task *task_to_close, 921 struct pm8001_device *device_to_close) 922 { 923 int i; 924 unsigned long flags; 925 926 if (pm8001_ha == NULL) 927 return; 928 929 spin_lock_irqsave(&pm8001_ha->lock, flags); 930 931 for (i = 0; i < PM8001_MAX_CCB; i++) { 932 struct sas_task *task; 933 struct task_status_struct *ts; 934 struct pm8001_device *pm8001_dev; 935 unsigned long flags1; 936 u32 tag; 937 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[i]; 938 939 pm8001_dev = ccb->device; 940 if (!pm8001_dev || (pm8001_dev->dev_type == SAS_PHY_UNUSED)) 941 continue; 942 if (!device_to_close) { 943 uintptr_t d = (uintptr_t)pm8001_dev 944 - (uintptr_t)&pm8001_ha->devices; 945 if (((d % sizeof(*pm8001_dev)) != 0) 946 || ((d / sizeof(*pm8001_dev)) >= PM8001_MAX_DEVICES)) 947 continue; 948 } else if (pm8001_dev != device_to_close) 949 continue; 950 tag = ccb->ccb_tag; 951 if (!tag || (tag == 0xFFFFFFFF)) 952 continue; 953 task = ccb->task; 954 if (!task || !task->task_done) 955 continue; 956 if (task_to_close && (task != task_to_close)) 957 continue; 958 ts = &task->task_status; 959 ts->resp = SAS_TASK_COMPLETE; 960 /* Force the midlayer to retry */ 961 ts->stat = SAS_OPEN_REJECT; 962 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 963 if (pm8001_dev) 964 atomic_dec(&pm8001_dev->running_req); 965 spin_lock_irqsave(&task->task_state_lock, flags1); 966 task->task_state_flags &= ~SAS_TASK_STATE_PENDING; 967 task->task_state_flags &= ~SAS_TASK_AT_INITIATOR; 968 task->task_state_flags |= SAS_TASK_STATE_DONE; 969 if (unlikely((task->task_state_flags 970 & SAS_TASK_STATE_ABORTED))) { 971 spin_unlock_irqrestore(&task->task_state_lock, 972 flags1); 973 pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); 974 } else { 975 spin_unlock_irqrestore(&task->task_state_lock, 976 flags1); 977 pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); 978 mb();/* in order to force CPU ordering */ 979 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 980 task->task_done(task); 981 spin_lock_irqsave(&pm8001_ha->lock, flags); 982 } 983 } 984 985 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 986 } 987 988 /** 989 * pm8001_I_T_nexus_reset() - reset the initiator/target connection 990 * @dev: the device structure for the device to reset. 991 * 992 * Standard mandates link reset for ATA (type 0) and hard reset for 993 * SSP (type 1), only for RECOVERY 994 */ 995 int pm8001_I_T_nexus_reset(struct domain_device *dev) 996 { 997 int rc = TMF_RESP_FUNC_FAILED; 998 struct pm8001_device *pm8001_dev; 999 struct pm8001_hba_info *pm8001_ha; 1000 struct sas_phy *phy; 1001 1002 if (!dev || !dev->lldd_dev) 1003 return -ENODEV; 1004 1005 pm8001_dev = dev->lldd_dev; 1006 pm8001_ha = pm8001_find_ha_by_dev(dev); 1007 phy = sas_get_local_phy(dev); 1008 1009 if (dev_is_sata(dev)) { 1010 if (scsi_is_sas_phy_local(phy)) { 1011 rc = 0; 1012 goto out; 1013 } 1014 rc = sas_phy_reset(phy, 1); 1015 if (rc) { 1016 pm8001_dbg(pm8001_ha, EH, 1017 "phy reset failed for device %x\n" 1018 "with rc %d\n", pm8001_dev->device_id, rc); 1019 rc = TMF_RESP_FUNC_FAILED; 1020 goto out; 1021 } 1022 msleep(2000); 1023 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1024 dev, 1, 0); 1025 if (rc) { 1026 pm8001_dbg(pm8001_ha, EH, "task abort failed %x\n" 1027 "with rc %d\n", pm8001_dev->device_id, rc); 1028 rc = TMF_RESP_FUNC_FAILED; 1029 } 1030 } else { 1031 rc = sas_phy_reset(phy, 1); 1032 msleep(2000); 1033 } 1034 pm8001_dbg(pm8001_ha, EH, " for device[%x]:rc=%d\n", 1035 pm8001_dev->device_id, rc); 1036 out: 1037 sas_put_local_phy(phy); 1038 return rc; 1039 } 1040 1041 /* 1042 * This function handle the IT_NEXUS_XXX event or completion 1043 * status code for SSP/SATA/SMP I/O request. 1044 */ 1045 int pm8001_I_T_nexus_event_handler(struct domain_device *dev) 1046 { 1047 int rc = TMF_RESP_FUNC_FAILED; 1048 struct pm8001_device *pm8001_dev; 1049 struct pm8001_hba_info *pm8001_ha; 1050 struct sas_phy *phy; 1051 1052 if (!dev || !dev->lldd_dev) 1053 return -1; 1054 1055 pm8001_dev = dev->lldd_dev; 1056 pm8001_ha = pm8001_find_ha_by_dev(dev); 1057 1058 pm8001_dbg(pm8001_ha, EH, "I_T_Nexus handler invoked !!\n"); 1059 1060 phy = sas_get_local_phy(dev); 1061 1062 if (dev_is_sata(dev)) { 1063 DECLARE_COMPLETION_ONSTACK(completion_setstate); 1064 if (scsi_is_sas_phy_local(phy)) { 1065 rc = 0; 1066 goto out; 1067 } 1068 /* send internal ssp/sata/smp abort command to FW */ 1069 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1070 dev, 1, 0); 1071 msleep(100); 1072 1073 /* deregister the target device */ 1074 pm8001_dev_gone_notify(dev); 1075 msleep(200); 1076 1077 /*send phy reset to hard reset target */ 1078 rc = sas_phy_reset(phy, 1); 1079 msleep(2000); 1080 pm8001_dev->setds_completion = &completion_setstate; 1081 1082 wait_for_completion(&completion_setstate); 1083 } else { 1084 /* send internal ssp/sata/smp abort command to FW */ 1085 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1086 dev, 1, 0); 1087 msleep(100); 1088 1089 /* deregister the target device */ 1090 pm8001_dev_gone_notify(dev); 1091 msleep(200); 1092 1093 /*send phy reset to hard reset target */ 1094 rc = sas_phy_reset(phy, 1); 1095 msleep(2000); 1096 } 1097 pm8001_dbg(pm8001_ha, EH, " for device[%x]:rc=%d\n", 1098 pm8001_dev->device_id, rc); 1099 out: 1100 sas_put_local_phy(phy); 1101 1102 return rc; 1103 } 1104 /* mandatory SAM-3, the task reset the specified LUN*/ 1105 int pm8001_lu_reset(struct domain_device *dev, u8 *lun) 1106 { 1107 int rc = TMF_RESP_FUNC_FAILED; 1108 struct pm8001_tmf_task tmf_task; 1109 struct pm8001_device *pm8001_dev = dev->lldd_dev; 1110 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); 1111 DECLARE_COMPLETION_ONSTACK(completion_setstate); 1112 if (dev_is_sata(dev)) { 1113 struct sas_phy *phy = sas_get_local_phy(dev); 1114 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1115 dev, 1, 0); 1116 rc = sas_phy_reset(phy, 1); 1117 sas_put_local_phy(phy); 1118 pm8001_dev->setds_completion = &completion_setstate; 1119 rc = PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, 1120 pm8001_dev, DS_OPERATIONAL); 1121 wait_for_completion(&completion_setstate); 1122 } else { 1123 tmf_task.tmf = TMF_LU_RESET; 1124 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1125 } 1126 /* If failed, fall-through I_T_Nexus reset */ 1127 pm8001_dbg(pm8001_ha, EH, "for device[%x]:rc=%d\n", 1128 pm8001_dev->device_id, rc); 1129 return rc; 1130 } 1131 1132 /* optional SAM-3 */ 1133 int pm8001_query_task(struct sas_task *task) 1134 { 1135 u32 tag = 0xdeadbeef; 1136 struct scsi_lun lun; 1137 struct pm8001_tmf_task tmf_task; 1138 int rc = TMF_RESP_FUNC_FAILED; 1139 if (unlikely(!task || !task->lldd_task || !task->dev)) 1140 return rc; 1141 1142 if (task->task_proto & SAS_PROTOCOL_SSP) { 1143 struct scsi_cmnd *cmnd = task->uldd_task; 1144 struct domain_device *dev = task->dev; 1145 struct pm8001_hba_info *pm8001_ha = 1146 pm8001_find_ha_by_dev(dev); 1147 1148 int_to_scsilun(cmnd->device->lun, &lun); 1149 rc = pm8001_find_tag(task, &tag); 1150 if (rc == 0) { 1151 rc = TMF_RESP_FUNC_FAILED; 1152 return rc; 1153 } 1154 pm8001_dbg(pm8001_ha, EH, "Query:[%16ph]\n", cmnd->cmnd); 1155 tmf_task.tmf = TMF_QUERY_TASK; 1156 tmf_task.tag_of_task_to_be_managed = tag; 1157 1158 rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task); 1159 switch (rc) { 1160 /* The task is still in Lun, release it then */ 1161 case TMF_RESP_FUNC_SUCC: 1162 pm8001_dbg(pm8001_ha, EH, 1163 "The task is still in Lun\n"); 1164 break; 1165 /* The task is not in Lun or failed, reset the phy */ 1166 case TMF_RESP_FUNC_FAILED: 1167 case TMF_RESP_FUNC_COMPLETE: 1168 pm8001_dbg(pm8001_ha, EH, 1169 "The task is not in Lun or failed, reset the phy\n"); 1170 break; 1171 } 1172 } 1173 pr_err("pm80xx: rc= %d\n", rc); 1174 return rc; 1175 } 1176 1177 /* mandatory SAM-3, still need free task/ccb info, abort the specified task */ 1178 int pm8001_abort_task(struct sas_task *task) 1179 { 1180 unsigned long flags; 1181 u32 tag; 1182 struct domain_device *dev ; 1183 struct pm8001_hba_info *pm8001_ha; 1184 struct scsi_lun lun; 1185 struct pm8001_device *pm8001_dev; 1186 struct pm8001_tmf_task tmf_task; 1187 int rc = TMF_RESP_FUNC_FAILED, ret; 1188 u32 phy_id; 1189 struct sas_task_slow slow_task; 1190 1191 if (unlikely(!task || !task->lldd_task || !task->dev)) 1192 return TMF_RESP_FUNC_FAILED; 1193 1194 dev = task->dev; 1195 pm8001_dev = dev->lldd_dev; 1196 pm8001_ha = pm8001_find_ha_by_dev(dev); 1197 phy_id = pm8001_dev->attached_phy; 1198 1199 if (PM8001_CHIP_DISP->fatal_errors(pm8001_ha)) { 1200 // If the controller is seeing fatal errors 1201 // abort task will not get a response from the controller 1202 return TMF_RESP_FUNC_FAILED; 1203 } 1204 1205 ret = pm8001_find_tag(task, &tag); 1206 if (ret == 0) { 1207 pm8001_info(pm8001_ha, "no tag for task:%p\n", task); 1208 return TMF_RESP_FUNC_FAILED; 1209 } 1210 spin_lock_irqsave(&task->task_state_lock, flags); 1211 if (task->task_state_flags & SAS_TASK_STATE_DONE) { 1212 spin_unlock_irqrestore(&task->task_state_lock, flags); 1213 return TMF_RESP_FUNC_COMPLETE; 1214 } 1215 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 1216 if (task->slow_task == NULL) { 1217 init_completion(&slow_task.completion); 1218 task->slow_task = &slow_task; 1219 } 1220 spin_unlock_irqrestore(&task->task_state_lock, flags); 1221 if (task->task_proto & SAS_PROTOCOL_SSP) { 1222 struct scsi_cmnd *cmnd = task->uldd_task; 1223 int_to_scsilun(cmnd->device->lun, &lun); 1224 tmf_task.tmf = TMF_ABORT_TASK; 1225 tmf_task.tag_of_task_to_be_managed = tag; 1226 rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task); 1227 pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1228 pm8001_dev->sas_device, 0, tag); 1229 } else if (task->task_proto & SAS_PROTOCOL_SATA || 1230 task->task_proto & SAS_PROTOCOL_STP) { 1231 if (pm8001_ha->chip_id == chip_8006) { 1232 DECLARE_COMPLETION_ONSTACK(completion_reset); 1233 DECLARE_COMPLETION_ONSTACK(completion); 1234 struct pm8001_phy *phy = pm8001_ha->phy + phy_id; 1235 1236 /* 1. Set Device state as Recovery */ 1237 pm8001_dev->setds_completion = &completion; 1238 PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, 1239 pm8001_dev, DS_IN_RECOVERY); 1240 wait_for_completion(&completion); 1241 1242 /* 2. Send Phy Control Hard Reset */ 1243 reinit_completion(&completion); 1244 phy->port_reset_status = PORT_RESET_TMO; 1245 phy->reset_success = false; 1246 phy->enable_completion = &completion; 1247 phy->reset_completion = &completion_reset; 1248 ret = PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, 1249 PHY_HARD_RESET); 1250 if (ret) { 1251 phy->enable_completion = NULL; 1252 phy->reset_completion = NULL; 1253 goto out; 1254 } 1255 1256 /* In the case of the reset timeout/fail we still 1257 * abort the command at the firmware. The assumption 1258 * here is that the drive is off doing something so 1259 * that it's not processing requests, and we want to 1260 * avoid getting a completion for this and either 1261 * leaking the task in libsas or losing the race and 1262 * getting a double free. 1263 */ 1264 pm8001_dbg(pm8001_ha, MSG, 1265 "Waiting for local phy ctl\n"); 1266 ret = wait_for_completion_timeout(&completion, 1267 PM8001_TASK_TIMEOUT * HZ); 1268 if (!ret || !phy->reset_success) { 1269 phy->enable_completion = NULL; 1270 phy->reset_completion = NULL; 1271 } else { 1272 /* 3. Wait for Port Reset complete or 1273 * Port reset TMO 1274 */ 1275 pm8001_dbg(pm8001_ha, MSG, 1276 "Waiting for Port reset\n"); 1277 ret = wait_for_completion_timeout( 1278 &completion_reset, 1279 PM8001_TASK_TIMEOUT * HZ); 1280 if (!ret) 1281 phy->reset_completion = NULL; 1282 WARN_ON(phy->port_reset_status == 1283 PORT_RESET_TMO); 1284 if (phy->port_reset_status == PORT_RESET_TMO) { 1285 pm8001_dev_gone_notify(dev); 1286 goto out; 1287 } 1288 } 1289 1290 /* 1291 * 4. SATA Abort ALL 1292 * we wait for the task to be aborted so that the task 1293 * is removed from the ccb. on success the caller is 1294 * going to free the task. 1295 */ 1296 ret = pm8001_exec_internal_task_abort(pm8001_ha, 1297 pm8001_dev, pm8001_dev->sas_device, 1, tag); 1298 if (ret) 1299 goto out; 1300 ret = wait_for_completion_timeout( 1301 &task->slow_task->completion, 1302 PM8001_TASK_TIMEOUT * HZ); 1303 if (!ret) 1304 goto out; 1305 1306 /* 5. Set Device State as Operational */ 1307 reinit_completion(&completion); 1308 pm8001_dev->setds_completion = &completion; 1309 PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, 1310 pm8001_dev, DS_OPERATIONAL); 1311 wait_for_completion(&completion); 1312 } else { 1313 rc = pm8001_exec_internal_task_abort(pm8001_ha, 1314 pm8001_dev, pm8001_dev->sas_device, 0, tag); 1315 } 1316 rc = TMF_RESP_FUNC_COMPLETE; 1317 } else if (task->task_proto & SAS_PROTOCOL_SMP) { 1318 /* SMP */ 1319 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev, 1320 pm8001_dev->sas_device, 0, tag); 1321 1322 } 1323 out: 1324 spin_lock_irqsave(&task->task_state_lock, flags); 1325 if (task->slow_task == &slow_task) 1326 task->slow_task = NULL; 1327 spin_unlock_irqrestore(&task->task_state_lock, flags); 1328 if (rc != TMF_RESP_FUNC_COMPLETE) 1329 pm8001_info(pm8001_ha, "rc= %d\n", rc); 1330 return rc; 1331 } 1332 1333 int pm8001_abort_task_set(struct domain_device *dev, u8 *lun) 1334 { 1335 struct pm8001_tmf_task tmf_task; 1336 1337 tmf_task.tmf = TMF_ABORT_TASK_SET; 1338 return pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1339 } 1340 1341 int pm8001_clear_aca(struct domain_device *dev, u8 *lun) 1342 { 1343 struct pm8001_tmf_task tmf_task; 1344 1345 tmf_task.tmf = TMF_CLEAR_ACA; 1346 return pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1347 } 1348 1349 int pm8001_clear_task_set(struct domain_device *dev, u8 *lun) 1350 { 1351 struct pm8001_tmf_task tmf_task; 1352 struct pm8001_device *pm8001_dev = dev->lldd_dev; 1353 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); 1354 1355 pm8001_dbg(pm8001_ha, EH, "I_T_L_Q clear task set[%x]\n", 1356 pm8001_dev->device_id); 1357 tmf_task.tmf = TMF_CLEAR_TASK_SET; 1358 return pm8001_issue_ssp_tmf(dev, lun, &tmf_task); 1359 } 1360