1 /*
2  * PMC-Sierra PM8001/8081/8088/8089 SAS/SATA based host adapters driver
3  *
4  * Copyright (c) 2008-2009 USI Co., Ltd.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    substantially similar to the "NO WARRANTY" disclaimer below
15  *    ("Disclaimer") and any redistribution must be conditioned upon
16  *    including a substantially similar Disclaimer requirement for further
17  *    binary redistribution.
18  * 3. Neither the names of the above-listed copyright holders nor the names
19  *    of any contributors may be used to endorse or promote products derived
20  *    from this software without specific prior written permission.
21  *
22  * Alternatively, this software may be distributed under the terms of the
23  * GNU General Public License ("GPL") version 2 as published by the Free
24  * Software Foundation.
25  *
26  * NO WARRANTY
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
35  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
36  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGES.
38  *
39  */
40 
41 #include <linux/slab.h>
42 #include "pm8001_sas.h"
43 #include "pm8001_chips.h"
44 
45 static struct scsi_transport_template *pm8001_stt;
46 
47 /**
48  * chip info structure to identify chip key functionality as
49  * encryption available/not, no of ports, hw specific function ref
50  */
51 static const struct pm8001_chip_info pm8001_chips[] = {
52 	[chip_8001] = {0,  8, &pm8001_8001_dispatch,},
53 	[chip_8008] = {0,  8, &pm8001_80xx_dispatch,},
54 	[chip_8009] = {1,  8, &pm8001_80xx_dispatch,},
55 	[chip_8018] = {0,  16, &pm8001_80xx_dispatch,},
56 	[chip_8019] = {1,  16, &pm8001_80xx_dispatch,},
57 	[chip_8074] = {0,  8, &pm8001_80xx_dispatch,},
58 	[chip_8076] = {0,  16, &pm8001_80xx_dispatch,},
59 	[chip_8077] = {0,  16, &pm8001_80xx_dispatch,},
60 };
61 static int pm8001_id;
62 
63 LIST_HEAD(hba_list);
64 
65 struct workqueue_struct *pm8001_wq;
66 
67 /**
68  * The main structure which LLDD must register for scsi core.
69  */
70 static struct scsi_host_template pm8001_sht = {
71 	.module			= THIS_MODULE,
72 	.name			= DRV_NAME,
73 	.queuecommand		= sas_queuecommand,
74 	.target_alloc		= sas_target_alloc,
75 	.slave_configure	= sas_slave_configure,
76 	.scan_finished		= pm8001_scan_finished,
77 	.scan_start		= pm8001_scan_start,
78 	.change_queue_depth	= sas_change_queue_depth,
79 	.change_queue_type	= sas_change_queue_type,
80 	.bios_param		= sas_bios_param,
81 	.can_queue		= 1,
82 	.cmd_per_lun		= 1,
83 	.this_id		= -1,
84 	.sg_tablesize		= SG_ALL,
85 	.max_sectors		= SCSI_DEFAULT_MAX_SECTORS,
86 	.use_clustering		= ENABLE_CLUSTERING,
87 	.eh_device_reset_handler = sas_eh_device_reset_handler,
88 	.eh_bus_reset_handler	= sas_eh_bus_reset_handler,
89 	.target_destroy		= sas_target_destroy,
90 	.ioctl			= sas_ioctl,
91 	.shost_attrs		= pm8001_host_attrs,
92 };
93 
94 /**
95  * Sas layer call this function to execute specific task.
96  */
97 static struct sas_domain_function_template pm8001_transport_ops = {
98 	.lldd_dev_found		= pm8001_dev_found,
99 	.lldd_dev_gone		= pm8001_dev_gone,
100 
101 	.lldd_execute_task	= pm8001_queue_command,
102 	.lldd_control_phy	= pm8001_phy_control,
103 
104 	.lldd_abort_task	= pm8001_abort_task,
105 	.lldd_abort_task_set	= pm8001_abort_task_set,
106 	.lldd_clear_aca		= pm8001_clear_aca,
107 	.lldd_clear_task_set	= pm8001_clear_task_set,
108 	.lldd_I_T_nexus_reset   = pm8001_I_T_nexus_reset,
109 	.lldd_lu_reset		= pm8001_lu_reset,
110 	.lldd_query_task	= pm8001_query_task,
111 };
112 
113 /**
114  *pm8001_phy_init - initiate our adapter phys
115  *@pm8001_ha: our hba structure.
116  *@phy_id: phy id.
117  */
118 static void pm8001_phy_init(struct pm8001_hba_info *pm8001_ha, int phy_id)
119 {
120 	struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
121 	struct asd_sas_phy *sas_phy = &phy->sas_phy;
122 	phy->phy_state = 0;
123 	phy->pm8001_ha = pm8001_ha;
124 	sas_phy->enabled = (phy_id < pm8001_ha->chip->n_phy) ? 1 : 0;
125 	sas_phy->class = SAS;
126 	sas_phy->iproto = SAS_PROTOCOL_ALL;
127 	sas_phy->tproto = 0;
128 	sas_phy->type = PHY_TYPE_PHYSICAL;
129 	sas_phy->role = PHY_ROLE_INITIATOR;
130 	sas_phy->oob_mode = OOB_NOT_CONNECTED;
131 	sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
132 	sas_phy->id = phy_id;
133 	sas_phy->sas_addr = &pm8001_ha->sas_addr[0];
134 	sas_phy->frame_rcvd = &phy->frame_rcvd[0];
135 	sas_phy->ha = (struct sas_ha_struct *)pm8001_ha->shost->hostdata;
136 	sas_phy->lldd_phy = phy;
137 }
138 
139 /**
140  *pm8001_free - free hba
141  *@pm8001_ha:	our hba structure.
142  *
143  */
144 static void pm8001_free(struct pm8001_hba_info *pm8001_ha)
145 {
146 	int i;
147 
148 	if (!pm8001_ha)
149 		return;
150 
151 	for (i = 0; i < USI_MAX_MEMCNT; i++) {
152 		if (pm8001_ha->memoryMap.region[i].virt_ptr != NULL) {
153 			pci_free_consistent(pm8001_ha->pdev,
154 				(pm8001_ha->memoryMap.region[i].total_len +
155 				pm8001_ha->memoryMap.region[i].alignment),
156 				pm8001_ha->memoryMap.region[i].virt_ptr,
157 				pm8001_ha->memoryMap.region[i].phys_addr);
158 			}
159 	}
160 	PM8001_CHIP_DISP->chip_iounmap(pm8001_ha);
161 	if (pm8001_ha->shost)
162 		scsi_host_put(pm8001_ha->shost);
163 	flush_workqueue(pm8001_wq);
164 	kfree(pm8001_ha->tags);
165 	kfree(pm8001_ha);
166 }
167 
168 #ifdef PM8001_USE_TASKLET
169 
170 /**
171  * tasklet for 64 msi-x interrupt handler
172  * @opaque: the passed general host adapter struct
173  * Note: pm8001_tasklet is common for pm8001 & pm80xx
174  */
175 static void pm8001_tasklet(unsigned long opaque)
176 {
177 	struct pm8001_hba_info *pm8001_ha;
178 	struct isr_param *irq_vector;
179 
180 	irq_vector = (struct isr_param *)opaque;
181 	pm8001_ha = irq_vector->drv_inst;
182 	if (unlikely(!pm8001_ha))
183 		BUG_ON(1);
184 	PM8001_CHIP_DISP->isr(pm8001_ha, irq_vector->irq_id);
185 }
186 #endif
187 
188 /**
189  * pm8001_interrupt_handler_msix - main MSIX interrupt handler.
190  * It obtains the vector number and calls the equivalent bottom
191  * half or services directly.
192  * @opaque: the passed outbound queue/vector. Host structure is
193  * retrieved from the same.
194  */
195 static irqreturn_t pm8001_interrupt_handler_msix(int irq, void *opaque)
196 {
197 	struct isr_param *irq_vector;
198 	struct pm8001_hba_info *pm8001_ha;
199 	irqreturn_t ret = IRQ_HANDLED;
200 	irq_vector = (struct isr_param *)opaque;
201 	pm8001_ha = irq_vector->drv_inst;
202 
203 	if (unlikely(!pm8001_ha))
204 		return IRQ_NONE;
205 	if (!PM8001_CHIP_DISP->is_our_interupt(pm8001_ha))
206 		return IRQ_NONE;
207 #ifdef PM8001_USE_TASKLET
208 	tasklet_schedule(&pm8001_ha->tasklet[irq_vector->irq_id]);
209 #else
210 	ret = PM8001_CHIP_DISP->isr(pm8001_ha, irq_vector->irq_id);
211 #endif
212 	return ret;
213 }
214 
215 /**
216  * pm8001_interrupt_handler_intx - main INTx interrupt handler.
217  * @dev_id: sas_ha structure. The HBA is retrieved from sas_has structure.
218  */
219 
220 static irqreturn_t pm8001_interrupt_handler_intx(int irq, void *dev_id)
221 {
222 	struct pm8001_hba_info *pm8001_ha;
223 	irqreturn_t ret = IRQ_HANDLED;
224 	struct sas_ha_struct *sha = dev_id;
225 	pm8001_ha = sha->lldd_ha;
226 	if (unlikely(!pm8001_ha))
227 		return IRQ_NONE;
228 	if (!PM8001_CHIP_DISP->is_our_interupt(pm8001_ha))
229 		return IRQ_NONE;
230 
231 #ifdef PM8001_USE_TASKLET
232 	tasklet_schedule(&pm8001_ha->tasklet[0]);
233 #else
234 	ret = PM8001_CHIP_DISP->isr(pm8001_ha, 0);
235 #endif
236 	return ret;
237 }
238 
239 /**
240  * pm8001_alloc - initiate our hba structure and 6 DMAs area.
241  * @pm8001_ha:our hba structure.
242  *
243  */
244 static int pm8001_alloc(struct pm8001_hba_info *pm8001_ha,
245 			const struct pci_device_id *ent)
246 {
247 	int i;
248 	spin_lock_init(&pm8001_ha->lock);
249 	PM8001_INIT_DBG(pm8001_ha,
250 		pm8001_printk("pm8001_alloc: PHY:%x\n",
251 				pm8001_ha->chip->n_phy));
252 	for (i = 0; i < pm8001_ha->chip->n_phy; i++) {
253 		pm8001_phy_init(pm8001_ha, i);
254 		pm8001_ha->port[i].wide_port_phymap = 0;
255 		pm8001_ha->port[i].port_attached = 0;
256 		pm8001_ha->port[i].port_state = 0;
257 		INIT_LIST_HEAD(&pm8001_ha->port[i].list);
258 	}
259 
260 	pm8001_ha->tags = kzalloc(PM8001_MAX_CCB, GFP_KERNEL);
261 	if (!pm8001_ha->tags)
262 		goto err_out;
263 	/* MPI Memory region 1 for AAP Event Log for fw */
264 	pm8001_ha->memoryMap.region[AAP1].num_elements = 1;
265 	pm8001_ha->memoryMap.region[AAP1].element_size = PM8001_EVENT_LOG_SIZE;
266 	pm8001_ha->memoryMap.region[AAP1].total_len = PM8001_EVENT_LOG_SIZE;
267 	pm8001_ha->memoryMap.region[AAP1].alignment = 32;
268 
269 	/* MPI Memory region 2 for IOP Event Log for fw */
270 	pm8001_ha->memoryMap.region[IOP].num_elements = 1;
271 	pm8001_ha->memoryMap.region[IOP].element_size = PM8001_EVENT_LOG_SIZE;
272 	pm8001_ha->memoryMap.region[IOP].total_len = PM8001_EVENT_LOG_SIZE;
273 	pm8001_ha->memoryMap.region[IOP].alignment = 32;
274 
275 	for (i = 0; i < PM8001_MAX_SPCV_INB_NUM; i++) {
276 		/* MPI Memory region 3 for consumer Index of inbound queues */
277 		pm8001_ha->memoryMap.region[CI+i].num_elements = 1;
278 		pm8001_ha->memoryMap.region[CI+i].element_size = 4;
279 		pm8001_ha->memoryMap.region[CI+i].total_len = 4;
280 		pm8001_ha->memoryMap.region[CI+i].alignment = 4;
281 
282 		if ((ent->driver_data) != chip_8001) {
283 			/* MPI Memory region 5 inbound queues */
284 			pm8001_ha->memoryMap.region[IB+i].num_elements =
285 						PM8001_MPI_QUEUE;
286 			pm8001_ha->memoryMap.region[IB+i].element_size = 128;
287 			pm8001_ha->memoryMap.region[IB+i].total_len =
288 						PM8001_MPI_QUEUE * 128;
289 			pm8001_ha->memoryMap.region[IB+i].alignment = 128;
290 		} else {
291 			pm8001_ha->memoryMap.region[IB+i].num_elements =
292 						PM8001_MPI_QUEUE;
293 			pm8001_ha->memoryMap.region[IB+i].element_size = 64;
294 			pm8001_ha->memoryMap.region[IB+i].total_len =
295 						PM8001_MPI_QUEUE * 64;
296 			pm8001_ha->memoryMap.region[IB+i].alignment = 64;
297 		}
298 	}
299 
300 	for (i = 0; i < PM8001_MAX_SPCV_OUTB_NUM; i++) {
301 		/* MPI Memory region 4 for producer Index of outbound queues */
302 		pm8001_ha->memoryMap.region[PI+i].num_elements = 1;
303 		pm8001_ha->memoryMap.region[PI+i].element_size = 4;
304 		pm8001_ha->memoryMap.region[PI+i].total_len = 4;
305 		pm8001_ha->memoryMap.region[PI+i].alignment = 4;
306 
307 		if (ent->driver_data != chip_8001) {
308 			/* MPI Memory region 6 Outbound queues */
309 			pm8001_ha->memoryMap.region[OB+i].num_elements =
310 						PM8001_MPI_QUEUE;
311 			pm8001_ha->memoryMap.region[OB+i].element_size = 128;
312 			pm8001_ha->memoryMap.region[OB+i].total_len =
313 						PM8001_MPI_QUEUE * 128;
314 			pm8001_ha->memoryMap.region[OB+i].alignment = 128;
315 		} else {
316 			/* MPI Memory region 6 Outbound queues */
317 			pm8001_ha->memoryMap.region[OB+i].num_elements =
318 						PM8001_MPI_QUEUE;
319 			pm8001_ha->memoryMap.region[OB+i].element_size = 64;
320 			pm8001_ha->memoryMap.region[OB+i].total_len =
321 						PM8001_MPI_QUEUE * 64;
322 			pm8001_ha->memoryMap.region[OB+i].alignment = 64;
323 		}
324 
325 	}
326 	/* Memory region write DMA*/
327 	pm8001_ha->memoryMap.region[NVMD].num_elements = 1;
328 	pm8001_ha->memoryMap.region[NVMD].element_size = 4096;
329 	pm8001_ha->memoryMap.region[NVMD].total_len = 4096;
330 	/* Memory region for devices*/
331 	pm8001_ha->memoryMap.region[DEV_MEM].num_elements = 1;
332 	pm8001_ha->memoryMap.region[DEV_MEM].element_size = PM8001_MAX_DEVICES *
333 		sizeof(struct pm8001_device);
334 	pm8001_ha->memoryMap.region[DEV_MEM].total_len = PM8001_MAX_DEVICES *
335 		sizeof(struct pm8001_device);
336 
337 	/* Memory region for ccb_info*/
338 	pm8001_ha->memoryMap.region[CCB_MEM].num_elements = 1;
339 	pm8001_ha->memoryMap.region[CCB_MEM].element_size = PM8001_MAX_CCB *
340 		sizeof(struct pm8001_ccb_info);
341 	pm8001_ha->memoryMap.region[CCB_MEM].total_len = PM8001_MAX_CCB *
342 		sizeof(struct pm8001_ccb_info);
343 
344 	/* Memory region for fw flash */
345 	pm8001_ha->memoryMap.region[FW_FLASH].total_len = 4096;
346 
347 	pm8001_ha->memoryMap.region[FORENSIC_MEM].num_elements = 1;
348 	pm8001_ha->memoryMap.region[FORENSIC_MEM].total_len = 0x10000;
349 	pm8001_ha->memoryMap.region[FORENSIC_MEM].element_size = 0x10000;
350 	pm8001_ha->memoryMap.region[FORENSIC_MEM].alignment = 0x10000;
351 	for (i = 0; i < USI_MAX_MEMCNT; i++) {
352 		if (pm8001_mem_alloc(pm8001_ha->pdev,
353 			&pm8001_ha->memoryMap.region[i].virt_ptr,
354 			&pm8001_ha->memoryMap.region[i].phys_addr,
355 			&pm8001_ha->memoryMap.region[i].phys_addr_hi,
356 			&pm8001_ha->memoryMap.region[i].phys_addr_lo,
357 			pm8001_ha->memoryMap.region[i].total_len,
358 			pm8001_ha->memoryMap.region[i].alignment) != 0) {
359 				PM8001_FAIL_DBG(pm8001_ha,
360 					pm8001_printk("Mem%d alloc failed\n",
361 					i));
362 				goto err_out;
363 		}
364 	}
365 
366 	pm8001_ha->devices = pm8001_ha->memoryMap.region[DEV_MEM].virt_ptr;
367 	for (i = 0; i < PM8001_MAX_DEVICES; i++) {
368 		pm8001_ha->devices[i].dev_type = SAS_PHY_UNUSED;
369 		pm8001_ha->devices[i].id = i;
370 		pm8001_ha->devices[i].device_id = PM8001_MAX_DEVICES;
371 		pm8001_ha->devices[i].running_req = 0;
372 	}
373 	pm8001_ha->ccb_info = pm8001_ha->memoryMap.region[CCB_MEM].virt_ptr;
374 	for (i = 0; i < PM8001_MAX_CCB; i++) {
375 		pm8001_ha->ccb_info[i].ccb_dma_handle =
376 			pm8001_ha->memoryMap.region[CCB_MEM].phys_addr +
377 			i * sizeof(struct pm8001_ccb_info);
378 		pm8001_ha->ccb_info[i].task = NULL;
379 		pm8001_ha->ccb_info[i].ccb_tag = 0xffffffff;
380 		pm8001_ha->ccb_info[i].device = NULL;
381 		++pm8001_ha->tags_num;
382 	}
383 	pm8001_ha->flags = PM8001F_INIT_TIME;
384 	/* Initialize tags */
385 	pm8001_tag_init(pm8001_ha);
386 	return 0;
387 err_out:
388 	return 1;
389 }
390 
391 /**
392  * pm8001_ioremap - remap the pci high physical address to kernal virtual
393  * address so that we can access them.
394  * @pm8001_ha:our hba structure.
395  */
396 static int pm8001_ioremap(struct pm8001_hba_info *pm8001_ha)
397 {
398 	u32 bar;
399 	u32 logicalBar = 0;
400 	struct pci_dev *pdev;
401 
402 	pdev = pm8001_ha->pdev;
403 	/* map pci mem (PMC pci base 0-3)*/
404 	for (bar = 0; bar < 6; bar++) {
405 		/*
406 		** logical BARs for SPC:
407 		** bar 0 and 1 - logical BAR0
408 		** bar 2 and 3 - logical BAR1
409 		** bar4 - logical BAR2
410 		** bar5 - logical BAR3
411 		** Skip the appropriate assignments:
412 		*/
413 		if ((bar == 1) || (bar == 3))
414 			continue;
415 		if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
416 			pm8001_ha->io_mem[logicalBar].membase =
417 				pci_resource_start(pdev, bar);
418 			pm8001_ha->io_mem[logicalBar].membase &=
419 				(u32)PCI_BASE_ADDRESS_MEM_MASK;
420 			pm8001_ha->io_mem[logicalBar].memsize =
421 				pci_resource_len(pdev, bar);
422 			pm8001_ha->io_mem[logicalBar].memvirtaddr =
423 				ioremap(pm8001_ha->io_mem[logicalBar].membase,
424 				pm8001_ha->io_mem[logicalBar].memsize);
425 			PM8001_INIT_DBG(pm8001_ha,
426 				pm8001_printk("PCI: bar %d, logicalBar %d ",
427 				bar, logicalBar));
428 			PM8001_INIT_DBG(pm8001_ha, pm8001_printk(
429 				"base addr %llx virt_addr=%llx len=%d\n",
430 				(u64)pm8001_ha->io_mem[logicalBar].membase,
431 				(u64)(unsigned long)
432 				pm8001_ha->io_mem[logicalBar].memvirtaddr,
433 				pm8001_ha->io_mem[logicalBar].memsize));
434 		} else {
435 			pm8001_ha->io_mem[logicalBar].membase	= 0;
436 			pm8001_ha->io_mem[logicalBar].memsize	= 0;
437 			pm8001_ha->io_mem[logicalBar].memvirtaddr = 0;
438 		}
439 		logicalBar++;
440 	}
441 	return 0;
442 }
443 
444 /**
445  * pm8001_pci_alloc - initialize our ha card structure
446  * @pdev: pci device.
447  * @ent: ent
448  * @shost: scsi host struct which has been initialized before.
449  */
450 static struct pm8001_hba_info *pm8001_pci_alloc(struct pci_dev *pdev,
451 				 const struct pci_device_id *ent,
452 				struct Scsi_Host *shost)
453 
454 {
455 	struct pm8001_hba_info *pm8001_ha;
456 	struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
457 	int j;
458 
459 	pm8001_ha = sha->lldd_ha;
460 	if (!pm8001_ha)
461 		return NULL;
462 
463 	pm8001_ha->pdev = pdev;
464 	pm8001_ha->dev = &pdev->dev;
465 	pm8001_ha->chip_id = ent->driver_data;
466 	pm8001_ha->chip = &pm8001_chips[pm8001_ha->chip_id];
467 	pm8001_ha->irq = pdev->irq;
468 	pm8001_ha->sas = sha;
469 	pm8001_ha->shost = shost;
470 	pm8001_ha->id = pm8001_id++;
471 	pm8001_ha->logging_level = 0x01;
472 	sprintf(pm8001_ha->name, "%s%d", DRV_NAME, pm8001_ha->id);
473 	/* IOMB size is 128 for 8088/89 controllers */
474 	if (pm8001_ha->chip_id != chip_8001)
475 		pm8001_ha->iomb_size = IOMB_SIZE_SPCV;
476 	else
477 		pm8001_ha->iomb_size = IOMB_SIZE_SPC;
478 
479 #ifdef PM8001_USE_TASKLET
480 	/* Tasklet for non msi-x interrupt handler */
481 	if ((!pdev->msix_cap) || (pm8001_ha->chip_id == chip_8001))
482 		tasklet_init(&pm8001_ha->tasklet[0], pm8001_tasklet,
483 			(unsigned long)&(pm8001_ha->irq_vector[0]));
484 	else
485 		for (j = 0; j < PM8001_MAX_MSIX_VEC; j++)
486 			tasklet_init(&pm8001_ha->tasklet[j], pm8001_tasklet,
487 				(unsigned long)&(pm8001_ha->irq_vector[j]));
488 #endif
489 	pm8001_ioremap(pm8001_ha);
490 	if (!pm8001_alloc(pm8001_ha, ent))
491 		return pm8001_ha;
492 	pm8001_free(pm8001_ha);
493 	return NULL;
494 }
495 
496 /**
497  * pci_go_44 - pm8001 specified, its DMA is 44 bit rather than 64 bit
498  * @pdev: pci device.
499  */
500 static int pci_go_44(struct pci_dev *pdev)
501 {
502 	int rc;
503 
504 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(44))) {
505 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(44));
506 		if (rc) {
507 			rc = pci_set_consistent_dma_mask(pdev,
508 				DMA_BIT_MASK(32));
509 			if (rc) {
510 				dev_printk(KERN_ERR, &pdev->dev,
511 					"44-bit DMA enable failed\n");
512 				return rc;
513 			}
514 		}
515 	} else {
516 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
517 		if (rc) {
518 			dev_printk(KERN_ERR, &pdev->dev,
519 				"32-bit DMA enable failed\n");
520 			return rc;
521 		}
522 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
523 		if (rc) {
524 			dev_printk(KERN_ERR, &pdev->dev,
525 				"32-bit consistent DMA enable failed\n");
526 			return rc;
527 		}
528 	}
529 	return rc;
530 }
531 
532 /**
533  * pm8001_prep_sas_ha_init - allocate memory in general hba struct && init them.
534  * @shost: scsi host which has been allocated outside.
535  * @chip_info: our ha struct.
536  */
537 static int pm8001_prep_sas_ha_init(struct Scsi_Host *shost,
538 				   const struct pm8001_chip_info *chip_info)
539 {
540 	int phy_nr, port_nr;
541 	struct asd_sas_phy **arr_phy;
542 	struct asd_sas_port **arr_port;
543 	struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
544 
545 	phy_nr = chip_info->n_phy;
546 	port_nr = phy_nr;
547 	memset(sha, 0x00, sizeof(*sha));
548 	arr_phy = kcalloc(phy_nr, sizeof(void *), GFP_KERNEL);
549 	if (!arr_phy)
550 		goto exit;
551 	arr_port = kcalloc(port_nr, sizeof(void *), GFP_KERNEL);
552 	if (!arr_port)
553 		goto exit_free2;
554 
555 	sha->sas_phy = arr_phy;
556 	sha->sas_port = arr_port;
557 	sha->lldd_ha = kzalloc(sizeof(struct pm8001_hba_info), GFP_KERNEL);
558 	if (!sha->lldd_ha)
559 		goto exit_free1;
560 
561 	shost->transportt = pm8001_stt;
562 	shost->max_id = PM8001_MAX_DEVICES;
563 	shost->max_lun = 8;
564 	shost->max_channel = 0;
565 	shost->unique_id = pm8001_id;
566 	shost->max_cmd_len = 16;
567 	shost->can_queue = PM8001_CAN_QUEUE;
568 	shost->cmd_per_lun = 32;
569 	return 0;
570 exit_free1:
571 	kfree(arr_port);
572 exit_free2:
573 	kfree(arr_phy);
574 exit:
575 	return -1;
576 }
577 
578 /**
579  * pm8001_post_sas_ha_init - initialize general hba struct defined in libsas
580  * @shost: scsi host which has been allocated outside
581  * @chip_info: our ha struct.
582  */
583 static void  pm8001_post_sas_ha_init(struct Scsi_Host *shost,
584 				     const struct pm8001_chip_info *chip_info)
585 {
586 	int i = 0;
587 	struct pm8001_hba_info *pm8001_ha;
588 	struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
589 
590 	pm8001_ha = sha->lldd_ha;
591 	for (i = 0; i < chip_info->n_phy; i++) {
592 		sha->sas_phy[i] = &pm8001_ha->phy[i].sas_phy;
593 		sha->sas_port[i] = &pm8001_ha->port[i].sas_port;
594 	}
595 	sha->sas_ha_name = DRV_NAME;
596 	sha->dev = pm8001_ha->dev;
597 
598 	sha->lldd_module = THIS_MODULE;
599 	sha->sas_addr = &pm8001_ha->sas_addr[0];
600 	sha->num_phys = chip_info->n_phy;
601 	sha->lldd_max_execute_num = 1;
602 	sha->lldd_queue_size = PM8001_CAN_QUEUE;
603 	sha->core.shost = shost;
604 }
605 
606 /**
607  * pm8001_init_sas_add - initialize sas address
608  * @chip_info: our ha struct.
609  *
610  * Currently we just set the fixed SAS address to our HBA,for manufacture,
611  * it should read from the EEPROM
612  */
613 static void pm8001_init_sas_add(struct pm8001_hba_info *pm8001_ha)
614 {
615 	u8 i, j;
616 #ifdef PM8001_READ_VPD
617 	/* For new SPC controllers WWN is stored in flash vpd
618 	*  For SPC/SPCve controllers WWN is stored in EEPROM
619 	*  For Older SPC WWN is stored in NVMD
620 	*/
621 	DECLARE_COMPLETION_ONSTACK(completion);
622 	struct pm8001_ioctl_payload payload;
623 	u16 deviceid;
624 	pci_read_config_word(pm8001_ha->pdev, PCI_DEVICE_ID, &deviceid);
625 	pm8001_ha->nvmd_completion = &completion;
626 
627 	if (pm8001_ha->chip_id == chip_8001) {
628 		if (deviceid == 0x8081) {
629 			payload.minor_function = 4;
630 			payload.length = 4096;
631 		} else {
632 			payload.minor_function = 0;
633 			payload.length = 128;
634 		}
635 	} else {
636 		payload.minor_function = 1;
637 		payload.length = 4096;
638 	}
639 	payload.offset = 0;
640 	payload.func_specific = kzalloc(payload.length, GFP_KERNEL);
641 	PM8001_CHIP_DISP->get_nvmd_req(pm8001_ha, &payload);
642 	wait_for_completion(&completion);
643 
644 	for (i = 0, j = 0; i <= 7; i++, j++) {
645 		if (pm8001_ha->chip_id == chip_8001) {
646 			if (deviceid == 0x8081)
647 				pm8001_ha->sas_addr[j] =
648 					payload.func_specific[0x704 + i];
649 		} else
650 			pm8001_ha->sas_addr[j] =
651 					payload.func_specific[0x804 + i];
652 	}
653 
654 	for (i = 0; i < pm8001_ha->chip->n_phy; i++) {
655 		memcpy(&pm8001_ha->phy[i].dev_sas_addr,
656 			pm8001_ha->sas_addr, SAS_ADDR_SIZE);
657 		PM8001_INIT_DBG(pm8001_ha,
658 			pm8001_printk("phy %d sas_addr = %016llx\n", i,
659 			pm8001_ha->phy[i].dev_sas_addr));
660 	}
661 #else
662 	for (i = 0; i < pm8001_ha->chip->n_phy; i++) {
663 		pm8001_ha->phy[i].dev_sas_addr = 0x50010c600047f9d0ULL;
664 		pm8001_ha->phy[i].dev_sas_addr =
665 			cpu_to_be64((u64)
666 				(*(u64 *)&pm8001_ha->phy[i].dev_sas_addr));
667 	}
668 	memcpy(pm8001_ha->sas_addr, &pm8001_ha->phy[0].dev_sas_addr,
669 		SAS_ADDR_SIZE);
670 #endif
671 }
672 
673 /*
674  * pm8001_get_phy_settings_info : Read phy setting values.
675  * @pm8001_ha : our hba.
676  */
677 void pm8001_get_phy_settings_info(struct pm8001_hba_info *pm8001_ha)
678 {
679 
680 #ifdef PM8001_READ_VPD
681 	/*OPTION ROM FLASH read for the SPC cards */
682 	DECLARE_COMPLETION_ONSTACK(completion);
683 	struct pm8001_ioctl_payload payload;
684 
685 	pm8001_ha->nvmd_completion = &completion;
686 	/* SAS ADDRESS read from flash / EEPROM */
687 	payload.minor_function = 6;
688 	payload.offset = 0;
689 	payload.length = 4096;
690 	payload.func_specific = kzalloc(4096, GFP_KERNEL);
691 	/* Read phy setting values from flash */
692 	PM8001_CHIP_DISP->get_nvmd_req(pm8001_ha, &payload);
693 	wait_for_completion(&completion);
694 	pm8001_set_phy_profile(pm8001_ha, sizeof(u8), payload.func_specific);
695 #endif
696 }
697 
698 #ifdef PM8001_USE_MSIX
699 /**
700  * pm8001_setup_msix - enable MSI-X interrupt
701  * @chip_info: our ha struct.
702  * @irq_handler: irq_handler
703  */
704 static u32 pm8001_setup_msix(struct pm8001_hba_info *pm8001_ha)
705 {
706 	u32 i = 0, j = 0;
707 	u32 number_of_intr;
708 	int flag = 0;
709 	u32 max_entry;
710 	int rc;
711 	static char intr_drvname[PM8001_MAX_MSIX_VEC][sizeof(DRV_NAME)+3];
712 
713 	/* SPCv controllers supports 64 msi-x */
714 	if (pm8001_ha->chip_id == chip_8001) {
715 		number_of_intr = 1;
716 		flag |= IRQF_DISABLED;
717 	} else {
718 		number_of_intr = PM8001_MAX_MSIX_VEC;
719 		flag &= ~IRQF_SHARED;
720 		flag |= IRQF_DISABLED;
721 	}
722 
723 	max_entry = sizeof(pm8001_ha->msix_entries) /
724 		sizeof(pm8001_ha->msix_entries[0]);
725 	for (i = 0; i < max_entry ; i++)
726 		pm8001_ha->msix_entries[i].entry = i;
727 	rc = pci_enable_msix(pm8001_ha->pdev, pm8001_ha->msix_entries,
728 		number_of_intr);
729 	pm8001_ha->number_of_intr = number_of_intr;
730 	if (!rc) {
731 		PM8001_INIT_DBG(pm8001_ha, pm8001_printk(
732 			"pci_enable_msix request ret:%d no of intr %d\n",
733 					rc, pm8001_ha->number_of_intr));
734 
735 
736 		for (i = 0; i < number_of_intr; i++) {
737 			snprintf(intr_drvname[i], sizeof(intr_drvname[0]),
738 					DRV_NAME"%d", i);
739 			pm8001_ha->irq_vector[i].irq_id = i;
740 			pm8001_ha->irq_vector[i].drv_inst = pm8001_ha;
741 
742 			if (request_irq(pm8001_ha->msix_entries[i].vector,
743 				pm8001_interrupt_handler_msix, flag,
744 				intr_drvname[i], &(pm8001_ha->irq_vector[i]))) {
745 				for (j = 0; j < i; j++)
746 					free_irq(
747 					pm8001_ha->msix_entries[j].vector,
748 					&(pm8001_ha->irq_vector[i]));
749 				pci_disable_msix(pm8001_ha->pdev);
750 				break;
751 			}
752 		}
753 	}
754 	return rc;
755 }
756 #endif
757 
758 /**
759  * pm8001_request_irq - register interrupt
760  * @chip_info: our ha struct.
761  */
762 static u32 pm8001_request_irq(struct pm8001_hba_info *pm8001_ha)
763 {
764 	struct pci_dev *pdev;
765 	int rc;
766 
767 	pdev = pm8001_ha->pdev;
768 
769 #ifdef PM8001_USE_MSIX
770 	if (pdev->msix_cap)
771 		return pm8001_setup_msix(pm8001_ha);
772 	else {
773 		PM8001_INIT_DBG(pm8001_ha,
774 			pm8001_printk("MSIX not supported!!!\n"));
775 		goto intx;
776 	}
777 #endif
778 
779 intx:
780 	/* initialize the INT-X interrupt */
781 	rc = request_irq(pdev->irq, pm8001_interrupt_handler_intx, IRQF_SHARED,
782 		DRV_NAME, SHOST_TO_SAS_HA(pm8001_ha->shost));
783 	return rc;
784 }
785 
786 /**
787  * pm8001_pci_probe - probe supported device
788  * @pdev: pci device which kernel has been prepared for.
789  * @ent: pci device id
790  *
791  * This function is the main initialization function, when register a new
792  * pci driver it is invoked, all struct an hardware initilization should be done
793  * here, also, register interrupt
794  */
795 static int pm8001_pci_probe(struct pci_dev *pdev,
796 			    const struct pci_device_id *ent)
797 {
798 	unsigned int rc;
799 	u32	pci_reg;
800 	u8	i = 0;
801 	struct pm8001_hba_info *pm8001_ha;
802 	struct Scsi_Host *shost = NULL;
803 	const struct pm8001_chip_info *chip;
804 
805 	dev_printk(KERN_INFO, &pdev->dev,
806 		"pm80xx: driver version %s\n", DRV_VERSION);
807 	rc = pci_enable_device(pdev);
808 	if (rc)
809 		goto err_out_enable;
810 	pci_set_master(pdev);
811 	/*
812 	 * Enable pci slot busmaster by setting pci command register.
813 	 * This is required by FW for Cyclone card.
814 	 */
815 
816 	pci_read_config_dword(pdev, PCI_COMMAND, &pci_reg);
817 	pci_reg |= 0x157;
818 	pci_write_config_dword(pdev, PCI_COMMAND, pci_reg);
819 	rc = pci_request_regions(pdev, DRV_NAME);
820 	if (rc)
821 		goto err_out_disable;
822 	rc = pci_go_44(pdev);
823 	if (rc)
824 		goto err_out_regions;
825 
826 	shost = scsi_host_alloc(&pm8001_sht, sizeof(void *));
827 	if (!shost) {
828 		rc = -ENOMEM;
829 		goto err_out_regions;
830 	}
831 	chip = &pm8001_chips[ent->driver_data];
832 	SHOST_TO_SAS_HA(shost) =
833 		kzalloc(sizeof(struct sas_ha_struct), GFP_KERNEL);
834 	if (!SHOST_TO_SAS_HA(shost)) {
835 		rc = -ENOMEM;
836 		goto err_out_free_host;
837 	}
838 
839 	rc = pm8001_prep_sas_ha_init(shost, chip);
840 	if (rc) {
841 		rc = -ENOMEM;
842 		goto err_out_free;
843 	}
844 	pci_set_drvdata(pdev, SHOST_TO_SAS_HA(shost));
845 	/* ent->driver variable is used to differentiate between controllers */
846 	pm8001_ha = pm8001_pci_alloc(pdev, ent, shost);
847 	if (!pm8001_ha) {
848 		rc = -ENOMEM;
849 		goto err_out_free;
850 	}
851 	list_add_tail(&pm8001_ha->list, &hba_list);
852 	PM8001_CHIP_DISP->chip_soft_rst(pm8001_ha);
853 	rc = PM8001_CHIP_DISP->chip_init(pm8001_ha);
854 	if (rc) {
855 		PM8001_FAIL_DBG(pm8001_ha, pm8001_printk(
856 			"chip_init failed [ret: %d]\n", rc));
857 		goto err_out_ha_free;
858 	}
859 
860 	rc = scsi_add_host(shost, &pdev->dev);
861 	if (rc)
862 		goto err_out_ha_free;
863 	rc = pm8001_request_irq(pm8001_ha);
864 	if (rc)	{
865 		PM8001_FAIL_DBG(pm8001_ha, pm8001_printk(
866 			"pm8001_request_irq failed [ret: %d]\n", rc));
867 		goto err_out_shost;
868 	}
869 
870 	PM8001_CHIP_DISP->interrupt_enable(pm8001_ha, 0);
871 	if (pm8001_ha->chip_id != chip_8001) {
872 		for (i = 1; i < pm8001_ha->number_of_intr; i++)
873 			PM8001_CHIP_DISP->interrupt_enable(pm8001_ha, i);
874 		/* setup thermal configuration. */
875 		pm80xx_set_thermal_config(pm8001_ha);
876 	}
877 
878 	pm8001_init_sas_add(pm8001_ha);
879 	/* phy setting support for motherboard controller */
880 	if (pdev->subsystem_vendor != PCI_VENDOR_ID_ADAPTEC2 &&
881 		pdev->subsystem_vendor != 0)
882 		pm8001_get_phy_settings_info(pm8001_ha);
883 	pm8001_post_sas_ha_init(shost, chip);
884 	rc = sas_register_ha(SHOST_TO_SAS_HA(shost));
885 	if (rc)
886 		goto err_out_shost;
887 	scsi_scan_host(pm8001_ha->shost);
888 	return 0;
889 
890 err_out_shost:
891 	scsi_remove_host(pm8001_ha->shost);
892 err_out_ha_free:
893 	pm8001_free(pm8001_ha);
894 err_out_free:
895 	kfree(SHOST_TO_SAS_HA(shost));
896 err_out_free_host:
897 	kfree(shost);
898 err_out_regions:
899 	pci_release_regions(pdev);
900 err_out_disable:
901 	pci_disable_device(pdev);
902 err_out_enable:
903 	return rc;
904 }
905 
906 static void pm8001_pci_remove(struct pci_dev *pdev)
907 {
908 	struct sas_ha_struct *sha = pci_get_drvdata(pdev);
909 	struct pm8001_hba_info *pm8001_ha;
910 	int i, j;
911 	pm8001_ha = sha->lldd_ha;
912 	sas_unregister_ha(sha);
913 	sas_remove_host(pm8001_ha->shost);
914 	list_del(&pm8001_ha->list);
915 	scsi_remove_host(pm8001_ha->shost);
916 	PM8001_CHIP_DISP->interrupt_disable(pm8001_ha, 0xFF);
917 	PM8001_CHIP_DISP->chip_soft_rst(pm8001_ha);
918 
919 #ifdef PM8001_USE_MSIX
920 	for (i = 0; i < pm8001_ha->number_of_intr; i++)
921 		synchronize_irq(pm8001_ha->msix_entries[i].vector);
922 	for (i = 0; i < pm8001_ha->number_of_intr; i++)
923 		free_irq(pm8001_ha->msix_entries[i].vector,
924 				&(pm8001_ha->irq_vector[i]));
925 	pci_disable_msix(pdev);
926 #else
927 	free_irq(pm8001_ha->irq, sha);
928 #endif
929 #ifdef PM8001_USE_TASKLET
930 	/* For non-msix and msix interrupts */
931 	if ((!pdev->msix_cap) || (pm8001_ha->chip_id == chip_8001))
932 		tasklet_kill(&pm8001_ha->tasklet[0]);
933 	else
934 		for (j = 0; j < PM8001_MAX_MSIX_VEC; j++)
935 			tasklet_kill(&pm8001_ha->tasklet[j]);
936 #endif
937 	pm8001_free(pm8001_ha);
938 	kfree(sha->sas_phy);
939 	kfree(sha->sas_port);
940 	kfree(sha);
941 	pci_release_regions(pdev);
942 	pci_disable_device(pdev);
943 }
944 
945 /**
946  * pm8001_pci_suspend - power management suspend main entry point
947  * @pdev: PCI device struct
948  * @state: PM state change to (usually PCI_D3)
949  *
950  * Returns 0 success, anything else error.
951  */
952 static int pm8001_pci_suspend(struct pci_dev *pdev, pm_message_t state)
953 {
954 	struct sas_ha_struct *sha = pci_get_drvdata(pdev);
955 	struct pm8001_hba_info *pm8001_ha;
956 	int  i, j;
957 	u32 device_state;
958 	pm8001_ha = sha->lldd_ha;
959 	flush_workqueue(pm8001_wq);
960 	scsi_block_requests(pm8001_ha->shost);
961 	if (!pdev->pm_cap) {
962 		dev_err(&pdev->dev, " PCI PM not supported\n");
963 		return -ENODEV;
964 	}
965 	PM8001_CHIP_DISP->interrupt_disable(pm8001_ha, 0xFF);
966 	PM8001_CHIP_DISP->chip_soft_rst(pm8001_ha);
967 #ifdef PM8001_USE_MSIX
968 	for (i = 0; i < pm8001_ha->number_of_intr; i++)
969 		synchronize_irq(pm8001_ha->msix_entries[i].vector);
970 	for (i = 0; i < pm8001_ha->number_of_intr; i++)
971 		free_irq(pm8001_ha->msix_entries[i].vector,
972 				&(pm8001_ha->irq_vector[i]));
973 	pci_disable_msix(pdev);
974 #else
975 	free_irq(pm8001_ha->irq, sha);
976 #endif
977 #ifdef PM8001_USE_TASKLET
978 	/* For non-msix and msix interrupts */
979 	if ((!pdev->msix_cap) || (pm8001_ha->chip_id == chip_8001))
980 		tasklet_kill(&pm8001_ha->tasklet[0]);
981 	else
982 		for (j = 0; j < PM8001_MAX_MSIX_VEC; j++)
983 			tasklet_kill(&pm8001_ha->tasklet[j]);
984 #endif
985 	device_state = pci_choose_state(pdev, state);
986 	pm8001_printk("pdev=0x%p, slot=%s, entering "
987 		      "operating state [D%d]\n", pdev,
988 		      pm8001_ha->name, device_state);
989 	pci_save_state(pdev);
990 	pci_disable_device(pdev);
991 	pci_set_power_state(pdev, device_state);
992 	return 0;
993 }
994 
995 /**
996  * pm8001_pci_resume - power management resume main entry point
997  * @pdev: PCI device struct
998  *
999  * Returns 0 success, anything else error.
1000  */
1001 static int pm8001_pci_resume(struct pci_dev *pdev)
1002 {
1003 	struct sas_ha_struct *sha = pci_get_drvdata(pdev);
1004 	struct pm8001_hba_info *pm8001_ha;
1005 	int rc;
1006 	u8 i = 0, j;
1007 	u32 device_state;
1008 	pm8001_ha = sha->lldd_ha;
1009 	device_state = pdev->current_state;
1010 
1011 	pm8001_printk("pdev=0x%p, slot=%s, resuming from previous "
1012 		"operating state [D%d]\n", pdev, pm8001_ha->name, device_state);
1013 
1014 	pci_set_power_state(pdev, PCI_D0);
1015 	pci_enable_wake(pdev, PCI_D0, 0);
1016 	pci_restore_state(pdev);
1017 	rc = pci_enable_device(pdev);
1018 	if (rc) {
1019 		pm8001_printk("slot=%s Enable device failed during resume\n",
1020 			      pm8001_ha->name);
1021 		goto err_out_enable;
1022 	}
1023 
1024 	pci_set_master(pdev);
1025 	rc = pci_go_44(pdev);
1026 	if (rc)
1027 		goto err_out_disable;
1028 
1029 	/* chip soft rst only for spc */
1030 	if (pm8001_ha->chip_id == chip_8001) {
1031 		PM8001_CHIP_DISP->chip_soft_rst(pm8001_ha);
1032 		PM8001_INIT_DBG(pm8001_ha,
1033 			pm8001_printk("chip soft reset successful\n"));
1034 	}
1035 	rc = PM8001_CHIP_DISP->chip_init(pm8001_ha);
1036 	if (rc)
1037 		goto err_out_disable;
1038 
1039 	/* disable all the interrupt bits */
1040 	PM8001_CHIP_DISP->interrupt_disable(pm8001_ha, 0xFF);
1041 
1042 	rc = pm8001_request_irq(pm8001_ha);
1043 	if (rc)
1044 		goto err_out_disable;
1045 #ifdef PM8001_USE_TASKLET
1046 	/*  Tasklet for non msi-x interrupt handler */
1047 	if ((!pdev->msix_cap) || (pm8001_ha->chip_id == chip_8001))
1048 		tasklet_init(&pm8001_ha->tasklet[0], pm8001_tasklet,
1049 			(unsigned long)&(pm8001_ha->irq_vector[0]));
1050 	else
1051 		for (j = 0; j < PM8001_MAX_MSIX_VEC; j++)
1052 			tasklet_init(&pm8001_ha->tasklet[j], pm8001_tasklet,
1053 				(unsigned long)&(pm8001_ha->irq_vector[j]));
1054 #endif
1055 	PM8001_CHIP_DISP->interrupt_enable(pm8001_ha, 0);
1056 	if (pm8001_ha->chip_id != chip_8001) {
1057 		for (i = 1; i < pm8001_ha->number_of_intr; i++)
1058 			PM8001_CHIP_DISP->interrupt_enable(pm8001_ha, i);
1059 	}
1060 	scsi_unblock_requests(pm8001_ha->shost);
1061 	return 0;
1062 
1063 err_out_disable:
1064 	scsi_remove_host(pm8001_ha->shost);
1065 	pci_disable_device(pdev);
1066 err_out_enable:
1067 	return rc;
1068 }
1069 
1070 /* update of pci device, vendor id and driver data with
1071  * unique value for each of the controller
1072  */
1073 static struct pci_device_id pm8001_pci_table[] = {
1074 	{ PCI_VDEVICE(PMC_Sierra, 0x8001), chip_8001 },
1075 	{
1076 		PCI_DEVICE(0x117c, 0x0042),
1077 		.driver_data = chip_8001
1078 	},
1079 	/* Support for SPC/SPCv/SPCve controllers */
1080 	{ PCI_VDEVICE(ADAPTEC2, 0x8001), chip_8001 },
1081 	{ PCI_VDEVICE(PMC_Sierra, 0x8008), chip_8008 },
1082 	{ PCI_VDEVICE(ADAPTEC2, 0x8008), chip_8008 },
1083 	{ PCI_VDEVICE(PMC_Sierra, 0x8018), chip_8018 },
1084 	{ PCI_VDEVICE(ADAPTEC2, 0x8018), chip_8018 },
1085 	{ PCI_VDEVICE(PMC_Sierra, 0x8009), chip_8009 },
1086 	{ PCI_VDEVICE(ADAPTEC2, 0x8009), chip_8009 },
1087 	{ PCI_VDEVICE(PMC_Sierra, 0x8019), chip_8019 },
1088 	{ PCI_VDEVICE(ADAPTEC2, 0x8019), chip_8019 },
1089 	{ PCI_VDEVICE(PMC_Sierra, 0x8074), chip_8074 },
1090 	{ PCI_VDEVICE(ADAPTEC2, 0x8074), chip_8074 },
1091 	{ PCI_VDEVICE(PMC_Sierra, 0x8076), chip_8076 },
1092 	{ PCI_VDEVICE(ADAPTEC2, 0x8076), chip_8076 },
1093 	{ PCI_VDEVICE(PMC_Sierra, 0x8077), chip_8077 },
1094 	{ PCI_VDEVICE(ADAPTEC2, 0x8077), chip_8077 },
1095 	{ PCI_VENDOR_ID_ADAPTEC2, 0x8081,
1096 		PCI_VENDOR_ID_ADAPTEC2, 0x0400, 0, 0, chip_8001 },
1097 	{ PCI_VENDOR_ID_ADAPTEC2, 0x8081,
1098 		PCI_VENDOR_ID_ADAPTEC2, 0x0800, 0, 0, chip_8001 },
1099 	{ PCI_VENDOR_ID_ADAPTEC2, 0x8088,
1100 		PCI_VENDOR_ID_ADAPTEC2, 0x0008, 0, 0, chip_8008 },
1101 	{ PCI_VENDOR_ID_ADAPTEC2, 0x8088,
1102 		PCI_VENDOR_ID_ADAPTEC2, 0x0800, 0, 0, chip_8008 },
1103 	{ PCI_VENDOR_ID_ADAPTEC2, 0x8089,
1104 		PCI_VENDOR_ID_ADAPTEC2, 0x0008, 0, 0, chip_8009 },
1105 	{ PCI_VENDOR_ID_ADAPTEC2, 0x8089,
1106 		PCI_VENDOR_ID_ADAPTEC2, 0x0800, 0, 0, chip_8009 },
1107 	{ PCI_VENDOR_ID_ADAPTEC2, 0x8088,
1108 		PCI_VENDOR_ID_ADAPTEC2, 0x0016, 0, 0, chip_8018 },
1109 	{ PCI_VENDOR_ID_ADAPTEC2, 0x8088,
1110 		PCI_VENDOR_ID_ADAPTEC2, 0x1600, 0, 0, chip_8018 },
1111 	{ PCI_VENDOR_ID_ADAPTEC2, 0x8089,
1112 		PCI_VENDOR_ID_ADAPTEC2, 0x0016, 0, 0, chip_8019 },
1113 	{ PCI_VENDOR_ID_ADAPTEC2, 0x8089,
1114 		PCI_VENDOR_ID_ADAPTEC2, 0x1600, 0, 0, chip_8019 },
1115 	{ PCI_VENDOR_ID_ADAPTEC2, 0x8074,
1116 		PCI_VENDOR_ID_ADAPTEC2, 0x0800, 0, 0, chip_8074 },
1117 	{ PCI_VENDOR_ID_ADAPTEC2, 0x8076,
1118 		PCI_VENDOR_ID_ADAPTEC2, 0x1600, 0, 0, chip_8076 },
1119 	{ PCI_VENDOR_ID_ADAPTEC2, 0x8077,
1120 		PCI_VENDOR_ID_ADAPTEC2, 0x1600, 0, 0, chip_8077 },
1121 	{ PCI_VENDOR_ID_ADAPTEC2, 0x8074,
1122 		PCI_VENDOR_ID_ADAPTEC2, 0x0008, 0, 0, chip_8074 },
1123 	{ PCI_VENDOR_ID_ADAPTEC2, 0x8076,
1124 		PCI_VENDOR_ID_ADAPTEC2, 0x0016, 0, 0, chip_8076 },
1125 	{ PCI_VENDOR_ID_ADAPTEC2, 0x8077,
1126 		PCI_VENDOR_ID_ADAPTEC2, 0x0016, 0, 0, chip_8077 },
1127 	{ PCI_VENDOR_ID_ADAPTEC2, 0x8076,
1128 		PCI_VENDOR_ID_ADAPTEC2, 0x0808, 0, 0, chip_8076 },
1129 	{ PCI_VENDOR_ID_ADAPTEC2, 0x8077,
1130 		PCI_VENDOR_ID_ADAPTEC2, 0x0808, 0, 0, chip_8077 },
1131 	{ PCI_VENDOR_ID_ADAPTEC2, 0x8074,
1132 		PCI_VENDOR_ID_ADAPTEC2, 0x0404, 0, 0, chip_8074 },
1133 	{} /* terminate list */
1134 };
1135 
1136 static struct pci_driver pm8001_pci_driver = {
1137 	.name		= DRV_NAME,
1138 	.id_table	= pm8001_pci_table,
1139 	.probe		= pm8001_pci_probe,
1140 	.remove		= pm8001_pci_remove,
1141 	.suspend	= pm8001_pci_suspend,
1142 	.resume		= pm8001_pci_resume,
1143 };
1144 
1145 /**
1146  *	pm8001_init - initialize scsi transport template
1147  */
1148 static int __init pm8001_init(void)
1149 {
1150 	int rc = -ENOMEM;
1151 
1152 	pm8001_wq = alloc_workqueue("pm80xx", 0, 0);
1153 	if (!pm8001_wq)
1154 		goto err;
1155 
1156 	pm8001_id = 0;
1157 	pm8001_stt = sas_domain_attach_transport(&pm8001_transport_ops);
1158 	if (!pm8001_stt)
1159 		goto err_wq;
1160 	rc = pci_register_driver(&pm8001_pci_driver);
1161 	if (rc)
1162 		goto err_tp;
1163 	return 0;
1164 
1165 err_tp:
1166 	sas_release_transport(pm8001_stt);
1167 err_wq:
1168 	destroy_workqueue(pm8001_wq);
1169 err:
1170 	return rc;
1171 }
1172 
1173 static void __exit pm8001_exit(void)
1174 {
1175 	pci_unregister_driver(&pm8001_pci_driver);
1176 	sas_release_transport(pm8001_stt);
1177 	destroy_workqueue(pm8001_wq);
1178 }
1179 
1180 module_init(pm8001_init);
1181 module_exit(pm8001_exit);
1182 
1183 MODULE_AUTHOR("Jack Wang <jack_wang@usish.com>");
1184 MODULE_AUTHOR("Anand Kumar Santhanam <AnandKumar.Santhanam@pmcs.com>");
1185 MODULE_AUTHOR("Sangeetha Gnanasekaran <Sangeetha.Gnanasekaran@pmcs.com>");
1186 MODULE_AUTHOR("Nikith Ganigarakoppal <Nikith.Ganigarakoppal@pmcs.com>");
1187 MODULE_DESCRIPTION(
1188 		"PMC-Sierra PM8001/8081/8088/8089/8074/8076/8077 "
1189 		"SAS/SATA controller driver");
1190 MODULE_VERSION(DRV_VERSION);
1191 MODULE_LICENSE("GPL");
1192 MODULE_DEVICE_TABLE(pci, pm8001_pci_table);
1193 
1194