xref: /openbmc/linux/drivers/scsi/pm8001/pm8001_hwi.c (revision dd21bfa4)
1 /*
2  * PMC-Sierra SPC 8001 SAS/SATA based host adapters driver
3  *
4  * Copyright (c) 2008-2009 USI Co., Ltd.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    substantially similar to the "NO WARRANTY" disclaimer below
15  *    ("Disclaimer") and any redistribution must be conditioned upon
16  *    including a substantially similar Disclaimer requirement for further
17  *    binary redistribution.
18  * 3. Neither the names of the above-listed copyright holders nor the names
19  *    of any contributors may be used to endorse or promote products derived
20  *    from this software without specific prior written permission.
21  *
22  * Alternatively, this software may be distributed under the terms of the
23  * GNU General Public License ("GPL") version 2 as published by the Free
24  * Software Foundation.
25  *
26  * NO WARRANTY
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
35  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
36  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGES.
38  *
39  */
40  #include <linux/slab.h>
41  #include "pm8001_sas.h"
42  #include "pm8001_hwi.h"
43  #include "pm8001_chips.h"
44  #include "pm8001_ctl.h"
45  #include "pm80xx_tracepoints.h"
46 
47 /**
48  * read_main_config_table - read the configure table and save it.
49  * @pm8001_ha: our hba card information
50  */
51 static void read_main_config_table(struct pm8001_hba_info *pm8001_ha)
52 {
53 	void __iomem *address = pm8001_ha->main_cfg_tbl_addr;
54 	pm8001_ha->main_cfg_tbl.pm8001_tbl.signature	=
55 				pm8001_mr32(address, 0x00);
56 	pm8001_ha->main_cfg_tbl.pm8001_tbl.interface_rev =
57 				pm8001_mr32(address, 0x04);
58 	pm8001_ha->main_cfg_tbl.pm8001_tbl.firmware_rev	=
59 				pm8001_mr32(address, 0x08);
60 	pm8001_ha->main_cfg_tbl.pm8001_tbl.max_out_io	=
61 				pm8001_mr32(address, 0x0C);
62 	pm8001_ha->main_cfg_tbl.pm8001_tbl.max_sgl	=
63 				pm8001_mr32(address, 0x10);
64 	pm8001_ha->main_cfg_tbl.pm8001_tbl.ctrl_cap_flag =
65 				pm8001_mr32(address, 0x14);
66 	pm8001_ha->main_cfg_tbl.pm8001_tbl.gst_offset	=
67 				pm8001_mr32(address, 0x18);
68 	pm8001_ha->main_cfg_tbl.pm8001_tbl.inbound_queue_offset =
69 		pm8001_mr32(address, MAIN_IBQ_OFFSET);
70 	pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_queue_offset =
71 		pm8001_mr32(address, MAIN_OBQ_OFFSET);
72 	pm8001_ha->main_cfg_tbl.pm8001_tbl.hda_mode_flag	=
73 		pm8001_mr32(address, MAIN_HDA_FLAGS_OFFSET);
74 
75 	/* read analog Setting offset from the configuration table */
76 	pm8001_ha->main_cfg_tbl.pm8001_tbl.anolog_setup_table_offset =
77 		pm8001_mr32(address, MAIN_ANALOG_SETUP_OFFSET);
78 
79 	/* read Error Dump Offset and Length */
80 	pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_offset0 =
81 		pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_OFFSET);
82 	pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_length0 =
83 		pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_LENGTH);
84 	pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_offset1 =
85 		pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_OFFSET);
86 	pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_length1 =
87 		pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_LENGTH);
88 }
89 
90 /**
91  * read_general_status_table - read the general status table and save it.
92  * @pm8001_ha: our hba card information
93  */
94 static void read_general_status_table(struct pm8001_hba_info *pm8001_ha)
95 {
96 	void __iomem *address = pm8001_ha->general_stat_tbl_addr;
97 	pm8001_ha->gs_tbl.pm8001_tbl.gst_len_mpistate	=
98 				pm8001_mr32(address, 0x00);
99 	pm8001_ha->gs_tbl.pm8001_tbl.iq_freeze_state0	=
100 				pm8001_mr32(address, 0x04);
101 	pm8001_ha->gs_tbl.pm8001_tbl.iq_freeze_state1	=
102 				pm8001_mr32(address, 0x08);
103 	pm8001_ha->gs_tbl.pm8001_tbl.msgu_tcnt		=
104 				pm8001_mr32(address, 0x0C);
105 	pm8001_ha->gs_tbl.pm8001_tbl.iop_tcnt		=
106 				pm8001_mr32(address, 0x10);
107 	pm8001_ha->gs_tbl.pm8001_tbl.rsvd		=
108 				pm8001_mr32(address, 0x14);
109 	pm8001_ha->gs_tbl.pm8001_tbl.phy_state[0]	=
110 				pm8001_mr32(address, 0x18);
111 	pm8001_ha->gs_tbl.pm8001_tbl.phy_state[1]	=
112 				pm8001_mr32(address, 0x1C);
113 	pm8001_ha->gs_tbl.pm8001_tbl.phy_state[2]	=
114 				pm8001_mr32(address, 0x20);
115 	pm8001_ha->gs_tbl.pm8001_tbl.phy_state[3]	=
116 				pm8001_mr32(address, 0x24);
117 	pm8001_ha->gs_tbl.pm8001_tbl.phy_state[4]	=
118 				pm8001_mr32(address, 0x28);
119 	pm8001_ha->gs_tbl.pm8001_tbl.phy_state[5]	=
120 				pm8001_mr32(address, 0x2C);
121 	pm8001_ha->gs_tbl.pm8001_tbl.phy_state[6]	=
122 				pm8001_mr32(address, 0x30);
123 	pm8001_ha->gs_tbl.pm8001_tbl.phy_state[7]	=
124 				pm8001_mr32(address, 0x34);
125 	pm8001_ha->gs_tbl.pm8001_tbl.gpio_input_val	=
126 				pm8001_mr32(address, 0x38);
127 	pm8001_ha->gs_tbl.pm8001_tbl.rsvd1[0]		=
128 				pm8001_mr32(address, 0x3C);
129 	pm8001_ha->gs_tbl.pm8001_tbl.rsvd1[1]		=
130 				pm8001_mr32(address, 0x40);
131 	pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[0]	=
132 				pm8001_mr32(address, 0x44);
133 	pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[1]	=
134 				pm8001_mr32(address, 0x48);
135 	pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[2]	=
136 				pm8001_mr32(address, 0x4C);
137 	pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[3]	=
138 				pm8001_mr32(address, 0x50);
139 	pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[4]	=
140 				pm8001_mr32(address, 0x54);
141 	pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[5]	=
142 				pm8001_mr32(address, 0x58);
143 	pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[6]	=
144 				pm8001_mr32(address, 0x5C);
145 	pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[7]	=
146 				pm8001_mr32(address, 0x60);
147 }
148 
149 /**
150  * read_inbnd_queue_table - read the inbound queue table and save it.
151  * @pm8001_ha: our hba card information
152  */
153 static void read_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha)
154 {
155 	int i;
156 	void __iomem *address = pm8001_ha->inbnd_q_tbl_addr;
157 	for (i = 0; i < PM8001_MAX_INB_NUM; i++) {
158 		u32 offset = i * 0x20;
159 		pm8001_ha->inbnd_q_tbl[i].pi_pci_bar =
160 		      get_pci_bar_index(pm8001_mr32(address, (offset + 0x14)));
161 		pm8001_ha->inbnd_q_tbl[i].pi_offset =
162 			pm8001_mr32(address, (offset + 0x18));
163 	}
164 }
165 
166 /**
167  * read_outbnd_queue_table - read the outbound queue table and save it.
168  * @pm8001_ha: our hba card information
169  */
170 static void read_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha)
171 {
172 	int i;
173 	void __iomem *address = pm8001_ha->outbnd_q_tbl_addr;
174 	for (i = 0; i < PM8001_MAX_OUTB_NUM; i++) {
175 		u32 offset = i * 0x24;
176 		pm8001_ha->outbnd_q_tbl[i].ci_pci_bar =
177 		      get_pci_bar_index(pm8001_mr32(address, (offset + 0x14)));
178 		pm8001_ha->outbnd_q_tbl[i].ci_offset =
179 			pm8001_mr32(address, (offset + 0x18));
180 	}
181 }
182 
183 /**
184  * init_default_table_values - init the default table.
185  * @pm8001_ha: our hba card information
186  */
187 static void init_default_table_values(struct pm8001_hba_info *pm8001_ha)
188 {
189 	int i;
190 	u32 offsetib, offsetob;
191 	void __iomem *addressib = pm8001_ha->inbnd_q_tbl_addr;
192 	void __iomem *addressob = pm8001_ha->outbnd_q_tbl_addr;
193 	u32 ib_offset = pm8001_ha->ib_offset;
194 	u32 ob_offset = pm8001_ha->ob_offset;
195 	u32 ci_offset = pm8001_ha->ci_offset;
196 	u32 pi_offset = pm8001_ha->pi_offset;
197 
198 	pm8001_ha->main_cfg_tbl.pm8001_tbl.inbound_q_nppd_hppd		= 0;
199 	pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid0_3	= 0;
200 	pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid4_7	= 0;
201 	pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid0_3	= 0;
202 	pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid4_7	= 0;
203 	pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ITNexus_event_pid0_3 =
204 									 0;
205 	pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ITNexus_event_pid4_7 =
206 									 0;
207 	pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ssp_event_pid0_3 = 0;
208 	pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ssp_event_pid4_7 = 0;
209 	pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_smp_event_pid0_3 = 0;
210 	pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_smp_event_pid4_7 = 0;
211 
212 	pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_event_log_addr		=
213 		pm8001_ha->memoryMap.region[AAP1].phys_addr_hi;
214 	pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_event_log_addr		=
215 		pm8001_ha->memoryMap.region[AAP1].phys_addr_lo;
216 	pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_size		=
217 		PM8001_EVENT_LOG_SIZE;
218 	pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_option		= 0x01;
219 	pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_iop_event_log_addr	=
220 		pm8001_ha->memoryMap.region[IOP].phys_addr_hi;
221 	pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_iop_event_log_addr	=
222 		pm8001_ha->memoryMap.region[IOP].phys_addr_lo;
223 	pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_size		=
224 		PM8001_EVENT_LOG_SIZE;
225 	pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_option		= 0x01;
226 	pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_interrupt		= 0x01;
227 	for (i = 0; i < pm8001_ha->max_q_num; i++) {
228 		pm8001_ha->inbnd_q_tbl[i].element_pri_size_cnt	=
229 			PM8001_MPI_QUEUE | (pm8001_ha->iomb_size << 16) | (0x00<<30);
230 		pm8001_ha->inbnd_q_tbl[i].upper_base_addr	=
231 			pm8001_ha->memoryMap.region[ib_offset + i].phys_addr_hi;
232 		pm8001_ha->inbnd_q_tbl[i].lower_base_addr	=
233 		pm8001_ha->memoryMap.region[ib_offset + i].phys_addr_lo;
234 		pm8001_ha->inbnd_q_tbl[i].base_virt		=
235 		  (u8 *)pm8001_ha->memoryMap.region[ib_offset + i].virt_ptr;
236 		pm8001_ha->inbnd_q_tbl[i].total_length		=
237 			pm8001_ha->memoryMap.region[ib_offset + i].total_len;
238 		pm8001_ha->inbnd_q_tbl[i].ci_upper_base_addr	=
239 			pm8001_ha->memoryMap.region[ci_offset + i].phys_addr_hi;
240 		pm8001_ha->inbnd_q_tbl[i].ci_lower_base_addr	=
241 			pm8001_ha->memoryMap.region[ci_offset + i].phys_addr_lo;
242 		pm8001_ha->inbnd_q_tbl[i].ci_virt		=
243 			pm8001_ha->memoryMap.region[ci_offset + i].virt_ptr;
244 		pm8001_write_32(pm8001_ha->inbnd_q_tbl[i].ci_virt, 0, 0);
245 		offsetib = i * 0x20;
246 		pm8001_ha->inbnd_q_tbl[i].pi_pci_bar		=
247 			get_pci_bar_index(pm8001_mr32(addressib,
248 				(offsetib + 0x14)));
249 		pm8001_ha->inbnd_q_tbl[i].pi_offset		=
250 			pm8001_mr32(addressib, (offsetib + 0x18));
251 		pm8001_ha->inbnd_q_tbl[i].producer_idx		= 0;
252 		pm8001_ha->inbnd_q_tbl[i].consumer_index	= 0;
253 	}
254 	for (i = 0; i < pm8001_ha->max_q_num; i++) {
255 		pm8001_ha->outbnd_q_tbl[i].element_size_cnt	=
256 			PM8001_MPI_QUEUE | (pm8001_ha->iomb_size << 16) | (0x01<<30);
257 		pm8001_ha->outbnd_q_tbl[i].upper_base_addr	=
258 			pm8001_ha->memoryMap.region[ob_offset + i].phys_addr_hi;
259 		pm8001_ha->outbnd_q_tbl[i].lower_base_addr	=
260 			pm8001_ha->memoryMap.region[ob_offset + i].phys_addr_lo;
261 		pm8001_ha->outbnd_q_tbl[i].base_virt		=
262 		  (u8 *)pm8001_ha->memoryMap.region[ob_offset + i].virt_ptr;
263 		pm8001_ha->outbnd_q_tbl[i].total_length		=
264 			pm8001_ha->memoryMap.region[ob_offset + i].total_len;
265 		pm8001_ha->outbnd_q_tbl[i].pi_upper_base_addr	=
266 			pm8001_ha->memoryMap.region[pi_offset + i].phys_addr_hi;
267 		pm8001_ha->outbnd_q_tbl[i].pi_lower_base_addr	=
268 			pm8001_ha->memoryMap.region[pi_offset + i].phys_addr_lo;
269 		pm8001_ha->outbnd_q_tbl[i].interrup_vec_cnt_delay	=
270 			0 | (10 << 16) | (i << 24);
271 		pm8001_ha->outbnd_q_tbl[i].pi_virt		=
272 			pm8001_ha->memoryMap.region[pi_offset + i].virt_ptr;
273 		pm8001_write_32(pm8001_ha->outbnd_q_tbl[i].pi_virt, 0, 0);
274 		offsetob = i * 0x24;
275 		pm8001_ha->outbnd_q_tbl[i].ci_pci_bar		=
276 			get_pci_bar_index(pm8001_mr32(addressob,
277 			offsetob + 0x14));
278 		pm8001_ha->outbnd_q_tbl[i].ci_offset		=
279 			pm8001_mr32(addressob, (offsetob + 0x18));
280 		pm8001_ha->outbnd_q_tbl[i].consumer_idx		= 0;
281 		pm8001_ha->outbnd_q_tbl[i].producer_index	= 0;
282 	}
283 }
284 
285 /**
286  * update_main_config_table - update the main default table to the HBA.
287  * @pm8001_ha: our hba card information
288  */
289 static void update_main_config_table(struct pm8001_hba_info *pm8001_ha)
290 {
291 	void __iomem *address = pm8001_ha->main_cfg_tbl_addr;
292 	pm8001_mw32(address, 0x24,
293 		pm8001_ha->main_cfg_tbl.pm8001_tbl.inbound_q_nppd_hppd);
294 	pm8001_mw32(address, 0x28,
295 		pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid0_3);
296 	pm8001_mw32(address, 0x2C,
297 		pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid4_7);
298 	pm8001_mw32(address, 0x30,
299 		pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid0_3);
300 	pm8001_mw32(address, 0x34,
301 		pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid4_7);
302 	pm8001_mw32(address, 0x38,
303 		pm8001_ha->main_cfg_tbl.pm8001_tbl.
304 					outbound_tgt_ITNexus_event_pid0_3);
305 	pm8001_mw32(address, 0x3C,
306 		pm8001_ha->main_cfg_tbl.pm8001_tbl.
307 					outbound_tgt_ITNexus_event_pid4_7);
308 	pm8001_mw32(address, 0x40,
309 		pm8001_ha->main_cfg_tbl.pm8001_tbl.
310 					outbound_tgt_ssp_event_pid0_3);
311 	pm8001_mw32(address, 0x44,
312 		pm8001_ha->main_cfg_tbl.pm8001_tbl.
313 					outbound_tgt_ssp_event_pid4_7);
314 	pm8001_mw32(address, 0x48,
315 		pm8001_ha->main_cfg_tbl.pm8001_tbl.
316 					outbound_tgt_smp_event_pid0_3);
317 	pm8001_mw32(address, 0x4C,
318 		pm8001_ha->main_cfg_tbl.pm8001_tbl.
319 					outbound_tgt_smp_event_pid4_7);
320 	pm8001_mw32(address, 0x50,
321 		pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_event_log_addr);
322 	pm8001_mw32(address, 0x54,
323 		pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_event_log_addr);
324 	pm8001_mw32(address, 0x58,
325 		pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_size);
326 	pm8001_mw32(address, 0x5C,
327 		pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_option);
328 	pm8001_mw32(address, 0x60,
329 		pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_iop_event_log_addr);
330 	pm8001_mw32(address, 0x64,
331 		pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_iop_event_log_addr);
332 	pm8001_mw32(address, 0x68,
333 		pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_size);
334 	pm8001_mw32(address, 0x6C,
335 		pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_option);
336 	pm8001_mw32(address, 0x70,
337 		pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_interrupt);
338 }
339 
340 /**
341  * update_inbnd_queue_table - update the inbound queue table to the HBA.
342  * @pm8001_ha: our hba card information
343  * @number: entry in the queue
344  */
345 static void update_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha,
346 				     int number)
347 {
348 	void __iomem *address = pm8001_ha->inbnd_q_tbl_addr;
349 	u16 offset = number * 0x20;
350 	pm8001_mw32(address, offset + 0x00,
351 		pm8001_ha->inbnd_q_tbl[number].element_pri_size_cnt);
352 	pm8001_mw32(address, offset + 0x04,
353 		pm8001_ha->inbnd_q_tbl[number].upper_base_addr);
354 	pm8001_mw32(address, offset + 0x08,
355 		pm8001_ha->inbnd_q_tbl[number].lower_base_addr);
356 	pm8001_mw32(address, offset + 0x0C,
357 		pm8001_ha->inbnd_q_tbl[number].ci_upper_base_addr);
358 	pm8001_mw32(address, offset + 0x10,
359 		pm8001_ha->inbnd_q_tbl[number].ci_lower_base_addr);
360 }
361 
362 /**
363  * update_outbnd_queue_table - update the outbound queue table to the HBA.
364  * @pm8001_ha: our hba card information
365  * @number: entry in the queue
366  */
367 static void update_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha,
368 				      int number)
369 {
370 	void __iomem *address = pm8001_ha->outbnd_q_tbl_addr;
371 	u16 offset = number * 0x24;
372 	pm8001_mw32(address, offset + 0x00,
373 		pm8001_ha->outbnd_q_tbl[number].element_size_cnt);
374 	pm8001_mw32(address, offset + 0x04,
375 		pm8001_ha->outbnd_q_tbl[number].upper_base_addr);
376 	pm8001_mw32(address, offset + 0x08,
377 		pm8001_ha->outbnd_q_tbl[number].lower_base_addr);
378 	pm8001_mw32(address, offset + 0x0C,
379 		pm8001_ha->outbnd_q_tbl[number].pi_upper_base_addr);
380 	pm8001_mw32(address, offset + 0x10,
381 		pm8001_ha->outbnd_q_tbl[number].pi_lower_base_addr);
382 	pm8001_mw32(address, offset + 0x1C,
383 		pm8001_ha->outbnd_q_tbl[number].interrup_vec_cnt_delay);
384 }
385 
386 /**
387  * pm8001_bar4_shift - function is called to shift BAR base address
388  * @pm8001_ha : our hba card information
389  * @shiftValue : shifting value in memory bar.
390  */
391 int pm8001_bar4_shift(struct pm8001_hba_info *pm8001_ha, u32 shiftValue)
392 {
393 	u32 regVal;
394 	unsigned long start;
395 
396 	/* program the inbound AXI translation Lower Address */
397 	pm8001_cw32(pm8001_ha, 1, SPC_IBW_AXI_TRANSLATION_LOW, shiftValue);
398 
399 	/* confirm the setting is written */
400 	start = jiffies + HZ; /* 1 sec */
401 	do {
402 		regVal = pm8001_cr32(pm8001_ha, 1, SPC_IBW_AXI_TRANSLATION_LOW);
403 	} while ((regVal != shiftValue) && time_before(jiffies, start));
404 
405 	if (regVal != shiftValue) {
406 		pm8001_dbg(pm8001_ha, INIT,
407 			   "TIMEOUT:SPC_IBW_AXI_TRANSLATION_LOW = 0x%x\n",
408 			   regVal);
409 		return -1;
410 	}
411 	return 0;
412 }
413 
414 /**
415  * mpi_set_phys_g3_with_ssc
416  * @pm8001_ha: our hba card information
417  * @SSCbit: set SSCbit to 0 to disable all phys ssc; 1 to enable all phys ssc.
418  */
419 static void mpi_set_phys_g3_with_ssc(struct pm8001_hba_info *pm8001_ha,
420 				     u32 SSCbit)
421 {
422 	u32 offset, i;
423 	unsigned long flags;
424 
425 #define SAS2_SETTINGS_LOCAL_PHY_0_3_SHIFT_ADDR 0x00030000
426 #define SAS2_SETTINGS_LOCAL_PHY_4_7_SHIFT_ADDR 0x00040000
427 #define SAS2_SETTINGS_LOCAL_PHY_0_3_OFFSET 0x1074
428 #define SAS2_SETTINGS_LOCAL_PHY_4_7_OFFSET 0x1074
429 #define PHY_G3_WITHOUT_SSC_BIT_SHIFT 12
430 #define PHY_G3_WITH_SSC_BIT_SHIFT 13
431 #define SNW3_PHY_CAPABILITIES_PARITY 31
432 
433    /*
434     * Using shifted destination address 0x3_0000:0x1074 + 0x4000*N (N=0:3)
435     * Using shifted destination address 0x4_0000:0x1074 + 0x4000*(N-4) (N=4:7)
436     */
437 	spin_lock_irqsave(&pm8001_ha->lock, flags);
438 	if (-1 == pm8001_bar4_shift(pm8001_ha,
439 				SAS2_SETTINGS_LOCAL_PHY_0_3_SHIFT_ADDR)) {
440 		spin_unlock_irqrestore(&pm8001_ha->lock, flags);
441 		return;
442 	}
443 
444 	for (i = 0; i < 4; i++) {
445 		offset = SAS2_SETTINGS_LOCAL_PHY_0_3_OFFSET + 0x4000 * i;
446 		pm8001_cw32(pm8001_ha, 2, offset, 0x80001501);
447 	}
448 	/* shift membase 3 for SAS2_SETTINGS_LOCAL_PHY 4 - 7 */
449 	if (-1 == pm8001_bar4_shift(pm8001_ha,
450 				SAS2_SETTINGS_LOCAL_PHY_4_7_SHIFT_ADDR)) {
451 		spin_unlock_irqrestore(&pm8001_ha->lock, flags);
452 		return;
453 	}
454 	for (i = 4; i < 8; i++) {
455 		offset = SAS2_SETTINGS_LOCAL_PHY_4_7_OFFSET + 0x4000 * (i-4);
456 		pm8001_cw32(pm8001_ha, 2, offset, 0x80001501);
457 	}
458 	/*************************************************************
459 	Change the SSC upspreading value to 0x0 so that upspreading is disabled.
460 	Device MABC SMOD0 Controls
461 	Address: (via MEMBASE-III):
462 	Using shifted destination address 0x0_0000: with Offset 0xD8
463 
464 	31:28 R/W Reserved Do not change
465 	27:24 R/W SAS_SMOD_SPRDUP 0000
466 	23:20 R/W SAS_SMOD_SPRDDN 0000
467 	19:0  R/W  Reserved Do not change
468 	Upon power-up this register will read as 0x8990c016,
469 	and I would like you to change the SAS_SMOD_SPRDUP bits to 0b0000
470 	so that the written value will be 0x8090c016.
471 	This will ensure only down-spreading SSC is enabled on the SPC.
472 	*************************************************************/
473 	pm8001_cr32(pm8001_ha, 2, 0xd8);
474 	pm8001_cw32(pm8001_ha, 2, 0xd8, 0x8000C016);
475 
476 	/*set the shifted destination address to 0x0 to avoid error operation */
477 	pm8001_bar4_shift(pm8001_ha, 0x0);
478 	spin_unlock_irqrestore(&pm8001_ha->lock, flags);
479 	return;
480 }
481 
482 /**
483  * mpi_set_open_retry_interval_reg
484  * @pm8001_ha: our hba card information
485  * @interval: interval time for each OPEN_REJECT (RETRY). The units are in 1us.
486  */
487 static void mpi_set_open_retry_interval_reg(struct pm8001_hba_info *pm8001_ha,
488 					    u32 interval)
489 {
490 	u32 offset;
491 	u32 value;
492 	u32 i;
493 	unsigned long flags;
494 
495 #define OPEN_RETRY_INTERVAL_PHY_0_3_SHIFT_ADDR 0x00030000
496 #define OPEN_RETRY_INTERVAL_PHY_4_7_SHIFT_ADDR 0x00040000
497 #define OPEN_RETRY_INTERVAL_PHY_0_3_OFFSET 0x30B4
498 #define OPEN_RETRY_INTERVAL_PHY_4_7_OFFSET 0x30B4
499 #define OPEN_RETRY_INTERVAL_REG_MASK 0x0000FFFF
500 
501 	value = interval & OPEN_RETRY_INTERVAL_REG_MASK;
502 	spin_lock_irqsave(&pm8001_ha->lock, flags);
503 	/* shift bar and set the OPEN_REJECT(RETRY) interval time of PHY 0 -3.*/
504 	if (-1 == pm8001_bar4_shift(pm8001_ha,
505 			     OPEN_RETRY_INTERVAL_PHY_0_3_SHIFT_ADDR)) {
506 		spin_unlock_irqrestore(&pm8001_ha->lock, flags);
507 		return;
508 	}
509 	for (i = 0; i < 4; i++) {
510 		offset = OPEN_RETRY_INTERVAL_PHY_0_3_OFFSET + 0x4000 * i;
511 		pm8001_cw32(pm8001_ha, 2, offset, value);
512 	}
513 
514 	if (-1 == pm8001_bar4_shift(pm8001_ha,
515 			     OPEN_RETRY_INTERVAL_PHY_4_7_SHIFT_ADDR)) {
516 		spin_unlock_irqrestore(&pm8001_ha->lock, flags);
517 		return;
518 	}
519 	for (i = 4; i < 8; i++) {
520 		offset = OPEN_RETRY_INTERVAL_PHY_4_7_OFFSET + 0x4000 * (i-4);
521 		pm8001_cw32(pm8001_ha, 2, offset, value);
522 	}
523 	/*set the shifted destination address to 0x0 to avoid error operation */
524 	pm8001_bar4_shift(pm8001_ha, 0x0);
525 	spin_unlock_irqrestore(&pm8001_ha->lock, flags);
526 	return;
527 }
528 
529 /**
530  * mpi_init_check - check firmware initialization status.
531  * @pm8001_ha: our hba card information
532  */
533 static int mpi_init_check(struct pm8001_hba_info *pm8001_ha)
534 {
535 	u32 max_wait_count;
536 	u32 value;
537 	u32 gst_len_mpistate;
538 	/* Write bit0=1 to Inbound DoorBell Register to tell the SPC FW the
539 	table is updated */
540 	pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPC_MSGU_CFG_TABLE_UPDATE);
541 	/* wait until Inbound DoorBell Clear Register toggled */
542 	max_wait_count = 1 * 1000 * 1000;/* 1 sec */
543 	do {
544 		udelay(1);
545 		value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET);
546 		value &= SPC_MSGU_CFG_TABLE_UPDATE;
547 	} while ((value != 0) && (--max_wait_count));
548 
549 	if (!max_wait_count)
550 		return -1;
551 	/* check the MPI-State for initialization */
552 	gst_len_mpistate =
553 		pm8001_mr32(pm8001_ha->general_stat_tbl_addr,
554 		GST_GSTLEN_MPIS_OFFSET);
555 	if (GST_MPI_STATE_INIT != (gst_len_mpistate & GST_MPI_STATE_MASK))
556 		return -1;
557 	/* check MPI Initialization error */
558 	gst_len_mpistate = gst_len_mpistate >> 16;
559 	if (0x0000 != gst_len_mpistate)
560 		return -1;
561 	return 0;
562 }
563 
564 /**
565  * check_fw_ready - The LLDD check if the FW is ready, if not, return error.
566  * @pm8001_ha: our hba card information
567  */
568 static int check_fw_ready(struct pm8001_hba_info *pm8001_ha)
569 {
570 	u32 value, value1;
571 	u32 max_wait_count;
572 	/* check error state */
573 	value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
574 	value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2);
575 	/* check AAP error */
576 	if (SCRATCH_PAD1_ERR == (value & SCRATCH_PAD_STATE_MASK)) {
577 		/* error state */
578 		value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0);
579 		return -1;
580 	}
581 
582 	/* check IOP error */
583 	if (SCRATCH_PAD2_ERR == (value1 & SCRATCH_PAD_STATE_MASK)) {
584 		/* error state */
585 		value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3);
586 		return -1;
587 	}
588 
589 	/* bit 4-31 of scratch pad1 should be zeros if it is not
590 	in error state*/
591 	if (value & SCRATCH_PAD1_STATE_MASK) {
592 		/* error case */
593 		pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0);
594 		return -1;
595 	}
596 
597 	/* bit 2, 4-31 of scratch pad2 should be zeros if it is not
598 	in error state */
599 	if (value1 & SCRATCH_PAD2_STATE_MASK) {
600 		/* error case */
601 		return -1;
602 	}
603 
604 	max_wait_count = 1 * 1000 * 1000;/* 1 sec timeout */
605 
606 	/* wait until scratch pad 1 and 2 registers in ready state  */
607 	do {
608 		udelay(1);
609 		value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1)
610 			& SCRATCH_PAD1_RDY;
611 		value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2)
612 			& SCRATCH_PAD2_RDY;
613 		if ((--max_wait_count) == 0)
614 			return -1;
615 	} while ((value != SCRATCH_PAD1_RDY) || (value1 != SCRATCH_PAD2_RDY));
616 	return 0;
617 }
618 
619 static void init_pci_device_addresses(struct pm8001_hba_info *pm8001_ha)
620 {
621 	void __iomem *base_addr;
622 	u32	value;
623 	u32	offset;
624 	u32	pcibar;
625 	u32	pcilogic;
626 
627 	value = pm8001_cr32(pm8001_ha, 0, 0x44);
628 	offset = value & 0x03FFFFFF;
629 	pm8001_dbg(pm8001_ha, INIT, "Scratchpad 0 Offset: %x\n", offset);
630 	pcilogic = (value & 0xFC000000) >> 26;
631 	pcibar = get_pci_bar_index(pcilogic);
632 	pm8001_dbg(pm8001_ha, INIT, "Scratchpad 0 PCI BAR: %d\n", pcibar);
633 	pm8001_ha->main_cfg_tbl_addr = base_addr =
634 		pm8001_ha->io_mem[pcibar].memvirtaddr + offset;
635 	pm8001_ha->general_stat_tbl_addr =
636 		base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x18);
637 	pm8001_ha->inbnd_q_tbl_addr =
638 		base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x1C);
639 	pm8001_ha->outbnd_q_tbl_addr =
640 		base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x20);
641 }
642 
643 /**
644  * pm8001_chip_init - the main init function that initialize whole PM8001 chip.
645  * @pm8001_ha: our hba card information
646  */
647 static int pm8001_chip_init(struct pm8001_hba_info *pm8001_ha)
648 {
649 	u32 i = 0;
650 	u16 deviceid;
651 	pci_read_config_word(pm8001_ha->pdev, PCI_DEVICE_ID, &deviceid);
652 	/* 8081 controllers need BAR shift to access MPI space
653 	* as this is shared with BIOS data */
654 	if (deviceid == 0x8081 || deviceid == 0x0042) {
655 		if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_SM_BASE)) {
656 			pm8001_dbg(pm8001_ha, FAIL,
657 				   "Shift Bar4 to 0x%x failed\n",
658 				   GSM_SM_BASE);
659 			return -1;
660 		}
661 	}
662 	/* check the firmware status */
663 	if (-1 == check_fw_ready(pm8001_ha)) {
664 		pm8001_dbg(pm8001_ha, FAIL, "Firmware is not ready!\n");
665 		return -EBUSY;
666 	}
667 
668 	/* Initialize pci space address eg: mpi offset */
669 	init_pci_device_addresses(pm8001_ha);
670 	init_default_table_values(pm8001_ha);
671 	read_main_config_table(pm8001_ha);
672 	read_general_status_table(pm8001_ha);
673 	read_inbnd_queue_table(pm8001_ha);
674 	read_outbnd_queue_table(pm8001_ha);
675 	/* update main config table ,inbound table and outbound table */
676 	update_main_config_table(pm8001_ha);
677 	for (i = 0; i < pm8001_ha->max_q_num; i++)
678 		update_inbnd_queue_table(pm8001_ha, i);
679 	for (i = 0; i < pm8001_ha->max_q_num; i++)
680 		update_outbnd_queue_table(pm8001_ha, i);
681 	/* 8081 controller donot require these operations */
682 	if (deviceid != 0x8081 && deviceid != 0x0042) {
683 		mpi_set_phys_g3_with_ssc(pm8001_ha, 0);
684 		/* 7->130ms, 34->500ms, 119->1.5s */
685 		mpi_set_open_retry_interval_reg(pm8001_ha, 119);
686 	}
687 	/* notify firmware update finished and check initialization status */
688 	if (0 == mpi_init_check(pm8001_ha)) {
689 		pm8001_dbg(pm8001_ha, INIT, "MPI initialize successful!\n");
690 	} else
691 		return -EBUSY;
692 	/*This register is a 16-bit timer with a resolution of 1us. This is the
693 	timer used for interrupt delay/coalescing in the PCIe Application Layer.
694 	Zero is not a valid value. A value of 1 in the register will cause the
695 	interrupts to be normal. A value greater than 1 will cause coalescing
696 	delays.*/
697 	pm8001_cw32(pm8001_ha, 1, 0x0033c0, 0x1);
698 	pm8001_cw32(pm8001_ha, 1, 0x0033c4, 0x0);
699 	return 0;
700 }
701 
702 static int mpi_uninit_check(struct pm8001_hba_info *pm8001_ha)
703 {
704 	u32 max_wait_count;
705 	u32 value;
706 	u32 gst_len_mpistate;
707 	u16 deviceid;
708 	pci_read_config_word(pm8001_ha->pdev, PCI_DEVICE_ID, &deviceid);
709 	if (deviceid == 0x8081 || deviceid == 0x0042) {
710 		if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_SM_BASE)) {
711 			pm8001_dbg(pm8001_ha, FAIL,
712 				   "Shift Bar4 to 0x%x failed\n",
713 				   GSM_SM_BASE);
714 			return -1;
715 		}
716 	}
717 	init_pci_device_addresses(pm8001_ha);
718 	/* Write bit1=1 to Inbound DoorBell Register to tell the SPC FW the
719 	table is stop */
720 	pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPC_MSGU_CFG_TABLE_RESET);
721 
722 	/* wait until Inbound DoorBell Clear Register toggled */
723 	max_wait_count = 1 * 1000 * 1000;/* 1 sec */
724 	do {
725 		udelay(1);
726 		value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET);
727 		value &= SPC_MSGU_CFG_TABLE_RESET;
728 	} while ((value != 0) && (--max_wait_count));
729 
730 	if (!max_wait_count) {
731 		pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT:IBDB value/=0x%x\n",
732 			   value);
733 		return -1;
734 	}
735 
736 	/* check the MPI-State for termination in progress */
737 	/* wait until Inbound DoorBell Clear Register toggled */
738 	max_wait_count = 1 * 1000 * 1000;  /* 1 sec */
739 	do {
740 		udelay(1);
741 		gst_len_mpistate =
742 			pm8001_mr32(pm8001_ha->general_stat_tbl_addr,
743 			GST_GSTLEN_MPIS_OFFSET);
744 		if (GST_MPI_STATE_UNINIT ==
745 			(gst_len_mpistate & GST_MPI_STATE_MASK))
746 			break;
747 	} while (--max_wait_count);
748 	if (!max_wait_count) {
749 		pm8001_dbg(pm8001_ha, FAIL, " TIME OUT MPI State = 0x%x\n",
750 			   gst_len_mpistate & GST_MPI_STATE_MASK);
751 		return -1;
752 	}
753 	return 0;
754 }
755 
756 /**
757  * soft_reset_ready_check - Function to check FW is ready for soft reset.
758  * @pm8001_ha: our hba card information
759  */
760 static u32 soft_reset_ready_check(struct pm8001_hba_info *pm8001_ha)
761 {
762 	u32 regVal, regVal1, regVal2;
763 	if (mpi_uninit_check(pm8001_ha) != 0) {
764 		pm8001_dbg(pm8001_ha, FAIL, "MPI state is not ready\n");
765 		return -1;
766 	}
767 	/* read the scratch pad 2 register bit 2 */
768 	regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2)
769 		& SCRATCH_PAD2_FWRDY_RST;
770 	if (regVal == SCRATCH_PAD2_FWRDY_RST) {
771 		pm8001_dbg(pm8001_ha, INIT, "Firmware is ready for reset.\n");
772 	} else {
773 		unsigned long flags;
774 		/* Trigger NMI twice via RB6 */
775 		spin_lock_irqsave(&pm8001_ha->lock, flags);
776 		if (-1 == pm8001_bar4_shift(pm8001_ha, RB6_ACCESS_REG)) {
777 			spin_unlock_irqrestore(&pm8001_ha->lock, flags);
778 			pm8001_dbg(pm8001_ha, FAIL,
779 				   "Shift Bar4 to 0x%x failed\n",
780 				   RB6_ACCESS_REG);
781 			return -1;
782 		}
783 		pm8001_cw32(pm8001_ha, 2, SPC_RB6_OFFSET,
784 			RB6_MAGIC_NUMBER_RST);
785 		pm8001_cw32(pm8001_ha, 2, SPC_RB6_OFFSET, RB6_MAGIC_NUMBER_RST);
786 		/* wait for 100 ms */
787 		mdelay(100);
788 		regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) &
789 			SCRATCH_PAD2_FWRDY_RST;
790 		if (regVal != SCRATCH_PAD2_FWRDY_RST) {
791 			regVal1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
792 			regVal2 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2);
793 			pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT:MSGU_SCRATCH_PAD1=0x%x, MSGU_SCRATCH_PAD2=0x%x\n",
794 				   regVal1, regVal2);
795 			pm8001_dbg(pm8001_ha, FAIL,
796 				   "SCRATCH_PAD0 value = 0x%x\n",
797 				   pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0));
798 			pm8001_dbg(pm8001_ha, FAIL,
799 				   "SCRATCH_PAD3 value = 0x%x\n",
800 				   pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3));
801 			spin_unlock_irqrestore(&pm8001_ha->lock, flags);
802 			return -1;
803 		}
804 		spin_unlock_irqrestore(&pm8001_ha->lock, flags);
805 	}
806 	return 0;
807 }
808 
809 /**
810  * pm8001_chip_soft_rst - soft reset the PM8001 chip, so that the clear all
811  * the FW register status to the originated status.
812  * @pm8001_ha: our hba card information
813  */
814 static int
815 pm8001_chip_soft_rst(struct pm8001_hba_info *pm8001_ha)
816 {
817 	u32	regVal, toggleVal;
818 	u32	max_wait_count;
819 	u32	regVal1, regVal2, regVal3;
820 	u32	signature = 0x252acbcd; /* for host scratch pad0 */
821 	unsigned long flags;
822 
823 	/* step1: Check FW is ready for soft reset */
824 	if (soft_reset_ready_check(pm8001_ha) != 0) {
825 		pm8001_dbg(pm8001_ha, FAIL, "FW is not ready\n");
826 		return -1;
827 	}
828 
829 	/* step 2: clear NMI status register on AAP1 and IOP, write the same
830 	value to clear */
831 	/* map 0x60000 to BAR4(0x20), BAR2(win) */
832 	spin_lock_irqsave(&pm8001_ha->lock, flags);
833 	if (-1 == pm8001_bar4_shift(pm8001_ha, MBIC_AAP1_ADDR_BASE)) {
834 		spin_unlock_irqrestore(&pm8001_ha->lock, flags);
835 		pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n",
836 			   MBIC_AAP1_ADDR_BASE);
837 		return -1;
838 	}
839 	regVal = pm8001_cr32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_IOP);
840 	pm8001_dbg(pm8001_ha, INIT, "MBIC - NMI Enable VPE0 (IOP)= 0x%x\n",
841 		   regVal);
842 	pm8001_cw32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_IOP, 0x0);
843 	/* map 0x70000 to BAR4(0x20), BAR2(win) */
844 	if (-1 == pm8001_bar4_shift(pm8001_ha, MBIC_IOP_ADDR_BASE)) {
845 		spin_unlock_irqrestore(&pm8001_ha->lock, flags);
846 		pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n",
847 			   MBIC_IOP_ADDR_BASE);
848 		return -1;
849 	}
850 	regVal = pm8001_cr32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_AAP1);
851 	pm8001_dbg(pm8001_ha, INIT, "MBIC - NMI Enable VPE0 (AAP1)= 0x%x\n",
852 		   regVal);
853 	pm8001_cw32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_AAP1, 0x0);
854 
855 	regVal = pm8001_cr32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT_ENABLE);
856 	pm8001_dbg(pm8001_ha, INIT, "PCIE -Event Interrupt Enable = 0x%x\n",
857 		   regVal);
858 	pm8001_cw32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT_ENABLE, 0x0);
859 
860 	regVal = pm8001_cr32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT);
861 	pm8001_dbg(pm8001_ha, INIT, "PCIE - Event Interrupt  = 0x%x\n",
862 		   regVal);
863 	pm8001_cw32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT, regVal);
864 
865 	regVal = pm8001_cr32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT_ENABLE);
866 	pm8001_dbg(pm8001_ha, INIT, "PCIE -Error Interrupt Enable = 0x%x\n",
867 		   regVal);
868 	pm8001_cw32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT_ENABLE, 0x0);
869 
870 	regVal = pm8001_cr32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT);
871 	pm8001_dbg(pm8001_ha, INIT, "PCIE - Error Interrupt = 0x%x\n", regVal);
872 	pm8001_cw32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT, regVal);
873 
874 	/* read the scratch pad 1 register bit 2 */
875 	regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1)
876 		& SCRATCH_PAD1_RST;
877 	toggleVal = regVal ^ SCRATCH_PAD1_RST;
878 
879 	/* set signature in host scratch pad0 register to tell SPC that the
880 	host performs the soft reset */
881 	pm8001_cw32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_0, signature);
882 
883 	/* read required registers for confirmming */
884 	/* map 0x0700000 to BAR4(0x20), BAR2(win) */
885 	if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_ADDR_BASE)) {
886 		spin_unlock_irqrestore(&pm8001_ha->lock, flags);
887 		pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n",
888 			   GSM_ADDR_BASE);
889 		return -1;
890 	}
891 	pm8001_dbg(pm8001_ha, INIT,
892 		   "GSM 0x0(0x00007b88)-GSM Configuration and Reset = 0x%x\n",
893 		   pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET));
894 
895 	/* step 3: host read GSM Configuration and Reset register */
896 	regVal = pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET);
897 	/* Put those bits to low */
898 	/* GSM XCBI offset = 0x70 0000
899 	0x00 Bit 13 COM_SLV_SW_RSTB 1
900 	0x00 Bit 12 QSSP_SW_RSTB 1
901 	0x00 Bit 11 RAAE_SW_RSTB 1
902 	0x00 Bit 9 RB_1_SW_RSTB 1
903 	0x00 Bit 8 SM_SW_RSTB 1
904 	*/
905 	regVal &= ~(0x00003b00);
906 	/* host write GSM Configuration and Reset register */
907 	pm8001_cw32(pm8001_ha, 2, GSM_CONFIG_RESET, regVal);
908 	pm8001_dbg(pm8001_ha, INIT,
909 		   "GSM 0x0 (0x00007b88 ==> 0x00004088) - GSM Configuration and Reset is set to = 0x%x\n",
910 		   pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET));
911 
912 	/* step 4: */
913 	/* disable GSM - Read Address Parity Check */
914 	regVal1 = pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK);
915 	pm8001_dbg(pm8001_ha, INIT,
916 		   "GSM 0x700038 - Read Address Parity Check Enable = 0x%x\n",
917 		   regVal1);
918 	pm8001_cw32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK, 0x0);
919 	pm8001_dbg(pm8001_ha, INIT,
920 		   "GSM 0x700038 - Read Address Parity Check Enable is set to = 0x%x\n",
921 		   pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK));
922 
923 	/* disable GSM - Write Address Parity Check */
924 	regVal2 = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK);
925 	pm8001_dbg(pm8001_ha, INIT,
926 		   "GSM 0x700040 - Write Address Parity Check Enable = 0x%x\n",
927 		   regVal2);
928 	pm8001_cw32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK, 0x0);
929 	pm8001_dbg(pm8001_ha, INIT,
930 		   "GSM 0x700040 - Write Address Parity Check Enable is set to = 0x%x\n",
931 		   pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK));
932 
933 	/* disable GSM - Write Data Parity Check */
934 	regVal3 = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK);
935 	pm8001_dbg(pm8001_ha, INIT, "GSM 0x300048 - Write Data Parity Check Enable = 0x%x\n",
936 		   regVal3);
937 	pm8001_cw32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK, 0x0);
938 	pm8001_dbg(pm8001_ha, INIT,
939 		   "GSM 0x300048 - Write Data Parity Check Enable is set to = 0x%x\n",
940 		   pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK));
941 
942 	/* step 5: delay 10 usec */
943 	udelay(10);
944 	/* step 5-b: set GPIO-0 output control to tristate anyway */
945 	if (-1 == pm8001_bar4_shift(pm8001_ha, GPIO_ADDR_BASE)) {
946 		spin_unlock_irqrestore(&pm8001_ha->lock, flags);
947 		pm8001_dbg(pm8001_ha, INIT, "Shift Bar4 to 0x%x failed\n",
948 			   GPIO_ADDR_BASE);
949 		return -1;
950 	}
951 	regVal = pm8001_cr32(pm8001_ha, 2, GPIO_GPIO_0_0UTPUT_CTL_OFFSET);
952 	pm8001_dbg(pm8001_ha, INIT, "GPIO Output Control Register: = 0x%x\n",
953 		   regVal);
954 	/* set GPIO-0 output control to tri-state */
955 	regVal &= 0xFFFFFFFC;
956 	pm8001_cw32(pm8001_ha, 2, GPIO_GPIO_0_0UTPUT_CTL_OFFSET, regVal);
957 
958 	/* Step 6: Reset the IOP and AAP1 */
959 	/* map 0x00000 to BAR4(0x20), BAR2(win) */
960 	if (-1 == pm8001_bar4_shift(pm8001_ha, SPC_TOP_LEVEL_ADDR_BASE)) {
961 		spin_unlock_irqrestore(&pm8001_ha->lock, flags);
962 		pm8001_dbg(pm8001_ha, FAIL, "SPC Shift Bar4 to 0x%x failed\n",
963 			   SPC_TOP_LEVEL_ADDR_BASE);
964 		return -1;
965 	}
966 	regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET);
967 	pm8001_dbg(pm8001_ha, INIT, "Top Register before resetting IOP/AAP1:= 0x%x\n",
968 		   regVal);
969 	regVal &= ~(SPC_REG_RESET_PCS_IOP_SS | SPC_REG_RESET_PCS_AAP1_SS);
970 	pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal);
971 
972 	/* step 7: Reset the BDMA/OSSP */
973 	regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET);
974 	pm8001_dbg(pm8001_ha, INIT, "Top Register before resetting BDMA/OSSP: = 0x%x\n",
975 		   regVal);
976 	regVal &= ~(SPC_REG_RESET_BDMA_CORE | SPC_REG_RESET_OSSP);
977 	pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal);
978 
979 	/* step 8: delay 10 usec */
980 	udelay(10);
981 
982 	/* step 9: bring the BDMA and OSSP out of reset */
983 	regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET);
984 	pm8001_dbg(pm8001_ha, INIT,
985 		   "Top Register before bringing up BDMA/OSSP:= 0x%x\n",
986 		   regVal);
987 	regVal |= (SPC_REG_RESET_BDMA_CORE | SPC_REG_RESET_OSSP);
988 	pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal);
989 
990 	/* step 10: delay 10 usec */
991 	udelay(10);
992 
993 	/* step 11: reads and sets the GSM Configuration and Reset Register */
994 	/* map 0x0700000 to BAR4(0x20), BAR2(win) */
995 	if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_ADDR_BASE)) {
996 		spin_unlock_irqrestore(&pm8001_ha->lock, flags);
997 		pm8001_dbg(pm8001_ha, FAIL, "SPC Shift Bar4 to 0x%x failed\n",
998 			   GSM_ADDR_BASE);
999 		return -1;
1000 	}
1001 	pm8001_dbg(pm8001_ha, INIT,
1002 		   "GSM 0x0 (0x00007b88)-GSM Configuration and Reset = 0x%x\n",
1003 		   pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET));
1004 	regVal = pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET);
1005 	/* Put those bits to high */
1006 	/* GSM XCBI offset = 0x70 0000
1007 	0x00 Bit 13 COM_SLV_SW_RSTB 1
1008 	0x00 Bit 12 QSSP_SW_RSTB 1
1009 	0x00 Bit 11 RAAE_SW_RSTB 1
1010 	0x00 Bit 9   RB_1_SW_RSTB 1
1011 	0x00 Bit 8   SM_SW_RSTB 1
1012 	*/
1013 	regVal |= (GSM_CONFIG_RESET_VALUE);
1014 	pm8001_cw32(pm8001_ha, 2, GSM_CONFIG_RESET, regVal);
1015 	pm8001_dbg(pm8001_ha, INIT, "GSM (0x00004088 ==> 0x00007b88) - GSM Configuration and Reset is set to = 0x%x\n",
1016 		   pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET));
1017 
1018 	/* step 12: Restore GSM - Read Address Parity Check */
1019 	regVal = pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK);
1020 	/* just for debugging */
1021 	pm8001_dbg(pm8001_ha, INIT,
1022 		   "GSM 0x700038 - Read Address Parity Check Enable = 0x%x\n",
1023 		   regVal);
1024 	pm8001_cw32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK, regVal1);
1025 	pm8001_dbg(pm8001_ha, INIT, "GSM 0x700038 - Read Address Parity Check Enable is set to = 0x%x\n",
1026 		   pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK));
1027 	/* Restore GSM - Write Address Parity Check */
1028 	regVal = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK);
1029 	pm8001_cw32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK, regVal2);
1030 	pm8001_dbg(pm8001_ha, INIT,
1031 		   "GSM 0x700040 - Write Address Parity Check Enable is set to = 0x%x\n",
1032 		   pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK));
1033 	/* Restore GSM - Write Data Parity Check */
1034 	regVal = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK);
1035 	pm8001_cw32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK, regVal3);
1036 	pm8001_dbg(pm8001_ha, INIT,
1037 		   "GSM 0x700048 - Write Data Parity Check Enable is set to = 0x%x\n",
1038 		   pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK));
1039 
1040 	/* step 13: bring the IOP and AAP1 out of reset */
1041 	/* map 0x00000 to BAR4(0x20), BAR2(win) */
1042 	if (-1 == pm8001_bar4_shift(pm8001_ha, SPC_TOP_LEVEL_ADDR_BASE)) {
1043 		spin_unlock_irqrestore(&pm8001_ha->lock, flags);
1044 		pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n",
1045 			   SPC_TOP_LEVEL_ADDR_BASE);
1046 		return -1;
1047 	}
1048 	regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET);
1049 	regVal |= (SPC_REG_RESET_PCS_IOP_SS | SPC_REG_RESET_PCS_AAP1_SS);
1050 	pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal);
1051 
1052 	/* step 14: delay 10 usec - Normal Mode */
1053 	udelay(10);
1054 	/* check Soft Reset Normal mode or Soft Reset HDA mode */
1055 	if (signature == SPC_SOFT_RESET_SIGNATURE) {
1056 		/* step 15 (Normal Mode): wait until scratch pad1 register
1057 		bit 2 toggled */
1058 		max_wait_count = 2 * 1000 * 1000;/* 2 sec */
1059 		do {
1060 			udelay(1);
1061 			regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) &
1062 				SCRATCH_PAD1_RST;
1063 		} while ((regVal != toggleVal) && (--max_wait_count));
1064 
1065 		if (!max_wait_count) {
1066 			regVal = pm8001_cr32(pm8001_ha, 0,
1067 				MSGU_SCRATCH_PAD_1);
1068 			pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT : ToggleVal 0x%x,MSGU_SCRATCH_PAD1 = 0x%x\n",
1069 				   toggleVal, regVal);
1070 			pm8001_dbg(pm8001_ha, FAIL,
1071 				   "SCRATCH_PAD0 value = 0x%x\n",
1072 				   pm8001_cr32(pm8001_ha, 0,
1073 					       MSGU_SCRATCH_PAD_0));
1074 			pm8001_dbg(pm8001_ha, FAIL,
1075 				   "SCRATCH_PAD2 value = 0x%x\n",
1076 				   pm8001_cr32(pm8001_ha, 0,
1077 					       MSGU_SCRATCH_PAD_2));
1078 			pm8001_dbg(pm8001_ha, FAIL,
1079 				   "SCRATCH_PAD3 value = 0x%x\n",
1080 				   pm8001_cr32(pm8001_ha, 0,
1081 					       MSGU_SCRATCH_PAD_3));
1082 			spin_unlock_irqrestore(&pm8001_ha->lock, flags);
1083 			return -1;
1084 		}
1085 
1086 		/* step 16 (Normal) - Clear ODMR and ODCR */
1087 		pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL);
1088 		pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL);
1089 
1090 		/* step 17 (Normal Mode): wait for the FW and IOP to get
1091 		ready - 1 sec timeout */
1092 		/* Wait for the SPC Configuration Table to be ready */
1093 		if (check_fw_ready(pm8001_ha) == -1) {
1094 			regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
1095 			/* return error if MPI Configuration Table not ready */
1096 			pm8001_dbg(pm8001_ha, INIT,
1097 				   "FW not ready SCRATCH_PAD1 = 0x%x\n",
1098 				   regVal);
1099 			regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2);
1100 			/* return error if MPI Configuration Table not ready */
1101 			pm8001_dbg(pm8001_ha, INIT,
1102 				   "FW not ready SCRATCH_PAD2 = 0x%x\n",
1103 				   regVal);
1104 			pm8001_dbg(pm8001_ha, INIT,
1105 				   "SCRATCH_PAD0 value = 0x%x\n",
1106 				   pm8001_cr32(pm8001_ha, 0,
1107 					       MSGU_SCRATCH_PAD_0));
1108 			pm8001_dbg(pm8001_ha, INIT,
1109 				   "SCRATCH_PAD3 value = 0x%x\n",
1110 				   pm8001_cr32(pm8001_ha, 0,
1111 					       MSGU_SCRATCH_PAD_3));
1112 			spin_unlock_irqrestore(&pm8001_ha->lock, flags);
1113 			return -1;
1114 		}
1115 	}
1116 	pm8001_bar4_shift(pm8001_ha, 0);
1117 	spin_unlock_irqrestore(&pm8001_ha->lock, flags);
1118 
1119 	pm8001_dbg(pm8001_ha, INIT, "SPC soft reset Complete\n");
1120 	return 0;
1121 }
1122 
1123 static void pm8001_hw_chip_rst(struct pm8001_hba_info *pm8001_ha)
1124 {
1125 	u32 i;
1126 	u32 regVal;
1127 	pm8001_dbg(pm8001_ha, INIT, "chip reset start\n");
1128 
1129 	/* do SPC chip reset. */
1130 	regVal = pm8001_cr32(pm8001_ha, 1, SPC_REG_RESET);
1131 	regVal &= ~(SPC_REG_RESET_DEVICE);
1132 	pm8001_cw32(pm8001_ha, 1, SPC_REG_RESET, regVal);
1133 
1134 	/* delay 10 usec */
1135 	udelay(10);
1136 
1137 	/* bring chip reset out of reset */
1138 	regVal = pm8001_cr32(pm8001_ha, 1, SPC_REG_RESET);
1139 	regVal |= SPC_REG_RESET_DEVICE;
1140 	pm8001_cw32(pm8001_ha, 1, SPC_REG_RESET, regVal);
1141 
1142 	/* delay 10 usec */
1143 	udelay(10);
1144 
1145 	/* wait for 20 msec until the firmware gets reloaded */
1146 	i = 20;
1147 	do {
1148 		mdelay(1);
1149 	} while ((--i) != 0);
1150 
1151 	pm8001_dbg(pm8001_ha, INIT, "chip reset finished\n");
1152 }
1153 
1154 /**
1155  * pm8001_chip_iounmap - which mapped when initialized.
1156  * @pm8001_ha: our hba card information
1157  */
1158 void pm8001_chip_iounmap(struct pm8001_hba_info *pm8001_ha)
1159 {
1160 	s8 bar, logical = 0;
1161 	for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
1162 		/*
1163 		** logical BARs for SPC:
1164 		** bar 0 and 1 - logical BAR0
1165 		** bar 2 and 3 - logical BAR1
1166 		** bar4 - logical BAR2
1167 		** bar5 - logical BAR3
1168 		** Skip the appropriate assignments:
1169 		*/
1170 		if ((bar == 1) || (bar == 3))
1171 			continue;
1172 		if (pm8001_ha->io_mem[logical].memvirtaddr) {
1173 			iounmap(pm8001_ha->io_mem[logical].memvirtaddr);
1174 			logical++;
1175 		}
1176 	}
1177 }
1178 
1179 #ifndef PM8001_USE_MSIX
1180 /**
1181  * pm8001_chip_intx_interrupt_enable - enable PM8001 chip interrupt
1182  * @pm8001_ha: our hba card information
1183  */
1184 static void
1185 pm8001_chip_intx_interrupt_enable(struct pm8001_hba_info *pm8001_ha)
1186 {
1187 	pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL);
1188 	pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL);
1189 }
1190 
1191 /**
1192  * pm8001_chip_intx_interrupt_disable - disable PM8001 chip interrupt
1193  * @pm8001_ha: our hba card information
1194  */
1195 static void
1196 pm8001_chip_intx_interrupt_disable(struct pm8001_hba_info *pm8001_ha)
1197 {
1198 	pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_MASK_ALL);
1199 }
1200 
1201 #else
1202 
1203 /**
1204  * pm8001_chip_msix_interrupt_enable - enable PM8001 chip interrupt
1205  * @pm8001_ha: our hba card information
1206  * @int_vec_idx: interrupt number to enable
1207  */
1208 static void
1209 pm8001_chip_msix_interrupt_enable(struct pm8001_hba_info *pm8001_ha,
1210 	u32 int_vec_idx)
1211 {
1212 	u32 msi_index;
1213 	u32 value;
1214 	msi_index = int_vec_idx * MSIX_TABLE_ELEMENT_SIZE;
1215 	msi_index += MSIX_TABLE_BASE;
1216 	pm8001_cw32(pm8001_ha, 0, msi_index, MSIX_INTERRUPT_ENABLE);
1217 	value = (1 << int_vec_idx);
1218 	pm8001_cw32(pm8001_ha, 0,  MSGU_ODCR, value);
1219 
1220 }
1221 
1222 /**
1223  * pm8001_chip_msix_interrupt_disable - disable PM8001 chip interrupt
1224  * @pm8001_ha: our hba card information
1225  * @int_vec_idx: interrupt number to disable
1226  */
1227 static void
1228 pm8001_chip_msix_interrupt_disable(struct pm8001_hba_info *pm8001_ha,
1229 	u32 int_vec_idx)
1230 {
1231 	u32 msi_index;
1232 	msi_index = int_vec_idx * MSIX_TABLE_ELEMENT_SIZE;
1233 	msi_index += MSIX_TABLE_BASE;
1234 	pm8001_cw32(pm8001_ha, 0,  msi_index, MSIX_INTERRUPT_DISABLE);
1235 }
1236 #endif
1237 
1238 /**
1239  * pm8001_chip_interrupt_enable - enable PM8001 chip interrupt
1240  * @pm8001_ha: our hba card information
1241  * @vec: unused
1242  */
1243 static void
1244 pm8001_chip_interrupt_enable(struct pm8001_hba_info *pm8001_ha, u8 vec)
1245 {
1246 #ifdef PM8001_USE_MSIX
1247 	pm8001_chip_msix_interrupt_enable(pm8001_ha, 0);
1248 #else
1249 	pm8001_chip_intx_interrupt_enable(pm8001_ha);
1250 #endif
1251 }
1252 
1253 /**
1254  * pm8001_chip_interrupt_disable - disable PM8001 chip interrupt
1255  * @pm8001_ha: our hba card information
1256  * @vec: unused
1257  */
1258 static void
1259 pm8001_chip_interrupt_disable(struct pm8001_hba_info *pm8001_ha, u8 vec)
1260 {
1261 #ifdef PM8001_USE_MSIX
1262 	pm8001_chip_msix_interrupt_disable(pm8001_ha, 0);
1263 #else
1264 	pm8001_chip_intx_interrupt_disable(pm8001_ha);
1265 #endif
1266 }
1267 
1268 /**
1269  * pm8001_mpi_msg_free_get - get the free message buffer for transfer
1270  * inbound queue.
1271  * @circularQ: the inbound queue  we want to transfer to HBA.
1272  * @messageSize: the message size of this transfer, normally it is 64 bytes
1273  * @messagePtr: the pointer to message.
1274  */
1275 int pm8001_mpi_msg_free_get(struct inbound_queue_table *circularQ,
1276 			    u16 messageSize, void **messagePtr)
1277 {
1278 	u32 offset, consumer_index;
1279 	struct mpi_msg_hdr *msgHeader;
1280 	u8 bcCount = 1; /* only support single buffer */
1281 
1282 	/* Checks is the requested message size can be allocated in this queue*/
1283 	if (messageSize > IOMB_SIZE_SPCV) {
1284 		*messagePtr = NULL;
1285 		return -1;
1286 	}
1287 
1288 	/* Stores the new consumer index */
1289 	consumer_index = pm8001_read_32(circularQ->ci_virt);
1290 	circularQ->consumer_index = cpu_to_le32(consumer_index);
1291 	if (((circularQ->producer_idx + bcCount) % PM8001_MPI_QUEUE) ==
1292 		le32_to_cpu(circularQ->consumer_index)) {
1293 		*messagePtr = NULL;
1294 		return -1;
1295 	}
1296 	/* get memory IOMB buffer address */
1297 	offset = circularQ->producer_idx * messageSize;
1298 	/* increment to next bcCount element */
1299 	circularQ->producer_idx = (circularQ->producer_idx + bcCount)
1300 				% PM8001_MPI_QUEUE;
1301 	/* Adds that distance to the base of the region virtual address plus
1302 	the message header size*/
1303 	msgHeader = (struct mpi_msg_hdr *)(circularQ->base_virt	+ offset);
1304 	*messagePtr = ((void *)msgHeader) + sizeof(struct mpi_msg_hdr);
1305 	return 0;
1306 }
1307 
1308 /**
1309  * pm8001_mpi_build_cmd- build the message queue for transfer, update the PI to
1310  * FW to tell the fw to get this message from IOMB.
1311  * @pm8001_ha: our hba card information
1312  * @circularQ: the inbound queue we want to transfer to HBA.
1313  * @opCode: the operation code represents commands which LLDD and fw recognized.
1314  * @payload: the command payload of each operation command.
1315  * @nb: size in bytes of the command payload
1316  * @responseQueue: queue to interrupt on w/ command response (if any)
1317  */
1318 int pm8001_mpi_build_cmd(struct pm8001_hba_info *pm8001_ha,
1319 			 struct inbound_queue_table *circularQ,
1320 			 u32 opCode, void *payload, size_t nb,
1321 			 u32 responseQueue)
1322 {
1323 	u32 Header = 0, hpriority = 0, bc = 1, category = 0x02;
1324 	void *pMessage;
1325 	unsigned long flags;
1326 	int q_index = circularQ - pm8001_ha->inbnd_q_tbl;
1327 	int rv;
1328 	u32 htag = le32_to_cpu(*(__le32 *)payload);
1329 
1330 	trace_pm80xx_mpi_build_cmd(pm8001_ha->id, opCode, htag, q_index,
1331 		circularQ->producer_idx, le32_to_cpu(circularQ->consumer_index));
1332 
1333 	if (WARN_ON(q_index >= pm8001_ha->max_q_num))
1334 		return -EINVAL;
1335 
1336 	spin_lock_irqsave(&circularQ->iq_lock, flags);
1337 	rv = pm8001_mpi_msg_free_get(circularQ, pm8001_ha->iomb_size,
1338 			&pMessage);
1339 	if (rv < 0) {
1340 		pm8001_dbg(pm8001_ha, IO, "No free mpi buffer\n");
1341 		rv = -ENOMEM;
1342 		goto done;
1343 	}
1344 
1345 	if (nb > (pm8001_ha->iomb_size - sizeof(struct mpi_msg_hdr)))
1346 		nb = pm8001_ha->iomb_size - sizeof(struct mpi_msg_hdr);
1347 	memcpy(pMessage, payload, nb);
1348 	if (nb + sizeof(struct mpi_msg_hdr) < pm8001_ha->iomb_size)
1349 		memset(pMessage + nb, 0, pm8001_ha->iomb_size -
1350 				(nb + sizeof(struct mpi_msg_hdr)));
1351 
1352 	/*Build the header*/
1353 	Header = ((1 << 31) | (hpriority << 30) | ((bc & 0x1f) << 24)
1354 		| ((responseQueue & 0x3F) << 16)
1355 		| ((category & 0xF) << 12) | (opCode & 0xFFF));
1356 
1357 	pm8001_write_32((pMessage - 4), 0, cpu_to_le32(Header));
1358 	/*Update the PI to the firmware*/
1359 	pm8001_cw32(pm8001_ha, circularQ->pi_pci_bar,
1360 		circularQ->pi_offset, circularQ->producer_idx);
1361 	pm8001_dbg(pm8001_ha, DEVIO,
1362 		   "INB Q %x OPCODE:%x , UPDATED PI=%d CI=%d\n",
1363 		   responseQueue, opCode, circularQ->producer_idx,
1364 		   circularQ->consumer_index);
1365 done:
1366 	spin_unlock_irqrestore(&circularQ->iq_lock, flags);
1367 	return rv;
1368 }
1369 
1370 u32 pm8001_mpi_msg_free_set(struct pm8001_hba_info *pm8001_ha, void *pMsg,
1371 			    struct outbound_queue_table *circularQ, u8 bc)
1372 {
1373 	u32 producer_index;
1374 	struct mpi_msg_hdr *msgHeader;
1375 	struct mpi_msg_hdr *pOutBoundMsgHeader;
1376 
1377 	msgHeader = (struct mpi_msg_hdr *)(pMsg - sizeof(struct mpi_msg_hdr));
1378 	pOutBoundMsgHeader = (struct mpi_msg_hdr *)(circularQ->base_virt +
1379 				circularQ->consumer_idx * pm8001_ha->iomb_size);
1380 	if (pOutBoundMsgHeader != msgHeader) {
1381 		pm8001_dbg(pm8001_ha, FAIL,
1382 			   "consumer_idx = %d msgHeader = %p\n",
1383 			   circularQ->consumer_idx, msgHeader);
1384 
1385 		/* Update the producer index from SPC */
1386 		producer_index = pm8001_read_32(circularQ->pi_virt);
1387 		circularQ->producer_index = cpu_to_le32(producer_index);
1388 		pm8001_dbg(pm8001_ha, FAIL,
1389 			   "consumer_idx = %d producer_index = %dmsgHeader = %p\n",
1390 			   circularQ->consumer_idx,
1391 			   circularQ->producer_index, msgHeader);
1392 		return 0;
1393 	}
1394 	/* free the circular queue buffer elements associated with the message*/
1395 	circularQ->consumer_idx = (circularQ->consumer_idx + bc)
1396 				% PM8001_MPI_QUEUE;
1397 	/* update the CI of outbound queue */
1398 	pm8001_cw32(pm8001_ha, circularQ->ci_pci_bar, circularQ->ci_offset,
1399 		circularQ->consumer_idx);
1400 	/* Update the producer index from SPC*/
1401 	producer_index = pm8001_read_32(circularQ->pi_virt);
1402 	circularQ->producer_index = cpu_to_le32(producer_index);
1403 	pm8001_dbg(pm8001_ha, IO, " CI=%d PI=%d\n",
1404 		   circularQ->consumer_idx, circularQ->producer_index);
1405 	return 0;
1406 }
1407 
1408 /**
1409  * pm8001_mpi_msg_consume- get the MPI message from outbound queue
1410  * message table.
1411  * @pm8001_ha: our hba card information
1412  * @circularQ: the outbound queue  table.
1413  * @messagePtr1: the message contents of this outbound message.
1414  * @pBC: the message size.
1415  */
1416 u32 pm8001_mpi_msg_consume(struct pm8001_hba_info *pm8001_ha,
1417 			   struct outbound_queue_table *circularQ,
1418 			   void **messagePtr1, u8 *pBC)
1419 {
1420 	struct mpi_msg_hdr	*msgHeader;
1421 	__le32	msgHeader_tmp;
1422 	u32 header_tmp;
1423 	do {
1424 		/* If there are not-yet-delivered messages ... */
1425 		if (le32_to_cpu(circularQ->producer_index)
1426 			!= circularQ->consumer_idx) {
1427 			/*Get the pointer to the circular queue buffer element*/
1428 			msgHeader = (struct mpi_msg_hdr *)
1429 				(circularQ->base_virt +
1430 				circularQ->consumer_idx * pm8001_ha->iomb_size);
1431 			/* read header */
1432 			header_tmp = pm8001_read_32(msgHeader);
1433 			msgHeader_tmp = cpu_to_le32(header_tmp);
1434 			pm8001_dbg(pm8001_ha, DEVIO,
1435 				   "outbound opcode msgheader:%x ci=%d pi=%d\n",
1436 				   msgHeader_tmp, circularQ->consumer_idx,
1437 				   circularQ->producer_index);
1438 			if (0 != (le32_to_cpu(msgHeader_tmp) & 0x80000000)) {
1439 				if (OPC_OUB_SKIP_ENTRY !=
1440 					(le32_to_cpu(msgHeader_tmp) & 0xfff)) {
1441 					*messagePtr1 =
1442 						((u8 *)msgHeader) +
1443 						sizeof(struct mpi_msg_hdr);
1444 					*pBC = (u8)((le32_to_cpu(msgHeader_tmp)
1445 						>> 24) & 0x1f);
1446 					pm8001_dbg(pm8001_ha, IO,
1447 						   ": CI=%d PI=%d msgHeader=%x\n",
1448 						   circularQ->consumer_idx,
1449 						   circularQ->producer_index,
1450 						   msgHeader_tmp);
1451 					return MPI_IO_STATUS_SUCCESS;
1452 				} else {
1453 					circularQ->consumer_idx =
1454 						(circularQ->consumer_idx +
1455 						((le32_to_cpu(msgHeader_tmp)
1456 						 >> 24) & 0x1f))
1457 							% PM8001_MPI_QUEUE;
1458 					msgHeader_tmp = 0;
1459 					pm8001_write_32(msgHeader, 0, 0);
1460 					/* update the CI of outbound queue */
1461 					pm8001_cw32(pm8001_ha,
1462 						circularQ->ci_pci_bar,
1463 						circularQ->ci_offset,
1464 						circularQ->consumer_idx);
1465 				}
1466 			} else {
1467 				circularQ->consumer_idx =
1468 					(circularQ->consumer_idx +
1469 					((le32_to_cpu(msgHeader_tmp) >> 24) &
1470 					0x1f)) % PM8001_MPI_QUEUE;
1471 				msgHeader_tmp = 0;
1472 				pm8001_write_32(msgHeader, 0, 0);
1473 				/* update the CI of outbound queue */
1474 				pm8001_cw32(pm8001_ha, circularQ->ci_pci_bar,
1475 					circularQ->ci_offset,
1476 					circularQ->consumer_idx);
1477 				return MPI_IO_STATUS_FAIL;
1478 			}
1479 		} else {
1480 			u32 producer_index;
1481 			void *pi_virt = circularQ->pi_virt;
1482 			/* spurious interrupt during setup if
1483 			 * kexec-ing and driver doing a doorbell access
1484 			 * with the pre-kexec oq interrupt setup
1485 			 */
1486 			if (!pi_virt)
1487 				break;
1488 			/* Update the producer index from SPC */
1489 			producer_index = pm8001_read_32(pi_virt);
1490 			circularQ->producer_index = cpu_to_le32(producer_index);
1491 		}
1492 	} while (le32_to_cpu(circularQ->producer_index) !=
1493 		circularQ->consumer_idx);
1494 	/* while we don't have any more not-yet-delivered message */
1495 	/* report empty */
1496 	return MPI_IO_STATUS_BUSY;
1497 }
1498 
1499 void pm8001_work_fn(struct work_struct *work)
1500 {
1501 	struct pm8001_work *pw = container_of(work, struct pm8001_work, work);
1502 	struct pm8001_device *pm8001_dev;
1503 	struct domain_device *dev;
1504 
1505 	/*
1506 	 * So far, all users of this stash an associated structure here.
1507 	 * If we get here, and this pointer is null, then the action
1508 	 * was cancelled. This nullification happens when the device
1509 	 * goes away.
1510 	 */
1511 	if (pw->handler != IO_FATAL_ERROR) {
1512 		pm8001_dev = pw->data; /* Most stash device structure */
1513 		if ((pm8001_dev == NULL)
1514 		 || ((pw->handler != IO_XFER_ERROR_BREAK)
1515 			 && (pm8001_dev->dev_type == SAS_PHY_UNUSED))) {
1516 			kfree(pw);
1517 			return;
1518 		}
1519 	}
1520 
1521 	switch (pw->handler) {
1522 	case IO_XFER_ERROR_BREAK:
1523 	{	/* This one stashes the sas_task instead */
1524 		struct sas_task *t = (struct sas_task *)pm8001_dev;
1525 		u32 tag;
1526 		struct pm8001_ccb_info *ccb;
1527 		struct pm8001_hba_info *pm8001_ha = pw->pm8001_ha;
1528 		unsigned long flags, flags1;
1529 		struct task_status_struct *ts;
1530 		int i;
1531 
1532 		if (pm8001_query_task(t) == TMF_RESP_FUNC_SUCC)
1533 			break; /* Task still on lu */
1534 		spin_lock_irqsave(&pm8001_ha->lock, flags);
1535 
1536 		spin_lock_irqsave(&t->task_state_lock, flags1);
1537 		if (unlikely((t->task_state_flags & SAS_TASK_STATE_DONE))) {
1538 			spin_unlock_irqrestore(&t->task_state_lock, flags1);
1539 			spin_unlock_irqrestore(&pm8001_ha->lock, flags);
1540 			break; /* Task got completed by another */
1541 		}
1542 		spin_unlock_irqrestore(&t->task_state_lock, flags1);
1543 
1544 		/* Search for a possible ccb that matches the task */
1545 		for (i = 0; ccb = NULL, i < PM8001_MAX_CCB; i++) {
1546 			ccb = &pm8001_ha->ccb_info[i];
1547 			tag = ccb->ccb_tag;
1548 			if ((tag != 0xFFFFFFFF) && (ccb->task == t))
1549 				break;
1550 		}
1551 		if (!ccb) {
1552 			spin_unlock_irqrestore(&pm8001_ha->lock, flags);
1553 			break; /* Task got freed by another */
1554 		}
1555 		ts = &t->task_status;
1556 		ts->resp = SAS_TASK_COMPLETE;
1557 		/* Force the midlayer to retry */
1558 		ts->stat = SAS_QUEUE_FULL;
1559 		pm8001_dev = ccb->device;
1560 		if (pm8001_dev)
1561 			atomic_dec(&pm8001_dev->running_req);
1562 		spin_lock_irqsave(&t->task_state_lock, flags1);
1563 		t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
1564 		t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
1565 		t->task_state_flags |= SAS_TASK_STATE_DONE;
1566 		if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
1567 			spin_unlock_irqrestore(&t->task_state_lock, flags1);
1568 			pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with event 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n",
1569 				   t, pw->handler, ts->resp, ts->stat);
1570 			pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
1571 			spin_unlock_irqrestore(&pm8001_ha->lock, flags);
1572 		} else {
1573 			spin_unlock_irqrestore(&t->task_state_lock, flags1);
1574 			pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
1575 			mb();/* in order to force CPU ordering */
1576 			spin_unlock_irqrestore(&pm8001_ha->lock, flags);
1577 			t->task_done(t);
1578 		}
1579 	}	break;
1580 	case IO_XFER_OPEN_RETRY_TIMEOUT:
1581 	{	/* This one stashes the sas_task instead */
1582 		struct sas_task *t = (struct sas_task *)pm8001_dev;
1583 		u32 tag;
1584 		struct pm8001_ccb_info *ccb;
1585 		struct pm8001_hba_info *pm8001_ha = pw->pm8001_ha;
1586 		unsigned long flags, flags1;
1587 		int i, ret = 0;
1588 
1589 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n");
1590 
1591 		ret = pm8001_query_task(t);
1592 
1593 		if (ret == TMF_RESP_FUNC_SUCC)
1594 			pm8001_dbg(pm8001_ha, IO, "...Task on lu\n");
1595 		else if (ret == TMF_RESP_FUNC_COMPLETE)
1596 			pm8001_dbg(pm8001_ha, IO, "...Task NOT on lu\n");
1597 		else
1598 			pm8001_dbg(pm8001_ha, DEVIO, "...query task failed!!!\n");
1599 
1600 		spin_lock_irqsave(&pm8001_ha->lock, flags);
1601 
1602 		spin_lock_irqsave(&t->task_state_lock, flags1);
1603 
1604 		if (unlikely((t->task_state_flags & SAS_TASK_STATE_DONE))) {
1605 			spin_unlock_irqrestore(&t->task_state_lock, flags1);
1606 			spin_unlock_irqrestore(&pm8001_ha->lock, flags);
1607 			if (ret == TMF_RESP_FUNC_SUCC) /* task on lu */
1608 				(void)pm8001_abort_task(t);
1609 			break; /* Task got completed by another */
1610 		}
1611 
1612 		spin_unlock_irqrestore(&t->task_state_lock, flags1);
1613 
1614 		/* Search for a possible ccb that matches the task */
1615 		for (i = 0; ccb = NULL, i < PM8001_MAX_CCB; i++) {
1616 			ccb = &pm8001_ha->ccb_info[i];
1617 			tag = ccb->ccb_tag;
1618 			if ((tag != 0xFFFFFFFF) && (ccb->task == t))
1619 				break;
1620 		}
1621 		if (!ccb) {
1622 			spin_unlock_irqrestore(&pm8001_ha->lock, flags);
1623 			if (ret == TMF_RESP_FUNC_SUCC) /* task on lu */
1624 				(void)pm8001_abort_task(t);
1625 			break; /* Task got freed by another */
1626 		}
1627 
1628 		pm8001_dev = ccb->device;
1629 		dev = pm8001_dev->sas_device;
1630 
1631 		switch (ret) {
1632 		case TMF_RESP_FUNC_SUCC: /* task on lu */
1633 			ccb->open_retry = 1; /* Snub completion */
1634 			spin_unlock_irqrestore(&pm8001_ha->lock, flags);
1635 			ret = pm8001_abort_task(t);
1636 			ccb->open_retry = 0;
1637 			switch (ret) {
1638 			case TMF_RESP_FUNC_SUCC:
1639 			case TMF_RESP_FUNC_COMPLETE:
1640 				break;
1641 			default: /* device misbehavior */
1642 				ret = TMF_RESP_FUNC_FAILED;
1643 				pm8001_dbg(pm8001_ha, IO, "...Reset phy\n");
1644 				pm8001_I_T_nexus_reset(dev);
1645 				break;
1646 			}
1647 			break;
1648 
1649 		case TMF_RESP_FUNC_COMPLETE: /* task not on lu */
1650 			spin_unlock_irqrestore(&pm8001_ha->lock, flags);
1651 			/* Do we need to abort the task locally? */
1652 			break;
1653 
1654 		default: /* device misbehavior */
1655 			spin_unlock_irqrestore(&pm8001_ha->lock, flags);
1656 			ret = TMF_RESP_FUNC_FAILED;
1657 			pm8001_dbg(pm8001_ha, IO, "...Reset phy\n");
1658 			pm8001_I_T_nexus_reset(dev);
1659 		}
1660 
1661 		if (ret == TMF_RESP_FUNC_FAILED)
1662 			t = NULL;
1663 		pm8001_open_reject_retry(pm8001_ha, t, pm8001_dev);
1664 		pm8001_dbg(pm8001_ha, IO, "...Complete\n");
1665 	}	break;
1666 	case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
1667 		dev = pm8001_dev->sas_device;
1668 		pm8001_I_T_nexus_event_handler(dev);
1669 		break;
1670 	case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY:
1671 		dev = pm8001_dev->sas_device;
1672 		pm8001_I_T_nexus_reset(dev);
1673 		break;
1674 	case IO_DS_IN_ERROR:
1675 		dev = pm8001_dev->sas_device;
1676 		pm8001_I_T_nexus_reset(dev);
1677 		break;
1678 	case IO_DS_NON_OPERATIONAL:
1679 		dev = pm8001_dev->sas_device;
1680 		pm8001_I_T_nexus_reset(dev);
1681 		break;
1682 	case IO_FATAL_ERROR:
1683 	{
1684 		struct pm8001_hba_info *pm8001_ha = pw->pm8001_ha;
1685 		struct pm8001_ccb_info *ccb;
1686 		struct task_status_struct *ts;
1687 		struct sas_task *task;
1688 		int i;
1689 		u32 tag, device_id;
1690 
1691 		for (i = 0; ccb = NULL, i < PM8001_MAX_CCB; i++) {
1692 			ccb = &pm8001_ha->ccb_info[i];
1693 			task = ccb->task;
1694 			ts = &task->task_status;
1695 			tag = ccb->ccb_tag;
1696 			/* check if tag is NULL */
1697 			if (!tag) {
1698 				pm8001_dbg(pm8001_ha, FAIL,
1699 					"tag Null\n");
1700 				continue;
1701 			}
1702 			if (task != NULL) {
1703 				dev = task->dev;
1704 				if (!dev) {
1705 					pm8001_dbg(pm8001_ha, FAIL,
1706 						"dev is NULL\n");
1707 					continue;
1708 				}
1709 				/*complete sas task and update to top layer */
1710 				pm8001_ccb_task_free(pm8001_ha, task, ccb, tag);
1711 				ts->resp = SAS_TASK_COMPLETE;
1712 				task->task_done(task);
1713 			} else if (tag != 0xFFFFFFFF) {
1714 				/* complete the internal commands/non-sas task */
1715 				pm8001_dev = ccb->device;
1716 				if (pm8001_dev->dcompletion) {
1717 					complete(pm8001_dev->dcompletion);
1718 					pm8001_dev->dcompletion = NULL;
1719 				}
1720 				complete(pm8001_ha->nvmd_completion);
1721 				pm8001_tag_free(pm8001_ha, tag);
1722 			}
1723 		}
1724 		/* Deregister all the device ids  */
1725 		for (i = 0; i < PM8001_MAX_DEVICES; i++) {
1726 			pm8001_dev = &pm8001_ha->devices[i];
1727 			device_id = pm8001_dev->device_id;
1728 			if (device_id) {
1729 				PM8001_CHIP_DISP->dereg_dev_req(pm8001_ha, device_id);
1730 				pm8001_free_dev(pm8001_dev);
1731 			}
1732 		}
1733 	}	break;
1734 	}
1735 	kfree(pw);
1736 }
1737 
1738 int pm8001_handle_event(struct pm8001_hba_info *pm8001_ha, void *data,
1739 			       int handler)
1740 {
1741 	struct pm8001_work *pw;
1742 	int ret = 0;
1743 
1744 	pw = kmalloc(sizeof(struct pm8001_work), GFP_ATOMIC);
1745 	if (pw) {
1746 		pw->pm8001_ha = pm8001_ha;
1747 		pw->data = data;
1748 		pw->handler = handler;
1749 		INIT_WORK(&pw->work, pm8001_work_fn);
1750 		queue_work(pm8001_wq, &pw->work);
1751 	} else
1752 		ret = -ENOMEM;
1753 
1754 	return ret;
1755 }
1756 
1757 static void pm8001_send_abort_all(struct pm8001_hba_info *pm8001_ha,
1758 		struct pm8001_device *pm8001_ha_dev)
1759 {
1760 	int res;
1761 	u32 ccb_tag;
1762 	struct pm8001_ccb_info *ccb;
1763 	struct sas_task *task = NULL;
1764 	struct task_abort_req task_abort;
1765 	struct inbound_queue_table *circularQ;
1766 	u32 opc = OPC_INB_SATA_ABORT;
1767 	int ret;
1768 
1769 	if (!pm8001_ha_dev) {
1770 		pm8001_dbg(pm8001_ha, FAIL, "dev is null\n");
1771 		return;
1772 	}
1773 
1774 	task = sas_alloc_slow_task(GFP_ATOMIC);
1775 
1776 	if (!task) {
1777 		pm8001_dbg(pm8001_ha, FAIL, "cannot allocate task\n");
1778 		return;
1779 	}
1780 
1781 	task->task_done = pm8001_task_done;
1782 
1783 	res = pm8001_tag_alloc(pm8001_ha, &ccb_tag);
1784 	if (res)
1785 		return;
1786 
1787 	ccb = &pm8001_ha->ccb_info[ccb_tag];
1788 	ccb->device = pm8001_ha_dev;
1789 	ccb->ccb_tag = ccb_tag;
1790 	ccb->task = task;
1791 
1792 	circularQ = &pm8001_ha->inbnd_q_tbl[0];
1793 
1794 	memset(&task_abort, 0, sizeof(task_abort));
1795 	task_abort.abort_all = cpu_to_le32(1);
1796 	task_abort.device_id = cpu_to_le32(pm8001_ha_dev->device_id);
1797 	task_abort.tag = cpu_to_le32(ccb_tag);
1798 
1799 	ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &task_abort,
1800 			sizeof(task_abort), 0);
1801 	if (ret)
1802 		pm8001_tag_free(pm8001_ha, ccb_tag);
1803 
1804 }
1805 
1806 static void pm8001_send_read_log(struct pm8001_hba_info *pm8001_ha,
1807 		struct pm8001_device *pm8001_ha_dev)
1808 {
1809 	struct sata_start_req sata_cmd;
1810 	int res;
1811 	u32 ccb_tag;
1812 	struct pm8001_ccb_info *ccb;
1813 	struct sas_task *task = NULL;
1814 	struct host_to_dev_fis fis;
1815 	struct domain_device *dev;
1816 	struct inbound_queue_table *circularQ;
1817 	u32 opc = OPC_INB_SATA_HOST_OPSTART;
1818 
1819 	task = sas_alloc_slow_task(GFP_ATOMIC);
1820 
1821 	if (!task) {
1822 		pm8001_dbg(pm8001_ha, FAIL, "cannot allocate task !!!\n");
1823 		return;
1824 	}
1825 	task->task_done = pm8001_task_done;
1826 
1827 	res = pm8001_tag_alloc(pm8001_ha, &ccb_tag);
1828 	if (res) {
1829 		sas_free_task(task);
1830 		pm8001_dbg(pm8001_ha, FAIL, "cannot allocate tag !!!\n");
1831 		return;
1832 	}
1833 
1834 	/* allocate domain device by ourselves as libsas
1835 	 * is not going to provide any
1836 	*/
1837 	dev = kzalloc(sizeof(struct domain_device), GFP_ATOMIC);
1838 	if (!dev) {
1839 		sas_free_task(task);
1840 		pm8001_tag_free(pm8001_ha, ccb_tag);
1841 		pm8001_dbg(pm8001_ha, FAIL,
1842 			   "Domain device cannot be allocated\n");
1843 		return;
1844 	}
1845 	task->dev = dev;
1846 	task->dev->lldd_dev = pm8001_ha_dev;
1847 
1848 	ccb = &pm8001_ha->ccb_info[ccb_tag];
1849 	ccb->device = pm8001_ha_dev;
1850 	ccb->ccb_tag = ccb_tag;
1851 	ccb->task = task;
1852 	pm8001_ha_dev->id |= NCQ_READ_LOG_FLAG;
1853 	pm8001_ha_dev->id |= NCQ_2ND_RLE_FLAG;
1854 
1855 	memset(&sata_cmd, 0, sizeof(sata_cmd));
1856 	circularQ = &pm8001_ha->inbnd_q_tbl[0];
1857 
1858 	/* construct read log FIS */
1859 	memset(&fis, 0, sizeof(struct host_to_dev_fis));
1860 	fis.fis_type = 0x27;
1861 	fis.flags = 0x80;
1862 	fis.command = ATA_CMD_READ_LOG_EXT;
1863 	fis.lbal = 0x10;
1864 	fis.sector_count = 0x1;
1865 
1866 	sata_cmd.tag = cpu_to_le32(ccb_tag);
1867 	sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id);
1868 	sata_cmd.ncqtag_atap_dir_m |= ((0x1 << 7) | (0x5 << 9));
1869 	memcpy(&sata_cmd.sata_fis, &fis, sizeof(struct host_to_dev_fis));
1870 
1871 	res = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &sata_cmd,
1872 			sizeof(sata_cmd), 0);
1873 	if (res) {
1874 		sas_free_task(task);
1875 		pm8001_tag_free(pm8001_ha, ccb_tag);
1876 		kfree(dev);
1877 	}
1878 }
1879 
1880 /**
1881  * mpi_ssp_completion- process the event that FW response to the SSP request.
1882  * @pm8001_ha: our hba card information
1883  * @piomb: the message contents of this outbound message.
1884  *
1885  * When FW has completed a ssp request for example a IO request, after it has
1886  * filled the SG data with the data, it will trigger this event representing
1887  * that he has finished the job; please check the corresponding buffer.
1888  * So we will tell the caller who maybe waiting the result to tell upper layer
1889  * that the task has been finished.
1890  */
1891 static void
1892 mpi_ssp_completion(struct pm8001_hba_info *pm8001_ha, void *piomb)
1893 {
1894 	struct sas_task *t;
1895 	struct pm8001_ccb_info *ccb;
1896 	unsigned long flags;
1897 	u32 status;
1898 	u32 param;
1899 	u32 tag;
1900 	struct ssp_completion_resp *psspPayload;
1901 	struct task_status_struct *ts;
1902 	struct ssp_response_iu *iu;
1903 	struct pm8001_device *pm8001_dev;
1904 	psspPayload = (struct ssp_completion_resp *)(piomb + 4);
1905 	status = le32_to_cpu(psspPayload->status);
1906 	tag = le32_to_cpu(psspPayload->tag);
1907 	ccb = &pm8001_ha->ccb_info[tag];
1908 	if ((status == IO_ABORTED) && ccb->open_retry) {
1909 		/* Being completed by another */
1910 		ccb->open_retry = 0;
1911 		return;
1912 	}
1913 	pm8001_dev = ccb->device;
1914 	param = le32_to_cpu(psspPayload->param);
1915 
1916 	t = ccb->task;
1917 
1918 	if (status && status != IO_UNDERFLOW)
1919 		pm8001_dbg(pm8001_ha, FAIL, "sas IO status 0x%x\n", status);
1920 	if (unlikely(!t || !t->lldd_task || !t->dev))
1921 		return;
1922 	ts = &t->task_status;
1923 	/* Print sas address of IO failed device */
1924 	if ((status != IO_SUCCESS) && (status != IO_OVERFLOW) &&
1925 		(status != IO_UNDERFLOW))
1926 		pm8001_dbg(pm8001_ha, FAIL, "SAS Address of IO Failure Drive:%016llx\n",
1927 			   SAS_ADDR(t->dev->sas_addr));
1928 
1929 	if (status)
1930 		pm8001_dbg(pm8001_ha, IOERR,
1931 			   "status:0x%x, tag:0x%x, task:0x%p\n",
1932 			   status, tag, t);
1933 
1934 	switch (status) {
1935 	case IO_SUCCESS:
1936 		pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS,param = %d\n",
1937 			   param);
1938 		if (param == 0) {
1939 			ts->resp = SAS_TASK_COMPLETE;
1940 			ts->stat = SAS_SAM_STAT_GOOD;
1941 		} else {
1942 			ts->resp = SAS_TASK_COMPLETE;
1943 			ts->stat = SAS_PROTO_RESPONSE;
1944 			ts->residual = param;
1945 			iu = &psspPayload->ssp_resp_iu;
1946 			sas_ssp_task_response(pm8001_ha->dev, t, iu);
1947 		}
1948 		if (pm8001_dev)
1949 			atomic_dec(&pm8001_dev->running_req);
1950 		break;
1951 	case IO_ABORTED:
1952 		pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB Tag\n");
1953 		ts->resp = SAS_TASK_COMPLETE;
1954 		ts->stat = SAS_ABORTED_TASK;
1955 		break;
1956 	case IO_UNDERFLOW:
1957 		/* SSP Completion with error */
1958 		pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW,param = %d\n",
1959 			   param);
1960 		ts->resp = SAS_TASK_COMPLETE;
1961 		ts->stat = SAS_DATA_UNDERRUN;
1962 		ts->residual = param;
1963 		if (pm8001_dev)
1964 			atomic_dec(&pm8001_dev->running_req);
1965 		break;
1966 	case IO_NO_DEVICE:
1967 		pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n");
1968 		ts->resp = SAS_TASK_UNDELIVERED;
1969 		ts->stat = SAS_PHY_DOWN;
1970 		break;
1971 	case IO_XFER_ERROR_BREAK:
1972 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n");
1973 		ts->resp = SAS_TASK_COMPLETE;
1974 		ts->stat = SAS_OPEN_REJECT;
1975 		/* Force the midlayer to retry */
1976 		ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
1977 		break;
1978 	case IO_XFER_ERROR_PHY_NOT_READY:
1979 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n");
1980 		ts->resp = SAS_TASK_COMPLETE;
1981 		ts->stat = SAS_OPEN_REJECT;
1982 		ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
1983 		break;
1984 	case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
1985 		pm8001_dbg(pm8001_ha, IO,
1986 			   "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n");
1987 		ts->resp = SAS_TASK_COMPLETE;
1988 		ts->stat = SAS_OPEN_REJECT;
1989 		ts->open_rej_reason = SAS_OREJ_EPROTO;
1990 		break;
1991 	case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
1992 		pm8001_dbg(pm8001_ha, IO,
1993 			   "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n");
1994 		ts->resp = SAS_TASK_COMPLETE;
1995 		ts->stat = SAS_OPEN_REJECT;
1996 		ts->open_rej_reason = SAS_OREJ_UNKNOWN;
1997 		break;
1998 	case IO_OPEN_CNX_ERROR_BREAK:
1999 		pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n");
2000 		ts->resp = SAS_TASK_COMPLETE;
2001 		ts->stat = SAS_OPEN_REJECT;
2002 		ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
2003 		break;
2004 	case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
2005 		pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n");
2006 		ts->resp = SAS_TASK_COMPLETE;
2007 		ts->stat = SAS_OPEN_REJECT;
2008 		ts->open_rej_reason = SAS_OREJ_UNKNOWN;
2009 		if (!t->uldd_task)
2010 			pm8001_handle_event(pm8001_ha,
2011 				pm8001_dev,
2012 				IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
2013 		break;
2014 	case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
2015 		pm8001_dbg(pm8001_ha, IO,
2016 			   "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n");
2017 		ts->resp = SAS_TASK_COMPLETE;
2018 		ts->stat = SAS_OPEN_REJECT;
2019 		ts->open_rej_reason = SAS_OREJ_BAD_DEST;
2020 		break;
2021 	case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
2022 		pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n");
2023 		ts->resp = SAS_TASK_COMPLETE;
2024 		ts->stat = SAS_OPEN_REJECT;
2025 		ts->open_rej_reason = SAS_OREJ_CONN_RATE;
2026 		break;
2027 	case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
2028 		pm8001_dbg(pm8001_ha, IO,
2029 			   "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n");
2030 		ts->resp = SAS_TASK_UNDELIVERED;
2031 		ts->stat = SAS_OPEN_REJECT;
2032 		ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
2033 		break;
2034 	case IO_XFER_ERROR_NAK_RECEIVED:
2035 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n");
2036 		ts->resp = SAS_TASK_COMPLETE;
2037 		ts->stat = SAS_OPEN_REJECT;
2038 		ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
2039 		break;
2040 	case IO_XFER_ERROR_ACK_NAK_TIMEOUT:
2041 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n");
2042 		ts->resp = SAS_TASK_COMPLETE;
2043 		ts->stat = SAS_NAK_R_ERR;
2044 		break;
2045 	case IO_XFER_ERROR_DMA:
2046 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_DMA\n");
2047 		ts->resp = SAS_TASK_COMPLETE;
2048 		ts->stat = SAS_OPEN_REJECT;
2049 		break;
2050 	case IO_XFER_OPEN_RETRY_TIMEOUT:
2051 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n");
2052 		ts->resp = SAS_TASK_COMPLETE;
2053 		ts->stat = SAS_OPEN_REJECT;
2054 		ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
2055 		break;
2056 	case IO_XFER_ERROR_OFFSET_MISMATCH:
2057 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n");
2058 		ts->resp = SAS_TASK_COMPLETE;
2059 		ts->stat = SAS_OPEN_REJECT;
2060 		break;
2061 	case IO_PORT_IN_RESET:
2062 		pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n");
2063 		ts->resp = SAS_TASK_COMPLETE;
2064 		ts->stat = SAS_OPEN_REJECT;
2065 		break;
2066 	case IO_DS_NON_OPERATIONAL:
2067 		pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n");
2068 		ts->resp = SAS_TASK_COMPLETE;
2069 		ts->stat = SAS_OPEN_REJECT;
2070 		if (!t->uldd_task)
2071 			pm8001_handle_event(pm8001_ha,
2072 				pm8001_dev,
2073 				IO_DS_NON_OPERATIONAL);
2074 		break;
2075 	case IO_DS_IN_RECOVERY:
2076 		pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_RECOVERY\n");
2077 		ts->resp = SAS_TASK_COMPLETE;
2078 		ts->stat = SAS_OPEN_REJECT;
2079 		break;
2080 	case IO_TM_TAG_NOT_FOUND:
2081 		pm8001_dbg(pm8001_ha, IO, "IO_TM_TAG_NOT_FOUND\n");
2082 		ts->resp = SAS_TASK_COMPLETE;
2083 		ts->stat = SAS_OPEN_REJECT;
2084 		break;
2085 	case IO_SSP_EXT_IU_ZERO_LEN_ERROR:
2086 		pm8001_dbg(pm8001_ha, IO, "IO_SSP_EXT_IU_ZERO_LEN_ERROR\n");
2087 		ts->resp = SAS_TASK_COMPLETE;
2088 		ts->stat = SAS_OPEN_REJECT;
2089 		break;
2090 	case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY:
2091 		pm8001_dbg(pm8001_ha, IO,
2092 			   "IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n");
2093 		ts->resp = SAS_TASK_COMPLETE;
2094 		ts->stat = SAS_OPEN_REJECT;
2095 		ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
2096 		break;
2097 	default:
2098 		pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status);
2099 		/* not allowed case. Therefore, return failed status */
2100 		ts->resp = SAS_TASK_COMPLETE;
2101 		ts->stat = SAS_OPEN_REJECT;
2102 		break;
2103 	}
2104 	pm8001_dbg(pm8001_ha, IO, "scsi_status = %x\n",
2105 		   psspPayload->ssp_resp_iu.status);
2106 	spin_lock_irqsave(&t->task_state_lock, flags);
2107 	t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
2108 	t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
2109 	t->task_state_flags |= SAS_TASK_STATE_DONE;
2110 	if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
2111 		spin_unlock_irqrestore(&t->task_state_lock, flags);
2112 		pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n",
2113 			   t, status, ts->resp, ts->stat);
2114 		pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
2115 	} else {
2116 		spin_unlock_irqrestore(&t->task_state_lock, flags);
2117 		pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
2118 		mb();/* in order to force CPU ordering */
2119 		t->task_done(t);
2120 	}
2121 }
2122 
2123 /*See the comments for mpi_ssp_completion */
2124 static void mpi_ssp_event(struct pm8001_hba_info *pm8001_ha, void *piomb)
2125 {
2126 	struct sas_task *t;
2127 	unsigned long flags;
2128 	struct task_status_struct *ts;
2129 	struct pm8001_ccb_info *ccb;
2130 	struct pm8001_device *pm8001_dev;
2131 	struct ssp_event_resp *psspPayload =
2132 		(struct ssp_event_resp *)(piomb + 4);
2133 	u32 event = le32_to_cpu(psspPayload->event);
2134 	u32 tag = le32_to_cpu(psspPayload->tag);
2135 	u32 port_id = le32_to_cpu(psspPayload->port_id);
2136 	u32 dev_id = le32_to_cpu(psspPayload->device_id);
2137 
2138 	ccb = &pm8001_ha->ccb_info[tag];
2139 	t = ccb->task;
2140 	pm8001_dev = ccb->device;
2141 	if (event)
2142 		pm8001_dbg(pm8001_ha, FAIL, "sas IO status 0x%x\n", event);
2143 	if (unlikely(!t || !t->lldd_task || !t->dev))
2144 		return;
2145 	ts = &t->task_status;
2146 	pm8001_dbg(pm8001_ha, DEVIO, "port_id = %x,device_id = %x\n",
2147 		   port_id, dev_id);
2148 	switch (event) {
2149 	case IO_OVERFLOW:
2150 		pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n");
2151 		ts->resp = SAS_TASK_COMPLETE;
2152 		ts->stat = SAS_DATA_OVERRUN;
2153 		ts->residual = 0;
2154 		if (pm8001_dev)
2155 			atomic_dec(&pm8001_dev->running_req);
2156 		break;
2157 	case IO_XFER_ERROR_BREAK:
2158 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n");
2159 		pm8001_handle_event(pm8001_ha, t, IO_XFER_ERROR_BREAK);
2160 		return;
2161 	case IO_XFER_ERROR_PHY_NOT_READY:
2162 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n");
2163 		ts->resp = SAS_TASK_COMPLETE;
2164 		ts->stat = SAS_OPEN_REJECT;
2165 		ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
2166 		break;
2167 	case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
2168 		pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n");
2169 		ts->resp = SAS_TASK_COMPLETE;
2170 		ts->stat = SAS_OPEN_REJECT;
2171 		ts->open_rej_reason = SAS_OREJ_EPROTO;
2172 		break;
2173 	case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
2174 		pm8001_dbg(pm8001_ha, IO,
2175 			   "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n");
2176 		ts->resp = SAS_TASK_COMPLETE;
2177 		ts->stat = SAS_OPEN_REJECT;
2178 		ts->open_rej_reason = SAS_OREJ_UNKNOWN;
2179 		break;
2180 	case IO_OPEN_CNX_ERROR_BREAK:
2181 		pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n");
2182 		ts->resp = SAS_TASK_COMPLETE;
2183 		ts->stat = SAS_OPEN_REJECT;
2184 		ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
2185 		break;
2186 	case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
2187 		pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n");
2188 		ts->resp = SAS_TASK_COMPLETE;
2189 		ts->stat = SAS_OPEN_REJECT;
2190 		ts->open_rej_reason = SAS_OREJ_UNKNOWN;
2191 		if (!t->uldd_task)
2192 			pm8001_handle_event(pm8001_ha,
2193 				pm8001_dev,
2194 				IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
2195 		break;
2196 	case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
2197 		pm8001_dbg(pm8001_ha, IO,
2198 			   "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n");
2199 		ts->resp = SAS_TASK_COMPLETE;
2200 		ts->stat = SAS_OPEN_REJECT;
2201 		ts->open_rej_reason = SAS_OREJ_BAD_DEST;
2202 		break;
2203 	case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
2204 		pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n");
2205 		ts->resp = SAS_TASK_COMPLETE;
2206 		ts->stat = SAS_OPEN_REJECT;
2207 		ts->open_rej_reason = SAS_OREJ_CONN_RATE;
2208 		break;
2209 	case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
2210 		pm8001_dbg(pm8001_ha, IO,
2211 			   "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n");
2212 		ts->resp = SAS_TASK_COMPLETE;
2213 		ts->stat = SAS_OPEN_REJECT;
2214 		ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
2215 		break;
2216 	case IO_XFER_ERROR_NAK_RECEIVED:
2217 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n");
2218 		ts->resp = SAS_TASK_COMPLETE;
2219 		ts->stat = SAS_OPEN_REJECT;
2220 		ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
2221 		break;
2222 	case IO_XFER_ERROR_ACK_NAK_TIMEOUT:
2223 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n");
2224 		ts->resp = SAS_TASK_COMPLETE;
2225 		ts->stat = SAS_NAK_R_ERR;
2226 		break;
2227 	case IO_XFER_OPEN_RETRY_TIMEOUT:
2228 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n");
2229 		pm8001_handle_event(pm8001_ha, t, IO_XFER_OPEN_RETRY_TIMEOUT);
2230 		return;
2231 	case IO_XFER_ERROR_UNEXPECTED_PHASE:
2232 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_UNEXPECTED_PHASE\n");
2233 		ts->resp = SAS_TASK_COMPLETE;
2234 		ts->stat = SAS_DATA_OVERRUN;
2235 		break;
2236 	case IO_XFER_ERROR_XFER_RDY_OVERRUN:
2237 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_RDY_OVERRUN\n");
2238 		ts->resp = SAS_TASK_COMPLETE;
2239 		ts->stat = SAS_DATA_OVERRUN;
2240 		break;
2241 	case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED:
2242 		pm8001_dbg(pm8001_ha, IO,
2243 			   "IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n");
2244 		ts->resp = SAS_TASK_COMPLETE;
2245 		ts->stat = SAS_DATA_OVERRUN;
2246 		break;
2247 	case IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT:
2248 		pm8001_dbg(pm8001_ha, IO,
2249 			   "IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT\n");
2250 		ts->resp = SAS_TASK_COMPLETE;
2251 		ts->stat = SAS_DATA_OVERRUN;
2252 		break;
2253 	case IO_XFER_ERROR_OFFSET_MISMATCH:
2254 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n");
2255 		ts->resp = SAS_TASK_COMPLETE;
2256 		ts->stat = SAS_DATA_OVERRUN;
2257 		break;
2258 	case IO_XFER_ERROR_XFER_ZERO_DATA_LEN:
2259 		pm8001_dbg(pm8001_ha, IO,
2260 			   "IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n");
2261 		ts->resp = SAS_TASK_COMPLETE;
2262 		ts->stat = SAS_DATA_OVERRUN;
2263 		break;
2264 	case IO_XFER_CMD_FRAME_ISSUED:
2265 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_CMD_FRAME_ISSUED\n");
2266 		return;
2267 	default:
2268 		pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", event);
2269 		/* not allowed case. Therefore, return failed status */
2270 		ts->resp = SAS_TASK_COMPLETE;
2271 		ts->stat = SAS_DATA_OVERRUN;
2272 		break;
2273 	}
2274 	spin_lock_irqsave(&t->task_state_lock, flags);
2275 	t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
2276 	t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
2277 	t->task_state_flags |= SAS_TASK_STATE_DONE;
2278 	if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
2279 		spin_unlock_irqrestore(&t->task_state_lock, flags);
2280 		pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with event 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n",
2281 			   t, event, ts->resp, ts->stat);
2282 		pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
2283 	} else {
2284 		spin_unlock_irqrestore(&t->task_state_lock, flags);
2285 		pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
2286 		mb();/* in order to force CPU ordering */
2287 		t->task_done(t);
2288 	}
2289 }
2290 
2291 /*See the comments for mpi_ssp_completion */
2292 static void
2293 mpi_sata_completion(struct pm8001_hba_info *pm8001_ha, void *piomb)
2294 {
2295 	struct sas_task *t;
2296 	struct pm8001_ccb_info *ccb;
2297 	u32 param;
2298 	u32 status;
2299 	u32 tag;
2300 	int i, j;
2301 	u8 sata_addr_low[4];
2302 	u32 temp_sata_addr_low;
2303 	u8 sata_addr_hi[4];
2304 	u32 temp_sata_addr_hi;
2305 	struct sata_completion_resp *psataPayload;
2306 	struct task_status_struct *ts;
2307 	struct ata_task_resp *resp ;
2308 	u32 *sata_resp;
2309 	struct pm8001_device *pm8001_dev;
2310 	unsigned long flags;
2311 
2312 	psataPayload = (struct sata_completion_resp *)(piomb + 4);
2313 	status = le32_to_cpu(psataPayload->status);
2314 	param = le32_to_cpu(psataPayload->param);
2315 	tag = le32_to_cpu(psataPayload->tag);
2316 
2317 	if (!tag) {
2318 		pm8001_dbg(pm8001_ha, FAIL, "tag null\n");
2319 		return;
2320 	}
2321 
2322 	ccb = &pm8001_ha->ccb_info[tag];
2323 	t = ccb->task;
2324 	pm8001_dev = ccb->device;
2325 
2326 	if (t) {
2327 		if (t->dev && (t->dev->lldd_dev))
2328 			pm8001_dev = t->dev->lldd_dev;
2329 	} else {
2330 		pm8001_dbg(pm8001_ha, FAIL, "task null\n");
2331 		return;
2332 	}
2333 
2334 	if ((pm8001_dev && !(pm8001_dev->id & NCQ_READ_LOG_FLAG))
2335 		&& unlikely(!t || !t->lldd_task || !t->dev)) {
2336 		pm8001_dbg(pm8001_ha, FAIL, "task or dev null\n");
2337 		return;
2338 	}
2339 
2340 	ts = &t->task_status;
2341 
2342 	if (status)
2343 		pm8001_dbg(pm8001_ha, IOERR,
2344 			   "status:0x%x, tag:0x%x, task::0x%p\n",
2345 			   status, tag, t);
2346 
2347 	/* Print sas address of IO failed device */
2348 	if ((status != IO_SUCCESS) && (status != IO_OVERFLOW) &&
2349 		(status != IO_UNDERFLOW)) {
2350 		if (!((t->dev->parent) &&
2351 			(dev_is_expander(t->dev->parent->dev_type)))) {
2352 			for (i = 0, j = 4; j <= 7 && i <= 3; i++, j++)
2353 				sata_addr_low[i] = pm8001_ha->sas_addr[j];
2354 			for (i = 0, j = 0; j <= 3 && i <= 3; i++, j++)
2355 				sata_addr_hi[i] = pm8001_ha->sas_addr[j];
2356 			memcpy(&temp_sata_addr_low, sata_addr_low,
2357 				sizeof(sata_addr_low));
2358 			memcpy(&temp_sata_addr_hi, sata_addr_hi,
2359 				sizeof(sata_addr_hi));
2360 			temp_sata_addr_hi = (((temp_sata_addr_hi >> 24) & 0xff)
2361 						|((temp_sata_addr_hi << 8) &
2362 						0xff0000) |
2363 						((temp_sata_addr_hi >> 8)
2364 						& 0xff00) |
2365 						((temp_sata_addr_hi << 24) &
2366 						0xff000000));
2367 			temp_sata_addr_low = ((((temp_sata_addr_low >> 24)
2368 						& 0xff) |
2369 						((temp_sata_addr_low << 8)
2370 						& 0xff0000) |
2371 						((temp_sata_addr_low >> 8)
2372 						& 0xff00) |
2373 						((temp_sata_addr_low << 24)
2374 						& 0xff000000)) +
2375 						pm8001_dev->attached_phy +
2376 						0x10);
2377 			pm8001_dbg(pm8001_ha, FAIL,
2378 				   "SAS Address of IO Failure Drive:%08x%08x\n",
2379 				   temp_sata_addr_hi,
2380 				   temp_sata_addr_low);
2381 		} else {
2382 			pm8001_dbg(pm8001_ha, FAIL,
2383 				   "SAS Address of IO Failure Drive:%016llx\n",
2384 				   SAS_ADDR(t->dev->sas_addr));
2385 		}
2386 	}
2387 	switch (status) {
2388 	case IO_SUCCESS:
2389 		pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS\n");
2390 		if (param == 0) {
2391 			ts->resp = SAS_TASK_COMPLETE;
2392 			ts->stat = SAS_SAM_STAT_GOOD;
2393 			/* check if response is for SEND READ LOG */
2394 			if (pm8001_dev &&
2395 				(pm8001_dev->id & NCQ_READ_LOG_FLAG)) {
2396 				/* set new bit for abort_all */
2397 				pm8001_dev->id |= NCQ_ABORT_ALL_FLAG;
2398 				/* clear bit for read log */
2399 				pm8001_dev->id = pm8001_dev->id & 0x7FFFFFFF;
2400 				pm8001_send_abort_all(pm8001_ha, pm8001_dev);
2401 				/* Free the tag */
2402 				pm8001_tag_free(pm8001_ha, tag);
2403 				sas_free_task(t);
2404 				return;
2405 			}
2406 		} else {
2407 			u8 len;
2408 			ts->resp = SAS_TASK_COMPLETE;
2409 			ts->stat = SAS_PROTO_RESPONSE;
2410 			ts->residual = param;
2411 			pm8001_dbg(pm8001_ha, IO,
2412 				   "SAS_PROTO_RESPONSE len = %d\n",
2413 				   param);
2414 			sata_resp = &psataPayload->sata_resp[0];
2415 			resp = (struct ata_task_resp *)ts->buf;
2416 			if (t->ata_task.dma_xfer == 0 &&
2417 			    t->data_dir == DMA_FROM_DEVICE) {
2418 				len = sizeof(struct pio_setup_fis);
2419 				pm8001_dbg(pm8001_ha, IO,
2420 					   "PIO read len = %d\n", len);
2421 			} else if (t->ata_task.use_ncq) {
2422 				len = sizeof(struct set_dev_bits_fis);
2423 				pm8001_dbg(pm8001_ha, IO, "FPDMA len = %d\n",
2424 					   len);
2425 			} else {
2426 				len = sizeof(struct dev_to_host_fis);
2427 				pm8001_dbg(pm8001_ha, IO, "other len = %d\n",
2428 					   len);
2429 			}
2430 			if (SAS_STATUS_BUF_SIZE >= sizeof(*resp)) {
2431 				resp->frame_len = len;
2432 				memcpy(&resp->ending_fis[0], sata_resp, len);
2433 				ts->buf_valid_size = sizeof(*resp);
2434 			} else
2435 				pm8001_dbg(pm8001_ha, IO,
2436 					   "response too large\n");
2437 		}
2438 		if (pm8001_dev)
2439 			atomic_dec(&pm8001_dev->running_req);
2440 		break;
2441 	case IO_ABORTED:
2442 		pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB Tag\n");
2443 		ts->resp = SAS_TASK_COMPLETE;
2444 		ts->stat = SAS_ABORTED_TASK;
2445 		if (pm8001_dev)
2446 			atomic_dec(&pm8001_dev->running_req);
2447 		break;
2448 		/* following cases are to do cases */
2449 	case IO_UNDERFLOW:
2450 		/* SATA Completion with error */
2451 		pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW param = %d\n", param);
2452 		ts->resp = SAS_TASK_COMPLETE;
2453 		ts->stat = SAS_DATA_UNDERRUN;
2454 		ts->residual =  param;
2455 		if (pm8001_dev)
2456 			atomic_dec(&pm8001_dev->running_req);
2457 		break;
2458 	case IO_NO_DEVICE:
2459 		pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n");
2460 		ts->resp = SAS_TASK_UNDELIVERED;
2461 		ts->stat = SAS_PHY_DOWN;
2462 		if (pm8001_dev)
2463 			atomic_dec(&pm8001_dev->running_req);
2464 		break;
2465 	case IO_XFER_ERROR_BREAK:
2466 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n");
2467 		ts->resp = SAS_TASK_COMPLETE;
2468 		ts->stat = SAS_INTERRUPTED;
2469 		if (pm8001_dev)
2470 			atomic_dec(&pm8001_dev->running_req);
2471 		break;
2472 	case IO_XFER_ERROR_PHY_NOT_READY:
2473 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n");
2474 		ts->resp = SAS_TASK_COMPLETE;
2475 		ts->stat = SAS_OPEN_REJECT;
2476 		ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
2477 		if (pm8001_dev)
2478 			atomic_dec(&pm8001_dev->running_req);
2479 		break;
2480 	case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
2481 		pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n");
2482 		ts->resp = SAS_TASK_COMPLETE;
2483 		ts->stat = SAS_OPEN_REJECT;
2484 		ts->open_rej_reason = SAS_OREJ_EPROTO;
2485 		if (pm8001_dev)
2486 			atomic_dec(&pm8001_dev->running_req);
2487 		break;
2488 	case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
2489 		pm8001_dbg(pm8001_ha, IO,
2490 			   "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n");
2491 		ts->resp = SAS_TASK_COMPLETE;
2492 		ts->stat = SAS_OPEN_REJECT;
2493 		ts->open_rej_reason = SAS_OREJ_UNKNOWN;
2494 		if (pm8001_dev)
2495 			atomic_dec(&pm8001_dev->running_req);
2496 		break;
2497 	case IO_OPEN_CNX_ERROR_BREAK:
2498 		pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n");
2499 		ts->resp = SAS_TASK_COMPLETE;
2500 		ts->stat = SAS_OPEN_REJECT;
2501 		ts->open_rej_reason = SAS_OREJ_RSVD_CONT0;
2502 		if (pm8001_dev)
2503 			atomic_dec(&pm8001_dev->running_req);
2504 		break;
2505 	case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
2506 		pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n");
2507 		ts->resp = SAS_TASK_COMPLETE;
2508 		ts->stat = SAS_DEV_NO_RESPONSE;
2509 		if (!t->uldd_task) {
2510 			pm8001_handle_event(pm8001_ha,
2511 				pm8001_dev,
2512 				IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
2513 			ts->resp = SAS_TASK_UNDELIVERED;
2514 			ts->stat = SAS_QUEUE_FULL;
2515 			pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag);
2516 			return;
2517 		}
2518 		break;
2519 	case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
2520 		pm8001_dbg(pm8001_ha, IO,
2521 			   "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n");
2522 		ts->resp = SAS_TASK_UNDELIVERED;
2523 		ts->stat = SAS_OPEN_REJECT;
2524 		ts->open_rej_reason = SAS_OREJ_BAD_DEST;
2525 		if (!t->uldd_task) {
2526 			pm8001_handle_event(pm8001_ha,
2527 				pm8001_dev,
2528 				IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
2529 			ts->resp = SAS_TASK_UNDELIVERED;
2530 			ts->stat = SAS_QUEUE_FULL;
2531 			pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag);
2532 			return;
2533 		}
2534 		break;
2535 	case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
2536 		pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n");
2537 		ts->resp = SAS_TASK_COMPLETE;
2538 		ts->stat = SAS_OPEN_REJECT;
2539 		ts->open_rej_reason = SAS_OREJ_CONN_RATE;
2540 		if (pm8001_dev)
2541 			atomic_dec(&pm8001_dev->running_req);
2542 		break;
2543 	case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY:
2544 		pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY\n");
2545 		ts->resp = SAS_TASK_COMPLETE;
2546 		ts->stat = SAS_DEV_NO_RESPONSE;
2547 		if (!t->uldd_task) {
2548 			pm8001_handle_event(pm8001_ha,
2549 				pm8001_dev,
2550 				IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY);
2551 			ts->resp = SAS_TASK_UNDELIVERED;
2552 			ts->stat = SAS_QUEUE_FULL;
2553 			pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag);
2554 			return;
2555 		}
2556 		break;
2557 	case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
2558 		pm8001_dbg(pm8001_ha, IO,
2559 			   "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n");
2560 		ts->resp = SAS_TASK_COMPLETE;
2561 		ts->stat = SAS_OPEN_REJECT;
2562 		ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
2563 		if (pm8001_dev)
2564 			atomic_dec(&pm8001_dev->running_req);
2565 		break;
2566 	case IO_XFER_ERROR_NAK_RECEIVED:
2567 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n");
2568 		ts->resp = SAS_TASK_COMPLETE;
2569 		ts->stat = SAS_NAK_R_ERR;
2570 		if (pm8001_dev)
2571 			atomic_dec(&pm8001_dev->running_req);
2572 		break;
2573 	case IO_XFER_ERROR_ACK_NAK_TIMEOUT:
2574 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n");
2575 		ts->resp = SAS_TASK_COMPLETE;
2576 		ts->stat = SAS_NAK_R_ERR;
2577 		if (pm8001_dev)
2578 			atomic_dec(&pm8001_dev->running_req);
2579 		break;
2580 	case IO_XFER_ERROR_DMA:
2581 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_DMA\n");
2582 		ts->resp = SAS_TASK_COMPLETE;
2583 		ts->stat = SAS_ABORTED_TASK;
2584 		if (pm8001_dev)
2585 			atomic_dec(&pm8001_dev->running_req);
2586 		break;
2587 	case IO_XFER_ERROR_SATA_LINK_TIMEOUT:
2588 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_SATA_LINK_TIMEOUT\n");
2589 		ts->resp = SAS_TASK_UNDELIVERED;
2590 		ts->stat = SAS_DEV_NO_RESPONSE;
2591 		if (pm8001_dev)
2592 			atomic_dec(&pm8001_dev->running_req);
2593 		break;
2594 	case IO_XFER_ERROR_REJECTED_NCQ_MODE:
2595 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_REJECTED_NCQ_MODE\n");
2596 		ts->resp = SAS_TASK_COMPLETE;
2597 		ts->stat = SAS_DATA_UNDERRUN;
2598 		if (pm8001_dev)
2599 			atomic_dec(&pm8001_dev->running_req);
2600 		break;
2601 	case IO_XFER_OPEN_RETRY_TIMEOUT:
2602 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n");
2603 		ts->resp = SAS_TASK_COMPLETE;
2604 		ts->stat = SAS_OPEN_TO;
2605 		if (pm8001_dev)
2606 			atomic_dec(&pm8001_dev->running_req);
2607 		break;
2608 	case IO_PORT_IN_RESET:
2609 		pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n");
2610 		ts->resp = SAS_TASK_COMPLETE;
2611 		ts->stat = SAS_DEV_NO_RESPONSE;
2612 		if (pm8001_dev)
2613 			atomic_dec(&pm8001_dev->running_req);
2614 		break;
2615 	case IO_DS_NON_OPERATIONAL:
2616 		pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n");
2617 		ts->resp = SAS_TASK_COMPLETE;
2618 		ts->stat = SAS_DEV_NO_RESPONSE;
2619 		if (!t->uldd_task) {
2620 			pm8001_handle_event(pm8001_ha, pm8001_dev,
2621 				    IO_DS_NON_OPERATIONAL);
2622 			ts->resp = SAS_TASK_UNDELIVERED;
2623 			ts->stat = SAS_QUEUE_FULL;
2624 			pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag);
2625 			return;
2626 		}
2627 		break;
2628 	case IO_DS_IN_RECOVERY:
2629 		pm8001_dbg(pm8001_ha, IO, "  IO_DS_IN_RECOVERY\n");
2630 		ts->resp = SAS_TASK_COMPLETE;
2631 		ts->stat = SAS_DEV_NO_RESPONSE;
2632 		if (pm8001_dev)
2633 			atomic_dec(&pm8001_dev->running_req);
2634 		break;
2635 	case IO_DS_IN_ERROR:
2636 		pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_ERROR\n");
2637 		ts->resp = SAS_TASK_COMPLETE;
2638 		ts->stat = SAS_DEV_NO_RESPONSE;
2639 		if (!t->uldd_task) {
2640 			pm8001_handle_event(pm8001_ha, pm8001_dev,
2641 				    IO_DS_IN_ERROR);
2642 			ts->resp = SAS_TASK_UNDELIVERED;
2643 			ts->stat = SAS_QUEUE_FULL;
2644 			pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag);
2645 			return;
2646 		}
2647 		break;
2648 	case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY:
2649 		pm8001_dbg(pm8001_ha, IO,
2650 			   "IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n");
2651 		ts->resp = SAS_TASK_COMPLETE;
2652 		ts->stat = SAS_OPEN_REJECT;
2653 		ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
2654 		if (pm8001_dev)
2655 			atomic_dec(&pm8001_dev->running_req);
2656 		break;
2657 	default:
2658 		pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status);
2659 		/* not allowed case. Therefore, return failed status */
2660 		ts->resp = SAS_TASK_COMPLETE;
2661 		ts->stat = SAS_DEV_NO_RESPONSE;
2662 		if (pm8001_dev)
2663 			atomic_dec(&pm8001_dev->running_req);
2664 		break;
2665 	}
2666 	spin_lock_irqsave(&t->task_state_lock, flags);
2667 	t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
2668 	t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
2669 	t->task_state_flags |= SAS_TASK_STATE_DONE;
2670 	if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
2671 		spin_unlock_irqrestore(&t->task_state_lock, flags);
2672 		pm8001_dbg(pm8001_ha, FAIL,
2673 			   "task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n",
2674 			   t, status, ts->resp, ts->stat);
2675 		pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
2676 	} else {
2677 		spin_unlock_irqrestore(&t->task_state_lock, flags);
2678 		pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag);
2679 	}
2680 }
2681 
2682 /*See the comments for mpi_ssp_completion */
2683 static void mpi_sata_event(struct pm8001_hba_info *pm8001_ha, void *piomb)
2684 {
2685 	struct sas_task *t;
2686 	struct task_status_struct *ts;
2687 	struct pm8001_ccb_info *ccb;
2688 	struct pm8001_device *pm8001_dev;
2689 	struct sata_event_resp *psataPayload =
2690 		(struct sata_event_resp *)(piomb + 4);
2691 	u32 event = le32_to_cpu(psataPayload->event);
2692 	u32 tag = le32_to_cpu(psataPayload->tag);
2693 	u32 port_id = le32_to_cpu(psataPayload->port_id);
2694 	u32 dev_id = le32_to_cpu(psataPayload->device_id);
2695 
2696 	if (event)
2697 		pm8001_dbg(pm8001_ha, FAIL, "SATA EVENT 0x%x\n", event);
2698 
2699 	/* Check if this is NCQ error */
2700 	if (event == IO_XFER_ERROR_ABORTED_NCQ_MODE) {
2701 		/* find device using device id */
2702 		pm8001_dev = pm8001_find_dev(pm8001_ha, dev_id);
2703 		/* send read log extension */
2704 		if (pm8001_dev)
2705 			pm8001_send_read_log(pm8001_ha, pm8001_dev);
2706 		return;
2707 	}
2708 
2709 	ccb = &pm8001_ha->ccb_info[tag];
2710 	t = ccb->task;
2711 	pm8001_dev = ccb->device;
2712 	if (event)
2713 		pm8001_dbg(pm8001_ha, FAIL, "sata IO status 0x%x\n", event);
2714 	if (unlikely(!t || !t->lldd_task || !t->dev))
2715 		return;
2716 	ts = &t->task_status;
2717 	pm8001_dbg(pm8001_ha, DEVIO,
2718 		   "port_id:0x%x, device_id:0x%x, tag:0x%x, event:0x%x\n",
2719 		   port_id, dev_id, tag, event);
2720 	switch (event) {
2721 	case IO_OVERFLOW:
2722 		pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n");
2723 		ts->resp = SAS_TASK_COMPLETE;
2724 		ts->stat = SAS_DATA_OVERRUN;
2725 		ts->residual = 0;
2726 		break;
2727 	case IO_XFER_ERROR_BREAK:
2728 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n");
2729 		ts->resp = SAS_TASK_COMPLETE;
2730 		ts->stat = SAS_INTERRUPTED;
2731 		break;
2732 	case IO_XFER_ERROR_PHY_NOT_READY:
2733 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n");
2734 		ts->resp = SAS_TASK_COMPLETE;
2735 		ts->stat = SAS_OPEN_REJECT;
2736 		ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
2737 		break;
2738 	case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
2739 		pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n");
2740 		ts->resp = SAS_TASK_COMPLETE;
2741 		ts->stat = SAS_OPEN_REJECT;
2742 		ts->open_rej_reason = SAS_OREJ_EPROTO;
2743 		break;
2744 	case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
2745 		pm8001_dbg(pm8001_ha, IO,
2746 			   "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n");
2747 		ts->resp = SAS_TASK_COMPLETE;
2748 		ts->stat = SAS_OPEN_REJECT;
2749 		ts->open_rej_reason = SAS_OREJ_UNKNOWN;
2750 		break;
2751 	case IO_OPEN_CNX_ERROR_BREAK:
2752 		pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n");
2753 		ts->resp = SAS_TASK_COMPLETE;
2754 		ts->stat = SAS_OPEN_REJECT;
2755 		ts->open_rej_reason = SAS_OREJ_RSVD_CONT0;
2756 		break;
2757 	case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
2758 		pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n");
2759 		ts->resp = SAS_TASK_UNDELIVERED;
2760 		ts->stat = SAS_DEV_NO_RESPONSE;
2761 		if (!t->uldd_task) {
2762 			pm8001_handle_event(pm8001_ha,
2763 				pm8001_dev,
2764 				IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
2765 			ts->resp = SAS_TASK_COMPLETE;
2766 			ts->stat = SAS_QUEUE_FULL;
2767 			return;
2768 		}
2769 		break;
2770 	case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
2771 		pm8001_dbg(pm8001_ha, IO,
2772 			   "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n");
2773 		ts->resp = SAS_TASK_UNDELIVERED;
2774 		ts->stat = SAS_OPEN_REJECT;
2775 		ts->open_rej_reason = SAS_OREJ_BAD_DEST;
2776 		break;
2777 	case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
2778 		pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n");
2779 		ts->resp = SAS_TASK_COMPLETE;
2780 		ts->stat = SAS_OPEN_REJECT;
2781 		ts->open_rej_reason = SAS_OREJ_CONN_RATE;
2782 		break;
2783 	case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
2784 		pm8001_dbg(pm8001_ha, IO,
2785 			   "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n");
2786 		ts->resp = SAS_TASK_COMPLETE;
2787 		ts->stat = SAS_OPEN_REJECT;
2788 		ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
2789 		break;
2790 	case IO_XFER_ERROR_NAK_RECEIVED:
2791 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n");
2792 		ts->resp = SAS_TASK_COMPLETE;
2793 		ts->stat = SAS_NAK_R_ERR;
2794 		break;
2795 	case IO_XFER_ERROR_PEER_ABORTED:
2796 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PEER_ABORTED\n");
2797 		ts->resp = SAS_TASK_COMPLETE;
2798 		ts->stat = SAS_NAK_R_ERR;
2799 		break;
2800 	case IO_XFER_ERROR_REJECTED_NCQ_MODE:
2801 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_REJECTED_NCQ_MODE\n");
2802 		ts->resp = SAS_TASK_COMPLETE;
2803 		ts->stat = SAS_DATA_UNDERRUN;
2804 		break;
2805 	case IO_XFER_OPEN_RETRY_TIMEOUT:
2806 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n");
2807 		ts->resp = SAS_TASK_COMPLETE;
2808 		ts->stat = SAS_OPEN_TO;
2809 		break;
2810 	case IO_XFER_ERROR_UNEXPECTED_PHASE:
2811 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_UNEXPECTED_PHASE\n");
2812 		ts->resp = SAS_TASK_COMPLETE;
2813 		ts->stat = SAS_OPEN_TO;
2814 		break;
2815 	case IO_XFER_ERROR_XFER_RDY_OVERRUN:
2816 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_RDY_OVERRUN\n");
2817 		ts->resp = SAS_TASK_COMPLETE;
2818 		ts->stat = SAS_OPEN_TO;
2819 		break;
2820 	case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED:
2821 		pm8001_dbg(pm8001_ha, IO,
2822 			   "IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n");
2823 		ts->resp = SAS_TASK_COMPLETE;
2824 		ts->stat = SAS_OPEN_TO;
2825 		break;
2826 	case IO_XFER_ERROR_OFFSET_MISMATCH:
2827 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n");
2828 		ts->resp = SAS_TASK_COMPLETE;
2829 		ts->stat = SAS_OPEN_TO;
2830 		break;
2831 	case IO_XFER_ERROR_XFER_ZERO_DATA_LEN:
2832 		pm8001_dbg(pm8001_ha, IO,
2833 			   "IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n");
2834 		ts->resp = SAS_TASK_COMPLETE;
2835 		ts->stat = SAS_OPEN_TO;
2836 		break;
2837 	case IO_XFER_CMD_FRAME_ISSUED:
2838 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_CMD_FRAME_ISSUED\n");
2839 		break;
2840 	case IO_XFER_PIO_SETUP_ERROR:
2841 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_PIO_SETUP_ERROR\n");
2842 		ts->resp = SAS_TASK_COMPLETE;
2843 		ts->stat = SAS_OPEN_TO;
2844 		break;
2845 	default:
2846 		pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", event);
2847 		/* not allowed case. Therefore, return failed status */
2848 		ts->resp = SAS_TASK_COMPLETE;
2849 		ts->stat = SAS_OPEN_TO;
2850 		break;
2851 	}
2852 }
2853 
2854 /*See the comments for mpi_ssp_completion */
2855 static void
2856 mpi_smp_completion(struct pm8001_hba_info *pm8001_ha, void *piomb)
2857 {
2858 	struct sas_task *t;
2859 	struct pm8001_ccb_info *ccb;
2860 	unsigned long flags;
2861 	u32 status;
2862 	u32 tag;
2863 	struct smp_completion_resp *psmpPayload;
2864 	struct task_status_struct *ts;
2865 	struct pm8001_device *pm8001_dev;
2866 
2867 	psmpPayload = (struct smp_completion_resp *)(piomb + 4);
2868 	status = le32_to_cpu(psmpPayload->status);
2869 	tag = le32_to_cpu(psmpPayload->tag);
2870 
2871 	ccb = &pm8001_ha->ccb_info[tag];
2872 	t = ccb->task;
2873 	ts = &t->task_status;
2874 	pm8001_dev = ccb->device;
2875 	if (status) {
2876 		pm8001_dbg(pm8001_ha, FAIL, "smp IO status 0x%x\n", status);
2877 		pm8001_dbg(pm8001_ha, IOERR,
2878 			   "status:0x%x, tag:0x%x, task:0x%p\n",
2879 			   status, tag, t);
2880 	}
2881 	if (unlikely(!t || !t->lldd_task || !t->dev))
2882 		return;
2883 
2884 	switch (status) {
2885 	case IO_SUCCESS:
2886 		pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS\n");
2887 		ts->resp = SAS_TASK_COMPLETE;
2888 		ts->stat = SAS_SAM_STAT_GOOD;
2889 		if (pm8001_dev)
2890 			atomic_dec(&pm8001_dev->running_req);
2891 		break;
2892 	case IO_ABORTED:
2893 		pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB\n");
2894 		ts->resp = SAS_TASK_COMPLETE;
2895 		ts->stat = SAS_ABORTED_TASK;
2896 		if (pm8001_dev)
2897 			atomic_dec(&pm8001_dev->running_req);
2898 		break;
2899 	case IO_OVERFLOW:
2900 		pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n");
2901 		ts->resp = SAS_TASK_COMPLETE;
2902 		ts->stat = SAS_DATA_OVERRUN;
2903 		ts->residual = 0;
2904 		if (pm8001_dev)
2905 			atomic_dec(&pm8001_dev->running_req);
2906 		break;
2907 	case IO_NO_DEVICE:
2908 		pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n");
2909 		ts->resp = SAS_TASK_COMPLETE;
2910 		ts->stat = SAS_PHY_DOWN;
2911 		break;
2912 	case IO_ERROR_HW_TIMEOUT:
2913 		pm8001_dbg(pm8001_ha, IO, "IO_ERROR_HW_TIMEOUT\n");
2914 		ts->resp = SAS_TASK_COMPLETE;
2915 		ts->stat = SAS_SAM_STAT_BUSY;
2916 		break;
2917 	case IO_XFER_ERROR_BREAK:
2918 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n");
2919 		ts->resp = SAS_TASK_COMPLETE;
2920 		ts->stat = SAS_SAM_STAT_BUSY;
2921 		break;
2922 	case IO_XFER_ERROR_PHY_NOT_READY:
2923 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n");
2924 		ts->resp = SAS_TASK_COMPLETE;
2925 		ts->stat = SAS_SAM_STAT_BUSY;
2926 		break;
2927 	case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
2928 		pm8001_dbg(pm8001_ha, IO,
2929 			   "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n");
2930 		ts->resp = SAS_TASK_COMPLETE;
2931 		ts->stat = SAS_OPEN_REJECT;
2932 		ts->open_rej_reason = SAS_OREJ_UNKNOWN;
2933 		break;
2934 	case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
2935 		pm8001_dbg(pm8001_ha, IO,
2936 			   "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n");
2937 		ts->resp = SAS_TASK_COMPLETE;
2938 		ts->stat = SAS_OPEN_REJECT;
2939 		ts->open_rej_reason = SAS_OREJ_UNKNOWN;
2940 		break;
2941 	case IO_OPEN_CNX_ERROR_BREAK:
2942 		pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n");
2943 		ts->resp = SAS_TASK_COMPLETE;
2944 		ts->stat = SAS_OPEN_REJECT;
2945 		ts->open_rej_reason = SAS_OREJ_RSVD_CONT0;
2946 		break;
2947 	case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
2948 		pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n");
2949 		ts->resp = SAS_TASK_COMPLETE;
2950 		ts->stat = SAS_OPEN_REJECT;
2951 		ts->open_rej_reason = SAS_OREJ_UNKNOWN;
2952 		pm8001_handle_event(pm8001_ha,
2953 				pm8001_dev,
2954 				IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
2955 		break;
2956 	case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
2957 		pm8001_dbg(pm8001_ha, IO,
2958 			   "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n");
2959 		ts->resp = SAS_TASK_COMPLETE;
2960 		ts->stat = SAS_OPEN_REJECT;
2961 		ts->open_rej_reason = SAS_OREJ_BAD_DEST;
2962 		break;
2963 	case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
2964 		pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n");
2965 		ts->resp = SAS_TASK_COMPLETE;
2966 		ts->stat = SAS_OPEN_REJECT;
2967 		ts->open_rej_reason = SAS_OREJ_CONN_RATE;
2968 		break;
2969 	case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
2970 		pm8001_dbg(pm8001_ha, IO,
2971 			   "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n");
2972 		ts->resp = SAS_TASK_COMPLETE;
2973 		ts->stat = SAS_OPEN_REJECT;
2974 		ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
2975 		break;
2976 	case IO_XFER_ERROR_RX_FRAME:
2977 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_RX_FRAME\n");
2978 		ts->resp = SAS_TASK_COMPLETE;
2979 		ts->stat = SAS_DEV_NO_RESPONSE;
2980 		break;
2981 	case IO_XFER_OPEN_RETRY_TIMEOUT:
2982 		pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n");
2983 		ts->resp = SAS_TASK_COMPLETE;
2984 		ts->stat = SAS_OPEN_REJECT;
2985 		ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
2986 		break;
2987 	case IO_ERROR_INTERNAL_SMP_RESOURCE:
2988 		pm8001_dbg(pm8001_ha, IO, "IO_ERROR_INTERNAL_SMP_RESOURCE\n");
2989 		ts->resp = SAS_TASK_COMPLETE;
2990 		ts->stat = SAS_QUEUE_FULL;
2991 		break;
2992 	case IO_PORT_IN_RESET:
2993 		pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n");
2994 		ts->resp = SAS_TASK_COMPLETE;
2995 		ts->stat = SAS_OPEN_REJECT;
2996 		ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
2997 		break;
2998 	case IO_DS_NON_OPERATIONAL:
2999 		pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n");
3000 		ts->resp = SAS_TASK_COMPLETE;
3001 		ts->stat = SAS_DEV_NO_RESPONSE;
3002 		break;
3003 	case IO_DS_IN_RECOVERY:
3004 		pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_RECOVERY\n");
3005 		ts->resp = SAS_TASK_COMPLETE;
3006 		ts->stat = SAS_OPEN_REJECT;
3007 		ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
3008 		break;
3009 	case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY:
3010 		pm8001_dbg(pm8001_ha, IO,
3011 			   "IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n");
3012 		ts->resp = SAS_TASK_COMPLETE;
3013 		ts->stat = SAS_OPEN_REJECT;
3014 		ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
3015 		break;
3016 	default:
3017 		pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status);
3018 		ts->resp = SAS_TASK_COMPLETE;
3019 		ts->stat = SAS_DEV_NO_RESPONSE;
3020 		/* not allowed case. Therefore, return failed status */
3021 		break;
3022 	}
3023 	spin_lock_irqsave(&t->task_state_lock, flags);
3024 	t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
3025 	t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
3026 	t->task_state_flags |= SAS_TASK_STATE_DONE;
3027 	if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
3028 		spin_unlock_irqrestore(&t->task_state_lock, flags);
3029 		pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n",
3030 			   t, status, ts->resp, ts->stat);
3031 		pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
3032 	} else {
3033 		spin_unlock_irqrestore(&t->task_state_lock, flags);
3034 		pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
3035 		mb();/* in order to force CPU ordering */
3036 		t->task_done(t);
3037 	}
3038 }
3039 
3040 void pm8001_mpi_set_dev_state_resp(struct pm8001_hba_info *pm8001_ha,
3041 		void *piomb)
3042 {
3043 	struct set_dev_state_resp *pPayload =
3044 		(struct set_dev_state_resp *)(piomb + 4);
3045 	u32 tag = le32_to_cpu(pPayload->tag);
3046 	struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag];
3047 	struct pm8001_device *pm8001_dev = ccb->device;
3048 	u32 status = le32_to_cpu(pPayload->status);
3049 	u32 device_id = le32_to_cpu(pPayload->device_id);
3050 	u8 pds = le32_to_cpu(pPayload->pds_nds) & PDS_BITS;
3051 	u8 nds = le32_to_cpu(pPayload->pds_nds) & NDS_BITS;
3052 	pm8001_dbg(pm8001_ha, MSG, "Set device id = 0x%x state from 0x%x to 0x%x status = 0x%x!\n",
3053 		   device_id, pds, nds, status);
3054 	complete(pm8001_dev->setds_completion);
3055 	ccb->task = NULL;
3056 	ccb->ccb_tag = 0xFFFFFFFF;
3057 	pm8001_tag_free(pm8001_ha, tag);
3058 }
3059 
3060 void pm8001_mpi_set_nvmd_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
3061 {
3062 	struct get_nvm_data_resp *pPayload =
3063 		(struct get_nvm_data_resp *)(piomb + 4);
3064 	u32 tag = le32_to_cpu(pPayload->tag);
3065 	struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag];
3066 	u32 dlen_status = le32_to_cpu(pPayload->dlen_status);
3067 	complete(pm8001_ha->nvmd_completion);
3068 	pm8001_dbg(pm8001_ha, MSG, "Set nvm data complete!\n");
3069 	if ((dlen_status & NVMD_STAT) != 0) {
3070 		pm8001_dbg(pm8001_ha, FAIL, "Set nvm data error %x\n",
3071 				dlen_status);
3072 	}
3073 	ccb->task = NULL;
3074 	ccb->ccb_tag = 0xFFFFFFFF;
3075 	pm8001_tag_free(pm8001_ha, tag);
3076 }
3077 
3078 void
3079 pm8001_mpi_get_nvmd_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
3080 {
3081 	struct fw_control_ex    *fw_control_context;
3082 	struct get_nvm_data_resp *pPayload =
3083 		(struct get_nvm_data_resp *)(piomb + 4);
3084 	u32 tag = le32_to_cpu(pPayload->tag);
3085 	struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag];
3086 	u32 dlen_status = le32_to_cpu(pPayload->dlen_status);
3087 	u32 ir_tds_bn_dps_das_nvm =
3088 		le32_to_cpu(pPayload->ir_tda_bn_dps_das_nvm);
3089 	void *virt_addr = pm8001_ha->memoryMap.region[NVMD].virt_ptr;
3090 	fw_control_context = ccb->fw_control_context;
3091 
3092 	pm8001_dbg(pm8001_ha, MSG, "Get nvm data complete!\n");
3093 	if ((dlen_status & NVMD_STAT) != 0) {
3094 		pm8001_dbg(pm8001_ha, FAIL, "Get nvm data error %x\n",
3095 				dlen_status);
3096 		complete(pm8001_ha->nvmd_completion);
3097 		/* We should free tag during failure also, the tag is not being
3098 		 * freed by requesting path anywhere.
3099 		 */
3100 		ccb->task = NULL;
3101 		ccb->ccb_tag = 0xFFFFFFFF;
3102 		pm8001_tag_free(pm8001_ha, tag);
3103 		return;
3104 	}
3105 	if (ir_tds_bn_dps_das_nvm & IPMode) {
3106 		/* indirect mode - IR bit set */
3107 		pm8001_dbg(pm8001_ha, MSG, "Get NVMD success, IR=1\n");
3108 		if ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == TWI_DEVICE) {
3109 			if (ir_tds_bn_dps_das_nvm == 0x80a80200) {
3110 				memcpy(pm8001_ha->sas_addr,
3111 				      ((u8 *)virt_addr + 4),
3112 				       SAS_ADDR_SIZE);
3113 				pm8001_dbg(pm8001_ha, MSG, "Get SAS address from VPD successfully!\n");
3114 			}
3115 		} else if (((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == C_SEEPROM)
3116 			|| ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == VPD_FLASH) ||
3117 			((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == EXPAN_ROM)) {
3118 				;
3119 		} else if (((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == AAP1_RDUMP)
3120 			|| ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == IOP_RDUMP)) {
3121 			;
3122 		} else {
3123 			/* Should not be happened*/
3124 			pm8001_dbg(pm8001_ha, MSG,
3125 				   "(IR=1)Wrong Device type 0x%x\n",
3126 				   ir_tds_bn_dps_das_nvm);
3127 		}
3128 	} else /* direct mode */{
3129 		pm8001_dbg(pm8001_ha, MSG,
3130 			   "Get NVMD success, IR=0, dataLen=%d\n",
3131 			   (dlen_status & NVMD_LEN) >> 24);
3132 	}
3133 	/* Though fw_control_context is freed below, usrAddr still needs
3134 	 * to be updated as this holds the response to the request function
3135 	 */
3136 	memcpy(fw_control_context->usrAddr,
3137 		pm8001_ha->memoryMap.region[NVMD].virt_ptr,
3138 		fw_control_context->len);
3139 	kfree(ccb->fw_control_context);
3140 	/* To avoid race condition, complete should be
3141 	 * called after the message is copied to
3142 	 * fw_control_context->usrAddr
3143 	 */
3144 	complete(pm8001_ha->nvmd_completion);
3145 	pm8001_dbg(pm8001_ha, MSG, "Get nvmd data complete!\n");
3146 	ccb->task = NULL;
3147 	ccb->ccb_tag = 0xFFFFFFFF;
3148 	pm8001_tag_free(pm8001_ha, tag);
3149 }
3150 
3151 int pm8001_mpi_local_phy_ctl(struct pm8001_hba_info *pm8001_ha, void *piomb)
3152 {
3153 	u32 tag;
3154 	struct local_phy_ctl_resp *pPayload =
3155 		(struct local_phy_ctl_resp *)(piomb + 4);
3156 	u32 status = le32_to_cpu(pPayload->status);
3157 	u32 phy_id = le32_to_cpu(pPayload->phyop_phyid) & ID_BITS;
3158 	u32 phy_op = le32_to_cpu(pPayload->phyop_phyid) & OP_BITS;
3159 	tag = le32_to_cpu(pPayload->tag);
3160 	if (status != 0) {
3161 		pm8001_dbg(pm8001_ha, MSG,
3162 			   "%x phy execute %x phy op failed!\n",
3163 			   phy_id, phy_op);
3164 	} else {
3165 		pm8001_dbg(pm8001_ha, MSG,
3166 			   "%x phy execute %x phy op success!\n",
3167 			   phy_id, phy_op);
3168 		pm8001_ha->phy[phy_id].reset_success = true;
3169 	}
3170 	if (pm8001_ha->phy[phy_id].enable_completion) {
3171 		complete(pm8001_ha->phy[phy_id].enable_completion);
3172 		pm8001_ha->phy[phy_id].enable_completion = NULL;
3173 	}
3174 	pm8001_tag_free(pm8001_ha, tag);
3175 	return 0;
3176 }
3177 
3178 /**
3179  * pm8001_bytes_dmaed - one of the interface function communication with libsas
3180  * @pm8001_ha: our hba card information
3181  * @i: which phy that received the event.
3182  *
3183  * when HBA driver received the identify done event or initiate FIS received
3184  * event(for SATA), it will invoke this function to notify the sas layer that
3185  * the sas toplogy has formed, please discover the the whole sas domain,
3186  * while receive a broadcast(change) primitive just tell the sas
3187  * layer to discover the changed domain rather than the whole domain.
3188  */
3189 void pm8001_bytes_dmaed(struct pm8001_hba_info *pm8001_ha, int i)
3190 {
3191 	struct pm8001_phy *phy = &pm8001_ha->phy[i];
3192 	struct asd_sas_phy *sas_phy = &phy->sas_phy;
3193 	if (!phy->phy_attached)
3194 		return;
3195 
3196 	if (sas_phy->phy) {
3197 		struct sas_phy *sphy = sas_phy->phy;
3198 		sphy->negotiated_linkrate = sas_phy->linkrate;
3199 		sphy->minimum_linkrate = phy->minimum_linkrate;
3200 		sphy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
3201 		sphy->maximum_linkrate = phy->maximum_linkrate;
3202 		sphy->maximum_linkrate_hw = phy->maximum_linkrate;
3203 	}
3204 
3205 	if (phy->phy_type & PORT_TYPE_SAS) {
3206 		struct sas_identify_frame *id;
3207 		id = (struct sas_identify_frame *)phy->frame_rcvd;
3208 		id->dev_type = phy->identify.device_type;
3209 		id->initiator_bits = SAS_PROTOCOL_ALL;
3210 		id->target_bits = phy->identify.target_port_protocols;
3211 	} else if (phy->phy_type & PORT_TYPE_SATA) {
3212 		/*Nothing*/
3213 	}
3214 	pm8001_dbg(pm8001_ha, MSG, "phy %d byte dmaded.\n", i);
3215 
3216 	sas_phy->frame_rcvd_size = phy->frame_rcvd_size;
3217 	sas_notify_port_event(sas_phy, PORTE_BYTES_DMAED, GFP_ATOMIC);
3218 }
3219 
3220 /* Get the link rate speed  */
3221 void pm8001_get_lrate_mode(struct pm8001_phy *phy, u8 link_rate)
3222 {
3223 	struct sas_phy *sas_phy = phy->sas_phy.phy;
3224 
3225 	switch (link_rate) {
3226 	case PHY_SPEED_120:
3227 		phy->sas_phy.linkrate = SAS_LINK_RATE_12_0_GBPS;
3228 		phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_12_0_GBPS;
3229 		break;
3230 	case PHY_SPEED_60:
3231 		phy->sas_phy.linkrate = SAS_LINK_RATE_6_0_GBPS;
3232 		phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS;
3233 		break;
3234 	case PHY_SPEED_30:
3235 		phy->sas_phy.linkrate = SAS_LINK_RATE_3_0_GBPS;
3236 		phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS;
3237 		break;
3238 	case PHY_SPEED_15:
3239 		phy->sas_phy.linkrate = SAS_LINK_RATE_1_5_GBPS;
3240 		phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS;
3241 		break;
3242 	}
3243 	sas_phy->negotiated_linkrate = phy->sas_phy.linkrate;
3244 	sas_phy->maximum_linkrate_hw = SAS_LINK_RATE_6_0_GBPS;
3245 	sas_phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
3246 	sas_phy->maximum_linkrate = SAS_LINK_RATE_6_0_GBPS;
3247 	sas_phy->minimum_linkrate = SAS_LINK_RATE_1_5_GBPS;
3248 }
3249 
3250 /**
3251  * pm8001_get_attached_sas_addr - extract/generate attached SAS address
3252  * @phy: pointer to asd_phy
3253  * @sas_addr: pointer to buffer where the SAS address is to be written
3254  *
3255  * This function extracts the SAS address from an IDENTIFY frame
3256  * received.  If OOB is SATA, then a SAS address is generated from the
3257  * HA tables.
3258  *
3259  * LOCKING: the frame_rcvd_lock needs to be held since this parses the frame
3260  * buffer.
3261  */
3262 void pm8001_get_attached_sas_addr(struct pm8001_phy *phy,
3263 	u8 *sas_addr)
3264 {
3265 	if (phy->sas_phy.frame_rcvd[0] == 0x34
3266 		&& phy->sas_phy.oob_mode == SATA_OOB_MODE) {
3267 		struct pm8001_hba_info *pm8001_ha = phy->sas_phy.ha->lldd_ha;
3268 		/* FIS device-to-host */
3269 		u64 addr = be64_to_cpu(*(__be64 *)pm8001_ha->sas_addr);
3270 		addr += phy->sas_phy.id;
3271 		*(__be64 *)sas_addr = cpu_to_be64(addr);
3272 	} else {
3273 		struct sas_identify_frame *idframe =
3274 			(void *) phy->sas_phy.frame_rcvd;
3275 		memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE);
3276 	}
3277 }
3278 
3279 /**
3280  * pm8001_hw_event_ack_req- For PM8001,some events need to acknowage to FW.
3281  * @pm8001_ha: our hba card information
3282  * @Qnum: the outbound queue message number.
3283  * @SEA: source of event to ack
3284  * @port_id: port id.
3285  * @phyId: phy id.
3286  * @param0: parameter 0.
3287  * @param1: parameter 1.
3288  */
3289 static void pm8001_hw_event_ack_req(struct pm8001_hba_info *pm8001_ha,
3290 	u32 Qnum, u32 SEA, u32 port_id, u32 phyId, u32 param0, u32 param1)
3291 {
3292 	struct hw_event_ack_req	 payload;
3293 	u32 opc = OPC_INB_SAS_HW_EVENT_ACK;
3294 
3295 	struct inbound_queue_table *circularQ;
3296 
3297 	memset((u8 *)&payload, 0, sizeof(payload));
3298 	circularQ = &pm8001_ha->inbnd_q_tbl[Qnum];
3299 	payload.tag = cpu_to_le32(1);
3300 	payload.sea_phyid_portid = cpu_to_le32(((SEA & 0xFFFF) << 8) |
3301 		((phyId & 0x0F) << 4) | (port_id & 0x0F));
3302 	payload.param0 = cpu_to_le32(param0);
3303 	payload.param1 = cpu_to_le32(param1);
3304 	pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload,
3305 			sizeof(payload), 0);
3306 }
3307 
3308 static int pm8001_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha,
3309 	u32 phyId, u32 phy_op);
3310 
3311 /**
3312  * hw_event_sas_phy_up -FW tells me a SAS phy up event.
3313  * @pm8001_ha: our hba card information
3314  * @piomb: IO message buffer
3315  */
3316 static void
3317 hw_event_sas_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb)
3318 {
3319 	struct hw_event_resp *pPayload =
3320 		(struct hw_event_resp *)(piomb + 4);
3321 	u32 lr_evt_status_phyid_portid =
3322 		le32_to_cpu(pPayload->lr_evt_status_phyid_portid);
3323 	u8 link_rate =
3324 		(u8)((lr_evt_status_phyid_portid & 0xF0000000) >> 28);
3325 	u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F);
3326 	u8 phy_id =
3327 		(u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4);
3328 	u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate);
3329 	u8 portstate = (u8)(npip_portstate & 0x0000000F);
3330 	struct pm8001_port *port = &pm8001_ha->port[port_id];
3331 	struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
3332 	unsigned long flags;
3333 	u8 deviceType = pPayload->sas_identify.dev_type;
3334 	phy->port = port;
3335 	port->port_id = port_id;
3336 	port->port_state =  portstate;
3337 	phy->phy_state = PHY_STATE_LINK_UP_SPC;
3338 	pm8001_dbg(pm8001_ha, MSG,
3339 		   "HW_EVENT_SAS_PHY_UP port id = %d, phy id = %d\n",
3340 		   port_id, phy_id);
3341 
3342 	switch (deviceType) {
3343 	case SAS_PHY_UNUSED:
3344 		pm8001_dbg(pm8001_ha, MSG, "device type no device.\n");
3345 		break;
3346 	case SAS_END_DEVICE:
3347 		pm8001_dbg(pm8001_ha, MSG, "end device.\n");
3348 		pm8001_chip_phy_ctl_req(pm8001_ha, phy_id,
3349 			PHY_NOTIFY_ENABLE_SPINUP);
3350 		port->port_attached = 1;
3351 		pm8001_get_lrate_mode(phy, link_rate);
3352 		break;
3353 	case SAS_EDGE_EXPANDER_DEVICE:
3354 		pm8001_dbg(pm8001_ha, MSG, "expander device.\n");
3355 		port->port_attached = 1;
3356 		pm8001_get_lrate_mode(phy, link_rate);
3357 		break;
3358 	case SAS_FANOUT_EXPANDER_DEVICE:
3359 		pm8001_dbg(pm8001_ha, MSG, "fanout expander device.\n");
3360 		port->port_attached = 1;
3361 		pm8001_get_lrate_mode(phy, link_rate);
3362 		break;
3363 	default:
3364 		pm8001_dbg(pm8001_ha, DEVIO, "unknown device type(%x)\n",
3365 			   deviceType);
3366 		break;
3367 	}
3368 	phy->phy_type |= PORT_TYPE_SAS;
3369 	phy->identify.device_type = deviceType;
3370 	phy->phy_attached = 1;
3371 	if (phy->identify.device_type == SAS_END_DEVICE)
3372 		phy->identify.target_port_protocols = SAS_PROTOCOL_SSP;
3373 	else if (phy->identify.device_type != SAS_PHY_UNUSED)
3374 		phy->identify.target_port_protocols = SAS_PROTOCOL_SMP;
3375 	phy->sas_phy.oob_mode = SAS_OOB_MODE;
3376 	sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE, GFP_ATOMIC);
3377 	spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags);
3378 	memcpy(phy->frame_rcvd, &pPayload->sas_identify,
3379 		sizeof(struct sas_identify_frame)-4);
3380 	phy->frame_rcvd_size = sizeof(struct sas_identify_frame) - 4;
3381 	pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr);
3382 	spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags);
3383 	if (pm8001_ha->flags == PM8001F_RUN_TIME)
3384 		mdelay(200);/*delay a moment to wait disk to spinup*/
3385 	pm8001_bytes_dmaed(pm8001_ha, phy_id);
3386 }
3387 
3388 /**
3389  * hw_event_sata_phy_up -FW tells me a SATA phy up event.
3390  * @pm8001_ha: our hba card information
3391  * @piomb: IO message buffer
3392  */
3393 static void
3394 hw_event_sata_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb)
3395 {
3396 	struct hw_event_resp *pPayload =
3397 		(struct hw_event_resp *)(piomb + 4);
3398 	u32 lr_evt_status_phyid_portid =
3399 		le32_to_cpu(pPayload->lr_evt_status_phyid_portid);
3400 	u8 link_rate =
3401 		(u8)((lr_evt_status_phyid_portid & 0xF0000000) >> 28);
3402 	u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F);
3403 	u8 phy_id =
3404 		(u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4);
3405 	u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate);
3406 	u8 portstate = (u8)(npip_portstate & 0x0000000F);
3407 	struct pm8001_port *port = &pm8001_ha->port[port_id];
3408 	struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
3409 	unsigned long flags;
3410 	pm8001_dbg(pm8001_ha, DEVIO, "HW_EVENT_SATA_PHY_UP port id = %d, phy id = %d\n",
3411 		   port_id, phy_id);
3412 	phy->port = port;
3413 	port->port_id = port_id;
3414 	port->port_state =  portstate;
3415 	phy->phy_state = PHY_STATE_LINK_UP_SPC;
3416 	port->port_attached = 1;
3417 	pm8001_get_lrate_mode(phy, link_rate);
3418 	phy->phy_type |= PORT_TYPE_SATA;
3419 	phy->phy_attached = 1;
3420 	phy->sas_phy.oob_mode = SATA_OOB_MODE;
3421 	sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE, GFP_ATOMIC);
3422 	spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags);
3423 	memcpy(phy->frame_rcvd, ((u8 *)&pPayload->sata_fis - 4),
3424 		sizeof(struct dev_to_host_fis));
3425 	phy->frame_rcvd_size = sizeof(struct dev_to_host_fis);
3426 	phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
3427 	phy->identify.device_type = SAS_SATA_DEV;
3428 	pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr);
3429 	spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags);
3430 	pm8001_bytes_dmaed(pm8001_ha, phy_id);
3431 }
3432 
3433 /**
3434  * hw_event_phy_down -we should notify the libsas the phy is down.
3435  * @pm8001_ha: our hba card information
3436  * @piomb: IO message buffer
3437  */
3438 static void
3439 hw_event_phy_down(struct pm8001_hba_info *pm8001_ha, void *piomb)
3440 {
3441 	struct hw_event_resp *pPayload =
3442 		(struct hw_event_resp *)(piomb + 4);
3443 	u32 lr_evt_status_phyid_portid =
3444 		le32_to_cpu(pPayload->lr_evt_status_phyid_portid);
3445 	u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F);
3446 	u8 phy_id =
3447 		(u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4);
3448 	u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate);
3449 	u8 portstate = (u8)(npip_portstate & 0x0000000F);
3450 	struct pm8001_port *port = &pm8001_ha->port[port_id];
3451 	struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
3452 	port->port_state =  portstate;
3453 	phy->phy_type = 0;
3454 	phy->identify.device_type = 0;
3455 	phy->phy_attached = 0;
3456 	memset(&phy->dev_sas_addr, 0, SAS_ADDR_SIZE);
3457 	switch (portstate) {
3458 	case PORT_VALID:
3459 		break;
3460 	case PORT_INVALID:
3461 		pm8001_dbg(pm8001_ha, MSG, " PortInvalid portID %d\n",
3462 			   port_id);
3463 		pm8001_dbg(pm8001_ha, MSG,
3464 			   " Last phy Down and port invalid\n");
3465 		port->port_attached = 0;
3466 		pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN,
3467 			port_id, phy_id, 0, 0);
3468 		break;
3469 	case PORT_IN_RESET:
3470 		pm8001_dbg(pm8001_ha, MSG, " Port In Reset portID %d\n",
3471 			   port_id);
3472 		break;
3473 	case PORT_NOT_ESTABLISHED:
3474 		pm8001_dbg(pm8001_ha, MSG,
3475 			   " phy Down and PORT_NOT_ESTABLISHED\n");
3476 		port->port_attached = 0;
3477 		break;
3478 	case PORT_LOSTCOMM:
3479 		pm8001_dbg(pm8001_ha, MSG, " phy Down and PORT_LOSTCOMM\n");
3480 		pm8001_dbg(pm8001_ha, MSG,
3481 			   " Last phy Down and port invalid\n");
3482 		port->port_attached = 0;
3483 		pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN,
3484 			port_id, phy_id, 0, 0);
3485 		break;
3486 	default:
3487 		port->port_attached = 0;
3488 		pm8001_dbg(pm8001_ha, DEVIO, " phy Down and(default) = %x\n",
3489 			   portstate);
3490 		break;
3491 
3492 	}
3493 }
3494 
3495 /**
3496  * pm8001_mpi_reg_resp -process register device ID response.
3497  * @pm8001_ha: our hba card information
3498  * @piomb: IO message buffer
3499  *
3500  * when sas layer find a device it will notify LLDD, then the driver register
3501  * the domain device to FW, this event is the return device ID which the FW
3502  * has assigned, from now, inter-communication with FW is no longer using the
3503  * SAS address, use device ID which FW assigned.
3504  */
3505 int pm8001_mpi_reg_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
3506 {
3507 	u32 status;
3508 	u32 device_id;
3509 	u32 htag;
3510 	struct pm8001_ccb_info *ccb;
3511 	struct pm8001_device *pm8001_dev;
3512 	struct dev_reg_resp *registerRespPayload =
3513 		(struct dev_reg_resp *)(piomb + 4);
3514 
3515 	htag = le32_to_cpu(registerRespPayload->tag);
3516 	ccb = &pm8001_ha->ccb_info[htag];
3517 	pm8001_dev = ccb->device;
3518 	status = le32_to_cpu(registerRespPayload->status);
3519 	device_id = le32_to_cpu(registerRespPayload->device_id);
3520 	pm8001_dbg(pm8001_ha, MSG, " register device is status = %d\n",
3521 		   status);
3522 	switch (status) {
3523 	case DEVREG_SUCCESS:
3524 		pm8001_dbg(pm8001_ha, MSG, "DEVREG_SUCCESS\n");
3525 		pm8001_dev->device_id = device_id;
3526 		break;
3527 	case DEVREG_FAILURE_OUT_OF_RESOURCE:
3528 		pm8001_dbg(pm8001_ha, MSG, "DEVREG_FAILURE_OUT_OF_RESOURCE\n");
3529 		break;
3530 	case DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED:
3531 		pm8001_dbg(pm8001_ha, MSG,
3532 			   "DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED\n");
3533 		break;
3534 	case DEVREG_FAILURE_INVALID_PHY_ID:
3535 		pm8001_dbg(pm8001_ha, MSG, "DEVREG_FAILURE_INVALID_PHY_ID\n");
3536 		break;
3537 	case DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED:
3538 		pm8001_dbg(pm8001_ha, MSG,
3539 			   "DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED\n");
3540 		break;
3541 	case DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE:
3542 		pm8001_dbg(pm8001_ha, MSG,
3543 			   "DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE\n");
3544 		break;
3545 	case DEVREG_FAILURE_PORT_NOT_VALID_STATE:
3546 		pm8001_dbg(pm8001_ha, MSG,
3547 			   "DEVREG_FAILURE_PORT_NOT_VALID_STATE\n");
3548 		break;
3549 	case DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID:
3550 		pm8001_dbg(pm8001_ha, MSG,
3551 			   "DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID\n");
3552 		break;
3553 	default:
3554 		pm8001_dbg(pm8001_ha, MSG,
3555 			   "DEVREG_FAILURE_DEVICE_TYPE_NOT_SUPPORTED\n");
3556 		break;
3557 	}
3558 	complete(pm8001_dev->dcompletion);
3559 	ccb->task = NULL;
3560 	ccb->ccb_tag = 0xFFFFFFFF;
3561 	pm8001_tag_free(pm8001_ha, htag);
3562 	return 0;
3563 }
3564 
3565 int pm8001_mpi_dereg_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
3566 {
3567 	u32 status;
3568 	u32 device_id;
3569 	struct dev_reg_resp *registerRespPayload =
3570 		(struct dev_reg_resp *)(piomb + 4);
3571 
3572 	status = le32_to_cpu(registerRespPayload->status);
3573 	device_id = le32_to_cpu(registerRespPayload->device_id);
3574 	if (status != 0)
3575 		pm8001_dbg(pm8001_ha, MSG,
3576 			   " deregister device failed ,status = %x, device_id = %x\n",
3577 			   status, device_id);
3578 	return 0;
3579 }
3580 
3581 /**
3582  * pm8001_mpi_fw_flash_update_resp - Response from FW for flash update command.
3583  * @pm8001_ha: our hba card information
3584  * @piomb: IO message buffer
3585  */
3586 int pm8001_mpi_fw_flash_update_resp(struct pm8001_hba_info *pm8001_ha,
3587 		void *piomb)
3588 {
3589 	u32 status;
3590 	struct fw_flash_Update_resp *ppayload =
3591 		(struct fw_flash_Update_resp *)(piomb + 4);
3592 	u32 tag = le32_to_cpu(ppayload->tag);
3593 	struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag];
3594 	status = le32_to_cpu(ppayload->status);
3595 	switch (status) {
3596 	case FLASH_UPDATE_COMPLETE_PENDING_REBOOT:
3597 		pm8001_dbg(pm8001_ha, MSG,
3598 			   ": FLASH_UPDATE_COMPLETE_PENDING_REBOOT\n");
3599 		break;
3600 	case FLASH_UPDATE_IN_PROGRESS:
3601 		pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_IN_PROGRESS\n");
3602 		break;
3603 	case FLASH_UPDATE_HDR_ERR:
3604 		pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_HDR_ERR\n");
3605 		break;
3606 	case FLASH_UPDATE_OFFSET_ERR:
3607 		pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_OFFSET_ERR\n");
3608 		break;
3609 	case FLASH_UPDATE_CRC_ERR:
3610 		pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_CRC_ERR\n");
3611 		break;
3612 	case FLASH_UPDATE_LENGTH_ERR:
3613 		pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_LENGTH_ERR\n");
3614 		break;
3615 	case FLASH_UPDATE_HW_ERR:
3616 		pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_HW_ERR\n");
3617 		break;
3618 	case FLASH_UPDATE_DNLD_NOT_SUPPORTED:
3619 		pm8001_dbg(pm8001_ha, MSG,
3620 			   ": FLASH_UPDATE_DNLD_NOT_SUPPORTED\n");
3621 		break;
3622 	case FLASH_UPDATE_DISABLED:
3623 		pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_DISABLED\n");
3624 		break;
3625 	default:
3626 		pm8001_dbg(pm8001_ha, DEVIO, "No matched status = %d\n",
3627 			   status);
3628 		break;
3629 	}
3630 	kfree(ccb->fw_control_context);
3631 	ccb->task = NULL;
3632 	ccb->ccb_tag = 0xFFFFFFFF;
3633 	pm8001_tag_free(pm8001_ha, tag);
3634 	complete(pm8001_ha->nvmd_completion);
3635 	return 0;
3636 }
3637 
3638 int pm8001_mpi_general_event(struct pm8001_hba_info *pm8001_ha, void *piomb)
3639 {
3640 	u32 status;
3641 	int i;
3642 	struct general_event_resp *pPayload =
3643 		(struct general_event_resp *)(piomb + 4);
3644 	status = le32_to_cpu(pPayload->status);
3645 	pm8001_dbg(pm8001_ha, MSG, " status = 0x%x\n", status);
3646 	for (i = 0; i < GENERAL_EVENT_PAYLOAD; i++)
3647 		pm8001_dbg(pm8001_ha, MSG, "inb_IOMB_payload[0x%x] 0x%x,\n",
3648 			   i,
3649 			   pPayload->inb_IOMB_payload[i]);
3650 	return 0;
3651 }
3652 
3653 int pm8001_mpi_task_abort_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
3654 {
3655 	struct sas_task *t;
3656 	struct pm8001_ccb_info *ccb;
3657 	unsigned long flags;
3658 	u32 status ;
3659 	u32 tag, scp;
3660 	struct task_status_struct *ts;
3661 	struct pm8001_device *pm8001_dev;
3662 
3663 	struct task_abort_resp *pPayload =
3664 		(struct task_abort_resp *)(piomb + 4);
3665 
3666 	status = le32_to_cpu(pPayload->status);
3667 	tag = le32_to_cpu(pPayload->tag);
3668 	if (!tag) {
3669 		pm8001_dbg(pm8001_ha, FAIL, " TAG NULL. RETURNING !!!\n");
3670 		return -1;
3671 	}
3672 
3673 	scp = le32_to_cpu(pPayload->scp);
3674 	ccb = &pm8001_ha->ccb_info[tag];
3675 	t = ccb->task;
3676 	pm8001_dev = ccb->device; /* retrieve device */
3677 
3678 	if (!t)	{
3679 		pm8001_dbg(pm8001_ha, FAIL, " TASK NULL. RETURNING !!!\n");
3680 		return -1;
3681 	}
3682 	ts = &t->task_status;
3683 	if (status != 0)
3684 		pm8001_dbg(pm8001_ha, FAIL, "task abort failed status 0x%x ,tag = 0x%x, scp= 0x%x\n",
3685 			   status, tag, scp);
3686 	switch (status) {
3687 	case IO_SUCCESS:
3688 		pm8001_dbg(pm8001_ha, EH, "IO_SUCCESS\n");
3689 		ts->resp = SAS_TASK_COMPLETE;
3690 		ts->stat = SAS_SAM_STAT_GOOD;
3691 		break;
3692 	case IO_NOT_VALID:
3693 		pm8001_dbg(pm8001_ha, EH, "IO_NOT_VALID\n");
3694 		ts->resp = TMF_RESP_FUNC_FAILED;
3695 		break;
3696 	}
3697 	spin_lock_irqsave(&t->task_state_lock, flags);
3698 	t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
3699 	t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
3700 	t->task_state_flags |= SAS_TASK_STATE_DONE;
3701 	spin_unlock_irqrestore(&t->task_state_lock, flags);
3702 	pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
3703 	mb();
3704 
3705 	if (pm8001_dev->id & NCQ_ABORT_ALL_FLAG) {
3706 		pm8001_tag_free(pm8001_ha, tag);
3707 		sas_free_task(t);
3708 		/* clear the flag */
3709 		pm8001_dev->id &= 0xBFFFFFFF;
3710 	} else
3711 		t->task_done(t);
3712 
3713 	return 0;
3714 }
3715 
3716 /**
3717  * mpi_hw_event -The hw event has come.
3718  * @pm8001_ha: our hba card information
3719  * @piomb: IO message buffer
3720  */
3721 static int mpi_hw_event(struct pm8001_hba_info *pm8001_ha, void *piomb)
3722 {
3723 	unsigned long flags;
3724 	struct hw_event_resp *pPayload =
3725 		(struct hw_event_resp *)(piomb + 4);
3726 	u32 lr_evt_status_phyid_portid =
3727 		le32_to_cpu(pPayload->lr_evt_status_phyid_portid);
3728 	u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F);
3729 	u8 phy_id =
3730 		(u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4);
3731 	u16 eventType =
3732 		(u16)((lr_evt_status_phyid_portid & 0x00FFFF00) >> 8);
3733 	u8 status =
3734 		(u8)((lr_evt_status_phyid_portid & 0x0F000000) >> 24);
3735 	struct sas_ha_struct *sas_ha = pm8001_ha->sas;
3736 	struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
3737 	struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
3738 	pm8001_dbg(pm8001_ha, DEVIO,
3739 		   "SPC HW event for portid:%d, phyid:%d, event:%x, status:%x\n",
3740 		   port_id, phy_id, eventType, status);
3741 	switch (eventType) {
3742 	case HW_EVENT_PHY_START_STATUS:
3743 		pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_START_STATUS status = %x\n",
3744 			   status);
3745 		if (status == 0)
3746 			phy->phy_state = 1;
3747 
3748 		if (pm8001_ha->flags == PM8001F_RUN_TIME &&
3749 				phy->enable_completion != NULL) {
3750 			complete(phy->enable_completion);
3751 			phy->enable_completion = NULL;
3752 		}
3753 		break;
3754 	case HW_EVENT_SAS_PHY_UP:
3755 		pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_START_STATUS\n");
3756 		hw_event_sas_phy_up(pm8001_ha, piomb);
3757 		break;
3758 	case HW_EVENT_SATA_PHY_UP:
3759 		pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_SATA_PHY_UP\n");
3760 		hw_event_sata_phy_up(pm8001_ha, piomb);
3761 		break;
3762 	case HW_EVENT_PHY_STOP_STATUS:
3763 		pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_STOP_STATUS status = %x\n",
3764 			   status);
3765 		if (status == 0)
3766 			phy->phy_state = 0;
3767 		break;
3768 	case HW_EVENT_SATA_SPINUP_HOLD:
3769 		pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_SATA_SPINUP_HOLD\n");
3770 		sas_notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD,
3771 			GFP_ATOMIC);
3772 		break;
3773 	case HW_EVENT_PHY_DOWN:
3774 		pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_DOWN\n");
3775 		sas_notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL,
3776 			GFP_ATOMIC);
3777 		phy->phy_attached = 0;
3778 		phy->phy_state = 0;
3779 		hw_event_phy_down(pm8001_ha, piomb);
3780 		break;
3781 	case HW_EVENT_PORT_INVALID:
3782 		pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_INVALID\n");
3783 		sas_phy_disconnected(sas_phy);
3784 		phy->phy_attached = 0;
3785 		sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR,
3786 			GFP_ATOMIC);
3787 		break;
3788 	/* the broadcast change primitive received, tell the LIBSAS this event
3789 	to revalidate the sas domain*/
3790 	case HW_EVENT_BROADCAST_CHANGE:
3791 		pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_CHANGE\n");
3792 		pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_BROADCAST_CHANGE,
3793 			port_id, phy_id, 1, 0);
3794 		spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
3795 		sas_phy->sas_prim = HW_EVENT_BROADCAST_CHANGE;
3796 		spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
3797 		sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD,
3798 			GFP_ATOMIC);
3799 		break;
3800 	case HW_EVENT_PHY_ERROR:
3801 		pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_ERROR\n");
3802 		sas_phy_disconnected(&phy->sas_phy);
3803 		phy->phy_attached = 0;
3804 		sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR, GFP_ATOMIC);
3805 		break;
3806 	case HW_EVENT_BROADCAST_EXP:
3807 		pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_EXP\n");
3808 		spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
3809 		sas_phy->sas_prim = HW_EVENT_BROADCAST_EXP;
3810 		spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
3811 		sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD,
3812 			GFP_ATOMIC);
3813 		break;
3814 	case HW_EVENT_LINK_ERR_INVALID_DWORD:
3815 		pm8001_dbg(pm8001_ha, MSG,
3816 			   "HW_EVENT_LINK_ERR_INVALID_DWORD\n");
3817 		pm8001_hw_event_ack_req(pm8001_ha, 0,
3818 			HW_EVENT_LINK_ERR_INVALID_DWORD, port_id, phy_id, 0, 0);
3819 		sas_phy_disconnected(sas_phy);
3820 		phy->phy_attached = 0;
3821 		sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR,
3822 			GFP_ATOMIC);
3823 		break;
3824 	case HW_EVENT_LINK_ERR_DISPARITY_ERROR:
3825 		pm8001_dbg(pm8001_ha, MSG,
3826 			   "HW_EVENT_LINK_ERR_DISPARITY_ERROR\n");
3827 		pm8001_hw_event_ack_req(pm8001_ha, 0,
3828 			HW_EVENT_LINK_ERR_DISPARITY_ERROR,
3829 			port_id, phy_id, 0, 0);
3830 		sas_phy_disconnected(sas_phy);
3831 		phy->phy_attached = 0;
3832 		sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR,
3833 			GFP_ATOMIC);
3834 		break;
3835 	case HW_EVENT_LINK_ERR_CODE_VIOLATION:
3836 		pm8001_dbg(pm8001_ha, MSG,
3837 			   "HW_EVENT_LINK_ERR_CODE_VIOLATION\n");
3838 		pm8001_hw_event_ack_req(pm8001_ha, 0,
3839 			HW_EVENT_LINK_ERR_CODE_VIOLATION,
3840 			port_id, phy_id, 0, 0);
3841 		sas_phy_disconnected(sas_phy);
3842 		phy->phy_attached = 0;
3843 		sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR,
3844 			GFP_ATOMIC);
3845 		break;
3846 	case HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH:
3847 		pm8001_dbg(pm8001_ha, MSG,
3848 			   "HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH\n");
3849 		pm8001_hw_event_ack_req(pm8001_ha, 0,
3850 			HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH,
3851 			port_id, phy_id, 0, 0);
3852 		sas_phy_disconnected(sas_phy);
3853 		phy->phy_attached = 0;
3854 		sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR,
3855 			GFP_ATOMIC);
3856 		break;
3857 	case HW_EVENT_MALFUNCTION:
3858 		pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_MALFUNCTION\n");
3859 		break;
3860 	case HW_EVENT_BROADCAST_SES:
3861 		pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_SES\n");
3862 		spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
3863 		sas_phy->sas_prim = HW_EVENT_BROADCAST_SES;
3864 		spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
3865 		sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD,
3866 			GFP_ATOMIC);
3867 		break;
3868 	case HW_EVENT_INBOUND_CRC_ERROR:
3869 		pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_INBOUND_CRC_ERROR\n");
3870 		pm8001_hw_event_ack_req(pm8001_ha, 0,
3871 			HW_EVENT_INBOUND_CRC_ERROR,
3872 			port_id, phy_id, 0, 0);
3873 		break;
3874 	case HW_EVENT_HARD_RESET_RECEIVED:
3875 		pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_HARD_RESET_RECEIVED\n");
3876 		sas_notify_port_event(sas_phy, PORTE_HARD_RESET, GFP_ATOMIC);
3877 		break;
3878 	case HW_EVENT_ID_FRAME_TIMEOUT:
3879 		pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_ID_FRAME_TIMEOUT\n");
3880 		sas_phy_disconnected(sas_phy);
3881 		phy->phy_attached = 0;
3882 		sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR,
3883 			GFP_ATOMIC);
3884 		break;
3885 	case HW_EVENT_LINK_ERR_PHY_RESET_FAILED:
3886 		pm8001_dbg(pm8001_ha, MSG,
3887 			   "HW_EVENT_LINK_ERR_PHY_RESET_FAILED\n");
3888 		pm8001_hw_event_ack_req(pm8001_ha, 0,
3889 			HW_EVENT_LINK_ERR_PHY_RESET_FAILED,
3890 			port_id, phy_id, 0, 0);
3891 		sas_phy_disconnected(sas_phy);
3892 		phy->phy_attached = 0;
3893 		sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR,
3894 			GFP_ATOMIC);
3895 		break;
3896 	case HW_EVENT_PORT_RESET_TIMER_TMO:
3897 		pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RESET_TIMER_TMO\n");
3898 		sas_phy_disconnected(sas_phy);
3899 		phy->phy_attached = 0;
3900 		sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR,
3901 			GFP_ATOMIC);
3902 		break;
3903 	case HW_EVENT_PORT_RECOVERY_TIMER_TMO:
3904 		pm8001_dbg(pm8001_ha, MSG,
3905 			   "HW_EVENT_PORT_RECOVERY_TIMER_TMO\n");
3906 		sas_phy_disconnected(sas_phy);
3907 		phy->phy_attached = 0;
3908 		sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR,
3909 			GFP_ATOMIC);
3910 		break;
3911 	case HW_EVENT_PORT_RECOVER:
3912 		pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RECOVER\n");
3913 		break;
3914 	case HW_EVENT_PORT_RESET_COMPLETE:
3915 		pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RESET_COMPLETE\n");
3916 		break;
3917 	case EVENT_BROADCAST_ASYNCH_EVENT:
3918 		pm8001_dbg(pm8001_ha, MSG, "EVENT_BROADCAST_ASYNCH_EVENT\n");
3919 		break;
3920 	default:
3921 		pm8001_dbg(pm8001_ha, DEVIO, "Unknown event type = %x\n",
3922 			   eventType);
3923 		break;
3924 	}
3925 	return 0;
3926 }
3927 
3928 /**
3929  * process_one_iomb - process one outbound Queue memory block
3930  * @pm8001_ha: our hba card information
3931  * @piomb: IO message buffer
3932  */
3933 static void process_one_iomb(struct pm8001_hba_info *pm8001_ha, void *piomb)
3934 {
3935 	__le32 pHeader = *(__le32 *)piomb;
3936 	u8 opc = (u8)((le32_to_cpu(pHeader)) & 0xFFF);
3937 
3938 	pm8001_dbg(pm8001_ha, MSG, "process_one_iomb:\n");
3939 
3940 	switch (opc) {
3941 	case OPC_OUB_ECHO:
3942 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_ECHO\n");
3943 		break;
3944 	case OPC_OUB_HW_EVENT:
3945 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_HW_EVENT\n");
3946 		mpi_hw_event(pm8001_ha, piomb);
3947 		break;
3948 	case OPC_OUB_SSP_COMP:
3949 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_COMP\n");
3950 		mpi_ssp_completion(pm8001_ha, piomb);
3951 		break;
3952 	case OPC_OUB_SMP_COMP:
3953 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SMP_COMP\n");
3954 		mpi_smp_completion(pm8001_ha, piomb);
3955 		break;
3956 	case OPC_OUB_LOCAL_PHY_CNTRL:
3957 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_LOCAL_PHY_CNTRL\n");
3958 		pm8001_mpi_local_phy_ctl(pm8001_ha, piomb);
3959 		break;
3960 	case OPC_OUB_DEV_REGIST:
3961 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEV_REGIST\n");
3962 		pm8001_mpi_reg_resp(pm8001_ha, piomb);
3963 		break;
3964 	case OPC_OUB_DEREG_DEV:
3965 		pm8001_dbg(pm8001_ha, MSG, "unregister the device\n");
3966 		pm8001_mpi_dereg_resp(pm8001_ha, piomb);
3967 		break;
3968 	case OPC_OUB_GET_DEV_HANDLE:
3969 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_DEV_HANDLE\n");
3970 		break;
3971 	case OPC_OUB_SATA_COMP:
3972 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_COMP\n");
3973 		mpi_sata_completion(pm8001_ha, piomb);
3974 		break;
3975 	case OPC_OUB_SATA_EVENT:
3976 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_EVENT\n");
3977 		mpi_sata_event(pm8001_ha, piomb);
3978 		break;
3979 	case OPC_OUB_SSP_EVENT:
3980 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_EVENT\n");
3981 		mpi_ssp_event(pm8001_ha, piomb);
3982 		break;
3983 	case OPC_OUB_DEV_HANDLE_ARRIV:
3984 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEV_HANDLE_ARRIV\n");
3985 		/*This is for target*/
3986 		break;
3987 	case OPC_OUB_SSP_RECV_EVENT:
3988 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_RECV_EVENT\n");
3989 		/*This is for target*/
3990 		break;
3991 	case OPC_OUB_DEV_INFO:
3992 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEV_INFO\n");
3993 		break;
3994 	case OPC_OUB_FW_FLASH_UPDATE:
3995 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_FW_FLASH_UPDATE\n");
3996 		pm8001_mpi_fw_flash_update_resp(pm8001_ha, piomb);
3997 		break;
3998 	case OPC_OUB_GPIO_RESPONSE:
3999 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GPIO_RESPONSE\n");
4000 		break;
4001 	case OPC_OUB_GPIO_EVENT:
4002 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GPIO_EVENT\n");
4003 		break;
4004 	case OPC_OUB_GENERAL_EVENT:
4005 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GENERAL_EVENT\n");
4006 		pm8001_mpi_general_event(pm8001_ha, piomb);
4007 		break;
4008 	case OPC_OUB_SSP_ABORT_RSP:
4009 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_ABORT_RSP\n");
4010 		pm8001_mpi_task_abort_resp(pm8001_ha, piomb);
4011 		break;
4012 	case OPC_OUB_SATA_ABORT_RSP:
4013 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_ABORT_RSP\n");
4014 		pm8001_mpi_task_abort_resp(pm8001_ha, piomb);
4015 		break;
4016 	case OPC_OUB_SAS_DIAG_MODE_START_END:
4017 		pm8001_dbg(pm8001_ha, MSG,
4018 			   "OPC_OUB_SAS_DIAG_MODE_START_END\n");
4019 		break;
4020 	case OPC_OUB_SAS_DIAG_EXECUTE:
4021 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_DIAG_EXECUTE\n");
4022 		break;
4023 	case OPC_OUB_GET_TIME_STAMP:
4024 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_TIME_STAMP\n");
4025 		break;
4026 	case OPC_OUB_SAS_HW_EVENT_ACK:
4027 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_HW_EVENT_ACK\n");
4028 		break;
4029 	case OPC_OUB_PORT_CONTROL:
4030 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_PORT_CONTROL\n");
4031 		break;
4032 	case OPC_OUB_SMP_ABORT_RSP:
4033 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SMP_ABORT_RSP\n");
4034 		pm8001_mpi_task_abort_resp(pm8001_ha, piomb);
4035 		break;
4036 	case OPC_OUB_GET_NVMD_DATA:
4037 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_NVMD_DATA\n");
4038 		pm8001_mpi_get_nvmd_resp(pm8001_ha, piomb);
4039 		break;
4040 	case OPC_OUB_SET_NVMD_DATA:
4041 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_NVMD_DATA\n");
4042 		pm8001_mpi_set_nvmd_resp(pm8001_ha, piomb);
4043 		break;
4044 	case OPC_OUB_DEVICE_HANDLE_REMOVAL:
4045 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEVICE_HANDLE_REMOVAL\n");
4046 		break;
4047 	case OPC_OUB_SET_DEVICE_STATE:
4048 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_DEVICE_STATE\n");
4049 		pm8001_mpi_set_dev_state_resp(pm8001_ha, piomb);
4050 		break;
4051 	case OPC_OUB_GET_DEVICE_STATE:
4052 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_DEVICE_STATE\n");
4053 		break;
4054 	case OPC_OUB_SET_DEV_INFO:
4055 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_DEV_INFO\n");
4056 		break;
4057 	case OPC_OUB_SAS_RE_INITIALIZE:
4058 		pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_RE_INITIALIZE\n");
4059 		break;
4060 	default:
4061 		pm8001_dbg(pm8001_ha, DEVIO,
4062 			   "Unknown outbound Queue IOMB OPC = %x\n",
4063 			   opc);
4064 		break;
4065 	}
4066 }
4067 
4068 static int process_oq(struct pm8001_hba_info *pm8001_ha, u8 vec)
4069 {
4070 	struct outbound_queue_table *circularQ;
4071 	void *pMsg1 = NULL;
4072 	u8 bc;
4073 	u32 ret = MPI_IO_STATUS_FAIL;
4074 	unsigned long flags;
4075 
4076 	spin_lock_irqsave(&pm8001_ha->lock, flags);
4077 	circularQ = &pm8001_ha->outbnd_q_tbl[vec];
4078 	do {
4079 		ret = pm8001_mpi_msg_consume(pm8001_ha, circularQ, &pMsg1, &bc);
4080 		if (MPI_IO_STATUS_SUCCESS == ret) {
4081 			/* process the outbound message */
4082 			process_one_iomb(pm8001_ha, (void *)(pMsg1 - 4));
4083 			/* free the message from the outbound circular buffer */
4084 			pm8001_mpi_msg_free_set(pm8001_ha, pMsg1,
4085 							circularQ, bc);
4086 		}
4087 		if (MPI_IO_STATUS_BUSY == ret) {
4088 			/* Update the producer index from SPC */
4089 			circularQ->producer_index =
4090 				cpu_to_le32(pm8001_read_32(circularQ->pi_virt));
4091 			if (le32_to_cpu(circularQ->producer_index) ==
4092 				circularQ->consumer_idx)
4093 				/* OQ is empty */
4094 				break;
4095 		}
4096 	} while (1);
4097 	spin_unlock_irqrestore(&pm8001_ha->lock, flags);
4098 	return ret;
4099 }
4100 
4101 /* DMA_... to our direction translation. */
4102 static const u8 data_dir_flags[] = {
4103 	[DMA_BIDIRECTIONAL]	= DATA_DIR_BYRECIPIENT,	/* UNSPECIFIED */
4104 	[DMA_TO_DEVICE]		= DATA_DIR_OUT,		/* OUTBOUND */
4105 	[DMA_FROM_DEVICE]	= DATA_DIR_IN,		/* INBOUND */
4106 	[DMA_NONE]		= DATA_DIR_NONE,	/* NO TRANSFER */
4107 };
4108 void
4109 pm8001_chip_make_sg(struct scatterlist *scatter, int nr, void *prd)
4110 {
4111 	int i;
4112 	struct scatterlist *sg;
4113 	struct pm8001_prd *buf_prd = prd;
4114 
4115 	for_each_sg(scatter, sg, nr, i) {
4116 		buf_prd->addr = cpu_to_le64(sg_dma_address(sg));
4117 		buf_prd->im_len.len = cpu_to_le32(sg_dma_len(sg));
4118 		buf_prd->im_len.e = 0;
4119 		buf_prd++;
4120 	}
4121 }
4122 
4123 static void build_smp_cmd(u32 deviceID, __le32 hTag, struct smp_req *psmp_cmd)
4124 {
4125 	psmp_cmd->tag = hTag;
4126 	psmp_cmd->device_id = cpu_to_le32(deviceID);
4127 	psmp_cmd->len_ip_ir = cpu_to_le32(1|(1 << 1));
4128 }
4129 
4130 /**
4131  * pm8001_chip_smp_req - send a SMP task to FW
4132  * @pm8001_ha: our hba card information.
4133  * @ccb: the ccb information this request used.
4134  */
4135 static int pm8001_chip_smp_req(struct pm8001_hba_info *pm8001_ha,
4136 	struct pm8001_ccb_info *ccb)
4137 {
4138 	int elem, rc;
4139 	struct sas_task *task = ccb->task;
4140 	struct domain_device *dev = task->dev;
4141 	struct pm8001_device *pm8001_dev = dev->lldd_dev;
4142 	struct scatterlist *sg_req, *sg_resp;
4143 	u32 req_len, resp_len;
4144 	struct smp_req smp_cmd;
4145 	u32 opc;
4146 	struct inbound_queue_table *circularQ;
4147 
4148 	memset(&smp_cmd, 0, sizeof(smp_cmd));
4149 	/*
4150 	 * DMA-map SMP request, response buffers
4151 	 */
4152 	sg_req = &task->smp_task.smp_req;
4153 	elem = dma_map_sg(pm8001_ha->dev, sg_req, 1, DMA_TO_DEVICE);
4154 	if (!elem)
4155 		return -ENOMEM;
4156 	req_len = sg_dma_len(sg_req);
4157 
4158 	sg_resp = &task->smp_task.smp_resp;
4159 	elem = dma_map_sg(pm8001_ha->dev, sg_resp, 1, DMA_FROM_DEVICE);
4160 	if (!elem) {
4161 		rc = -ENOMEM;
4162 		goto err_out;
4163 	}
4164 	resp_len = sg_dma_len(sg_resp);
4165 	/* must be in dwords */
4166 	if ((req_len & 0x3) || (resp_len & 0x3)) {
4167 		rc = -EINVAL;
4168 		goto err_out_2;
4169 	}
4170 
4171 	opc = OPC_INB_SMP_REQUEST;
4172 	circularQ = &pm8001_ha->inbnd_q_tbl[0];
4173 	smp_cmd.tag = cpu_to_le32(ccb->ccb_tag);
4174 	smp_cmd.long_smp_req.long_req_addr =
4175 		cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_req));
4176 	smp_cmd.long_smp_req.long_req_size =
4177 		cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_req)-4);
4178 	smp_cmd.long_smp_req.long_resp_addr =
4179 		cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_resp));
4180 	smp_cmd.long_smp_req.long_resp_size =
4181 		cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_resp)-4);
4182 	build_smp_cmd(pm8001_dev->device_id, smp_cmd.tag, &smp_cmd);
4183 	rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc,
4184 			&smp_cmd, sizeof(smp_cmd), 0);
4185 	if (rc)
4186 		goto err_out_2;
4187 
4188 	return 0;
4189 
4190 err_out_2:
4191 	dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_resp, 1,
4192 			DMA_FROM_DEVICE);
4193 err_out:
4194 	dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_req, 1,
4195 			DMA_TO_DEVICE);
4196 	return rc;
4197 }
4198 
4199 /**
4200  * pm8001_chip_ssp_io_req - send a SSP task to FW
4201  * @pm8001_ha: our hba card information.
4202  * @ccb: the ccb information this request used.
4203  */
4204 static int pm8001_chip_ssp_io_req(struct pm8001_hba_info *pm8001_ha,
4205 	struct pm8001_ccb_info *ccb)
4206 {
4207 	struct sas_task *task = ccb->task;
4208 	struct domain_device *dev = task->dev;
4209 	struct pm8001_device *pm8001_dev = dev->lldd_dev;
4210 	struct ssp_ini_io_start_req ssp_cmd;
4211 	u32 tag = ccb->ccb_tag;
4212 	int ret;
4213 	u64 phys_addr;
4214 	struct inbound_queue_table *circularQ;
4215 	u32 opc = OPC_INB_SSPINIIOSTART;
4216 	memset(&ssp_cmd, 0, sizeof(ssp_cmd));
4217 	memcpy(ssp_cmd.ssp_iu.lun, task->ssp_task.LUN, 8);
4218 	ssp_cmd.dir_m_tlr =
4219 		cpu_to_le32(data_dir_flags[task->data_dir] << 8 | 0x0);/*0 for
4220 	SAS 1.1 compatible TLR*/
4221 	ssp_cmd.data_len = cpu_to_le32(task->total_xfer_len);
4222 	ssp_cmd.device_id = cpu_to_le32(pm8001_dev->device_id);
4223 	ssp_cmd.tag = cpu_to_le32(tag);
4224 	if (task->ssp_task.enable_first_burst)
4225 		ssp_cmd.ssp_iu.efb_prio_attr |= 0x80;
4226 	ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_prio << 3);
4227 	ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_attr & 7);
4228 	memcpy(ssp_cmd.ssp_iu.cdb, task->ssp_task.cmd->cmnd,
4229 	       task->ssp_task.cmd->cmd_len);
4230 	circularQ = &pm8001_ha->inbnd_q_tbl[0];
4231 
4232 	/* fill in PRD (scatter/gather) table, if any */
4233 	if (task->num_scatter > 1) {
4234 		pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd);
4235 		phys_addr = ccb->ccb_dma_handle;
4236 		ssp_cmd.addr_low = cpu_to_le32(lower_32_bits(phys_addr));
4237 		ssp_cmd.addr_high = cpu_to_le32(upper_32_bits(phys_addr));
4238 		ssp_cmd.esgl = cpu_to_le32(1<<31);
4239 	} else if (task->num_scatter == 1) {
4240 		u64 dma_addr = sg_dma_address(task->scatter);
4241 		ssp_cmd.addr_low = cpu_to_le32(lower_32_bits(dma_addr));
4242 		ssp_cmd.addr_high = cpu_to_le32(upper_32_bits(dma_addr));
4243 		ssp_cmd.len = cpu_to_le32(task->total_xfer_len);
4244 		ssp_cmd.esgl = 0;
4245 	} else if (task->num_scatter == 0) {
4246 		ssp_cmd.addr_low = 0;
4247 		ssp_cmd.addr_high = 0;
4248 		ssp_cmd.len = cpu_to_le32(task->total_xfer_len);
4249 		ssp_cmd.esgl = 0;
4250 	}
4251 	ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &ssp_cmd,
4252 			sizeof(ssp_cmd), 0);
4253 	return ret;
4254 }
4255 
4256 static int pm8001_chip_sata_req(struct pm8001_hba_info *pm8001_ha,
4257 	struct pm8001_ccb_info *ccb)
4258 {
4259 	struct sas_task *task = ccb->task;
4260 	struct domain_device *dev = task->dev;
4261 	struct pm8001_device *pm8001_ha_dev = dev->lldd_dev;
4262 	u32 tag = ccb->ccb_tag;
4263 	int ret;
4264 	struct sata_start_req sata_cmd;
4265 	u32 hdr_tag, ncg_tag = 0;
4266 	u64 phys_addr;
4267 	u32 ATAP = 0x0;
4268 	u32 dir;
4269 	struct inbound_queue_table *circularQ;
4270 	unsigned long flags;
4271 	u32  opc = OPC_INB_SATA_HOST_OPSTART;
4272 	memset(&sata_cmd, 0, sizeof(sata_cmd));
4273 	circularQ = &pm8001_ha->inbnd_q_tbl[0];
4274 	if (task->data_dir == DMA_NONE) {
4275 		ATAP = 0x04;  /* no data*/
4276 		pm8001_dbg(pm8001_ha, IO, "no data\n");
4277 	} else if (likely(!task->ata_task.device_control_reg_update)) {
4278 		if (task->ata_task.dma_xfer) {
4279 			ATAP = 0x06; /* DMA */
4280 			pm8001_dbg(pm8001_ha, IO, "DMA\n");
4281 		} else {
4282 			ATAP = 0x05; /* PIO*/
4283 			pm8001_dbg(pm8001_ha, IO, "PIO\n");
4284 		}
4285 		if (task->ata_task.use_ncq &&
4286 			dev->sata_dev.class != ATA_DEV_ATAPI) {
4287 			ATAP = 0x07; /* FPDMA */
4288 			pm8001_dbg(pm8001_ha, IO, "FPDMA\n");
4289 		}
4290 	}
4291 	if (task->ata_task.use_ncq && pm8001_get_ncq_tag(task, &hdr_tag)) {
4292 		task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3);
4293 		ncg_tag = hdr_tag;
4294 	}
4295 	dir = data_dir_flags[task->data_dir] << 8;
4296 	sata_cmd.tag = cpu_to_le32(tag);
4297 	sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id);
4298 	sata_cmd.data_len = cpu_to_le32(task->total_xfer_len);
4299 	sata_cmd.ncqtag_atap_dir_m =
4300 		cpu_to_le32(((ncg_tag & 0xff)<<16)|((ATAP & 0x3f) << 10) | dir);
4301 	sata_cmd.sata_fis = task->ata_task.fis;
4302 	if (likely(!task->ata_task.device_control_reg_update))
4303 		sata_cmd.sata_fis.flags |= 0x80;/* C=1: update ATA cmd reg */
4304 	sata_cmd.sata_fis.flags &= 0xF0;/* PM_PORT field shall be 0 */
4305 	/* fill in PRD (scatter/gather) table, if any */
4306 	if (task->num_scatter > 1) {
4307 		pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd);
4308 		phys_addr = ccb->ccb_dma_handle;
4309 		sata_cmd.addr_low = lower_32_bits(phys_addr);
4310 		sata_cmd.addr_high = upper_32_bits(phys_addr);
4311 		sata_cmd.esgl = cpu_to_le32(1 << 31);
4312 	} else if (task->num_scatter == 1) {
4313 		u64 dma_addr = sg_dma_address(task->scatter);
4314 		sata_cmd.addr_low = lower_32_bits(dma_addr);
4315 		sata_cmd.addr_high = upper_32_bits(dma_addr);
4316 		sata_cmd.len = cpu_to_le32(task->total_xfer_len);
4317 		sata_cmd.esgl = 0;
4318 	} else if (task->num_scatter == 0) {
4319 		sata_cmd.addr_low = 0;
4320 		sata_cmd.addr_high = 0;
4321 		sata_cmd.len = cpu_to_le32(task->total_xfer_len);
4322 		sata_cmd.esgl = 0;
4323 	}
4324 
4325 	/* Check for read log for failed drive and return */
4326 	if (sata_cmd.sata_fis.command == 0x2f) {
4327 		if (((pm8001_ha_dev->id & NCQ_READ_LOG_FLAG) ||
4328 			(pm8001_ha_dev->id & NCQ_ABORT_ALL_FLAG) ||
4329 			(pm8001_ha_dev->id & NCQ_2ND_RLE_FLAG))) {
4330 			struct task_status_struct *ts;
4331 
4332 			pm8001_ha_dev->id &= 0xDFFFFFFF;
4333 			ts = &task->task_status;
4334 
4335 			spin_lock_irqsave(&task->task_state_lock, flags);
4336 			ts->resp = SAS_TASK_COMPLETE;
4337 			ts->stat = SAS_SAM_STAT_GOOD;
4338 			task->task_state_flags &= ~SAS_TASK_STATE_PENDING;
4339 			task->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
4340 			task->task_state_flags |= SAS_TASK_STATE_DONE;
4341 			if (unlikely((task->task_state_flags &
4342 					SAS_TASK_STATE_ABORTED))) {
4343 				spin_unlock_irqrestore(&task->task_state_lock,
4344 							flags);
4345 				pm8001_dbg(pm8001_ha, FAIL,
4346 					   "task 0x%p resp 0x%x  stat 0x%x but aborted by upper layer\n",
4347 					   task, ts->resp,
4348 					   ts->stat);
4349 				pm8001_ccb_task_free(pm8001_ha, task, ccb, tag);
4350 			} else {
4351 				spin_unlock_irqrestore(&task->task_state_lock,
4352 							flags);
4353 				pm8001_ccb_task_free_done(pm8001_ha, task,
4354 								ccb, tag);
4355 				return 0;
4356 			}
4357 		}
4358 	}
4359 
4360 	ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &sata_cmd,
4361 			sizeof(sata_cmd), 0);
4362 	return ret;
4363 }
4364 
4365 /**
4366  * pm8001_chip_phy_start_req - start phy via PHY_START COMMAND
4367  * @pm8001_ha: our hba card information.
4368  * @phy_id: the phy id which we wanted to start up.
4369  */
4370 static int
4371 pm8001_chip_phy_start_req(struct pm8001_hba_info *pm8001_ha, u8 phy_id)
4372 {
4373 	struct phy_start_req payload;
4374 	struct inbound_queue_table *circularQ;
4375 	int ret;
4376 	u32 tag = 0x01;
4377 	u32 opcode = OPC_INB_PHYSTART;
4378 	circularQ = &pm8001_ha->inbnd_q_tbl[0];
4379 	memset(&payload, 0, sizeof(payload));
4380 	payload.tag = cpu_to_le32(tag);
4381 	/*
4382 	 ** [0:7]   PHY Identifier
4383 	 ** [8:11]  link rate 1.5G, 3G, 6G
4384 	 ** [12:13] link mode 01b SAS mode; 10b SATA mode; 11b both
4385 	 ** [14]    0b disable spin up hold; 1b enable spin up hold
4386 	 */
4387 	payload.ase_sh_lm_slr_phyid = cpu_to_le32(SPINHOLD_DISABLE |
4388 		LINKMODE_AUTO |	LINKRATE_15 |
4389 		LINKRATE_30 | LINKRATE_60 | phy_id);
4390 	payload.sas_identify.dev_type = SAS_END_DEVICE;
4391 	payload.sas_identify.initiator_bits = SAS_PROTOCOL_ALL;
4392 	memcpy(payload.sas_identify.sas_addr,
4393 		pm8001_ha->sas_addr, SAS_ADDR_SIZE);
4394 	payload.sas_identify.phy_id = phy_id;
4395 	ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opcode, &payload,
4396 			sizeof(payload), 0);
4397 	return ret;
4398 }
4399 
4400 /**
4401  * pm8001_chip_phy_stop_req - start phy via PHY_STOP COMMAND
4402  * @pm8001_ha: our hba card information.
4403  * @phy_id: the phy id which we wanted to start up.
4404  */
4405 static int pm8001_chip_phy_stop_req(struct pm8001_hba_info *pm8001_ha,
4406 				    u8 phy_id)
4407 {
4408 	struct phy_stop_req payload;
4409 	struct inbound_queue_table *circularQ;
4410 	int ret;
4411 	u32 tag = 0x01;
4412 	u32 opcode = OPC_INB_PHYSTOP;
4413 	circularQ = &pm8001_ha->inbnd_q_tbl[0];
4414 	memset(&payload, 0, sizeof(payload));
4415 	payload.tag = cpu_to_le32(tag);
4416 	payload.phy_id = cpu_to_le32(phy_id);
4417 	ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opcode, &payload,
4418 			sizeof(payload), 0);
4419 	return ret;
4420 }
4421 
4422 /*
4423  * see comments on pm8001_mpi_reg_resp.
4424  */
4425 static int pm8001_chip_reg_dev_req(struct pm8001_hba_info *pm8001_ha,
4426 	struct pm8001_device *pm8001_dev, u32 flag)
4427 {
4428 	struct reg_dev_req payload;
4429 	u32	opc;
4430 	u32 stp_sspsmp_sata = 0x4;
4431 	struct inbound_queue_table *circularQ;
4432 	u32 linkrate, phy_id;
4433 	int rc, tag = 0xdeadbeef;
4434 	struct pm8001_ccb_info *ccb;
4435 	u8 retryFlag = 0x1;
4436 	u16 firstBurstSize = 0;
4437 	u16 ITNT = 2000;
4438 	struct domain_device *dev = pm8001_dev->sas_device;
4439 	struct domain_device *parent_dev = dev->parent;
4440 	struct pm8001_port *port = dev->port->lldd_port;
4441 	circularQ = &pm8001_ha->inbnd_q_tbl[0];
4442 
4443 	memset(&payload, 0, sizeof(payload));
4444 	rc = pm8001_tag_alloc(pm8001_ha, &tag);
4445 	if (rc)
4446 		return rc;
4447 	ccb = &pm8001_ha->ccb_info[tag];
4448 	ccb->device = pm8001_dev;
4449 	ccb->ccb_tag = tag;
4450 	payload.tag = cpu_to_le32(tag);
4451 	if (flag == 1)
4452 		stp_sspsmp_sata = 0x02; /*direct attached sata */
4453 	else {
4454 		if (pm8001_dev->dev_type == SAS_SATA_DEV)
4455 			stp_sspsmp_sata = 0x00; /* stp*/
4456 		else if (pm8001_dev->dev_type == SAS_END_DEVICE ||
4457 			dev_is_expander(pm8001_dev->dev_type))
4458 			stp_sspsmp_sata = 0x01; /*ssp or smp*/
4459 	}
4460 	if (parent_dev && dev_is_expander(parent_dev->dev_type))
4461 		phy_id = parent_dev->ex_dev.ex_phy->phy_id;
4462 	else
4463 		phy_id = pm8001_dev->attached_phy;
4464 	opc = OPC_INB_REG_DEV;
4465 	linkrate = (pm8001_dev->sas_device->linkrate < dev->port->linkrate) ?
4466 			pm8001_dev->sas_device->linkrate : dev->port->linkrate;
4467 	payload.phyid_portid =
4468 		cpu_to_le32(((port->port_id) & 0x0F) |
4469 		((phy_id & 0x0F) << 4));
4470 	payload.dtype_dlr_retry = cpu_to_le32((retryFlag & 0x01) |
4471 		((linkrate & 0x0F) * 0x1000000) |
4472 		((stp_sspsmp_sata & 0x03) * 0x10000000));
4473 	payload.firstburstsize_ITNexustimeout =
4474 		cpu_to_le32(ITNT | (firstBurstSize * 0x10000));
4475 	memcpy(payload.sas_addr, pm8001_dev->sas_device->sas_addr,
4476 		SAS_ADDR_SIZE);
4477 	rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload,
4478 			sizeof(payload), 0);
4479 	return rc;
4480 }
4481 
4482 /*
4483  * see comments on pm8001_mpi_reg_resp.
4484  */
4485 int pm8001_chip_dereg_dev_req(struct pm8001_hba_info *pm8001_ha,
4486 	u32 device_id)
4487 {
4488 	struct dereg_dev_req payload;
4489 	u32 opc = OPC_INB_DEREG_DEV_HANDLE;
4490 	int ret;
4491 	struct inbound_queue_table *circularQ;
4492 
4493 	circularQ = &pm8001_ha->inbnd_q_tbl[0];
4494 	memset(&payload, 0, sizeof(payload));
4495 	payload.tag = cpu_to_le32(1);
4496 	payload.device_id = cpu_to_le32(device_id);
4497 	pm8001_dbg(pm8001_ha, MSG, "unregister device device_id = %d\n",
4498 		   device_id);
4499 	ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload,
4500 			sizeof(payload), 0);
4501 	return ret;
4502 }
4503 
4504 /**
4505  * pm8001_chip_phy_ctl_req - support the local phy operation
4506  * @pm8001_ha: our hba card information.
4507  * @phyId: the phy id which we wanted to operate
4508  * @phy_op: the phy operation to request
4509  */
4510 static int pm8001_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha,
4511 	u32 phyId, u32 phy_op)
4512 {
4513 	struct local_phy_ctl_req payload;
4514 	struct inbound_queue_table *circularQ;
4515 	int ret;
4516 	u32 opc = OPC_INB_LOCAL_PHY_CONTROL;
4517 	memset(&payload, 0, sizeof(payload));
4518 	circularQ = &pm8001_ha->inbnd_q_tbl[0];
4519 	payload.tag = cpu_to_le32(1);
4520 	payload.phyop_phyid =
4521 		cpu_to_le32(((phy_op & 0xff) << 8) | (phyId & 0x0F));
4522 	ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload,
4523 			sizeof(payload), 0);
4524 	return ret;
4525 }
4526 
4527 static u32 pm8001_chip_is_our_interrupt(struct pm8001_hba_info *pm8001_ha)
4528 {
4529 #ifdef PM8001_USE_MSIX
4530 	return 1;
4531 #else
4532 	u32 value;
4533 
4534 	value = pm8001_cr32(pm8001_ha, 0, MSGU_ODR);
4535 	if (value)
4536 		return 1;
4537 	return 0;
4538 #endif
4539 }
4540 
4541 /**
4542  * pm8001_chip_isr - PM8001 isr handler.
4543  * @pm8001_ha: our hba card information.
4544  * @vec: IRQ number
4545  */
4546 static irqreturn_t
4547 pm8001_chip_isr(struct pm8001_hba_info *pm8001_ha, u8 vec)
4548 {
4549 	pm8001_chip_interrupt_disable(pm8001_ha, vec);
4550 	pm8001_dbg(pm8001_ha, DEVIO,
4551 		   "irq vec %d, ODMR:0x%x\n",
4552 		   vec, pm8001_cr32(pm8001_ha, 0, 0x30));
4553 	process_oq(pm8001_ha, vec);
4554 	pm8001_chip_interrupt_enable(pm8001_ha, vec);
4555 	return IRQ_HANDLED;
4556 }
4557 
4558 static int send_task_abort(struct pm8001_hba_info *pm8001_ha, u32 opc,
4559 	u32 dev_id, u8 flag, u32 task_tag, u32 cmd_tag)
4560 {
4561 	struct task_abort_req task_abort;
4562 	struct inbound_queue_table *circularQ;
4563 	int ret;
4564 	circularQ = &pm8001_ha->inbnd_q_tbl[0];
4565 	memset(&task_abort, 0, sizeof(task_abort));
4566 	if (ABORT_SINGLE == (flag & ABORT_MASK)) {
4567 		task_abort.abort_all = 0;
4568 		task_abort.device_id = cpu_to_le32(dev_id);
4569 		task_abort.tag_to_abort = cpu_to_le32(task_tag);
4570 		task_abort.tag = cpu_to_le32(cmd_tag);
4571 	} else if (ABORT_ALL == (flag & ABORT_MASK)) {
4572 		task_abort.abort_all = cpu_to_le32(1);
4573 		task_abort.device_id = cpu_to_le32(dev_id);
4574 		task_abort.tag = cpu_to_le32(cmd_tag);
4575 	}
4576 	ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &task_abort,
4577 			sizeof(task_abort), 0);
4578 	return ret;
4579 }
4580 
4581 /*
4582  * pm8001_chip_abort_task - SAS abort task when error or exception happened.
4583  */
4584 int pm8001_chip_abort_task(struct pm8001_hba_info *pm8001_ha,
4585 	struct pm8001_device *pm8001_dev, u8 flag, u32 task_tag, u32 cmd_tag)
4586 {
4587 	u32 opc, device_id;
4588 	int rc = TMF_RESP_FUNC_FAILED;
4589 	pm8001_dbg(pm8001_ha, EH, "cmd_tag = %x, abort task tag = 0x%x\n",
4590 		   cmd_tag, task_tag);
4591 	if (pm8001_dev->dev_type == SAS_END_DEVICE)
4592 		opc = OPC_INB_SSP_ABORT;
4593 	else if (pm8001_dev->dev_type == SAS_SATA_DEV)
4594 		opc = OPC_INB_SATA_ABORT;
4595 	else
4596 		opc = OPC_INB_SMP_ABORT;/* SMP */
4597 	device_id = pm8001_dev->device_id;
4598 	rc = send_task_abort(pm8001_ha, opc, device_id, flag,
4599 		task_tag, cmd_tag);
4600 	if (rc != TMF_RESP_FUNC_COMPLETE)
4601 		pm8001_dbg(pm8001_ha, EH, "rc= %d\n", rc);
4602 	return rc;
4603 }
4604 
4605 /**
4606  * pm8001_chip_ssp_tm_req - built the task management command.
4607  * @pm8001_ha: our hba card information.
4608  * @ccb: the ccb information.
4609  * @tmf: task management function.
4610  */
4611 int pm8001_chip_ssp_tm_req(struct pm8001_hba_info *pm8001_ha,
4612 	struct pm8001_ccb_info *ccb, struct pm8001_tmf_task *tmf)
4613 {
4614 	struct sas_task *task = ccb->task;
4615 	struct domain_device *dev = task->dev;
4616 	struct pm8001_device *pm8001_dev = dev->lldd_dev;
4617 	u32 opc = OPC_INB_SSPINITMSTART;
4618 	struct inbound_queue_table *circularQ;
4619 	struct ssp_ini_tm_start_req sspTMCmd;
4620 	int ret;
4621 
4622 	memset(&sspTMCmd, 0, sizeof(sspTMCmd));
4623 	sspTMCmd.device_id = cpu_to_le32(pm8001_dev->device_id);
4624 	sspTMCmd.relate_tag = cpu_to_le32(tmf->tag_of_task_to_be_managed);
4625 	sspTMCmd.tmf = cpu_to_le32(tmf->tmf);
4626 	memcpy(sspTMCmd.lun, task->ssp_task.LUN, 8);
4627 	sspTMCmd.tag = cpu_to_le32(ccb->ccb_tag);
4628 	if (pm8001_ha->chip_id != chip_8001)
4629 		sspTMCmd.ds_ads_m = 0x08;
4630 	circularQ = &pm8001_ha->inbnd_q_tbl[0];
4631 	ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &sspTMCmd,
4632 			sizeof(sspTMCmd), 0);
4633 	return ret;
4634 }
4635 
4636 int pm8001_chip_get_nvmd_req(struct pm8001_hba_info *pm8001_ha,
4637 	void *payload)
4638 {
4639 	u32 opc = OPC_INB_GET_NVMD_DATA;
4640 	u32 nvmd_type;
4641 	int rc;
4642 	u32 tag;
4643 	struct pm8001_ccb_info *ccb;
4644 	struct inbound_queue_table *circularQ;
4645 	struct get_nvm_data_req nvmd_req;
4646 	struct fw_control_ex *fw_control_context;
4647 	struct pm8001_ioctl_payload *ioctl_payload = payload;
4648 
4649 	nvmd_type = ioctl_payload->minor_function;
4650 	fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL);
4651 	if (!fw_control_context)
4652 		return -ENOMEM;
4653 	fw_control_context->usrAddr = (u8 *)ioctl_payload->func_specific;
4654 	fw_control_context->len = ioctl_payload->rd_length;
4655 	circularQ = &pm8001_ha->inbnd_q_tbl[0];
4656 	memset(&nvmd_req, 0, sizeof(nvmd_req));
4657 	rc = pm8001_tag_alloc(pm8001_ha, &tag);
4658 	if (rc) {
4659 		kfree(fw_control_context);
4660 		return rc;
4661 	}
4662 	ccb = &pm8001_ha->ccb_info[tag];
4663 	ccb->ccb_tag = tag;
4664 	ccb->fw_control_context = fw_control_context;
4665 	nvmd_req.tag = cpu_to_le32(tag);
4666 
4667 	switch (nvmd_type) {
4668 	case TWI_DEVICE: {
4669 		u32 twi_addr, twi_page_size;
4670 		twi_addr = 0xa8;
4671 		twi_page_size = 2;
4672 
4673 		nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | twi_addr << 16 |
4674 			twi_page_size << 8 | TWI_DEVICE);
4675 		nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length);
4676 		nvmd_req.resp_addr_hi =
4677 		    cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
4678 		nvmd_req.resp_addr_lo =
4679 		    cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
4680 		break;
4681 	}
4682 	case C_SEEPROM: {
4683 		nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | C_SEEPROM);
4684 		nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length);
4685 		nvmd_req.resp_addr_hi =
4686 		    cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
4687 		nvmd_req.resp_addr_lo =
4688 		    cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
4689 		break;
4690 	}
4691 	case VPD_FLASH: {
4692 		nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | VPD_FLASH);
4693 		nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length);
4694 		nvmd_req.resp_addr_hi =
4695 		    cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
4696 		nvmd_req.resp_addr_lo =
4697 		    cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
4698 		break;
4699 	}
4700 	case EXPAN_ROM: {
4701 		nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | EXPAN_ROM);
4702 		nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length);
4703 		nvmd_req.resp_addr_hi =
4704 		    cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
4705 		nvmd_req.resp_addr_lo =
4706 		    cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
4707 		break;
4708 	}
4709 	case IOP_RDUMP: {
4710 		nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | IOP_RDUMP);
4711 		nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length);
4712 		nvmd_req.vpd_offset = cpu_to_le32(ioctl_payload->offset);
4713 		nvmd_req.resp_addr_hi =
4714 		cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
4715 		nvmd_req.resp_addr_lo =
4716 		cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
4717 		break;
4718 	}
4719 	default:
4720 		break;
4721 	}
4722 	rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &nvmd_req,
4723 			sizeof(nvmd_req), 0);
4724 	if (rc) {
4725 		kfree(fw_control_context);
4726 		pm8001_tag_free(pm8001_ha, tag);
4727 	}
4728 	return rc;
4729 }
4730 
4731 int pm8001_chip_set_nvmd_req(struct pm8001_hba_info *pm8001_ha,
4732 	void *payload)
4733 {
4734 	u32 opc = OPC_INB_SET_NVMD_DATA;
4735 	u32 nvmd_type;
4736 	int rc;
4737 	u32 tag;
4738 	struct pm8001_ccb_info *ccb;
4739 	struct inbound_queue_table *circularQ;
4740 	struct set_nvm_data_req nvmd_req;
4741 	struct fw_control_ex *fw_control_context;
4742 	struct pm8001_ioctl_payload *ioctl_payload = payload;
4743 
4744 	nvmd_type = ioctl_payload->minor_function;
4745 	fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL);
4746 	if (!fw_control_context)
4747 		return -ENOMEM;
4748 	circularQ = &pm8001_ha->inbnd_q_tbl[0];
4749 	memcpy(pm8001_ha->memoryMap.region[NVMD].virt_ptr,
4750 		&ioctl_payload->func_specific,
4751 		ioctl_payload->wr_length);
4752 	memset(&nvmd_req, 0, sizeof(nvmd_req));
4753 	rc = pm8001_tag_alloc(pm8001_ha, &tag);
4754 	if (rc) {
4755 		kfree(fw_control_context);
4756 		return -EBUSY;
4757 	}
4758 	ccb = &pm8001_ha->ccb_info[tag];
4759 	ccb->fw_control_context = fw_control_context;
4760 	ccb->ccb_tag = tag;
4761 	nvmd_req.tag = cpu_to_le32(tag);
4762 	switch (nvmd_type) {
4763 	case TWI_DEVICE: {
4764 		u32 twi_addr, twi_page_size;
4765 		twi_addr = 0xa8;
4766 		twi_page_size = 2;
4767 		nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98);
4768 		nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | twi_addr << 16 |
4769 			twi_page_size << 8 | TWI_DEVICE);
4770 		nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length);
4771 		nvmd_req.resp_addr_hi =
4772 		    cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
4773 		nvmd_req.resp_addr_lo =
4774 		    cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
4775 		break;
4776 	}
4777 	case C_SEEPROM:
4778 		nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | C_SEEPROM);
4779 		nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length);
4780 		nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98);
4781 		nvmd_req.resp_addr_hi =
4782 		    cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
4783 		nvmd_req.resp_addr_lo =
4784 		    cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
4785 		break;
4786 	case VPD_FLASH:
4787 		nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | VPD_FLASH);
4788 		nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length);
4789 		nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98);
4790 		nvmd_req.resp_addr_hi =
4791 		    cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
4792 		nvmd_req.resp_addr_lo =
4793 		    cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
4794 		break;
4795 	case EXPAN_ROM:
4796 		nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | EXPAN_ROM);
4797 		nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length);
4798 		nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98);
4799 		nvmd_req.resp_addr_hi =
4800 		    cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
4801 		nvmd_req.resp_addr_lo =
4802 		    cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
4803 		break;
4804 	default:
4805 		break;
4806 	}
4807 	rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &nvmd_req,
4808 			sizeof(nvmd_req), 0);
4809 	if (rc) {
4810 		kfree(fw_control_context);
4811 		pm8001_tag_free(pm8001_ha, tag);
4812 	}
4813 	return rc;
4814 }
4815 
4816 /**
4817  * pm8001_chip_fw_flash_update_build - support the firmware update operation
4818  * @pm8001_ha: our hba card information.
4819  * @fw_flash_updata_info: firmware flash update param
4820  * @tag: Tag to apply to the payload
4821  */
4822 int
4823 pm8001_chip_fw_flash_update_build(struct pm8001_hba_info *pm8001_ha,
4824 	void *fw_flash_updata_info, u32 tag)
4825 {
4826 	struct fw_flash_Update_req payload;
4827 	struct fw_flash_updata_info *info;
4828 	struct inbound_queue_table *circularQ;
4829 	int ret;
4830 	u32 opc = OPC_INB_FW_FLASH_UPDATE;
4831 
4832 	memset(&payload, 0, sizeof(struct fw_flash_Update_req));
4833 	circularQ = &pm8001_ha->inbnd_q_tbl[0];
4834 	info = fw_flash_updata_info;
4835 	payload.tag = cpu_to_le32(tag);
4836 	payload.cur_image_len = cpu_to_le32(info->cur_image_len);
4837 	payload.cur_image_offset = cpu_to_le32(info->cur_image_offset);
4838 	payload.total_image_len = cpu_to_le32(info->total_image_len);
4839 	payload.len = info->sgl.im_len.len ;
4840 	payload.sgl_addr_lo =
4841 		cpu_to_le32(lower_32_bits(le64_to_cpu(info->sgl.addr)));
4842 	payload.sgl_addr_hi =
4843 		cpu_to_le32(upper_32_bits(le64_to_cpu(info->sgl.addr)));
4844 	ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload,
4845 			sizeof(payload), 0);
4846 	return ret;
4847 }
4848 
4849 int
4850 pm8001_chip_fw_flash_update_req(struct pm8001_hba_info *pm8001_ha,
4851 	void *payload)
4852 {
4853 	struct fw_flash_updata_info flash_update_info;
4854 	struct fw_control_info *fw_control;
4855 	struct fw_control_ex *fw_control_context;
4856 	int rc;
4857 	u32 tag;
4858 	struct pm8001_ccb_info *ccb;
4859 	void *buffer = pm8001_ha->memoryMap.region[FW_FLASH].virt_ptr;
4860 	dma_addr_t phys_addr = pm8001_ha->memoryMap.region[FW_FLASH].phys_addr;
4861 	struct pm8001_ioctl_payload *ioctl_payload = payload;
4862 
4863 	fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL);
4864 	if (!fw_control_context)
4865 		return -ENOMEM;
4866 	fw_control = (struct fw_control_info *)&ioctl_payload->func_specific;
4867 	pm8001_dbg(pm8001_ha, DEVIO,
4868 		   "dma fw_control context input length :%x\n",
4869 		   fw_control->len);
4870 	memcpy(buffer, fw_control->buffer, fw_control->len);
4871 	flash_update_info.sgl.addr = cpu_to_le64(phys_addr);
4872 	flash_update_info.sgl.im_len.len = cpu_to_le32(fw_control->len);
4873 	flash_update_info.sgl.im_len.e = 0;
4874 	flash_update_info.cur_image_offset = fw_control->offset;
4875 	flash_update_info.cur_image_len = fw_control->len;
4876 	flash_update_info.total_image_len = fw_control->size;
4877 	fw_control_context->fw_control = fw_control;
4878 	fw_control_context->virtAddr = buffer;
4879 	fw_control_context->phys_addr = phys_addr;
4880 	fw_control_context->len = fw_control->len;
4881 	rc = pm8001_tag_alloc(pm8001_ha, &tag);
4882 	if (rc) {
4883 		kfree(fw_control_context);
4884 		return -EBUSY;
4885 	}
4886 	ccb = &pm8001_ha->ccb_info[tag];
4887 	ccb->fw_control_context = fw_control_context;
4888 	ccb->ccb_tag = tag;
4889 	rc = pm8001_chip_fw_flash_update_build(pm8001_ha, &flash_update_info,
4890 		tag);
4891 	return rc;
4892 }
4893 
4894 ssize_t
4895 pm8001_get_gsm_dump(struct device *cdev, u32 length, char *buf)
4896 {
4897 	u32 value, rem, offset = 0, bar = 0;
4898 	u32 index, work_offset, dw_length;
4899 	u32 shift_value, gsm_base, gsm_dump_offset;
4900 	char *direct_data;
4901 	struct Scsi_Host *shost = class_to_shost(cdev);
4902 	struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
4903 	struct pm8001_hba_info *pm8001_ha = sha->lldd_ha;
4904 
4905 	direct_data = buf;
4906 	gsm_dump_offset = pm8001_ha->fatal_forensic_shift_offset;
4907 
4908 	/* check max is 1 Mbytes */
4909 	if ((length > 0x100000) || (gsm_dump_offset & 3) ||
4910 		((gsm_dump_offset + length) > 0x1000000))
4911 			return -EINVAL;
4912 
4913 	if (pm8001_ha->chip_id == chip_8001)
4914 		bar = 2;
4915 	else
4916 		bar = 1;
4917 
4918 	work_offset = gsm_dump_offset & 0xFFFF0000;
4919 	offset = gsm_dump_offset & 0x0000FFFF;
4920 	gsm_dump_offset = work_offset;
4921 	/* adjust length to dword boundary */
4922 	rem = length & 3;
4923 	dw_length = length >> 2;
4924 
4925 	for (index = 0; index < dw_length; index++) {
4926 		if ((work_offset + offset) & 0xFFFF0000) {
4927 			if (pm8001_ha->chip_id == chip_8001)
4928 				shift_value = ((gsm_dump_offset + offset) &
4929 						SHIFT_REG_64K_MASK);
4930 			else
4931 				shift_value = (((gsm_dump_offset + offset) &
4932 						SHIFT_REG_64K_MASK) >>
4933 						SHIFT_REG_BIT_SHIFT);
4934 
4935 			if (pm8001_ha->chip_id == chip_8001) {
4936 				gsm_base = GSM_BASE;
4937 				if (-1 == pm8001_bar4_shift(pm8001_ha,
4938 						(gsm_base + shift_value)))
4939 					return -EIO;
4940 			} else {
4941 				gsm_base = 0;
4942 				if (-1 == pm80xx_bar4_shift(pm8001_ha,
4943 						(gsm_base + shift_value)))
4944 					return -EIO;
4945 			}
4946 			gsm_dump_offset = (gsm_dump_offset + offset) &
4947 						0xFFFF0000;
4948 			work_offset = 0;
4949 			offset = offset & 0x0000FFFF;
4950 		}
4951 		value = pm8001_cr32(pm8001_ha, bar, (work_offset + offset) &
4952 						0x0000FFFF);
4953 		direct_data += sprintf(direct_data, "%08x ", value);
4954 		offset += 4;
4955 	}
4956 	if (rem != 0) {
4957 		value = pm8001_cr32(pm8001_ha, bar, (work_offset + offset) &
4958 						0x0000FFFF);
4959 		/* xfr for non_dw */
4960 		direct_data += sprintf(direct_data, "%08x ", value);
4961 	}
4962 	/* Shift back to BAR4 original address */
4963 	if (-1 == pm8001_bar4_shift(pm8001_ha, 0))
4964 			return -EIO;
4965 	pm8001_ha->fatal_forensic_shift_offset += 1024;
4966 
4967 	if (pm8001_ha->fatal_forensic_shift_offset >= 0x100000)
4968 		pm8001_ha->fatal_forensic_shift_offset = 0;
4969 	return direct_data - buf;
4970 }
4971 
4972 int
4973 pm8001_chip_set_dev_state_req(struct pm8001_hba_info *pm8001_ha,
4974 	struct pm8001_device *pm8001_dev, u32 state)
4975 {
4976 	struct set_dev_state_req payload;
4977 	struct inbound_queue_table *circularQ;
4978 	struct pm8001_ccb_info *ccb;
4979 	int rc;
4980 	u32 tag;
4981 	u32 opc = OPC_INB_SET_DEVICE_STATE;
4982 	memset(&payload, 0, sizeof(payload));
4983 	rc = pm8001_tag_alloc(pm8001_ha, &tag);
4984 	if (rc)
4985 		return -1;
4986 	ccb = &pm8001_ha->ccb_info[tag];
4987 	ccb->ccb_tag = tag;
4988 	ccb->device = pm8001_dev;
4989 	circularQ = &pm8001_ha->inbnd_q_tbl[0];
4990 	payload.tag = cpu_to_le32(tag);
4991 	payload.device_id = cpu_to_le32(pm8001_dev->device_id);
4992 	payload.nds = cpu_to_le32(state);
4993 	rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload,
4994 			sizeof(payload), 0);
4995 	return rc;
4996 
4997 }
4998 
4999 static int
5000 pm8001_chip_sas_re_initialization(struct pm8001_hba_info *pm8001_ha)
5001 {
5002 	struct sas_re_initialization_req payload;
5003 	struct inbound_queue_table *circularQ;
5004 	struct pm8001_ccb_info *ccb;
5005 	int rc;
5006 	u32 tag;
5007 	u32 opc = OPC_INB_SAS_RE_INITIALIZE;
5008 	memset(&payload, 0, sizeof(payload));
5009 	rc = pm8001_tag_alloc(pm8001_ha, &tag);
5010 	if (rc)
5011 		return -ENOMEM;
5012 	ccb = &pm8001_ha->ccb_info[tag];
5013 	ccb->ccb_tag = tag;
5014 	circularQ = &pm8001_ha->inbnd_q_tbl[0];
5015 	payload.tag = cpu_to_le32(tag);
5016 	payload.SSAHOLT = cpu_to_le32(0xd << 25);
5017 	payload.sata_hol_tmo = cpu_to_le32(80);
5018 	payload.open_reject_cmdretries_data_retries = cpu_to_le32(0xff00ff);
5019 	rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload,
5020 			sizeof(payload), 0);
5021 	if (rc)
5022 		pm8001_tag_free(pm8001_ha, tag);
5023 	return rc;
5024 
5025 }
5026 
5027 const struct pm8001_dispatch pm8001_8001_dispatch = {
5028 	.name			= "pmc8001",
5029 	.chip_init		= pm8001_chip_init,
5030 	.chip_soft_rst		= pm8001_chip_soft_rst,
5031 	.chip_rst		= pm8001_hw_chip_rst,
5032 	.chip_iounmap		= pm8001_chip_iounmap,
5033 	.isr			= pm8001_chip_isr,
5034 	.is_our_interrupt	= pm8001_chip_is_our_interrupt,
5035 	.isr_process_oq		= process_oq,
5036 	.interrupt_enable 	= pm8001_chip_interrupt_enable,
5037 	.interrupt_disable	= pm8001_chip_interrupt_disable,
5038 	.make_prd		= pm8001_chip_make_sg,
5039 	.smp_req		= pm8001_chip_smp_req,
5040 	.ssp_io_req		= pm8001_chip_ssp_io_req,
5041 	.sata_req		= pm8001_chip_sata_req,
5042 	.phy_start_req		= pm8001_chip_phy_start_req,
5043 	.phy_stop_req		= pm8001_chip_phy_stop_req,
5044 	.reg_dev_req		= pm8001_chip_reg_dev_req,
5045 	.dereg_dev_req		= pm8001_chip_dereg_dev_req,
5046 	.phy_ctl_req		= pm8001_chip_phy_ctl_req,
5047 	.task_abort		= pm8001_chip_abort_task,
5048 	.ssp_tm_req		= pm8001_chip_ssp_tm_req,
5049 	.get_nvmd_req		= pm8001_chip_get_nvmd_req,
5050 	.set_nvmd_req		= pm8001_chip_set_nvmd_req,
5051 	.fw_flash_update_req	= pm8001_chip_fw_flash_update_req,
5052 	.set_dev_state_req	= pm8001_chip_set_dev_state_req,
5053 	.sas_re_init_req	= pm8001_chip_sas_re_initialization,
5054 	.fatal_errors		= pm80xx_fatal_errors,
5055 };
5056