1 /* 2 * PMC-Sierra SPC 8001 SAS/SATA based host adapters driver 3 * 4 * Copyright (c) 2008-2009 USI Co., Ltd. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * substantially similar to the "NO WARRANTY" disclaimer below 15 * ("Disclaimer") and any redistribution must be conditioned upon 16 * including a substantially similar Disclaimer requirement for further 17 * binary redistribution. 18 * 3. Neither the names of the above-listed copyright holders nor the names 19 * of any contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * Alternatively, this software may be distributed under the terms of the 23 * GNU General Public License ("GPL") version 2 as published by the Free 24 * Software Foundation. 25 * 26 * NO WARRANTY 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 35 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 36 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGES. 38 * 39 */ 40 #include <linux/slab.h> 41 #include "pm8001_sas.h" 42 #include "pm8001_hwi.h" 43 #include "pm8001_chips.h" 44 #include "pm8001_ctl.h" 45 46 /** 47 * read_main_config_table - read the configure table and save it. 48 * @pm8001_ha: our hba card information 49 */ 50 static void read_main_config_table(struct pm8001_hba_info *pm8001_ha) 51 { 52 void __iomem *address = pm8001_ha->main_cfg_tbl_addr; 53 pm8001_ha->main_cfg_tbl.pm8001_tbl.signature = 54 pm8001_mr32(address, 0x00); 55 pm8001_ha->main_cfg_tbl.pm8001_tbl.interface_rev = 56 pm8001_mr32(address, 0x04); 57 pm8001_ha->main_cfg_tbl.pm8001_tbl.firmware_rev = 58 pm8001_mr32(address, 0x08); 59 pm8001_ha->main_cfg_tbl.pm8001_tbl.max_out_io = 60 pm8001_mr32(address, 0x0C); 61 pm8001_ha->main_cfg_tbl.pm8001_tbl.max_sgl = 62 pm8001_mr32(address, 0x10); 63 pm8001_ha->main_cfg_tbl.pm8001_tbl.ctrl_cap_flag = 64 pm8001_mr32(address, 0x14); 65 pm8001_ha->main_cfg_tbl.pm8001_tbl.gst_offset = 66 pm8001_mr32(address, 0x18); 67 pm8001_ha->main_cfg_tbl.pm8001_tbl.inbound_queue_offset = 68 pm8001_mr32(address, MAIN_IBQ_OFFSET); 69 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_queue_offset = 70 pm8001_mr32(address, MAIN_OBQ_OFFSET); 71 pm8001_ha->main_cfg_tbl.pm8001_tbl.hda_mode_flag = 72 pm8001_mr32(address, MAIN_HDA_FLAGS_OFFSET); 73 74 /* read analog Setting offset from the configuration table */ 75 pm8001_ha->main_cfg_tbl.pm8001_tbl.anolog_setup_table_offset = 76 pm8001_mr32(address, MAIN_ANALOG_SETUP_OFFSET); 77 78 /* read Error Dump Offset and Length */ 79 pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_offset0 = 80 pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_OFFSET); 81 pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_length0 = 82 pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_LENGTH); 83 pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_offset1 = 84 pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_OFFSET); 85 pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_length1 = 86 pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_LENGTH); 87 } 88 89 /** 90 * read_general_status_table - read the general status table and save it. 91 * @pm8001_ha: our hba card information 92 */ 93 static void read_general_status_table(struct pm8001_hba_info *pm8001_ha) 94 { 95 void __iomem *address = pm8001_ha->general_stat_tbl_addr; 96 pm8001_ha->gs_tbl.pm8001_tbl.gst_len_mpistate = 97 pm8001_mr32(address, 0x00); 98 pm8001_ha->gs_tbl.pm8001_tbl.iq_freeze_state0 = 99 pm8001_mr32(address, 0x04); 100 pm8001_ha->gs_tbl.pm8001_tbl.iq_freeze_state1 = 101 pm8001_mr32(address, 0x08); 102 pm8001_ha->gs_tbl.pm8001_tbl.msgu_tcnt = 103 pm8001_mr32(address, 0x0C); 104 pm8001_ha->gs_tbl.pm8001_tbl.iop_tcnt = 105 pm8001_mr32(address, 0x10); 106 pm8001_ha->gs_tbl.pm8001_tbl.rsvd = 107 pm8001_mr32(address, 0x14); 108 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[0] = 109 pm8001_mr32(address, 0x18); 110 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[1] = 111 pm8001_mr32(address, 0x1C); 112 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[2] = 113 pm8001_mr32(address, 0x20); 114 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[3] = 115 pm8001_mr32(address, 0x24); 116 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[4] = 117 pm8001_mr32(address, 0x28); 118 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[5] = 119 pm8001_mr32(address, 0x2C); 120 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[6] = 121 pm8001_mr32(address, 0x30); 122 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[7] = 123 pm8001_mr32(address, 0x34); 124 pm8001_ha->gs_tbl.pm8001_tbl.gpio_input_val = 125 pm8001_mr32(address, 0x38); 126 pm8001_ha->gs_tbl.pm8001_tbl.rsvd1[0] = 127 pm8001_mr32(address, 0x3C); 128 pm8001_ha->gs_tbl.pm8001_tbl.rsvd1[1] = 129 pm8001_mr32(address, 0x40); 130 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[0] = 131 pm8001_mr32(address, 0x44); 132 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[1] = 133 pm8001_mr32(address, 0x48); 134 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[2] = 135 pm8001_mr32(address, 0x4C); 136 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[3] = 137 pm8001_mr32(address, 0x50); 138 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[4] = 139 pm8001_mr32(address, 0x54); 140 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[5] = 141 pm8001_mr32(address, 0x58); 142 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[6] = 143 pm8001_mr32(address, 0x5C); 144 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[7] = 145 pm8001_mr32(address, 0x60); 146 } 147 148 /** 149 * read_inbnd_queue_table - read the inbound queue table and save it. 150 * @pm8001_ha: our hba card information 151 */ 152 static void read_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha) 153 { 154 int i; 155 void __iomem *address = pm8001_ha->inbnd_q_tbl_addr; 156 for (i = 0; i < PM8001_MAX_INB_NUM; i++) { 157 u32 offset = i * 0x20; 158 pm8001_ha->inbnd_q_tbl[i].pi_pci_bar = 159 get_pci_bar_index(pm8001_mr32(address, (offset + 0x14))); 160 pm8001_ha->inbnd_q_tbl[i].pi_offset = 161 pm8001_mr32(address, (offset + 0x18)); 162 } 163 } 164 165 /** 166 * read_outbnd_queue_table - read the outbound queue table and save it. 167 * @pm8001_ha: our hba card information 168 */ 169 static void read_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha) 170 { 171 int i; 172 void __iomem *address = pm8001_ha->outbnd_q_tbl_addr; 173 for (i = 0; i < PM8001_MAX_OUTB_NUM; i++) { 174 u32 offset = i * 0x24; 175 pm8001_ha->outbnd_q_tbl[i].ci_pci_bar = 176 get_pci_bar_index(pm8001_mr32(address, (offset + 0x14))); 177 pm8001_ha->outbnd_q_tbl[i].ci_offset = 178 pm8001_mr32(address, (offset + 0x18)); 179 } 180 } 181 182 /** 183 * init_default_table_values - init the default table. 184 * @pm8001_ha: our hba card information 185 */ 186 static void init_default_table_values(struct pm8001_hba_info *pm8001_ha) 187 { 188 int i; 189 u32 offsetib, offsetob; 190 void __iomem *addressib = pm8001_ha->inbnd_q_tbl_addr; 191 void __iomem *addressob = pm8001_ha->outbnd_q_tbl_addr; 192 u32 ib_offset = pm8001_ha->ib_offset; 193 u32 ob_offset = pm8001_ha->ob_offset; 194 u32 ci_offset = pm8001_ha->ci_offset; 195 u32 pi_offset = pm8001_ha->pi_offset; 196 197 pm8001_ha->main_cfg_tbl.pm8001_tbl.inbound_q_nppd_hppd = 0; 198 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid0_3 = 0; 199 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid4_7 = 0; 200 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid0_3 = 0; 201 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid4_7 = 0; 202 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ITNexus_event_pid0_3 = 203 0; 204 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ITNexus_event_pid4_7 = 205 0; 206 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ssp_event_pid0_3 = 0; 207 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ssp_event_pid4_7 = 0; 208 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_smp_event_pid0_3 = 0; 209 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_smp_event_pid4_7 = 0; 210 211 pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_event_log_addr = 212 pm8001_ha->memoryMap.region[AAP1].phys_addr_hi; 213 pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_event_log_addr = 214 pm8001_ha->memoryMap.region[AAP1].phys_addr_lo; 215 pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_size = 216 PM8001_EVENT_LOG_SIZE; 217 pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_option = 0x01; 218 pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_iop_event_log_addr = 219 pm8001_ha->memoryMap.region[IOP].phys_addr_hi; 220 pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_iop_event_log_addr = 221 pm8001_ha->memoryMap.region[IOP].phys_addr_lo; 222 pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_size = 223 PM8001_EVENT_LOG_SIZE; 224 pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_option = 0x01; 225 pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_interrupt = 0x01; 226 for (i = 0; i < pm8001_ha->max_q_num; i++) { 227 pm8001_ha->inbnd_q_tbl[i].element_pri_size_cnt = 228 PM8001_MPI_QUEUE | (pm8001_ha->iomb_size << 16) | (0x00<<30); 229 pm8001_ha->inbnd_q_tbl[i].upper_base_addr = 230 pm8001_ha->memoryMap.region[ib_offset + i].phys_addr_hi; 231 pm8001_ha->inbnd_q_tbl[i].lower_base_addr = 232 pm8001_ha->memoryMap.region[ib_offset + i].phys_addr_lo; 233 pm8001_ha->inbnd_q_tbl[i].base_virt = 234 (u8 *)pm8001_ha->memoryMap.region[ib_offset + i].virt_ptr; 235 pm8001_ha->inbnd_q_tbl[i].total_length = 236 pm8001_ha->memoryMap.region[ib_offset + i].total_len; 237 pm8001_ha->inbnd_q_tbl[i].ci_upper_base_addr = 238 pm8001_ha->memoryMap.region[ci_offset + i].phys_addr_hi; 239 pm8001_ha->inbnd_q_tbl[i].ci_lower_base_addr = 240 pm8001_ha->memoryMap.region[ci_offset + i].phys_addr_lo; 241 pm8001_ha->inbnd_q_tbl[i].ci_virt = 242 pm8001_ha->memoryMap.region[ci_offset + i].virt_ptr; 243 pm8001_write_32(pm8001_ha->inbnd_q_tbl[i].ci_virt, 0, 0); 244 offsetib = i * 0x20; 245 pm8001_ha->inbnd_q_tbl[i].pi_pci_bar = 246 get_pci_bar_index(pm8001_mr32(addressib, 247 (offsetib + 0x14))); 248 pm8001_ha->inbnd_q_tbl[i].pi_offset = 249 pm8001_mr32(addressib, (offsetib + 0x18)); 250 pm8001_ha->inbnd_q_tbl[i].producer_idx = 0; 251 pm8001_ha->inbnd_q_tbl[i].consumer_index = 0; 252 } 253 for (i = 0; i < pm8001_ha->max_q_num; i++) { 254 pm8001_ha->outbnd_q_tbl[i].element_size_cnt = 255 PM8001_MPI_QUEUE | (pm8001_ha->iomb_size << 16) | (0x01<<30); 256 pm8001_ha->outbnd_q_tbl[i].upper_base_addr = 257 pm8001_ha->memoryMap.region[ob_offset + i].phys_addr_hi; 258 pm8001_ha->outbnd_q_tbl[i].lower_base_addr = 259 pm8001_ha->memoryMap.region[ob_offset + i].phys_addr_lo; 260 pm8001_ha->outbnd_q_tbl[i].base_virt = 261 (u8 *)pm8001_ha->memoryMap.region[ob_offset + i].virt_ptr; 262 pm8001_ha->outbnd_q_tbl[i].total_length = 263 pm8001_ha->memoryMap.region[ob_offset + i].total_len; 264 pm8001_ha->outbnd_q_tbl[i].pi_upper_base_addr = 265 pm8001_ha->memoryMap.region[pi_offset + i].phys_addr_hi; 266 pm8001_ha->outbnd_q_tbl[i].pi_lower_base_addr = 267 pm8001_ha->memoryMap.region[pi_offset + i].phys_addr_lo; 268 pm8001_ha->outbnd_q_tbl[i].interrup_vec_cnt_delay = 269 0 | (10 << 16) | (i << 24); 270 pm8001_ha->outbnd_q_tbl[i].pi_virt = 271 pm8001_ha->memoryMap.region[pi_offset + i].virt_ptr; 272 pm8001_write_32(pm8001_ha->outbnd_q_tbl[i].pi_virt, 0, 0); 273 offsetob = i * 0x24; 274 pm8001_ha->outbnd_q_tbl[i].ci_pci_bar = 275 get_pci_bar_index(pm8001_mr32(addressob, 276 offsetob + 0x14)); 277 pm8001_ha->outbnd_q_tbl[i].ci_offset = 278 pm8001_mr32(addressob, (offsetob + 0x18)); 279 pm8001_ha->outbnd_q_tbl[i].consumer_idx = 0; 280 pm8001_ha->outbnd_q_tbl[i].producer_index = 0; 281 } 282 } 283 284 /** 285 * update_main_config_table - update the main default table to the HBA. 286 * @pm8001_ha: our hba card information 287 */ 288 static void update_main_config_table(struct pm8001_hba_info *pm8001_ha) 289 { 290 void __iomem *address = pm8001_ha->main_cfg_tbl_addr; 291 pm8001_mw32(address, 0x24, 292 pm8001_ha->main_cfg_tbl.pm8001_tbl.inbound_q_nppd_hppd); 293 pm8001_mw32(address, 0x28, 294 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid0_3); 295 pm8001_mw32(address, 0x2C, 296 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid4_7); 297 pm8001_mw32(address, 0x30, 298 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid0_3); 299 pm8001_mw32(address, 0x34, 300 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid4_7); 301 pm8001_mw32(address, 0x38, 302 pm8001_ha->main_cfg_tbl.pm8001_tbl. 303 outbound_tgt_ITNexus_event_pid0_3); 304 pm8001_mw32(address, 0x3C, 305 pm8001_ha->main_cfg_tbl.pm8001_tbl. 306 outbound_tgt_ITNexus_event_pid4_7); 307 pm8001_mw32(address, 0x40, 308 pm8001_ha->main_cfg_tbl.pm8001_tbl. 309 outbound_tgt_ssp_event_pid0_3); 310 pm8001_mw32(address, 0x44, 311 pm8001_ha->main_cfg_tbl.pm8001_tbl. 312 outbound_tgt_ssp_event_pid4_7); 313 pm8001_mw32(address, 0x48, 314 pm8001_ha->main_cfg_tbl.pm8001_tbl. 315 outbound_tgt_smp_event_pid0_3); 316 pm8001_mw32(address, 0x4C, 317 pm8001_ha->main_cfg_tbl.pm8001_tbl. 318 outbound_tgt_smp_event_pid4_7); 319 pm8001_mw32(address, 0x50, 320 pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_event_log_addr); 321 pm8001_mw32(address, 0x54, 322 pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_event_log_addr); 323 pm8001_mw32(address, 0x58, 324 pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_size); 325 pm8001_mw32(address, 0x5C, 326 pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_option); 327 pm8001_mw32(address, 0x60, 328 pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_iop_event_log_addr); 329 pm8001_mw32(address, 0x64, 330 pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_iop_event_log_addr); 331 pm8001_mw32(address, 0x68, 332 pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_size); 333 pm8001_mw32(address, 0x6C, 334 pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_option); 335 pm8001_mw32(address, 0x70, 336 pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_interrupt); 337 } 338 339 /** 340 * update_inbnd_queue_table - update the inbound queue table to the HBA. 341 * @pm8001_ha: our hba card information 342 * @number: entry in the queue 343 */ 344 static void update_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha, 345 int number) 346 { 347 void __iomem *address = pm8001_ha->inbnd_q_tbl_addr; 348 u16 offset = number * 0x20; 349 pm8001_mw32(address, offset + 0x00, 350 pm8001_ha->inbnd_q_tbl[number].element_pri_size_cnt); 351 pm8001_mw32(address, offset + 0x04, 352 pm8001_ha->inbnd_q_tbl[number].upper_base_addr); 353 pm8001_mw32(address, offset + 0x08, 354 pm8001_ha->inbnd_q_tbl[number].lower_base_addr); 355 pm8001_mw32(address, offset + 0x0C, 356 pm8001_ha->inbnd_q_tbl[number].ci_upper_base_addr); 357 pm8001_mw32(address, offset + 0x10, 358 pm8001_ha->inbnd_q_tbl[number].ci_lower_base_addr); 359 } 360 361 /** 362 * update_outbnd_queue_table - update the outbound queue table to the HBA. 363 * @pm8001_ha: our hba card information 364 * @number: entry in the queue 365 */ 366 static void update_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha, 367 int number) 368 { 369 void __iomem *address = pm8001_ha->outbnd_q_tbl_addr; 370 u16 offset = number * 0x24; 371 pm8001_mw32(address, offset + 0x00, 372 pm8001_ha->outbnd_q_tbl[number].element_size_cnt); 373 pm8001_mw32(address, offset + 0x04, 374 pm8001_ha->outbnd_q_tbl[number].upper_base_addr); 375 pm8001_mw32(address, offset + 0x08, 376 pm8001_ha->outbnd_q_tbl[number].lower_base_addr); 377 pm8001_mw32(address, offset + 0x0C, 378 pm8001_ha->outbnd_q_tbl[number].pi_upper_base_addr); 379 pm8001_mw32(address, offset + 0x10, 380 pm8001_ha->outbnd_q_tbl[number].pi_lower_base_addr); 381 pm8001_mw32(address, offset + 0x1C, 382 pm8001_ha->outbnd_q_tbl[number].interrup_vec_cnt_delay); 383 } 384 385 /** 386 * pm8001_bar4_shift - function is called to shift BAR base address 387 * @pm8001_ha : our hba card information 388 * @shiftValue : shifting value in memory bar. 389 */ 390 int pm8001_bar4_shift(struct pm8001_hba_info *pm8001_ha, u32 shiftValue) 391 { 392 u32 regVal; 393 unsigned long start; 394 395 /* program the inbound AXI translation Lower Address */ 396 pm8001_cw32(pm8001_ha, 1, SPC_IBW_AXI_TRANSLATION_LOW, shiftValue); 397 398 /* confirm the setting is written */ 399 start = jiffies + HZ; /* 1 sec */ 400 do { 401 regVal = pm8001_cr32(pm8001_ha, 1, SPC_IBW_AXI_TRANSLATION_LOW); 402 } while ((regVal != shiftValue) && time_before(jiffies, start)); 403 404 if (regVal != shiftValue) { 405 pm8001_dbg(pm8001_ha, INIT, 406 "TIMEOUT:SPC_IBW_AXI_TRANSLATION_LOW = 0x%x\n", 407 regVal); 408 return -1; 409 } 410 return 0; 411 } 412 413 /** 414 * mpi_set_phys_g3_with_ssc 415 * @pm8001_ha: our hba card information 416 * @SSCbit: set SSCbit to 0 to disable all phys ssc; 1 to enable all phys ssc. 417 */ 418 static void mpi_set_phys_g3_with_ssc(struct pm8001_hba_info *pm8001_ha, 419 u32 SSCbit) 420 { 421 u32 offset, i; 422 unsigned long flags; 423 424 #define SAS2_SETTINGS_LOCAL_PHY_0_3_SHIFT_ADDR 0x00030000 425 #define SAS2_SETTINGS_LOCAL_PHY_4_7_SHIFT_ADDR 0x00040000 426 #define SAS2_SETTINGS_LOCAL_PHY_0_3_OFFSET 0x1074 427 #define SAS2_SETTINGS_LOCAL_PHY_4_7_OFFSET 0x1074 428 #define PHY_G3_WITHOUT_SSC_BIT_SHIFT 12 429 #define PHY_G3_WITH_SSC_BIT_SHIFT 13 430 #define SNW3_PHY_CAPABILITIES_PARITY 31 431 432 /* 433 * Using shifted destination address 0x3_0000:0x1074 + 0x4000*N (N=0:3) 434 * Using shifted destination address 0x4_0000:0x1074 + 0x4000*(N-4) (N=4:7) 435 */ 436 spin_lock_irqsave(&pm8001_ha->lock, flags); 437 if (-1 == pm8001_bar4_shift(pm8001_ha, 438 SAS2_SETTINGS_LOCAL_PHY_0_3_SHIFT_ADDR)) { 439 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 440 return; 441 } 442 443 for (i = 0; i < 4; i++) { 444 offset = SAS2_SETTINGS_LOCAL_PHY_0_3_OFFSET + 0x4000 * i; 445 pm8001_cw32(pm8001_ha, 2, offset, 0x80001501); 446 } 447 /* shift membase 3 for SAS2_SETTINGS_LOCAL_PHY 4 - 7 */ 448 if (-1 == pm8001_bar4_shift(pm8001_ha, 449 SAS2_SETTINGS_LOCAL_PHY_4_7_SHIFT_ADDR)) { 450 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 451 return; 452 } 453 for (i = 4; i < 8; i++) { 454 offset = SAS2_SETTINGS_LOCAL_PHY_4_7_OFFSET + 0x4000 * (i-4); 455 pm8001_cw32(pm8001_ha, 2, offset, 0x80001501); 456 } 457 /************************************************************* 458 Change the SSC upspreading value to 0x0 so that upspreading is disabled. 459 Device MABC SMOD0 Controls 460 Address: (via MEMBASE-III): 461 Using shifted destination address 0x0_0000: with Offset 0xD8 462 463 31:28 R/W Reserved Do not change 464 27:24 R/W SAS_SMOD_SPRDUP 0000 465 23:20 R/W SAS_SMOD_SPRDDN 0000 466 19:0 R/W Reserved Do not change 467 Upon power-up this register will read as 0x8990c016, 468 and I would like you to change the SAS_SMOD_SPRDUP bits to 0b0000 469 so that the written value will be 0x8090c016. 470 This will ensure only down-spreading SSC is enabled on the SPC. 471 *************************************************************/ 472 pm8001_cr32(pm8001_ha, 2, 0xd8); 473 pm8001_cw32(pm8001_ha, 2, 0xd8, 0x8000C016); 474 475 /*set the shifted destination address to 0x0 to avoid error operation */ 476 pm8001_bar4_shift(pm8001_ha, 0x0); 477 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 478 return; 479 } 480 481 /** 482 * mpi_set_open_retry_interval_reg 483 * @pm8001_ha: our hba card information 484 * @interval: interval time for each OPEN_REJECT (RETRY). The units are in 1us. 485 */ 486 static void mpi_set_open_retry_interval_reg(struct pm8001_hba_info *pm8001_ha, 487 u32 interval) 488 { 489 u32 offset; 490 u32 value; 491 u32 i; 492 unsigned long flags; 493 494 #define OPEN_RETRY_INTERVAL_PHY_0_3_SHIFT_ADDR 0x00030000 495 #define OPEN_RETRY_INTERVAL_PHY_4_7_SHIFT_ADDR 0x00040000 496 #define OPEN_RETRY_INTERVAL_PHY_0_3_OFFSET 0x30B4 497 #define OPEN_RETRY_INTERVAL_PHY_4_7_OFFSET 0x30B4 498 #define OPEN_RETRY_INTERVAL_REG_MASK 0x0000FFFF 499 500 value = interval & OPEN_RETRY_INTERVAL_REG_MASK; 501 spin_lock_irqsave(&pm8001_ha->lock, flags); 502 /* shift bar and set the OPEN_REJECT(RETRY) interval time of PHY 0 -3.*/ 503 if (-1 == pm8001_bar4_shift(pm8001_ha, 504 OPEN_RETRY_INTERVAL_PHY_0_3_SHIFT_ADDR)) { 505 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 506 return; 507 } 508 for (i = 0; i < 4; i++) { 509 offset = OPEN_RETRY_INTERVAL_PHY_0_3_OFFSET + 0x4000 * i; 510 pm8001_cw32(pm8001_ha, 2, offset, value); 511 } 512 513 if (-1 == pm8001_bar4_shift(pm8001_ha, 514 OPEN_RETRY_INTERVAL_PHY_4_7_SHIFT_ADDR)) { 515 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 516 return; 517 } 518 for (i = 4; i < 8; i++) { 519 offset = OPEN_RETRY_INTERVAL_PHY_4_7_OFFSET + 0x4000 * (i-4); 520 pm8001_cw32(pm8001_ha, 2, offset, value); 521 } 522 /*set the shifted destination address to 0x0 to avoid error operation */ 523 pm8001_bar4_shift(pm8001_ha, 0x0); 524 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 525 return; 526 } 527 528 /** 529 * mpi_init_check - check firmware initialization status. 530 * @pm8001_ha: our hba card information 531 */ 532 static int mpi_init_check(struct pm8001_hba_info *pm8001_ha) 533 { 534 u32 max_wait_count; 535 u32 value; 536 u32 gst_len_mpistate; 537 /* Write bit0=1 to Inbound DoorBell Register to tell the SPC FW the 538 table is updated */ 539 pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPC_MSGU_CFG_TABLE_UPDATE); 540 /* wait until Inbound DoorBell Clear Register toggled */ 541 max_wait_count = 1 * 1000 * 1000;/* 1 sec */ 542 do { 543 udelay(1); 544 value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET); 545 value &= SPC_MSGU_CFG_TABLE_UPDATE; 546 } while ((value != 0) && (--max_wait_count)); 547 548 if (!max_wait_count) 549 return -1; 550 /* check the MPI-State for initialization */ 551 gst_len_mpistate = 552 pm8001_mr32(pm8001_ha->general_stat_tbl_addr, 553 GST_GSTLEN_MPIS_OFFSET); 554 if (GST_MPI_STATE_INIT != (gst_len_mpistate & GST_MPI_STATE_MASK)) 555 return -1; 556 /* check MPI Initialization error */ 557 gst_len_mpistate = gst_len_mpistate >> 16; 558 if (0x0000 != gst_len_mpistate) 559 return -1; 560 return 0; 561 } 562 563 /** 564 * check_fw_ready - The LLDD check if the FW is ready, if not, return error. 565 * @pm8001_ha: our hba card information 566 */ 567 static int check_fw_ready(struct pm8001_hba_info *pm8001_ha) 568 { 569 u32 value, value1; 570 u32 max_wait_count; 571 /* check error state */ 572 value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); 573 value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2); 574 /* check AAP error */ 575 if (SCRATCH_PAD1_ERR == (value & SCRATCH_PAD_STATE_MASK)) { 576 /* error state */ 577 value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0); 578 return -1; 579 } 580 581 /* check IOP error */ 582 if (SCRATCH_PAD2_ERR == (value1 & SCRATCH_PAD_STATE_MASK)) { 583 /* error state */ 584 value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3); 585 return -1; 586 } 587 588 /* bit 4-31 of scratch pad1 should be zeros if it is not 589 in error state*/ 590 if (value & SCRATCH_PAD1_STATE_MASK) { 591 /* error case */ 592 pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0); 593 return -1; 594 } 595 596 /* bit 2, 4-31 of scratch pad2 should be zeros if it is not 597 in error state */ 598 if (value1 & SCRATCH_PAD2_STATE_MASK) { 599 /* error case */ 600 return -1; 601 } 602 603 max_wait_count = 1 * 1000 * 1000;/* 1 sec timeout */ 604 605 /* wait until scratch pad 1 and 2 registers in ready state */ 606 do { 607 udelay(1); 608 value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) 609 & SCRATCH_PAD1_RDY; 610 value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) 611 & SCRATCH_PAD2_RDY; 612 if ((--max_wait_count) == 0) 613 return -1; 614 } while ((value != SCRATCH_PAD1_RDY) || (value1 != SCRATCH_PAD2_RDY)); 615 return 0; 616 } 617 618 static void init_pci_device_addresses(struct pm8001_hba_info *pm8001_ha) 619 { 620 void __iomem *base_addr; 621 u32 value; 622 u32 offset; 623 u32 pcibar; 624 u32 pcilogic; 625 626 value = pm8001_cr32(pm8001_ha, 0, 0x44); 627 offset = value & 0x03FFFFFF; 628 pm8001_dbg(pm8001_ha, INIT, "Scratchpad 0 Offset: %x\n", offset); 629 pcilogic = (value & 0xFC000000) >> 26; 630 pcibar = get_pci_bar_index(pcilogic); 631 pm8001_dbg(pm8001_ha, INIT, "Scratchpad 0 PCI BAR: %d\n", pcibar); 632 pm8001_ha->main_cfg_tbl_addr = base_addr = 633 pm8001_ha->io_mem[pcibar].memvirtaddr + offset; 634 pm8001_ha->general_stat_tbl_addr = 635 base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x18); 636 pm8001_ha->inbnd_q_tbl_addr = 637 base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x1C); 638 pm8001_ha->outbnd_q_tbl_addr = 639 base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x20); 640 } 641 642 /** 643 * pm8001_chip_init - the main init function that initialize whole PM8001 chip. 644 * @pm8001_ha: our hba card information 645 */ 646 static int pm8001_chip_init(struct pm8001_hba_info *pm8001_ha) 647 { 648 u32 i = 0; 649 u16 deviceid; 650 pci_read_config_word(pm8001_ha->pdev, PCI_DEVICE_ID, &deviceid); 651 /* 8081 controllers need BAR shift to access MPI space 652 * as this is shared with BIOS data */ 653 if (deviceid == 0x8081 || deviceid == 0x0042) { 654 if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_SM_BASE)) { 655 pm8001_dbg(pm8001_ha, FAIL, 656 "Shift Bar4 to 0x%x failed\n", 657 GSM_SM_BASE); 658 return -1; 659 } 660 } 661 /* check the firmware status */ 662 if (-1 == check_fw_ready(pm8001_ha)) { 663 pm8001_dbg(pm8001_ha, FAIL, "Firmware is not ready!\n"); 664 return -EBUSY; 665 } 666 667 /* Initialize pci space address eg: mpi offset */ 668 init_pci_device_addresses(pm8001_ha); 669 init_default_table_values(pm8001_ha); 670 read_main_config_table(pm8001_ha); 671 read_general_status_table(pm8001_ha); 672 read_inbnd_queue_table(pm8001_ha); 673 read_outbnd_queue_table(pm8001_ha); 674 /* update main config table ,inbound table and outbound table */ 675 update_main_config_table(pm8001_ha); 676 for (i = 0; i < pm8001_ha->max_q_num; i++) 677 update_inbnd_queue_table(pm8001_ha, i); 678 for (i = 0; i < pm8001_ha->max_q_num; i++) 679 update_outbnd_queue_table(pm8001_ha, i); 680 /* 8081 controller donot require these operations */ 681 if (deviceid != 0x8081 && deviceid != 0x0042) { 682 mpi_set_phys_g3_with_ssc(pm8001_ha, 0); 683 /* 7->130ms, 34->500ms, 119->1.5s */ 684 mpi_set_open_retry_interval_reg(pm8001_ha, 119); 685 } 686 /* notify firmware update finished and check initialization status */ 687 if (0 == mpi_init_check(pm8001_ha)) { 688 pm8001_dbg(pm8001_ha, INIT, "MPI initialize successful!\n"); 689 } else 690 return -EBUSY; 691 /*This register is a 16-bit timer with a resolution of 1us. This is the 692 timer used for interrupt delay/coalescing in the PCIe Application Layer. 693 Zero is not a valid value. A value of 1 in the register will cause the 694 interrupts to be normal. A value greater than 1 will cause coalescing 695 delays.*/ 696 pm8001_cw32(pm8001_ha, 1, 0x0033c0, 0x1); 697 pm8001_cw32(pm8001_ha, 1, 0x0033c4, 0x0); 698 return 0; 699 } 700 701 static int mpi_uninit_check(struct pm8001_hba_info *pm8001_ha) 702 { 703 u32 max_wait_count; 704 u32 value; 705 u32 gst_len_mpistate; 706 u16 deviceid; 707 pci_read_config_word(pm8001_ha->pdev, PCI_DEVICE_ID, &deviceid); 708 if (deviceid == 0x8081 || deviceid == 0x0042) { 709 if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_SM_BASE)) { 710 pm8001_dbg(pm8001_ha, FAIL, 711 "Shift Bar4 to 0x%x failed\n", 712 GSM_SM_BASE); 713 return -1; 714 } 715 } 716 init_pci_device_addresses(pm8001_ha); 717 /* Write bit1=1 to Inbound DoorBell Register to tell the SPC FW the 718 table is stop */ 719 pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPC_MSGU_CFG_TABLE_RESET); 720 721 /* wait until Inbound DoorBell Clear Register toggled */ 722 max_wait_count = 1 * 1000 * 1000;/* 1 sec */ 723 do { 724 udelay(1); 725 value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET); 726 value &= SPC_MSGU_CFG_TABLE_RESET; 727 } while ((value != 0) && (--max_wait_count)); 728 729 if (!max_wait_count) { 730 pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT:IBDB value/=0x%x\n", 731 value); 732 return -1; 733 } 734 735 /* check the MPI-State for termination in progress */ 736 /* wait until Inbound DoorBell Clear Register toggled */ 737 max_wait_count = 1 * 1000 * 1000; /* 1 sec */ 738 do { 739 udelay(1); 740 gst_len_mpistate = 741 pm8001_mr32(pm8001_ha->general_stat_tbl_addr, 742 GST_GSTLEN_MPIS_OFFSET); 743 if (GST_MPI_STATE_UNINIT == 744 (gst_len_mpistate & GST_MPI_STATE_MASK)) 745 break; 746 } while (--max_wait_count); 747 if (!max_wait_count) { 748 pm8001_dbg(pm8001_ha, FAIL, " TIME OUT MPI State = 0x%x\n", 749 gst_len_mpistate & GST_MPI_STATE_MASK); 750 return -1; 751 } 752 return 0; 753 } 754 755 /** 756 * soft_reset_ready_check - Function to check FW is ready for soft reset. 757 * @pm8001_ha: our hba card information 758 */ 759 static u32 soft_reset_ready_check(struct pm8001_hba_info *pm8001_ha) 760 { 761 u32 regVal, regVal1, regVal2; 762 if (mpi_uninit_check(pm8001_ha) != 0) { 763 pm8001_dbg(pm8001_ha, FAIL, "MPI state is not ready\n"); 764 return -1; 765 } 766 /* read the scratch pad 2 register bit 2 */ 767 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) 768 & SCRATCH_PAD2_FWRDY_RST; 769 if (regVal == SCRATCH_PAD2_FWRDY_RST) { 770 pm8001_dbg(pm8001_ha, INIT, "Firmware is ready for reset.\n"); 771 } else { 772 unsigned long flags; 773 /* Trigger NMI twice via RB6 */ 774 spin_lock_irqsave(&pm8001_ha->lock, flags); 775 if (-1 == pm8001_bar4_shift(pm8001_ha, RB6_ACCESS_REG)) { 776 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 777 pm8001_dbg(pm8001_ha, FAIL, 778 "Shift Bar4 to 0x%x failed\n", 779 RB6_ACCESS_REG); 780 return -1; 781 } 782 pm8001_cw32(pm8001_ha, 2, SPC_RB6_OFFSET, 783 RB6_MAGIC_NUMBER_RST); 784 pm8001_cw32(pm8001_ha, 2, SPC_RB6_OFFSET, RB6_MAGIC_NUMBER_RST); 785 /* wait for 100 ms */ 786 mdelay(100); 787 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) & 788 SCRATCH_PAD2_FWRDY_RST; 789 if (regVal != SCRATCH_PAD2_FWRDY_RST) { 790 regVal1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); 791 regVal2 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2); 792 pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT:MSGU_SCRATCH_PAD1=0x%x, MSGU_SCRATCH_PAD2=0x%x\n", 793 regVal1, regVal2); 794 pm8001_dbg(pm8001_ha, FAIL, 795 "SCRATCH_PAD0 value = 0x%x\n", 796 pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0)); 797 pm8001_dbg(pm8001_ha, FAIL, 798 "SCRATCH_PAD3 value = 0x%x\n", 799 pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3)); 800 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 801 return -1; 802 } 803 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 804 } 805 return 0; 806 } 807 808 /** 809 * pm8001_chip_soft_rst - soft reset the PM8001 chip, so that the clear all 810 * the FW register status to the originated status. 811 * @pm8001_ha: our hba card information 812 */ 813 static int 814 pm8001_chip_soft_rst(struct pm8001_hba_info *pm8001_ha) 815 { 816 u32 regVal, toggleVal; 817 u32 max_wait_count; 818 u32 regVal1, regVal2, regVal3; 819 u32 signature = 0x252acbcd; /* for host scratch pad0 */ 820 unsigned long flags; 821 822 /* step1: Check FW is ready for soft reset */ 823 if (soft_reset_ready_check(pm8001_ha) != 0) { 824 pm8001_dbg(pm8001_ha, FAIL, "FW is not ready\n"); 825 return -1; 826 } 827 828 /* step 2: clear NMI status register on AAP1 and IOP, write the same 829 value to clear */ 830 /* map 0x60000 to BAR4(0x20), BAR2(win) */ 831 spin_lock_irqsave(&pm8001_ha->lock, flags); 832 if (-1 == pm8001_bar4_shift(pm8001_ha, MBIC_AAP1_ADDR_BASE)) { 833 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 834 pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n", 835 MBIC_AAP1_ADDR_BASE); 836 return -1; 837 } 838 regVal = pm8001_cr32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_IOP); 839 pm8001_dbg(pm8001_ha, INIT, "MBIC - NMI Enable VPE0 (IOP)= 0x%x\n", 840 regVal); 841 pm8001_cw32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_IOP, 0x0); 842 /* map 0x70000 to BAR4(0x20), BAR2(win) */ 843 if (-1 == pm8001_bar4_shift(pm8001_ha, MBIC_IOP_ADDR_BASE)) { 844 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 845 pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n", 846 MBIC_IOP_ADDR_BASE); 847 return -1; 848 } 849 regVal = pm8001_cr32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_AAP1); 850 pm8001_dbg(pm8001_ha, INIT, "MBIC - NMI Enable VPE0 (AAP1)= 0x%x\n", 851 regVal); 852 pm8001_cw32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_AAP1, 0x0); 853 854 regVal = pm8001_cr32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT_ENABLE); 855 pm8001_dbg(pm8001_ha, INIT, "PCIE -Event Interrupt Enable = 0x%x\n", 856 regVal); 857 pm8001_cw32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT_ENABLE, 0x0); 858 859 regVal = pm8001_cr32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT); 860 pm8001_dbg(pm8001_ha, INIT, "PCIE - Event Interrupt = 0x%x\n", 861 regVal); 862 pm8001_cw32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT, regVal); 863 864 regVal = pm8001_cr32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT_ENABLE); 865 pm8001_dbg(pm8001_ha, INIT, "PCIE -Error Interrupt Enable = 0x%x\n", 866 regVal); 867 pm8001_cw32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT_ENABLE, 0x0); 868 869 regVal = pm8001_cr32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT); 870 pm8001_dbg(pm8001_ha, INIT, "PCIE - Error Interrupt = 0x%x\n", regVal); 871 pm8001_cw32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT, regVal); 872 873 /* read the scratch pad 1 register bit 2 */ 874 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) 875 & SCRATCH_PAD1_RST; 876 toggleVal = regVal ^ SCRATCH_PAD1_RST; 877 878 /* set signature in host scratch pad0 register to tell SPC that the 879 host performs the soft reset */ 880 pm8001_cw32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_0, signature); 881 882 /* read required registers for confirmming */ 883 /* map 0x0700000 to BAR4(0x20), BAR2(win) */ 884 if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_ADDR_BASE)) { 885 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 886 pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n", 887 GSM_ADDR_BASE); 888 return -1; 889 } 890 pm8001_dbg(pm8001_ha, INIT, 891 "GSM 0x0(0x00007b88)-GSM Configuration and Reset = 0x%x\n", 892 pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)); 893 894 /* step 3: host read GSM Configuration and Reset register */ 895 regVal = pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET); 896 /* Put those bits to low */ 897 /* GSM XCBI offset = 0x70 0000 898 0x00 Bit 13 COM_SLV_SW_RSTB 1 899 0x00 Bit 12 QSSP_SW_RSTB 1 900 0x00 Bit 11 RAAE_SW_RSTB 1 901 0x00 Bit 9 RB_1_SW_RSTB 1 902 0x00 Bit 8 SM_SW_RSTB 1 903 */ 904 regVal &= ~(0x00003b00); 905 /* host write GSM Configuration and Reset register */ 906 pm8001_cw32(pm8001_ha, 2, GSM_CONFIG_RESET, regVal); 907 pm8001_dbg(pm8001_ha, INIT, 908 "GSM 0x0 (0x00007b88 ==> 0x00004088) - GSM Configuration and Reset is set to = 0x%x\n", 909 pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)); 910 911 /* step 4: */ 912 /* disable GSM - Read Address Parity Check */ 913 regVal1 = pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK); 914 pm8001_dbg(pm8001_ha, INIT, 915 "GSM 0x700038 - Read Address Parity Check Enable = 0x%x\n", 916 regVal1); 917 pm8001_cw32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK, 0x0); 918 pm8001_dbg(pm8001_ha, INIT, 919 "GSM 0x700038 - Read Address Parity Check Enable is set to = 0x%x\n", 920 pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK)); 921 922 /* disable GSM - Write Address Parity Check */ 923 regVal2 = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK); 924 pm8001_dbg(pm8001_ha, INIT, 925 "GSM 0x700040 - Write Address Parity Check Enable = 0x%x\n", 926 regVal2); 927 pm8001_cw32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK, 0x0); 928 pm8001_dbg(pm8001_ha, INIT, 929 "GSM 0x700040 - Write Address Parity Check Enable is set to = 0x%x\n", 930 pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK)); 931 932 /* disable GSM - Write Data Parity Check */ 933 regVal3 = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK); 934 pm8001_dbg(pm8001_ha, INIT, "GSM 0x300048 - Write Data Parity Check Enable = 0x%x\n", 935 regVal3); 936 pm8001_cw32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK, 0x0); 937 pm8001_dbg(pm8001_ha, INIT, 938 "GSM 0x300048 - Write Data Parity Check Enable is set to = 0x%x\n", 939 pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK)); 940 941 /* step 5: delay 10 usec */ 942 udelay(10); 943 /* step 5-b: set GPIO-0 output control to tristate anyway */ 944 if (-1 == pm8001_bar4_shift(pm8001_ha, GPIO_ADDR_BASE)) { 945 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 946 pm8001_dbg(pm8001_ha, INIT, "Shift Bar4 to 0x%x failed\n", 947 GPIO_ADDR_BASE); 948 return -1; 949 } 950 regVal = pm8001_cr32(pm8001_ha, 2, GPIO_GPIO_0_0UTPUT_CTL_OFFSET); 951 pm8001_dbg(pm8001_ha, INIT, "GPIO Output Control Register: = 0x%x\n", 952 regVal); 953 /* set GPIO-0 output control to tri-state */ 954 regVal &= 0xFFFFFFFC; 955 pm8001_cw32(pm8001_ha, 2, GPIO_GPIO_0_0UTPUT_CTL_OFFSET, regVal); 956 957 /* Step 6: Reset the IOP and AAP1 */ 958 /* map 0x00000 to BAR4(0x20), BAR2(win) */ 959 if (-1 == pm8001_bar4_shift(pm8001_ha, SPC_TOP_LEVEL_ADDR_BASE)) { 960 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 961 pm8001_dbg(pm8001_ha, FAIL, "SPC Shift Bar4 to 0x%x failed\n", 962 SPC_TOP_LEVEL_ADDR_BASE); 963 return -1; 964 } 965 regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); 966 pm8001_dbg(pm8001_ha, INIT, "Top Register before resetting IOP/AAP1:= 0x%x\n", 967 regVal); 968 regVal &= ~(SPC_REG_RESET_PCS_IOP_SS | SPC_REG_RESET_PCS_AAP1_SS); 969 pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); 970 971 /* step 7: Reset the BDMA/OSSP */ 972 regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); 973 pm8001_dbg(pm8001_ha, INIT, "Top Register before resetting BDMA/OSSP: = 0x%x\n", 974 regVal); 975 regVal &= ~(SPC_REG_RESET_BDMA_CORE | SPC_REG_RESET_OSSP); 976 pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); 977 978 /* step 8: delay 10 usec */ 979 udelay(10); 980 981 /* step 9: bring the BDMA and OSSP out of reset */ 982 regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); 983 pm8001_dbg(pm8001_ha, INIT, 984 "Top Register before bringing up BDMA/OSSP:= 0x%x\n", 985 regVal); 986 regVal |= (SPC_REG_RESET_BDMA_CORE | SPC_REG_RESET_OSSP); 987 pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); 988 989 /* step 10: delay 10 usec */ 990 udelay(10); 991 992 /* step 11: reads and sets the GSM Configuration and Reset Register */ 993 /* map 0x0700000 to BAR4(0x20), BAR2(win) */ 994 if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_ADDR_BASE)) { 995 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 996 pm8001_dbg(pm8001_ha, FAIL, "SPC Shift Bar4 to 0x%x failed\n", 997 GSM_ADDR_BASE); 998 return -1; 999 } 1000 pm8001_dbg(pm8001_ha, INIT, 1001 "GSM 0x0 (0x00007b88)-GSM Configuration and Reset = 0x%x\n", 1002 pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)); 1003 regVal = pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET); 1004 /* Put those bits to high */ 1005 /* GSM XCBI offset = 0x70 0000 1006 0x00 Bit 13 COM_SLV_SW_RSTB 1 1007 0x00 Bit 12 QSSP_SW_RSTB 1 1008 0x00 Bit 11 RAAE_SW_RSTB 1 1009 0x00 Bit 9 RB_1_SW_RSTB 1 1010 0x00 Bit 8 SM_SW_RSTB 1 1011 */ 1012 regVal |= (GSM_CONFIG_RESET_VALUE); 1013 pm8001_cw32(pm8001_ha, 2, GSM_CONFIG_RESET, regVal); 1014 pm8001_dbg(pm8001_ha, INIT, "GSM (0x00004088 ==> 0x00007b88) - GSM Configuration and Reset is set to = 0x%x\n", 1015 pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)); 1016 1017 /* step 12: Restore GSM - Read Address Parity Check */ 1018 regVal = pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK); 1019 /* just for debugging */ 1020 pm8001_dbg(pm8001_ha, INIT, 1021 "GSM 0x700038 - Read Address Parity Check Enable = 0x%x\n", 1022 regVal); 1023 pm8001_cw32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK, regVal1); 1024 pm8001_dbg(pm8001_ha, INIT, "GSM 0x700038 - Read Address Parity Check Enable is set to = 0x%x\n", 1025 pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK)); 1026 /* Restore GSM - Write Address Parity Check */ 1027 regVal = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK); 1028 pm8001_cw32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK, regVal2); 1029 pm8001_dbg(pm8001_ha, INIT, 1030 "GSM 0x700040 - Write Address Parity Check Enable is set to = 0x%x\n", 1031 pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK)); 1032 /* Restore GSM - Write Data Parity Check */ 1033 regVal = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK); 1034 pm8001_cw32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK, regVal3); 1035 pm8001_dbg(pm8001_ha, INIT, 1036 "GSM 0x700048 - Write Data Parity Check Enable is set to = 0x%x\n", 1037 pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK)); 1038 1039 /* step 13: bring the IOP and AAP1 out of reset */ 1040 /* map 0x00000 to BAR4(0x20), BAR2(win) */ 1041 if (-1 == pm8001_bar4_shift(pm8001_ha, SPC_TOP_LEVEL_ADDR_BASE)) { 1042 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1043 pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n", 1044 SPC_TOP_LEVEL_ADDR_BASE); 1045 return -1; 1046 } 1047 regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); 1048 regVal |= (SPC_REG_RESET_PCS_IOP_SS | SPC_REG_RESET_PCS_AAP1_SS); 1049 pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); 1050 1051 /* step 14: delay 10 usec - Normal Mode */ 1052 udelay(10); 1053 /* check Soft Reset Normal mode or Soft Reset HDA mode */ 1054 if (signature == SPC_SOFT_RESET_SIGNATURE) { 1055 /* step 15 (Normal Mode): wait until scratch pad1 register 1056 bit 2 toggled */ 1057 max_wait_count = 2 * 1000 * 1000;/* 2 sec */ 1058 do { 1059 udelay(1); 1060 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) & 1061 SCRATCH_PAD1_RST; 1062 } while ((regVal != toggleVal) && (--max_wait_count)); 1063 1064 if (!max_wait_count) { 1065 regVal = pm8001_cr32(pm8001_ha, 0, 1066 MSGU_SCRATCH_PAD_1); 1067 pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT : ToggleVal 0x%x,MSGU_SCRATCH_PAD1 = 0x%x\n", 1068 toggleVal, regVal); 1069 pm8001_dbg(pm8001_ha, FAIL, 1070 "SCRATCH_PAD0 value = 0x%x\n", 1071 pm8001_cr32(pm8001_ha, 0, 1072 MSGU_SCRATCH_PAD_0)); 1073 pm8001_dbg(pm8001_ha, FAIL, 1074 "SCRATCH_PAD2 value = 0x%x\n", 1075 pm8001_cr32(pm8001_ha, 0, 1076 MSGU_SCRATCH_PAD_2)); 1077 pm8001_dbg(pm8001_ha, FAIL, 1078 "SCRATCH_PAD3 value = 0x%x\n", 1079 pm8001_cr32(pm8001_ha, 0, 1080 MSGU_SCRATCH_PAD_3)); 1081 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1082 return -1; 1083 } 1084 1085 /* step 16 (Normal) - Clear ODMR and ODCR */ 1086 pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL); 1087 pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL); 1088 1089 /* step 17 (Normal Mode): wait for the FW and IOP to get 1090 ready - 1 sec timeout */ 1091 /* Wait for the SPC Configuration Table to be ready */ 1092 if (check_fw_ready(pm8001_ha) == -1) { 1093 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); 1094 /* return error if MPI Configuration Table not ready */ 1095 pm8001_dbg(pm8001_ha, INIT, 1096 "FW not ready SCRATCH_PAD1 = 0x%x\n", 1097 regVal); 1098 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2); 1099 /* return error if MPI Configuration Table not ready */ 1100 pm8001_dbg(pm8001_ha, INIT, 1101 "FW not ready SCRATCH_PAD2 = 0x%x\n", 1102 regVal); 1103 pm8001_dbg(pm8001_ha, INIT, 1104 "SCRATCH_PAD0 value = 0x%x\n", 1105 pm8001_cr32(pm8001_ha, 0, 1106 MSGU_SCRATCH_PAD_0)); 1107 pm8001_dbg(pm8001_ha, INIT, 1108 "SCRATCH_PAD3 value = 0x%x\n", 1109 pm8001_cr32(pm8001_ha, 0, 1110 MSGU_SCRATCH_PAD_3)); 1111 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1112 return -1; 1113 } 1114 } 1115 pm8001_bar4_shift(pm8001_ha, 0); 1116 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1117 1118 pm8001_dbg(pm8001_ha, INIT, "SPC soft reset Complete\n"); 1119 return 0; 1120 } 1121 1122 static void pm8001_hw_chip_rst(struct pm8001_hba_info *pm8001_ha) 1123 { 1124 u32 i; 1125 u32 regVal; 1126 pm8001_dbg(pm8001_ha, INIT, "chip reset start\n"); 1127 1128 /* do SPC chip reset. */ 1129 regVal = pm8001_cr32(pm8001_ha, 1, SPC_REG_RESET); 1130 regVal &= ~(SPC_REG_RESET_DEVICE); 1131 pm8001_cw32(pm8001_ha, 1, SPC_REG_RESET, regVal); 1132 1133 /* delay 10 usec */ 1134 udelay(10); 1135 1136 /* bring chip reset out of reset */ 1137 regVal = pm8001_cr32(pm8001_ha, 1, SPC_REG_RESET); 1138 regVal |= SPC_REG_RESET_DEVICE; 1139 pm8001_cw32(pm8001_ha, 1, SPC_REG_RESET, regVal); 1140 1141 /* delay 10 usec */ 1142 udelay(10); 1143 1144 /* wait for 20 msec until the firmware gets reloaded */ 1145 i = 20; 1146 do { 1147 mdelay(1); 1148 } while ((--i) != 0); 1149 1150 pm8001_dbg(pm8001_ha, INIT, "chip reset finished\n"); 1151 } 1152 1153 /** 1154 * pm8001_chip_iounmap - which mapped when initialized. 1155 * @pm8001_ha: our hba card information 1156 */ 1157 void pm8001_chip_iounmap(struct pm8001_hba_info *pm8001_ha) 1158 { 1159 s8 bar, logical = 0; 1160 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { 1161 /* 1162 ** logical BARs for SPC: 1163 ** bar 0 and 1 - logical BAR0 1164 ** bar 2 and 3 - logical BAR1 1165 ** bar4 - logical BAR2 1166 ** bar5 - logical BAR3 1167 ** Skip the appropriate assignments: 1168 */ 1169 if ((bar == 1) || (bar == 3)) 1170 continue; 1171 if (pm8001_ha->io_mem[logical].memvirtaddr) { 1172 iounmap(pm8001_ha->io_mem[logical].memvirtaddr); 1173 logical++; 1174 } 1175 } 1176 } 1177 1178 #ifndef PM8001_USE_MSIX 1179 /** 1180 * pm8001_chip_intx_interrupt_enable - enable PM8001 chip interrupt 1181 * @pm8001_ha: our hba card information 1182 */ 1183 static void 1184 pm8001_chip_intx_interrupt_enable(struct pm8001_hba_info *pm8001_ha) 1185 { 1186 pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL); 1187 pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL); 1188 } 1189 1190 /** 1191 * pm8001_chip_intx_interrupt_disable - disable PM8001 chip interrupt 1192 * @pm8001_ha: our hba card information 1193 */ 1194 static void 1195 pm8001_chip_intx_interrupt_disable(struct pm8001_hba_info *pm8001_ha) 1196 { 1197 pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_MASK_ALL); 1198 } 1199 1200 #else 1201 1202 /** 1203 * pm8001_chip_msix_interrupt_enable - enable PM8001 chip interrupt 1204 * @pm8001_ha: our hba card information 1205 * @int_vec_idx: interrupt number to enable 1206 */ 1207 static void 1208 pm8001_chip_msix_interrupt_enable(struct pm8001_hba_info *pm8001_ha, 1209 u32 int_vec_idx) 1210 { 1211 u32 msi_index; 1212 u32 value; 1213 msi_index = int_vec_idx * MSIX_TABLE_ELEMENT_SIZE; 1214 msi_index += MSIX_TABLE_BASE; 1215 pm8001_cw32(pm8001_ha, 0, msi_index, MSIX_INTERRUPT_ENABLE); 1216 value = (1 << int_vec_idx); 1217 pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, value); 1218 1219 } 1220 1221 /** 1222 * pm8001_chip_msix_interrupt_disable - disable PM8001 chip interrupt 1223 * @pm8001_ha: our hba card information 1224 * @int_vec_idx: interrupt number to disable 1225 */ 1226 static void 1227 pm8001_chip_msix_interrupt_disable(struct pm8001_hba_info *pm8001_ha, 1228 u32 int_vec_idx) 1229 { 1230 u32 msi_index; 1231 msi_index = int_vec_idx * MSIX_TABLE_ELEMENT_SIZE; 1232 msi_index += MSIX_TABLE_BASE; 1233 pm8001_cw32(pm8001_ha, 0, msi_index, MSIX_INTERRUPT_DISABLE); 1234 } 1235 #endif 1236 1237 /** 1238 * pm8001_chip_interrupt_enable - enable PM8001 chip interrupt 1239 * @pm8001_ha: our hba card information 1240 * @vec: unused 1241 */ 1242 static void 1243 pm8001_chip_interrupt_enable(struct pm8001_hba_info *pm8001_ha, u8 vec) 1244 { 1245 #ifdef PM8001_USE_MSIX 1246 pm8001_chip_msix_interrupt_enable(pm8001_ha, 0); 1247 #else 1248 pm8001_chip_intx_interrupt_enable(pm8001_ha); 1249 #endif 1250 } 1251 1252 /** 1253 * pm8001_chip_interrupt_disable - disable PM8001 chip interrupt 1254 * @pm8001_ha: our hba card information 1255 * @vec: unused 1256 */ 1257 static void 1258 pm8001_chip_interrupt_disable(struct pm8001_hba_info *pm8001_ha, u8 vec) 1259 { 1260 #ifdef PM8001_USE_MSIX 1261 pm8001_chip_msix_interrupt_disable(pm8001_ha, 0); 1262 #else 1263 pm8001_chip_intx_interrupt_disable(pm8001_ha); 1264 #endif 1265 } 1266 1267 /** 1268 * pm8001_mpi_msg_free_get - get the free message buffer for transfer 1269 * inbound queue. 1270 * @circularQ: the inbound queue we want to transfer to HBA. 1271 * @messageSize: the message size of this transfer, normally it is 64 bytes 1272 * @messagePtr: the pointer to message. 1273 */ 1274 int pm8001_mpi_msg_free_get(struct inbound_queue_table *circularQ, 1275 u16 messageSize, void **messagePtr) 1276 { 1277 u32 offset, consumer_index; 1278 struct mpi_msg_hdr *msgHeader; 1279 u8 bcCount = 1; /* only support single buffer */ 1280 1281 /* Checks is the requested message size can be allocated in this queue*/ 1282 if (messageSize > IOMB_SIZE_SPCV) { 1283 *messagePtr = NULL; 1284 return -1; 1285 } 1286 1287 /* Stores the new consumer index */ 1288 consumer_index = pm8001_read_32(circularQ->ci_virt); 1289 circularQ->consumer_index = cpu_to_le32(consumer_index); 1290 if (((circularQ->producer_idx + bcCount) % PM8001_MPI_QUEUE) == 1291 le32_to_cpu(circularQ->consumer_index)) { 1292 *messagePtr = NULL; 1293 return -1; 1294 } 1295 /* get memory IOMB buffer address */ 1296 offset = circularQ->producer_idx * messageSize; 1297 /* increment to next bcCount element */ 1298 circularQ->producer_idx = (circularQ->producer_idx + bcCount) 1299 % PM8001_MPI_QUEUE; 1300 /* Adds that distance to the base of the region virtual address plus 1301 the message header size*/ 1302 msgHeader = (struct mpi_msg_hdr *)(circularQ->base_virt + offset); 1303 *messagePtr = ((void *)msgHeader) + sizeof(struct mpi_msg_hdr); 1304 return 0; 1305 } 1306 1307 /** 1308 * pm8001_mpi_build_cmd- build the message queue for transfer, update the PI to 1309 * FW to tell the fw to get this message from IOMB. 1310 * @pm8001_ha: our hba card information 1311 * @circularQ: the inbound queue we want to transfer to HBA. 1312 * @opCode: the operation code represents commands which LLDD and fw recognized. 1313 * @payload: the command payload of each operation command. 1314 * @nb: size in bytes of the command payload 1315 * @responseQueue: queue to interrupt on w/ command response (if any) 1316 */ 1317 int pm8001_mpi_build_cmd(struct pm8001_hba_info *pm8001_ha, 1318 struct inbound_queue_table *circularQ, 1319 u32 opCode, void *payload, size_t nb, 1320 u32 responseQueue) 1321 { 1322 u32 Header = 0, hpriority = 0, bc = 1, category = 0x02; 1323 void *pMessage; 1324 unsigned long flags; 1325 int q_index = circularQ - pm8001_ha->inbnd_q_tbl; 1326 int rv; 1327 1328 WARN_ON(q_index >= PM8001_MAX_INB_NUM); 1329 spin_lock_irqsave(&circularQ->iq_lock, flags); 1330 rv = pm8001_mpi_msg_free_get(circularQ, pm8001_ha->iomb_size, 1331 &pMessage); 1332 if (rv < 0) { 1333 pm8001_dbg(pm8001_ha, IO, "No free mpi buffer\n"); 1334 rv = -ENOMEM; 1335 goto done; 1336 } 1337 1338 if (nb > (pm8001_ha->iomb_size - sizeof(struct mpi_msg_hdr))) 1339 nb = pm8001_ha->iomb_size - sizeof(struct mpi_msg_hdr); 1340 memcpy(pMessage, payload, nb); 1341 if (nb + sizeof(struct mpi_msg_hdr) < pm8001_ha->iomb_size) 1342 memset(pMessage + nb, 0, pm8001_ha->iomb_size - 1343 (nb + sizeof(struct mpi_msg_hdr))); 1344 1345 /*Build the header*/ 1346 Header = ((1 << 31) | (hpriority << 30) | ((bc & 0x1f) << 24) 1347 | ((responseQueue & 0x3F) << 16) 1348 | ((category & 0xF) << 12) | (opCode & 0xFFF)); 1349 1350 pm8001_write_32((pMessage - 4), 0, cpu_to_le32(Header)); 1351 /*Update the PI to the firmware*/ 1352 pm8001_cw32(pm8001_ha, circularQ->pi_pci_bar, 1353 circularQ->pi_offset, circularQ->producer_idx); 1354 pm8001_dbg(pm8001_ha, DEVIO, 1355 "INB Q %x OPCODE:%x , UPDATED PI=%d CI=%d\n", 1356 responseQueue, opCode, circularQ->producer_idx, 1357 circularQ->consumer_index); 1358 done: 1359 spin_unlock_irqrestore(&circularQ->iq_lock, flags); 1360 return rv; 1361 } 1362 1363 u32 pm8001_mpi_msg_free_set(struct pm8001_hba_info *pm8001_ha, void *pMsg, 1364 struct outbound_queue_table *circularQ, u8 bc) 1365 { 1366 u32 producer_index; 1367 struct mpi_msg_hdr *msgHeader; 1368 struct mpi_msg_hdr *pOutBoundMsgHeader; 1369 1370 msgHeader = (struct mpi_msg_hdr *)(pMsg - sizeof(struct mpi_msg_hdr)); 1371 pOutBoundMsgHeader = (struct mpi_msg_hdr *)(circularQ->base_virt + 1372 circularQ->consumer_idx * pm8001_ha->iomb_size); 1373 if (pOutBoundMsgHeader != msgHeader) { 1374 pm8001_dbg(pm8001_ha, FAIL, 1375 "consumer_idx = %d msgHeader = %p\n", 1376 circularQ->consumer_idx, msgHeader); 1377 1378 /* Update the producer index from SPC */ 1379 producer_index = pm8001_read_32(circularQ->pi_virt); 1380 circularQ->producer_index = cpu_to_le32(producer_index); 1381 pm8001_dbg(pm8001_ha, FAIL, 1382 "consumer_idx = %d producer_index = %dmsgHeader = %p\n", 1383 circularQ->consumer_idx, 1384 circularQ->producer_index, msgHeader); 1385 return 0; 1386 } 1387 /* free the circular queue buffer elements associated with the message*/ 1388 circularQ->consumer_idx = (circularQ->consumer_idx + bc) 1389 % PM8001_MPI_QUEUE; 1390 /* update the CI of outbound queue */ 1391 pm8001_cw32(pm8001_ha, circularQ->ci_pci_bar, circularQ->ci_offset, 1392 circularQ->consumer_idx); 1393 /* Update the producer index from SPC*/ 1394 producer_index = pm8001_read_32(circularQ->pi_virt); 1395 circularQ->producer_index = cpu_to_le32(producer_index); 1396 pm8001_dbg(pm8001_ha, IO, " CI=%d PI=%d\n", 1397 circularQ->consumer_idx, circularQ->producer_index); 1398 return 0; 1399 } 1400 1401 /** 1402 * pm8001_mpi_msg_consume- get the MPI message from outbound queue 1403 * message table. 1404 * @pm8001_ha: our hba card information 1405 * @circularQ: the outbound queue table. 1406 * @messagePtr1: the message contents of this outbound message. 1407 * @pBC: the message size. 1408 */ 1409 u32 pm8001_mpi_msg_consume(struct pm8001_hba_info *pm8001_ha, 1410 struct outbound_queue_table *circularQ, 1411 void **messagePtr1, u8 *pBC) 1412 { 1413 struct mpi_msg_hdr *msgHeader; 1414 __le32 msgHeader_tmp; 1415 u32 header_tmp; 1416 do { 1417 /* If there are not-yet-delivered messages ... */ 1418 if (le32_to_cpu(circularQ->producer_index) 1419 != circularQ->consumer_idx) { 1420 /*Get the pointer to the circular queue buffer element*/ 1421 msgHeader = (struct mpi_msg_hdr *) 1422 (circularQ->base_virt + 1423 circularQ->consumer_idx * pm8001_ha->iomb_size); 1424 /* read header */ 1425 header_tmp = pm8001_read_32(msgHeader); 1426 msgHeader_tmp = cpu_to_le32(header_tmp); 1427 pm8001_dbg(pm8001_ha, DEVIO, 1428 "outbound opcode msgheader:%x ci=%d pi=%d\n", 1429 msgHeader_tmp, circularQ->consumer_idx, 1430 circularQ->producer_index); 1431 if (0 != (le32_to_cpu(msgHeader_tmp) & 0x80000000)) { 1432 if (OPC_OUB_SKIP_ENTRY != 1433 (le32_to_cpu(msgHeader_tmp) & 0xfff)) { 1434 *messagePtr1 = 1435 ((u8 *)msgHeader) + 1436 sizeof(struct mpi_msg_hdr); 1437 *pBC = (u8)((le32_to_cpu(msgHeader_tmp) 1438 >> 24) & 0x1f); 1439 pm8001_dbg(pm8001_ha, IO, 1440 ": CI=%d PI=%d msgHeader=%x\n", 1441 circularQ->consumer_idx, 1442 circularQ->producer_index, 1443 msgHeader_tmp); 1444 return MPI_IO_STATUS_SUCCESS; 1445 } else { 1446 circularQ->consumer_idx = 1447 (circularQ->consumer_idx + 1448 ((le32_to_cpu(msgHeader_tmp) 1449 >> 24) & 0x1f)) 1450 % PM8001_MPI_QUEUE; 1451 msgHeader_tmp = 0; 1452 pm8001_write_32(msgHeader, 0, 0); 1453 /* update the CI of outbound queue */ 1454 pm8001_cw32(pm8001_ha, 1455 circularQ->ci_pci_bar, 1456 circularQ->ci_offset, 1457 circularQ->consumer_idx); 1458 } 1459 } else { 1460 circularQ->consumer_idx = 1461 (circularQ->consumer_idx + 1462 ((le32_to_cpu(msgHeader_tmp) >> 24) & 1463 0x1f)) % PM8001_MPI_QUEUE; 1464 msgHeader_tmp = 0; 1465 pm8001_write_32(msgHeader, 0, 0); 1466 /* update the CI of outbound queue */ 1467 pm8001_cw32(pm8001_ha, circularQ->ci_pci_bar, 1468 circularQ->ci_offset, 1469 circularQ->consumer_idx); 1470 return MPI_IO_STATUS_FAIL; 1471 } 1472 } else { 1473 u32 producer_index; 1474 void *pi_virt = circularQ->pi_virt; 1475 /* spurious interrupt during setup if 1476 * kexec-ing and driver doing a doorbell access 1477 * with the pre-kexec oq interrupt setup 1478 */ 1479 if (!pi_virt) 1480 break; 1481 /* Update the producer index from SPC */ 1482 producer_index = pm8001_read_32(pi_virt); 1483 circularQ->producer_index = cpu_to_le32(producer_index); 1484 } 1485 } while (le32_to_cpu(circularQ->producer_index) != 1486 circularQ->consumer_idx); 1487 /* while we don't have any more not-yet-delivered message */ 1488 /* report empty */ 1489 return MPI_IO_STATUS_BUSY; 1490 } 1491 1492 void pm8001_work_fn(struct work_struct *work) 1493 { 1494 struct pm8001_work *pw = container_of(work, struct pm8001_work, work); 1495 struct pm8001_device *pm8001_dev; 1496 struct domain_device *dev; 1497 1498 /* 1499 * So far, all users of this stash an associated structure here. 1500 * If we get here, and this pointer is null, then the action 1501 * was cancelled. This nullification happens when the device 1502 * goes away. 1503 */ 1504 if (pw->handler != IO_FATAL_ERROR) { 1505 pm8001_dev = pw->data; /* Most stash device structure */ 1506 if ((pm8001_dev == NULL) 1507 || ((pw->handler != IO_XFER_ERROR_BREAK) 1508 && (pm8001_dev->dev_type == SAS_PHY_UNUSED))) { 1509 kfree(pw); 1510 return; 1511 } 1512 } 1513 1514 switch (pw->handler) { 1515 case IO_XFER_ERROR_BREAK: 1516 { /* This one stashes the sas_task instead */ 1517 struct sas_task *t = (struct sas_task *)pm8001_dev; 1518 u32 tag; 1519 struct pm8001_ccb_info *ccb; 1520 struct pm8001_hba_info *pm8001_ha = pw->pm8001_ha; 1521 unsigned long flags, flags1; 1522 struct task_status_struct *ts; 1523 int i; 1524 1525 if (pm8001_query_task(t) == TMF_RESP_FUNC_SUCC) 1526 break; /* Task still on lu */ 1527 spin_lock_irqsave(&pm8001_ha->lock, flags); 1528 1529 spin_lock_irqsave(&t->task_state_lock, flags1); 1530 if (unlikely((t->task_state_flags & SAS_TASK_STATE_DONE))) { 1531 spin_unlock_irqrestore(&t->task_state_lock, flags1); 1532 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1533 break; /* Task got completed by another */ 1534 } 1535 spin_unlock_irqrestore(&t->task_state_lock, flags1); 1536 1537 /* Search for a possible ccb that matches the task */ 1538 for (i = 0; ccb = NULL, i < PM8001_MAX_CCB; i++) { 1539 ccb = &pm8001_ha->ccb_info[i]; 1540 tag = ccb->ccb_tag; 1541 if ((tag != 0xFFFFFFFF) && (ccb->task == t)) 1542 break; 1543 } 1544 if (!ccb) { 1545 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1546 break; /* Task got freed by another */ 1547 } 1548 ts = &t->task_status; 1549 ts->resp = SAS_TASK_COMPLETE; 1550 /* Force the midlayer to retry */ 1551 ts->stat = SAS_QUEUE_FULL; 1552 pm8001_dev = ccb->device; 1553 if (pm8001_dev) 1554 atomic_dec(&pm8001_dev->running_req); 1555 spin_lock_irqsave(&t->task_state_lock, flags1); 1556 t->task_state_flags &= ~SAS_TASK_STATE_PENDING; 1557 t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; 1558 t->task_state_flags |= SAS_TASK_STATE_DONE; 1559 if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { 1560 spin_unlock_irqrestore(&t->task_state_lock, flags1); 1561 pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with event 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", 1562 t, pw->handler, ts->resp, ts->stat); 1563 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); 1564 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1565 } else { 1566 spin_unlock_irqrestore(&t->task_state_lock, flags1); 1567 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); 1568 mb();/* in order to force CPU ordering */ 1569 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1570 t->task_done(t); 1571 } 1572 } break; 1573 case IO_XFER_OPEN_RETRY_TIMEOUT: 1574 { /* This one stashes the sas_task instead */ 1575 struct sas_task *t = (struct sas_task *)pm8001_dev; 1576 u32 tag; 1577 struct pm8001_ccb_info *ccb; 1578 struct pm8001_hba_info *pm8001_ha = pw->pm8001_ha; 1579 unsigned long flags, flags1; 1580 int i, ret = 0; 1581 1582 pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); 1583 1584 ret = pm8001_query_task(t); 1585 1586 if (ret == TMF_RESP_FUNC_SUCC) 1587 pm8001_dbg(pm8001_ha, IO, "...Task on lu\n"); 1588 else if (ret == TMF_RESP_FUNC_COMPLETE) 1589 pm8001_dbg(pm8001_ha, IO, "...Task NOT on lu\n"); 1590 else 1591 pm8001_dbg(pm8001_ha, DEVIO, "...query task failed!!!\n"); 1592 1593 spin_lock_irqsave(&pm8001_ha->lock, flags); 1594 1595 spin_lock_irqsave(&t->task_state_lock, flags1); 1596 1597 if (unlikely((t->task_state_flags & SAS_TASK_STATE_DONE))) { 1598 spin_unlock_irqrestore(&t->task_state_lock, flags1); 1599 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1600 if (ret == TMF_RESP_FUNC_SUCC) /* task on lu */ 1601 (void)pm8001_abort_task(t); 1602 break; /* Task got completed by another */ 1603 } 1604 1605 spin_unlock_irqrestore(&t->task_state_lock, flags1); 1606 1607 /* Search for a possible ccb that matches the task */ 1608 for (i = 0; ccb = NULL, i < PM8001_MAX_CCB; i++) { 1609 ccb = &pm8001_ha->ccb_info[i]; 1610 tag = ccb->ccb_tag; 1611 if ((tag != 0xFFFFFFFF) && (ccb->task == t)) 1612 break; 1613 } 1614 if (!ccb) { 1615 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1616 if (ret == TMF_RESP_FUNC_SUCC) /* task on lu */ 1617 (void)pm8001_abort_task(t); 1618 break; /* Task got freed by another */ 1619 } 1620 1621 pm8001_dev = ccb->device; 1622 dev = pm8001_dev->sas_device; 1623 1624 switch (ret) { 1625 case TMF_RESP_FUNC_SUCC: /* task on lu */ 1626 ccb->open_retry = 1; /* Snub completion */ 1627 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1628 ret = pm8001_abort_task(t); 1629 ccb->open_retry = 0; 1630 switch (ret) { 1631 case TMF_RESP_FUNC_SUCC: 1632 case TMF_RESP_FUNC_COMPLETE: 1633 break; 1634 default: /* device misbehavior */ 1635 ret = TMF_RESP_FUNC_FAILED; 1636 pm8001_dbg(pm8001_ha, IO, "...Reset phy\n"); 1637 pm8001_I_T_nexus_reset(dev); 1638 break; 1639 } 1640 break; 1641 1642 case TMF_RESP_FUNC_COMPLETE: /* task not on lu */ 1643 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1644 /* Do we need to abort the task locally? */ 1645 break; 1646 1647 default: /* device misbehavior */ 1648 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1649 ret = TMF_RESP_FUNC_FAILED; 1650 pm8001_dbg(pm8001_ha, IO, "...Reset phy\n"); 1651 pm8001_I_T_nexus_reset(dev); 1652 } 1653 1654 if (ret == TMF_RESP_FUNC_FAILED) 1655 t = NULL; 1656 pm8001_open_reject_retry(pm8001_ha, t, pm8001_dev); 1657 pm8001_dbg(pm8001_ha, IO, "...Complete\n"); 1658 } break; 1659 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: 1660 dev = pm8001_dev->sas_device; 1661 pm8001_I_T_nexus_event_handler(dev); 1662 break; 1663 case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY: 1664 dev = pm8001_dev->sas_device; 1665 pm8001_I_T_nexus_reset(dev); 1666 break; 1667 case IO_DS_IN_ERROR: 1668 dev = pm8001_dev->sas_device; 1669 pm8001_I_T_nexus_reset(dev); 1670 break; 1671 case IO_DS_NON_OPERATIONAL: 1672 dev = pm8001_dev->sas_device; 1673 pm8001_I_T_nexus_reset(dev); 1674 break; 1675 case IO_FATAL_ERROR: 1676 { 1677 struct pm8001_hba_info *pm8001_ha = pw->pm8001_ha; 1678 struct pm8001_ccb_info *ccb; 1679 struct task_status_struct *ts; 1680 struct sas_task *task; 1681 int i; 1682 u32 tag, device_id; 1683 1684 for (i = 0; ccb = NULL, i < PM8001_MAX_CCB; i++) { 1685 ccb = &pm8001_ha->ccb_info[i]; 1686 task = ccb->task; 1687 ts = &task->task_status; 1688 tag = ccb->ccb_tag; 1689 /* check if tag is NULL */ 1690 if (!tag) { 1691 pm8001_dbg(pm8001_ha, FAIL, 1692 "tag Null\n"); 1693 continue; 1694 } 1695 if (task != NULL) { 1696 dev = task->dev; 1697 if (!dev) { 1698 pm8001_dbg(pm8001_ha, FAIL, 1699 "dev is NULL\n"); 1700 continue; 1701 } 1702 /*complete sas task and update to top layer */ 1703 pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); 1704 ts->resp = SAS_TASK_COMPLETE; 1705 task->task_done(task); 1706 } else if (tag != 0xFFFFFFFF) { 1707 /* complete the internal commands/non-sas task */ 1708 pm8001_dev = ccb->device; 1709 if (pm8001_dev->dcompletion) { 1710 complete(pm8001_dev->dcompletion); 1711 pm8001_dev->dcompletion = NULL; 1712 } 1713 complete(pm8001_ha->nvmd_completion); 1714 pm8001_tag_free(pm8001_ha, tag); 1715 } 1716 } 1717 /* Deregister all the device ids */ 1718 for (i = 0; i < PM8001_MAX_DEVICES; i++) { 1719 pm8001_dev = &pm8001_ha->devices[i]; 1720 device_id = pm8001_dev->device_id; 1721 if (device_id) { 1722 PM8001_CHIP_DISP->dereg_dev_req(pm8001_ha, device_id); 1723 pm8001_free_dev(pm8001_dev); 1724 } 1725 } 1726 } break; 1727 } 1728 kfree(pw); 1729 } 1730 1731 int pm8001_handle_event(struct pm8001_hba_info *pm8001_ha, void *data, 1732 int handler) 1733 { 1734 struct pm8001_work *pw; 1735 int ret = 0; 1736 1737 pw = kmalloc(sizeof(struct pm8001_work), GFP_ATOMIC); 1738 if (pw) { 1739 pw->pm8001_ha = pm8001_ha; 1740 pw->data = data; 1741 pw->handler = handler; 1742 INIT_WORK(&pw->work, pm8001_work_fn); 1743 queue_work(pm8001_wq, &pw->work); 1744 } else 1745 ret = -ENOMEM; 1746 1747 return ret; 1748 } 1749 1750 static void pm8001_send_abort_all(struct pm8001_hba_info *pm8001_ha, 1751 struct pm8001_device *pm8001_ha_dev) 1752 { 1753 int res; 1754 u32 ccb_tag; 1755 struct pm8001_ccb_info *ccb; 1756 struct sas_task *task = NULL; 1757 struct task_abort_req task_abort; 1758 struct inbound_queue_table *circularQ; 1759 u32 opc = OPC_INB_SATA_ABORT; 1760 int ret; 1761 1762 if (!pm8001_ha_dev) { 1763 pm8001_dbg(pm8001_ha, FAIL, "dev is null\n"); 1764 return; 1765 } 1766 1767 task = sas_alloc_slow_task(GFP_ATOMIC); 1768 1769 if (!task) { 1770 pm8001_dbg(pm8001_ha, FAIL, "cannot allocate task\n"); 1771 return; 1772 } 1773 1774 task->task_done = pm8001_task_done; 1775 1776 res = pm8001_tag_alloc(pm8001_ha, &ccb_tag); 1777 if (res) 1778 return; 1779 1780 ccb = &pm8001_ha->ccb_info[ccb_tag]; 1781 ccb->device = pm8001_ha_dev; 1782 ccb->ccb_tag = ccb_tag; 1783 ccb->task = task; 1784 1785 circularQ = &pm8001_ha->inbnd_q_tbl[0]; 1786 1787 memset(&task_abort, 0, sizeof(task_abort)); 1788 task_abort.abort_all = cpu_to_le32(1); 1789 task_abort.device_id = cpu_to_le32(pm8001_ha_dev->device_id); 1790 task_abort.tag = cpu_to_le32(ccb_tag); 1791 1792 ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &task_abort, 1793 sizeof(task_abort), 0); 1794 if (ret) 1795 pm8001_tag_free(pm8001_ha, ccb_tag); 1796 1797 } 1798 1799 static void pm8001_send_read_log(struct pm8001_hba_info *pm8001_ha, 1800 struct pm8001_device *pm8001_ha_dev) 1801 { 1802 struct sata_start_req sata_cmd; 1803 int res; 1804 u32 ccb_tag; 1805 struct pm8001_ccb_info *ccb; 1806 struct sas_task *task = NULL; 1807 struct host_to_dev_fis fis; 1808 struct domain_device *dev; 1809 struct inbound_queue_table *circularQ; 1810 u32 opc = OPC_INB_SATA_HOST_OPSTART; 1811 1812 task = sas_alloc_slow_task(GFP_ATOMIC); 1813 1814 if (!task) { 1815 pm8001_dbg(pm8001_ha, FAIL, "cannot allocate task !!!\n"); 1816 return; 1817 } 1818 task->task_done = pm8001_task_done; 1819 1820 res = pm8001_tag_alloc(pm8001_ha, &ccb_tag); 1821 if (res) { 1822 sas_free_task(task); 1823 pm8001_dbg(pm8001_ha, FAIL, "cannot allocate tag !!!\n"); 1824 return; 1825 } 1826 1827 /* allocate domain device by ourselves as libsas 1828 * is not going to provide any 1829 */ 1830 dev = kzalloc(sizeof(struct domain_device), GFP_ATOMIC); 1831 if (!dev) { 1832 sas_free_task(task); 1833 pm8001_tag_free(pm8001_ha, ccb_tag); 1834 pm8001_dbg(pm8001_ha, FAIL, 1835 "Domain device cannot be allocated\n"); 1836 return; 1837 } 1838 task->dev = dev; 1839 task->dev->lldd_dev = pm8001_ha_dev; 1840 1841 ccb = &pm8001_ha->ccb_info[ccb_tag]; 1842 ccb->device = pm8001_ha_dev; 1843 ccb->ccb_tag = ccb_tag; 1844 ccb->task = task; 1845 pm8001_ha_dev->id |= NCQ_READ_LOG_FLAG; 1846 pm8001_ha_dev->id |= NCQ_2ND_RLE_FLAG; 1847 1848 memset(&sata_cmd, 0, sizeof(sata_cmd)); 1849 circularQ = &pm8001_ha->inbnd_q_tbl[0]; 1850 1851 /* construct read log FIS */ 1852 memset(&fis, 0, sizeof(struct host_to_dev_fis)); 1853 fis.fis_type = 0x27; 1854 fis.flags = 0x80; 1855 fis.command = ATA_CMD_READ_LOG_EXT; 1856 fis.lbal = 0x10; 1857 fis.sector_count = 0x1; 1858 1859 sata_cmd.tag = cpu_to_le32(ccb_tag); 1860 sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id); 1861 sata_cmd.ncqtag_atap_dir_m |= ((0x1 << 7) | (0x5 << 9)); 1862 memcpy(&sata_cmd.sata_fis, &fis, sizeof(struct host_to_dev_fis)); 1863 1864 res = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &sata_cmd, 1865 sizeof(sata_cmd), 0); 1866 if (res) { 1867 sas_free_task(task); 1868 pm8001_tag_free(pm8001_ha, ccb_tag); 1869 kfree(dev); 1870 } 1871 } 1872 1873 /** 1874 * mpi_ssp_completion- process the event that FW response to the SSP request. 1875 * @pm8001_ha: our hba card information 1876 * @piomb: the message contents of this outbound message. 1877 * 1878 * When FW has completed a ssp request for example a IO request, after it has 1879 * filled the SG data with the data, it will trigger this event representing 1880 * that he has finished the job; please check the corresponding buffer. 1881 * So we will tell the caller who maybe waiting the result to tell upper layer 1882 * that the task has been finished. 1883 */ 1884 static void 1885 mpi_ssp_completion(struct pm8001_hba_info *pm8001_ha, void *piomb) 1886 { 1887 struct sas_task *t; 1888 struct pm8001_ccb_info *ccb; 1889 unsigned long flags; 1890 u32 status; 1891 u32 param; 1892 u32 tag; 1893 struct ssp_completion_resp *psspPayload; 1894 struct task_status_struct *ts; 1895 struct ssp_response_iu *iu; 1896 struct pm8001_device *pm8001_dev; 1897 psspPayload = (struct ssp_completion_resp *)(piomb + 4); 1898 status = le32_to_cpu(psspPayload->status); 1899 tag = le32_to_cpu(psspPayload->tag); 1900 ccb = &pm8001_ha->ccb_info[tag]; 1901 if ((status == IO_ABORTED) && ccb->open_retry) { 1902 /* Being completed by another */ 1903 ccb->open_retry = 0; 1904 return; 1905 } 1906 pm8001_dev = ccb->device; 1907 param = le32_to_cpu(psspPayload->param); 1908 1909 t = ccb->task; 1910 1911 if (status && status != IO_UNDERFLOW) 1912 pm8001_dbg(pm8001_ha, FAIL, "sas IO status 0x%x\n", status); 1913 if (unlikely(!t || !t->lldd_task || !t->dev)) 1914 return; 1915 ts = &t->task_status; 1916 /* Print sas address of IO failed device */ 1917 if ((status != IO_SUCCESS) && (status != IO_OVERFLOW) && 1918 (status != IO_UNDERFLOW)) 1919 pm8001_dbg(pm8001_ha, FAIL, "SAS Address of IO Failure Drive:%016llx\n", 1920 SAS_ADDR(t->dev->sas_addr)); 1921 1922 if (status) 1923 pm8001_dbg(pm8001_ha, IOERR, 1924 "status:0x%x, tag:0x%x, task:0x%p\n", 1925 status, tag, t); 1926 1927 switch (status) { 1928 case IO_SUCCESS: 1929 pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS,param = %d\n", 1930 param); 1931 if (param == 0) { 1932 ts->resp = SAS_TASK_COMPLETE; 1933 ts->stat = SAS_SAM_STAT_GOOD; 1934 } else { 1935 ts->resp = SAS_TASK_COMPLETE; 1936 ts->stat = SAS_PROTO_RESPONSE; 1937 ts->residual = param; 1938 iu = &psspPayload->ssp_resp_iu; 1939 sas_ssp_task_response(pm8001_ha->dev, t, iu); 1940 } 1941 if (pm8001_dev) 1942 atomic_dec(&pm8001_dev->running_req); 1943 break; 1944 case IO_ABORTED: 1945 pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB Tag\n"); 1946 ts->resp = SAS_TASK_COMPLETE; 1947 ts->stat = SAS_ABORTED_TASK; 1948 break; 1949 case IO_UNDERFLOW: 1950 /* SSP Completion with error */ 1951 pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW,param = %d\n", 1952 param); 1953 ts->resp = SAS_TASK_COMPLETE; 1954 ts->stat = SAS_DATA_UNDERRUN; 1955 ts->residual = param; 1956 if (pm8001_dev) 1957 atomic_dec(&pm8001_dev->running_req); 1958 break; 1959 case IO_NO_DEVICE: 1960 pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n"); 1961 ts->resp = SAS_TASK_UNDELIVERED; 1962 ts->stat = SAS_PHY_DOWN; 1963 break; 1964 case IO_XFER_ERROR_BREAK: 1965 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); 1966 ts->resp = SAS_TASK_COMPLETE; 1967 ts->stat = SAS_OPEN_REJECT; 1968 /* Force the midlayer to retry */ 1969 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 1970 break; 1971 case IO_XFER_ERROR_PHY_NOT_READY: 1972 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); 1973 ts->resp = SAS_TASK_COMPLETE; 1974 ts->stat = SAS_OPEN_REJECT; 1975 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 1976 break; 1977 case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: 1978 pm8001_dbg(pm8001_ha, IO, 1979 "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); 1980 ts->resp = SAS_TASK_COMPLETE; 1981 ts->stat = SAS_OPEN_REJECT; 1982 ts->open_rej_reason = SAS_OREJ_EPROTO; 1983 break; 1984 case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: 1985 pm8001_dbg(pm8001_ha, IO, 1986 "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); 1987 ts->resp = SAS_TASK_COMPLETE; 1988 ts->stat = SAS_OPEN_REJECT; 1989 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 1990 break; 1991 case IO_OPEN_CNX_ERROR_BREAK: 1992 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); 1993 ts->resp = SAS_TASK_COMPLETE; 1994 ts->stat = SAS_OPEN_REJECT; 1995 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 1996 break; 1997 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: 1998 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); 1999 ts->resp = SAS_TASK_COMPLETE; 2000 ts->stat = SAS_OPEN_REJECT; 2001 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 2002 if (!t->uldd_task) 2003 pm8001_handle_event(pm8001_ha, 2004 pm8001_dev, 2005 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); 2006 break; 2007 case IO_OPEN_CNX_ERROR_BAD_DESTINATION: 2008 pm8001_dbg(pm8001_ha, IO, 2009 "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); 2010 ts->resp = SAS_TASK_COMPLETE; 2011 ts->stat = SAS_OPEN_REJECT; 2012 ts->open_rej_reason = SAS_OREJ_BAD_DEST; 2013 break; 2014 case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: 2015 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); 2016 ts->resp = SAS_TASK_COMPLETE; 2017 ts->stat = SAS_OPEN_REJECT; 2018 ts->open_rej_reason = SAS_OREJ_CONN_RATE; 2019 break; 2020 case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: 2021 pm8001_dbg(pm8001_ha, IO, 2022 "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); 2023 ts->resp = SAS_TASK_UNDELIVERED; 2024 ts->stat = SAS_OPEN_REJECT; 2025 ts->open_rej_reason = SAS_OREJ_WRONG_DEST; 2026 break; 2027 case IO_XFER_ERROR_NAK_RECEIVED: 2028 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n"); 2029 ts->resp = SAS_TASK_COMPLETE; 2030 ts->stat = SAS_OPEN_REJECT; 2031 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2032 break; 2033 case IO_XFER_ERROR_ACK_NAK_TIMEOUT: 2034 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"); 2035 ts->resp = SAS_TASK_COMPLETE; 2036 ts->stat = SAS_NAK_R_ERR; 2037 break; 2038 case IO_XFER_ERROR_DMA: 2039 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_DMA\n"); 2040 ts->resp = SAS_TASK_COMPLETE; 2041 ts->stat = SAS_OPEN_REJECT; 2042 break; 2043 case IO_XFER_OPEN_RETRY_TIMEOUT: 2044 pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); 2045 ts->resp = SAS_TASK_COMPLETE; 2046 ts->stat = SAS_OPEN_REJECT; 2047 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2048 break; 2049 case IO_XFER_ERROR_OFFSET_MISMATCH: 2050 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n"); 2051 ts->resp = SAS_TASK_COMPLETE; 2052 ts->stat = SAS_OPEN_REJECT; 2053 break; 2054 case IO_PORT_IN_RESET: 2055 pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n"); 2056 ts->resp = SAS_TASK_COMPLETE; 2057 ts->stat = SAS_OPEN_REJECT; 2058 break; 2059 case IO_DS_NON_OPERATIONAL: 2060 pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n"); 2061 ts->resp = SAS_TASK_COMPLETE; 2062 ts->stat = SAS_OPEN_REJECT; 2063 if (!t->uldd_task) 2064 pm8001_handle_event(pm8001_ha, 2065 pm8001_dev, 2066 IO_DS_NON_OPERATIONAL); 2067 break; 2068 case IO_DS_IN_RECOVERY: 2069 pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_RECOVERY\n"); 2070 ts->resp = SAS_TASK_COMPLETE; 2071 ts->stat = SAS_OPEN_REJECT; 2072 break; 2073 case IO_TM_TAG_NOT_FOUND: 2074 pm8001_dbg(pm8001_ha, IO, "IO_TM_TAG_NOT_FOUND\n"); 2075 ts->resp = SAS_TASK_COMPLETE; 2076 ts->stat = SAS_OPEN_REJECT; 2077 break; 2078 case IO_SSP_EXT_IU_ZERO_LEN_ERROR: 2079 pm8001_dbg(pm8001_ha, IO, "IO_SSP_EXT_IU_ZERO_LEN_ERROR\n"); 2080 ts->resp = SAS_TASK_COMPLETE; 2081 ts->stat = SAS_OPEN_REJECT; 2082 break; 2083 case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: 2084 pm8001_dbg(pm8001_ha, IO, 2085 "IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"); 2086 ts->resp = SAS_TASK_COMPLETE; 2087 ts->stat = SAS_OPEN_REJECT; 2088 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2089 break; 2090 default: 2091 pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status); 2092 /* not allowed case. Therefore, return failed status */ 2093 ts->resp = SAS_TASK_COMPLETE; 2094 ts->stat = SAS_OPEN_REJECT; 2095 break; 2096 } 2097 pm8001_dbg(pm8001_ha, IO, "scsi_status = %x\n", 2098 psspPayload->ssp_resp_iu.status); 2099 spin_lock_irqsave(&t->task_state_lock, flags); 2100 t->task_state_flags &= ~SAS_TASK_STATE_PENDING; 2101 t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; 2102 t->task_state_flags |= SAS_TASK_STATE_DONE; 2103 if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { 2104 spin_unlock_irqrestore(&t->task_state_lock, flags); 2105 pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", 2106 t, status, ts->resp, ts->stat); 2107 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); 2108 } else { 2109 spin_unlock_irqrestore(&t->task_state_lock, flags); 2110 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); 2111 mb();/* in order to force CPU ordering */ 2112 t->task_done(t); 2113 } 2114 } 2115 2116 /*See the comments for mpi_ssp_completion */ 2117 static void mpi_ssp_event(struct pm8001_hba_info *pm8001_ha, void *piomb) 2118 { 2119 struct sas_task *t; 2120 unsigned long flags; 2121 struct task_status_struct *ts; 2122 struct pm8001_ccb_info *ccb; 2123 struct pm8001_device *pm8001_dev; 2124 struct ssp_event_resp *psspPayload = 2125 (struct ssp_event_resp *)(piomb + 4); 2126 u32 event = le32_to_cpu(psspPayload->event); 2127 u32 tag = le32_to_cpu(psspPayload->tag); 2128 u32 port_id = le32_to_cpu(psspPayload->port_id); 2129 u32 dev_id = le32_to_cpu(psspPayload->device_id); 2130 2131 ccb = &pm8001_ha->ccb_info[tag]; 2132 t = ccb->task; 2133 pm8001_dev = ccb->device; 2134 if (event) 2135 pm8001_dbg(pm8001_ha, FAIL, "sas IO status 0x%x\n", event); 2136 if (unlikely(!t || !t->lldd_task || !t->dev)) 2137 return; 2138 ts = &t->task_status; 2139 pm8001_dbg(pm8001_ha, DEVIO, "port_id = %x,device_id = %x\n", 2140 port_id, dev_id); 2141 switch (event) { 2142 case IO_OVERFLOW: 2143 pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n"); 2144 ts->resp = SAS_TASK_COMPLETE; 2145 ts->stat = SAS_DATA_OVERRUN; 2146 ts->residual = 0; 2147 if (pm8001_dev) 2148 atomic_dec(&pm8001_dev->running_req); 2149 break; 2150 case IO_XFER_ERROR_BREAK: 2151 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); 2152 pm8001_handle_event(pm8001_ha, t, IO_XFER_ERROR_BREAK); 2153 return; 2154 case IO_XFER_ERROR_PHY_NOT_READY: 2155 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); 2156 ts->resp = SAS_TASK_COMPLETE; 2157 ts->stat = SAS_OPEN_REJECT; 2158 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2159 break; 2160 case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: 2161 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); 2162 ts->resp = SAS_TASK_COMPLETE; 2163 ts->stat = SAS_OPEN_REJECT; 2164 ts->open_rej_reason = SAS_OREJ_EPROTO; 2165 break; 2166 case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: 2167 pm8001_dbg(pm8001_ha, IO, 2168 "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); 2169 ts->resp = SAS_TASK_COMPLETE; 2170 ts->stat = SAS_OPEN_REJECT; 2171 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 2172 break; 2173 case IO_OPEN_CNX_ERROR_BREAK: 2174 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); 2175 ts->resp = SAS_TASK_COMPLETE; 2176 ts->stat = SAS_OPEN_REJECT; 2177 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2178 break; 2179 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: 2180 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); 2181 ts->resp = SAS_TASK_COMPLETE; 2182 ts->stat = SAS_OPEN_REJECT; 2183 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 2184 if (!t->uldd_task) 2185 pm8001_handle_event(pm8001_ha, 2186 pm8001_dev, 2187 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); 2188 break; 2189 case IO_OPEN_CNX_ERROR_BAD_DESTINATION: 2190 pm8001_dbg(pm8001_ha, IO, 2191 "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); 2192 ts->resp = SAS_TASK_COMPLETE; 2193 ts->stat = SAS_OPEN_REJECT; 2194 ts->open_rej_reason = SAS_OREJ_BAD_DEST; 2195 break; 2196 case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: 2197 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); 2198 ts->resp = SAS_TASK_COMPLETE; 2199 ts->stat = SAS_OPEN_REJECT; 2200 ts->open_rej_reason = SAS_OREJ_CONN_RATE; 2201 break; 2202 case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: 2203 pm8001_dbg(pm8001_ha, IO, 2204 "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); 2205 ts->resp = SAS_TASK_COMPLETE; 2206 ts->stat = SAS_OPEN_REJECT; 2207 ts->open_rej_reason = SAS_OREJ_WRONG_DEST; 2208 break; 2209 case IO_XFER_ERROR_NAK_RECEIVED: 2210 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n"); 2211 ts->resp = SAS_TASK_COMPLETE; 2212 ts->stat = SAS_OPEN_REJECT; 2213 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2214 break; 2215 case IO_XFER_ERROR_ACK_NAK_TIMEOUT: 2216 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"); 2217 ts->resp = SAS_TASK_COMPLETE; 2218 ts->stat = SAS_NAK_R_ERR; 2219 break; 2220 case IO_XFER_OPEN_RETRY_TIMEOUT: 2221 pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); 2222 pm8001_handle_event(pm8001_ha, t, IO_XFER_OPEN_RETRY_TIMEOUT); 2223 return; 2224 case IO_XFER_ERROR_UNEXPECTED_PHASE: 2225 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_UNEXPECTED_PHASE\n"); 2226 ts->resp = SAS_TASK_COMPLETE; 2227 ts->stat = SAS_DATA_OVERRUN; 2228 break; 2229 case IO_XFER_ERROR_XFER_RDY_OVERRUN: 2230 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_RDY_OVERRUN\n"); 2231 ts->resp = SAS_TASK_COMPLETE; 2232 ts->stat = SAS_DATA_OVERRUN; 2233 break; 2234 case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED: 2235 pm8001_dbg(pm8001_ha, IO, 2236 "IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n"); 2237 ts->resp = SAS_TASK_COMPLETE; 2238 ts->stat = SAS_DATA_OVERRUN; 2239 break; 2240 case IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT: 2241 pm8001_dbg(pm8001_ha, IO, 2242 "IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT\n"); 2243 ts->resp = SAS_TASK_COMPLETE; 2244 ts->stat = SAS_DATA_OVERRUN; 2245 break; 2246 case IO_XFER_ERROR_OFFSET_MISMATCH: 2247 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n"); 2248 ts->resp = SAS_TASK_COMPLETE; 2249 ts->stat = SAS_DATA_OVERRUN; 2250 break; 2251 case IO_XFER_ERROR_XFER_ZERO_DATA_LEN: 2252 pm8001_dbg(pm8001_ha, IO, 2253 "IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n"); 2254 ts->resp = SAS_TASK_COMPLETE; 2255 ts->stat = SAS_DATA_OVERRUN; 2256 break; 2257 case IO_XFER_CMD_FRAME_ISSUED: 2258 pm8001_dbg(pm8001_ha, IO, "IO_XFER_CMD_FRAME_ISSUED\n"); 2259 return; 2260 default: 2261 pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", event); 2262 /* not allowed case. Therefore, return failed status */ 2263 ts->resp = SAS_TASK_COMPLETE; 2264 ts->stat = SAS_DATA_OVERRUN; 2265 break; 2266 } 2267 spin_lock_irqsave(&t->task_state_lock, flags); 2268 t->task_state_flags &= ~SAS_TASK_STATE_PENDING; 2269 t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; 2270 t->task_state_flags |= SAS_TASK_STATE_DONE; 2271 if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { 2272 spin_unlock_irqrestore(&t->task_state_lock, flags); 2273 pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with event 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", 2274 t, event, ts->resp, ts->stat); 2275 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); 2276 } else { 2277 spin_unlock_irqrestore(&t->task_state_lock, flags); 2278 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); 2279 mb();/* in order to force CPU ordering */ 2280 t->task_done(t); 2281 } 2282 } 2283 2284 /*See the comments for mpi_ssp_completion */ 2285 static void 2286 mpi_sata_completion(struct pm8001_hba_info *pm8001_ha, void *piomb) 2287 { 2288 struct sas_task *t; 2289 struct pm8001_ccb_info *ccb; 2290 u32 param; 2291 u32 status; 2292 u32 tag; 2293 int i, j; 2294 u8 sata_addr_low[4]; 2295 u32 temp_sata_addr_low; 2296 u8 sata_addr_hi[4]; 2297 u32 temp_sata_addr_hi; 2298 struct sata_completion_resp *psataPayload; 2299 struct task_status_struct *ts; 2300 struct ata_task_resp *resp ; 2301 u32 *sata_resp; 2302 struct pm8001_device *pm8001_dev; 2303 unsigned long flags; 2304 2305 psataPayload = (struct sata_completion_resp *)(piomb + 4); 2306 status = le32_to_cpu(psataPayload->status); 2307 tag = le32_to_cpu(psataPayload->tag); 2308 2309 if (!tag) { 2310 pm8001_dbg(pm8001_ha, FAIL, "tag null\n"); 2311 return; 2312 } 2313 ccb = &pm8001_ha->ccb_info[tag]; 2314 param = le32_to_cpu(psataPayload->param); 2315 if (ccb) { 2316 t = ccb->task; 2317 pm8001_dev = ccb->device; 2318 } else { 2319 pm8001_dbg(pm8001_ha, FAIL, "ccb null\n"); 2320 return; 2321 } 2322 2323 if (t) { 2324 if (t->dev && (t->dev->lldd_dev)) 2325 pm8001_dev = t->dev->lldd_dev; 2326 } else { 2327 pm8001_dbg(pm8001_ha, FAIL, "task null\n"); 2328 return; 2329 } 2330 2331 if ((pm8001_dev && !(pm8001_dev->id & NCQ_READ_LOG_FLAG)) 2332 && unlikely(!t || !t->lldd_task || !t->dev)) { 2333 pm8001_dbg(pm8001_ha, FAIL, "task or dev null\n"); 2334 return; 2335 } 2336 2337 ts = &t->task_status; 2338 if (!ts) { 2339 pm8001_dbg(pm8001_ha, FAIL, "ts null\n"); 2340 return; 2341 } 2342 2343 if (status) 2344 pm8001_dbg(pm8001_ha, IOERR, 2345 "status:0x%x, tag:0x%x, task::0x%p\n", 2346 status, tag, t); 2347 2348 /* Print sas address of IO failed device */ 2349 if ((status != IO_SUCCESS) && (status != IO_OVERFLOW) && 2350 (status != IO_UNDERFLOW)) { 2351 if (!((t->dev->parent) && 2352 (dev_is_expander(t->dev->parent->dev_type)))) { 2353 for (i = 0, j = 4; j <= 7 && i <= 3; i++, j++) 2354 sata_addr_low[i] = pm8001_ha->sas_addr[j]; 2355 for (i = 0, j = 0; j <= 3 && i <= 3; i++, j++) 2356 sata_addr_hi[i] = pm8001_ha->sas_addr[j]; 2357 memcpy(&temp_sata_addr_low, sata_addr_low, 2358 sizeof(sata_addr_low)); 2359 memcpy(&temp_sata_addr_hi, sata_addr_hi, 2360 sizeof(sata_addr_hi)); 2361 temp_sata_addr_hi = (((temp_sata_addr_hi >> 24) & 0xff) 2362 |((temp_sata_addr_hi << 8) & 2363 0xff0000) | 2364 ((temp_sata_addr_hi >> 8) 2365 & 0xff00) | 2366 ((temp_sata_addr_hi << 24) & 2367 0xff000000)); 2368 temp_sata_addr_low = ((((temp_sata_addr_low >> 24) 2369 & 0xff) | 2370 ((temp_sata_addr_low << 8) 2371 & 0xff0000) | 2372 ((temp_sata_addr_low >> 8) 2373 & 0xff00) | 2374 ((temp_sata_addr_low << 24) 2375 & 0xff000000)) + 2376 pm8001_dev->attached_phy + 2377 0x10); 2378 pm8001_dbg(pm8001_ha, FAIL, 2379 "SAS Address of IO Failure Drive:%08x%08x\n", 2380 temp_sata_addr_hi, 2381 temp_sata_addr_low); 2382 } else { 2383 pm8001_dbg(pm8001_ha, FAIL, 2384 "SAS Address of IO Failure Drive:%016llx\n", 2385 SAS_ADDR(t->dev->sas_addr)); 2386 } 2387 } 2388 switch (status) { 2389 case IO_SUCCESS: 2390 pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS\n"); 2391 if (param == 0) { 2392 ts->resp = SAS_TASK_COMPLETE; 2393 ts->stat = SAS_SAM_STAT_GOOD; 2394 /* check if response is for SEND READ LOG */ 2395 if (pm8001_dev && 2396 (pm8001_dev->id & NCQ_READ_LOG_FLAG)) { 2397 /* set new bit for abort_all */ 2398 pm8001_dev->id |= NCQ_ABORT_ALL_FLAG; 2399 /* clear bit for read log */ 2400 pm8001_dev->id = pm8001_dev->id & 0x7FFFFFFF; 2401 pm8001_send_abort_all(pm8001_ha, pm8001_dev); 2402 /* Free the tag */ 2403 pm8001_tag_free(pm8001_ha, tag); 2404 sas_free_task(t); 2405 return; 2406 } 2407 } else { 2408 u8 len; 2409 ts->resp = SAS_TASK_COMPLETE; 2410 ts->stat = SAS_PROTO_RESPONSE; 2411 ts->residual = param; 2412 pm8001_dbg(pm8001_ha, IO, 2413 "SAS_PROTO_RESPONSE len = %d\n", 2414 param); 2415 sata_resp = &psataPayload->sata_resp[0]; 2416 resp = (struct ata_task_resp *)ts->buf; 2417 if (t->ata_task.dma_xfer == 0 && 2418 t->data_dir == DMA_FROM_DEVICE) { 2419 len = sizeof(struct pio_setup_fis); 2420 pm8001_dbg(pm8001_ha, IO, 2421 "PIO read len = %d\n", len); 2422 } else if (t->ata_task.use_ncq) { 2423 len = sizeof(struct set_dev_bits_fis); 2424 pm8001_dbg(pm8001_ha, IO, "FPDMA len = %d\n", 2425 len); 2426 } else { 2427 len = sizeof(struct dev_to_host_fis); 2428 pm8001_dbg(pm8001_ha, IO, "other len = %d\n", 2429 len); 2430 } 2431 if (SAS_STATUS_BUF_SIZE >= sizeof(*resp)) { 2432 resp->frame_len = len; 2433 memcpy(&resp->ending_fis[0], sata_resp, len); 2434 ts->buf_valid_size = sizeof(*resp); 2435 } else 2436 pm8001_dbg(pm8001_ha, IO, 2437 "response too large\n"); 2438 } 2439 if (pm8001_dev) 2440 atomic_dec(&pm8001_dev->running_req); 2441 break; 2442 case IO_ABORTED: 2443 pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB Tag\n"); 2444 ts->resp = SAS_TASK_COMPLETE; 2445 ts->stat = SAS_ABORTED_TASK; 2446 if (pm8001_dev) 2447 atomic_dec(&pm8001_dev->running_req); 2448 break; 2449 /* following cases are to do cases */ 2450 case IO_UNDERFLOW: 2451 /* SATA Completion with error */ 2452 pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW param = %d\n", param); 2453 ts->resp = SAS_TASK_COMPLETE; 2454 ts->stat = SAS_DATA_UNDERRUN; 2455 ts->residual = param; 2456 if (pm8001_dev) 2457 atomic_dec(&pm8001_dev->running_req); 2458 break; 2459 case IO_NO_DEVICE: 2460 pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n"); 2461 ts->resp = SAS_TASK_UNDELIVERED; 2462 ts->stat = SAS_PHY_DOWN; 2463 if (pm8001_dev) 2464 atomic_dec(&pm8001_dev->running_req); 2465 break; 2466 case IO_XFER_ERROR_BREAK: 2467 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); 2468 ts->resp = SAS_TASK_COMPLETE; 2469 ts->stat = SAS_INTERRUPTED; 2470 if (pm8001_dev) 2471 atomic_dec(&pm8001_dev->running_req); 2472 break; 2473 case IO_XFER_ERROR_PHY_NOT_READY: 2474 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); 2475 ts->resp = SAS_TASK_COMPLETE; 2476 ts->stat = SAS_OPEN_REJECT; 2477 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2478 if (pm8001_dev) 2479 atomic_dec(&pm8001_dev->running_req); 2480 break; 2481 case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: 2482 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); 2483 ts->resp = SAS_TASK_COMPLETE; 2484 ts->stat = SAS_OPEN_REJECT; 2485 ts->open_rej_reason = SAS_OREJ_EPROTO; 2486 if (pm8001_dev) 2487 atomic_dec(&pm8001_dev->running_req); 2488 break; 2489 case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: 2490 pm8001_dbg(pm8001_ha, IO, 2491 "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); 2492 ts->resp = SAS_TASK_COMPLETE; 2493 ts->stat = SAS_OPEN_REJECT; 2494 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 2495 if (pm8001_dev) 2496 atomic_dec(&pm8001_dev->running_req); 2497 break; 2498 case IO_OPEN_CNX_ERROR_BREAK: 2499 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); 2500 ts->resp = SAS_TASK_COMPLETE; 2501 ts->stat = SAS_OPEN_REJECT; 2502 ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; 2503 if (pm8001_dev) 2504 atomic_dec(&pm8001_dev->running_req); 2505 break; 2506 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: 2507 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); 2508 ts->resp = SAS_TASK_COMPLETE; 2509 ts->stat = SAS_DEV_NO_RESPONSE; 2510 if (!t->uldd_task) { 2511 pm8001_handle_event(pm8001_ha, 2512 pm8001_dev, 2513 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); 2514 ts->resp = SAS_TASK_UNDELIVERED; 2515 ts->stat = SAS_QUEUE_FULL; 2516 pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); 2517 return; 2518 } 2519 break; 2520 case IO_OPEN_CNX_ERROR_BAD_DESTINATION: 2521 pm8001_dbg(pm8001_ha, IO, 2522 "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); 2523 ts->resp = SAS_TASK_UNDELIVERED; 2524 ts->stat = SAS_OPEN_REJECT; 2525 ts->open_rej_reason = SAS_OREJ_BAD_DEST; 2526 if (!t->uldd_task) { 2527 pm8001_handle_event(pm8001_ha, 2528 pm8001_dev, 2529 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); 2530 ts->resp = SAS_TASK_UNDELIVERED; 2531 ts->stat = SAS_QUEUE_FULL; 2532 pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); 2533 return; 2534 } 2535 break; 2536 case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: 2537 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); 2538 ts->resp = SAS_TASK_COMPLETE; 2539 ts->stat = SAS_OPEN_REJECT; 2540 ts->open_rej_reason = SAS_OREJ_CONN_RATE; 2541 if (pm8001_dev) 2542 atomic_dec(&pm8001_dev->running_req); 2543 break; 2544 case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY: 2545 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY\n"); 2546 ts->resp = SAS_TASK_COMPLETE; 2547 ts->stat = SAS_DEV_NO_RESPONSE; 2548 if (!t->uldd_task) { 2549 pm8001_handle_event(pm8001_ha, 2550 pm8001_dev, 2551 IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY); 2552 ts->resp = SAS_TASK_UNDELIVERED; 2553 ts->stat = SAS_QUEUE_FULL; 2554 pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); 2555 return; 2556 } 2557 break; 2558 case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: 2559 pm8001_dbg(pm8001_ha, IO, 2560 "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); 2561 ts->resp = SAS_TASK_COMPLETE; 2562 ts->stat = SAS_OPEN_REJECT; 2563 ts->open_rej_reason = SAS_OREJ_WRONG_DEST; 2564 if (pm8001_dev) 2565 atomic_dec(&pm8001_dev->running_req); 2566 break; 2567 case IO_XFER_ERROR_NAK_RECEIVED: 2568 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n"); 2569 ts->resp = SAS_TASK_COMPLETE; 2570 ts->stat = SAS_NAK_R_ERR; 2571 if (pm8001_dev) 2572 atomic_dec(&pm8001_dev->running_req); 2573 break; 2574 case IO_XFER_ERROR_ACK_NAK_TIMEOUT: 2575 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"); 2576 ts->resp = SAS_TASK_COMPLETE; 2577 ts->stat = SAS_NAK_R_ERR; 2578 if (pm8001_dev) 2579 atomic_dec(&pm8001_dev->running_req); 2580 break; 2581 case IO_XFER_ERROR_DMA: 2582 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_DMA\n"); 2583 ts->resp = SAS_TASK_COMPLETE; 2584 ts->stat = SAS_ABORTED_TASK; 2585 if (pm8001_dev) 2586 atomic_dec(&pm8001_dev->running_req); 2587 break; 2588 case IO_XFER_ERROR_SATA_LINK_TIMEOUT: 2589 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_SATA_LINK_TIMEOUT\n"); 2590 ts->resp = SAS_TASK_UNDELIVERED; 2591 ts->stat = SAS_DEV_NO_RESPONSE; 2592 if (pm8001_dev) 2593 atomic_dec(&pm8001_dev->running_req); 2594 break; 2595 case IO_XFER_ERROR_REJECTED_NCQ_MODE: 2596 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_REJECTED_NCQ_MODE\n"); 2597 ts->resp = SAS_TASK_COMPLETE; 2598 ts->stat = SAS_DATA_UNDERRUN; 2599 if (pm8001_dev) 2600 atomic_dec(&pm8001_dev->running_req); 2601 break; 2602 case IO_XFER_OPEN_RETRY_TIMEOUT: 2603 pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); 2604 ts->resp = SAS_TASK_COMPLETE; 2605 ts->stat = SAS_OPEN_TO; 2606 if (pm8001_dev) 2607 atomic_dec(&pm8001_dev->running_req); 2608 break; 2609 case IO_PORT_IN_RESET: 2610 pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n"); 2611 ts->resp = SAS_TASK_COMPLETE; 2612 ts->stat = SAS_DEV_NO_RESPONSE; 2613 if (pm8001_dev) 2614 atomic_dec(&pm8001_dev->running_req); 2615 break; 2616 case IO_DS_NON_OPERATIONAL: 2617 pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n"); 2618 ts->resp = SAS_TASK_COMPLETE; 2619 ts->stat = SAS_DEV_NO_RESPONSE; 2620 if (!t->uldd_task) { 2621 pm8001_handle_event(pm8001_ha, pm8001_dev, 2622 IO_DS_NON_OPERATIONAL); 2623 ts->resp = SAS_TASK_UNDELIVERED; 2624 ts->stat = SAS_QUEUE_FULL; 2625 pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); 2626 return; 2627 } 2628 break; 2629 case IO_DS_IN_RECOVERY: 2630 pm8001_dbg(pm8001_ha, IO, " IO_DS_IN_RECOVERY\n"); 2631 ts->resp = SAS_TASK_COMPLETE; 2632 ts->stat = SAS_DEV_NO_RESPONSE; 2633 if (pm8001_dev) 2634 atomic_dec(&pm8001_dev->running_req); 2635 break; 2636 case IO_DS_IN_ERROR: 2637 pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_ERROR\n"); 2638 ts->resp = SAS_TASK_COMPLETE; 2639 ts->stat = SAS_DEV_NO_RESPONSE; 2640 if (!t->uldd_task) { 2641 pm8001_handle_event(pm8001_ha, pm8001_dev, 2642 IO_DS_IN_ERROR); 2643 ts->resp = SAS_TASK_UNDELIVERED; 2644 ts->stat = SAS_QUEUE_FULL; 2645 pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); 2646 return; 2647 } 2648 break; 2649 case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: 2650 pm8001_dbg(pm8001_ha, IO, 2651 "IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"); 2652 ts->resp = SAS_TASK_COMPLETE; 2653 ts->stat = SAS_OPEN_REJECT; 2654 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2655 if (pm8001_dev) 2656 atomic_dec(&pm8001_dev->running_req); 2657 break; 2658 default: 2659 pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status); 2660 /* not allowed case. Therefore, return failed status */ 2661 ts->resp = SAS_TASK_COMPLETE; 2662 ts->stat = SAS_DEV_NO_RESPONSE; 2663 if (pm8001_dev) 2664 atomic_dec(&pm8001_dev->running_req); 2665 break; 2666 } 2667 spin_lock_irqsave(&t->task_state_lock, flags); 2668 t->task_state_flags &= ~SAS_TASK_STATE_PENDING; 2669 t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; 2670 t->task_state_flags |= SAS_TASK_STATE_DONE; 2671 if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { 2672 spin_unlock_irqrestore(&t->task_state_lock, flags); 2673 pm8001_dbg(pm8001_ha, FAIL, 2674 "task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", 2675 t, status, ts->resp, ts->stat); 2676 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); 2677 } else { 2678 spin_unlock_irqrestore(&t->task_state_lock, flags); 2679 pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); 2680 } 2681 } 2682 2683 /*See the comments for mpi_ssp_completion */ 2684 static void mpi_sata_event(struct pm8001_hba_info *pm8001_ha, void *piomb) 2685 { 2686 struct sas_task *t; 2687 struct task_status_struct *ts; 2688 struct pm8001_ccb_info *ccb; 2689 struct pm8001_device *pm8001_dev; 2690 struct sata_event_resp *psataPayload = 2691 (struct sata_event_resp *)(piomb + 4); 2692 u32 event = le32_to_cpu(psataPayload->event); 2693 u32 tag = le32_to_cpu(psataPayload->tag); 2694 u32 port_id = le32_to_cpu(psataPayload->port_id); 2695 u32 dev_id = le32_to_cpu(psataPayload->device_id); 2696 unsigned long flags; 2697 2698 ccb = &pm8001_ha->ccb_info[tag]; 2699 2700 if (ccb) { 2701 t = ccb->task; 2702 pm8001_dev = ccb->device; 2703 } else { 2704 pm8001_dbg(pm8001_ha, FAIL, "No CCB !!!. returning\n"); 2705 } 2706 if (event) 2707 pm8001_dbg(pm8001_ha, FAIL, "SATA EVENT 0x%x\n", event); 2708 2709 /* Check if this is NCQ error */ 2710 if (event == IO_XFER_ERROR_ABORTED_NCQ_MODE) { 2711 /* find device using device id */ 2712 pm8001_dev = pm8001_find_dev(pm8001_ha, dev_id); 2713 /* send read log extension */ 2714 if (pm8001_dev) 2715 pm8001_send_read_log(pm8001_ha, pm8001_dev); 2716 return; 2717 } 2718 2719 ccb = &pm8001_ha->ccb_info[tag]; 2720 t = ccb->task; 2721 pm8001_dev = ccb->device; 2722 if (event) 2723 pm8001_dbg(pm8001_ha, FAIL, "sata IO status 0x%x\n", event); 2724 if (unlikely(!t || !t->lldd_task || !t->dev)) 2725 return; 2726 ts = &t->task_status; 2727 pm8001_dbg(pm8001_ha, DEVIO, 2728 "port_id:0x%x, device_id:0x%x, tag:0x%x, event:0x%x\n", 2729 port_id, dev_id, tag, event); 2730 switch (event) { 2731 case IO_OVERFLOW: 2732 pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n"); 2733 ts->resp = SAS_TASK_COMPLETE; 2734 ts->stat = SAS_DATA_OVERRUN; 2735 ts->residual = 0; 2736 if (pm8001_dev) 2737 atomic_dec(&pm8001_dev->running_req); 2738 break; 2739 case IO_XFER_ERROR_BREAK: 2740 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); 2741 ts->resp = SAS_TASK_COMPLETE; 2742 ts->stat = SAS_INTERRUPTED; 2743 break; 2744 case IO_XFER_ERROR_PHY_NOT_READY: 2745 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); 2746 ts->resp = SAS_TASK_COMPLETE; 2747 ts->stat = SAS_OPEN_REJECT; 2748 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2749 break; 2750 case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: 2751 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); 2752 ts->resp = SAS_TASK_COMPLETE; 2753 ts->stat = SAS_OPEN_REJECT; 2754 ts->open_rej_reason = SAS_OREJ_EPROTO; 2755 break; 2756 case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: 2757 pm8001_dbg(pm8001_ha, IO, 2758 "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); 2759 ts->resp = SAS_TASK_COMPLETE; 2760 ts->stat = SAS_OPEN_REJECT; 2761 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 2762 break; 2763 case IO_OPEN_CNX_ERROR_BREAK: 2764 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); 2765 ts->resp = SAS_TASK_COMPLETE; 2766 ts->stat = SAS_OPEN_REJECT; 2767 ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; 2768 break; 2769 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: 2770 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); 2771 ts->resp = SAS_TASK_UNDELIVERED; 2772 ts->stat = SAS_DEV_NO_RESPONSE; 2773 if (!t->uldd_task) { 2774 pm8001_handle_event(pm8001_ha, 2775 pm8001_dev, 2776 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); 2777 ts->resp = SAS_TASK_COMPLETE; 2778 ts->stat = SAS_QUEUE_FULL; 2779 pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); 2780 return; 2781 } 2782 break; 2783 case IO_OPEN_CNX_ERROR_BAD_DESTINATION: 2784 pm8001_dbg(pm8001_ha, IO, 2785 "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); 2786 ts->resp = SAS_TASK_UNDELIVERED; 2787 ts->stat = SAS_OPEN_REJECT; 2788 ts->open_rej_reason = SAS_OREJ_BAD_DEST; 2789 break; 2790 case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: 2791 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); 2792 ts->resp = SAS_TASK_COMPLETE; 2793 ts->stat = SAS_OPEN_REJECT; 2794 ts->open_rej_reason = SAS_OREJ_CONN_RATE; 2795 break; 2796 case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: 2797 pm8001_dbg(pm8001_ha, IO, 2798 "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); 2799 ts->resp = SAS_TASK_COMPLETE; 2800 ts->stat = SAS_OPEN_REJECT; 2801 ts->open_rej_reason = SAS_OREJ_WRONG_DEST; 2802 break; 2803 case IO_XFER_ERROR_NAK_RECEIVED: 2804 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n"); 2805 ts->resp = SAS_TASK_COMPLETE; 2806 ts->stat = SAS_NAK_R_ERR; 2807 break; 2808 case IO_XFER_ERROR_PEER_ABORTED: 2809 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PEER_ABORTED\n"); 2810 ts->resp = SAS_TASK_COMPLETE; 2811 ts->stat = SAS_NAK_R_ERR; 2812 break; 2813 case IO_XFER_ERROR_REJECTED_NCQ_MODE: 2814 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_REJECTED_NCQ_MODE\n"); 2815 ts->resp = SAS_TASK_COMPLETE; 2816 ts->stat = SAS_DATA_UNDERRUN; 2817 break; 2818 case IO_XFER_OPEN_RETRY_TIMEOUT: 2819 pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); 2820 ts->resp = SAS_TASK_COMPLETE; 2821 ts->stat = SAS_OPEN_TO; 2822 break; 2823 case IO_XFER_ERROR_UNEXPECTED_PHASE: 2824 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_UNEXPECTED_PHASE\n"); 2825 ts->resp = SAS_TASK_COMPLETE; 2826 ts->stat = SAS_OPEN_TO; 2827 break; 2828 case IO_XFER_ERROR_XFER_RDY_OVERRUN: 2829 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_RDY_OVERRUN\n"); 2830 ts->resp = SAS_TASK_COMPLETE; 2831 ts->stat = SAS_OPEN_TO; 2832 break; 2833 case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED: 2834 pm8001_dbg(pm8001_ha, IO, 2835 "IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n"); 2836 ts->resp = SAS_TASK_COMPLETE; 2837 ts->stat = SAS_OPEN_TO; 2838 break; 2839 case IO_XFER_ERROR_OFFSET_MISMATCH: 2840 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n"); 2841 ts->resp = SAS_TASK_COMPLETE; 2842 ts->stat = SAS_OPEN_TO; 2843 break; 2844 case IO_XFER_ERROR_XFER_ZERO_DATA_LEN: 2845 pm8001_dbg(pm8001_ha, IO, 2846 "IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n"); 2847 ts->resp = SAS_TASK_COMPLETE; 2848 ts->stat = SAS_OPEN_TO; 2849 break; 2850 case IO_XFER_CMD_FRAME_ISSUED: 2851 pm8001_dbg(pm8001_ha, IO, "IO_XFER_CMD_FRAME_ISSUED\n"); 2852 break; 2853 case IO_XFER_PIO_SETUP_ERROR: 2854 pm8001_dbg(pm8001_ha, IO, "IO_XFER_PIO_SETUP_ERROR\n"); 2855 ts->resp = SAS_TASK_COMPLETE; 2856 ts->stat = SAS_OPEN_TO; 2857 break; 2858 default: 2859 pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", event); 2860 /* not allowed case. Therefore, return failed status */ 2861 ts->resp = SAS_TASK_COMPLETE; 2862 ts->stat = SAS_OPEN_TO; 2863 break; 2864 } 2865 spin_lock_irqsave(&t->task_state_lock, flags); 2866 t->task_state_flags &= ~SAS_TASK_STATE_PENDING; 2867 t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; 2868 t->task_state_flags |= SAS_TASK_STATE_DONE; 2869 if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { 2870 spin_unlock_irqrestore(&t->task_state_lock, flags); 2871 pm8001_dbg(pm8001_ha, FAIL, 2872 "task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", 2873 t, event, ts->resp, ts->stat); 2874 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); 2875 } else { 2876 spin_unlock_irqrestore(&t->task_state_lock, flags); 2877 pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); 2878 } 2879 } 2880 2881 /*See the comments for mpi_ssp_completion */ 2882 static void 2883 mpi_smp_completion(struct pm8001_hba_info *pm8001_ha, void *piomb) 2884 { 2885 struct sas_task *t; 2886 struct pm8001_ccb_info *ccb; 2887 unsigned long flags; 2888 u32 status; 2889 u32 tag; 2890 struct smp_completion_resp *psmpPayload; 2891 struct task_status_struct *ts; 2892 struct pm8001_device *pm8001_dev; 2893 2894 psmpPayload = (struct smp_completion_resp *)(piomb + 4); 2895 status = le32_to_cpu(psmpPayload->status); 2896 tag = le32_to_cpu(psmpPayload->tag); 2897 2898 ccb = &pm8001_ha->ccb_info[tag]; 2899 t = ccb->task; 2900 ts = &t->task_status; 2901 pm8001_dev = ccb->device; 2902 if (status) { 2903 pm8001_dbg(pm8001_ha, FAIL, "smp IO status 0x%x\n", status); 2904 pm8001_dbg(pm8001_ha, IOERR, 2905 "status:0x%x, tag:0x%x, task:0x%p\n", 2906 status, tag, t); 2907 } 2908 if (unlikely(!t || !t->lldd_task || !t->dev)) 2909 return; 2910 2911 switch (status) { 2912 case IO_SUCCESS: 2913 pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS\n"); 2914 ts->resp = SAS_TASK_COMPLETE; 2915 ts->stat = SAS_SAM_STAT_GOOD; 2916 if (pm8001_dev) 2917 atomic_dec(&pm8001_dev->running_req); 2918 break; 2919 case IO_ABORTED: 2920 pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB\n"); 2921 ts->resp = SAS_TASK_COMPLETE; 2922 ts->stat = SAS_ABORTED_TASK; 2923 if (pm8001_dev) 2924 atomic_dec(&pm8001_dev->running_req); 2925 break; 2926 case IO_OVERFLOW: 2927 pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n"); 2928 ts->resp = SAS_TASK_COMPLETE; 2929 ts->stat = SAS_DATA_OVERRUN; 2930 ts->residual = 0; 2931 if (pm8001_dev) 2932 atomic_dec(&pm8001_dev->running_req); 2933 break; 2934 case IO_NO_DEVICE: 2935 pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n"); 2936 ts->resp = SAS_TASK_COMPLETE; 2937 ts->stat = SAS_PHY_DOWN; 2938 break; 2939 case IO_ERROR_HW_TIMEOUT: 2940 pm8001_dbg(pm8001_ha, IO, "IO_ERROR_HW_TIMEOUT\n"); 2941 ts->resp = SAS_TASK_COMPLETE; 2942 ts->stat = SAS_SAM_STAT_BUSY; 2943 break; 2944 case IO_XFER_ERROR_BREAK: 2945 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); 2946 ts->resp = SAS_TASK_COMPLETE; 2947 ts->stat = SAS_SAM_STAT_BUSY; 2948 break; 2949 case IO_XFER_ERROR_PHY_NOT_READY: 2950 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); 2951 ts->resp = SAS_TASK_COMPLETE; 2952 ts->stat = SAS_SAM_STAT_BUSY; 2953 break; 2954 case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: 2955 pm8001_dbg(pm8001_ha, IO, 2956 "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); 2957 ts->resp = SAS_TASK_COMPLETE; 2958 ts->stat = SAS_OPEN_REJECT; 2959 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 2960 break; 2961 case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: 2962 pm8001_dbg(pm8001_ha, IO, 2963 "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); 2964 ts->resp = SAS_TASK_COMPLETE; 2965 ts->stat = SAS_OPEN_REJECT; 2966 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 2967 break; 2968 case IO_OPEN_CNX_ERROR_BREAK: 2969 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); 2970 ts->resp = SAS_TASK_COMPLETE; 2971 ts->stat = SAS_OPEN_REJECT; 2972 ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; 2973 break; 2974 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: 2975 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); 2976 ts->resp = SAS_TASK_COMPLETE; 2977 ts->stat = SAS_OPEN_REJECT; 2978 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 2979 pm8001_handle_event(pm8001_ha, 2980 pm8001_dev, 2981 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); 2982 break; 2983 case IO_OPEN_CNX_ERROR_BAD_DESTINATION: 2984 pm8001_dbg(pm8001_ha, IO, 2985 "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); 2986 ts->resp = SAS_TASK_COMPLETE; 2987 ts->stat = SAS_OPEN_REJECT; 2988 ts->open_rej_reason = SAS_OREJ_BAD_DEST; 2989 break; 2990 case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: 2991 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); 2992 ts->resp = SAS_TASK_COMPLETE; 2993 ts->stat = SAS_OPEN_REJECT; 2994 ts->open_rej_reason = SAS_OREJ_CONN_RATE; 2995 break; 2996 case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: 2997 pm8001_dbg(pm8001_ha, IO, 2998 "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); 2999 ts->resp = SAS_TASK_COMPLETE; 3000 ts->stat = SAS_OPEN_REJECT; 3001 ts->open_rej_reason = SAS_OREJ_WRONG_DEST; 3002 break; 3003 case IO_XFER_ERROR_RX_FRAME: 3004 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_RX_FRAME\n"); 3005 ts->resp = SAS_TASK_COMPLETE; 3006 ts->stat = SAS_DEV_NO_RESPONSE; 3007 break; 3008 case IO_XFER_OPEN_RETRY_TIMEOUT: 3009 pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); 3010 ts->resp = SAS_TASK_COMPLETE; 3011 ts->stat = SAS_OPEN_REJECT; 3012 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 3013 break; 3014 case IO_ERROR_INTERNAL_SMP_RESOURCE: 3015 pm8001_dbg(pm8001_ha, IO, "IO_ERROR_INTERNAL_SMP_RESOURCE\n"); 3016 ts->resp = SAS_TASK_COMPLETE; 3017 ts->stat = SAS_QUEUE_FULL; 3018 break; 3019 case IO_PORT_IN_RESET: 3020 pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n"); 3021 ts->resp = SAS_TASK_COMPLETE; 3022 ts->stat = SAS_OPEN_REJECT; 3023 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 3024 break; 3025 case IO_DS_NON_OPERATIONAL: 3026 pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n"); 3027 ts->resp = SAS_TASK_COMPLETE; 3028 ts->stat = SAS_DEV_NO_RESPONSE; 3029 break; 3030 case IO_DS_IN_RECOVERY: 3031 pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_RECOVERY\n"); 3032 ts->resp = SAS_TASK_COMPLETE; 3033 ts->stat = SAS_OPEN_REJECT; 3034 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 3035 break; 3036 case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: 3037 pm8001_dbg(pm8001_ha, IO, 3038 "IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"); 3039 ts->resp = SAS_TASK_COMPLETE; 3040 ts->stat = SAS_OPEN_REJECT; 3041 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 3042 break; 3043 default: 3044 pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status); 3045 ts->resp = SAS_TASK_COMPLETE; 3046 ts->stat = SAS_DEV_NO_RESPONSE; 3047 /* not allowed case. Therefore, return failed status */ 3048 break; 3049 } 3050 spin_lock_irqsave(&t->task_state_lock, flags); 3051 t->task_state_flags &= ~SAS_TASK_STATE_PENDING; 3052 t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; 3053 t->task_state_flags |= SAS_TASK_STATE_DONE; 3054 if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { 3055 spin_unlock_irqrestore(&t->task_state_lock, flags); 3056 pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", 3057 t, status, ts->resp, ts->stat); 3058 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); 3059 } else { 3060 spin_unlock_irqrestore(&t->task_state_lock, flags); 3061 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); 3062 mb();/* in order to force CPU ordering */ 3063 t->task_done(t); 3064 } 3065 } 3066 3067 void pm8001_mpi_set_dev_state_resp(struct pm8001_hba_info *pm8001_ha, 3068 void *piomb) 3069 { 3070 struct set_dev_state_resp *pPayload = 3071 (struct set_dev_state_resp *)(piomb + 4); 3072 u32 tag = le32_to_cpu(pPayload->tag); 3073 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; 3074 struct pm8001_device *pm8001_dev = ccb->device; 3075 u32 status = le32_to_cpu(pPayload->status); 3076 u32 device_id = le32_to_cpu(pPayload->device_id); 3077 u8 pds = le32_to_cpu(pPayload->pds_nds) & PDS_BITS; 3078 u8 nds = le32_to_cpu(pPayload->pds_nds) & NDS_BITS; 3079 pm8001_dbg(pm8001_ha, MSG, "Set device id = 0x%x state from 0x%x to 0x%x status = 0x%x!\n", 3080 device_id, pds, nds, status); 3081 complete(pm8001_dev->setds_completion); 3082 ccb->task = NULL; 3083 ccb->ccb_tag = 0xFFFFFFFF; 3084 pm8001_tag_free(pm8001_ha, tag); 3085 } 3086 3087 void pm8001_mpi_set_nvmd_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) 3088 { 3089 struct get_nvm_data_resp *pPayload = 3090 (struct get_nvm_data_resp *)(piomb + 4); 3091 u32 tag = le32_to_cpu(pPayload->tag); 3092 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; 3093 u32 dlen_status = le32_to_cpu(pPayload->dlen_status); 3094 complete(pm8001_ha->nvmd_completion); 3095 pm8001_dbg(pm8001_ha, MSG, "Set nvm data complete!\n"); 3096 if ((dlen_status & NVMD_STAT) != 0) { 3097 pm8001_dbg(pm8001_ha, FAIL, "Set nvm data error %x\n", 3098 dlen_status); 3099 } 3100 ccb->task = NULL; 3101 ccb->ccb_tag = 0xFFFFFFFF; 3102 pm8001_tag_free(pm8001_ha, tag); 3103 } 3104 3105 void 3106 pm8001_mpi_get_nvmd_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) 3107 { 3108 struct fw_control_ex *fw_control_context; 3109 struct get_nvm_data_resp *pPayload = 3110 (struct get_nvm_data_resp *)(piomb + 4); 3111 u32 tag = le32_to_cpu(pPayload->tag); 3112 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; 3113 u32 dlen_status = le32_to_cpu(pPayload->dlen_status); 3114 u32 ir_tds_bn_dps_das_nvm = 3115 le32_to_cpu(pPayload->ir_tda_bn_dps_das_nvm); 3116 void *virt_addr = pm8001_ha->memoryMap.region[NVMD].virt_ptr; 3117 fw_control_context = ccb->fw_control_context; 3118 3119 pm8001_dbg(pm8001_ha, MSG, "Get nvm data complete!\n"); 3120 if ((dlen_status & NVMD_STAT) != 0) { 3121 pm8001_dbg(pm8001_ha, FAIL, "Get nvm data error %x\n", 3122 dlen_status); 3123 complete(pm8001_ha->nvmd_completion); 3124 /* We should free tag during failure also, the tag is not being 3125 * freed by requesting path anywhere. 3126 */ 3127 ccb->task = NULL; 3128 ccb->ccb_tag = 0xFFFFFFFF; 3129 pm8001_tag_free(pm8001_ha, tag); 3130 return; 3131 } 3132 if (ir_tds_bn_dps_das_nvm & IPMode) { 3133 /* indirect mode - IR bit set */ 3134 pm8001_dbg(pm8001_ha, MSG, "Get NVMD success, IR=1\n"); 3135 if ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == TWI_DEVICE) { 3136 if (ir_tds_bn_dps_das_nvm == 0x80a80200) { 3137 memcpy(pm8001_ha->sas_addr, 3138 ((u8 *)virt_addr + 4), 3139 SAS_ADDR_SIZE); 3140 pm8001_dbg(pm8001_ha, MSG, "Get SAS address from VPD successfully!\n"); 3141 } 3142 } else if (((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == C_SEEPROM) 3143 || ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == VPD_FLASH) || 3144 ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == EXPAN_ROM)) { 3145 ; 3146 } else if (((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == AAP1_RDUMP) 3147 || ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == IOP_RDUMP)) { 3148 ; 3149 } else { 3150 /* Should not be happened*/ 3151 pm8001_dbg(pm8001_ha, MSG, 3152 "(IR=1)Wrong Device type 0x%x\n", 3153 ir_tds_bn_dps_das_nvm); 3154 } 3155 } else /* direct mode */{ 3156 pm8001_dbg(pm8001_ha, MSG, 3157 "Get NVMD success, IR=0, dataLen=%d\n", 3158 (dlen_status & NVMD_LEN) >> 24); 3159 } 3160 /* Though fw_control_context is freed below, usrAddr still needs 3161 * to be updated as this holds the response to the request function 3162 */ 3163 memcpy(fw_control_context->usrAddr, 3164 pm8001_ha->memoryMap.region[NVMD].virt_ptr, 3165 fw_control_context->len); 3166 kfree(ccb->fw_control_context); 3167 /* To avoid race condition, complete should be 3168 * called after the message is copied to 3169 * fw_control_context->usrAddr 3170 */ 3171 complete(pm8001_ha->nvmd_completion); 3172 pm8001_dbg(pm8001_ha, MSG, "Get nvmd data complete!\n"); 3173 ccb->task = NULL; 3174 ccb->ccb_tag = 0xFFFFFFFF; 3175 pm8001_tag_free(pm8001_ha, tag); 3176 } 3177 3178 int pm8001_mpi_local_phy_ctl(struct pm8001_hba_info *pm8001_ha, void *piomb) 3179 { 3180 u32 tag; 3181 struct local_phy_ctl_resp *pPayload = 3182 (struct local_phy_ctl_resp *)(piomb + 4); 3183 u32 status = le32_to_cpu(pPayload->status); 3184 u32 phy_id = le32_to_cpu(pPayload->phyop_phyid) & ID_BITS; 3185 u32 phy_op = le32_to_cpu(pPayload->phyop_phyid) & OP_BITS; 3186 tag = le32_to_cpu(pPayload->tag); 3187 if (status != 0) { 3188 pm8001_dbg(pm8001_ha, MSG, 3189 "%x phy execute %x phy op failed!\n", 3190 phy_id, phy_op); 3191 } else { 3192 pm8001_dbg(pm8001_ha, MSG, 3193 "%x phy execute %x phy op success!\n", 3194 phy_id, phy_op); 3195 pm8001_ha->phy[phy_id].reset_success = true; 3196 } 3197 if (pm8001_ha->phy[phy_id].enable_completion) { 3198 complete(pm8001_ha->phy[phy_id].enable_completion); 3199 pm8001_ha->phy[phy_id].enable_completion = NULL; 3200 } 3201 pm8001_tag_free(pm8001_ha, tag); 3202 return 0; 3203 } 3204 3205 /** 3206 * pm8001_bytes_dmaed - one of the interface function communication with libsas 3207 * @pm8001_ha: our hba card information 3208 * @i: which phy that received the event. 3209 * 3210 * when HBA driver received the identify done event or initiate FIS received 3211 * event(for SATA), it will invoke this function to notify the sas layer that 3212 * the sas toplogy has formed, please discover the the whole sas domain, 3213 * while receive a broadcast(change) primitive just tell the sas 3214 * layer to discover the changed domain rather than the whole domain. 3215 */ 3216 void pm8001_bytes_dmaed(struct pm8001_hba_info *pm8001_ha, int i) 3217 { 3218 struct pm8001_phy *phy = &pm8001_ha->phy[i]; 3219 struct asd_sas_phy *sas_phy = &phy->sas_phy; 3220 if (!phy->phy_attached) 3221 return; 3222 3223 if (sas_phy->phy) { 3224 struct sas_phy *sphy = sas_phy->phy; 3225 sphy->negotiated_linkrate = sas_phy->linkrate; 3226 sphy->minimum_linkrate = phy->minimum_linkrate; 3227 sphy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS; 3228 sphy->maximum_linkrate = phy->maximum_linkrate; 3229 sphy->maximum_linkrate_hw = phy->maximum_linkrate; 3230 } 3231 3232 if (phy->phy_type & PORT_TYPE_SAS) { 3233 struct sas_identify_frame *id; 3234 id = (struct sas_identify_frame *)phy->frame_rcvd; 3235 id->dev_type = phy->identify.device_type; 3236 id->initiator_bits = SAS_PROTOCOL_ALL; 3237 id->target_bits = phy->identify.target_port_protocols; 3238 } else if (phy->phy_type & PORT_TYPE_SATA) { 3239 /*Nothing*/ 3240 } 3241 pm8001_dbg(pm8001_ha, MSG, "phy %d byte dmaded.\n", i); 3242 3243 sas_phy->frame_rcvd_size = phy->frame_rcvd_size; 3244 sas_notify_port_event(sas_phy, PORTE_BYTES_DMAED, GFP_ATOMIC); 3245 } 3246 3247 /* Get the link rate speed */ 3248 void pm8001_get_lrate_mode(struct pm8001_phy *phy, u8 link_rate) 3249 { 3250 struct sas_phy *sas_phy = phy->sas_phy.phy; 3251 3252 switch (link_rate) { 3253 case PHY_SPEED_120: 3254 phy->sas_phy.linkrate = SAS_LINK_RATE_12_0_GBPS; 3255 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_12_0_GBPS; 3256 break; 3257 case PHY_SPEED_60: 3258 phy->sas_phy.linkrate = SAS_LINK_RATE_6_0_GBPS; 3259 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS; 3260 break; 3261 case PHY_SPEED_30: 3262 phy->sas_phy.linkrate = SAS_LINK_RATE_3_0_GBPS; 3263 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS; 3264 break; 3265 case PHY_SPEED_15: 3266 phy->sas_phy.linkrate = SAS_LINK_RATE_1_5_GBPS; 3267 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS; 3268 break; 3269 } 3270 sas_phy->negotiated_linkrate = phy->sas_phy.linkrate; 3271 sas_phy->maximum_linkrate_hw = SAS_LINK_RATE_6_0_GBPS; 3272 sas_phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS; 3273 sas_phy->maximum_linkrate = SAS_LINK_RATE_6_0_GBPS; 3274 sas_phy->minimum_linkrate = SAS_LINK_RATE_1_5_GBPS; 3275 } 3276 3277 /** 3278 * pm8001_get_attached_sas_addr - extract/generate attached SAS address 3279 * @phy: pointer to asd_phy 3280 * @sas_addr: pointer to buffer where the SAS address is to be written 3281 * 3282 * This function extracts the SAS address from an IDENTIFY frame 3283 * received. If OOB is SATA, then a SAS address is generated from the 3284 * HA tables. 3285 * 3286 * LOCKING: the frame_rcvd_lock needs to be held since this parses the frame 3287 * buffer. 3288 */ 3289 void pm8001_get_attached_sas_addr(struct pm8001_phy *phy, 3290 u8 *sas_addr) 3291 { 3292 if (phy->sas_phy.frame_rcvd[0] == 0x34 3293 && phy->sas_phy.oob_mode == SATA_OOB_MODE) { 3294 struct pm8001_hba_info *pm8001_ha = phy->sas_phy.ha->lldd_ha; 3295 /* FIS device-to-host */ 3296 u64 addr = be64_to_cpu(*(__be64 *)pm8001_ha->sas_addr); 3297 addr += phy->sas_phy.id; 3298 *(__be64 *)sas_addr = cpu_to_be64(addr); 3299 } else { 3300 struct sas_identify_frame *idframe = 3301 (void *) phy->sas_phy.frame_rcvd; 3302 memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE); 3303 } 3304 } 3305 3306 /** 3307 * pm8001_hw_event_ack_req- For PM8001,some events need to acknowage to FW. 3308 * @pm8001_ha: our hba card information 3309 * @Qnum: the outbound queue message number. 3310 * @SEA: source of event to ack 3311 * @port_id: port id. 3312 * @phyId: phy id. 3313 * @param0: parameter 0. 3314 * @param1: parameter 1. 3315 */ 3316 static void pm8001_hw_event_ack_req(struct pm8001_hba_info *pm8001_ha, 3317 u32 Qnum, u32 SEA, u32 port_id, u32 phyId, u32 param0, u32 param1) 3318 { 3319 struct hw_event_ack_req payload; 3320 u32 opc = OPC_INB_SAS_HW_EVENT_ACK; 3321 3322 struct inbound_queue_table *circularQ; 3323 3324 memset((u8 *)&payload, 0, sizeof(payload)); 3325 circularQ = &pm8001_ha->inbnd_q_tbl[Qnum]; 3326 payload.tag = cpu_to_le32(1); 3327 payload.sea_phyid_portid = cpu_to_le32(((SEA & 0xFFFF) << 8) | 3328 ((phyId & 0x0F) << 4) | (port_id & 0x0F)); 3329 payload.param0 = cpu_to_le32(param0); 3330 payload.param1 = cpu_to_le32(param1); 3331 pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, 3332 sizeof(payload), 0); 3333 } 3334 3335 static int pm8001_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha, 3336 u32 phyId, u32 phy_op); 3337 3338 /** 3339 * hw_event_sas_phy_up -FW tells me a SAS phy up event. 3340 * @pm8001_ha: our hba card information 3341 * @piomb: IO message buffer 3342 */ 3343 static void 3344 hw_event_sas_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb) 3345 { 3346 struct hw_event_resp *pPayload = 3347 (struct hw_event_resp *)(piomb + 4); 3348 u32 lr_evt_status_phyid_portid = 3349 le32_to_cpu(pPayload->lr_evt_status_phyid_portid); 3350 u8 link_rate = 3351 (u8)((lr_evt_status_phyid_portid & 0xF0000000) >> 28); 3352 u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); 3353 u8 phy_id = 3354 (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); 3355 u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate); 3356 u8 portstate = (u8)(npip_portstate & 0x0000000F); 3357 struct pm8001_port *port = &pm8001_ha->port[port_id]; 3358 struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; 3359 unsigned long flags; 3360 u8 deviceType = pPayload->sas_identify.dev_type; 3361 phy->port = port; 3362 port->port_id = port_id; 3363 port->port_state = portstate; 3364 phy->phy_state = PHY_STATE_LINK_UP_SPC; 3365 pm8001_dbg(pm8001_ha, MSG, 3366 "HW_EVENT_SAS_PHY_UP port id = %d, phy id = %d\n", 3367 port_id, phy_id); 3368 3369 switch (deviceType) { 3370 case SAS_PHY_UNUSED: 3371 pm8001_dbg(pm8001_ha, MSG, "device type no device.\n"); 3372 break; 3373 case SAS_END_DEVICE: 3374 pm8001_dbg(pm8001_ha, MSG, "end device.\n"); 3375 pm8001_chip_phy_ctl_req(pm8001_ha, phy_id, 3376 PHY_NOTIFY_ENABLE_SPINUP); 3377 port->port_attached = 1; 3378 pm8001_get_lrate_mode(phy, link_rate); 3379 break; 3380 case SAS_EDGE_EXPANDER_DEVICE: 3381 pm8001_dbg(pm8001_ha, MSG, "expander device.\n"); 3382 port->port_attached = 1; 3383 pm8001_get_lrate_mode(phy, link_rate); 3384 break; 3385 case SAS_FANOUT_EXPANDER_DEVICE: 3386 pm8001_dbg(pm8001_ha, MSG, "fanout expander device.\n"); 3387 port->port_attached = 1; 3388 pm8001_get_lrate_mode(phy, link_rate); 3389 break; 3390 default: 3391 pm8001_dbg(pm8001_ha, DEVIO, "unknown device type(%x)\n", 3392 deviceType); 3393 break; 3394 } 3395 phy->phy_type |= PORT_TYPE_SAS; 3396 phy->identify.device_type = deviceType; 3397 phy->phy_attached = 1; 3398 if (phy->identify.device_type == SAS_END_DEVICE) 3399 phy->identify.target_port_protocols = SAS_PROTOCOL_SSP; 3400 else if (phy->identify.device_type != SAS_PHY_UNUSED) 3401 phy->identify.target_port_protocols = SAS_PROTOCOL_SMP; 3402 phy->sas_phy.oob_mode = SAS_OOB_MODE; 3403 sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE, GFP_ATOMIC); 3404 spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags); 3405 memcpy(phy->frame_rcvd, &pPayload->sas_identify, 3406 sizeof(struct sas_identify_frame)-4); 3407 phy->frame_rcvd_size = sizeof(struct sas_identify_frame) - 4; 3408 pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr); 3409 spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags); 3410 if (pm8001_ha->flags == PM8001F_RUN_TIME) 3411 mdelay(200);/*delay a moment to wait disk to spinup*/ 3412 pm8001_bytes_dmaed(pm8001_ha, phy_id); 3413 } 3414 3415 /** 3416 * hw_event_sata_phy_up -FW tells me a SATA phy up event. 3417 * @pm8001_ha: our hba card information 3418 * @piomb: IO message buffer 3419 */ 3420 static void 3421 hw_event_sata_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb) 3422 { 3423 struct hw_event_resp *pPayload = 3424 (struct hw_event_resp *)(piomb + 4); 3425 u32 lr_evt_status_phyid_portid = 3426 le32_to_cpu(pPayload->lr_evt_status_phyid_portid); 3427 u8 link_rate = 3428 (u8)((lr_evt_status_phyid_portid & 0xF0000000) >> 28); 3429 u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); 3430 u8 phy_id = 3431 (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); 3432 u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate); 3433 u8 portstate = (u8)(npip_portstate & 0x0000000F); 3434 struct pm8001_port *port = &pm8001_ha->port[port_id]; 3435 struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; 3436 unsigned long flags; 3437 pm8001_dbg(pm8001_ha, DEVIO, "HW_EVENT_SATA_PHY_UP port id = %d, phy id = %d\n", 3438 port_id, phy_id); 3439 phy->port = port; 3440 port->port_id = port_id; 3441 port->port_state = portstate; 3442 phy->phy_state = PHY_STATE_LINK_UP_SPC; 3443 port->port_attached = 1; 3444 pm8001_get_lrate_mode(phy, link_rate); 3445 phy->phy_type |= PORT_TYPE_SATA; 3446 phy->phy_attached = 1; 3447 phy->sas_phy.oob_mode = SATA_OOB_MODE; 3448 sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE, GFP_ATOMIC); 3449 spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags); 3450 memcpy(phy->frame_rcvd, ((u8 *)&pPayload->sata_fis - 4), 3451 sizeof(struct dev_to_host_fis)); 3452 phy->frame_rcvd_size = sizeof(struct dev_to_host_fis); 3453 phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; 3454 phy->identify.device_type = SAS_SATA_DEV; 3455 pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr); 3456 spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags); 3457 pm8001_bytes_dmaed(pm8001_ha, phy_id); 3458 } 3459 3460 /** 3461 * hw_event_phy_down -we should notify the libsas the phy is down. 3462 * @pm8001_ha: our hba card information 3463 * @piomb: IO message buffer 3464 */ 3465 static void 3466 hw_event_phy_down(struct pm8001_hba_info *pm8001_ha, void *piomb) 3467 { 3468 struct hw_event_resp *pPayload = 3469 (struct hw_event_resp *)(piomb + 4); 3470 u32 lr_evt_status_phyid_portid = 3471 le32_to_cpu(pPayload->lr_evt_status_phyid_portid); 3472 u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); 3473 u8 phy_id = 3474 (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); 3475 u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate); 3476 u8 portstate = (u8)(npip_portstate & 0x0000000F); 3477 struct pm8001_port *port = &pm8001_ha->port[port_id]; 3478 struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; 3479 port->port_state = portstate; 3480 phy->phy_type = 0; 3481 phy->identify.device_type = 0; 3482 phy->phy_attached = 0; 3483 memset(&phy->dev_sas_addr, 0, SAS_ADDR_SIZE); 3484 switch (portstate) { 3485 case PORT_VALID: 3486 break; 3487 case PORT_INVALID: 3488 pm8001_dbg(pm8001_ha, MSG, " PortInvalid portID %d\n", 3489 port_id); 3490 pm8001_dbg(pm8001_ha, MSG, 3491 " Last phy Down and port invalid\n"); 3492 port->port_attached = 0; 3493 pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN, 3494 port_id, phy_id, 0, 0); 3495 break; 3496 case PORT_IN_RESET: 3497 pm8001_dbg(pm8001_ha, MSG, " Port In Reset portID %d\n", 3498 port_id); 3499 break; 3500 case PORT_NOT_ESTABLISHED: 3501 pm8001_dbg(pm8001_ha, MSG, 3502 " phy Down and PORT_NOT_ESTABLISHED\n"); 3503 port->port_attached = 0; 3504 break; 3505 case PORT_LOSTCOMM: 3506 pm8001_dbg(pm8001_ha, MSG, " phy Down and PORT_LOSTCOMM\n"); 3507 pm8001_dbg(pm8001_ha, MSG, 3508 " Last phy Down and port invalid\n"); 3509 port->port_attached = 0; 3510 pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN, 3511 port_id, phy_id, 0, 0); 3512 break; 3513 default: 3514 port->port_attached = 0; 3515 pm8001_dbg(pm8001_ha, DEVIO, " phy Down and(default) = %x\n", 3516 portstate); 3517 break; 3518 3519 } 3520 } 3521 3522 /** 3523 * pm8001_mpi_reg_resp -process register device ID response. 3524 * @pm8001_ha: our hba card information 3525 * @piomb: IO message buffer 3526 * 3527 * when sas layer find a device it will notify LLDD, then the driver register 3528 * the domain device to FW, this event is the return device ID which the FW 3529 * has assigned, from now, inter-communication with FW is no longer using the 3530 * SAS address, use device ID which FW assigned. 3531 */ 3532 int pm8001_mpi_reg_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) 3533 { 3534 u32 status; 3535 u32 device_id; 3536 u32 htag; 3537 struct pm8001_ccb_info *ccb; 3538 struct pm8001_device *pm8001_dev; 3539 struct dev_reg_resp *registerRespPayload = 3540 (struct dev_reg_resp *)(piomb + 4); 3541 3542 htag = le32_to_cpu(registerRespPayload->tag); 3543 ccb = &pm8001_ha->ccb_info[htag]; 3544 pm8001_dev = ccb->device; 3545 status = le32_to_cpu(registerRespPayload->status); 3546 device_id = le32_to_cpu(registerRespPayload->device_id); 3547 pm8001_dbg(pm8001_ha, MSG, " register device is status = %d\n", 3548 status); 3549 switch (status) { 3550 case DEVREG_SUCCESS: 3551 pm8001_dbg(pm8001_ha, MSG, "DEVREG_SUCCESS\n"); 3552 pm8001_dev->device_id = device_id; 3553 break; 3554 case DEVREG_FAILURE_OUT_OF_RESOURCE: 3555 pm8001_dbg(pm8001_ha, MSG, "DEVREG_FAILURE_OUT_OF_RESOURCE\n"); 3556 break; 3557 case DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED: 3558 pm8001_dbg(pm8001_ha, MSG, 3559 "DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED\n"); 3560 break; 3561 case DEVREG_FAILURE_INVALID_PHY_ID: 3562 pm8001_dbg(pm8001_ha, MSG, "DEVREG_FAILURE_INVALID_PHY_ID\n"); 3563 break; 3564 case DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED: 3565 pm8001_dbg(pm8001_ha, MSG, 3566 "DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED\n"); 3567 break; 3568 case DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE: 3569 pm8001_dbg(pm8001_ha, MSG, 3570 "DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE\n"); 3571 break; 3572 case DEVREG_FAILURE_PORT_NOT_VALID_STATE: 3573 pm8001_dbg(pm8001_ha, MSG, 3574 "DEVREG_FAILURE_PORT_NOT_VALID_STATE\n"); 3575 break; 3576 case DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID: 3577 pm8001_dbg(pm8001_ha, MSG, 3578 "DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID\n"); 3579 break; 3580 default: 3581 pm8001_dbg(pm8001_ha, MSG, 3582 "DEVREG_FAILURE_DEVICE_TYPE_NOT_SUPPORTED\n"); 3583 break; 3584 } 3585 complete(pm8001_dev->dcompletion); 3586 ccb->task = NULL; 3587 ccb->ccb_tag = 0xFFFFFFFF; 3588 pm8001_tag_free(pm8001_ha, htag); 3589 return 0; 3590 } 3591 3592 int pm8001_mpi_dereg_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) 3593 { 3594 u32 status; 3595 u32 device_id; 3596 struct dev_reg_resp *registerRespPayload = 3597 (struct dev_reg_resp *)(piomb + 4); 3598 3599 status = le32_to_cpu(registerRespPayload->status); 3600 device_id = le32_to_cpu(registerRespPayload->device_id); 3601 if (status != 0) 3602 pm8001_dbg(pm8001_ha, MSG, 3603 " deregister device failed ,status = %x, device_id = %x\n", 3604 status, device_id); 3605 return 0; 3606 } 3607 3608 /** 3609 * pm8001_mpi_fw_flash_update_resp - Response from FW for flash update command. 3610 * @pm8001_ha: our hba card information 3611 * @piomb: IO message buffer 3612 */ 3613 int pm8001_mpi_fw_flash_update_resp(struct pm8001_hba_info *pm8001_ha, 3614 void *piomb) 3615 { 3616 u32 status; 3617 struct fw_flash_Update_resp *ppayload = 3618 (struct fw_flash_Update_resp *)(piomb + 4); 3619 u32 tag = le32_to_cpu(ppayload->tag); 3620 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; 3621 status = le32_to_cpu(ppayload->status); 3622 switch (status) { 3623 case FLASH_UPDATE_COMPLETE_PENDING_REBOOT: 3624 pm8001_dbg(pm8001_ha, MSG, 3625 ": FLASH_UPDATE_COMPLETE_PENDING_REBOOT\n"); 3626 break; 3627 case FLASH_UPDATE_IN_PROGRESS: 3628 pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_IN_PROGRESS\n"); 3629 break; 3630 case FLASH_UPDATE_HDR_ERR: 3631 pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_HDR_ERR\n"); 3632 break; 3633 case FLASH_UPDATE_OFFSET_ERR: 3634 pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_OFFSET_ERR\n"); 3635 break; 3636 case FLASH_UPDATE_CRC_ERR: 3637 pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_CRC_ERR\n"); 3638 break; 3639 case FLASH_UPDATE_LENGTH_ERR: 3640 pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_LENGTH_ERR\n"); 3641 break; 3642 case FLASH_UPDATE_HW_ERR: 3643 pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_HW_ERR\n"); 3644 break; 3645 case FLASH_UPDATE_DNLD_NOT_SUPPORTED: 3646 pm8001_dbg(pm8001_ha, MSG, 3647 ": FLASH_UPDATE_DNLD_NOT_SUPPORTED\n"); 3648 break; 3649 case FLASH_UPDATE_DISABLED: 3650 pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_DISABLED\n"); 3651 break; 3652 default: 3653 pm8001_dbg(pm8001_ha, DEVIO, "No matched status = %d\n", 3654 status); 3655 break; 3656 } 3657 kfree(ccb->fw_control_context); 3658 ccb->task = NULL; 3659 ccb->ccb_tag = 0xFFFFFFFF; 3660 pm8001_tag_free(pm8001_ha, tag); 3661 complete(pm8001_ha->nvmd_completion); 3662 return 0; 3663 } 3664 3665 int pm8001_mpi_general_event(struct pm8001_hba_info *pm8001_ha, void *piomb) 3666 { 3667 u32 status; 3668 int i; 3669 struct general_event_resp *pPayload = 3670 (struct general_event_resp *)(piomb + 4); 3671 status = le32_to_cpu(pPayload->status); 3672 pm8001_dbg(pm8001_ha, MSG, " status = 0x%x\n", status); 3673 for (i = 0; i < GENERAL_EVENT_PAYLOAD; i++) 3674 pm8001_dbg(pm8001_ha, MSG, "inb_IOMB_payload[0x%x] 0x%x,\n", 3675 i, 3676 pPayload->inb_IOMB_payload[i]); 3677 return 0; 3678 } 3679 3680 int pm8001_mpi_task_abort_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) 3681 { 3682 struct sas_task *t; 3683 struct pm8001_ccb_info *ccb; 3684 unsigned long flags; 3685 u32 status ; 3686 u32 tag, scp; 3687 struct task_status_struct *ts; 3688 struct pm8001_device *pm8001_dev; 3689 3690 struct task_abort_resp *pPayload = 3691 (struct task_abort_resp *)(piomb + 4); 3692 3693 status = le32_to_cpu(pPayload->status); 3694 tag = le32_to_cpu(pPayload->tag); 3695 if (!tag) { 3696 pm8001_dbg(pm8001_ha, FAIL, " TAG NULL. RETURNING !!!\n"); 3697 return -1; 3698 } 3699 3700 scp = le32_to_cpu(pPayload->scp); 3701 ccb = &pm8001_ha->ccb_info[tag]; 3702 t = ccb->task; 3703 pm8001_dev = ccb->device; /* retrieve device */ 3704 3705 if (!t) { 3706 pm8001_dbg(pm8001_ha, FAIL, " TASK NULL. RETURNING !!!\n"); 3707 return -1; 3708 } 3709 ts = &t->task_status; 3710 if (status != 0) 3711 pm8001_dbg(pm8001_ha, FAIL, "task abort failed status 0x%x ,tag = 0x%x, scp= 0x%x\n", 3712 status, tag, scp); 3713 switch (status) { 3714 case IO_SUCCESS: 3715 pm8001_dbg(pm8001_ha, EH, "IO_SUCCESS\n"); 3716 ts->resp = SAS_TASK_COMPLETE; 3717 ts->stat = SAS_SAM_STAT_GOOD; 3718 break; 3719 case IO_NOT_VALID: 3720 pm8001_dbg(pm8001_ha, EH, "IO_NOT_VALID\n"); 3721 ts->resp = TMF_RESP_FUNC_FAILED; 3722 break; 3723 } 3724 spin_lock_irqsave(&t->task_state_lock, flags); 3725 t->task_state_flags &= ~SAS_TASK_STATE_PENDING; 3726 t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; 3727 t->task_state_flags |= SAS_TASK_STATE_DONE; 3728 spin_unlock_irqrestore(&t->task_state_lock, flags); 3729 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); 3730 mb(); 3731 3732 if (pm8001_dev->id & NCQ_ABORT_ALL_FLAG) { 3733 pm8001_tag_free(pm8001_ha, tag); 3734 sas_free_task(t); 3735 /* clear the flag */ 3736 pm8001_dev->id &= 0xBFFFFFFF; 3737 } else 3738 t->task_done(t); 3739 3740 return 0; 3741 } 3742 3743 /** 3744 * mpi_hw_event -The hw event has come. 3745 * @pm8001_ha: our hba card information 3746 * @piomb: IO message buffer 3747 */ 3748 static int mpi_hw_event(struct pm8001_hba_info *pm8001_ha, void *piomb) 3749 { 3750 unsigned long flags; 3751 struct hw_event_resp *pPayload = 3752 (struct hw_event_resp *)(piomb + 4); 3753 u32 lr_evt_status_phyid_portid = 3754 le32_to_cpu(pPayload->lr_evt_status_phyid_portid); 3755 u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); 3756 u8 phy_id = 3757 (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); 3758 u16 eventType = 3759 (u16)((lr_evt_status_phyid_portid & 0x00FFFF00) >> 8); 3760 u8 status = 3761 (u8)((lr_evt_status_phyid_portid & 0x0F000000) >> 24); 3762 struct sas_ha_struct *sas_ha = pm8001_ha->sas; 3763 struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; 3764 struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id]; 3765 pm8001_dbg(pm8001_ha, DEVIO, 3766 "SPC HW event for portid:%d, phyid:%d, event:%x, status:%x\n", 3767 port_id, phy_id, eventType, status); 3768 switch (eventType) { 3769 case HW_EVENT_PHY_START_STATUS: 3770 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_START_STATUS status = %x\n", 3771 status); 3772 if (status == 0) 3773 phy->phy_state = 1; 3774 3775 if (pm8001_ha->flags == PM8001F_RUN_TIME && 3776 phy->enable_completion != NULL) { 3777 complete(phy->enable_completion); 3778 phy->enable_completion = NULL; 3779 } 3780 break; 3781 case HW_EVENT_SAS_PHY_UP: 3782 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_START_STATUS\n"); 3783 hw_event_sas_phy_up(pm8001_ha, piomb); 3784 break; 3785 case HW_EVENT_SATA_PHY_UP: 3786 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_SATA_PHY_UP\n"); 3787 hw_event_sata_phy_up(pm8001_ha, piomb); 3788 break; 3789 case HW_EVENT_PHY_STOP_STATUS: 3790 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_STOP_STATUS status = %x\n", 3791 status); 3792 if (status == 0) 3793 phy->phy_state = 0; 3794 break; 3795 case HW_EVENT_SATA_SPINUP_HOLD: 3796 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_SATA_SPINUP_HOLD\n"); 3797 sas_notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD, 3798 GFP_ATOMIC); 3799 break; 3800 case HW_EVENT_PHY_DOWN: 3801 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_DOWN\n"); 3802 sas_notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL, 3803 GFP_ATOMIC); 3804 phy->phy_attached = 0; 3805 phy->phy_state = 0; 3806 hw_event_phy_down(pm8001_ha, piomb); 3807 break; 3808 case HW_EVENT_PORT_INVALID: 3809 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_INVALID\n"); 3810 sas_phy_disconnected(sas_phy); 3811 phy->phy_attached = 0; 3812 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3813 GFP_ATOMIC); 3814 break; 3815 /* the broadcast change primitive received, tell the LIBSAS this event 3816 to revalidate the sas domain*/ 3817 case HW_EVENT_BROADCAST_CHANGE: 3818 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_CHANGE\n"); 3819 pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_BROADCAST_CHANGE, 3820 port_id, phy_id, 1, 0); 3821 spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); 3822 sas_phy->sas_prim = HW_EVENT_BROADCAST_CHANGE; 3823 spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); 3824 sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD, 3825 GFP_ATOMIC); 3826 break; 3827 case HW_EVENT_PHY_ERROR: 3828 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_ERROR\n"); 3829 sas_phy_disconnected(&phy->sas_phy); 3830 phy->phy_attached = 0; 3831 sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR, GFP_ATOMIC); 3832 break; 3833 case HW_EVENT_BROADCAST_EXP: 3834 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_EXP\n"); 3835 spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); 3836 sas_phy->sas_prim = HW_EVENT_BROADCAST_EXP; 3837 spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); 3838 sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD, 3839 GFP_ATOMIC); 3840 break; 3841 case HW_EVENT_LINK_ERR_INVALID_DWORD: 3842 pm8001_dbg(pm8001_ha, MSG, 3843 "HW_EVENT_LINK_ERR_INVALID_DWORD\n"); 3844 pm8001_hw_event_ack_req(pm8001_ha, 0, 3845 HW_EVENT_LINK_ERR_INVALID_DWORD, port_id, phy_id, 0, 0); 3846 sas_phy_disconnected(sas_phy); 3847 phy->phy_attached = 0; 3848 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3849 GFP_ATOMIC); 3850 break; 3851 case HW_EVENT_LINK_ERR_DISPARITY_ERROR: 3852 pm8001_dbg(pm8001_ha, MSG, 3853 "HW_EVENT_LINK_ERR_DISPARITY_ERROR\n"); 3854 pm8001_hw_event_ack_req(pm8001_ha, 0, 3855 HW_EVENT_LINK_ERR_DISPARITY_ERROR, 3856 port_id, phy_id, 0, 0); 3857 sas_phy_disconnected(sas_phy); 3858 phy->phy_attached = 0; 3859 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3860 GFP_ATOMIC); 3861 break; 3862 case HW_EVENT_LINK_ERR_CODE_VIOLATION: 3863 pm8001_dbg(pm8001_ha, MSG, 3864 "HW_EVENT_LINK_ERR_CODE_VIOLATION\n"); 3865 pm8001_hw_event_ack_req(pm8001_ha, 0, 3866 HW_EVENT_LINK_ERR_CODE_VIOLATION, 3867 port_id, phy_id, 0, 0); 3868 sas_phy_disconnected(sas_phy); 3869 phy->phy_attached = 0; 3870 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3871 GFP_ATOMIC); 3872 break; 3873 case HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH: 3874 pm8001_dbg(pm8001_ha, MSG, 3875 "HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH\n"); 3876 pm8001_hw_event_ack_req(pm8001_ha, 0, 3877 HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH, 3878 port_id, phy_id, 0, 0); 3879 sas_phy_disconnected(sas_phy); 3880 phy->phy_attached = 0; 3881 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3882 GFP_ATOMIC); 3883 break; 3884 case HW_EVENT_MALFUNCTION: 3885 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_MALFUNCTION\n"); 3886 break; 3887 case HW_EVENT_BROADCAST_SES: 3888 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_SES\n"); 3889 spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); 3890 sas_phy->sas_prim = HW_EVENT_BROADCAST_SES; 3891 spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); 3892 sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD, 3893 GFP_ATOMIC); 3894 break; 3895 case HW_EVENT_INBOUND_CRC_ERROR: 3896 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_INBOUND_CRC_ERROR\n"); 3897 pm8001_hw_event_ack_req(pm8001_ha, 0, 3898 HW_EVENT_INBOUND_CRC_ERROR, 3899 port_id, phy_id, 0, 0); 3900 break; 3901 case HW_EVENT_HARD_RESET_RECEIVED: 3902 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_HARD_RESET_RECEIVED\n"); 3903 sas_notify_port_event(sas_phy, PORTE_HARD_RESET, GFP_ATOMIC); 3904 break; 3905 case HW_EVENT_ID_FRAME_TIMEOUT: 3906 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_ID_FRAME_TIMEOUT\n"); 3907 sas_phy_disconnected(sas_phy); 3908 phy->phy_attached = 0; 3909 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3910 GFP_ATOMIC); 3911 break; 3912 case HW_EVENT_LINK_ERR_PHY_RESET_FAILED: 3913 pm8001_dbg(pm8001_ha, MSG, 3914 "HW_EVENT_LINK_ERR_PHY_RESET_FAILED\n"); 3915 pm8001_hw_event_ack_req(pm8001_ha, 0, 3916 HW_EVENT_LINK_ERR_PHY_RESET_FAILED, 3917 port_id, phy_id, 0, 0); 3918 sas_phy_disconnected(sas_phy); 3919 phy->phy_attached = 0; 3920 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3921 GFP_ATOMIC); 3922 break; 3923 case HW_EVENT_PORT_RESET_TIMER_TMO: 3924 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RESET_TIMER_TMO\n"); 3925 sas_phy_disconnected(sas_phy); 3926 phy->phy_attached = 0; 3927 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3928 GFP_ATOMIC); 3929 break; 3930 case HW_EVENT_PORT_RECOVERY_TIMER_TMO: 3931 pm8001_dbg(pm8001_ha, MSG, 3932 "HW_EVENT_PORT_RECOVERY_TIMER_TMO\n"); 3933 sas_phy_disconnected(sas_phy); 3934 phy->phy_attached = 0; 3935 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3936 GFP_ATOMIC); 3937 break; 3938 case HW_EVENT_PORT_RECOVER: 3939 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RECOVER\n"); 3940 break; 3941 case HW_EVENT_PORT_RESET_COMPLETE: 3942 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RESET_COMPLETE\n"); 3943 break; 3944 case EVENT_BROADCAST_ASYNCH_EVENT: 3945 pm8001_dbg(pm8001_ha, MSG, "EVENT_BROADCAST_ASYNCH_EVENT\n"); 3946 break; 3947 default: 3948 pm8001_dbg(pm8001_ha, DEVIO, "Unknown event type = %x\n", 3949 eventType); 3950 break; 3951 } 3952 return 0; 3953 } 3954 3955 /** 3956 * process_one_iomb - process one outbound Queue memory block 3957 * @pm8001_ha: our hba card information 3958 * @piomb: IO message buffer 3959 */ 3960 static void process_one_iomb(struct pm8001_hba_info *pm8001_ha, void *piomb) 3961 { 3962 __le32 pHeader = *(__le32 *)piomb; 3963 u8 opc = (u8)((le32_to_cpu(pHeader)) & 0xFFF); 3964 3965 pm8001_dbg(pm8001_ha, MSG, "process_one_iomb:\n"); 3966 3967 switch (opc) { 3968 case OPC_OUB_ECHO: 3969 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_ECHO\n"); 3970 break; 3971 case OPC_OUB_HW_EVENT: 3972 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_HW_EVENT\n"); 3973 mpi_hw_event(pm8001_ha, piomb); 3974 break; 3975 case OPC_OUB_SSP_COMP: 3976 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_COMP\n"); 3977 mpi_ssp_completion(pm8001_ha, piomb); 3978 break; 3979 case OPC_OUB_SMP_COMP: 3980 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SMP_COMP\n"); 3981 mpi_smp_completion(pm8001_ha, piomb); 3982 break; 3983 case OPC_OUB_LOCAL_PHY_CNTRL: 3984 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_LOCAL_PHY_CNTRL\n"); 3985 pm8001_mpi_local_phy_ctl(pm8001_ha, piomb); 3986 break; 3987 case OPC_OUB_DEV_REGIST: 3988 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEV_REGIST\n"); 3989 pm8001_mpi_reg_resp(pm8001_ha, piomb); 3990 break; 3991 case OPC_OUB_DEREG_DEV: 3992 pm8001_dbg(pm8001_ha, MSG, "unregister the device\n"); 3993 pm8001_mpi_dereg_resp(pm8001_ha, piomb); 3994 break; 3995 case OPC_OUB_GET_DEV_HANDLE: 3996 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_DEV_HANDLE\n"); 3997 break; 3998 case OPC_OUB_SATA_COMP: 3999 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_COMP\n"); 4000 mpi_sata_completion(pm8001_ha, piomb); 4001 break; 4002 case OPC_OUB_SATA_EVENT: 4003 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_EVENT\n"); 4004 mpi_sata_event(pm8001_ha, piomb); 4005 break; 4006 case OPC_OUB_SSP_EVENT: 4007 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_EVENT\n"); 4008 mpi_ssp_event(pm8001_ha, piomb); 4009 break; 4010 case OPC_OUB_DEV_HANDLE_ARRIV: 4011 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEV_HANDLE_ARRIV\n"); 4012 /*This is for target*/ 4013 break; 4014 case OPC_OUB_SSP_RECV_EVENT: 4015 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_RECV_EVENT\n"); 4016 /*This is for target*/ 4017 break; 4018 case OPC_OUB_DEV_INFO: 4019 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEV_INFO\n"); 4020 break; 4021 case OPC_OUB_FW_FLASH_UPDATE: 4022 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_FW_FLASH_UPDATE\n"); 4023 pm8001_mpi_fw_flash_update_resp(pm8001_ha, piomb); 4024 break; 4025 case OPC_OUB_GPIO_RESPONSE: 4026 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GPIO_RESPONSE\n"); 4027 break; 4028 case OPC_OUB_GPIO_EVENT: 4029 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GPIO_EVENT\n"); 4030 break; 4031 case OPC_OUB_GENERAL_EVENT: 4032 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GENERAL_EVENT\n"); 4033 pm8001_mpi_general_event(pm8001_ha, piomb); 4034 break; 4035 case OPC_OUB_SSP_ABORT_RSP: 4036 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_ABORT_RSP\n"); 4037 pm8001_mpi_task_abort_resp(pm8001_ha, piomb); 4038 break; 4039 case OPC_OUB_SATA_ABORT_RSP: 4040 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_ABORT_RSP\n"); 4041 pm8001_mpi_task_abort_resp(pm8001_ha, piomb); 4042 break; 4043 case OPC_OUB_SAS_DIAG_MODE_START_END: 4044 pm8001_dbg(pm8001_ha, MSG, 4045 "OPC_OUB_SAS_DIAG_MODE_START_END\n"); 4046 break; 4047 case OPC_OUB_SAS_DIAG_EXECUTE: 4048 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_DIAG_EXECUTE\n"); 4049 break; 4050 case OPC_OUB_GET_TIME_STAMP: 4051 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_TIME_STAMP\n"); 4052 break; 4053 case OPC_OUB_SAS_HW_EVENT_ACK: 4054 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_HW_EVENT_ACK\n"); 4055 break; 4056 case OPC_OUB_PORT_CONTROL: 4057 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_PORT_CONTROL\n"); 4058 break; 4059 case OPC_OUB_SMP_ABORT_RSP: 4060 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SMP_ABORT_RSP\n"); 4061 pm8001_mpi_task_abort_resp(pm8001_ha, piomb); 4062 break; 4063 case OPC_OUB_GET_NVMD_DATA: 4064 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_NVMD_DATA\n"); 4065 pm8001_mpi_get_nvmd_resp(pm8001_ha, piomb); 4066 break; 4067 case OPC_OUB_SET_NVMD_DATA: 4068 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_NVMD_DATA\n"); 4069 pm8001_mpi_set_nvmd_resp(pm8001_ha, piomb); 4070 break; 4071 case OPC_OUB_DEVICE_HANDLE_REMOVAL: 4072 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEVICE_HANDLE_REMOVAL\n"); 4073 break; 4074 case OPC_OUB_SET_DEVICE_STATE: 4075 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_DEVICE_STATE\n"); 4076 pm8001_mpi_set_dev_state_resp(pm8001_ha, piomb); 4077 break; 4078 case OPC_OUB_GET_DEVICE_STATE: 4079 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_DEVICE_STATE\n"); 4080 break; 4081 case OPC_OUB_SET_DEV_INFO: 4082 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_DEV_INFO\n"); 4083 break; 4084 case OPC_OUB_SAS_RE_INITIALIZE: 4085 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_RE_INITIALIZE\n"); 4086 break; 4087 default: 4088 pm8001_dbg(pm8001_ha, DEVIO, 4089 "Unknown outbound Queue IOMB OPC = %x\n", 4090 opc); 4091 break; 4092 } 4093 } 4094 4095 static int process_oq(struct pm8001_hba_info *pm8001_ha, u8 vec) 4096 { 4097 struct outbound_queue_table *circularQ; 4098 void *pMsg1 = NULL; 4099 u8 bc; 4100 u32 ret = MPI_IO_STATUS_FAIL; 4101 unsigned long flags; 4102 4103 spin_lock_irqsave(&pm8001_ha->lock, flags); 4104 circularQ = &pm8001_ha->outbnd_q_tbl[vec]; 4105 do { 4106 ret = pm8001_mpi_msg_consume(pm8001_ha, circularQ, &pMsg1, &bc); 4107 if (MPI_IO_STATUS_SUCCESS == ret) { 4108 /* process the outbound message */ 4109 process_one_iomb(pm8001_ha, (void *)(pMsg1 - 4)); 4110 /* free the message from the outbound circular buffer */ 4111 pm8001_mpi_msg_free_set(pm8001_ha, pMsg1, 4112 circularQ, bc); 4113 } 4114 if (MPI_IO_STATUS_BUSY == ret) { 4115 /* Update the producer index from SPC */ 4116 circularQ->producer_index = 4117 cpu_to_le32(pm8001_read_32(circularQ->pi_virt)); 4118 if (le32_to_cpu(circularQ->producer_index) == 4119 circularQ->consumer_idx) 4120 /* OQ is empty */ 4121 break; 4122 } 4123 } while (1); 4124 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 4125 return ret; 4126 } 4127 4128 /* DMA_... to our direction translation. */ 4129 static const u8 data_dir_flags[] = { 4130 [DMA_BIDIRECTIONAL] = DATA_DIR_BYRECIPIENT, /* UNSPECIFIED */ 4131 [DMA_TO_DEVICE] = DATA_DIR_OUT, /* OUTBOUND */ 4132 [DMA_FROM_DEVICE] = DATA_DIR_IN, /* INBOUND */ 4133 [DMA_NONE] = DATA_DIR_NONE, /* NO TRANSFER */ 4134 }; 4135 void 4136 pm8001_chip_make_sg(struct scatterlist *scatter, int nr, void *prd) 4137 { 4138 int i; 4139 struct scatterlist *sg; 4140 struct pm8001_prd *buf_prd = prd; 4141 4142 for_each_sg(scatter, sg, nr, i) { 4143 buf_prd->addr = cpu_to_le64(sg_dma_address(sg)); 4144 buf_prd->im_len.len = cpu_to_le32(sg_dma_len(sg)); 4145 buf_prd->im_len.e = 0; 4146 buf_prd++; 4147 } 4148 } 4149 4150 static void build_smp_cmd(u32 deviceID, __le32 hTag, struct smp_req *psmp_cmd) 4151 { 4152 psmp_cmd->tag = hTag; 4153 psmp_cmd->device_id = cpu_to_le32(deviceID); 4154 psmp_cmd->len_ip_ir = cpu_to_le32(1|(1 << 1)); 4155 } 4156 4157 /** 4158 * pm8001_chip_smp_req - send a SMP task to FW 4159 * @pm8001_ha: our hba card information. 4160 * @ccb: the ccb information this request used. 4161 */ 4162 static int pm8001_chip_smp_req(struct pm8001_hba_info *pm8001_ha, 4163 struct pm8001_ccb_info *ccb) 4164 { 4165 int elem, rc; 4166 struct sas_task *task = ccb->task; 4167 struct domain_device *dev = task->dev; 4168 struct pm8001_device *pm8001_dev = dev->lldd_dev; 4169 struct scatterlist *sg_req, *sg_resp; 4170 u32 req_len, resp_len; 4171 struct smp_req smp_cmd; 4172 u32 opc; 4173 struct inbound_queue_table *circularQ; 4174 4175 memset(&smp_cmd, 0, sizeof(smp_cmd)); 4176 /* 4177 * DMA-map SMP request, response buffers 4178 */ 4179 sg_req = &task->smp_task.smp_req; 4180 elem = dma_map_sg(pm8001_ha->dev, sg_req, 1, DMA_TO_DEVICE); 4181 if (!elem) 4182 return -ENOMEM; 4183 req_len = sg_dma_len(sg_req); 4184 4185 sg_resp = &task->smp_task.smp_resp; 4186 elem = dma_map_sg(pm8001_ha->dev, sg_resp, 1, DMA_FROM_DEVICE); 4187 if (!elem) { 4188 rc = -ENOMEM; 4189 goto err_out; 4190 } 4191 resp_len = sg_dma_len(sg_resp); 4192 /* must be in dwords */ 4193 if ((req_len & 0x3) || (resp_len & 0x3)) { 4194 rc = -EINVAL; 4195 goto err_out_2; 4196 } 4197 4198 opc = OPC_INB_SMP_REQUEST; 4199 circularQ = &pm8001_ha->inbnd_q_tbl[0]; 4200 smp_cmd.tag = cpu_to_le32(ccb->ccb_tag); 4201 smp_cmd.long_smp_req.long_req_addr = 4202 cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_req)); 4203 smp_cmd.long_smp_req.long_req_size = 4204 cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_req)-4); 4205 smp_cmd.long_smp_req.long_resp_addr = 4206 cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_resp)); 4207 smp_cmd.long_smp_req.long_resp_size = 4208 cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_resp)-4); 4209 build_smp_cmd(pm8001_dev->device_id, smp_cmd.tag, &smp_cmd); 4210 rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, 4211 &smp_cmd, sizeof(smp_cmd), 0); 4212 if (rc) 4213 goto err_out_2; 4214 4215 return 0; 4216 4217 err_out_2: 4218 dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_resp, 1, 4219 DMA_FROM_DEVICE); 4220 err_out: 4221 dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_req, 1, 4222 DMA_TO_DEVICE); 4223 return rc; 4224 } 4225 4226 /** 4227 * pm8001_chip_ssp_io_req - send a SSP task to FW 4228 * @pm8001_ha: our hba card information. 4229 * @ccb: the ccb information this request used. 4230 */ 4231 static int pm8001_chip_ssp_io_req(struct pm8001_hba_info *pm8001_ha, 4232 struct pm8001_ccb_info *ccb) 4233 { 4234 struct sas_task *task = ccb->task; 4235 struct domain_device *dev = task->dev; 4236 struct pm8001_device *pm8001_dev = dev->lldd_dev; 4237 struct ssp_ini_io_start_req ssp_cmd; 4238 u32 tag = ccb->ccb_tag; 4239 int ret; 4240 u64 phys_addr; 4241 struct inbound_queue_table *circularQ; 4242 u32 opc = OPC_INB_SSPINIIOSTART; 4243 memset(&ssp_cmd, 0, sizeof(ssp_cmd)); 4244 memcpy(ssp_cmd.ssp_iu.lun, task->ssp_task.LUN, 8); 4245 ssp_cmd.dir_m_tlr = 4246 cpu_to_le32(data_dir_flags[task->data_dir] << 8 | 0x0);/*0 for 4247 SAS 1.1 compatible TLR*/ 4248 ssp_cmd.data_len = cpu_to_le32(task->total_xfer_len); 4249 ssp_cmd.device_id = cpu_to_le32(pm8001_dev->device_id); 4250 ssp_cmd.tag = cpu_to_le32(tag); 4251 if (task->ssp_task.enable_first_burst) 4252 ssp_cmd.ssp_iu.efb_prio_attr |= 0x80; 4253 ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_prio << 3); 4254 ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_attr & 7); 4255 memcpy(ssp_cmd.ssp_iu.cdb, task->ssp_task.cmd->cmnd, 4256 task->ssp_task.cmd->cmd_len); 4257 circularQ = &pm8001_ha->inbnd_q_tbl[0]; 4258 4259 /* fill in PRD (scatter/gather) table, if any */ 4260 if (task->num_scatter > 1) { 4261 pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd); 4262 phys_addr = ccb->ccb_dma_handle; 4263 ssp_cmd.addr_low = cpu_to_le32(lower_32_bits(phys_addr)); 4264 ssp_cmd.addr_high = cpu_to_le32(upper_32_bits(phys_addr)); 4265 ssp_cmd.esgl = cpu_to_le32(1<<31); 4266 } else if (task->num_scatter == 1) { 4267 u64 dma_addr = sg_dma_address(task->scatter); 4268 ssp_cmd.addr_low = cpu_to_le32(lower_32_bits(dma_addr)); 4269 ssp_cmd.addr_high = cpu_to_le32(upper_32_bits(dma_addr)); 4270 ssp_cmd.len = cpu_to_le32(task->total_xfer_len); 4271 ssp_cmd.esgl = 0; 4272 } else if (task->num_scatter == 0) { 4273 ssp_cmd.addr_low = 0; 4274 ssp_cmd.addr_high = 0; 4275 ssp_cmd.len = cpu_to_le32(task->total_xfer_len); 4276 ssp_cmd.esgl = 0; 4277 } 4278 ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &ssp_cmd, 4279 sizeof(ssp_cmd), 0); 4280 return ret; 4281 } 4282 4283 static int pm8001_chip_sata_req(struct pm8001_hba_info *pm8001_ha, 4284 struct pm8001_ccb_info *ccb) 4285 { 4286 struct sas_task *task = ccb->task; 4287 struct domain_device *dev = task->dev; 4288 struct pm8001_device *pm8001_ha_dev = dev->lldd_dev; 4289 u32 tag = ccb->ccb_tag; 4290 int ret; 4291 struct sata_start_req sata_cmd; 4292 u32 hdr_tag, ncg_tag = 0; 4293 u64 phys_addr; 4294 u32 ATAP = 0x0; 4295 u32 dir; 4296 struct inbound_queue_table *circularQ; 4297 unsigned long flags; 4298 u32 opc = OPC_INB_SATA_HOST_OPSTART; 4299 memset(&sata_cmd, 0, sizeof(sata_cmd)); 4300 circularQ = &pm8001_ha->inbnd_q_tbl[0]; 4301 if (task->data_dir == DMA_NONE) { 4302 ATAP = 0x04; /* no data*/ 4303 pm8001_dbg(pm8001_ha, IO, "no data\n"); 4304 } else if (likely(!task->ata_task.device_control_reg_update)) { 4305 if (task->ata_task.dma_xfer) { 4306 ATAP = 0x06; /* DMA */ 4307 pm8001_dbg(pm8001_ha, IO, "DMA\n"); 4308 } else { 4309 ATAP = 0x05; /* PIO*/ 4310 pm8001_dbg(pm8001_ha, IO, "PIO\n"); 4311 } 4312 if (task->ata_task.use_ncq && 4313 dev->sata_dev.class != ATA_DEV_ATAPI) { 4314 ATAP = 0x07; /* FPDMA */ 4315 pm8001_dbg(pm8001_ha, IO, "FPDMA\n"); 4316 } 4317 } 4318 if (task->ata_task.use_ncq && pm8001_get_ncq_tag(task, &hdr_tag)) { 4319 task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3); 4320 ncg_tag = hdr_tag; 4321 } 4322 dir = data_dir_flags[task->data_dir] << 8; 4323 sata_cmd.tag = cpu_to_le32(tag); 4324 sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id); 4325 sata_cmd.data_len = cpu_to_le32(task->total_xfer_len); 4326 sata_cmd.ncqtag_atap_dir_m = 4327 cpu_to_le32(((ncg_tag & 0xff)<<16)|((ATAP & 0x3f) << 10) | dir); 4328 sata_cmd.sata_fis = task->ata_task.fis; 4329 if (likely(!task->ata_task.device_control_reg_update)) 4330 sata_cmd.sata_fis.flags |= 0x80;/* C=1: update ATA cmd reg */ 4331 sata_cmd.sata_fis.flags &= 0xF0;/* PM_PORT field shall be 0 */ 4332 /* fill in PRD (scatter/gather) table, if any */ 4333 if (task->num_scatter > 1) { 4334 pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd); 4335 phys_addr = ccb->ccb_dma_handle; 4336 sata_cmd.addr_low = lower_32_bits(phys_addr); 4337 sata_cmd.addr_high = upper_32_bits(phys_addr); 4338 sata_cmd.esgl = cpu_to_le32(1 << 31); 4339 } else if (task->num_scatter == 1) { 4340 u64 dma_addr = sg_dma_address(task->scatter); 4341 sata_cmd.addr_low = lower_32_bits(dma_addr); 4342 sata_cmd.addr_high = upper_32_bits(dma_addr); 4343 sata_cmd.len = cpu_to_le32(task->total_xfer_len); 4344 sata_cmd.esgl = 0; 4345 } else if (task->num_scatter == 0) { 4346 sata_cmd.addr_low = 0; 4347 sata_cmd.addr_high = 0; 4348 sata_cmd.len = cpu_to_le32(task->total_xfer_len); 4349 sata_cmd.esgl = 0; 4350 } 4351 4352 /* Check for read log for failed drive and return */ 4353 if (sata_cmd.sata_fis.command == 0x2f) { 4354 if (((pm8001_ha_dev->id & NCQ_READ_LOG_FLAG) || 4355 (pm8001_ha_dev->id & NCQ_ABORT_ALL_FLAG) || 4356 (pm8001_ha_dev->id & NCQ_2ND_RLE_FLAG))) { 4357 struct task_status_struct *ts; 4358 4359 pm8001_ha_dev->id &= 0xDFFFFFFF; 4360 ts = &task->task_status; 4361 4362 spin_lock_irqsave(&task->task_state_lock, flags); 4363 ts->resp = SAS_TASK_COMPLETE; 4364 ts->stat = SAS_SAM_STAT_GOOD; 4365 task->task_state_flags &= ~SAS_TASK_STATE_PENDING; 4366 task->task_state_flags &= ~SAS_TASK_AT_INITIATOR; 4367 task->task_state_flags |= SAS_TASK_STATE_DONE; 4368 if (unlikely((task->task_state_flags & 4369 SAS_TASK_STATE_ABORTED))) { 4370 spin_unlock_irqrestore(&task->task_state_lock, 4371 flags); 4372 pm8001_dbg(pm8001_ha, FAIL, 4373 "task 0x%p resp 0x%x stat 0x%x but aborted by upper layer\n", 4374 task, ts->resp, 4375 ts->stat); 4376 pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); 4377 } else { 4378 spin_unlock_irqrestore(&task->task_state_lock, 4379 flags); 4380 pm8001_ccb_task_free_done(pm8001_ha, task, 4381 ccb, tag); 4382 return 0; 4383 } 4384 } 4385 } 4386 4387 ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &sata_cmd, 4388 sizeof(sata_cmd), 0); 4389 return ret; 4390 } 4391 4392 /** 4393 * pm8001_chip_phy_start_req - start phy via PHY_START COMMAND 4394 * @pm8001_ha: our hba card information. 4395 * @phy_id: the phy id which we wanted to start up. 4396 */ 4397 static int 4398 pm8001_chip_phy_start_req(struct pm8001_hba_info *pm8001_ha, u8 phy_id) 4399 { 4400 struct phy_start_req payload; 4401 struct inbound_queue_table *circularQ; 4402 int ret; 4403 u32 tag = 0x01; 4404 u32 opcode = OPC_INB_PHYSTART; 4405 circularQ = &pm8001_ha->inbnd_q_tbl[0]; 4406 memset(&payload, 0, sizeof(payload)); 4407 payload.tag = cpu_to_le32(tag); 4408 /* 4409 ** [0:7] PHY Identifier 4410 ** [8:11] link rate 1.5G, 3G, 6G 4411 ** [12:13] link mode 01b SAS mode; 10b SATA mode; 11b both 4412 ** [14] 0b disable spin up hold; 1b enable spin up hold 4413 */ 4414 payload.ase_sh_lm_slr_phyid = cpu_to_le32(SPINHOLD_DISABLE | 4415 LINKMODE_AUTO | LINKRATE_15 | 4416 LINKRATE_30 | LINKRATE_60 | phy_id); 4417 payload.sas_identify.dev_type = SAS_END_DEVICE; 4418 payload.sas_identify.initiator_bits = SAS_PROTOCOL_ALL; 4419 memcpy(payload.sas_identify.sas_addr, 4420 pm8001_ha->sas_addr, SAS_ADDR_SIZE); 4421 payload.sas_identify.phy_id = phy_id; 4422 ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opcode, &payload, 4423 sizeof(payload), 0); 4424 return ret; 4425 } 4426 4427 /** 4428 * pm8001_chip_phy_stop_req - start phy via PHY_STOP COMMAND 4429 * @pm8001_ha: our hba card information. 4430 * @phy_id: the phy id which we wanted to start up. 4431 */ 4432 static int pm8001_chip_phy_stop_req(struct pm8001_hba_info *pm8001_ha, 4433 u8 phy_id) 4434 { 4435 struct phy_stop_req payload; 4436 struct inbound_queue_table *circularQ; 4437 int ret; 4438 u32 tag = 0x01; 4439 u32 opcode = OPC_INB_PHYSTOP; 4440 circularQ = &pm8001_ha->inbnd_q_tbl[0]; 4441 memset(&payload, 0, sizeof(payload)); 4442 payload.tag = cpu_to_le32(tag); 4443 payload.phy_id = cpu_to_le32(phy_id); 4444 ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opcode, &payload, 4445 sizeof(payload), 0); 4446 return ret; 4447 } 4448 4449 /* 4450 * see comments on pm8001_mpi_reg_resp. 4451 */ 4452 static int pm8001_chip_reg_dev_req(struct pm8001_hba_info *pm8001_ha, 4453 struct pm8001_device *pm8001_dev, u32 flag) 4454 { 4455 struct reg_dev_req payload; 4456 u32 opc; 4457 u32 stp_sspsmp_sata = 0x4; 4458 struct inbound_queue_table *circularQ; 4459 u32 linkrate, phy_id; 4460 int rc, tag = 0xdeadbeef; 4461 struct pm8001_ccb_info *ccb; 4462 u8 retryFlag = 0x1; 4463 u16 firstBurstSize = 0; 4464 u16 ITNT = 2000; 4465 struct domain_device *dev = pm8001_dev->sas_device; 4466 struct domain_device *parent_dev = dev->parent; 4467 struct pm8001_port *port = dev->port->lldd_port; 4468 circularQ = &pm8001_ha->inbnd_q_tbl[0]; 4469 4470 memset(&payload, 0, sizeof(payload)); 4471 rc = pm8001_tag_alloc(pm8001_ha, &tag); 4472 if (rc) 4473 return rc; 4474 ccb = &pm8001_ha->ccb_info[tag]; 4475 ccb->device = pm8001_dev; 4476 ccb->ccb_tag = tag; 4477 payload.tag = cpu_to_le32(tag); 4478 if (flag == 1) 4479 stp_sspsmp_sata = 0x02; /*direct attached sata */ 4480 else { 4481 if (pm8001_dev->dev_type == SAS_SATA_DEV) 4482 stp_sspsmp_sata = 0x00; /* stp*/ 4483 else if (pm8001_dev->dev_type == SAS_END_DEVICE || 4484 dev_is_expander(pm8001_dev->dev_type)) 4485 stp_sspsmp_sata = 0x01; /*ssp or smp*/ 4486 } 4487 if (parent_dev && dev_is_expander(parent_dev->dev_type)) 4488 phy_id = parent_dev->ex_dev.ex_phy->phy_id; 4489 else 4490 phy_id = pm8001_dev->attached_phy; 4491 opc = OPC_INB_REG_DEV; 4492 linkrate = (pm8001_dev->sas_device->linkrate < dev->port->linkrate) ? 4493 pm8001_dev->sas_device->linkrate : dev->port->linkrate; 4494 payload.phyid_portid = 4495 cpu_to_le32(((port->port_id) & 0x0F) | 4496 ((phy_id & 0x0F) << 4)); 4497 payload.dtype_dlr_retry = cpu_to_le32((retryFlag & 0x01) | 4498 ((linkrate & 0x0F) * 0x1000000) | 4499 ((stp_sspsmp_sata & 0x03) * 0x10000000)); 4500 payload.firstburstsize_ITNexustimeout = 4501 cpu_to_le32(ITNT | (firstBurstSize * 0x10000)); 4502 memcpy(payload.sas_addr, pm8001_dev->sas_device->sas_addr, 4503 SAS_ADDR_SIZE); 4504 rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, 4505 sizeof(payload), 0); 4506 return rc; 4507 } 4508 4509 /* 4510 * see comments on pm8001_mpi_reg_resp. 4511 */ 4512 int pm8001_chip_dereg_dev_req(struct pm8001_hba_info *pm8001_ha, 4513 u32 device_id) 4514 { 4515 struct dereg_dev_req payload; 4516 u32 opc = OPC_INB_DEREG_DEV_HANDLE; 4517 int ret; 4518 struct inbound_queue_table *circularQ; 4519 4520 circularQ = &pm8001_ha->inbnd_q_tbl[0]; 4521 memset(&payload, 0, sizeof(payload)); 4522 payload.tag = cpu_to_le32(1); 4523 payload.device_id = cpu_to_le32(device_id); 4524 pm8001_dbg(pm8001_ha, MSG, "unregister device device_id = %d\n", 4525 device_id); 4526 ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, 4527 sizeof(payload), 0); 4528 return ret; 4529 } 4530 4531 /** 4532 * pm8001_chip_phy_ctl_req - support the local phy operation 4533 * @pm8001_ha: our hba card information. 4534 * @phyId: the phy id which we wanted to operate 4535 * @phy_op: the phy operation to request 4536 */ 4537 static int pm8001_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha, 4538 u32 phyId, u32 phy_op) 4539 { 4540 struct local_phy_ctl_req payload; 4541 struct inbound_queue_table *circularQ; 4542 int ret; 4543 u32 opc = OPC_INB_LOCAL_PHY_CONTROL; 4544 memset(&payload, 0, sizeof(payload)); 4545 circularQ = &pm8001_ha->inbnd_q_tbl[0]; 4546 payload.tag = cpu_to_le32(1); 4547 payload.phyop_phyid = 4548 cpu_to_le32(((phy_op & 0xff) << 8) | (phyId & 0x0F)); 4549 ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, 4550 sizeof(payload), 0); 4551 return ret; 4552 } 4553 4554 static u32 pm8001_chip_is_our_interrupt(struct pm8001_hba_info *pm8001_ha) 4555 { 4556 #ifdef PM8001_USE_MSIX 4557 return 1; 4558 #else 4559 u32 value; 4560 4561 value = pm8001_cr32(pm8001_ha, 0, MSGU_ODR); 4562 if (value) 4563 return 1; 4564 return 0; 4565 #endif 4566 } 4567 4568 /** 4569 * pm8001_chip_isr - PM8001 isr handler. 4570 * @pm8001_ha: our hba card information. 4571 * @vec: IRQ number 4572 */ 4573 static irqreturn_t 4574 pm8001_chip_isr(struct pm8001_hba_info *pm8001_ha, u8 vec) 4575 { 4576 pm8001_chip_interrupt_disable(pm8001_ha, vec); 4577 pm8001_dbg(pm8001_ha, DEVIO, 4578 "irq vec %d, ODMR:0x%x\n", 4579 vec, pm8001_cr32(pm8001_ha, 0, 0x30)); 4580 process_oq(pm8001_ha, vec); 4581 pm8001_chip_interrupt_enable(pm8001_ha, vec); 4582 return IRQ_HANDLED; 4583 } 4584 4585 static int send_task_abort(struct pm8001_hba_info *pm8001_ha, u32 opc, 4586 u32 dev_id, u8 flag, u32 task_tag, u32 cmd_tag) 4587 { 4588 struct task_abort_req task_abort; 4589 struct inbound_queue_table *circularQ; 4590 int ret; 4591 circularQ = &pm8001_ha->inbnd_q_tbl[0]; 4592 memset(&task_abort, 0, sizeof(task_abort)); 4593 if (ABORT_SINGLE == (flag & ABORT_MASK)) { 4594 task_abort.abort_all = 0; 4595 task_abort.device_id = cpu_to_le32(dev_id); 4596 task_abort.tag_to_abort = cpu_to_le32(task_tag); 4597 task_abort.tag = cpu_to_le32(cmd_tag); 4598 } else if (ABORT_ALL == (flag & ABORT_MASK)) { 4599 task_abort.abort_all = cpu_to_le32(1); 4600 task_abort.device_id = cpu_to_le32(dev_id); 4601 task_abort.tag = cpu_to_le32(cmd_tag); 4602 } 4603 ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &task_abort, 4604 sizeof(task_abort), 0); 4605 return ret; 4606 } 4607 4608 /* 4609 * pm8001_chip_abort_task - SAS abort task when error or exception happened. 4610 */ 4611 int pm8001_chip_abort_task(struct pm8001_hba_info *pm8001_ha, 4612 struct pm8001_device *pm8001_dev, u8 flag, u32 task_tag, u32 cmd_tag) 4613 { 4614 u32 opc, device_id; 4615 int rc = TMF_RESP_FUNC_FAILED; 4616 pm8001_dbg(pm8001_ha, EH, "cmd_tag = %x, abort task tag = 0x%x\n", 4617 cmd_tag, task_tag); 4618 if (pm8001_dev->dev_type == SAS_END_DEVICE) 4619 opc = OPC_INB_SSP_ABORT; 4620 else if (pm8001_dev->dev_type == SAS_SATA_DEV) 4621 opc = OPC_INB_SATA_ABORT; 4622 else 4623 opc = OPC_INB_SMP_ABORT;/* SMP */ 4624 device_id = pm8001_dev->device_id; 4625 rc = send_task_abort(pm8001_ha, opc, device_id, flag, 4626 task_tag, cmd_tag); 4627 if (rc != TMF_RESP_FUNC_COMPLETE) 4628 pm8001_dbg(pm8001_ha, EH, "rc= %d\n", rc); 4629 return rc; 4630 } 4631 4632 /** 4633 * pm8001_chip_ssp_tm_req - built the task management command. 4634 * @pm8001_ha: our hba card information. 4635 * @ccb: the ccb information. 4636 * @tmf: task management function. 4637 */ 4638 int pm8001_chip_ssp_tm_req(struct pm8001_hba_info *pm8001_ha, 4639 struct pm8001_ccb_info *ccb, struct pm8001_tmf_task *tmf) 4640 { 4641 struct sas_task *task = ccb->task; 4642 struct domain_device *dev = task->dev; 4643 struct pm8001_device *pm8001_dev = dev->lldd_dev; 4644 u32 opc = OPC_INB_SSPINITMSTART; 4645 struct inbound_queue_table *circularQ; 4646 struct ssp_ini_tm_start_req sspTMCmd; 4647 int ret; 4648 4649 memset(&sspTMCmd, 0, sizeof(sspTMCmd)); 4650 sspTMCmd.device_id = cpu_to_le32(pm8001_dev->device_id); 4651 sspTMCmd.relate_tag = cpu_to_le32(tmf->tag_of_task_to_be_managed); 4652 sspTMCmd.tmf = cpu_to_le32(tmf->tmf); 4653 memcpy(sspTMCmd.lun, task->ssp_task.LUN, 8); 4654 sspTMCmd.tag = cpu_to_le32(ccb->ccb_tag); 4655 if (pm8001_ha->chip_id != chip_8001) 4656 sspTMCmd.ds_ads_m = 0x08; 4657 circularQ = &pm8001_ha->inbnd_q_tbl[0]; 4658 ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &sspTMCmd, 4659 sizeof(sspTMCmd), 0); 4660 return ret; 4661 } 4662 4663 int pm8001_chip_get_nvmd_req(struct pm8001_hba_info *pm8001_ha, 4664 void *payload) 4665 { 4666 u32 opc = OPC_INB_GET_NVMD_DATA; 4667 u32 nvmd_type; 4668 int rc; 4669 u32 tag; 4670 struct pm8001_ccb_info *ccb; 4671 struct inbound_queue_table *circularQ; 4672 struct get_nvm_data_req nvmd_req; 4673 struct fw_control_ex *fw_control_context; 4674 struct pm8001_ioctl_payload *ioctl_payload = payload; 4675 4676 nvmd_type = ioctl_payload->minor_function; 4677 fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL); 4678 if (!fw_control_context) 4679 return -ENOMEM; 4680 fw_control_context->usrAddr = (u8 *)ioctl_payload->func_specific; 4681 fw_control_context->len = ioctl_payload->rd_length; 4682 circularQ = &pm8001_ha->inbnd_q_tbl[0]; 4683 memset(&nvmd_req, 0, sizeof(nvmd_req)); 4684 rc = pm8001_tag_alloc(pm8001_ha, &tag); 4685 if (rc) { 4686 kfree(fw_control_context); 4687 return rc; 4688 } 4689 ccb = &pm8001_ha->ccb_info[tag]; 4690 ccb->ccb_tag = tag; 4691 ccb->fw_control_context = fw_control_context; 4692 nvmd_req.tag = cpu_to_le32(tag); 4693 4694 switch (nvmd_type) { 4695 case TWI_DEVICE: { 4696 u32 twi_addr, twi_page_size; 4697 twi_addr = 0xa8; 4698 twi_page_size = 2; 4699 4700 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | twi_addr << 16 | 4701 twi_page_size << 8 | TWI_DEVICE); 4702 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length); 4703 nvmd_req.resp_addr_hi = 4704 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4705 nvmd_req.resp_addr_lo = 4706 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4707 break; 4708 } 4709 case C_SEEPROM: { 4710 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | C_SEEPROM); 4711 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length); 4712 nvmd_req.resp_addr_hi = 4713 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4714 nvmd_req.resp_addr_lo = 4715 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4716 break; 4717 } 4718 case VPD_FLASH: { 4719 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | VPD_FLASH); 4720 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length); 4721 nvmd_req.resp_addr_hi = 4722 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4723 nvmd_req.resp_addr_lo = 4724 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4725 break; 4726 } 4727 case EXPAN_ROM: { 4728 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | EXPAN_ROM); 4729 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length); 4730 nvmd_req.resp_addr_hi = 4731 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4732 nvmd_req.resp_addr_lo = 4733 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4734 break; 4735 } 4736 case IOP_RDUMP: { 4737 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | IOP_RDUMP); 4738 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length); 4739 nvmd_req.vpd_offset = cpu_to_le32(ioctl_payload->offset); 4740 nvmd_req.resp_addr_hi = 4741 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4742 nvmd_req.resp_addr_lo = 4743 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4744 break; 4745 } 4746 default: 4747 break; 4748 } 4749 rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &nvmd_req, 4750 sizeof(nvmd_req), 0); 4751 if (rc) { 4752 kfree(fw_control_context); 4753 pm8001_tag_free(pm8001_ha, tag); 4754 } 4755 return rc; 4756 } 4757 4758 int pm8001_chip_set_nvmd_req(struct pm8001_hba_info *pm8001_ha, 4759 void *payload) 4760 { 4761 u32 opc = OPC_INB_SET_NVMD_DATA; 4762 u32 nvmd_type; 4763 int rc; 4764 u32 tag; 4765 struct pm8001_ccb_info *ccb; 4766 struct inbound_queue_table *circularQ; 4767 struct set_nvm_data_req nvmd_req; 4768 struct fw_control_ex *fw_control_context; 4769 struct pm8001_ioctl_payload *ioctl_payload = payload; 4770 4771 nvmd_type = ioctl_payload->minor_function; 4772 fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL); 4773 if (!fw_control_context) 4774 return -ENOMEM; 4775 circularQ = &pm8001_ha->inbnd_q_tbl[0]; 4776 memcpy(pm8001_ha->memoryMap.region[NVMD].virt_ptr, 4777 &ioctl_payload->func_specific, 4778 ioctl_payload->wr_length); 4779 memset(&nvmd_req, 0, sizeof(nvmd_req)); 4780 rc = pm8001_tag_alloc(pm8001_ha, &tag); 4781 if (rc) { 4782 kfree(fw_control_context); 4783 return -EBUSY; 4784 } 4785 ccb = &pm8001_ha->ccb_info[tag]; 4786 ccb->fw_control_context = fw_control_context; 4787 ccb->ccb_tag = tag; 4788 nvmd_req.tag = cpu_to_le32(tag); 4789 switch (nvmd_type) { 4790 case TWI_DEVICE: { 4791 u32 twi_addr, twi_page_size; 4792 twi_addr = 0xa8; 4793 twi_page_size = 2; 4794 nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); 4795 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | twi_addr << 16 | 4796 twi_page_size << 8 | TWI_DEVICE); 4797 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length); 4798 nvmd_req.resp_addr_hi = 4799 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4800 nvmd_req.resp_addr_lo = 4801 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4802 break; 4803 } 4804 case C_SEEPROM: 4805 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | C_SEEPROM); 4806 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length); 4807 nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); 4808 nvmd_req.resp_addr_hi = 4809 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4810 nvmd_req.resp_addr_lo = 4811 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4812 break; 4813 case VPD_FLASH: 4814 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | VPD_FLASH); 4815 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length); 4816 nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); 4817 nvmd_req.resp_addr_hi = 4818 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4819 nvmd_req.resp_addr_lo = 4820 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4821 break; 4822 case EXPAN_ROM: 4823 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | EXPAN_ROM); 4824 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length); 4825 nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); 4826 nvmd_req.resp_addr_hi = 4827 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4828 nvmd_req.resp_addr_lo = 4829 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4830 break; 4831 default: 4832 break; 4833 } 4834 rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &nvmd_req, 4835 sizeof(nvmd_req), 0); 4836 if (rc) { 4837 kfree(fw_control_context); 4838 pm8001_tag_free(pm8001_ha, tag); 4839 } 4840 return rc; 4841 } 4842 4843 /** 4844 * pm8001_chip_fw_flash_update_build - support the firmware update operation 4845 * @pm8001_ha: our hba card information. 4846 * @fw_flash_updata_info: firmware flash update param 4847 * @tag: Tag to apply to the payload 4848 */ 4849 int 4850 pm8001_chip_fw_flash_update_build(struct pm8001_hba_info *pm8001_ha, 4851 void *fw_flash_updata_info, u32 tag) 4852 { 4853 struct fw_flash_Update_req payload; 4854 struct fw_flash_updata_info *info; 4855 struct inbound_queue_table *circularQ; 4856 int ret; 4857 u32 opc = OPC_INB_FW_FLASH_UPDATE; 4858 4859 memset(&payload, 0, sizeof(struct fw_flash_Update_req)); 4860 circularQ = &pm8001_ha->inbnd_q_tbl[0]; 4861 info = fw_flash_updata_info; 4862 payload.tag = cpu_to_le32(tag); 4863 payload.cur_image_len = cpu_to_le32(info->cur_image_len); 4864 payload.cur_image_offset = cpu_to_le32(info->cur_image_offset); 4865 payload.total_image_len = cpu_to_le32(info->total_image_len); 4866 payload.len = info->sgl.im_len.len ; 4867 payload.sgl_addr_lo = 4868 cpu_to_le32(lower_32_bits(le64_to_cpu(info->sgl.addr))); 4869 payload.sgl_addr_hi = 4870 cpu_to_le32(upper_32_bits(le64_to_cpu(info->sgl.addr))); 4871 ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, 4872 sizeof(payload), 0); 4873 return ret; 4874 } 4875 4876 int 4877 pm8001_chip_fw_flash_update_req(struct pm8001_hba_info *pm8001_ha, 4878 void *payload) 4879 { 4880 struct fw_flash_updata_info flash_update_info; 4881 struct fw_control_info *fw_control; 4882 struct fw_control_ex *fw_control_context; 4883 int rc; 4884 u32 tag; 4885 struct pm8001_ccb_info *ccb; 4886 void *buffer = pm8001_ha->memoryMap.region[FW_FLASH].virt_ptr; 4887 dma_addr_t phys_addr = pm8001_ha->memoryMap.region[FW_FLASH].phys_addr; 4888 struct pm8001_ioctl_payload *ioctl_payload = payload; 4889 4890 fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL); 4891 if (!fw_control_context) 4892 return -ENOMEM; 4893 fw_control = (struct fw_control_info *)&ioctl_payload->func_specific; 4894 pm8001_dbg(pm8001_ha, DEVIO, 4895 "dma fw_control context input length :%x\n", 4896 fw_control->len); 4897 memcpy(buffer, fw_control->buffer, fw_control->len); 4898 flash_update_info.sgl.addr = cpu_to_le64(phys_addr); 4899 flash_update_info.sgl.im_len.len = cpu_to_le32(fw_control->len); 4900 flash_update_info.sgl.im_len.e = 0; 4901 flash_update_info.cur_image_offset = fw_control->offset; 4902 flash_update_info.cur_image_len = fw_control->len; 4903 flash_update_info.total_image_len = fw_control->size; 4904 fw_control_context->fw_control = fw_control; 4905 fw_control_context->virtAddr = buffer; 4906 fw_control_context->phys_addr = phys_addr; 4907 fw_control_context->len = fw_control->len; 4908 rc = pm8001_tag_alloc(pm8001_ha, &tag); 4909 if (rc) { 4910 kfree(fw_control_context); 4911 return -EBUSY; 4912 } 4913 ccb = &pm8001_ha->ccb_info[tag]; 4914 ccb->fw_control_context = fw_control_context; 4915 ccb->ccb_tag = tag; 4916 rc = pm8001_chip_fw_flash_update_build(pm8001_ha, &flash_update_info, 4917 tag); 4918 return rc; 4919 } 4920 4921 ssize_t 4922 pm8001_get_gsm_dump(struct device *cdev, u32 length, char *buf) 4923 { 4924 u32 value, rem, offset = 0, bar = 0; 4925 u32 index, work_offset, dw_length; 4926 u32 shift_value, gsm_base, gsm_dump_offset; 4927 char *direct_data; 4928 struct Scsi_Host *shost = class_to_shost(cdev); 4929 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); 4930 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha; 4931 4932 direct_data = buf; 4933 gsm_dump_offset = pm8001_ha->fatal_forensic_shift_offset; 4934 4935 /* check max is 1 Mbytes */ 4936 if ((length > 0x100000) || (gsm_dump_offset & 3) || 4937 ((gsm_dump_offset + length) > 0x1000000)) 4938 return -EINVAL; 4939 4940 if (pm8001_ha->chip_id == chip_8001) 4941 bar = 2; 4942 else 4943 bar = 1; 4944 4945 work_offset = gsm_dump_offset & 0xFFFF0000; 4946 offset = gsm_dump_offset & 0x0000FFFF; 4947 gsm_dump_offset = work_offset; 4948 /* adjust length to dword boundary */ 4949 rem = length & 3; 4950 dw_length = length >> 2; 4951 4952 for (index = 0; index < dw_length; index++) { 4953 if ((work_offset + offset) & 0xFFFF0000) { 4954 if (pm8001_ha->chip_id == chip_8001) 4955 shift_value = ((gsm_dump_offset + offset) & 4956 SHIFT_REG_64K_MASK); 4957 else 4958 shift_value = (((gsm_dump_offset + offset) & 4959 SHIFT_REG_64K_MASK) >> 4960 SHIFT_REG_BIT_SHIFT); 4961 4962 if (pm8001_ha->chip_id == chip_8001) { 4963 gsm_base = GSM_BASE; 4964 if (-1 == pm8001_bar4_shift(pm8001_ha, 4965 (gsm_base + shift_value))) 4966 return -EIO; 4967 } else { 4968 gsm_base = 0; 4969 if (-1 == pm80xx_bar4_shift(pm8001_ha, 4970 (gsm_base + shift_value))) 4971 return -EIO; 4972 } 4973 gsm_dump_offset = (gsm_dump_offset + offset) & 4974 0xFFFF0000; 4975 work_offset = 0; 4976 offset = offset & 0x0000FFFF; 4977 } 4978 value = pm8001_cr32(pm8001_ha, bar, (work_offset + offset) & 4979 0x0000FFFF); 4980 direct_data += sprintf(direct_data, "%08x ", value); 4981 offset += 4; 4982 } 4983 if (rem != 0) { 4984 value = pm8001_cr32(pm8001_ha, bar, (work_offset + offset) & 4985 0x0000FFFF); 4986 /* xfr for non_dw */ 4987 direct_data += sprintf(direct_data, "%08x ", value); 4988 } 4989 /* Shift back to BAR4 original address */ 4990 if (-1 == pm8001_bar4_shift(pm8001_ha, 0)) 4991 return -EIO; 4992 pm8001_ha->fatal_forensic_shift_offset += 1024; 4993 4994 if (pm8001_ha->fatal_forensic_shift_offset >= 0x100000) 4995 pm8001_ha->fatal_forensic_shift_offset = 0; 4996 return direct_data - buf; 4997 } 4998 4999 int 5000 pm8001_chip_set_dev_state_req(struct pm8001_hba_info *pm8001_ha, 5001 struct pm8001_device *pm8001_dev, u32 state) 5002 { 5003 struct set_dev_state_req payload; 5004 struct inbound_queue_table *circularQ; 5005 struct pm8001_ccb_info *ccb; 5006 int rc; 5007 u32 tag; 5008 u32 opc = OPC_INB_SET_DEVICE_STATE; 5009 memset(&payload, 0, sizeof(payload)); 5010 rc = pm8001_tag_alloc(pm8001_ha, &tag); 5011 if (rc) 5012 return -1; 5013 ccb = &pm8001_ha->ccb_info[tag]; 5014 ccb->ccb_tag = tag; 5015 ccb->device = pm8001_dev; 5016 circularQ = &pm8001_ha->inbnd_q_tbl[0]; 5017 payload.tag = cpu_to_le32(tag); 5018 payload.device_id = cpu_to_le32(pm8001_dev->device_id); 5019 payload.nds = cpu_to_le32(state); 5020 rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, 5021 sizeof(payload), 0); 5022 return rc; 5023 5024 } 5025 5026 static int 5027 pm8001_chip_sas_re_initialization(struct pm8001_hba_info *pm8001_ha) 5028 { 5029 struct sas_re_initialization_req payload; 5030 struct inbound_queue_table *circularQ; 5031 struct pm8001_ccb_info *ccb; 5032 int rc; 5033 u32 tag; 5034 u32 opc = OPC_INB_SAS_RE_INITIALIZE; 5035 memset(&payload, 0, sizeof(payload)); 5036 rc = pm8001_tag_alloc(pm8001_ha, &tag); 5037 if (rc) 5038 return -ENOMEM; 5039 ccb = &pm8001_ha->ccb_info[tag]; 5040 ccb->ccb_tag = tag; 5041 circularQ = &pm8001_ha->inbnd_q_tbl[0]; 5042 payload.tag = cpu_to_le32(tag); 5043 payload.SSAHOLT = cpu_to_le32(0xd << 25); 5044 payload.sata_hol_tmo = cpu_to_le32(80); 5045 payload.open_reject_cmdretries_data_retries = cpu_to_le32(0xff00ff); 5046 rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, 5047 sizeof(payload), 0); 5048 if (rc) 5049 pm8001_tag_free(pm8001_ha, tag); 5050 return rc; 5051 5052 } 5053 5054 const struct pm8001_dispatch pm8001_8001_dispatch = { 5055 .name = "pmc8001", 5056 .chip_init = pm8001_chip_init, 5057 .chip_soft_rst = pm8001_chip_soft_rst, 5058 .chip_rst = pm8001_hw_chip_rst, 5059 .chip_iounmap = pm8001_chip_iounmap, 5060 .isr = pm8001_chip_isr, 5061 .is_our_interrupt = pm8001_chip_is_our_interrupt, 5062 .isr_process_oq = process_oq, 5063 .interrupt_enable = pm8001_chip_interrupt_enable, 5064 .interrupt_disable = pm8001_chip_interrupt_disable, 5065 .make_prd = pm8001_chip_make_sg, 5066 .smp_req = pm8001_chip_smp_req, 5067 .ssp_io_req = pm8001_chip_ssp_io_req, 5068 .sata_req = pm8001_chip_sata_req, 5069 .phy_start_req = pm8001_chip_phy_start_req, 5070 .phy_stop_req = pm8001_chip_phy_stop_req, 5071 .reg_dev_req = pm8001_chip_reg_dev_req, 5072 .dereg_dev_req = pm8001_chip_dereg_dev_req, 5073 .phy_ctl_req = pm8001_chip_phy_ctl_req, 5074 .task_abort = pm8001_chip_abort_task, 5075 .ssp_tm_req = pm8001_chip_ssp_tm_req, 5076 .get_nvmd_req = pm8001_chip_get_nvmd_req, 5077 .set_nvmd_req = pm8001_chip_set_nvmd_req, 5078 .fw_flash_update_req = pm8001_chip_fw_flash_update_req, 5079 .set_dev_state_req = pm8001_chip_set_dev_state_req, 5080 .sas_re_init_req = pm8001_chip_sas_re_initialization, 5081 .fatal_errors = pm80xx_fatal_errors, 5082 }; 5083