1 /* 2 * PMC-Sierra SPC 8001 SAS/SATA based host adapters driver 3 * 4 * Copyright (c) 2008-2009 USI Co., Ltd. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * substantially similar to the "NO WARRANTY" disclaimer below 15 * ("Disclaimer") and any redistribution must be conditioned upon 16 * including a substantially similar Disclaimer requirement for further 17 * binary redistribution. 18 * 3. Neither the names of the above-listed copyright holders nor the names 19 * of any contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * Alternatively, this software may be distributed under the terms of the 23 * GNU General Public License ("GPL") version 2 as published by the Free 24 * Software Foundation. 25 * 26 * NO WARRANTY 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 35 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 36 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGES. 38 * 39 */ 40 #include <linux/slab.h> 41 #include "pm8001_sas.h" 42 #include "pm8001_hwi.h" 43 #include "pm8001_chips.h" 44 #include "pm8001_ctl.h" 45 #include "pm80xx_tracepoints.h" 46 47 /** 48 * read_main_config_table - read the configure table and save it. 49 * @pm8001_ha: our hba card information 50 */ 51 static void read_main_config_table(struct pm8001_hba_info *pm8001_ha) 52 { 53 void __iomem *address = pm8001_ha->main_cfg_tbl_addr; 54 pm8001_ha->main_cfg_tbl.pm8001_tbl.signature = 55 pm8001_mr32(address, 0x00); 56 pm8001_ha->main_cfg_tbl.pm8001_tbl.interface_rev = 57 pm8001_mr32(address, 0x04); 58 pm8001_ha->main_cfg_tbl.pm8001_tbl.firmware_rev = 59 pm8001_mr32(address, 0x08); 60 pm8001_ha->main_cfg_tbl.pm8001_tbl.max_out_io = 61 pm8001_mr32(address, 0x0C); 62 pm8001_ha->main_cfg_tbl.pm8001_tbl.max_sgl = 63 pm8001_mr32(address, 0x10); 64 pm8001_ha->main_cfg_tbl.pm8001_tbl.ctrl_cap_flag = 65 pm8001_mr32(address, 0x14); 66 pm8001_ha->main_cfg_tbl.pm8001_tbl.gst_offset = 67 pm8001_mr32(address, 0x18); 68 pm8001_ha->main_cfg_tbl.pm8001_tbl.inbound_queue_offset = 69 pm8001_mr32(address, MAIN_IBQ_OFFSET); 70 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_queue_offset = 71 pm8001_mr32(address, MAIN_OBQ_OFFSET); 72 pm8001_ha->main_cfg_tbl.pm8001_tbl.hda_mode_flag = 73 pm8001_mr32(address, MAIN_HDA_FLAGS_OFFSET); 74 75 /* read analog Setting offset from the configuration table */ 76 pm8001_ha->main_cfg_tbl.pm8001_tbl.anolog_setup_table_offset = 77 pm8001_mr32(address, MAIN_ANALOG_SETUP_OFFSET); 78 79 /* read Error Dump Offset and Length */ 80 pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_offset0 = 81 pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_OFFSET); 82 pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_length0 = 83 pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_LENGTH); 84 pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_offset1 = 85 pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_OFFSET); 86 pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_length1 = 87 pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_LENGTH); 88 } 89 90 /** 91 * read_general_status_table - read the general status table and save it. 92 * @pm8001_ha: our hba card information 93 */ 94 static void read_general_status_table(struct pm8001_hba_info *pm8001_ha) 95 { 96 void __iomem *address = pm8001_ha->general_stat_tbl_addr; 97 pm8001_ha->gs_tbl.pm8001_tbl.gst_len_mpistate = 98 pm8001_mr32(address, 0x00); 99 pm8001_ha->gs_tbl.pm8001_tbl.iq_freeze_state0 = 100 pm8001_mr32(address, 0x04); 101 pm8001_ha->gs_tbl.pm8001_tbl.iq_freeze_state1 = 102 pm8001_mr32(address, 0x08); 103 pm8001_ha->gs_tbl.pm8001_tbl.msgu_tcnt = 104 pm8001_mr32(address, 0x0C); 105 pm8001_ha->gs_tbl.pm8001_tbl.iop_tcnt = 106 pm8001_mr32(address, 0x10); 107 pm8001_ha->gs_tbl.pm8001_tbl.rsvd = 108 pm8001_mr32(address, 0x14); 109 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[0] = 110 pm8001_mr32(address, 0x18); 111 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[1] = 112 pm8001_mr32(address, 0x1C); 113 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[2] = 114 pm8001_mr32(address, 0x20); 115 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[3] = 116 pm8001_mr32(address, 0x24); 117 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[4] = 118 pm8001_mr32(address, 0x28); 119 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[5] = 120 pm8001_mr32(address, 0x2C); 121 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[6] = 122 pm8001_mr32(address, 0x30); 123 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[7] = 124 pm8001_mr32(address, 0x34); 125 pm8001_ha->gs_tbl.pm8001_tbl.gpio_input_val = 126 pm8001_mr32(address, 0x38); 127 pm8001_ha->gs_tbl.pm8001_tbl.rsvd1[0] = 128 pm8001_mr32(address, 0x3C); 129 pm8001_ha->gs_tbl.pm8001_tbl.rsvd1[1] = 130 pm8001_mr32(address, 0x40); 131 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[0] = 132 pm8001_mr32(address, 0x44); 133 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[1] = 134 pm8001_mr32(address, 0x48); 135 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[2] = 136 pm8001_mr32(address, 0x4C); 137 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[3] = 138 pm8001_mr32(address, 0x50); 139 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[4] = 140 pm8001_mr32(address, 0x54); 141 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[5] = 142 pm8001_mr32(address, 0x58); 143 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[6] = 144 pm8001_mr32(address, 0x5C); 145 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[7] = 146 pm8001_mr32(address, 0x60); 147 } 148 149 /** 150 * read_inbnd_queue_table - read the inbound queue table and save it. 151 * @pm8001_ha: our hba card information 152 */ 153 static void read_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha) 154 { 155 int i; 156 void __iomem *address = pm8001_ha->inbnd_q_tbl_addr; 157 for (i = 0; i < PM8001_MAX_INB_NUM; i++) { 158 u32 offset = i * 0x20; 159 pm8001_ha->inbnd_q_tbl[i].pi_pci_bar = 160 get_pci_bar_index(pm8001_mr32(address, (offset + 0x14))); 161 pm8001_ha->inbnd_q_tbl[i].pi_offset = 162 pm8001_mr32(address, (offset + 0x18)); 163 } 164 } 165 166 /** 167 * read_outbnd_queue_table - read the outbound queue table and save it. 168 * @pm8001_ha: our hba card information 169 */ 170 static void read_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha) 171 { 172 int i; 173 void __iomem *address = pm8001_ha->outbnd_q_tbl_addr; 174 for (i = 0; i < PM8001_MAX_OUTB_NUM; i++) { 175 u32 offset = i * 0x24; 176 pm8001_ha->outbnd_q_tbl[i].ci_pci_bar = 177 get_pci_bar_index(pm8001_mr32(address, (offset + 0x14))); 178 pm8001_ha->outbnd_q_tbl[i].ci_offset = 179 pm8001_mr32(address, (offset + 0x18)); 180 } 181 } 182 183 /** 184 * init_default_table_values - init the default table. 185 * @pm8001_ha: our hba card information 186 */ 187 static void init_default_table_values(struct pm8001_hba_info *pm8001_ha) 188 { 189 int i; 190 u32 offsetib, offsetob; 191 void __iomem *addressib = pm8001_ha->inbnd_q_tbl_addr; 192 void __iomem *addressob = pm8001_ha->outbnd_q_tbl_addr; 193 u32 ib_offset = pm8001_ha->ib_offset; 194 u32 ob_offset = pm8001_ha->ob_offset; 195 u32 ci_offset = pm8001_ha->ci_offset; 196 u32 pi_offset = pm8001_ha->pi_offset; 197 198 pm8001_ha->main_cfg_tbl.pm8001_tbl.inbound_q_nppd_hppd = 0; 199 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid0_3 = 0; 200 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid4_7 = 0; 201 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid0_3 = 0; 202 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid4_7 = 0; 203 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ITNexus_event_pid0_3 = 204 0; 205 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ITNexus_event_pid4_7 = 206 0; 207 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ssp_event_pid0_3 = 0; 208 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ssp_event_pid4_7 = 0; 209 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_smp_event_pid0_3 = 0; 210 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_smp_event_pid4_7 = 0; 211 212 pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_event_log_addr = 213 pm8001_ha->memoryMap.region[AAP1].phys_addr_hi; 214 pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_event_log_addr = 215 pm8001_ha->memoryMap.region[AAP1].phys_addr_lo; 216 pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_size = 217 PM8001_EVENT_LOG_SIZE; 218 pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_option = 0x01; 219 pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_iop_event_log_addr = 220 pm8001_ha->memoryMap.region[IOP].phys_addr_hi; 221 pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_iop_event_log_addr = 222 pm8001_ha->memoryMap.region[IOP].phys_addr_lo; 223 pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_size = 224 PM8001_EVENT_LOG_SIZE; 225 pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_option = 0x01; 226 pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_interrupt = 0x01; 227 for (i = 0; i < pm8001_ha->max_q_num; i++) { 228 pm8001_ha->inbnd_q_tbl[i].element_pri_size_cnt = 229 PM8001_MPI_QUEUE | (pm8001_ha->iomb_size << 16) | (0x00<<30); 230 pm8001_ha->inbnd_q_tbl[i].upper_base_addr = 231 pm8001_ha->memoryMap.region[ib_offset + i].phys_addr_hi; 232 pm8001_ha->inbnd_q_tbl[i].lower_base_addr = 233 pm8001_ha->memoryMap.region[ib_offset + i].phys_addr_lo; 234 pm8001_ha->inbnd_q_tbl[i].base_virt = 235 (u8 *)pm8001_ha->memoryMap.region[ib_offset + i].virt_ptr; 236 pm8001_ha->inbnd_q_tbl[i].total_length = 237 pm8001_ha->memoryMap.region[ib_offset + i].total_len; 238 pm8001_ha->inbnd_q_tbl[i].ci_upper_base_addr = 239 pm8001_ha->memoryMap.region[ci_offset + i].phys_addr_hi; 240 pm8001_ha->inbnd_q_tbl[i].ci_lower_base_addr = 241 pm8001_ha->memoryMap.region[ci_offset + i].phys_addr_lo; 242 pm8001_ha->inbnd_q_tbl[i].ci_virt = 243 pm8001_ha->memoryMap.region[ci_offset + i].virt_ptr; 244 pm8001_write_32(pm8001_ha->inbnd_q_tbl[i].ci_virt, 0, 0); 245 offsetib = i * 0x20; 246 pm8001_ha->inbnd_q_tbl[i].pi_pci_bar = 247 get_pci_bar_index(pm8001_mr32(addressib, 248 (offsetib + 0x14))); 249 pm8001_ha->inbnd_q_tbl[i].pi_offset = 250 pm8001_mr32(addressib, (offsetib + 0x18)); 251 pm8001_ha->inbnd_q_tbl[i].producer_idx = 0; 252 pm8001_ha->inbnd_q_tbl[i].consumer_index = 0; 253 } 254 for (i = 0; i < pm8001_ha->max_q_num; i++) { 255 pm8001_ha->outbnd_q_tbl[i].element_size_cnt = 256 PM8001_MPI_QUEUE | (pm8001_ha->iomb_size << 16) | (0x01<<30); 257 pm8001_ha->outbnd_q_tbl[i].upper_base_addr = 258 pm8001_ha->memoryMap.region[ob_offset + i].phys_addr_hi; 259 pm8001_ha->outbnd_q_tbl[i].lower_base_addr = 260 pm8001_ha->memoryMap.region[ob_offset + i].phys_addr_lo; 261 pm8001_ha->outbnd_q_tbl[i].base_virt = 262 (u8 *)pm8001_ha->memoryMap.region[ob_offset + i].virt_ptr; 263 pm8001_ha->outbnd_q_tbl[i].total_length = 264 pm8001_ha->memoryMap.region[ob_offset + i].total_len; 265 pm8001_ha->outbnd_q_tbl[i].pi_upper_base_addr = 266 pm8001_ha->memoryMap.region[pi_offset + i].phys_addr_hi; 267 pm8001_ha->outbnd_q_tbl[i].pi_lower_base_addr = 268 pm8001_ha->memoryMap.region[pi_offset + i].phys_addr_lo; 269 pm8001_ha->outbnd_q_tbl[i].interrup_vec_cnt_delay = 270 0 | (10 << 16) | (i << 24); 271 pm8001_ha->outbnd_q_tbl[i].pi_virt = 272 pm8001_ha->memoryMap.region[pi_offset + i].virt_ptr; 273 pm8001_write_32(pm8001_ha->outbnd_q_tbl[i].pi_virt, 0, 0); 274 offsetob = i * 0x24; 275 pm8001_ha->outbnd_q_tbl[i].ci_pci_bar = 276 get_pci_bar_index(pm8001_mr32(addressob, 277 offsetob + 0x14)); 278 pm8001_ha->outbnd_q_tbl[i].ci_offset = 279 pm8001_mr32(addressob, (offsetob + 0x18)); 280 pm8001_ha->outbnd_q_tbl[i].consumer_idx = 0; 281 pm8001_ha->outbnd_q_tbl[i].producer_index = 0; 282 } 283 } 284 285 /** 286 * update_main_config_table - update the main default table to the HBA. 287 * @pm8001_ha: our hba card information 288 */ 289 static void update_main_config_table(struct pm8001_hba_info *pm8001_ha) 290 { 291 void __iomem *address = pm8001_ha->main_cfg_tbl_addr; 292 pm8001_mw32(address, 0x24, 293 pm8001_ha->main_cfg_tbl.pm8001_tbl.inbound_q_nppd_hppd); 294 pm8001_mw32(address, 0x28, 295 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid0_3); 296 pm8001_mw32(address, 0x2C, 297 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid4_7); 298 pm8001_mw32(address, 0x30, 299 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid0_3); 300 pm8001_mw32(address, 0x34, 301 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid4_7); 302 pm8001_mw32(address, 0x38, 303 pm8001_ha->main_cfg_tbl.pm8001_tbl. 304 outbound_tgt_ITNexus_event_pid0_3); 305 pm8001_mw32(address, 0x3C, 306 pm8001_ha->main_cfg_tbl.pm8001_tbl. 307 outbound_tgt_ITNexus_event_pid4_7); 308 pm8001_mw32(address, 0x40, 309 pm8001_ha->main_cfg_tbl.pm8001_tbl. 310 outbound_tgt_ssp_event_pid0_3); 311 pm8001_mw32(address, 0x44, 312 pm8001_ha->main_cfg_tbl.pm8001_tbl. 313 outbound_tgt_ssp_event_pid4_7); 314 pm8001_mw32(address, 0x48, 315 pm8001_ha->main_cfg_tbl.pm8001_tbl. 316 outbound_tgt_smp_event_pid0_3); 317 pm8001_mw32(address, 0x4C, 318 pm8001_ha->main_cfg_tbl.pm8001_tbl. 319 outbound_tgt_smp_event_pid4_7); 320 pm8001_mw32(address, 0x50, 321 pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_event_log_addr); 322 pm8001_mw32(address, 0x54, 323 pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_event_log_addr); 324 pm8001_mw32(address, 0x58, 325 pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_size); 326 pm8001_mw32(address, 0x5C, 327 pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_option); 328 pm8001_mw32(address, 0x60, 329 pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_iop_event_log_addr); 330 pm8001_mw32(address, 0x64, 331 pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_iop_event_log_addr); 332 pm8001_mw32(address, 0x68, 333 pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_size); 334 pm8001_mw32(address, 0x6C, 335 pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_option); 336 pm8001_mw32(address, 0x70, 337 pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_interrupt); 338 } 339 340 /** 341 * update_inbnd_queue_table - update the inbound queue table to the HBA. 342 * @pm8001_ha: our hba card information 343 * @number: entry in the queue 344 */ 345 static void update_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha, 346 int number) 347 { 348 void __iomem *address = pm8001_ha->inbnd_q_tbl_addr; 349 u16 offset = number * 0x20; 350 pm8001_mw32(address, offset + 0x00, 351 pm8001_ha->inbnd_q_tbl[number].element_pri_size_cnt); 352 pm8001_mw32(address, offset + 0x04, 353 pm8001_ha->inbnd_q_tbl[number].upper_base_addr); 354 pm8001_mw32(address, offset + 0x08, 355 pm8001_ha->inbnd_q_tbl[number].lower_base_addr); 356 pm8001_mw32(address, offset + 0x0C, 357 pm8001_ha->inbnd_q_tbl[number].ci_upper_base_addr); 358 pm8001_mw32(address, offset + 0x10, 359 pm8001_ha->inbnd_q_tbl[number].ci_lower_base_addr); 360 } 361 362 /** 363 * update_outbnd_queue_table - update the outbound queue table to the HBA. 364 * @pm8001_ha: our hba card information 365 * @number: entry in the queue 366 */ 367 static void update_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha, 368 int number) 369 { 370 void __iomem *address = pm8001_ha->outbnd_q_tbl_addr; 371 u16 offset = number * 0x24; 372 pm8001_mw32(address, offset + 0x00, 373 pm8001_ha->outbnd_q_tbl[number].element_size_cnt); 374 pm8001_mw32(address, offset + 0x04, 375 pm8001_ha->outbnd_q_tbl[number].upper_base_addr); 376 pm8001_mw32(address, offset + 0x08, 377 pm8001_ha->outbnd_q_tbl[number].lower_base_addr); 378 pm8001_mw32(address, offset + 0x0C, 379 pm8001_ha->outbnd_q_tbl[number].pi_upper_base_addr); 380 pm8001_mw32(address, offset + 0x10, 381 pm8001_ha->outbnd_q_tbl[number].pi_lower_base_addr); 382 pm8001_mw32(address, offset + 0x1C, 383 pm8001_ha->outbnd_q_tbl[number].interrup_vec_cnt_delay); 384 } 385 386 /** 387 * pm8001_bar4_shift - function is called to shift BAR base address 388 * @pm8001_ha : our hba card information 389 * @shiftValue : shifting value in memory bar. 390 */ 391 int pm8001_bar4_shift(struct pm8001_hba_info *pm8001_ha, u32 shiftValue) 392 { 393 u32 regVal; 394 unsigned long start; 395 396 /* program the inbound AXI translation Lower Address */ 397 pm8001_cw32(pm8001_ha, 1, SPC_IBW_AXI_TRANSLATION_LOW, shiftValue); 398 399 /* confirm the setting is written */ 400 start = jiffies + HZ; /* 1 sec */ 401 do { 402 regVal = pm8001_cr32(pm8001_ha, 1, SPC_IBW_AXI_TRANSLATION_LOW); 403 } while ((regVal != shiftValue) && time_before(jiffies, start)); 404 405 if (regVal != shiftValue) { 406 pm8001_dbg(pm8001_ha, INIT, 407 "TIMEOUT:SPC_IBW_AXI_TRANSLATION_LOW = 0x%x\n", 408 regVal); 409 return -1; 410 } 411 return 0; 412 } 413 414 /** 415 * mpi_set_phys_g3_with_ssc 416 * @pm8001_ha: our hba card information 417 * @SSCbit: set SSCbit to 0 to disable all phys ssc; 1 to enable all phys ssc. 418 */ 419 static void mpi_set_phys_g3_with_ssc(struct pm8001_hba_info *pm8001_ha, 420 u32 SSCbit) 421 { 422 u32 offset, i; 423 unsigned long flags; 424 425 #define SAS2_SETTINGS_LOCAL_PHY_0_3_SHIFT_ADDR 0x00030000 426 #define SAS2_SETTINGS_LOCAL_PHY_4_7_SHIFT_ADDR 0x00040000 427 #define SAS2_SETTINGS_LOCAL_PHY_0_3_OFFSET 0x1074 428 #define SAS2_SETTINGS_LOCAL_PHY_4_7_OFFSET 0x1074 429 #define PHY_G3_WITHOUT_SSC_BIT_SHIFT 12 430 #define PHY_G3_WITH_SSC_BIT_SHIFT 13 431 #define SNW3_PHY_CAPABILITIES_PARITY 31 432 433 /* 434 * Using shifted destination address 0x3_0000:0x1074 + 0x4000*N (N=0:3) 435 * Using shifted destination address 0x4_0000:0x1074 + 0x4000*(N-4) (N=4:7) 436 */ 437 spin_lock_irqsave(&pm8001_ha->lock, flags); 438 if (-1 == pm8001_bar4_shift(pm8001_ha, 439 SAS2_SETTINGS_LOCAL_PHY_0_3_SHIFT_ADDR)) { 440 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 441 return; 442 } 443 444 for (i = 0; i < 4; i++) { 445 offset = SAS2_SETTINGS_LOCAL_PHY_0_3_OFFSET + 0x4000 * i; 446 pm8001_cw32(pm8001_ha, 2, offset, 0x80001501); 447 } 448 /* shift membase 3 for SAS2_SETTINGS_LOCAL_PHY 4 - 7 */ 449 if (-1 == pm8001_bar4_shift(pm8001_ha, 450 SAS2_SETTINGS_LOCAL_PHY_4_7_SHIFT_ADDR)) { 451 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 452 return; 453 } 454 for (i = 4; i < 8; i++) { 455 offset = SAS2_SETTINGS_LOCAL_PHY_4_7_OFFSET + 0x4000 * (i-4); 456 pm8001_cw32(pm8001_ha, 2, offset, 0x80001501); 457 } 458 /************************************************************* 459 Change the SSC upspreading value to 0x0 so that upspreading is disabled. 460 Device MABC SMOD0 Controls 461 Address: (via MEMBASE-III): 462 Using shifted destination address 0x0_0000: with Offset 0xD8 463 464 31:28 R/W Reserved Do not change 465 27:24 R/W SAS_SMOD_SPRDUP 0000 466 23:20 R/W SAS_SMOD_SPRDDN 0000 467 19:0 R/W Reserved Do not change 468 Upon power-up this register will read as 0x8990c016, 469 and I would like you to change the SAS_SMOD_SPRDUP bits to 0b0000 470 so that the written value will be 0x8090c016. 471 This will ensure only down-spreading SSC is enabled on the SPC. 472 *************************************************************/ 473 pm8001_cr32(pm8001_ha, 2, 0xd8); 474 pm8001_cw32(pm8001_ha, 2, 0xd8, 0x8000C016); 475 476 /*set the shifted destination address to 0x0 to avoid error operation */ 477 pm8001_bar4_shift(pm8001_ha, 0x0); 478 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 479 return; 480 } 481 482 /** 483 * mpi_set_open_retry_interval_reg 484 * @pm8001_ha: our hba card information 485 * @interval: interval time for each OPEN_REJECT (RETRY). The units are in 1us. 486 */ 487 static void mpi_set_open_retry_interval_reg(struct pm8001_hba_info *pm8001_ha, 488 u32 interval) 489 { 490 u32 offset; 491 u32 value; 492 u32 i; 493 unsigned long flags; 494 495 #define OPEN_RETRY_INTERVAL_PHY_0_3_SHIFT_ADDR 0x00030000 496 #define OPEN_RETRY_INTERVAL_PHY_4_7_SHIFT_ADDR 0x00040000 497 #define OPEN_RETRY_INTERVAL_PHY_0_3_OFFSET 0x30B4 498 #define OPEN_RETRY_INTERVAL_PHY_4_7_OFFSET 0x30B4 499 #define OPEN_RETRY_INTERVAL_REG_MASK 0x0000FFFF 500 501 value = interval & OPEN_RETRY_INTERVAL_REG_MASK; 502 spin_lock_irqsave(&pm8001_ha->lock, flags); 503 /* shift bar and set the OPEN_REJECT(RETRY) interval time of PHY 0 -3.*/ 504 if (-1 == pm8001_bar4_shift(pm8001_ha, 505 OPEN_RETRY_INTERVAL_PHY_0_3_SHIFT_ADDR)) { 506 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 507 return; 508 } 509 for (i = 0; i < 4; i++) { 510 offset = OPEN_RETRY_INTERVAL_PHY_0_3_OFFSET + 0x4000 * i; 511 pm8001_cw32(pm8001_ha, 2, offset, value); 512 } 513 514 if (-1 == pm8001_bar4_shift(pm8001_ha, 515 OPEN_RETRY_INTERVAL_PHY_4_7_SHIFT_ADDR)) { 516 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 517 return; 518 } 519 for (i = 4; i < 8; i++) { 520 offset = OPEN_RETRY_INTERVAL_PHY_4_7_OFFSET + 0x4000 * (i-4); 521 pm8001_cw32(pm8001_ha, 2, offset, value); 522 } 523 /*set the shifted destination address to 0x0 to avoid error operation */ 524 pm8001_bar4_shift(pm8001_ha, 0x0); 525 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 526 return; 527 } 528 529 /** 530 * mpi_init_check - check firmware initialization status. 531 * @pm8001_ha: our hba card information 532 */ 533 static int mpi_init_check(struct pm8001_hba_info *pm8001_ha) 534 { 535 u32 max_wait_count; 536 u32 value; 537 u32 gst_len_mpistate; 538 /* Write bit0=1 to Inbound DoorBell Register to tell the SPC FW the 539 table is updated */ 540 pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPC_MSGU_CFG_TABLE_UPDATE); 541 /* wait until Inbound DoorBell Clear Register toggled */ 542 max_wait_count = 1 * 1000 * 1000;/* 1 sec */ 543 do { 544 udelay(1); 545 value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET); 546 value &= SPC_MSGU_CFG_TABLE_UPDATE; 547 } while ((value != 0) && (--max_wait_count)); 548 549 if (!max_wait_count) 550 return -1; 551 /* check the MPI-State for initialization */ 552 gst_len_mpistate = 553 pm8001_mr32(pm8001_ha->general_stat_tbl_addr, 554 GST_GSTLEN_MPIS_OFFSET); 555 if (GST_MPI_STATE_INIT != (gst_len_mpistate & GST_MPI_STATE_MASK)) 556 return -1; 557 /* check MPI Initialization error */ 558 gst_len_mpistate = gst_len_mpistate >> 16; 559 if (0x0000 != gst_len_mpistate) 560 return -1; 561 return 0; 562 } 563 564 /** 565 * check_fw_ready - The LLDD check if the FW is ready, if not, return error. 566 * @pm8001_ha: our hba card information 567 */ 568 static int check_fw_ready(struct pm8001_hba_info *pm8001_ha) 569 { 570 u32 value, value1; 571 u32 max_wait_count; 572 /* check error state */ 573 value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); 574 value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2); 575 /* check AAP error */ 576 if (SCRATCH_PAD1_ERR == (value & SCRATCH_PAD_STATE_MASK)) { 577 /* error state */ 578 value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0); 579 return -1; 580 } 581 582 /* check IOP error */ 583 if (SCRATCH_PAD2_ERR == (value1 & SCRATCH_PAD_STATE_MASK)) { 584 /* error state */ 585 value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3); 586 return -1; 587 } 588 589 /* bit 4-31 of scratch pad1 should be zeros if it is not 590 in error state*/ 591 if (value & SCRATCH_PAD1_STATE_MASK) { 592 /* error case */ 593 pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0); 594 return -1; 595 } 596 597 /* bit 2, 4-31 of scratch pad2 should be zeros if it is not 598 in error state */ 599 if (value1 & SCRATCH_PAD2_STATE_MASK) { 600 /* error case */ 601 return -1; 602 } 603 604 max_wait_count = 1 * 1000 * 1000;/* 1 sec timeout */ 605 606 /* wait until scratch pad 1 and 2 registers in ready state */ 607 do { 608 udelay(1); 609 value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) 610 & SCRATCH_PAD1_RDY; 611 value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) 612 & SCRATCH_PAD2_RDY; 613 if ((--max_wait_count) == 0) 614 return -1; 615 } while ((value != SCRATCH_PAD1_RDY) || (value1 != SCRATCH_PAD2_RDY)); 616 return 0; 617 } 618 619 static void init_pci_device_addresses(struct pm8001_hba_info *pm8001_ha) 620 { 621 void __iomem *base_addr; 622 u32 value; 623 u32 offset; 624 u32 pcibar; 625 u32 pcilogic; 626 627 value = pm8001_cr32(pm8001_ha, 0, 0x44); 628 offset = value & 0x03FFFFFF; 629 pm8001_dbg(pm8001_ha, INIT, "Scratchpad 0 Offset: %x\n", offset); 630 pcilogic = (value & 0xFC000000) >> 26; 631 pcibar = get_pci_bar_index(pcilogic); 632 pm8001_dbg(pm8001_ha, INIT, "Scratchpad 0 PCI BAR: %d\n", pcibar); 633 pm8001_ha->main_cfg_tbl_addr = base_addr = 634 pm8001_ha->io_mem[pcibar].memvirtaddr + offset; 635 pm8001_ha->general_stat_tbl_addr = 636 base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x18); 637 pm8001_ha->inbnd_q_tbl_addr = 638 base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x1C); 639 pm8001_ha->outbnd_q_tbl_addr = 640 base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x20); 641 } 642 643 /** 644 * pm8001_chip_init - the main init function that initialize whole PM8001 chip. 645 * @pm8001_ha: our hba card information 646 */ 647 static int pm8001_chip_init(struct pm8001_hba_info *pm8001_ha) 648 { 649 u32 i = 0; 650 u16 deviceid; 651 pci_read_config_word(pm8001_ha->pdev, PCI_DEVICE_ID, &deviceid); 652 /* 8081 controllers need BAR shift to access MPI space 653 * as this is shared with BIOS data */ 654 if (deviceid == 0x8081 || deviceid == 0x0042) { 655 if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_SM_BASE)) { 656 pm8001_dbg(pm8001_ha, FAIL, 657 "Shift Bar4 to 0x%x failed\n", 658 GSM_SM_BASE); 659 return -1; 660 } 661 } 662 /* check the firmware status */ 663 if (-1 == check_fw_ready(pm8001_ha)) { 664 pm8001_dbg(pm8001_ha, FAIL, "Firmware is not ready!\n"); 665 return -EBUSY; 666 } 667 668 /* Initialize pci space address eg: mpi offset */ 669 init_pci_device_addresses(pm8001_ha); 670 init_default_table_values(pm8001_ha); 671 read_main_config_table(pm8001_ha); 672 read_general_status_table(pm8001_ha); 673 read_inbnd_queue_table(pm8001_ha); 674 read_outbnd_queue_table(pm8001_ha); 675 /* update main config table ,inbound table and outbound table */ 676 update_main_config_table(pm8001_ha); 677 for (i = 0; i < pm8001_ha->max_q_num; i++) 678 update_inbnd_queue_table(pm8001_ha, i); 679 for (i = 0; i < pm8001_ha->max_q_num; i++) 680 update_outbnd_queue_table(pm8001_ha, i); 681 /* 8081 controller donot require these operations */ 682 if (deviceid != 0x8081 && deviceid != 0x0042) { 683 mpi_set_phys_g3_with_ssc(pm8001_ha, 0); 684 /* 7->130ms, 34->500ms, 119->1.5s */ 685 mpi_set_open_retry_interval_reg(pm8001_ha, 119); 686 } 687 /* notify firmware update finished and check initialization status */ 688 if (0 == mpi_init_check(pm8001_ha)) { 689 pm8001_dbg(pm8001_ha, INIT, "MPI initialize successful!\n"); 690 } else 691 return -EBUSY; 692 /*This register is a 16-bit timer with a resolution of 1us. This is the 693 timer used for interrupt delay/coalescing in the PCIe Application Layer. 694 Zero is not a valid value. A value of 1 in the register will cause the 695 interrupts to be normal. A value greater than 1 will cause coalescing 696 delays.*/ 697 pm8001_cw32(pm8001_ha, 1, 0x0033c0, 0x1); 698 pm8001_cw32(pm8001_ha, 1, 0x0033c4, 0x0); 699 return 0; 700 } 701 702 static void pm8001_chip_post_init(struct pm8001_hba_info *pm8001_ha) 703 { 704 } 705 706 static int mpi_uninit_check(struct pm8001_hba_info *pm8001_ha) 707 { 708 u32 max_wait_count; 709 u32 value; 710 u32 gst_len_mpistate; 711 u16 deviceid; 712 pci_read_config_word(pm8001_ha->pdev, PCI_DEVICE_ID, &deviceid); 713 if (deviceid == 0x8081 || deviceid == 0x0042) { 714 if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_SM_BASE)) { 715 pm8001_dbg(pm8001_ha, FAIL, 716 "Shift Bar4 to 0x%x failed\n", 717 GSM_SM_BASE); 718 return -1; 719 } 720 } 721 init_pci_device_addresses(pm8001_ha); 722 /* Write bit1=1 to Inbound DoorBell Register to tell the SPC FW the 723 table is stop */ 724 pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPC_MSGU_CFG_TABLE_RESET); 725 726 /* wait until Inbound DoorBell Clear Register toggled */ 727 max_wait_count = 1 * 1000 * 1000;/* 1 sec */ 728 do { 729 udelay(1); 730 value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET); 731 value &= SPC_MSGU_CFG_TABLE_RESET; 732 } while ((value != 0) && (--max_wait_count)); 733 734 if (!max_wait_count) { 735 pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT:IBDB value/=0x%x\n", 736 value); 737 return -1; 738 } 739 740 /* check the MPI-State for termination in progress */ 741 /* wait until Inbound DoorBell Clear Register toggled */ 742 max_wait_count = 1 * 1000 * 1000; /* 1 sec */ 743 do { 744 udelay(1); 745 gst_len_mpistate = 746 pm8001_mr32(pm8001_ha->general_stat_tbl_addr, 747 GST_GSTLEN_MPIS_OFFSET); 748 if (GST_MPI_STATE_UNINIT == 749 (gst_len_mpistate & GST_MPI_STATE_MASK)) 750 break; 751 } while (--max_wait_count); 752 if (!max_wait_count) { 753 pm8001_dbg(pm8001_ha, FAIL, " TIME OUT MPI State = 0x%x\n", 754 gst_len_mpistate & GST_MPI_STATE_MASK); 755 return -1; 756 } 757 return 0; 758 } 759 760 /** 761 * soft_reset_ready_check - Function to check FW is ready for soft reset. 762 * @pm8001_ha: our hba card information 763 */ 764 static u32 soft_reset_ready_check(struct pm8001_hba_info *pm8001_ha) 765 { 766 u32 regVal, regVal1, regVal2; 767 if (mpi_uninit_check(pm8001_ha) != 0) { 768 pm8001_dbg(pm8001_ha, FAIL, "MPI state is not ready\n"); 769 return -1; 770 } 771 /* read the scratch pad 2 register bit 2 */ 772 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) 773 & SCRATCH_PAD2_FWRDY_RST; 774 if (regVal == SCRATCH_PAD2_FWRDY_RST) { 775 pm8001_dbg(pm8001_ha, INIT, "Firmware is ready for reset.\n"); 776 } else { 777 unsigned long flags; 778 /* Trigger NMI twice via RB6 */ 779 spin_lock_irqsave(&pm8001_ha->lock, flags); 780 if (-1 == pm8001_bar4_shift(pm8001_ha, RB6_ACCESS_REG)) { 781 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 782 pm8001_dbg(pm8001_ha, FAIL, 783 "Shift Bar4 to 0x%x failed\n", 784 RB6_ACCESS_REG); 785 return -1; 786 } 787 pm8001_cw32(pm8001_ha, 2, SPC_RB6_OFFSET, 788 RB6_MAGIC_NUMBER_RST); 789 pm8001_cw32(pm8001_ha, 2, SPC_RB6_OFFSET, RB6_MAGIC_NUMBER_RST); 790 /* wait for 100 ms */ 791 mdelay(100); 792 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) & 793 SCRATCH_PAD2_FWRDY_RST; 794 if (regVal != SCRATCH_PAD2_FWRDY_RST) { 795 regVal1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); 796 regVal2 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2); 797 pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT:MSGU_SCRATCH_PAD1=0x%x, MSGU_SCRATCH_PAD2=0x%x\n", 798 regVal1, regVal2); 799 pm8001_dbg(pm8001_ha, FAIL, 800 "SCRATCH_PAD0 value = 0x%x\n", 801 pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0)); 802 pm8001_dbg(pm8001_ha, FAIL, 803 "SCRATCH_PAD3 value = 0x%x\n", 804 pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3)); 805 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 806 return -1; 807 } 808 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 809 } 810 return 0; 811 } 812 813 /** 814 * pm8001_chip_soft_rst - soft reset the PM8001 chip, so that the clear all 815 * the FW register status to the originated status. 816 * @pm8001_ha: our hba card information 817 */ 818 static int 819 pm8001_chip_soft_rst(struct pm8001_hba_info *pm8001_ha) 820 { 821 u32 regVal, toggleVal; 822 u32 max_wait_count; 823 u32 regVal1, regVal2, regVal3; 824 u32 signature = 0x252acbcd; /* for host scratch pad0 */ 825 unsigned long flags; 826 827 /* step1: Check FW is ready for soft reset */ 828 if (soft_reset_ready_check(pm8001_ha) != 0) { 829 pm8001_dbg(pm8001_ha, FAIL, "FW is not ready\n"); 830 return -1; 831 } 832 833 /* step 2: clear NMI status register on AAP1 and IOP, write the same 834 value to clear */ 835 /* map 0x60000 to BAR4(0x20), BAR2(win) */ 836 spin_lock_irqsave(&pm8001_ha->lock, flags); 837 if (-1 == pm8001_bar4_shift(pm8001_ha, MBIC_AAP1_ADDR_BASE)) { 838 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 839 pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n", 840 MBIC_AAP1_ADDR_BASE); 841 return -1; 842 } 843 regVal = pm8001_cr32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_IOP); 844 pm8001_dbg(pm8001_ha, INIT, "MBIC - NMI Enable VPE0 (IOP)= 0x%x\n", 845 regVal); 846 pm8001_cw32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_IOP, 0x0); 847 /* map 0x70000 to BAR4(0x20), BAR2(win) */ 848 if (-1 == pm8001_bar4_shift(pm8001_ha, MBIC_IOP_ADDR_BASE)) { 849 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 850 pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n", 851 MBIC_IOP_ADDR_BASE); 852 return -1; 853 } 854 regVal = pm8001_cr32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_AAP1); 855 pm8001_dbg(pm8001_ha, INIT, "MBIC - NMI Enable VPE0 (AAP1)= 0x%x\n", 856 regVal); 857 pm8001_cw32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_AAP1, 0x0); 858 859 regVal = pm8001_cr32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT_ENABLE); 860 pm8001_dbg(pm8001_ha, INIT, "PCIE -Event Interrupt Enable = 0x%x\n", 861 regVal); 862 pm8001_cw32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT_ENABLE, 0x0); 863 864 regVal = pm8001_cr32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT); 865 pm8001_dbg(pm8001_ha, INIT, "PCIE - Event Interrupt = 0x%x\n", 866 regVal); 867 pm8001_cw32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT, regVal); 868 869 regVal = pm8001_cr32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT_ENABLE); 870 pm8001_dbg(pm8001_ha, INIT, "PCIE -Error Interrupt Enable = 0x%x\n", 871 regVal); 872 pm8001_cw32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT_ENABLE, 0x0); 873 874 regVal = pm8001_cr32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT); 875 pm8001_dbg(pm8001_ha, INIT, "PCIE - Error Interrupt = 0x%x\n", regVal); 876 pm8001_cw32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT, regVal); 877 878 /* read the scratch pad 1 register bit 2 */ 879 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) 880 & SCRATCH_PAD1_RST; 881 toggleVal = regVal ^ SCRATCH_PAD1_RST; 882 883 /* set signature in host scratch pad0 register to tell SPC that the 884 host performs the soft reset */ 885 pm8001_cw32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_0, signature); 886 887 /* read required registers for confirmming */ 888 /* map 0x0700000 to BAR4(0x20), BAR2(win) */ 889 if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_ADDR_BASE)) { 890 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 891 pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n", 892 GSM_ADDR_BASE); 893 return -1; 894 } 895 pm8001_dbg(pm8001_ha, INIT, 896 "GSM 0x0(0x00007b88)-GSM Configuration and Reset = 0x%x\n", 897 pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)); 898 899 /* step 3: host read GSM Configuration and Reset register */ 900 regVal = pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET); 901 /* Put those bits to low */ 902 /* GSM XCBI offset = 0x70 0000 903 0x00 Bit 13 COM_SLV_SW_RSTB 1 904 0x00 Bit 12 QSSP_SW_RSTB 1 905 0x00 Bit 11 RAAE_SW_RSTB 1 906 0x00 Bit 9 RB_1_SW_RSTB 1 907 0x00 Bit 8 SM_SW_RSTB 1 908 */ 909 regVal &= ~(0x00003b00); 910 /* host write GSM Configuration and Reset register */ 911 pm8001_cw32(pm8001_ha, 2, GSM_CONFIG_RESET, regVal); 912 pm8001_dbg(pm8001_ha, INIT, 913 "GSM 0x0 (0x00007b88 ==> 0x00004088) - GSM Configuration and Reset is set to = 0x%x\n", 914 pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)); 915 916 /* step 4: */ 917 /* disable GSM - Read Address Parity Check */ 918 regVal1 = pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK); 919 pm8001_dbg(pm8001_ha, INIT, 920 "GSM 0x700038 - Read Address Parity Check Enable = 0x%x\n", 921 regVal1); 922 pm8001_cw32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK, 0x0); 923 pm8001_dbg(pm8001_ha, INIT, 924 "GSM 0x700038 - Read Address Parity Check Enable is set to = 0x%x\n", 925 pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK)); 926 927 /* disable GSM - Write Address Parity Check */ 928 regVal2 = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK); 929 pm8001_dbg(pm8001_ha, INIT, 930 "GSM 0x700040 - Write Address Parity Check Enable = 0x%x\n", 931 regVal2); 932 pm8001_cw32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK, 0x0); 933 pm8001_dbg(pm8001_ha, INIT, 934 "GSM 0x700040 - Write Address Parity Check Enable is set to = 0x%x\n", 935 pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK)); 936 937 /* disable GSM - Write Data Parity Check */ 938 regVal3 = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK); 939 pm8001_dbg(pm8001_ha, INIT, "GSM 0x300048 - Write Data Parity Check Enable = 0x%x\n", 940 regVal3); 941 pm8001_cw32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK, 0x0); 942 pm8001_dbg(pm8001_ha, INIT, 943 "GSM 0x300048 - Write Data Parity Check Enable is set to = 0x%x\n", 944 pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK)); 945 946 /* step 5: delay 10 usec */ 947 udelay(10); 948 /* step 5-b: set GPIO-0 output control to tristate anyway */ 949 if (-1 == pm8001_bar4_shift(pm8001_ha, GPIO_ADDR_BASE)) { 950 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 951 pm8001_dbg(pm8001_ha, INIT, "Shift Bar4 to 0x%x failed\n", 952 GPIO_ADDR_BASE); 953 return -1; 954 } 955 regVal = pm8001_cr32(pm8001_ha, 2, GPIO_GPIO_0_0UTPUT_CTL_OFFSET); 956 pm8001_dbg(pm8001_ha, INIT, "GPIO Output Control Register: = 0x%x\n", 957 regVal); 958 /* set GPIO-0 output control to tri-state */ 959 regVal &= 0xFFFFFFFC; 960 pm8001_cw32(pm8001_ha, 2, GPIO_GPIO_0_0UTPUT_CTL_OFFSET, regVal); 961 962 /* Step 6: Reset the IOP and AAP1 */ 963 /* map 0x00000 to BAR4(0x20), BAR2(win) */ 964 if (-1 == pm8001_bar4_shift(pm8001_ha, SPC_TOP_LEVEL_ADDR_BASE)) { 965 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 966 pm8001_dbg(pm8001_ha, FAIL, "SPC Shift Bar4 to 0x%x failed\n", 967 SPC_TOP_LEVEL_ADDR_BASE); 968 return -1; 969 } 970 regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); 971 pm8001_dbg(pm8001_ha, INIT, "Top Register before resetting IOP/AAP1:= 0x%x\n", 972 regVal); 973 regVal &= ~(SPC_REG_RESET_PCS_IOP_SS | SPC_REG_RESET_PCS_AAP1_SS); 974 pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); 975 976 /* step 7: Reset the BDMA/OSSP */ 977 regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); 978 pm8001_dbg(pm8001_ha, INIT, "Top Register before resetting BDMA/OSSP: = 0x%x\n", 979 regVal); 980 regVal &= ~(SPC_REG_RESET_BDMA_CORE | SPC_REG_RESET_OSSP); 981 pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); 982 983 /* step 8: delay 10 usec */ 984 udelay(10); 985 986 /* step 9: bring the BDMA and OSSP out of reset */ 987 regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); 988 pm8001_dbg(pm8001_ha, INIT, 989 "Top Register before bringing up BDMA/OSSP:= 0x%x\n", 990 regVal); 991 regVal |= (SPC_REG_RESET_BDMA_CORE | SPC_REG_RESET_OSSP); 992 pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); 993 994 /* step 10: delay 10 usec */ 995 udelay(10); 996 997 /* step 11: reads and sets the GSM Configuration and Reset Register */ 998 /* map 0x0700000 to BAR4(0x20), BAR2(win) */ 999 if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_ADDR_BASE)) { 1000 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1001 pm8001_dbg(pm8001_ha, FAIL, "SPC Shift Bar4 to 0x%x failed\n", 1002 GSM_ADDR_BASE); 1003 return -1; 1004 } 1005 pm8001_dbg(pm8001_ha, INIT, 1006 "GSM 0x0 (0x00007b88)-GSM Configuration and Reset = 0x%x\n", 1007 pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)); 1008 regVal = pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET); 1009 /* Put those bits to high */ 1010 /* GSM XCBI offset = 0x70 0000 1011 0x00 Bit 13 COM_SLV_SW_RSTB 1 1012 0x00 Bit 12 QSSP_SW_RSTB 1 1013 0x00 Bit 11 RAAE_SW_RSTB 1 1014 0x00 Bit 9 RB_1_SW_RSTB 1 1015 0x00 Bit 8 SM_SW_RSTB 1 1016 */ 1017 regVal |= (GSM_CONFIG_RESET_VALUE); 1018 pm8001_cw32(pm8001_ha, 2, GSM_CONFIG_RESET, regVal); 1019 pm8001_dbg(pm8001_ha, INIT, "GSM (0x00004088 ==> 0x00007b88) - GSM Configuration and Reset is set to = 0x%x\n", 1020 pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)); 1021 1022 /* step 12: Restore GSM - Read Address Parity Check */ 1023 regVal = pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK); 1024 /* just for debugging */ 1025 pm8001_dbg(pm8001_ha, INIT, 1026 "GSM 0x700038 - Read Address Parity Check Enable = 0x%x\n", 1027 regVal); 1028 pm8001_cw32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK, regVal1); 1029 pm8001_dbg(pm8001_ha, INIT, "GSM 0x700038 - Read Address Parity Check Enable is set to = 0x%x\n", 1030 pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK)); 1031 /* Restore GSM - Write Address Parity Check */ 1032 regVal = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK); 1033 pm8001_cw32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK, regVal2); 1034 pm8001_dbg(pm8001_ha, INIT, 1035 "GSM 0x700040 - Write Address Parity Check Enable is set to = 0x%x\n", 1036 pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK)); 1037 /* Restore GSM - Write Data Parity Check */ 1038 regVal = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK); 1039 pm8001_cw32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK, regVal3); 1040 pm8001_dbg(pm8001_ha, INIT, 1041 "GSM 0x700048 - Write Data Parity Check Enable is set to = 0x%x\n", 1042 pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK)); 1043 1044 /* step 13: bring the IOP and AAP1 out of reset */ 1045 /* map 0x00000 to BAR4(0x20), BAR2(win) */ 1046 if (-1 == pm8001_bar4_shift(pm8001_ha, SPC_TOP_LEVEL_ADDR_BASE)) { 1047 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1048 pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n", 1049 SPC_TOP_LEVEL_ADDR_BASE); 1050 return -1; 1051 } 1052 regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); 1053 regVal |= (SPC_REG_RESET_PCS_IOP_SS | SPC_REG_RESET_PCS_AAP1_SS); 1054 pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); 1055 1056 /* step 14: delay 10 usec - Normal Mode */ 1057 udelay(10); 1058 /* check Soft Reset Normal mode or Soft Reset HDA mode */ 1059 if (signature == SPC_SOFT_RESET_SIGNATURE) { 1060 /* step 15 (Normal Mode): wait until scratch pad1 register 1061 bit 2 toggled */ 1062 max_wait_count = 2 * 1000 * 1000;/* 2 sec */ 1063 do { 1064 udelay(1); 1065 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) & 1066 SCRATCH_PAD1_RST; 1067 } while ((regVal != toggleVal) && (--max_wait_count)); 1068 1069 if (!max_wait_count) { 1070 regVal = pm8001_cr32(pm8001_ha, 0, 1071 MSGU_SCRATCH_PAD_1); 1072 pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT : ToggleVal 0x%x,MSGU_SCRATCH_PAD1 = 0x%x\n", 1073 toggleVal, regVal); 1074 pm8001_dbg(pm8001_ha, FAIL, 1075 "SCRATCH_PAD0 value = 0x%x\n", 1076 pm8001_cr32(pm8001_ha, 0, 1077 MSGU_SCRATCH_PAD_0)); 1078 pm8001_dbg(pm8001_ha, FAIL, 1079 "SCRATCH_PAD2 value = 0x%x\n", 1080 pm8001_cr32(pm8001_ha, 0, 1081 MSGU_SCRATCH_PAD_2)); 1082 pm8001_dbg(pm8001_ha, FAIL, 1083 "SCRATCH_PAD3 value = 0x%x\n", 1084 pm8001_cr32(pm8001_ha, 0, 1085 MSGU_SCRATCH_PAD_3)); 1086 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1087 return -1; 1088 } 1089 1090 /* step 16 (Normal) - Clear ODMR and ODCR */ 1091 pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL); 1092 pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL); 1093 1094 /* step 17 (Normal Mode): wait for the FW and IOP to get 1095 ready - 1 sec timeout */ 1096 /* Wait for the SPC Configuration Table to be ready */ 1097 if (check_fw_ready(pm8001_ha) == -1) { 1098 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); 1099 /* return error if MPI Configuration Table not ready */ 1100 pm8001_dbg(pm8001_ha, INIT, 1101 "FW not ready SCRATCH_PAD1 = 0x%x\n", 1102 regVal); 1103 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2); 1104 /* return error if MPI Configuration Table not ready */ 1105 pm8001_dbg(pm8001_ha, INIT, 1106 "FW not ready SCRATCH_PAD2 = 0x%x\n", 1107 regVal); 1108 pm8001_dbg(pm8001_ha, INIT, 1109 "SCRATCH_PAD0 value = 0x%x\n", 1110 pm8001_cr32(pm8001_ha, 0, 1111 MSGU_SCRATCH_PAD_0)); 1112 pm8001_dbg(pm8001_ha, INIT, 1113 "SCRATCH_PAD3 value = 0x%x\n", 1114 pm8001_cr32(pm8001_ha, 0, 1115 MSGU_SCRATCH_PAD_3)); 1116 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1117 return -1; 1118 } 1119 } 1120 pm8001_bar4_shift(pm8001_ha, 0); 1121 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1122 1123 pm8001_dbg(pm8001_ha, INIT, "SPC soft reset Complete\n"); 1124 return 0; 1125 } 1126 1127 static void pm8001_hw_chip_rst(struct pm8001_hba_info *pm8001_ha) 1128 { 1129 u32 i; 1130 u32 regVal; 1131 pm8001_dbg(pm8001_ha, INIT, "chip reset start\n"); 1132 1133 /* do SPC chip reset. */ 1134 regVal = pm8001_cr32(pm8001_ha, 1, SPC_REG_RESET); 1135 regVal &= ~(SPC_REG_RESET_DEVICE); 1136 pm8001_cw32(pm8001_ha, 1, SPC_REG_RESET, regVal); 1137 1138 /* delay 10 usec */ 1139 udelay(10); 1140 1141 /* bring chip reset out of reset */ 1142 regVal = pm8001_cr32(pm8001_ha, 1, SPC_REG_RESET); 1143 regVal |= SPC_REG_RESET_DEVICE; 1144 pm8001_cw32(pm8001_ha, 1, SPC_REG_RESET, regVal); 1145 1146 /* delay 10 usec */ 1147 udelay(10); 1148 1149 /* wait for 20 msec until the firmware gets reloaded */ 1150 i = 20; 1151 do { 1152 mdelay(1); 1153 } while ((--i) != 0); 1154 1155 pm8001_dbg(pm8001_ha, INIT, "chip reset finished\n"); 1156 } 1157 1158 /** 1159 * pm8001_chip_iounmap - which mapped when initialized. 1160 * @pm8001_ha: our hba card information 1161 */ 1162 void pm8001_chip_iounmap(struct pm8001_hba_info *pm8001_ha) 1163 { 1164 s8 bar, logical = 0; 1165 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { 1166 /* 1167 ** logical BARs for SPC: 1168 ** bar 0 and 1 - logical BAR0 1169 ** bar 2 and 3 - logical BAR1 1170 ** bar4 - logical BAR2 1171 ** bar5 - logical BAR3 1172 ** Skip the appropriate assignments: 1173 */ 1174 if ((bar == 1) || (bar == 3)) 1175 continue; 1176 if (pm8001_ha->io_mem[logical].memvirtaddr) { 1177 iounmap(pm8001_ha->io_mem[logical].memvirtaddr); 1178 logical++; 1179 } 1180 } 1181 } 1182 1183 #ifndef PM8001_USE_MSIX 1184 /** 1185 * pm8001_chip_intx_interrupt_enable - enable PM8001 chip interrupt 1186 * @pm8001_ha: our hba card information 1187 */ 1188 static void 1189 pm8001_chip_intx_interrupt_enable(struct pm8001_hba_info *pm8001_ha) 1190 { 1191 pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL); 1192 pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL); 1193 } 1194 1195 /** 1196 * pm8001_chip_intx_interrupt_disable - disable PM8001 chip interrupt 1197 * @pm8001_ha: our hba card information 1198 */ 1199 static void 1200 pm8001_chip_intx_interrupt_disable(struct pm8001_hba_info *pm8001_ha) 1201 { 1202 pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_MASK_ALL); 1203 } 1204 1205 #else 1206 1207 /** 1208 * pm8001_chip_msix_interrupt_enable - enable PM8001 chip interrupt 1209 * @pm8001_ha: our hba card information 1210 * @int_vec_idx: interrupt number to enable 1211 */ 1212 static void 1213 pm8001_chip_msix_interrupt_enable(struct pm8001_hba_info *pm8001_ha, 1214 u32 int_vec_idx) 1215 { 1216 u32 msi_index; 1217 u32 value; 1218 msi_index = int_vec_idx * MSIX_TABLE_ELEMENT_SIZE; 1219 msi_index += MSIX_TABLE_BASE; 1220 pm8001_cw32(pm8001_ha, 0, msi_index, MSIX_INTERRUPT_ENABLE); 1221 value = (1 << int_vec_idx); 1222 pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, value); 1223 1224 } 1225 1226 /** 1227 * pm8001_chip_msix_interrupt_disable - disable PM8001 chip interrupt 1228 * @pm8001_ha: our hba card information 1229 * @int_vec_idx: interrupt number to disable 1230 */ 1231 static void 1232 pm8001_chip_msix_interrupt_disable(struct pm8001_hba_info *pm8001_ha, 1233 u32 int_vec_idx) 1234 { 1235 u32 msi_index; 1236 msi_index = int_vec_idx * MSIX_TABLE_ELEMENT_SIZE; 1237 msi_index += MSIX_TABLE_BASE; 1238 pm8001_cw32(pm8001_ha, 0, msi_index, MSIX_INTERRUPT_DISABLE); 1239 } 1240 #endif 1241 1242 /** 1243 * pm8001_chip_interrupt_enable - enable PM8001 chip interrupt 1244 * @pm8001_ha: our hba card information 1245 * @vec: unused 1246 */ 1247 static void 1248 pm8001_chip_interrupt_enable(struct pm8001_hba_info *pm8001_ha, u8 vec) 1249 { 1250 #ifdef PM8001_USE_MSIX 1251 pm8001_chip_msix_interrupt_enable(pm8001_ha, 0); 1252 #else 1253 pm8001_chip_intx_interrupt_enable(pm8001_ha); 1254 #endif 1255 } 1256 1257 /** 1258 * pm8001_chip_interrupt_disable - disable PM8001 chip interrupt 1259 * @pm8001_ha: our hba card information 1260 * @vec: unused 1261 */ 1262 static void 1263 pm8001_chip_interrupt_disable(struct pm8001_hba_info *pm8001_ha, u8 vec) 1264 { 1265 #ifdef PM8001_USE_MSIX 1266 pm8001_chip_msix_interrupt_disable(pm8001_ha, 0); 1267 #else 1268 pm8001_chip_intx_interrupt_disable(pm8001_ha); 1269 #endif 1270 } 1271 1272 /** 1273 * pm8001_mpi_msg_free_get - get the free message buffer for transfer 1274 * inbound queue. 1275 * @circularQ: the inbound queue we want to transfer to HBA. 1276 * @messageSize: the message size of this transfer, normally it is 64 bytes 1277 * @messagePtr: the pointer to message. 1278 */ 1279 int pm8001_mpi_msg_free_get(struct inbound_queue_table *circularQ, 1280 u16 messageSize, void **messagePtr) 1281 { 1282 u32 offset, consumer_index; 1283 struct mpi_msg_hdr *msgHeader; 1284 u8 bcCount = 1; /* only support single buffer */ 1285 1286 /* Checks is the requested message size can be allocated in this queue*/ 1287 if (messageSize > IOMB_SIZE_SPCV) { 1288 *messagePtr = NULL; 1289 return -1; 1290 } 1291 1292 /* Stores the new consumer index */ 1293 consumer_index = pm8001_read_32(circularQ->ci_virt); 1294 circularQ->consumer_index = cpu_to_le32(consumer_index); 1295 if (((circularQ->producer_idx + bcCount) % PM8001_MPI_QUEUE) == 1296 le32_to_cpu(circularQ->consumer_index)) { 1297 *messagePtr = NULL; 1298 return -1; 1299 } 1300 /* get memory IOMB buffer address */ 1301 offset = circularQ->producer_idx * messageSize; 1302 /* increment to next bcCount element */ 1303 circularQ->producer_idx = (circularQ->producer_idx + bcCount) 1304 % PM8001_MPI_QUEUE; 1305 /* Adds that distance to the base of the region virtual address plus 1306 the message header size*/ 1307 msgHeader = (struct mpi_msg_hdr *)(circularQ->base_virt + offset); 1308 *messagePtr = ((void *)msgHeader) + sizeof(struct mpi_msg_hdr); 1309 return 0; 1310 } 1311 1312 /** 1313 * pm8001_mpi_build_cmd- build the message queue for transfer, update the PI to 1314 * FW to tell the fw to get this message from IOMB. 1315 * @pm8001_ha: our hba card information 1316 * @q_index: the index in the inbound queue we want to transfer to HBA. 1317 * @opCode: the operation code represents commands which LLDD and fw recognized. 1318 * @payload: the command payload of each operation command. 1319 * @nb: size in bytes of the command payload 1320 * @responseQueue: queue to interrupt on w/ command response (if any) 1321 */ 1322 int pm8001_mpi_build_cmd(struct pm8001_hba_info *pm8001_ha, 1323 u32 q_index, u32 opCode, void *payload, size_t nb, 1324 u32 responseQueue) 1325 { 1326 u32 Header = 0, hpriority = 0, bc = 1, category = 0x02; 1327 void *pMessage; 1328 unsigned long flags; 1329 struct inbound_queue_table *circularQ = &pm8001_ha->inbnd_q_tbl[q_index]; 1330 int rv; 1331 u32 htag = le32_to_cpu(*(__le32 *)payload); 1332 1333 trace_pm80xx_mpi_build_cmd(pm8001_ha->id, opCode, htag, q_index, 1334 circularQ->producer_idx, le32_to_cpu(circularQ->consumer_index)); 1335 1336 if (WARN_ON(q_index >= pm8001_ha->max_q_num)) 1337 return -EINVAL; 1338 1339 spin_lock_irqsave(&circularQ->iq_lock, flags); 1340 rv = pm8001_mpi_msg_free_get(circularQ, pm8001_ha->iomb_size, 1341 &pMessage); 1342 if (rv < 0) { 1343 pm8001_dbg(pm8001_ha, IO, "No free mpi buffer\n"); 1344 rv = -ENOMEM; 1345 goto done; 1346 } 1347 1348 if (nb > (pm8001_ha->iomb_size - sizeof(struct mpi_msg_hdr))) 1349 nb = pm8001_ha->iomb_size - sizeof(struct mpi_msg_hdr); 1350 memcpy(pMessage, payload, nb); 1351 if (nb + sizeof(struct mpi_msg_hdr) < pm8001_ha->iomb_size) 1352 memset(pMessage + nb, 0, pm8001_ha->iomb_size - 1353 (nb + sizeof(struct mpi_msg_hdr))); 1354 1355 /*Build the header*/ 1356 Header = ((1 << 31) | (hpriority << 30) | ((bc & 0x1f) << 24) 1357 | ((responseQueue & 0x3F) << 16) 1358 | ((category & 0xF) << 12) | (opCode & 0xFFF)); 1359 1360 pm8001_write_32((pMessage - 4), 0, cpu_to_le32(Header)); 1361 /*Update the PI to the firmware*/ 1362 pm8001_cw32(pm8001_ha, circularQ->pi_pci_bar, 1363 circularQ->pi_offset, circularQ->producer_idx); 1364 pm8001_dbg(pm8001_ha, DEVIO, 1365 "INB Q %x OPCODE:%x , UPDATED PI=%d CI=%d\n", 1366 responseQueue, opCode, circularQ->producer_idx, 1367 circularQ->consumer_index); 1368 done: 1369 spin_unlock_irqrestore(&circularQ->iq_lock, flags); 1370 return rv; 1371 } 1372 1373 u32 pm8001_mpi_msg_free_set(struct pm8001_hba_info *pm8001_ha, void *pMsg, 1374 struct outbound_queue_table *circularQ, u8 bc) 1375 { 1376 u32 producer_index; 1377 struct mpi_msg_hdr *msgHeader; 1378 struct mpi_msg_hdr *pOutBoundMsgHeader; 1379 1380 msgHeader = (struct mpi_msg_hdr *)(pMsg - sizeof(struct mpi_msg_hdr)); 1381 pOutBoundMsgHeader = (struct mpi_msg_hdr *)(circularQ->base_virt + 1382 circularQ->consumer_idx * pm8001_ha->iomb_size); 1383 if (pOutBoundMsgHeader != msgHeader) { 1384 pm8001_dbg(pm8001_ha, FAIL, 1385 "consumer_idx = %d msgHeader = %p\n", 1386 circularQ->consumer_idx, msgHeader); 1387 1388 /* Update the producer index from SPC */ 1389 producer_index = pm8001_read_32(circularQ->pi_virt); 1390 circularQ->producer_index = cpu_to_le32(producer_index); 1391 pm8001_dbg(pm8001_ha, FAIL, 1392 "consumer_idx = %d producer_index = %dmsgHeader = %p\n", 1393 circularQ->consumer_idx, 1394 circularQ->producer_index, msgHeader); 1395 return 0; 1396 } 1397 /* free the circular queue buffer elements associated with the message*/ 1398 circularQ->consumer_idx = (circularQ->consumer_idx + bc) 1399 % PM8001_MPI_QUEUE; 1400 /* update the CI of outbound queue */ 1401 pm8001_cw32(pm8001_ha, circularQ->ci_pci_bar, circularQ->ci_offset, 1402 circularQ->consumer_idx); 1403 /* Update the producer index from SPC*/ 1404 producer_index = pm8001_read_32(circularQ->pi_virt); 1405 circularQ->producer_index = cpu_to_le32(producer_index); 1406 pm8001_dbg(pm8001_ha, IO, " CI=%d PI=%d\n", 1407 circularQ->consumer_idx, circularQ->producer_index); 1408 return 0; 1409 } 1410 1411 /** 1412 * pm8001_mpi_msg_consume- get the MPI message from outbound queue 1413 * message table. 1414 * @pm8001_ha: our hba card information 1415 * @circularQ: the outbound queue table. 1416 * @messagePtr1: the message contents of this outbound message. 1417 * @pBC: the message size. 1418 */ 1419 u32 pm8001_mpi_msg_consume(struct pm8001_hba_info *pm8001_ha, 1420 struct outbound_queue_table *circularQ, 1421 void **messagePtr1, u8 *pBC) 1422 { 1423 struct mpi_msg_hdr *msgHeader; 1424 __le32 msgHeader_tmp; 1425 u32 header_tmp; 1426 do { 1427 /* If there are not-yet-delivered messages ... */ 1428 if (le32_to_cpu(circularQ->producer_index) 1429 != circularQ->consumer_idx) { 1430 /*Get the pointer to the circular queue buffer element*/ 1431 msgHeader = (struct mpi_msg_hdr *) 1432 (circularQ->base_virt + 1433 circularQ->consumer_idx * pm8001_ha->iomb_size); 1434 /* read header */ 1435 header_tmp = pm8001_read_32(msgHeader); 1436 msgHeader_tmp = cpu_to_le32(header_tmp); 1437 pm8001_dbg(pm8001_ha, DEVIO, 1438 "outbound opcode msgheader:%x ci=%d pi=%d\n", 1439 msgHeader_tmp, circularQ->consumer_idx, 1440 circularQ->producer_index); 1441 if (0 != (le32_to_cpu(msgHeader_tmp) & 0x80000000)) { 1442 if (OPC_OUB_SKIP_ENTRY != 1443 (le32_to_cpu(msgHeader_tmp) & 0xfff)) { 1444 *messagePtr1 = 1445 ((u8 *)msgHeader) + 1446 sizeof(struct mpi_msg_hdr); 1447 *pBC = (u8)((le32_to_cpu(msgHeader_tmp) 1448 >> 24) & 0x1f); 1449 pm8001_dbg(pm8001_ha, IO, 1450 ": CI=%d PI=%d msgHeader=%x\n", 1451 circularQ->consumer_idx, 1452 circularQ->producer_index, 1453 msgHeader_tmp); 1454 return MPI_IO_STATUS_SUCCESS; 1455 } else { 1456 circularQ->consumer_idx = 1457 (circularQ->consumer_idx + 1458 ((le32_to_cpu(msgHeader_tmp) 1459 >> 24) & 0x1f)) 1460 % PM8001_MPI_QUEUE; 1461 msgHeader_tmp = 0; 1462 pm8001_write_32(msgHeader, 0, 0); 1463 /* update the CI of outbound queue */ 1464 pm8001_cw32(pm8001_ha, 1465 circularQ->ci_pci_bar, 1466 circularQ->ci_offset, 1467 circularQ->consumer_idx); 1468 } 1469 } else { 1470 circularQ->consumer_idx = 1471 (circularQ->consumer_idx + 1472 ((le32_to_cpu(msgHeader_tmp) >> 24) & 1473 0x1f)) % PM8001_MPI_QUEUE; 1474 msgHeader_tmp = 0; 1475 pm8001_write_32(msgHeader, 0, 0); 1476 /* update the CI of outbound queue */ 1477 pm8001_cw32(pm8001_ha, circularQ->ci_pci_bar, 1478 circularQ->ci_offset, 1479 circularQ->consumer_idx); 1480 return MPI_IO_STATUS_FAIL; 1481 } 1482 } else { 1483 u32 producer_index; 1484 void *pi_virt = circularQ->pi_virt; 1485 /* spurious interrupt during setup if 1486 * kexec-ing and driver doing a doorbell access 1487 * with the pre-kexec oq interrupt setup 1488 */ 1489 if (!pi_virt) 1490 break; 1491 /* Update the producer index from SPC */ 1492 producer_index = pm8001_read_32(pi_virt); 1493 circularQ->producer_index = cpu_to_le32(producer_index); 1494 } 1495 } while (le32_to_cpu(circularQ->producer_index) != 1496 circularQ->consumer_idx); 1497 /* while we don't have any more not-yet-delivered message */ 1498 /* report empty */ 1499 return MPI_IO_STATUS_BUSY; 1500 } 1501 1502 void pm8001_work_fn(struct work_struct *work) 1503 { 1504 struct pm8001_work *pw = container_of(work, struct pm8001_work, work); 1505 struct pm8001_device *pm8001_dev; 1506 struct domain_device *dev; 1507 1508 /* 1509 * So far, all users of this stash an associated structure here. 1510 * If we get here, and this pointer is null, then the action 1511 * was cancelled. This nullification happens when the device 1512 * goes away. 1513 */ 1514 if (pw->handler != IO_FATAL_ERROR) { 1515 pm8001_dev = pw->data; /* Most stash device structure */ 1516 if ((pm8001_dev == NULL) 1517 || ((pw->handler != IO_XFER_ERROR_BREAK) 1518 && (pm8001_dev->dev_type == SAS_PHY_UNUSED))) { 1519 kfree(pw); 1520 return; 1521 } 1522 } 1523 1524 switch (pw->handler) { 1525 case IO_XFER_ERROR_BREAK: 1526 { /* This one stashes the sas_task instead */ 1527 struct sas_task *t = (struct sas_task *)pm8001_dev; 1528 struct pm8001_ccb_info *ccb; 1529 struct pm8001_hba_info *pm8001_ha = pw->pm8001_ha; 1530 unsigned long flags, flags1; 1531 struct task_status_struct *ts; 1532 int i; 1533 1534 if (pm8001_query_task(t) == TMF_RESP_FUNC_SUCC) 1535 break; /* Task still on lu */ 1536 spin_lock_irqsave(&pm8001_ha->lock, flags); 1537 1538 spin_lock_irqsave(&t->task_state_lock, flags1); 1539 if (unlikely((t->task_state_flags & SAS_TASK_STATE_DONE))) { 1540 spin_unlock_irqrestore(&t->task_state_lock, flags1); 1541 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1542 break; /* Task got completed by another */ 1543 } 1544 spin_unlock_irqrestore(&t->task_state_lock, flags1); 1545 1546 /* Search for a possible ccb that matches the task */ 1547 for (i = 0; ccb = NULL, i < PM8001_MAX_CCB; i++) { 1548 ccb = &pm8001_ha->ccb_info[i]; 1549 if ((ccb->ccb_tag != PM8001_INVALID_TAG) && 1550 (ccb->task == t)) 1551 break; 1552 } 1553 if (!ccb) { 1554 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1555 break; /* Task got freed by another */ 1556 } 1557 ts = &t->task_status; 1558 ts->resp = SAS_TASK_COMPLETE; 1559 /* Force the midlayer to retry */ 1560 ts->stat = SAS_QUEUE_FULL; 1561 pm8001_dev = ccb->device; 1562 if (pm8001_dev) 1563 atomic_dec(&pm8001_dev->running_req); 1564 spin_lock_irqsave(&t->task_state_lock, flags1); 1565 t->task_state_flags &= ~SAS_TASK_STATE_PENDING; 1566 t->task_state_flags |= SAS_TASK_STATE_DONE; 1567 if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { 1568 spin_unlock_irqrestore(&t->task_state_lock, flags1); 1569 pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with event 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", 1570 t, pw->handler, ts->resp, ts->stat); 1571 pm8001_ccb_task_free(pm8001_ha, ccb); 1572 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1573 } else { 1574 spin_unlock_irqrestore(&t->task_state_lock, flags1); 1575 pm8001_ccb_task_free(pm8001_ha, ccb); 1576 mb();/* in order to force CPU ordering */ 1577 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1578 t->task_done(t); 1579 } 1580 } break; 1581 case IO_XFER_OPEN_RETRY_TIMEOUT: 1582 { /* This one stashes the sas_task instead */ 1583 struct sas_task *t = (struct sas_task *)pm8001_dev; 1584 struct pm8001_ccb_info *ccb; 1585 struct pm8001_hba_info *pm8001_ha = pw->pm8001_ha; 1586 unsigned long flags, flags1; 1587 int i, ret = 0; 1588 1589 pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); 1590 1591 ret = pm8001_query_task(t); 1592 1593 if (ret == TMF_RESP_FUNC_SUCC) 1594 pm8001_dbg(pm8001_ha, IO, "...Task on lu\n"); 1595 else if (ret == TMF_RESP_FUNC_COMPLETE) 1596 pm8001_dbg(pm8001_ha, IO, "...Task NOT on lu\n"); 1597 else 1598 pm8001_dbg(pm8001_ha, DEVIO, "...query task failed!!!\n"); 1599 1600 spin_lock_irqsave(&pm8001_ha->lock, flags); 1601 1602 spin_lock_irqsave(&t->task_state_lock, flags1); 1603 1604 if (unlikely((t->task_state_flags & SAS_TASK_STATE_DONE))) { 1605 spin_unlock_irqrestore(&t->task_state_lock, flags1); 1606 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1607 if (ret == TMF_RESP_FUNC_SUCC) /* task on lu */ 1608 (void)pm8001_abort_task(t); 1609 break; /* Task got completed by another */ 1610 } 1611 1612 spin_unlock_irqrestore(&t->task_state_lock, flags1); 1613 1614 /* Search for a possible ccb that matches the task */ 1615 for (i = 0; ccb = NULL, i < PM8001_MAX_CCB; i++) { 1616 ccb = &pm8001_ha->ccb_info[i]; 1617 if ((ccb->ccb_tag != PM8001_INVALID_TAG) && 1618 (ccb->task == t)) 1619 break; 1620 } 1621 if (!ccb) { 1622 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1623 if (ret == TMF_RESP_FUNC_SUCC) /* task on lu */ 1624 (void)pm8001_abort_task(t); 1625 break; /* Task got freed by another */ 1626 } 1627 1628 pm8001_dev = ccb->device; 1629 dev = pm8001_dev->sas_device; 1630 1631 switch (ret) { 1632 case TMF_RESP_FUNC_SUCC: /* task on lu */ 1633 ccb->open_retry = 1; /* Snub completion */ 1634 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1635 ret = pm8001_abort_task(t); 1636 ccb->open_retry = 0; 1637 switch (ret) { 1638 case TMF_RESP_FUNC_SUCC: 1639 case TMF_RESP_FUNC_COMPLETE: 1640 break; 1641 default: /* device misbehavior */ 1642 ret = TMF_RESP_FUNC_FAILED; 1643 pm8001_dbg(pm8001_ha, IO, "...Reset phy\n"); 1644 pm8001_I_T_nexus_reset(dev); 1645 break; 1646 } 1647 break; 1648 1649 case TMF_RESP_FUNC_COMPLETE: /* task not on lu */ 1650 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1651 /* Do we need to abort the task locally? */ 1652 break; 1653 1654 default: /* device misbehavior */ 1655 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1656 ret = TMF_RESP_FUNC_FAILED; 1657 pm8001_dbg(pm8001_ha, IO, "...Reset phy\n"); 1658 pm8001_I_T_nexus_reset(dev); 1659 } 1660 1661 if (ret == TMF_RESP_FUNC_FAILED) 1662 t = NULL; 1663 pm8001_open_reject_retry(pm8001_ha, t, pm8001_dev); 1664 pm8001_dbg(pm8001_ha, IO, "...Complete\n"); 1665 } break; 1666 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: 1667 dev = pm8001_dev->sas_device; 1668 pm8001_I_T_nexus_event_handler(dev); 1669 break; 1670 case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY: 1671 dev = pm8001_dev->sas_device; 1672 pm8001_I_T_nexus_reset(dev); 1673 break; 1674 case IO_DS_IN_ERROR: 1675 dev = pm8001_dev->sas_device; 1676 pm8001_I_T_nexus_reset(dev); 1677 break; 1678 case IO_DS_NON_OPERATIONAL: 1679 dev = pm8001_dev->sas_device; 1680 pm8001_I_T_nexus_reset(dev); 1681 break; 1682 case IO_FATAL_ERROR: 1683 { 1684 struct pm8001_hba_info *pm8001_ha = pw->pm8001_ha; 1685 struct pm8001_ccb_info *ccb; 1686 struct task_status_struct *ts; 1687 struct sas_task *task; 1688 int i; 1689 u32 device_id; 1690 1691 for (i = 0; ccb = NULL, i < PM8001_MAX_CCB; i++) { 1692 ccb = &pm8001_ha->ccb_info[i]; 1693 task = ccb->task; 1694 ts = &task->task_status; 1695 1696 if (task != NULL) { 1697 dev = task->dev; 1698 if (!dev) { 1699 pm8001_dbg(pm8001_ha, FAIL, 1700 "dev is NULL\n"); 1701 continue; 1702 } 1703 /*complete sas task and update to top layer */ 1704 pm8001_ccb_task_free(pm8001_ha, ccb); 1705 ts->resp = SAS_TASK_COMPLETE; 1706 task->task_done(task); 1707 } else if (ccb->ccb_tag != PM8001_INVALID_TAG) { 1708 /* complete the internal commands/non-sas task */ 1709 pm8001_dev = ccb->device; 1710 if (pm8001_dev->dcompletion) { 1711 complete(pm8001_dev->dcompletion); 1712 pm8001_dev->dcompletion = NULL; 1713 } 1714 complete(pm8001_ha->nvmd_completion); 1715 pm8001_ccb_free(pm8001_ha, ccb); 1716 } 1717 } 1718 /* Deregister all the device ids */ 1719 for (i = 0; i < PM8001_MAX_DEVICES; i++) { 1720 pm8001_dev = &pm8001_ha->devices[i]; 1721 device_id = pm8001_dev->device_id; 1722 if (device_id) { 1723 PM8001_CHIP_DISP->dereg_dev_req(pm8001_ha, device_id); 1724 pm8001_free_dev(pm8001_dev); 1725 } 1726 } 1727 } break; 1728 } 1729 kfree(pw); 1730 } 1731 1732 int pm8001_handle_event(struct pm8001_hba_info *pm8001_ha, void *data, 1733 int handler) 1734 { 1735 struct pm8001_work *pw; 1736 int ret = 0; 1737 1738 pw = kmalloc(sizeof(struct pm8001_work), GFP_ATOMIC); 1739 if (pw) { 1740 pw->pm8001_ha = pm8001_ha; 1741 pw->data = data; 1742 pw->handler = handler; 1743 INIT_WORK(&pw->work, pm8001_work_fn); 1744 queue_work(pm8001_wq, &pw->work); 1745 } else 1746 ret = -ENOMEM; 1747 1748 return ret; 1749 } 1750 1751 static void pm8001_send_abort_all(struct pm8001_hba_info *pm8001_ha, 1752 struct pm8001_device *pm8001_ha_dev) 1753 { 1754 struct pm8001_ccb_info *ccb; 1755 struct sas_task *task; 1756 struct task_abort_req task_abort; 1757 u32 opc = OPC_INB_SATA_ABORT; 1758 int ret; 1759 1760 pm8001_ha_dev->id |= NCQ_ABORT_ALL_FLAG; 1761 pm8001_ha_dev->id &= ~NCQ_READ_LOG_FLAG; 1762 1763 task = sas_alloc_slow_task(GFP_ATOMIC); 1764 if (!task) { 1765 pm8001_dbg(pm8001_ha, FAIL, "cannot allocate task\n"); 1766 return; 1767 } 1768 1769 task->task_done = pm8001_task_done; 1770 1771 ccb = pm8001_ccb_alloc(pm8001_ha, pm8001_ha_dev, task); 1772 if (!ccb) { 1773 sas_free_task(task); 1774 return; 1775 } 1776 1777 memset(&task_abort, 0, sizeof(task_abort)); 1778 task_abort.abort_all = cpu_to_le32(1); 1779 task_abort.device_id = cpu_to_le32(pm8001_ha_dev->device_id); 1780 task_abort.tag = cpu_to_le32(ccb->ccb_tag); 1781 1782 ret = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &task_abort, 1783 sizeof(task_abort), 0); 1784 if (ret) { 1785 sas_free_task(task); 1786 pm8001_ccb_free(pm8001_ha, ccb); 1787 } 1788 } 1789 1790 static void pm8001_send_read_log(struct pm8001_hba_info *pm8001_ha, 1791 struct pm8001_device *pm8001_ha_dev) 1792 { 1793 struct sata_start_req sata_cmd; 1794 int res; 1795 struct pm8001_ccb_info *ccb; 1796 struct sas_task *task = NULL; 1797 struct host_to_dev_fis fis; 1798 struct domain_device *dev; 1799 u32 opc = OPC_INB_SATA_HOST_OPSTART; 1800 1801 task = sas_alloc_slow_task(GFP_ATOMIC); 1802 if (!task) { 1803 pm8001_dbg(pm8001_ha, FAIL, "cannot allocate task !!!\n"); 1804 return; 1805 } 1806 task->task_done = pm8001_task_done; 1807 1808 /* 1809 * Allocate domain device by ourselves as libsas is not going to 1810 * provide any. 1811 */ 1812 dev = kzalloc(sizeof(struct domain_device), GFP_ATOMIC); 1813 if (!dev) { 1814 sas_free_task(task); 1815 pm8001_dbg(pm8001_ha, FAIL, 1816 "Domain device cannot be allocated\n"); 1817 return; 1818 } 1819 task->dev = dev; 1820 task->dev->lldd_dev = pm8001_ha_dev; 1821 1822 ccb = pm8001_ccb_alloc(pm8001_ha, pm8001_ha_dev, task); 1823 if (!ccb) { 1824 sas_free_task(task); 1825 kfree(dev); 1826 return; 1827 } 1828 1829 pm8001_ha_dev->id |= NCQ_READ_LOG_FLAG; 1830 pm8001_ha_dev->id |= NCQ_2ND_RLE_FLAG; 1831 1832 /* construct read log FIS */ 1833 memset(&fis, 0, sizeof(struct host_to_dev_fis)); 1834 fis.fis_type = 0x27; 1835 fis.flags = 0x80; 1836 fis.command = ATA_CMD_READ_LOG_EXT; 1837 fis.lbal = 0x10; 1838 fis.sector_count = 0x1; 1839 1840 memset(&sata_cmd, 0, sizeof(sata_cmd)); 1841 sata_cmd.tag = cpu_to_le32(ccb->ccb_tag); 1842 sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id); 1843 sata_cmd.ncqtag_atap_dir_m = cpu_to_le32((0x1 << 7) | (0x5 << 9)); 1844 memcpy(&sata_cmd.sata_fis, &fis, sizeof(struct host_to_dev_fis)); 1845 1846 res = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &sata_cmd, 1847 sizeof(sata_cmd), 0); 1848 if (res) { 1849 sas_free_task(task); 1850 pm8001_ccb_free(pm8001_ha, ccb); 1851 kfree(dev); 1852 } 1853 } 1854 1855 /** 1856 * mpi_ssp_completion- process the event that FW response to the SSP request. 1857 * @pm8001_ha: our hba card information 1858 * @piomb: the message contents of this outbound message. 1859 * 1860 * When FW has completed a ssp request for example a IO request, after it has 1861 * filled the SG data with the data, it will trigger this event representing 1862 * that he has finished the job; please check the corresponding buffer. 1863 * So we will tell the caller who maybe waiting the result to tell upper layer 1864 * that the task has been finished. 1865 */ 1866 static void 1867 mpi_ssp_completion(struct pm8001_hba_info *pm8001_ha, void *piomb) 1868 { 1869 struct sas_task *t; 1870 struct pm8001_ccb_info *ccb; 1871 unsigned long flags; 1872 u32 status; 1873 u32 param; 1874 u32 tag; 1875 struct ssp_completion_resp *psspPayload; 1876 struct task_status_struct *ts; 1877 struct ssp_response_iu *iu; 1878 struct pm8001_device *pm8001_dev; 1879 psspPayload = (struct ssp_completion_resp *)(piomb + 4); 1880 status = le32_to_cpu(psspPayload->status); 1881 tag = le32_to_cpu(psspPayload->tag); 1882 ccb = &pm8001_ha->ccb_info[tag]; 1883 if ((status == IO_ABORTED) && ccb->open_retry) { 1884 /* Being completed by another */ 1885 ccb->open_retry = 0; 1886 return; 1887 } 1888 pm8001_dev = ccb->device; 1889 param = le32_to_cpu(psspPayload->param); 1890 1891 t = ccb->task; 1892 1893 if (status && status != IO_UNDERFLOW) 1894 pm8001_dbg(pm8001_ha, FAIL, "sas IO status 0x%x\n", status); 1895 if (unlikely(!t || !t->lldd_task || !t->dev)) 1896 return; 1897 ts = &t->task_status; 1898 /* Print sas address of IO failed device */ 1899 if ((status != IO_SUCCESS) && (status != IO_OVERFLOW) && 1900 (status != IO_UNDERFLOW)) 1901 pm8001_dbg(pm8001_ha, FAIL, "SAS Address of IO Failure Drive:%016llx\n", 1902 SAS_ADDR(t->dev->sas_addr)); 1903 1904 if (status) 1905 pm8001_dbg(pm8001_ha, IOERR, 1906 "status:0x%x, tag:0x%x, task:0x%p\n", 1907 status, tag, t); 1908 1909 switch (status) { 1910 case IO_SUCCESS: 1911 pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS,param = %d\n", 1912 param); 1913 if (param == 0) { 1914 ts->resp = SAS_TASK_COMPLETE; 1915 ts->stat = SAS_SAM_STAT_GOOD; 1916 } else { 1917 ts->resp = SAS_TASK_COMPLETE; 1918 ts->stat = SAS_PROTO_RESPONSE; 1919 ts->residual = param; 1920 iu = &psspPayload->ssp_resp_iu; 1921 sas_ssp_task_response(pm8001_ha->dev, t, iu); 1922 } 1923 if (pm8001_dev) 1924 atomic_dec(&pm8001_dev->running_req); 1925 break; 1926 case IO_ABORTED: 1927 pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB Tag\n"); 1928 ts->resp = SAS_TASK_COMPLETE; 1929 ts->stat = SAS_ABORTED_TASK; 1930 break; 1931 case IO_UNDERFLOW: 1932 /* SSP Completion with error */ 1933 pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW,param = %d\n", 1934 param); 1935 ts->resp = SAS_TASK_COMPLETE; 1936 ts->stat = SAS_DATA_UNDERRUN; 1937 ts->residual = param; 1938 if (pm8001_dev) 1939 atomic_dec(&pm8001_dev->running_req); 1940 break; 1941 case IO_NO_DEVICE: 1942 pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n"); 1943 ts->resp = SAS_TASK_UNDELIVERED; 1944 ts->stat = SAS_PHY_DOWN; 1945 break; 1946 case IO_XFER_ERROR_BREAK: 1947 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); 1948 ts->resp = SAS_TASK_COMPLETE; 1949 ts->stat = SAS_OPEN_REJECT; 1950 /* Force the midlayer to retry */ 1951 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 1952 break; 1953 case IO_XFER_ERROR_PHY_NOT_READY: 1954 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); 1955 ts->resp = SAS_TASK_COMPLETE; 1956 ts->stat = SAS_OPEN_REJECT; 1957 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 1958 break; 1959 case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: 1960 pm8001_dbg(pm8001_ha, IO, 1961 "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); 1962 ts->resp = SAS_TASK_COMPLETE; 1963 ts->stat = SAS_OPEN_REJECT; 1964 ts->open_rej_reason = SAS_OREJ_EPROTO; 1965 break; 1966 case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: 1967 pm8001_dbg(pm8001_ha, IO, 1968 "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); 1969 ts->resp = SAS_TASK_COMPLETE; 1970 ts->stat = SAS_OPEN_REJECT; 1971 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 1972 break; 1973 case IO_OPEN_CNX_ERROR_BREAK: 1974 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); 1975 ts->resp = SAS_TASK_COMPLETE; 1976 ts->stat = SAS_OPEN_REJECT; 1977 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 1978 break; 1979 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: 1980 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); 1981 ts->resp = SAS_TASK_COMPLETE; 1982 ts->stat = SAS_OPEN_REJECT; 1983 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 1984 if (!t->uldd_task) 1985 pm8001_handle_event(pm8001_ha, 1986 pm8001_dev, 1987 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); 1988 break; 1989 case IO_OPEN_CNX_ERROR_BAD_DESTINATION: 1990 pm8001_dbg(pm8001_ha, IO, 1991 "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); 1992 ts->resp = SAS_TASK_COMPLETE; 1993 ts->stat = SAS_OPEN_REJECT; 1994 ts->open_rej_reason = SAS_OREJ_BAD_DEST; 1995 break; 1996 case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: 1997 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); 1998 ts->resp = SAS_TASK_COMPLETE; 1999 ts->stat = SAS_OPEN_REJECT; 2000 ts->open_rej_reason = SAS_OREJ_CONN_RATE; 2001 break; 2002 case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: 2003 pm8001_dbg(pm8001_ha, IO, 2004 "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); 2005 ts->resp = SAS_TASK_UNDELIVERED; 2006 ts->stat = SAS_OPEN_REJECT; 2007 ts->open_rej_reason = SAS_OREJ_WRONG_DEST; 2008 break; 2009 case IO_XFER_ERROR_NAK_RECEIVED: 2010 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n"); 2011 ts->resp = SAS_TASK_COMPLETE; 2012 ts->stat = SAS_OPEN_REJECT; 2013 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2014 break; 2015 case IO_XFER_ERROR_ACK_NAK_TIMEOUT: 2016 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"); 2017 ts->resp = SAS_TASK_COMPLETE; 2018 ts->stat = SAS_NAK_R_ERR; 2019 break; 2020 case IO_XFER_ERROR_DMA: 2021 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_DMA\n"); 2022 ts->resp = SAS_TASK_COMPLETE; 2023 ts->stat = SAS_OPEN_REJECT; 2024 break; 2025 case IO_XFER_OPEN_RETRY_TIMEOUT: 2026 pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); 2027 ts->resp = SAS_TASK_COMPLETE; 2028 ts->stat = SAS_OPEN_REJECT; 2029 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2030 break; 2031 case IO_XFER_ERROR_OFFSET_MISMATCH: 2032 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n"); 2033 ts->resp = SAS_TASK_COMPLETE; 2034 ts->stat = SAS_OPEN_REJECT; 2035 break; 2036 case IO_PORT_IN_RESET: 2037 pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n"); 2038 ts->resp = SAS_TASK_COMPLETE; 2039 ts->stat = SAS_OPEN_REJECT; 2040 break; 2041 case IO_DS_NON_OPERATIONAL: 2042 pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n"); 2043 ts->resp = SAS_TASK_COMPLETE; 2044 ts->stat = SAS_OPEN_REJECT; 2045 if (!t->uldd_task) 2046 pm8001_handle_event(pm8001_ha, 2047 pm8001_dev, 2048 IO_DS_NON_OPERATIONAL); 2049 break; 2050 case IO_DS_IN_RECOVERY: 2051 pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_RECOVERY\n"); 2052 ts->resp = SAS_TASK_COMPLETE; 2053 ts->stat = SAS_OPEN_REJECT; 2054 break; 2055 case IO_TM_TAG_NOT_FOUND: 2056 pm8001_dbg(pm8001_ha, IO, "IO_TM_TAG_NOT_FOUND\n"); 2057 ts->resp = SAS_TASK_COMPLETE; 2058 ts->stat = SAS_OPEN_REJECT; 2059 break; 2060 case IO_SSP_EXT_IU_ZERO_LEN_ERROR: 2061 pm8001_dbg(pm8001_ha, IO, "IO_SSP_EXT_IU_ZERO_LEN_ERROR\n"); 2062 ts->resp = SAS_TASK_COMPLETE; 2063 ts->stat = SAS_OPEN_REJECT; 2064 break; 2065 case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: 2066 pm8001_dbg(pm8001_ha, IO, 2067 "IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"); 2068 ts->resp = SAS_TASK_COMPLETE; 2069 ts->stat = SAS_OPEN_REJECT; 2070 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2071 break; 2072 default: 2073 pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status); 2074 /* not allowed case. Therefore, return failed status */ 2075 ts->resp = SAS_TASK_COMPLETE; 2076 ts->stat = SAS_OPEN_REJECT; 2077 break; 2078 } 2079 pm8001_dbg(pm8001_ha, IO, "scsi_status = %x\n", 2080 psspPayload->ssp_resp_iu.status); 2081 spin_lock_irqsave(&t->task_state_lock, flags); 2082 t->task_state_flags &= ~SAS_TASK_STATE_PENDING; 2083 t->task_state_flags |= SAS_TASK_STATE_DONE; 2084 if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { 2085 spin_unlock_irqrestore(&t->task_state_lock, flags); 2086 pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", 2087 t, status, ts->resp, ts->stat); 2088 pm8001_ccb_task_free(pm8001_ha, ccb); 2089 } else { 2090 spin_unlock_irqrestore(&t->task_state_lock, flags); 2091 pm8001_ccb_task_free(pm8001_ha, ccb); 2092 mb();/* in order to force CPU ordering */ 2093 t->task_done(t); 2094 } 2095 } 2096 2097 /*See the comments for mpi_ssp_completion */ 2098 static void mpi_ssp_event(struct pm8001_hba_info *pm8001_ha, void *piomb) 2099 { 2100 struct sas_task *t; 2101 unsigned long flags; 2102 struct task_status_struct *ts; 2103 struct pm8001_ccb_info *ccb; 2104 struct pm8001_device *pm8001_dev; 2105 struct ssp_event_resp *psspPayload = 2106 (struct ssp_event_resp *)(piomb + 4); 2107 u32 event = le32_to_cpu(psspPayload->event); 2108 u32 tag = le32_to_cpu(psspPayload->tag); 2109 u32 port_id = le32_to_cpu(psspPayload->port_id); 2110 u32 dev_id = le32_to_cpu(psspPayload->device_id); 2111 2112 ccb = &pm8001_ha->ccb_info[tag]; 2113 t = ccb->task; 2114 pm8001_dev = ccb->device; 2115 if (event) 2116 pm8001_dbg(pm8001_ha, FAIL, "sas IO status 0x%x\n", event); 2117 if (unlikely(!t || !t->lldd_task || !t->dev)) 2118 return; 2119 ts = &t->task_status; 2120 pm8001_dbg(pm8001_ha, DEVIO, "port_id = %x,device_id = %x\n", 2121 port_id, dev_id); 2122 switch (event) { 2123 case IO_OVERFLOW: 2124 pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n"); 2125 ts->resp = SAS_TASK_COMPLETE; 2126 ts->stat = SAS_DATA_OVERRUN; 2127 ts->residual = 0; 2128 if (pm8001_dev) 2129 atomic_dec(&pm8001_dev->running_req); 2130 break; 2131 case IO_XFER_ERROR_BREAK: 2132 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); 2133 pm8001_handle_event(pm8001_ha, t, IO_XFER_ERROR_BREAK); 2134 return; 2135 case IO_XFER_ERROR_PHY_NOT_READY: 2136 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); 2137 ts->resp = SAS_TASK_COMPLETE; 2138 ts->stat = SAS_OPEN_REJECT; 2139 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2140 break; 2141 case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: 2142 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); 2143 ts->resp = SAS_TASK_COMPLETE; 2144 ts->stat = SAS_OPEN_REJECT; 2145 ts->open_rej_reason = SAS_OREJ_EPROTO; 2146 break; 2147 case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: 2148 pm8001_dbg(pm8001_ha, IO, 2149 "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); 2150 ts->resp = SAS_TASK_COMPLETE; 2151 ts->stat = SAS_OPEN_REJECT; 2152 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 2153 break; 2154 case IO_OPEN_CNX_ERROR_BREAK: 2155 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); 2156 ts->resp = SAS_TASK_COMPLETE; 2157 ts->stat = SAS_OPEN_REJECT; 2158 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2159 break; 2160 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: 2161 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); 2162 ts->resp = SAS_TASK_COMPLETE; 2163 ts->stat = SAS_OPEN_REJECT; 2164 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 2165 if (!t->uldd_task) 2166 pm8001_handle_event(pm8001_ha, 2167 pm8001_dev, 2168 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); 2169 break; 2170 case IO_OPEN_CNX_ERROR_BAD_DESTINATION: 2171 pm8001_dbg(pm8001_ha, IO, 2172 "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); 2173 ts->resp = SAS_TASK_COMPLETE; 2174 ts->stat = SAS_OPEN_REJECT; 2175 ts->open_rej_reason = SAS_OREJ_BAD_DEST; 2176 break; 2177 case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: 2178 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); 2179 ts->resp = SAS_TASK_COMPLETE; 2180 ts->stat = SAS_OPEN_REJECT; 2181 ts->open_rej_reason = SAS_OREJ_CONN_RATE; 2182 break; 2183 case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: 2184 pm8001_dbg(pm8001_ha, IO, 2185 "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); 2186 ts->resp = SAS_TASK_COMPLETE; 2187 ts->stat = SAS_OPEN_REJECT; 2188 ts->open_rej_reason = SAS_OREJ_WRONG_DEST; 2189 break; 2190 case IO_XFER_ERROR_NAK_RECEIVED: 2191 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n"); 2192 ts->resp = SAS_TASK_COMPLETE; 2193 ts->stat = SAS_OPEN_REJECT; 2194 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2195 break; 2196 case IO_XFER_ERROR_ACK_NAK_TIMEOUT: 2197 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"); 2198 ts->resp = SAS_TASK_COMPLETE; 2199 ts->stat = SAS_NAK_R_ERR; 2200 break; 2201 case IO_XFER_OPEN_RETRY_TIMEOUT: 2202 pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); 2203 pm8001_handle_event(pm8001_ha, t, IO_XFER_OPEN_RETRY_TIMEOUT); 2204 return; 2205 case IO_XFER_ERROR_UNEXPECTED_PHASE: 2206 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_UNEXPECTED_PHASE\n"); 2207 ts->resp = SAS_TASK_COMPLETE; 2208 ts->stat = SAS_DATA_OVERRUN; 2209 break; 2210 case IO_XFER_ERROR_XFER_RDY_OVERRUN: 2211 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_RDY_OVERRUN\n"); 2212 ts->resp = SAS_TASK_COMPLETE; 2213 ts->stat = SAS_DATA_OVERRUN; 2214 break; 2215 case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED: 2216 pm8001_dbg(pm8001_ha, IO, 2217 "IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n"); 2218 ts->resp = SAS_TASK_COMPLETE; 2219 ts->stat = SAS_DATA_OVERRUN; 2220 break; 2221 case IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT: 2222 pm8001_dbg(pm8001_ha, IO, 2223 "IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT\n"); 2224 ts->resp = SAS_TASK_COMPLETE; 2225 ts->stat = SAS_DATA_OVERRUN; 2226 break; 2227 case IO_XFER_ERROR_OFFSET_MISMATCH: 2228 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n"); 2229 ts->resp = SAS_TASK_COMPLETE; 2230 ts->stat = SAS_DATA_OVERRUN; 2231 break; 2232 case IO_XFER_ERROR_XFER_ZERO_DATA_LEN: 2233 pm8001_dbg(pm8001_ha, IO, 2234 "IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n"); 2235 ts->resp = SAS_TASK_COMPLETE; 2236 ts->stat = SAS_DATA_OVERRUN; 2237 break; 2238 case IO_XFER_CMD_FRAME_ISSUED: 2239 pm8001_dbg(pm8001_ha, IO, "IO_XFER_CMD_FRAME_ISSUED\n"); 2240 return; 2241 default: 2242 pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", event); 2243 /* not allowed case. Therefore, return failed status */ 2244 ts->resp = SAS_TASK_COMPLETE; 2245 ts->stat = SAS_DATA_OVERRUN; 2246 break; 2247 } 2248 spin_lock_irqsave(&t->task_state_lock, flags); 2249 t->task_state_flags &= ~SAS_TASK_STATE_PENDING; 2250 t->task_state_flags |= SAS_TASK_STATE_DONE; 2251 if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { 2252 spin_unlock_irqrestore(&t->task_state_lock, flags); 2253 pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with event 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", 2254 t, event, ts->resp, ts->stat); 2255 pm8001_ccb_task_free(pm8001_ha, ccb); 2256 } else { 2257 spin_unlock_irqrestore(&t->task_state_lock, flags); 2258 pm8001_ccb_task_free(pm8001_ha, ccb); 2259 mb();/* in order to force CPU ordering */ 2260 t->task_done(t); 2261 } 2262 } 2263 2264 /*See the comments for mpi_ssp_completion */ 2265 static void 2266 mpi_sata_completion(struct pm8001_hba_info *pm8001_ha, void *piomb) 2267 { 2268 struct sas_task *t; 2269 struct pm8001_ccb_info *ccb; 2270 u32 param; 2271 u32 status; 2272 u32 tag; 2273 int i, j; 2274 u8 sata_addr_low[4]; 2275 u32 temp_sata_addr_low; 2276 u8 sata_addr_hi[4]; 2277 u32 temp_sata_addr_hi; 2278 struct sata_completion_resp *psataPayload; 2279 struct task_status_struct *ts; 2280 struct ata_task_resp *resp ; 2281 u32 *sata_resp; 2282 struct pm8001_device *pm8001_dev; 2283 unsigned long flags; 2284 2285 psataPayload = (struct sata_completion_resp *)(piomb + 4); 2286 status = le32_to_cpu(psataPayload->status); 2287 param = le32_to_cpu(psataPayload->param); 2288 tag = le32_to_cpu(psataPayload->tag); 2289 2290 ccb = &pm8001_ha->ccb_info[tag]; 2291 t = ccb->task; 2292 pm8001_dev = ccb->device; 2293 2294 if (t) { 2295 if (t->dev && (t->dev->lldd_dev)) 2296 pm8001_dev = t->dev->lldd_dev; 2297 } else { 2298 pm8001_dbg(pm8001_ha, FAIL, "task null\n"); 2299 return; 2300 } 2301 2302 if ((pm8001_dev && !(pm8001_dev->id & NCQ_READ_LOG_FLAG)) 2303 && unlikely(!t || !t->lldd_task || !t->dev)) { 2304 pm8001_dbg(pm8001_ha, FAIL, "task or dev null\n"); 2305 return; 2306 } 2307 2308 ts = &t->task_status; 2309 2310 if (status) 2311 pm8001_dbg(pm8001_ha, IOERR, 2312 "status:0x%x, tag:0x%x, task::0x%p\n", 2313 status, tag, t); 2314 2315 /* Print sas address of IO failed device */ 2316 if ((status != IO_SUCCESS) && (status != IO_OVERFLOW) && 2317 (status != IO_UNDERFLOW)) { 2318 if (!((t->dev->parent) && 2319 (dev_is_expander(t->dev->parent->dev_type)))) { 2320 for (i = 0, j = 4; j <= 7 && i <= 3; i++, j++) 2321 sata_addr_low[i] = pm8001_ha->sas_addr[j]; 2322 for (i = 0, j = 0; j <= 3 && i <= 3; i++, j++) 2323 sata_addr_hi[i] = pm8001_ha->sas_addr[j]; 2324 memcpy(&temp_sata_addr_low, sata_addr_low, 2325 sizeof(sata_addr_low)); 2326 memcpy(&temp_sata_addr_hi, sata_addr_hi, 2327 sizeof(sata_addr_hi)); 2328 temp_sata_addr_hi = (((temp_sata_addr_hi >> 24) & 0xff) 2329 |((temp_sata_addr_hi << 8) & 2330 0xff0000) | 2331 ((temp_sata_addr_hi >> 8) 2332 & 0xff00) | 2333 ((temp_sata_addr_hi << 24) & 2334 0xff000000)); 2335 temp_sata_addr_low = ((((temp_sata_addr_low >> 24) 2336 & 0xff) | 2337 ((temp_sata_addr_low << 8) 2338 & 0xff0000) | 2339 ((temp_sata_addr_low >> 8) 2340 & 0xff00) | 2341 ((temp_sata_addr_low << 24) 2342 & 0xff000000)) + 2343 pm8001_dev->attached_phy + 2344 0x10); 2345 pm8001_dbg(pm8001_ha, FAIL, 2346 "SAS Address of IO Failure Drive:%08x%08x\n", 2347 temp_sata_addr_hi, 2348 temp_sata_addr_low); 2349 } else { 2350 pm8001_dbg(pm8001_ha, FAIL, 2351 "SAS Address of IO Failure Drive:%016llx\n", 2352 SAS_ADDR(t->dev->sas_addr)); 2353 } 2354 } 2355 switch (status) { 2356 case IO_SUCCESS: 2357 pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS\n"); 2358 if (param == 0) { 2359 ts->resp = SAS_TASK_COMPLETE; 2360 ts->stat = SAS_SAM_STAT_GOOD; 2361 /* check if response is for SEND READ LOG */ 2362 if (pm8001_dev && 2363 (pm8001_dev->id & NCQ_READ_LOG_FLAG)) { 2364 pm8001_send_abort_all(pm8001_ha, pm8001_dev); 2365 /* Free the tag */ 2366 pm8001_tag_free(pm8001_ha, tag); 2367 sas_free_task(t); 2368 return; 2369 } 2370 } else { 2371 u8 len; 2372 ts->resp = SAS_TASK_COMPLETE; 2373 ts->stat = SAS_PROTO_RESPONSE; 2374 ts->residual = param; 2375 pm8001_dbg(pm8001_ha, IO, 2376 "SAS_PROTO_RESPONSE len = %d\n", 2377 param); 2378 sata_resp = &psataPayload->sata_resp[0]; 2379 resp = (struct ata_task_resp *)ts->buf; 2380 if (t->ata_task.dma_xfer == 0 && 2381 t->data_dir == DMA_FROM_DEVICE) { 2382 len = sizeof(struct pio_setup_fis); 2383 pm8001_dbg(pm8001_ha, IO, 2384 "PIO read len = %d\n", len); 2385 } else if (t->ata_task.use_ncq && 2386 t->data_dir != DMA_NONE) { 2387 len = sizeof(struct set_dev_bits_fis); 2388 pm8001_dbg(pm8001_ha, IO, "FPDMA len = %d\n", 2389 len); 2390 } else { 2391 len = sizeof(struct dev_to_host_fis); 2392 pm8001_dbg(pm8001_ha, IO, "other len = %d\n", 2393 len); 2394 } 2395 if (SAS_STATUS_BUF_SIZE >= sizeof(*resp)) { 2396 resp->frame_len = len; 2397 memcpy(&resp->ending_fis[0], sata_resp, len); 2398 ts->buf_valid_size = sizeof(*resp); 2399 } else 2400 pm8001_dbg(pm8001_ha, IO, 2401 "response too large\n"); 2402 } 2403 if (pm8001_dev) 2404 atomic_dec(&pm8001_dev->running_req); 2405 break; 2406 case IO_ABORTED: 2407 pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB Tag\n"); 2408 ts->resp = SAS_TASK_COMPLETE; 2409 ts->stat = SAS_ABORTED_TASK; 2410 if (pm8001_dev) 2411 atomic_dec(&pm8001_dev->running_req); 2412 break; 2413 /* following cases are to do cases */ 2414 case IO_UNDERFLOW: 2415 /* SATA Completion with error */ 2416 pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW param = %d\n", param); 2417 ts->resp = SAS_TASK_COMPLETE; 2418 ts->stat = SAS_DATA_UNDERRUN; 2419 ts->residual = param; 2420 if (pm8001_dev) 2421 atomic_dec(&pm8001_dev->running_req); 2422 break; 2423 case IO_NO_DEVICE: 2424 pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n"); 2425 ts->resp = SAS_TASK_UNDELIVERED; 2426 ts->stat = SAS_PHY_DOWN; 2427 if (pm8001_dev) 2428 atomic_dec(&pm8001_dev->running_req); 2429 break; 2430 case IO_XFER_ERROR_BREAK: 2431 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); 2432 ts->resp = SAS_TASK_COMPLETE; 2433 ts->stat = SAS_INTERRUPTED; 2434 if (pm8001_dev) 2435 atomic_dec(&pm8001_dev->running_req); 2436 break; 2437 case IO_XFER_ERROR_PHY_NOT_READY: 2438 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); 2439 ts->resp = SAS_TASK_COMPLETE; 2440 ts->stat = SAS_OPEN_REJECT; 2441 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2442 if (pm8001_dev) 2443 atomic_dec(&pm8001_dev->running_req); 2444 break; 2445 case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: 2446 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); 2447 ts->resp = SAS_TASK_COMPLETE; 2448 ts->stat = SAS_OPEN_REJECT; 2449 ts->open_rej_reason = SAS_OREJ_EPROTO; 2450 if (pm8001_dev) 2451 atomic_dec(&pm8001_dev->running_req); 2452 break; 2453 case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: 2454 pm8001_dbg(pm8001_ha, IO, 2455 "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); 2456 ts->resp = SAS_TASK_COMPLETE; 2457 ts->stat = SAS_OPEN_REJECT; 2458 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 2459 if (pm8001_dev) 2460 atomic_dec(&pm8001_dev->running_req); 2461 break; 2462 case IO_OPEN_CNX_ERROR_BREAK: 2463 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); 2464 ts->resp = SAS_TASK_COMPLETE; 2465 ts->stat = SAS_OPEN_REJECT; 2466 ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; 2467 if (pm8001_dev) 2468 atomic_dec(&pm8001_dev->running_req); 2469 break; 2470 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: 2471 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); 2472 ts->resp = SAS_TASK_COMPLETE; 2473 ts->stat = SAS_DEV_NO_RESPONSE; 2474 if (!t->uldd_task) { 2475 pm8001_handle_event(pm8001_ha, 2476 pm8001_dev, 2477 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); 2478 ts->resp = SAS_TASK_UNDELIVERED; 2479 ts->stat = SAS_QUEUE_FULL; 2480 pm8001_ccb_task_free_done(pm8001_ha, ccb); 2481 return; 2482 } 2483 break; 2484 case IO_OPEN_CNX_ERROR_BAD_DESTINATION: 2485 pm8001_dbg(pm8001_ha, IO, 2486 "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); 2487 ts->resp = SAS_TASK_UNDELIVERED; 2488 ts->stat = SAS_OPEN_REJECT; 2489 ts->open_rej_reason = SAS_OREJ_BAD_DEST; 2490 if (!t->uldd_task) { 2491 pm8001_handle_event(pm8001_ha, 2492 pm8001_dev, 2493 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); 2494 ts->resp = SAS_TASK_UNDELIVERED; 2495 ts->stat = SAS_QUEUE_FULL; 2496 pm8001_ccb_task_free_done(pm8001_ha, ccb); 2497 return; 2498 } 2499 break; 2500 case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: 2501 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); 2502 ts->resp = SAS_TASK_COMPLETE; 2503 ts->stat = SAS_OPEN_REJECT; 2504 ts->open_rej_reason = SAS_OREJ_CONN_RATE; 2505 if (pm8001_dev) 2506 atomic_dec(&pm8001_dev->running_req); 2507 break; 2508 case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY: 2509 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY\n"); 2510 ts->resp = SAS_TASK_COMPLETE; 2511 ts->stat = SAS_DEV_NO_RESPONSE; 2512 if (!t->uldd_task) { 2513 pm8001_handle_event(pm8001_ha, 2514 pm8001_dev, 2515 IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY); 2516 ts->resp = SAS_TASK_UNDELIVERED; 2517 ts->stat = SAS_QUEUE_FULL; 2518 pm8001_ccb_task_free_done(pm8001_ha, ccb); 2519 return; 2520 } 2521 break; 2522 case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: 2523 pm8001_dbg(pm8001_ha, IO, 2524 "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); 2525 ts->resp = SAS_TASK_COMPLETE; 2526 ts->stat = SAS_OPEN_REJECT; 2527 ts->open_rej_reason = SAS_OREJ_WRONG_DEST; 2528 if (pm8001_dev) 2529 atomic_dec(&pm8001_dev->running_req); 2530 break; 2531 case IO_XFER_ERROR_NAK_RECEIVED: 2532 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n"); 2533 ts->resp = SAS_TASK_COMPLETE; 2534 ts->stat = SAS_NAK_R_ERR; 2535 if (pm8001_dev) 2536 atomic_dec(&pm8001_dev->running_req); 2537 break; 2538 case IO_XFER_ERROR_ACK_NAK_TIMEOUT: 2539 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"); 2540 ts->resp = SAS_TASK_COMPLETE; 2541 ts->stat = SAS_NAK_R_ERR; 2542 if (pm8001_dev) 2543 atomic_dec(&pm8001_dev->running_req); 2544 break; 2545 case IO_XFER_ERROR_DMA: 2546 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_DMA\n"); 2547 ts->resp = SAS_TASK_COMPLETE; 2548 ts->stat = SAS_ABORTED_TASK; 2549 if (pm8001_dev) 2550 atomic_dec(&pm8001_dev->running_req); 2551 break; 2552 case IO_XFER_ERROR_SATA_LINK_TIMEOUT: 2553 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_SATA_LINK_TIMEOUT\n"); 2554 ts->resp = SAS_TASK_UNDELIVERED; 2555 ts->stat = SAS_DEV_NO_RESPONSE; 2556 if (pm8001_dev) 2557 atomic_dec(&pm8001_dev->running_req); 2558 break; 2559 case IO_XFER_ERROR_REJECTED_NCQ_MODE: 2560 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_REJECTED_NCQ_MODE\n"); 2561 ts->resp = SAS_TASK_COMPLETE; 2562 ts->stat = SAS_DATA_UNDERRUN; 2563 if (pm8001_dev) 2564 atomic_dec(&pm8001_dev->running_req); 2565 break; 2566 case IO_XFER_OPEN_RETRY_TIMEOUT: 2567 pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); 2568 ts->resp = SAS_TASK_COMPLETE; 2569 ts->stat = SAS_OPEN_TO; 2570 if (pm8001_dev) 2571 atomic_dec(&pm8001_dev->running_req); 2572 break; 2573 case IO_PORT_IN_RESET: 2574 pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n"); 2575 ts->resp = SAS_TASK_COMPLETE; 2576 ts->stat = SAS_DEV_NO_RESPONSE; 2577 if (pm8001_dev) 2578 atomic_dec(&pm8001_dev->running_req); 2579 break; 2580 case IO_DS_NON_OPERATIONAL: 2581 pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n"); 2582 ts->resp = SAS_TASK_COMPLETE; 2583 ts->stat = SAS_DEV_NO_RESPONSE; 2584 if (!t->uldd_task) { 2585 pm8001_handle_event(pm8001_ha, pm8001_dev, 2586 IO_DS_NON_OPERATIONAL); 2587 ts->resp = SAS_TASK_UNDELIVERED; 2588 ts->stat = SAS_QUEUE_FULL; 2589 pm8001_ccb_task_free_done(pm8001_ha, ccb); 2590 return; 2591 } 2592 break; 2593 case IO_DS_IN_RECOVERY: 2594 pm8001_dbg(pm8001_ha, IO, " IO_DS_IN_RECOVERY\n"); 2595 ts->resp = SAS_TASK_COMPLETE; 2596 ts->stat = SAS_DEV_NO_RESPONSE; 2597 if (pm8001_dev) 2598 atomic_dec(&pm8001_dev->running_req); 2599 break; 2600 case IO_DS_IN_ERROR: 2601 pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_ERROR\n"); 2602 ts->resp = SAS_TASK_COMPLETE; 2603 ts->stat = SAS_DEV_NO_RESPONSE; 2604 if (!t->uldd_task) { 2605 pm8001_handle_event(pm8001_ha, pm8001_dev, 2606 IO_DS_IN_ERROR); 2607 ts->resp = SAS_TASK_UNDELIVERED; 2608 ts->stat = SAS_QUEUE_FULL; 2609 pm8001_ccb_task_free_done(pm8001_ha, ccb); 2610 return; 2611 } 2612 break; 2613 case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: 2614 pm8001_dbg(pm8001_ha, IO, 2615 "IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"); 2616 ts->resp = SAS_TASK_COMPLETE; 2617 ts->stat = SAS_OPEN_REJECT; 2618 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2619 if (pm8001_dev) 2620 atomic_dec(&pm8001_dev->running_req); 2621 break; 2622 default: 2623 pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status); 2624 /* not allowed case. Therefore, return failed status */ 2625 ts->resp = SAS_TASK_COMPLETE; 2626 ts->stat = SAS_DEV_NO_RESPONSE; 2627 if (pm8001_dev) 2628 atomic_dec(&pm8001_dev->running_req); 2629 break; 2630 } 2631 spin_lock_irqsave(&t->task_state_lock, flags); 2632 t->task_state_flags &= ~SAS_TASK_STATE_PENDING; 2633 t->task_state_flags |= SAS_TASK_STATE_DONE; 2634 if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { 2635 spin_unlock_irqrestore(&t->task_state_lock, flags); 2636 pm8001_dbg(pm8001_ha, FAIL, 2637 "task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", 2638 t, status, ts->resp, ts->stat); 2639 pm8001_ccb_task_free(pm8001_ha, ccb); 2640 } else { 2641 spin_unlock_irqrestore(&t->task_state_lock, flags); 2642 pm8001_ccb_task_free_done(pm8001_ha, ccb); 2643 } 2644 } 2645 2646 /*See the comments for mpi_ssp_completion */ 2647 static void mpi_sata_event(struct pm8001_hba_info *pm8001_ha, void *piomb) 2648 { 2649 struct sas_task *t; 2650 struct task_status_struct *ts; 2651 struct pm8001_ccb_info *ccb; 2652 struct pm8001_device *pm8001_dev; 2653 struct sata_event_resp *psataPayload = 2654 (struct sata_event_resp *)(piomb + 4); 2655 u32 event = le32_to_cpu(psataPayload->event); 2656 u32 tag = le32_to_cpu(psataPayload->tag); 2657 u32 port_id = le32_to_cpu(psataPayload->port_id); 2658 u32 dev_id = le32_to_cpu(psataPayload->device_id); 2659 2660 if (event) 2661 pm8001_dbg(pm8001_ha, FAIL, "SATA EVENT 0x%x\n", event); 2662 2663 /* Check if this is NCQ error */ 2664 if (event == IO_XFER_ERROR_ABORTED_NCQ_MODE) { 2665 /* find device using device id */ 2666 pm8001_dev = pm8001_find_dev(pm8001_ha, dev_id); 2667 /* send read log extension */ 2668 if (pm8001_dev) 2669 pm8001_send_read_log(pm8001_ha, pm8001_dev); 2670 return; 2671 } 2672 2673 ccb = &pm8001_ha->ccb_info[tag]; 2674 t = ccb->task; 2675 pm8001_dev = ccb->device; 2676 if (event) 2677 pm8001_dbg(pm8001_ha, FAIL, "sata IO status 0x%x\n", event); 2678 if (unlikely(!t || !t->lldd_task || !t->dev)) 2679 return; 2680 ts = &t->task_status; 2681 pm8001_dbg(pm8001_ha, DEVIO, 2682 "port_id:0x%x, device_id:0x%x, tag:0x%x, event:0x%x\n", 2683 port_id, dev_id, tag, event); 2684 switch (event) { 2685 case IO_OVERFLOW: 2686 pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n"); 2687 ts->resp = SAS_TASK_COMPLETE; 2688 ts->stat = SAS_DATA_OVERRUN; 2689 ts->residual = 0; 2690 break; 2691 case IO_XFER_ERROR_BREAK: 2692 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); 2693 ts->resp = SAS_TASK_COMPLETE; 2694 ts->stat = SAS_INTERRUPTED; 2695 break; 2696 case IO_XFER_ERROR_PHY_NOT_READY: 2697 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); 2698 ts->resp = SAS_TASK_COMPLETE; 2699 ts->stat = SAS_OPEN_REJECT; 2700 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2701 break; 2702 case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: 2703 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); 2704 ts->resp = SAS_TASK_COMPLETE; 2705 ts->stat = SAS_OPEN_REJECT; 2706 ts->open_rej_reason = SAS_OREJ_EPROTO; 2707 break; 2708 case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: 2709 pm8001_dbg(pm8001_ha, IO, 2710 "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); 2711 ts->resp = SAS_TASK_COMPLETE; 2712 ts->stat = SAS_OPEN_REJECT; 2713 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 2714 break; 2715 case IO_OPEN_CNX_ERROR_BREAK: 2716 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); 2717 ts->resp = SAS_TASK_COMPLETE; 2718 ts->stat = SAS_OPEN_REJECT; 2719 ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; 2720 break; 2721 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: 2722 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); 2723 ts->resp = SAS_TASK_UNDELIVERED; 2724 ts->stat = SAS_DEV_NO_RESPONSE; 2725 if (!t->uldd_task) { 2726 pm8001_handle_event(pm8001_ha, 2727 pm8001_dev, 2728 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); 2729 ts->resp = SAS_TASK_COMPLETE; 2730 ts->stat = SAS_QUEUE_FULL; 2731 return; 2732 } 2733 break; 2734 case IO_OPEN_CNX_ERROR_BAD_DESTINATION: 2735 pm8001_dbg(pm8001_ha, IO, 2736 "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); 2737 ts->resp = SAS_TASK_UNDELIVERED; 2738 ts->stat = SAS_OPEN_REJECT; 2739 ts->open_rej_reason = SAS_OREJ_BAD_DEST; 2740 break; 2741 case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: 2742 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); 2743 ts->resp = SAS_TASK_COMPLETE; 2744 ts->stat = SAS_OPEN_REJECT; 2745 ts->open_rej_reason = SAS_OREJ_CONN_RATE; 2746 break; 2747 case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: 2748 pm8001_dbg(pm8001_ha, IO, 2749 "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); 2750 ts->resp = SAS_TASK_COMPLETE; 2751 ts->stat = SAS_OPEN_REJECT; 2752 ts->open_rej_reason = SAS_OREJ_WRONG_DEST; 2753 break; 2754 case IO_XFER_ERROR_NAK_RECEIVED: 2755 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n"); 2756 ts->resp = SAS_TASK_COMPLETE; 2757 ts->stat = SAS_NAK_R_ERR; 2758 break; 2759 case IO_XFER_ERROR_PEER_ABORTED: 2760 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PEER_ABORTED\n"); 2761 ts->resp = SAS_TASK_COMPLETE; 2762 ts->stat = SAS_NAK_R_ERR; 2763 break; 2764 case IO_XFER_ERROR_REJECTED_NCQ_MODE: 2765 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_REJECTED_NCQ_MODE\n"); 2766 ts->resp = SAS_TASK_COMPLETE; 2767 ts->stat = SAS_DATA_UNDERRUN; 2768 break; 2769 case IO_XFER_OPEN_RETRY_TIMEOUT: 2770 pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); 2771 ts->resp = SAS_TASK_COMPLETE; 2772 ts->stat = SAS_OPEN_TO; 2773 break; 2774 case IO_XFER_ERROR_UNEXPECTED_PHASE: 2775 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_UNEXPECTED_PHASE\n"); 2776 ts->resp = SAS_TASK_COMPLETE; 2777 ts->stat = SAS_OPEN_TO; 2778 break; 2779 case IO_XFER_ERROR_XFER_RDY_OVERRUN: 2780 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_RDY_OVERRUN\n"); 2781 ts->resp = SAS_TASK_COMPLETE; 2782 ts->stat = SAS_OPEN_TO; 2783 break; 2784 case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED: 2785 pm8001_dbg(pm8001_ha, IO, 2786 "IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n"); 2787 ts->resp = SAS_TASK_COMPLETE; 2788 ts->stat = SAS_OPEN_TO; 2789 break; 2790 case IO_XFER_ERROR_OFFSET_MISMATCH: 2791 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n"); 2792 ts->resp = SAS_TASK_COMPLETE; 2793 ts->stat = SAS_OPEN_TO; 2794 break; 2795 case IO_XFER_ERROR_XFER_ZERO_DATA_LEN: 2796 pm8001_dbg(pm8001_ha, IO, 2797 "IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n"); 2798 ts->resp = SAS_TASK_COMPLETE; 2799 ts->stat = SAS_OPEN_TO; 2800 break; 2801 case IO_XFER_CMD_FRAME_ISSUED: 2802 pm8001_dbg(pm8001_ha, IO, "IO_XFER_CMD_FRAME_ISSUED\n"); 2803 break; 2804 case IO_XFER_PIO_SETUP_ERROR: 2805 pm8001_dbg(pm8001_ha, IO, "IO_XFER_PIO_SETUP_ERROR\n"); 2806 ts->resp = SAS_TASK_COMPLETE; 2807 ts->stat = SAS_OPEN_TO; 2808 break; 2809 default: 2810 pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", event); 2811 /* not allowed case. Therefore, return failed status */ 2812 ts->resp = SAS_TASK_COMPLETE; 2813 ts->stat = SAS_OPEN_TO; 2814 break; 2815 } 2816 } 2817 2818 /*See the comments for mpi_ssp_completion */ 2819 static void 2820 mpi_smp_completion(struct pm8001_hba_info *pm8001_ha, void *piomb) 2821 { 2822 struct sas_task *t; 2823 struct pm8001_ccb_info *ccb; 2824 unsigned long flags; 2825 u32 status; 2826 u32 tag; 2827 struct smp_completion_resp *psmpPayload; 2828 struct task_status_struct *ts; 2829 struct pm8001_device *pm8001_dev; 2830 2831 psmpPayload = (struct smp_completion_resp *)(piomb + 4); 2832 status = le32_to_cpu(psmpPayload->status); 2833 tag = le32_to_cpu(psmpPayload->tag); 2834 2835 ccb = &pm8001_ha->ccb_info[tag]; 2836 t = ccb->task; 2837 ts = &t->task_status; 2838 pm8001_dev = ccb->device; 2839 if (status) { 2840 pm8001_dbg(pm8001_ha, FAIL, "smp IO status 0x%x\n", status); 2841 pm8001_dbg(pm8001_ha, IOERR, 2842 "status:0x%x, tag:0x%x, task:0x%p\n", 2843 status, tag, t); 2844 } 2845 if (unlikely(!t || !t->lldd_task || !t->dev)) 2846 return; 2847 2848 switch (status) { 2849 case IO_SUCCESS: 2850 pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS\n"); 2851 ts->resp = SAS_TASK_COMPLETE; 2852 ts->stat = SAS_SAM_STAT_GOOD; 2853 if (pm8001_dev) 2854 atomic_dec(&pm8001_dev->running_req); 2855 break; 2856 case IO_ABORTED: 2857 pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB\n"); 2858 ts->resp = SAS_TASK_COMPLETE; 2859 ts->stat = SAS_ABORTED_TASK; 2860 if (pm8001_dev) 2861 atomic_dec(&pm8001_dev->running_req); 2862 break; 2863 case IO_OVERFLOW: 2864 pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n"); 2865 ts->resp = SAS_TASK_COMPLETE; 2866 ts->stat = SAS_DATA_OVERRUN; 2867 ts->residual = 0; 2868 if (pm8001_dev) 2869 atomic_dec(&pm8001_dev->running_req); 2870 break; 2871 case IO_NO_DEVICE: 2872 pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n"); 2873 ts->resp = SAS_TASK_COMPLETE; 2874 ts->stat = SAS_PHY_DOWN; 2875 break; 2876 case IO_ERROR_HW_TIMEOUT: 2877 pm8001_dbg(pm8001_ha, IO, "IO_ERROR_HW_TIMEOUT\n"); 2878 ts->resp = SAS_TASK_COMPLETE; 2879 ts->stat = SAS_SAM_STAT_BUSY; 2880 break; 2881 case IO_XFER_ERROR_BREAK: 2882 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); 2883 ts->resp = SAS_TASK_COMPLETE; 2884 ts->stat = SAS_SAM_STAT_BUSY; 2885 break; 2886 case IO_XFER_ERROR_PHY_NOT_READY: 2887 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); 2888 ts->resp = SAS_TASK_COMPLETE; 2889 ts->stat = SAS_SAM_STAT_BUSY; 2890 break; 2891 case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: 2892 pm8001_dbg(pm8001_ha, IO, 2893 "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); 2894 ts->resp = SAS_TASK_COMPLETE; 2895 ts->stat = SAS_OPEN_REJECT; 2896 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 2897 break; 2898 case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: 2899 pm8001_dbg(pm8001_ha, IO, 2900 "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); 2901 ts->resp = SAS_TASK_COMPLETE; 2902 ts->stat = SAS_OPEN_REJECT; 2903 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 2904 break; 2905 case IO_OPEN_CNX_ERROR_BREAK: 2906 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); 2907 ts->resp = SAS_TASK_COMPLETE; 2908 ts->stat = SAS_OPEN_REJECT; 2909 ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; 2910 break; 2911 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: 2912 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); 2913 ts->resp = SAS_TASK_COMPLETE; 2914 ts->stat = SAS_OPEN_REJECT; 2915 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 2916 pm8001_handle_event(pm8001_ha, 2917 pm8001_dev, 2918 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); 2919 break; 2920 case IO_OPEN_CNX_ERROR_BAD_DESTINATION: 2921 pm8001_dbg(pm8001_ha, IO, 2922 "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); 2923 ts->resp = SAS_TASK_COMPLETE; 2924 ts->stat = SAS_OPEN_REJECT; 2925 ts->open_rej_reason = SAS_OREJ_BAD_DEST; 2926 break; 2927 case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: 2928 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); 2929 ts->resp = SAS_TASK_COMPLETE; 2930 ts->stat = SAS_OPEN_REJECT; 2931 ts->open_rej_reason = SAS_OREJ_CONN_RATE; 2932 break; 2933 case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: 2934 pm8001_dbg(pm8001_ha, IO, 2935 "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); 2936 ts->resp = SAS_TASK_COMPLETE; 2937 ts->stat = SAS_OPEN_REJECT; 2938 ts->open_rej_reason = SAS_OREJ_WRONG_DEST; 2939 break; 2940 case IO_XFER_ERROR_RX_FRAME: 2941 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_RX_FRAME\n"); 2942 ts->resp = SAS_TASK_COMPLETE; 2943 ts->stat = SAS_DEV_NO_RESPONSE; 2944 break; 2945 case IO_XFER_OPEN_RETRY_TIMEOUT: 2946 pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); 2947 ts->resp = SAS_TASK_COMPLETE; 2948 ts->stat = SAS_OPEN_REJECT; 2949 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2950 break; 2951 case IO_ERROR_INTERNAL_SMP_RESOURCE: 2952 pm8001_dbg(pm8001_ha, IO, "IO_ERROR_INTERNAL_SMP_RESOURCE\n"); 2953 ts->resp = SAS_TASK_COMPLETE; 2954 ts->stat = SAS_QUEUE_FULL; 2955 break; 2956 case IO_PORT_IN_RESET: 2957 pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n"); 2958 ts->resp = SAS_TASK_COMPLETE; 2959 ts->stat = SAS_OPEN_REJECT; 2960 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2961 break; 2962 case IO_DS_NON_OPERATIONAL: 2963 pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n"); 2964 ts->resp = SAS_TASK_COMPLETE; 2965 ts->stat = SAS_DEV_NO_RESPONSE; 2966 break; 2967 case IO_DS_IN_RECOVERY: 2968 pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_RECOVERY\n"); 2969 ts->resp = SAS_TASK_COMPLETE; 2970 ts->stat = SAS_OPEN_REJECT; 2971 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2972 break; 2973 case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: 2974 pm8001_dbg(pm8001_ha, IO, 2975 "IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"); 2976 ts->resp = SAS_TASK_COMPLETE; 2977 ts->stat = SAS_OPEN_REJECT; 2978 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2979 break; 2980 default: 2981 pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status); 2982 ts->resp = SAS_TASK_COMPLETE; 2983 ts->stat = SAS_DEV_NO_RESPONSE; 2984 /* not allowed case. Therefore, return failed status */ 2985 break; 2986 } 2987 spin_lock_irqsave(&t->task_state_lock, flags); 2988 t->task_state_flags &= ~SAS_TASK_STATE_PENDING; 2989 t->task_state_flags |= SAS_TASK_STATE_DONE; 2990 if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { 2991 spin_unlock_irqrestore(&t->task_state_lock, flags); 2992 pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", 2993 t, status, ts->resp, ts->stat); 2994 pm8001_ccb_task_free(pm8001_ha, ccb); 2995 } else { 2996 spin_unlock_irqrestore(&t->task_state_lock, flags); 2997 pm8001_ccb_task_free_done(pm8001_ha, ccb); 2998 } 2999 } 3000 3001 void pm8001_mpi_set_dev_state_resp(struct pm8001_hba_info *pm8001_ha, 3002 void *piomb) 3003 { 3004 struct set_dev_state_resp *pPayload = 3005 (struct set_dev_state_resp *)(piomb + 4); 3006 u32 tag = le32_to_cpu(pPayload->tag); 3007 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; 3008 struct pm8001_device *pm8001_dev = ccb->device; 3009 u32 status = le32_to_cpu(pPayload->status); 3010 u32 device_id = le32_to_cpu(pPayload->device_id); 3011 u8 pds = le32_to_cpu(pPayload->pds_nds) & PDS_BITS; 3012 u8 nds = le32_to_cpu(pPayload->pds_nds) & NDS_BITS; 3013 3014 pm8001_dbg(pm8001_ha, MSG, 3015 "Set device id = 0x%x state from 0x%x to 0x%x status = 0x%x!\n", 3016 device_id, pds, nds, status); 3017 complete(pm8001_dev->setds_completion); 3018 pm8001_ccb_free(pm8001_ha, ccb); 3019 } 3020 3021 void pm8001_mpi_set_nvmd_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) 3022 { 3023 struct get_nvm_data_resp *pPayload = 3024 (struct get_nvm_data_resp *)(piomb + 4); 3025 u32 tag = le32_to_cpu(pPayload->tag); 3026 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; 3027 u32 dlen_status = le32_to_cpu(pPayload->dlen_status); 3028 3029 complete(pm8001_ha->nvmd_completion); 3030 pm8001_dbg(pm8001_ha, MSG, "Set nvm data complete!\n"); 3031 if ((dlen_status & NVMD_STAT) != 0) { 3032 pm8001_dbg(pm8001_ha, FAIL, "Set nvm data error %x\n", 3033 dlen_status); 3034 } 3035 pm8001_ccb_free(pm8001_ha, ccb); 3036 } 3037 3038 void 3039 pm8001_mpi_get_nvmd_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) 3040 { 3041 struct fw_control_ex *fw_control_context; 3042 struct get_nvm_data_resp *pPayload = 3043 (struct get_nvm_data_resp *)(piomb + 4); 3044 u32 tag = le32_to_cpu(pPayload->tag); 3045 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; 3046 u32 dlen_status = le32_to_cpu(pPayload->dlen_status); 3047 u32 ir_tds_bn_dps_das_nvm = 3048 le32_to_cpu(pPayload->ir_tda_bn_dps_das_nvm); 3049 void *virt_addr = pm8001_ha->memoryMap.region[NVMD].virt_ptr; 3050 fw_control_context = ccb->fw_control_context; 3051 3052 pm8001_dbg(pm8001_ha, MSG, "Get nvm data complete!\n"); 3053 if ((dlen_status & NVMD_STAT) != 0) { 3054 pm8001_dbg(pm8001_ha, FAIL, "Get nvm data error %x\n", 3055 dlen_status); 3056 complete(pm8001_ha->nvmd_completion); 3057 /* We should free tag during failure also, the tag is not being 3058 * freed by requesting path anywhere. 3059 */ 3060 pm8001_ccb_free(pm8001_ha, ccb); 3061 return; 3062 } 3063 if (ir_tds_bn_dps_das_nvm & IPMode) { 3064 /* indirect mode - IR bit set */ 3065 pm8001_dbg(pm8001_ha, MSG, "Get NVMD success, IR=1\n"); 3066 if ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == TWI_DEVICE) { 3067 if (ir_tds_bn_dps_das_nvm == 0x80a80200) { 3068 memcpy(pm8001_ha->sas_addr, 3069 ((u8 *)virt_addr + 4), 3070 SAS_ADDR_SIZE); 3071 pm8001_dbg(pm8001_ha, MSG, "Get SAS address from VPD successfully!\n"); 3072 } 3073 } else if (((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == C_SEEPROM) 3074 || ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == VPD_FLASH) || 3075 ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == EXPAN_ROM)) { 3076 ; 3077 } else if (((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == AAP1_RDUMP) 3078 || ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == IOP_RDUMP)) { 3079 ; 3080 } else { 3081 /* Should not be happened*/ 3082 pm8001_dbg(pm8001_ha, MSG, 3083 "(IR=1)Wrong Device type 0x%x\n", 3084 ir_tds_bn_dps_das_nvm); 3085 } 3086 } else /* direct mode */{ 3087 pm8001_dbg(pm8001_ha, MSG, 3088 "Get NVMD success, IR=0, dataLen=%d\n", 3089 (dlen_status & NVMD_LEN) >> 24); 3090 } 3091 /* Though fw_control_context is freed below, usrAddr still needs 3092 * to be updated as this holds the response to the request function 3093 */ 3094 memcpy(fw_control_context->usrAddr, 3095 pm8001_ha->memoryMap.region[NVMD].virt_ptr, 3096 fw_control_context->len); 3097 kfree(ccb->fw_control_context); 3098 /* To avoid race condition, complete should be 3099 * called after the message is copied to 3100 * fw_control_context->usrAddr 3101 */ 3102 complete(pm8001_ha->nvmd_completion); 3103 pm8001_dbg(pm8001_ha, MSG, "Get nvmd data complete!\n"); 3104 pm8001_ccb_free(pm8001_ha, ccb); 3105 } 3106 3107 int pm8001_mpi_local_phy_ctl(struct pm8001_hba_info *pm8001_ha, void *piomb) 3108 { 3109 u32 tag; 3110 struct local_phy_ctl_resp *pPayload = 3111 (struct local_phy_ctl_resp *)(piomb + 4); 3112 u32 status = le32_to_cpu(pPayload->status); 3113 u32 phy_id = le32_to_cpu(pPayload->phyop_phyid) & ID_BITS; 3114 u32 phy_op = le32_to_cpu(pPayload->phyop_phyid) & OP_BITS; 3115 tag = le32_to_cpu(pPayload->tag); 3116 if (status != 0) { 3117 pm8001_dbg(pm8001_ha, MSG, 3118 "%x phy execute %x phy op failed!\n", 3119 phy_id, phy_op); 3120 } else { 3121 pm8001_dbg(pm8001_ha, MSG, 3122 "%x phy execute %x phy op success!\n", 3123 phy_id, phy_op); 3124 pm8001_ha->phy[phy_id].reset_success = true; 3125 } 3126 if (pm8001_ha->phy[phy_id].enable_completion) { 3127 complete(pm8001_ha->phy[phy_id].enable_completion); 3128 pm8001_ha->phy[phy_id].enable_completion = NULL; 3129 } 3130 pm8001_tag_free(pm8001_ha, tag); 3131 return 0; 3132 } 3133 3134 /** 3135 * pm8001_bytes_dmaed - one of the interface function communication with libsas 3136 * @pm8001_ha: our hba card information 3137 * @i: which phy that received the event. 3138 * 3139 * when HBA driver received the identify done event or initiate FIS received 3140 * event(for SATA), it will invoke this function to notify the sas layer that 3141 * the sas toplogy has formed, please discover the the whole sas domain, 3142 * while receive a broadcast(change) primitive just tell the sas 3143 * layer to discover the changed domain rather than the whole domain. 3144 */ 3145 void pm8001_bytes_dmaed(struct pm8001_hba_info *pm8001_ha, int i) 3146 { 3147 struct pm8001_phy *phy = &pm8001_ha->phy[i]; 3148 struct asd_sas_phy *sas_phy = &phy->sas_phy; 3149 if (!phy->phy_attached) 3150 return; 3151 3152 if (sas_phy->phy) { 3153 struct sas_phy *sphy = sas_phy->phy; 3154 sphy->negotiated_linkrate = sas_phy->linkrate; 3155 sphy->minimum_linkrate = phy->minimum_linkrate; 3156 sphy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS; 3157 sphy->maximum_linkrate = phy->maximum_linkrate; 3158 sphy->maximum_linkrate_hw = phy->maximum_linkrate; 3159 } 3160 3161 if (phy->phy_type & PORT_TYPE_SAS) { 3162 struct sas_identify_frame *id; 3163 id = (struct sas_identify_frame *)phy->frame_rcvd; 3164 id->dev_type = phy->identify.device_type; 3165 id->initiator_bits = SAS_PROTOCOL_ALL; 3166 id->target_bits = phy->identify.target_port_protocols; 3167 } else if (phy->phy_type & PORT_TYPE_SATA) { 3168 /*Nothing*/ 3169 } 3170 pm8001_dbg(pm8001_ha, MSG, "phy %d byte dmaded.\n", i); 3171 3172 sas_phy->frame_rcvd_size = phy->frame_rcvd_size; 3173 sas_notify_port_event(sas_phy, PORTE_BYTES_DMAED, GFP_ATOMIC); 3174 } 3175 3176 /* Get the link rate speed */ 3177 void pm8001_get_lrate_mode(struct pm8001_phy *phy, u8 link_rate) 3178 { 3179 struct sas_phy *sas_phy = phy->sas_phy.phy; 3180 3181 switch (link_rate) { 3182 case PHY_SPEED_120: 3183 phy->sas_phy.linkrate = SAS_LINK_RATE_12_0_GBPS; 3184 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_12_0_GBPS; 3185 break; 3186 case PHY_SPEED_60: 3187 phy->sas_phy.linkrate = SAS_LINK_RATE_6_0_GBPS; 3188 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS; 3189 break; 3190 case PHY_SPEED_30: 3191 phy->sas_phy.linkrate = SAS_LINK_RATE_3_0_GBPS; 3192 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS; 3193 break; 3194 case PHY_SPEED_15: 3195 phy->sas_phy.linkrate = SAS_LINK_RATE_1_5_GBPS; 3196 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS; 3197 break; 3198 } 3199 sas_phy->negotiated_linkrate = phy->sas_phy.linkrate; 3200 sas_phy->maximum_linkrate_hw = SAS_LINK_RATE_6_0_GBPS; 3201 sas_phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS; 3202 sas_phy->maximum_linkrate = SAS_LINK_RATE_6_0_GBPS; 3203 sas_phy->minimum_linkrate = SAS_LINK_RATE_1_5_GBPS; 3204 } 3205 3206 /** 3207 * pm8001_get_attached_sas_addr - extract/generate attached SAS address 3208 * @phy: pointer to asd_phy 3209 * @sas_addr: pointer to buffer where the SAS address is to be written 3210 * 3211 * This function extracts the SAS address from an IDENTIFY frame 3212 * received. If OOB is SATA, then a SAS address is generated from the 3213 * HA tables. 3214 * 3215 * LOCKING: the frame_rcvd_lock needs to be held since this parses the frame 3216 * buffer. 3217 */ 3218 void pm8001_get_attached_sas_addr(struct pm8001_phy *phy, 3219 u8 *sas_addr) 3220 { 3221 if (phy->sas_phy.frame_rcvd[0] == 0x34 3222 && phy->sas_phy.oob_mode == SATA_OOB_MODE) { 3223 struct pm8001_hba_info *pm8001_ha = phy->sas_phy.ha->lldd_ha; 3224 /* FIS device-to-host */ 3225 u64 addr = be64_to_cpu(*(__be64 *)pm8001_ha->sas_addr); 3226 addr += phy->sas_phy.id; 3227 *(__be64 *)sas_addr = cpu_to_be64(addr); 3228 } else { 3229 struct sas_identify_frame *idframe = 3230 (void *) phy->sas_phy.frame_rcvd; 3231 memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE); 3232 } 3233 } 3234 3235 /** 3236 * pm8001_hw_event_ack_req- For PM8001,some events need to acknowage to FW. 3237 * @pm8001_ha: our hba card information 3238 * @Qnum: the outbound queue message number. 3239 * @SEA: source of event to ack 3240 * @port_id: port id. 3241 * @phyId: phy id. 3242 * @param0: parameter 0. 3243 * @param1: parameter 1. 3244 */ 3245 static void pm8001_hw_event_ack_req(struct pm8001_hba_info *pm8001_ha, 3246 u32 Qnum, u32 SEA, u32 port_id, u32 phyId, u32 param0, u32 param1) 3247 { 3248 struct hw_event_ack_req payload; 3249 u32 opc = OPC_INB_SAS_HW_EVENT_ACK; 3250 3251 memset((u8 *)&payload, 0, sizeof(payload)); 3252 payload.tag = cpu_to_le32(1); 3253 payload.sea_phyid_portid = cpu_to_le32(((SEA & 0xFFFF) << 8) | 3254 ((phyId & 0x0F) << 4) | (port_id & 0x0F)); 3255 payload.param0 = cpu_to_le32(param0); 3256 payload.param1 = cpu_to_le32(param1); 3257 3258 pm8001_mpi_build_cmd(pm8001_ha, Qnum, opc, &payload, sizeof(payload), 0); 3259 } 3260 3261 static int pm8001_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha, 3262 u32 phyId, u32 phy_op); 3263 3264 /** 3265 * hw_event_sas_phy_up -FW tells me a SAS phy up event. 3266 * @pm8001_ha: our hba card information 3267 * @piomb: IO message buffer 3268 */ 3269 static void 3270 hw_event_sas_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb) 3271 { 3272 struct hw_event_resp *pPayload = 3273 (struct hw_event_resp *)(piomb + 4); 3274 u32 lr_evt_status_phyid_portid = 3275 le32_to_cpu(pPayload->lr_evt_status_phyid_portid); 3276 u8 link_rate = 3277 (u8)((lr_evt_status_phyid_portid & 0xF0000000) >> 28); 3278 u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); 3279 u8 phy_id = 3280 (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); 3281 u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate); 3282 u8 portstate = (u8)(npip_portstate & 0x0000000F); 3283 struct pm8001_port *port = &pm8001_ha->port[port_id]; 3284 struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; 3285 unsigned long flags; 3286 u8 deviceType = pPayload->sas_identify.dev_type; 3287 phy->port = port; 3288 port->port_id = port_id; 3289 port->port_state = portstate; 3290 phy->phy_state = PHY_STATE_LINK_UP_SPC; 3291 pm8001_dbg(pm8001_ha, MSG, 3292 "HW_EVENT_SAS_PHY_UP port id = %d, phy id = %d\n", 3293 port_id, phy_id); 3294 3295 switch (deviceType) { 3296 case SAS_PHY_UNUSED: 3297 pm8001_dbg(pm8001_ha, MSG, "device type no device.\n"); 3298 break; 3299 case SAS_END_DEVICE: 3300 pm8001_dbg(pm8001_ha, MSG, "end device.\n"); 3301 pm8001_chip_phy_ctl_req(pm8001_ha, phy_id, 3302 PHY_NOTIFY_ENABLE_SPINUP); 3303 port->port_attached = 1; 3304 pm8001_get_lrate_mode(phy, link_rate); 3305 break; 3306 case SAS_EDGE_EXPANDER_DEVICE: 3307 pm8001_dbg(pm8001_ha, MSG, "expander device.\n"); 3308 port->port_attached = 1; 3309 pm8001_get_lrate_mode(phy, link_rate); 3310 break; 3311 case SAS_FANOUT_EXPANDER_DEVICE: 3312 pm8001_dbg(pm8001_ha, MSG, "fanout expander device.\n"); 3313 port->port_attached = 1; 3314 pm8001_get_lrate_mode(phy, link_rate); 3315 break; 3316 default: 3317 pm8001_dbg(pm8001_ha, DEVIO, "unknown device type(%x)\n", 3318 deviceType); 3319 break; 3320 } 3321 phy->phy_type |= PORT_TYPE_SAS; 3322 phy->identify.device_type = deviceType; 3323 phy->phy_attached = 1; 3324 if (phy->identify.device_type == SAS_END_DEVICE) 3325 phy->identify.target_port_protocols = SAS_PROTOCOL_SSP; 3326 else if (phy->identify.device_type != SAS_PHY_UNUSED) 3327 phy->identify.target_port_protocols = SAS_PROTOCOL_SMP; 3328 phy->sas_phy.oob_mode = SAS_OOB_MODE; 3329 sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE, GFP_ATOMIC); 3330 spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags); 3331 memcpy(phy->frame_rcvd, &pPayload->sas_identify, 3332 sizeof(struct sas_identify_frame)-4); 3333 phy->frame_rcvd_size = sizeof(struct sas_identify_frame) - 4; 3334 pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr); 3335 spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags); 3336 if (pm8001_ha->flags == PM8001F_RUN_TIME) 3337 mdelay(200);/*delay a moment to wait disk to spinup*/ 3338 pm8001_bytes_dmaed(pm8001_ha, phy_id); 3339 } 3340 3341 /** 3342 * hw_event_sata_phy_up -FW tells me a SATA phy up event. 3343 * @pm8001_ha: our hba card information 3344 * @piomb: IO message buffer 3345 */ 3346 static void 3347 hw_event_sata_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb) 3348 { 3349 struct hw_event_resp *pPayload = 3350 (struct hw_event_resp *)(piomb + 4); 3351 u32 lr_evt_status_phyid_portid = 3352 le32_to_cpu(pPayload->lr_evt_status_phyid_portid); 3353 u8 link_rate = 3354 (u8)((lr_evt_status_phyid_portid & 0xF0000000) >> 28); 3355 u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); 3356 u8 phy_id = 3357 (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); 3358 u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate); 3359 u8 portstate = (u8)(npip_portstate & 0x0000000F); 3360 struct pm8001_port *port = &pm8001_ha->port[port_id]; 3361 struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; 3362 unsigned long flags; 3363 pm8001_dbg(pm8001_ha, DEVIO, "HW_EVENT_SATA_PHY_UP port id = %d, phy id = %d\n", 3364 port_id, phy_id); 3365 phy->port = port; 3366 port->port_id = port_id; 3367 port->port_state = portstate; 3368 phy->phy_state = PHY_STATE_LINK_UP_SPC; 3369 port->port_attached = 1; 3370 pm8001_get_lrate_mode(phy, link_rate); 3371 phy->phy_type |= PORT_TYPE_SATA; 3372 phy->phy_attached = 1; 3373 phy->sas_phy.oob_mode = SATA_OOB_MODE; 3374 sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE, GFP_ATOMIC); 3375 spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags); 3376 memcpy(phy->frame_rcvd, ((u8 *)&pPayload->sata_fis - 4), 3377 sizeof(struct dev_to_host_fis)); 3378 phy->frame_rcvd_size = sizeof(struct dev_to_host_fis); 3379 phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; 3380 phy->identify.device_type = SAS_SATA_DEV; 3381 pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr); 3382 spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags); 3383 pm8001_bytes_dmaed(pm8001_ha, phy_id); 3384 } 3385 3386 /** 3387 * hw_event_phy_down -we should notify the libsas the phy is down. 3388 * @pm8001_ha: our hba card information 3389 * @piomb: IO message buffer 3390 */ 3391 static void 3392 hw_event_phy_down(struct pm8001_hba_info *pm8001_ha, void *piomb) 3393 { 3394 struct hw_event_resp *pPayload = 3395 (struct hw_event_resp *)(piomb + 4); 3396 u32 lr_evt_status_phyid_portid = 3397 le32_to_cpu(pPayload->lr_evt_status_phyid_portid); 3398 u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); 3399 u8 phy_id = 3400 (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); 3401 u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate); 3402 u8 portstate = (u8)(npip_portstate & 0x0000000F); 3403 struct pm8001_port *port = &pm8001_ha->port[port_id]; 3404 struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; 3405 port->port_state = portstate; 3406 phy->phy_type = 0; 3407 phy->identify.device_type = 0; 3408 phy->phy_attached = 0; 3409 memset(&phy->dev_sas_addr, 0, SAS_ADDR_SIZE); 3410 switch (portstate) { 3411 case PORT_VALID: 3412 break; 3413 case PORT_INVALID: 3414 pm8001_dbg(pm8001_ha, MSG, " PortInvalid portID %d\n", 3415 port_id); 3416 pm8001_dbg(pm8001_ha, MSG, 3417 " Last phy Down and port invalid\n"); 3418 port->port_attached = 0; 3419 pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN, 3420 port_id, phy_id, 0, 0); 3421 break; 3422 case PORT_IN_RESET: 3423 pm8001_dbg(pm8001_ha, MSG, " Port In Reset portID %d\n", 3424 port_id); 3425 break; 3426 case PORT_NOT_ESTABLISHED: 3427 pm8001_dbg(pm8001_ha, MSG, 3428 " phy Down and PORT_NOT_ESTABLISHED\n"); 3429 port->port_attached = 0; 3430 break; 3431 case PORT_LOSTCOMM: 3432 pm8001_dbg(pm8001_ha, MSG, " phy Down and PORT_LOSTCOMM\n"); 3433 pm8001_dbg(pm8001_ha, MSG, 3434 " Last phy Down and port invalid\n"); 3435 port->port_attached = 0; 3436 pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN, 3437 port_id, phy_id, 0, 0); 3438 break; 3439 default: 3440 port->port_attached = 0; 3441 pm8001_dbg(pm8001_ha, DEVIO, " phy Down and(default) = %x\n", 3442 portstate); 3443 break; 3444 3445 } 3446 } 3447 3448 /** 3449 * pm8001_mpi_reg_resp -process register device ID response. 3450 * @pm8001_ha: our hba card information 3451 * @piomb: IO message buffer 3452 * 3453 * when sas layer find a device it will notify LLDD, then the driver register 3454 * the domain device to FW, this event is the return device ID which the FW 3455 * has assigned, from now, inter-communication with FW is no longer using the 3456 * SAS address, use device ID which FW assigned. 3457 */ 3458 int pm8001_mpi_reg_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) 3459 { 3460 u32 status; 3461 u32 device_id; 3462 u32 htag; 3463 struct pm8001_ccb_info *ccb; 3464 struct pm8001_device *pm8001_dev; 3465 struct dev_reg_resp *registerRespPayload = 3466 (struct dev_reg_resp *)(piomb + 4); 3467 3468 htag = le32_to_cpu(registerRespPayload->tag); 3469 ccb = &pm8001_ha->ccb_info[htag]; 3470 pm8001_dev = ccb->device; 3471 status = le32_to_cpu(registerRespPayload->status); 3472 device_id = le32_to_cpu(registerRespPayload->device_id); 3473 pm8001_dbg(pm8001_ha, MSG, " register device is status = %d\n", 3474 status); 3475 switch (status) { 3476 case DEVREG_SUCCESS: 3477 pm8001_dbg(pm8001_ha, MSG, "DEVREG_SUCCESS\n"); 3478 pm8001_dev->device_id = device_id; 3479 break; 3480 case DEVREG_FAILURE_OUT_OF_RESOURCE: 3481 pm8001_dbg(pm8001_ha, MSG, "DEVREG_FAILURE_OUT_OF_RESOURCE\n"); 3482 break; 3483 case DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED: 3484 pm8001_dbg(pm8001_ha, MSG, 3485 "DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED\n"); 3486 break; 3487 case DEVREG_FAILURE_INVALID_PHY_ID: 3488 pm8001_dbg(pm8001_ha, MSG, "DEVREG_FAILURE_INVALID_PHY_ID\n"); 3489 break; 3490 case DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED: 3491 pm8001_dbg(pm8001_ha, MSG, 3492 "DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED\n"); 3493 break; 3494 case DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE: 3495 pm8001_dbg(pm8001_ha, MSG, 3496 "DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE\n"); 3497 break; 3498 case DEVREG_FAILURE_PORT_NOT_VALID_STATE: 3499 pm8001_dbg(pm8001_ha, MSG, 3500 "DEVREG_FAILURE_PORT_NOT_VALID_STATE\n"); 3501 break; 3502 case DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID: 3503 pm8001_dbg(pm8001_ha, MSG, 3504 "DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID\n"); 3505 break; 3506 default: 3507 pm8001_dbg(pm8001_ha, MSG, 3508 "DEVREG_FAILURE_DEVICE_TYPE_NOT_SUPPORTED\n"); 3509 break; 3510 } 3511 complete(pm8001_dev->dcompletion); 3512 pm8001_ccb_free(pm8001_ha, ccb); 3513 return 0; 3514 } 3515 3516 int pm8001_mpi_dereg_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) 3517 { 3518 u32 status; 3519 u32 device_id; 3520 struct dev_reg_resp *registerRespPayload = 3521 (struct dev_reg_resp *)(piomb + 4); 3522 3523 status = le32_to_cpu(registerRespPayload->status); 3524 device_id = le32_to_cpu(registerRespPayload->device_id); 3525 if (status != 0) 3526 pm8001_dbg(pm8001_ha, MSG, 3527 " deregister device failed ,status = %x, device_id = %x\n", 3528 status, device_id); 3529 return 0; 3530 } 3531 3532 /** 3533 * pm8001_mpi_fw_flash_update_resp - Response from FW for flash update command. 3534 * @pm8001_ha: our hba card information 3535 * @piomb: IO message buffer 3536 */ 3537 int pm8001_mpi_fw_flash_update_resp(struct pm8001_hba_info *pm8001_ha, 3538 void *piomb) 3539 { 3540 u32 status; 3541 struct fw_flash_Update_resp *ppayload = 3542 (struct fw_flash_Update_resp *)(piomb + 4); 3543 u32 tag = le32_to_cpu(ppayload->tag); 3544 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; 3545 3546 status = le32_to_cpu(ppayload->status); 3547 switch (status) { 3548 case FLASH_UPDATE_COMPLETE_PENDING_REBOOT: 3549 pm8001_dbg(pm8001_ha, MSG, 3550 ": FLASH_UPDATE_COMPLETE_PENDING_REBOOT\n"); 3551 break; 3552 case FLASH_UPDATE_IN_PROGRESS: 3553 pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_IN_PROGRESS\n"); 3554 break; 3555 case FLASH_UPDATE_HDR_ERR: 3556 pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_HDR_ERR\n"); 3557 break; 3558 case FLASH_UPDATE_OFFSET_ERR: 3559 pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_OFFSET_ERR\n"); 3560 break; 3561 case FLASH_UPDATE_CRC_ERR: 3562 pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_CRC_ERR\n"); 3563 break; 3564 case FLASH_UPDATE_LENGTH_ERR: 3565 pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_LENGTH_ERR\n"); 3566 break; 3567 case FLASH_UPDATE_HW_ERR: 3568 pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_HW_ERR\n"); 3569 break; 3570 case FLASH_UPDATE_DNLD_NOT_SUPPORTED: 3571 pm8001_dbg(pm8001_ha, MSG, 3572 ": FLASH_UPDATE_DNLD_NOT_SUPPORTED\n"); 3573 break; 3574 case FLASH_UPDATE_DISABLED: 3575 pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_DISABLED\n"); 3576 break; 3577 default: 3578 pm8001_dbg(pm8001_ha, DEVIO, "No matched status = %d\n", 3579 status); 3580 break; 3581 } 3582 kfree(ccb->fw_control_context); 3583 pm8001_ccb_free(pm8001_ha, ccb); 3584 complete(pm8001_ha->nvmd_completion); 3585 return 0; 3586 } 3587 3588 int pm8001_mpi_general_event(struct pm8001_hba_info *pm8001_ha, void *piomb) 3589 { 3590 u32 status; 3591 int i; 3592 struct general_event_resp *pPayload = 3593 (struct general_event_resp *)(piomb + 4); 3594 status = le32_to_cpu(pPayload->status); 3595 pm8001_dbg(pm8001_ha, MSG, " status = 0x%x\n", status); 3596 for (i = 0; i < GENERAL_EVENT_PAYLOAD; i++) 3597 pm8001_dbg(pm8001_ha, MSG, "inb_IOMB_payload[0x%x] 0x%x,\n", 3598 i, 3599 pPayload->inb_IOMB_payload[i]); 3600 return 0; 3601 } 3602 3603 int pm8001_mpi_task_abort_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) 3604 { 3605 struct sas_task *t; 3606 struct pm8001_ccb_info *ccb; 3607 unsigned long flags; 3608 u32 status ; 3609 u32 tag, scp; 3610 struct task_status_struct *ts; 3611 struct pm8001_device *pm8001_dev; 3612 3613 struct task_abort_resp *pPayload = 3614 (struct task_abort_resp *)(piomb + 4); 3615 3616 status = le32_to_cpu(pPayload->status); 3617 tag = le32_to_cpu(pPayload->tag); 3618 3619 scp = le32_to_cpu(pPayload->scp); 3620 ccb = &pm8001_ha->ccb_info[tag]; 3621 t = ccb->task; 3622 pm8001_dev = ccb->device; /* retrieve device */ 3623 3624 if (!t) { 3625 pm8001_dbg(pm8001_ha, FAIL, " TASK NULL. RETURNING !!!\n"); 3626 return -1; 3627 } 3628 ts = &t->task_status; 3629 if (status != 0) 3630 pm8001_dbg(pm8001_ha, FAIL, "task abort failed status 0x%x ,tag = 0x%x, scp= 0x%x\n", 3631 status, tag, scp); 3632 switch (status) { 3633 case IO_SUCCESS: 3634 pm8001_dbg(pm8001_ha, EH, "IO_SUCCESS\n"); 3635 ts->resp = SAS_TASK_COMPLETE; 3636 ts->stat = SAS_SAM_STAT_GOOD; 3637 break; 3638 case IO_NOT_VALID: 3639 pm8001_dbg(pm8001_ha, EH, "IO_NOT_VALID\n"); 3640 ts->resp = TMF_RESP_FUNC_FAILED; 3641 break; 3642 } 3643 spin_lock_irqsave(&t->task_state_lock, flags); 3644 t->task_state_flags &= ~SAS_TASK_STATE_PENDING; 3645 t->task_state_flags |= SAS_TASK_STATE_DONE; 3646 spin_unlock_irqrestore(&t->task_state_lock, flags); 3647 pm8001_ccb_task_free(pm8001_ha, ccb); 3648 mb(); 3649 3650 if (pm8001_dev->id & NCQ_ABORT_ALL_FLAG) { 3651 sas_free_task(t); 3652 pm8001_dev->id &= ~NCQ_ABORT_ALL_FLAG; 3653 } else { 3654 t->task_done(t); 3655 } 3656 3657 return 0; 3658 } 3659 3660 /** 3661 * mpi_hw_event -The hw event has come. 3662 * @pm8001_ha: our hba card information 3663 * @piomb: IO message buffer 3664 */ 3665 static int mpi_hw_event(struct pm8001_hba_info *pm8001_ha, void *piomb) 3666 { 3667 unsigned long flags; 3668 struct hw_event_resp *pPayload = 3669 (struct hw_event_resp *)(piomb + 4); 3670 u32 lr_evt_status_phyid_portid = 3671 le32_to_cpu(pPayload->lr_evt_status_phyid_portid); 3672 u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); 3673 u8 phy_id = 3674 (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); 3675 u16 eventType = 3676 (u16)((lr_evt_status_phyid_portid & 0x00FFFF00) >> 8); 3677 u8 status = 3678 (u8)((lr_evt_status_phyid_portid & 0x0F000000) >> 24); 3679 struct sas_ha_struct *sas_ha = pm8001_ha->sas; 3680 struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; 3681 struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id]; 3682 pm8001_dbg(pm8001_ha, DEVIO, 3683 "SPC HW event for portid:%d, phyid:%d, event:%x, status:%x\n", 3684 port_id, phy_id, eventType, status); 3685 switch (eventType) { 3686 case HW_EVENT_PHY_START_STATUS: 3687 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_START_STATUS status = %x\n", 3688 status); 3689 if (status == 0) 3690 phy->phy_state = 1; 3691 3692 if (pm8001_ha->flags == PM8001F_RUN_TIME && 3693 phy->enable_completion != NULL) { 3694 complete(phy->enable_completion); 3695 phy->enable_completion = NULL; 3696 } 3697 break; 3698 case HW_EVENT_SAS_PHY_UP: 3699 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_START_STATUS\n"); 3700 hw_event_sas_phy_up(pm8001_ha, piomb); 3701 break; 3702 case HW_EVENT_SATA_PHY_UP: 3703 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_SATA_PHY_UP\n"); 3704 hw_event_sata_phy_up(pm8001_ha, piomb); 3705 break; 3706 case HW_EVENT_PHY_STOP_STATUS: 3707 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_STOP_STATUS status = %x\n", 3708 status); 3709 if (status == 0) 3710 phy->phy_state = 0; 3711 break; 3712 case HW_EVENT_SATA_SPINUP_HOLD: 3713 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_SATA_SPINUP_HOLD\n"); 3714 sas_notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD, 3715 GFP_ATOMIC); 3716 break; 3717 case HW_EVENT_PHY_DOWN: 3718 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_DOWN\n"); 3719 sas_notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL, 3720 GFP_ATOMIC); 3721 phy->phy_attached = 0; 3722 phy->phy_state = 0; 3723 hw_event_phy_down(pm8001_ha, piomb); 3724 break; 3725 case HW_EVENT_PORT_INVALID: 3726 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_INVALID\n"); 3727 sas_phy_disconnected(sas_phy); 3728 phy->phy_attached = 0; 3729 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3730 GFP_ATOMIC); 3731 break; 3732 /* the broadcast change primitive received, tell the LIBSAS this event 3733 to revalidate the sas domain*/ 3734 case HW_EVENT_BROADCAST_CHANGE: 3735 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_CHANGE\n"); 3736 pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_BROADCAST_CHANGE, 3737 port_id, phy_id, 1, 0); 3738 spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); 3739 sas_phy->sas_prim = HW_EVENT_BROADCAST_CHANGE; 3740 spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); 3741 sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD, 3742 GFP_ATOMIC); 3743 break; 3744 case HW_EVENT_PHY_ERROR: 3745 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_ERROR\n"); 3746 sas_phy_disconnected(&phy->sas_phy); 3747 phy->phy_attached = 0; 3748 sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR, GFP_ATOMIC); 3749 break; 3750 case HW_EVENT_BROADCAST_EXP: 3751 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_EXP\n"); 3752 spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); 3753 sas_phy->sas_prim = HW_EVENT_BROADCAST_EXP; 3754 spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); 3755 sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD, 3756 GFP_ATOMIC); 3757 break; 3758 case HW_EVENT_LINK_ERR_INVALID_DWORD: 3759 pm8001_dbg(pm8001_ha, MSG, 3760 "HW_EVENT_LINK_ERR_INVALID_DWORD\n"); 3761 pm8001_hw_event_ack_req(pm8001_ha, 0, 3762 HW_EVENT_LINK_ERR_INVALID_DWORD, port_id, phy_id, 0, 0); 3763 sas_phy_disconnected(sas_phy); 3764 phy->phy_attached = 0; 3765 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3766 GFP_ATOMIC); 3767 break; 3768 case HW_EVENT_LINK_ERR_DISPARITY_ERROR: 3769 pm8001_dbg(pm8001_ha, MSG, 3770 "HW_EVENT_LINK_ERR_DISPARITY_ERROR\n"); 3771 pm8001_hw_event_ack_req(pm8001_ha, 0, 3772 HW_EVENT_LINK_ERR_DISPARITY_ERROR, 3773 port_id, phy_id, 0, 0); 3774 sas_phy_disconnected(sas_phy); 3775 phy->phy_attached = 0; 3776 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3777 GFP_ATOMIC); 3778 break; 3779 case HW_EVENT_LINK_ERR_CODE_VIOLATION: 3780 pm8001_dbg(pm8001_ha, MSG, 3781 "HW_EVENT_LINK_ERR_CODE_VIOLATION\n"); 3782 pm8001_hw_event_ack_req(pm8001_ha, 0, 3783 HW_EVENT_LINK_ERR_CODE_VIOLATION, 3784 port_id, phy_id, 0, 0); 3785 sas_phy_disconnected(sas_phy); 3786 phy->phy_attached = 0; 3787 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3788 GFP_ATOMIC); 3789 break; 3790 case HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH: 3791 pm8001_dbg(pm8001_ha, MSG, 3792 "HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH\n"); 3793 pm8001_hw_event_ack_req(pm8001_ha, 0, 3794 HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH, 3795 port_id, phy_id, 0, 0); 3796 sas_phy_disconnected(sas_phy); 3797 phy->phy_attached = 0; 3798 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3799 GFP_ATOMIC); 3800 break; 3801 case HW_EVENT_MALFUNCTION: 3802 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_MALFUNCTION\n"); 3803 break; 3804 case HW_EVENT_BROADCAST_SES: 3805 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_SES\n"); 3806 spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); 3807 sas_phy->sas_prim = HW_EVENT_BROADCAST_SES; 3808 spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); 3809 sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD, 3810 GFP_ATOMIC); 3811 break; 3812 case HW_EVENT_INBOUND_CRC_ERROR: 3813 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_INBOUND_CRC_ERROR\n"); 3814 pm8001_hw_event_ack_req(pm8001_ha, 0, 3815 HW_EVENT_INBOUND_CRC_ERROR, 3816 port_id, phy_id, 0, 0); 3817 break; 3818 case HW_EVENT_HARD_RESET_RECEIVED: 3819 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_HARD_RESET_RECEIVED\n"); 3820 sas_notify_port_event(sas_phy, PORTE_HARD_RESET, GFP_ATOMIC); 3821 break; 3822 case HW_EVENT_ID_FRAME_TIMEOUT: 3823 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_ID_FRAME_TIMEOUT\n"); 3824 sas_phy_disconnected(sas_phy); 3825 phy->phy_attached = 0; 3826 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3827 GFP_ATOMIC); 3828 break; 3829 case HW_EVENT_LINK_ERR_PHY_RESET_FAILED: 3830 pm8001_dbg(pm8001_ha, MSG, 3831 "HW_EVENT_LINK_ERR_PHY_RESET_FAILED\n"); 3832 pm8001_hw_event_ack_req(pm8001_ha, 0, 3833 HW_EVENT_LINK_ERR_PHY_RESET_FAILED, 3834 port_id, phy_id, 0, 0); 3835 sas_phy_disconnected(sas_phy); 3836 phy->phy_attached = 0; 3837 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3838 GFP_ATOMIC); 3839 break; 3840 case HW_EVENT_PORT_RESET_TIMER_TMO: 3841 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RESET_TIMER_TMO\n"); 3842 sas_phy_disconnected(sas_phy); 3843 phy->phy_attached = 0; 3844 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3845 GFP_ATOMIC); 3846 break; 3847 case HW_EVENT_PORT_RECOVERY_TIMER_TMO: 3848 pm8001_dbg(pm8001_ha, MSG, 3849 "HW_EVENT_PORT_RECOVERY_TIMER_TMO\n"); 3850 sas_phy_disconnected(sas_phy); 3851 phy->phy_attached = 0; 3852 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3853 GFP_ATOMIC); 3854 break; 3855 case HW_EVENT_PORT_RECOVER: 3856 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RECOVER\n"); 3857 break; 3858 case HW_EVENT_PORT_RESET_COMPLETE: 3859 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RESET_COMPLETE\n"); 3860 break; 3861 case EVENT_BROADCAST_ASYNCH_EVENT: 3862 pm8001_dbg(pm8001_ha, MSG, "EVENT_BROADCAST_ASYNCH_EVENT\n"); 3863 break; 3864 default: 3865 pm8001_dbg(pm8001_ha, DEVIO, "Unknown event type = %x\n", 3866 eventType); 3867 break; 3868 } 3869 return 0; 3870 } 3871 3872 /** 3873 * process_one_iomb - process one outbound Queue memory block 3874 * @pm8001_ha: our hba card information 3875 * @piomb: IO message buffer 3876 */ 3877 static void process_one_iomb(struct pm8001_hba_info *pm8001_ha, void *piomb) 3878 { 3879 __le32 pHeader = *(__le32 *)piomb; 3880 u8 opc = (u8)((le32_to_cpu(pHeader)) & 0xFFF); 3881 3882 pm8001_dbg(pm8001_ha, MSG, "process_one_iomb:\n"); 3883 3884 switch (opc) { 3885 case OPC_OUB_ECHO: 3886 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_ECHO\n"); 3887 break; 3888 case OPC_OUB_HW_EVENT: 3889 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_HW_EVENT\n"); 3890 mpi_hw_event(pm8001_ha, piomb); 3891 break; 3892 case OPC_OUB_SSP_COMP: 3893 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_COMP\n"); 3894 mpi_ssp_completion(pm8001_ha, piomb); 3895 break; 3896 case OPC_OUB_SMP_COMP: 3897 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SMP_COMP\n"); 3898 mpi_smp_completion(pm8001_ha, piomb); 3899 break; 3900 case OPC_OUB_LOCAL_PHY_CNTRL: 3901 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_LOCAL_PHY_CNTRL\n"); 3902 pm8001_mpi_local_phy_ctl(pm8001_ha, piomb); 3903 break; 3904 case OPC_OUB_DEV_REGIST: 3905 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEV_REGIST\n"); 3906 pm8001_mpi_reg_resp(pm8001_ha, piomb); 3907 break; 3908 case OPC_OUB_DEREG_DEV: 3909 pm8001_dbg(pm8001_ha, MSG, "unregister the device\n"); 3910 pm8001_mpi_dereg_resp(pm8001_ha, piomb); 3911 break; 3912 case OPC_OUB_GET_DEV_HANDLE: 3913 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_DEV_HANDLE\n"); 3914 break; 3915 case OPC_OUB_SATA_COMP: 3916 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_COMP\n"); 3917 mpi_sata_completion(pm8001_ha, piomb); 3918 break; 3919 case OPC_OUB_SATA_EVENT: 3920 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_EVENT\n"); 3921 mpi_sata_event(pm8001_ha, piomb); 3922 break; 3923 case OPC_OUB_SSP_EVENT: 3924 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_EVENT\n"); 3925 mpi_ssp_event(pm8001_ha, piomb); 3926 break; 3927 case OPC_OUB_DEV_HANDLE_ARRIV: 3928 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEV_HANDLE_ARRIV\n"); 3929 /*This is for target*/ 3930 break; 3931 case OPC_OUB_SSP_RECV_EVENT: 3932 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_RECV_EVENT\n"); 3933 /*This is for target*/ 3934 break; 3935 case OPC_OUB_DEV_INFO: 3936 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEV_INFO\n"); 3937 break; 3938 case OPC_OUB_FW_FLASH_UPDATE: 3939 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_FW_FLASH_UPDATE\n"); 3940 pm8001_mpi_fw_flash_update_resp(pm8001_ha, piomb); 3941 break; 3942 case OPC_OUB_GPIO_RESPONSE: 3943 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GPIO_RESPONSE\n"); 3944 break; 3945 case OPC_OUB_GPIO_EVENT: 3946 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GPIO_EVENT\n"); 3947 break; 3948 case OPC_OUB_GENERAL_EVENT: 3949 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GENERAL_EVENT\n"); 3950 pm8001_mpi_general_event(pm8001_ha, piomb); 3951 break; 3952 case OPC_OUB_SSP_ABORT_RSP: 3953 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_ABORT_RSP\n"); 3954 pm8001_mpi_task_abort_resp(pm8001_ha, piomb); 3955 break; 3956 case OPC_OUB_SATA_ABORT_RSP: 3957 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_ABORT_RSP\n"); 3958 pm8001_mpi_task_abort_resp(pm8001_ha, piomb); 3959 break; 3960 case OPC_OUB_SAS_DIAG_MODE_START_END: 3961 pm8001_dbg(pm8001_ha, MSG, 3962 "OPC_OUB_SAS_DIAG_MODE_START_END\n"); 3963 break; 3964 case OPC_OUB_SAS_DIAG_EXECUTE: 3965 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_DIAG_EXECUTE\n"); 3966 break; 3967 case OPC_OUB_GET_TIME_STAMP: 3968 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_TIME_STAMP\n"); 3969 break; 3970 case OPC_OUB_SAS_HW_EVENT_ACK: 3971 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_HW_EVENT_ACK\n"); 3972 break; 3973 case OPC_OUB_PORT_CONTROL: 3974 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_PORT_CONTROL\n"); 3975 break; 3976 case OPC_OUB_SMP_ABORT_RSP: 3977 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SMP_ABORT_RSP\n"); 3978 pm8001_mpi_task_abort_resp(pm8001_ha, piomb); 3979 break; 3980 case OPC_OUB_GET_NVMD_DATA: 3981 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_NVMD_DATA\n"); 3982 pm8001_mpi_get_nvmd_resp(pm8001_ha, piomb); 3983 break; 3984 case OPC_OUB_SET_NVMD_DATA: 3985 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_NVMD_DATA\n"); 3986 pm8001_mpi_set_nvmd_resp(pm8001_ha, piomb); 3987 break; 3988 case OPC_OUB_DEVICE_HANDLE_REMOVAL: 3989 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEVICE_HANDLE_REMOVAL\n"); 3990 break; 3991 case OPC_OUB_SET_DEVICE_STATE: 3992 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_DEVICE_STATE\n"); 3993 pm8001_mpi_set_dev_state_resp(pm8001_ha, piomb); 3994 break; 3995 case OPC_OUB_GET_DEVICE_STATE: 3996 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_DEVICE_STATE\n"); 3997 break; 3998 case OPC_OUB_SET_DEV_INFO: 3999 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_DEV_INFO\n"); 4000 break; 4001 case OPC_OUB_SAS_RE_INITIALIZE: 4002 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_RE_INITIALIZE\n"); 4003 break; 4004 default: 4005 pm8001_dbg(pm8001_ha, DEVIO, 4006 "Unknown outbound Queue IOMB OPC = %x\n", 4007 opc); 4008 break; 4009 } 4010 } 4011 4012 static int process_oq(struct pm8001_hba_info *pm8001_ha, u8 vec) 4013 { 4014 struct outbound_queue_table *circularQ; 4015 void *pMsg1 = NULL; 4016 u8 bc; 4017 u32 ret = MPI_IO_STATUS_FAIL; 4018 unsigned long flags; 4019 4020 spin_lock_irqsave(&pm8001_ha->lock, flags); 4021 circularQ = &pm8001_ha->outbnd_q_tbl[vec]; 4022 do { 4023 ret = pm8001_mpi_msg_consume(pm8001_ha, circularQ, &pMsg1, &bc); 4024 if (MPI_IO_STATUS_SUCCESS == ret) { 4025 /* process the outbound message */ 4026 process_one_iomb(pm8001_ha, (void *)(pMsg1 - 4)); 4027 /* free the message from the outbound circular buffer */ 4028 pm8001_mpi_msg_free_set(pm8001_ha, pMsg1, 4029 circularQ, bc); 4030 } 4031 if (MPI_IO_STATUS_BUSY == ret) { 4032 /* Update the producer index from SPC */ 4033 circularQ->producer_index = 4034 cpu_to_le32(pm8001_read_32(circularQ->pi_virt)); 4035 if (le32_to_cpu(circularQ->producer_index) == 4036 circularQ->consumer_idx) 4037 /* OQ is empty */ 4038 break; 4039 } 4040 } while (1); 4041 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 4042 return ret; 4043 } 4044 4045 /* DMA_... to our direction translation. */ 4046 static const u8 data_dir_flags[] = { 4047 [DMA_BIDIRECTIONAL] = DATA_DIR_BYRECIPIENT, /* UNSPECIFIED */ 4048 [DMA_TO_DEVICE] = DATA_DIR_OUT, /* OUTBOUND */ 4049 [DMA_FROM_DEVICE] = DATA_DIR_IN, /* INBOUND */ 4050 [DMA_NONE] = DATA_DIR_NONE, /* NO TRANSFER */ 4051 }; 4052 void 4053 pm8001_chip_make_sg(struct scatterlist *scatter, int nr, void *prd) 4054 { 4055 int i; 4056 struct scatterlist *sg; 4057 struct pm8001_prd *buf_prd = prd; 4058 4059 for_each_sg(scatter, sg, nr, i) { 4060 buf_prd->addr = cpu_to_le64(sg_dma_address(sg)); 4061 buf_prd->im_len.len = cpu_to_le32(sg_dma_len(sg)); 4062 buf_prd->im_len.e = 0; 4063 buf_prd++; 4064 } 4065 } 4066 4067 static void build_smp_cmd(u32 deviceID, __le32 hTag, struct smp_req *psmp_cmd) 4068 { 4069 psmp_cmd->tag = hTag; 4070 psmp_cmd->device_id = cpu_to_le32(deviceID); 4071 psmp_cmd->len_ip_ir = cpu_to_le32(1|(1 << 1)); 4072 } 4073 4074 /** 4075 * pm8001_chip_smp_req - send a SMP task to FW 4076 * @pm8001_ha: our hba card information. 4077 * @ccb: the ccb information this request used. 4078 */ 4079 static int pm8001_chip_smp_req(struct pm8001_hba_info *pm8001_ha, 4080 struct pm8001_ccb_info *ccb) 4081 { 4082 int elem, rc; 4083 struct sas_task *task = ccb->task; 4084 struct domain_device *dev = task->dev; 4085 struct pm8001_device *pm8001_dev = dev->lldd_dev; 4086 struct scatterlist *sg_req, *sg_resp; 4087 u32 req_len, resp_len; 4088 struct smp_req smp_cmd; 4089 u32 opc; 4090 4091 memset(&smp_cmd, 0, sizeof(smp_cmd)); 4092 /* 4093 * DMA-map SMP request, response buffers 4094 */ 4095 sg_req = &task->smp_task.smp_req; 4096 elem = dma_map_sg(pm8001_ha->dev, sg_req, 1, DMA_TO_DEVICE); 4097 if (!elem) 4098 return -ENOMEM; 4099 req_len = sg_dma_len(sg_req); 4100 4101 sg_resp = &task->smp_task.smp_resp; 4102 elem = dma_map_sg(pm8001_ha->dev, sg_resp, 1, DMA_FROM_DEVICE); 4103 if (!elem) { 4104 rc = -ENOMEM; 4105 goto err_out; 4106 } 4107 resp_len = sg_dma_len(sg_resp); 4108 /* must be in dwords */ 4109 if ((req_len & 0x3) || (resp_len & 0x3)) { 4110 rc = -EINVAL; 4111 goto err_out_2; 4112 } 4113 4114 opc = OPC_INB_SMP_REQUEST; 4115 smp_cmd.tag = cpu_to_le32(ccb->ccb_tag); 4116 smp_cmd.long_smp_req.long_req_addr = 4117 cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_req)); 4118 smp_cmd.long_smp_req.long_req_size = 4119 cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_req)-4); 4120 smp_cmd.long_smp_req.long_resp_addr = 4121 cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_resp)); 4122 smp_cmd.long_smp_req.long_resp_size = 4123 cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_resp)-4); 4124 build_smp_cmd(pm8001_dev->device_id, smp_cmd.tag, &smp_cmd); 4125 rc = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, 4126 &smp_cmd, sizeof(smp_cmd), 0); 4127 if (rc) 4128 goto err_out_2; 4129 4130 return 0; 4131 4132 err_out_2: 4133 dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_resp, 1, 4134 DMA_FROM_DEVICE); 4135 err_out: 4136 dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_req, 1, 4137 DMA_TO_DEVICE); 4138 return rc; 4139 } 4140 4141 /** 4142 * pm8001_chip_ssp_io_req - send a SSP task to FW 4143 * @pm8001_ha: our hba card information. 4144 * @ccb: the ccb information this request used. 4145 */ 4146 static int pm8001_chip_ssp_io_req(struct pm8001_hba_info *pm8001_ha, 4147 struct pm8001_ccb_info *ccb) 4148 { 4149 struct sas_task *task = ccb->task; 4150 struct domain_device *dev = task->dev; 4151 struct pm8001_device *pm8001_dev = dev->lldd_dev; 4152 struct ssp_ini_io_start_req ssp_cmd; 4153 u32 tag = ccb->ccb_tag; 4154 u64 phys_addr; 4155 u32 opc = OPC_INB_SSPINIIOSTART; 4156 memset(&ssp_cmd, 0, sizeof(ssp_cmd)); 4157 memcpy(ssp_cmd.ssp_iu.lun, task->ssp_task.LUN, 8); 4158 ssp_cmd.dir_m_tlr = 4159 cpu_to_le32(data_dir_flags[task->data_dir] << 8 | 0x0);/*0 for 4160 SAS 1.1 compatible TLR*/ 4161 ssp_cmd.data_len = cpu_to_le32(task->total_xfer_len); 4162 ssp_cmd.device_id = cpu_to_le32(pm8001_dev->device_id); 4163 ssp_cmd.tag = cpu_to_le32(tag); 4164 if (task->ssp_task.enable_first_burst) 4165 ssp_cmd.ssp_iu.efb_prio_attr |= 0x80; 4166 ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_prio << 3); 4167 ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_attr & 7); 4168 memcpy(ssp_cmd.ssp_iu.cdb, task->ssp_task.cmd->cmnd, 4169 task->ssp_task.cmd->cmd_len); 4170 4171 /* fill in PRD (scatter/gather) table, if any */ 4172 if (task->num_scatter > 1) { 4173 pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd); 4174 phys_addr = ccb->ccb_dma_handle; 4175 ssp_cmd.addr_low = cpu_to_le32(lower_32_bits(phys_addr)); 4176 ssp_cmd.addr_high = cpu_to_le32(upper_32_bits(phys_addr)); 4177 ssp_cmd.esgl = cpu_to_le32(1<<31); 4178 } else if (task->num_scatter == 1) { 4179 u64 dma_addr = sg_dma_address(task->scatter); 4180 ssp_cmd.addr_low = cpu_to_le32(lower_32_bits(dma_addr)); 4181 ssp_cmd.addr_high = cpu_to_le32(upper_32_bits(dma_addr)); 4182 ssp_cmd.len = cpu_to_le32(task->total_xfer_len); 4183 ssp_cmd.esgl = 0; 4184 } else if (task->num_scatter == 0) { 4185 ssp_cmd.addr_low = 0; 4186 ssp_cmd.addr_high = 0; 4187 ssp_cmd.len = cpu_to_le32(task->total_xfer_len); 4188 ssp_cmd.esgl = 0; 4189 } 4190 4191 return pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &ssp_cmd, 4192 sizeof(ssp_cmd), 0); 4193 } 4194 4195 static int pm8001_chip_sata_req(struct pm8001_hba_info *pm8001_ha, 4196 struct pm8001_ccb_info *ccb) 4197 { 4198 struct sas_task *task = ccb->task; 4199 struct domain_device *dev = task->dev; 4200 struct pm8001_device *pm8001_ha_dev = dev->lldd_dev; 4201 u32 tag = ccb->ccb_tag; 4202 struct sata_start_req sata_cmd; 4203 u32 hdr_tag, ncg_tag = 0; 4204 u64 phys_addr; 4205 u32 ATAP = 0x0; 4206 u32 dir; 4207 unsigned long flags; 4208 u32 opc = OPC_INB_SATA_HOST_OPSTART; 4209 4210 memset(&sata_cmd, 0, sizeof(sata_cmd)); 4211 4212 if (task->data_dir == DMA_NONE && !task->ata_task.use_ncq) { 4213 ATAP = 0x04; /* no data*/ 4214 pm8001_dbg(pm8001_ha, IO, "no data\n"); 4215 } else if (likely(!task->ata_task.device_control_reg_update)) { 4216 if (task->ata_task.use_ncq && 4217 dev->sata_dev.class != ATA_DEV_ATAPI) { 4218 ATAP = 0x07; /* FPDMA */ 4219 pm8001_dbg(pm8001_ha, IO, "FPDMA\n"); 4220 } else if (task->ata_task.dma_xfer) { 4221 ATAP = 0x06; /* DMA */ 4222 pm8001_dbg(pm8001_ha, IO, "DMA\n"); 4223 } else { 4224 ATAP = 0x05; /* PIO*/ 4225 pm8001_dbg(pm8001_ha, IO, "PIO\n"); 4226 } 4227 } 4228 if (task->ata_task.use_ncq && pm8001_get_ncq_tag(task, &hdr_tag)) { 4229 task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3); 4230 ncg_tag = hdr_tag; 4231 } 4232 dir = data_dir_flags[task->data_dir] << 8; 4233 sata_cmd.tag = cpu_to_le32(tag); 4234 sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id); 4235 sata_cmd.data_len = cpu_to_le32(task->total_xfer_len); 4236 sata_cmd.ncqtag_atap_dir_m = 4237 cpu_to_le32(((ncg_tag & 0xff)<<16)|((ATAP & 0x3f) << 10) | dir); 4238 sata_cmd.sata_fis = task->ata_task.fis; 4239 if (likely(!task->ata_task.device_control_reg_update)) 4240 sata_cmd.sata_fis.flags |= 0x80;/* C=1: update ATA cmd reg */ 4241 sata_cmd.sata_fis.flags &= 0xF0;/* PM_PORT field shall be 0 */ 4242 /* fill in PRD (scatter/gather) table, if any */ 4243 if (task->num_scatter > 1) { 4244 pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd); 4245 phys_addr = ccb->ccb_dma_handle; 4246 sata_cmd.addr_low = lower_32_bits(phys_addr); 4247 sata_cmd.addr_high = upper_32_bits(phys_addr); 4248 sata_cmd.esgl = cpu_to_le32(1 << 31); 4249 } else if (task->num_scatter == 1) { 4250 u64 dma_addr = sg_dma_address(task->scatter); 4251 sata_cmd.addr_low = lower_32_bits(dma_addr); 4252 sata_cmd.addr_high = upper_32_bits(dma_addr); 4253 sata_cmd.len = cpu_to_le32(task->total_xfer_len); 4254 sata_cmd.esgl = 0; 4255 } else if (task->num_scatter == 0) { 4256 sata_cmd.addr_low = 0; 4257 sata_cmd.addr_high = 0; 4258 sata_cmd.len = cpu_to_le32(task->total_xfer_len); 4259 sata_cmd.esgl = 0; 4260 } 4261 4262 /* Check for read log for failed drive and return */ 4263 if (sata_cmd.sata_fis.command == 0x2f) { 4264 if (((pm8001_ha_dev->id & NCQ_READ_LOG_FLAG) || 4265 (pm8001_ha_dev->id & NCQ_ABORT_ALL_FLAG) || 4266 (pm8001_ha_dev->id & NCQ_2ND_RLE_FLAG))) { 4267 struct task_status_struct *ts; 4268 4269 pm8001_ha_dev->id &= 0xDFFFFFFF; 4270 ts = &task->task_status; 4271 4272 spin_lock_irqsave(&task->task_state_lock, flags); 4273 ts->resp = SAS_TASK_COMPLETE; 4274 ts->stat = SAS_SAM_STAT_GOOD; 4275 task->task_state_flags &= ~SAS_TASK_STATE_PENDING; 4276 task->task_state_flags |= SAS_TASK_STATE_DONE; 4277 if (unlikely((task->task_state_flags & 4278 SAS_TASK_STATE_ABORTED))) { 4279 spin_unlock_irqrestore(&task->task_state_lock, 4280 flags); 4281 pm8001_dbg(pm8001_ha, FAIL, 4282 "task 0x%p resp 0x%x stat 0x%x but aborted by upper layer\n", 4283 task, ts->resp, 4284 ts->stat); 4285 pm8001_ccb_task_free(pm8001_ha, ccb); 4286 } else { 4287 spin_unlock_irqrestore(&task->task_state_lock, 4288 flags); 4289 pm8001_ccb_task_free_done(pm8001_ha, ccb); 4290 return 0; 4291 } 4292 } 4293 } 4294 4295 return pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &sata_cmd, 4296 sizeof(sata_cmd), 0); 4297 } 4298 4299 /** 4300 * pm8001_chip_phy_start_req - start phy via PHY_START COMMAND 4301 * @pm8001_ha: our hba card information. 4302 * @phy_id: the phy id which we wanted to start up. 4303 */ 4304 static int 4305 pm8001_chip_phy_start_req(struct pm8001_hba_info *pm8001_ha, u8 phy_id) 4306 { 4307 struct phy_start_req payload; 4308 u32 tag = 0x01; 4309 u32 opcode = OPC_INB_PHYSTART; 4310 4311 memset(&payload, 0, sizeof(payload)); 4312 payload.tag = cpu_to_le32(tag); 4313 /* 4314 ** [0:7] PHY Identifier 4315 ** [8:11] link rate 1.5G, 3G, 6G 4316 ** [12:13] link mode 01b SAS mode; 10b SATA mode; 11b both 4317 ** [14] 0b disable spin up hold; 1b enable spin up hold 4318 */ 4319 payload.ase_sh_lm_slr_phyid = cpu_to_le32(SPINHOLD_DISABLE | 4320 LINKMODE_AUTO | LINKRATE_15 | 4321 LINKRATE_30 | LINKRATE_60 | phy_id); 4322 payload.sas_identify.dev_type = SAS_END_DEVICE; 4323 payload.sas_identify.initiator_bits = SAS_PROTOCOL_ALL; 4324 memcpy(payload.sas_identify.sas_addr, 4325 pm8001_ha->sas_addr, SAS_ADDR_SIZE); 4326 payload.sas_identify.phy_id = phy_id; 4327 4328 return pm8001_mpi_build_cmd(pm8001_ha, 0, opcode, &payload, 4329 sizeof(payload), 0); 4330 } 4331 4332 /** 4333 * pm8001_chip_phy_stop_req - start phy via PHY_STOP COMMAND 4334 * @pm8001_ha: our hba card information. 4335 * @phy_id: the phy id which we wanted to start up. 4336 */ 4337 static int pm8001_chip_phy_stop_req(struct pm8001_hba_info *pm8001_ha, 4338 u8 phy_id) 4339 { 4340 struct phy_stop_req payload; 4341 u32 tag = 0x01; 4342 u32 opcode = OPC_INB_PHYSTOP; 4343 4344 memset(&payload, 0, sizeof(payload)); 4345 payload.tag = cpu_to_le32(tag); 4346 payload.phy_id = cpu_to_le32(phy_id); 4347 4348 return pm8001_mpi_build_cmd(pm8001_ha, 0, opcode, &payload, 4349 sizeof(payload), 0); 4350 } 4351 4352 /* 4353 * see comments on pm8001_mpi_reg_resp. 4354 */ 4355 static int pm8001_chip_reg_dev_req(struct pm8001_hba_info *pm8001_ha, 4356 struct pm8001_device *pm8001_dev, u32 flag) 4357 { 4358 struct reg_dev_req payload; 4359 u32 opc; 4360 u32 stp_sspsmp_sata = 0x4; 4361 u32 linkrate, phy_id; 4362 int rc; 4363 struct pm8001_ccb_info *ccb; 4364 u8 retryFlag = 0x1; 4365 u16 firstBurstSize = 0; 4366 u16 ITNT = 2000; 4367 struct domain_device *dev = pm8001_dev->sas_device; 4368 struct domain_device *parent_dev = dev->parent; 4369 struct pm8001_port *port = dev->port->lldd_port; 4370 4371 memset(&payload, 0, sizeof(payload)); 4372 ccb = pm8001_ccb_alloc(pm8001_ha, pm8001_dev, NULL); 4373 if (!ccb) 4374 return -SAS_QUEUE_FULL; 4375 4376 payload.tag = cpu_to_le32(ccb->ccb_tag); 4377 if (flag == 1) 4378 stp_sspsmp_sata = 0x02; /*direct attached sata */ 4379 else { 4380 if (pm8001_dev->dev_type == SAS_SATA_DEV) 4381 stp_sspsmp_sata = 0x00; /* stp*/ 4382 else if (pm8001_dev->dev_type == SAS_END_DEVICE || 4383 dev_is_expander(pm8001_dev->dev_type)) 4384 stp_sspsmp_sata = 0x01; /*ssp or smp*/ 4385 } 4386 if (parent_dev && dev_is_expander(parent_dev->dev_type)) 4387 phy_id = parent_dev->ex_dev.ex_phy->phy_id; 4388 else 4389 phy_id = pm8001_dev->attached_phy; 4390 opc = OPC_INB_REG_DEV; 4391 linkrate = (pm8001_dev->sas_device->linkrate < dev->port->linkrate) ? 4392 pm8001_dev->sas_device->linkrate : dev->port->linkrate; 4393 payload.phyid_portid = 4394 cpu_to_le32(((port->port_id) & 0x0F) | 4395 ((phy_id & 0x0F) << 4)); 4396 payload.dtype_dlr_retry = cpu_to_le32((retryFlag & 0x01) | 4397 ((linkrate & 0x0F) * 0x1000000) | 4398 ((stp_sspsmp_sata & 0x03) * 0x10000000)); 4399 payload.firstburstsize_ITNexustimeout = 4400 cpu_to_le32(ITNT | (firstBurstSize * 0x10000)); 4401 memcpy(payload.sas_addr, pm8001_dev->sas_device->sas_addr, 4402 SAS_ADDR_SIZE); 4403 4404 rc = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &payload, 4405 sizeof(payload), 0); 4406 if (rc) 4407 pm8001_ccb_free(pm8001_ha, ccb); 4408 4409 return rc; 4410 } 4411 4412 /* 4413 * see comments on pm8001_mpi_reg_resp. 4414 */ 4415 int pm8001_chip_dereg_dev_req(struct pm8001_hba_info *pm8001_ha, 4416 u32 device_id) 4417 { 4418 struct dereg_dev_req payload; 4419 u32 opc = OPC_INB_DEREG_DEV_HANDLE; 4420 4421 memset(&payload, 0, sizeof(payload)); 4422 payload.tag = cpu_to_le32(1); 4423 payload.device_id = cpu_to_le32(device_id); 4424 pm8001_dbg(pm8001_ha, MSG, "unregister device device_id = %d\n", 4425 device_id); 4426 4427 return pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &payload, 4428 sizeof(payload), 0); 4429 } 4430 4431 /** 4432 * pm8001_chip_phy_ctl_req - support the local phy operation 4433 * @pm8001_ha: our hba card information. 4434 * @phyId: the phy id which we wanted to operate 4435 * @phy_op: the phy operation to request 4436 */ 4437 static int pm8001_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha, 4438 u32 phyId, u32 phy_op) 4439 { 4440 struct local_phy_ctl_req payload; 4441 u32 opc = OPC_INB_LOCAL_PHY_CONTROL; 4442 4443 memset(&payload, 0, sizeof(payload)); 4444 payload.tag = cpu_to_le32(1); 4445 payload.phyop_phyid = 4446 cpu_to_le32(((phy_op & 0xff) << 8) | (phyId & 0x0F)); 4447 4448 return pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &payload, 4449 sizeof(payload), 0); 4450 } 4451 4452 static u32 pm8001_chip_is_our_interrupt(struct pm8001_hba_info *pm8001_ha) 4453 { 4454 #ifdef PM8001_USE_MSIX 4455 return 1; 4456 #else 4457 u32 value; 4458 4459 value = pm8001_cr32(pm8001_ha, 0, MSGU_ODR); 4460 if (value) 4461 return 1; 4462 return 0; 4463 #endif 4464 } 4465 4466 /** 4467 * pm8001_chip_isr - PM8001 isr handler. 4468 * @pm8001_ha: our hba card information. 4469 * @vec: IRQ number 4470 */ 4471 static irqreturn_t 4472 pm8001_chip_isr(struct pm8001_hba_info *pm8001_ha, u8 vec) 4473 { 4474 pm8001_chip_interrupt_disable(pm8001_ha, vec); 4475 pm8001_dbg(pm8001_ha, DEVIO, 4476 "irq vec %d, ODMR:0x%x\n", 4477 vec, pm8001_cr32(pm8001_ha, 0, 0x30)); 4478 process_oq(pm8001_ha, vec); 4479 pm8001_chip_interrupt_enable(pm8001_ha, vec); 4480 return IRQ_HANDLED; 4481 } 4482 4483 static int send_task_abort(struct pm8001_hba_info *pm8001_ha, u32 opc, 4484 u32 dev_id, enum sas_internal_abort type, u32 task_tag, u32 cmd_tag) 4485 { 4486 struct task_abort_req task_abort; 4487 4488 memset(&task_abort, 0, sizeof(task_abort)); 4489 if (type == SAS_INTERNAL_ABORT_SINGLE) { 4490 task_abort.abort_all = 0; 4491 task_abort.device_id = cpu_to_le32(dev_id); 4492 task_abort.tag_to_abort = cpu_to_le32(task_tag); 4493 } else if (type == SAS_INTERNAL_ABORT_DEV) { 4494 task_abort.abort_all = cpu_to_le32(1); 4495 task_abort.device_id = cpu_to_le32(dev_id); 4496 } else { 4497 pm8001_dbg(pm8001_ha, EH, "unknown type (%d)\n", type); 4498 return -EIO; 4499 } 4500 4501 task_abort.tag = cpu_to_le32(cmd_tag); 4502 4503 return pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &task_abort, 4504 sizeof(task_abort), 0); 4505 } 4506 4507 /* 4508 * pm8001_chip_abort_task - SAS abort task when error or exception happened. 4509 */ 4510 int pm8001_chip_abort_task(struct pm8001_hba_info *pm8001_ha, 4511 struct pm8001_ccb_info *ccb) 4512 { 4513 struct sas_task *task = ccb->task; 4514 struct sas_internal_abort_task *abort = &task->abort_task; 4515 struct pm8001_device *pm8001_dev = ccb->device; 4516 int rc = TMF_RESP_FUNC_FAILED; 4517 u32 opc, device_id; 4518 4519 pm8001_dbg(pm8001_ha, EH, "cmd_tag = %x, abort task tag = 0x%x\n", 4520 ccb->ccb_tag, abort->tag); 4521 if (pm8001_dev->dev_type == SAS_END_DEVICE) 4522 opc = OPC_INB_SSP_ABORT; 4523 else if (pm8001_dev->dev_type == SAS_SATA_DEV) 4524 opc = OPC_INB_SATA_ABORT; 4525 else 4526 opc = OPC_INB_SMP_ABORT;/* SMP */ 4527 device_id = pm8001_dev->device_id; 4528 rc = send_task_abort(pm8001_ha, opc, device_id, abort->type, 4529 abort->tag, ccb->ccb_tag); 4530 if (rc != TMF_RESP_FUNC_COMPLETE) 4531 pm8001_dbg(pm8001_ha, EH, "rc= %d\n", rc); 4532 return rc; 4533 } 4534 4535 /** 4536 * pm8001_chip_ssp_tm_req - built the task management command. 4537 * @pm8001_ha: our hba card information. 4538 * @ccb: the ccb information. 4539 * @tmf: task management function. 4540 */ 4541 int pm8001_chip_ssp_tm_req(struct pm8001_hba_info *pm8001_ha, 4542 struct pm8001_ccb_info *ccb, struct sas_tmf_task *tmf) 4543 { 4544 struct sas_task *task = ccb->task; 4545 struct domain_device *dev = task->dev; 4546 struct pm8001_device *pm8001_dev = dev->lldd_dev; 4547 u32 opc = OPC_INB_SSPINITMSTART; 4548 struct ssp_ini_tm_start_req sspTMCmd; 4549 4550 memset(&sspTMCmd, 0, sizeof(sspTMCmd)); 4551 sspTMCmd.device_id = cpu_to_le32(pm8001_dev->device_id); 4552 sspTMCmd.relate_tag = cpu_to_le32((u32)tmf->tag_of_task_to_be_managed); 4553 sspTMCmd.tmf = cpu_to_le32(tmf->tmf); 4554 memcpy(sspTMCmd.lun, task->ssp_task.LUN, 8); 4555 sspTMCmd.tag = cpu_to_le32(ccb->ccb_tag); 4556 if (pm8001_ha->chip_id != chip_8001) 4557 sspTMCmd.ds_ads_m = cpu_to_le32(0x08); 4558 4559 return pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &sspTMCmd, 4560 sizeof(sspTMCmd), 0); 4561 } 4562 4563 int pm8001_chip_get_nvmd_req(struct pm8001_hba_info *pm8001_ha, 4564 void *payload) 4565 { 4566 u32 opc = OPC_INB_GET_NVMD_DATA; 4567 u32 nvmd_type; 4568 int rc; 4569 struct pm8001_ccb_info *ccb; 4570 struct get_nvm_data_req nvmd_req; 4571 struct fw_control_ex *fw_control_context; 4572 struct pm8001_ioctl_payload *ioctl_payload = payload; 4573 4574 nvmd_type = ioctl_payload->minor_function; 4575 fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL); 4576 if (!fw_control_context) 4577 return -ENOMEM; 4578 fw_control_context->usrAddr = (u8 *)ioctl_payload->func_specific; 4579 fw_control_context->len = ioctl_payload->rd_length; 4580 memset(&nvmd_req, 0, sizeof(nvmd_req)); 4581 4582 ccb = pm8001_ccb_alloc(pm8001_ha, NULL, NULL); 4583 if (!ccb) { 4584 kfree(fw_control_context); 4585 return -SAS_QUEUE_FULL; 4586 } 4587 ccb->fw_control_context = fw_control_context; 4588 4589 nvmd_req.tag = cpu_to_le32(ccb->ccb_tag); 4590 4591 switch (nvmd_type) { 4592 case TWI_DEVICE: { 4593 u32 twi_addr, twi_page_size; 4594 twi_addr = 0xa8; 4595 twi_page_size = 2; 4596 4597 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | twi_addr << 16 | 4598 twi_page_size << 8 | TWI_DEVICE); 4599 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length); 4600 nvmd_req.resp_addr_hi = 4601 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4602 nvmd_req.resp_addr_lo = 4603 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4604 break; 4605 } 4606 case C_SEEPROM: { 4607 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | C_SEEPROM); 4608 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length); 4609 nvmd_req.resp_addr_hi = 4610 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4611 nvmd_req.resp_addr_lo = 4612 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4613 break; 4614 } 4615 case VPD_FLASH: { 4616 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | VPD_FLASH); 4617 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length); 4618 nvmd_req.resp_addr_hi = 4619 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4620 nvmd_req.resp_addr_lo = 4621 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4622 break; 4623 } 4624 case EXPAN_ROM: { 4625 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | EXPAN_ROM); 4626 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length); 4627 nvmd_req.resp_addr_hi = 4628 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4629 nvmd_req.resp_addr_lo = 4630 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4631 break; 4632 } 4633 case IOP_RDUMP: { 4634 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | IOP_RDUMP); 4635 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length); 4636 nvmd_req.vpd_offset = cpu_to_le32(ioctl_payload->offset); 4637 nvmd_req.resp_addr_hi = 4638 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4639 nvmd_req.resp_addr_lo = 4640 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4641 break; 4642 } 4643 default: 4644 break; 4645 } 4646 4647 rc = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &nvmd_req, 4648 sizeof(nvmd_req), 0); 4649 if (rc) { 4650 kfree(fw_control_context); 4651 pm8001_ccb_free(pm8001_ha, ccb); 4652 } 4653 return rc; 4654 } 4655 4656 int pm8001_chip_set_nvmd_req(struct pm8001_hba_info *pm8001_ha, 4657 void *payload) 4658 { 4659 u32 opc = OPC_INB_SET_NVMD_DATA; 4660 u32 nvmd_type; 4661 int rc; 4662 struct pm8001_ccb_info *ccb; 4663 struct set_nvm_data_req nvmd_req; 4664 struct fw_control_ex *fw_control_context; 4665 struct pm8001_ioctl_payload *ioctl_payload = payload; 4666 4667 nvmd_type = ioctl_payload->minor_function; 4668 fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL); 4669 if (!fw_control_context) 4670 return -ENOMEM; 4671 4672 memcpy(pm8001_ha->memoryMap.region[NVMD].virt_ptr, 4673 &ioctl_payload->func_specific, 4674 ioctl_payload->wr_length); 4675 memset(&nvmd_req, 0, sizeof(nvmd_req)); 4676 4677 ccb = pm8001_ccb_alloc(pm8001_ha, NULL, NULL); 4678 if (!ccb) { 4679 kfree(fw_control_context); 4680 return -SAS_QUEUE_FULL; 4681 } 4682 ccb->fw_control_context = fw_control_context; 4683 4684 nvmd_req.tag = cpu_to_le32(ccb->ccb_tag); 4685 switch (nvmd_type) { 4686 case TWI_DEVICE: { 4687 u32 twi_addr, twi_page_size; 4688 twi_addr = 0xa8; 4689 twi_page_size = 2; 4690 nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); 4691 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | twi_addr << 16 | 4692 twi_page_size << 8 | TWI_DEVICE); 4693 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length); 4694 nvmd_req.resp_addr_hi = 4695 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4696 nvmd_req.resp_addr_lo = 4697 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4698 break; 4699 } 4700 case C_SEEPROM: 4701 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | C_SEEPROM); 4702 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length); 4703 nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); 4704 nvmd_req.resp_addr_hi = 4705 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4706 nvmd_req.resp_addr_lo = 4707 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4708 break; 4709 case VPD_FLASH: 4710 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | VPD_FLASH); 4711 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length); 4712 nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); 4713 nvmd_req.resp_addr_hi = 4714 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4715 nvmd_req.resp_addr_lo = 4716 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4717 break; 4718 case EXPAN_ROM: 4719 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | EXPAN_ROM); 4720 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length); 4721 nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); 4722 nvmd_req.resp_addr_hi = 4723 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4724 nvmd_req.resp_addr_lo = 4725 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4726 break; 4727 default: 4728 break; 4729 } 4730 4731 rc = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &nvmd_req, 4732 sizeof(nvmd_req), 0); 4733 if (rc) { 4734 kfree(fw_control_context); 4735 pm8001_ccb_free(pm8001_ha, ccb); 4736 } 4737 return rc; 4738 } 4739 4740 /** 4741 * pm8001_chip_fw_flash_update_build - support the firmware update operation 4742 * @pm8001_ha: our hba card information. 4743 * @fw_flash_updata_info: firmware flash update param 4744 * @tag: Tag to apply to the payload 4745 */ 4746 int 4747 pm8001_chip_fw_flash_update_build(struct pm8001_hba_info *pm8001_ha, 4748 void *fw_flash_updata_info, u32 tag) 4749 { 4750 struct fw_flash_Update_req payload; 4751 struct fw_flash_updata_info *info; 4752 u32 opc = OPC_INB_FW_FLASH_UPDATE; 4753 4754 memset(&payload, 0, sizeof(struct fw_flash_Update_req)); 4755 info = fw_flash_updata_info; 4756 payload.tag = cpu_to_le32(tag); 4757 payload.cur_image_len = cpu_to_le32(info->cur_image_len); 4758 payload.cur_image_offset = cpu_to_le32(info->cur_image_offset); 4759 payload.total_image_len = cpu_to_le32(info->total_image_len); 4760 payload.len = info->sgl.im_len.len ; 4761 payload.sgl_addr_lo = 4762 cpu_to_le32(lower_32_bits(le64_to_cpu(info->sgl.addr))); 4763 payload.sgl_addr_hi = 4764 cpu_to_le32(upper_32_bits(le64_to_cpu(info->sgl.addr))); 4765 4766 return pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &payload, 4767 sizeof(payload), 0); 4768 } 4769 4770 int 4771 pm8001_chip_fw_flash_update_req(struct pm8001_hba_info *pm8001_ha, 4772 void *payload) 4773 { 4774 struct fw_flash_updata_info flash_update_info; 4775 struct fw_control_info *fw_control; 4776 struct fw_control_ex *fw_control_context; 4777 int rc; 4778 struct pm8001_ccb_info *ccb; 4779 void *buffer = pm8001_ha->memoryMap.region[FW_FLASH].virt_ptr; 4780 dma_addr_t phys_addr = pm8001_ha->memoryMap.region[FW_FLASH].phys_addr; 4781 struct pm8001_ioctl_payload *ioctl_payload = payload; 4782 4783 fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL); 4784 if (!fw_control_context) 4785 return -ENOMEM; 4786 fw_control = (struct fw_control_info *)&ioctl_payload->func_specific; 4787 pm8001_dbg(pm8001_ha, DEVIO, 4788 "dma fw_control context input length :%x\n", 4789 fw_control->len); 4790 memcpy(buffer, fw_control->buffer, fw_control->len); 4791 flash_update_info.sgl.addr = cpu_to_le64(phys_addr); 4792 flash_update_info.sgl.im_len.len = cpu_to_le32(fw_control->len); 4793 flash_update_info.sgl.im_len.e = 0; 4794 flash_update_info.cur_image_offset = fw_control->offset; 4795 flash_update_info.cur_image_len = fw_control->len; 4796 flash_update_info.total_image_len = fw_control->size; 4797 fw_control_context->fw_control = fw_control; 4798 fw_control_context->virtAddr = buffer; 4799 fw_control_context->phys_addr = phys_addr; 4800 fw_control_context->len = fw_control->len; 4801 4802 ccb = pm8001_ccb_alloc(pm8001_ha, NULL, NULL); 4803 if (!ccb) { 4804 kfree(fw_control_context); 4805 return -SAS_QUEUE_FULL; 4806 } 4807 ccb->fw_control_context = fw_control_context; 4808 4809 rc = pm8001_chip_fw_flash_update_build(pm8001_ha, &flash_update_info, 4810 ccb->ccb_tag); 4811 if (rc) { 4812 kfree(fw_control_context); 4813 pm8001_ccb_free(pm8001_ha, ccb); 4814 } 4815 4816 return rc; 4817 } 4818 4819 ssize_t 4820 pm8001_get_gsm_dump(struct device *cdev, u32 length, char *buf) 4821 { 4822 u32 value, rem, offset = 0, bar = 0; 4823 u32 index, work_offset, dw_length; 4824 u32 shift_value, gsm_base, gsm_dump_offset; 4825 char *direct_data; 4826 struct Scsi_Host *shost = class_to_shost(cdev); 4827 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); 4828 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha; 4829 4830 direct_data = buf; 4831 gsm_dump_offset = pm8001_ha->fatal_forensic_shift_offset; 4832 4833 /* check max is 1 Mbytes */ 4834 if ((length > 0x100000) || (gsm_dump_offset & 3) || 4835 ((gsm_dump_offset + length) > 0x1000000)) 4836 return -EINVAL; 4837 4838 if (pm8001_ha->chip_id == chip_8001) 4839 bar = 2; 4840 else 4841 bar = 1; 4842 4843 work_offset = gsm_dump_offset & 0xFFFF0000; 4844 offset = gsm_dump_offset & 0x0000FFFF; 4845 gsm_dump_offset = work_offset; 4846 /* adjust length to dword boundary */ 4847 rem = length & 3; 4848 dw_length = length >> 2; 4849 4850 for (index = 0; index < dw_length; index++) { 4851 if ((work_offset + offset) & 0xFFFF0000) { 4852 if (pm8001_ha->chip_id == chip_8001) 4853 shift_value = ((gsm_dump_offset + offset) & 4854 SHIFT_REG_64K_MASK); 4855 else 4856 shift_value = (((gsm_dump_offset + offset) & 4857 SHIFT_REG_64K_MASK) >> 4858 SHIFT_REG_BIT_SHIFT); 4859 4860 if (pm8001_ha->chip_id == chip_8001) { 4861 gsm_base = GSM_BASE; 4862 if (-1 == pm8001_bar4_shift(pm8001_ha, 4863 (gsm_base + shift_value))) 4864 return -EIO; 4865 } else { 4866 gsm_base = 0; 4867 if (-1 == pm80xx_bar4_shift(pm8001_ha, 4868 (gsm_base + shift_value))) 4869 return -EIO; 4870 } 4871 gsm_dump_offset = (gsm_dump_offset + offset) & 4872 0xFFFF0000; 4873 work_offset = 0; 4874 offset = offset & 0x0000FFFF; 4875 } 4876 value = pm8001_cr32(pm8001_ha, bar, (work_offset + offset) & 4877 0x0000FFFF); 4878 direct_data += sprintf(direct_data, "%08x ", value); 4879 offset += 4; 4880 } 4881 if (rem != 0) { 4882 value = pm8001_cr32(pm8001_ha, bar, (work_offset + offset) & 4883 0x0000FFFF); 4884 /* xfr for non_dw */ 4885 direct_data += sprintf(direct_data, "%08x ", value); 4886 } 4887 /* Shift back to BAR4 original address */ 4888 if (-1 == pm8001_bar4_shift(pm8001_ha, 0)) 4889 return -EIO; 4890 pm8001_ha->fatal_forensic_shift_offset += 1024; 4891 4892 if (pm8001_ha->fatal_forensic_shift_offset >= 0x100000) 4893 pm8001_ha->fatal_forensic_shift_offset = 0; 4894 return direct_data - buf; 4895 } 4896 4897 int 4898 pm8001_chip_set_dev_state_req(struct pm8001_hba_info *pm8001_ha, 4899 struct pm8001_device *pm8001_dev, u32 state) 4900 { 4901 struct set_dev_state_req payload; 4902 struct pm8001_ccb_info *ccb; 4903 int rc; 4904 u32 opc = OPC_INB_SET_DEVICE_STATE; 4905 4906 memset(&payload, 0, sizeof(payload)); 4907 4908 ccb = pm8001_ccb_alloc(pm8001_ha, pm8001_dev, NULL); 4909 if (!ccb) 4910 return -SAS_QUEUE_FULL; 4911 4912 payload.tag = cpu_to_le32(ccb->ccb_tag); 4913 payload.device_id = cpu_to_le32(pm8001_dev->device_id); 4914 payload.nds = cpu_to_le32(state); 4915 4916 rc = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &payload, 4917 sizeof(payload), 0); 4918 if (rc) 4919 pm8001_ccb_free(pm8001_ha, ccb); 4920 4921 return rc; 4922 } 4923 4924 static int 4925 pm8001_chip_sas_re_initialization(struct pm8001_hba_info *pm8001_ha) 4926 { 4927 struct sas_re_initialization_req payload; 4928 struct pm8001_ccb_info *ccb; 4929 int rc; 4930 u32 opc = OPC_INB_SAS_RE_INITIALIZE; 4931 4932 memset(&payload, 0, sizeof(payload)); 4933 4934 ccb = pm8001_ccb_alloc(pm8001_ha, NULL, NULL); 4935 if (!ccb) 4936 return -SAS_QUEUE_FULL; 4937 4938 payload.tag = cpu_to_le32(ccb->ccb_tag); 4939 payload.SSAHOLT = cpu_to_le32(0xd << 25); 4940 payload.sata_hol_tmo = cpu_to_le32(80); 4941 payload.open_reject_cmdretries_data_retries = cpu_to_le32(0xff00ff); 4942 4943 rc = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &payload, 4944 sizeof(payload), 0); 4945 if (rc) 4946 pm8001_ccb_free(pm8001_ha, ccb); 4947 4948 return rc; 4949 } 4950 4951 const struct pm8001_dispatch pm8001_8001_dispatch = { 4952 .name = "pmc8001", 4953 .chip_init = pm8001_chip_init, 4954 .chip_post_init = pm8001_chip_post_init, 4955 .chip_soft_rst = pm8001_chip_soft_rst, 4956 .chip_rst = pm8001_hw_chip_rst, 4957 .chip_iounmap = pm8001_chip_iounmap, 4958 .isr = pm8001_chip_isr, 4959 .is_our_interrupt = pm8001_chip_is_our_interrupt, 4960 .isr_process_oq = process_oq, 4961 .interrupt_enable = pm8001_chip_interrupt_enable, 4962 .interrupt_disable = pm8001_chip_interrupt_disable, 4963 .make_prd = pm8001_chip_make_sg, 4964 .smp_req = pm8001_chip_smp_req, 4965 .ssp_io_req = pm8001_chip_ssp_io_req, 4966 .sata_req = pm8001_chip_sata_req, 4967 .phy_start_req = pm8001_chip_phy_start_req, 4968 .phy_stop_req = pm8001_chip_phy_stop_req, 4969 .reg_dev_req = pm8001_chip_reg_dev_req, 4970 .dereg_dev_req = pm8001_chip_dereg_dev_req, 4971 .phy_ctl_req = pm8001_chip_phy_ctl_req, 4972 .task_abort = pm8001_chip_abort_task, 4973 .ssp_tm_req = pm8001_chip_ssp_tm_req, 4974 .get_nvmd_req = pm8001_chip_get_nvmd_req, 4975 .set_nvmd_req = pm8001_chip_set_nvmd_req, 4976 .fw_flash_update_req = pm8001_chip_fw_flash_update_req, 4977 .set_dev_state_req = pm8001_chip_set_dev_state_req, 4978 .sas_re_init_req = pm8001_chip_sas_re_initialization, 4979 .fatal_errors = pm80xx_fatal_errors, 4980 }; 4981